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ABSTRACT

This paper presents a new compile-time scheduling heuristic called declustering, which
schedules acyclic precedence graphs that fit the synchronous data flow (SDF) model [1] onto
multiprocessor architectures. This technique accounts for interprocessor communication (IPC)
overheads and considers interconnection constraints in the architecture so that shared resource
contention can be avoided. The algorithm initially invokes a new clustering method that uses
graph-analysis techniques to isolate parallelism instances. When constructing an initial set of
clusters, this procedure explicitly addresses the tradeoffbetween exploiting parallelism and incur
ring communication cost By hierarchically combining these clusters and then systematically
decomposing this hierarchy, the declustering method exposes parallelism instances in order of
importance and attains a cluster granularity that fits the characteristics of the architecture. We
show that declustering retains the clustering advantage of avoiding IPC, yet overcomes the
inflexibility associated with traditional clustering approaches.

Index Terms: clustering, declustering, interprocessor communication, multiprocessor scheduling,
parallelism detection, parallel processing.
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1. INTRODUCTION

Hardware advances in parallel processing machines have far exceeded the capabilities of

current software to exploit them effectively. The task of efficientlycoordinating parallel proces

sors is formidable, requiring a program partitioning that matches the available hardware, and a

mapping strategy that considers the interprocessor communication (IPC) and synchronization

overheads created by data exchanges.

This paper introduces thedeclustering algorithm, a nonpreemptive, compile-time schedul

ing technique that maps precedence graphs onto multiprocessor architectures. A program is

described as anacyclic precedence expansion graph (APEG) G= {N,A}, where N= {Nt : i = 1,

..., n} is a setof nodes (tasks) which represent program computations, and A is a setof directed

arcs [Aij} which represent both precedence constraints and data paths. Each arc Ay carries label

Dij which specifies the number ofdata units passed from Nt to N} on each invocation ofthe pro

gram. We assume without loss of generality that each APEG has exactly one terminal node.

This condition can be enforced by connecting multiple endnodes to a dummy terminal node Nt

with dummy arcs that pass no data.

These graphs may be expansions of data flow graph algorithmic descriptions that fit the

Synchronous Data How (SDF) model [1]. This description naturally exposes inherent intemode

parallelism in the algorithm and allows partitioning, scheduling, and insertion ofsynchronization

primitives tobe performed atcompile-time, thereby avoiding much run-time overhead. Under a

fully-static scheduling paradigm, the class of applications effectively expressed using this pro-

grarnming model is limited. Constructs such as conditionals and data-dependent iteration must

be excluded to provide deterministic program behavior, making the application domain most suit

able for signal processing algorithms and some scientific computations. In this environment, a

fairly accurate estimate of the execution time of node ty (E(Nt) >0) can be obtained at compile-

time. An example APEG is shown in figure 1, where the number below each node shows its exe

cution time. Under asetf-timed scheduling paradigm, several of these constraints can be relaxed,
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Figure 1. An example APEG

permitting the class of relevant applications to be somewhat broadened. See [2] for a discussion

of these scheduling applicability issues.

The declustering algorithm targets architectures of the form shown in figure 2, in which a

set of homogeneous processors P = {Pk : k = 1,.... p} with local memory, communicate through

global shared memory modules via some type of interconnection network, such as a shared-bus,

banyan, or crossbar network.
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Figure 2. The class of relevant architectures



Our scheduling objective is to minimize the schedule length, or makespan, where all inter

processor communication overheads are included. This goal equivalently maximizes the

speedup, defined as the shortest time required for sequential execution of the APEG on a single

processor, divided by the time required for parallel execution on multiple processors. This

scheduling problem is NP-complete in the strong sense, even if there are an infinite number of

processorsavailable [3,4]. Hence we will rely uponheuristics.

Many related works have concentrated ontask allocation, attempting to assign tasks topro

cessors in order to achieve some objective, such asload balancing, minimization of IPC, or some

combination ofthe two [5, 6, 7]. Although these works are innovative, they either ignore pre

cedence constraints orattempt to minimize an objective other than schedule length, and thus are

not applicable in this context

Several other scheduling approaches have been proposed that attempt to minimize mak

espan when interprocessor communication costs are included. The dynamic-level scheduling

algorithm [8,9] is asingle-pass technique intended for environments requiring fast scheduling. It

modifies the classical HLFET algorithm [10] by using dynamically changing priorities to match

nodes and processors for scheduling at each step. Greenblatt and Linn propose a method using

branch and bound heuristics [11] to prune the search space of possible schedules. Clustering

techniques, which were first applied to solve task allocation problems [12], have been adopted as

a popular scheduling approach. These schemes divide the graph into several sets of nodes, or

clusters, which arc then mapped onto the processors, usually through some heuristic or graph

theoretic technique. Since clustering is intrinsically related to declustering, we examine two

important clustering methods in section 2 [3,13].

The declustering scheduler has been implemented as part of an interactive software design

system for digital signal processing (DSP) mat permits rapid prototyping of new DSP algorithms

and architectures [14]. The DSP algorithms are specified as block diagrams, where the computa

tion blocks range in granularity from simple operators such as adders or multipliers, to higher



level functions such as FIR filters orFFT's, to complicated subsystems such as filter banks or

speech coders. The design system translates these blockdescriptions into APEGs before schedul

ing them onto the specified architecture. This environment requires that the scheduling technique

be fast (to support interactive prototyping), flexible (to handle widely-varying node granularities),

and adaptable (to permit applicability to the wide range of DSP architectures). To enable wide

retargetability, the declustering algorithm is split into two sections: an architecture-independent

section containing the scheduling routines, and an architecture-dependent section containing the

routing and communication resource reservation routines that have been specifically designed for

the targeted architecture. The architecture-independent section calls the architecture-dependent

component to perform such tasks as routing a path between two processors, or computing the

time needed to communicate a given amount of data between specified processors. If the

designer switches architectures, the appropriate architecture-dependent section is loaded from an

existing library of such routines.

This paper is organized as follows: section 2 discusses clustering schemes and uses their

limitations to motivate the declustering approach. Sections 3, 4, 5, and 6 describe the various

phases of the declustering algorithm. Section 7 compares the scheduling performance of declus

tering with two prominent clustering schemes, and section 8 summarizes this discussion and

offers suggestions for future research.

2. CLUSTERING ALGORITHMS

Clustering algorithms have gained wide popularity for scheduling in the presence of inter

processor communication costs [15]. By forcing nodes that communicate heavily onto the same

processor, these strategies produce mappings that avoid excessive IPC cost. Since processor

assignments need only be assigned for each cluster, rather than for each node, clustering also

reduces the time needed for scheduling.

The linear clustering technique, proposed by Kim and Browne [13], iteratively applies a

critical path algorithm to transform the graph into a virtual architecture graph (VAG), which



consists of a set of linear clusters and the interconnections between them. A linear cluster is a

degenerate tree in which every node has at most one immediate predecessor and one immediate

successor. At each step, the algorithm groups together the most expensive directed path (in com

putation and communication) into a single linear cluster. The clustered nodes are removed from

the graph and this process is iteratively repeated until the entire graph hasbeendivided into clus

ters. After some refinement procedures, the algorithm applies graph-theoretic techniques to map

the virtual architecture graph ontothe physical processor architecture.

The internalization clustering method, suggested by Sarkar [3], clusters nodes together in

an attempt to minimize the schedule length on an unbounded number of processors. The algo

rithm initially places each node in aseparate cluster and considers the APEG arcs in descending

order according to the amount ofdata transferred over each arc. Given arc AVj (which connects

nodes Nt and JV}), the algorithm merges the clusters containing these nodes (C (ty) and C(Nj)) to

,,inte^nalize,, any communications between nodes in these respective clusters. The algorithm

accepts this cluster merging step if it does not increase an the estimate of the parallel execution

time of this clustered graph on an infinite number of processors. Otherwise, the clusters are

unmerged and the next arc is considered.

The parallel execution time estimate for the given set of clusters is computed in amanner

resembling classical CPM (critical path method) methodology. Forward and backward passes

through the graph are used to find the earliest and latest start times for each node, where the com

munication costs between nodes in separate clusters are included. However, this procedure

differs from the CPM techniques in that nodes inthe same cluster are constrained to be executed

sequentially on the same processor. To enforce this constraint, the algorithm sorts the nodes in

each cluster in increasing order oftheir latest starting times and appends additional precedence

constraints to ensure this ordering. When the list ofAPEG arcs is exhausted, aprocessor assign

ment phase uses amodified fist scheduling approach to map the finished clusters to the physical

processors. The procedure temporarily shifts each unassigned cluster onto each ofthe processors



inturn, estimates the parallel execution time ineach case, and maps the cluster onto the processor

that yields the minimum execution time estimate.

In addition to the advantages mentioned earlier, clustering procedures also bring several

disadvantages. By grouping nodes into higher-granularity units, these techniques constrain the

possible mappings of nodes to processors, limiting their ability to balance processor loads. Clus

tering algorithms also face significant difficulties when mapping clusters to the physical proces

sorarchitecture. For example, consider thegraph shown in figure 3, which naturally decomposes

into the three clusters ABCDE, FGHI, and JKLM. If the architecture has three processors, this

clustering method schedules the graph effectively, producing the schedule shown in figure 4 with

makespan 21. Here, we have assumed that the targeted architecture is a shared-bus multiproces

sor. For interprocessor communication, the source processor executes a send communication

node (write to shared memory) and the destination processor executes a receive communication

node (read from shared memory). We assume that the send and receive communication nodes

Figure 3. An APEG broken into three clusters

6 8 10 12 14 16 18 20 22

Figure4. The clusters scheduledontothree processors



each take two time units per data sample, and we allow a send node for one communication to be

overlapped with a receive node of another communication. These assumptions are made solely

for purposes of illustration and are not intrinsic to the proposed algorithm itself. Now, if the

graph in figure 3 is to be scheduled onto atwo-processor architecture, theclustering scheme per

forms poorly, producing the schedule shown in figure 5 withmakespan 30.

Both of the clustering methods described earlier will produce similar schedules, in which two

clusters are scheduled on one processor and one cluster is scheduled onto the other processor.

The load imbalance, which results in low processor utilization, is caused by the failure of these

traditional clustering schemes to account for the number of processors in the architecture when

choosing the granularity of the clusters. This difficulty inaccounting for architectural considera

tions during scheduling is a primary motivation for the declustering approach. The question of

whether agiven instance of parallelism should be exploited requires consideration of the graph

structure, thenode granularity, thenumber of processors, thecostof IPC, and the structure of the

processor interconnection topology. Furthermore, when processing resources are limited, one

faces the additional problem ofexploiting some parallelism instances at the expense ofothers.

General Algorithm Description

The declustering algorithm is specifically designed to address these scheduling considera

tions. The splitting of the algorithm into topology dependent and independent components

accounts for the interconnection structure, and the scheduling ofall communications as well as all

computations eliminates contention for communication resources. The declustering algorithm is

divided into four main sections, as shown in figure 6.

8 10 12 14 16 18 20 22 24 26 28 30

Figure 5. The clusters scheduled onto two processors
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Figure 6. Aflowchart description ofthe declustering algorithm

The first stage is a new clustering approach that divides the graph into elementary clusters

using a novel set of parallelism analysis techniques. This phase considers the graph structure

while explicitly addressing the tradeoff between exploiting parallelism and incurring IPC. The

second stage combines the clusters in a hierarchical fashion by considering the intercluster IPC

and parallelism relationships. It effectively ranks the instances of graph parallelism in prepara

tion for declustering. The third stage decomposes the hierarchy by systematically breaking

higher level clusters into their component sub-clusters and mapping one of the sub-clusters onto a

different processor. This phase insures effective use ofthe available processors byexploiting the

parallelism instances in order of importance. The fourth stage analyzes the best schedule

obtained so far and breaks down the elementary clusters if additional flexibility is needed to



achieve an effective load balancing. By traversing the cluster hierarchy from top to bottom

(large-grain to small-grain), this "declustering" process matches the level of cluster granularity to

the characteristics of the specified architecture.

The algorithm is an iterative scheme that performs schedule analysis between scheduling

iterations. We have found single-pass scheduling techniques to be unsuitable, due to the

difficulty in evaluating the impact of a scheduling decision at any intermediate point in the

scheduling process. Node placements that appear logical when viewed locally may produce a

poor end result. To complicate matters further, scheduling exhibits a phenomenon known in the

artificial intelligence community asthe "horizon effect". This property asserts that nomatter how

far one looks ahead before making alocal decision, there may exist something "just over the hor

izon" which can render the decision detrimental to the objective. To effectively decide node

placements during the scheduling process involves performing computations that essentially

amount to scheduling the graph several times. Rather than perform this type of calculation for

each node placement, we advocate an approach that focuses computational energy in analyzing a

schedule and finding themost promising alternative placements.

3. ELEMENTARY CLUSTER FORMATION

The elementary cluster formation phase consists of a new clustering procedure that

decomposes the precedence graph into groups ofnodes by isolating a collection ofarcs that are

likely candidates for separating the nodes at both ends onto different processors. These cut-arcs

are temporarily cut, or removed from the graph and the algorithm designates each remaining con

nected component as an elementary cluster. These cut-arcs should be distinguished from the

cutsets used by the network flow scheduling techniques pioneered by Stone [7]. Whereas each

cutset in Stone's technique corresponds in aone-to-one fashion with a task assignment, the cut-

arcs in this case represent promising locations for potential exploitation of parallelism; they do

not determine task assignments.
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The problem of finding an effective setof cut-arcs is complex. An insufficient number of

cut-arcs constrains the possible processor assignments severely, causing reduced scheduling per

formance. Conversely, an overabundance of cut-arcs leads to an excessive time required for

scheduling. The key to effective cut-arc selection lies in skillfully trading off the amount of

parallelism exploited with the interprocessor communication cost incurred. Obtaining such a

tradeoff requires botha method fordetecting parallelism within thegraph, andaneffective means

of comparing parallelism with communication cost To clarify some terminology used in this

section, a branch node is a node that has two ormore immediate successors, while a merge node

is a node possessing two or more immediate predecessors. The static level of node Nif denoted

SL (A/,-), is the sum ofthe execution times ofall the nodes along the longest directed path from fy

to the terminal node Nt. This quantity is also commonly called the critical path length from

node JV; to terminal node Nt.

3.1. Parallelism Detection

To enable parallelism detection, we find for each node Nit its reachability set RS(Ni),

defined as the set of nodes (excluding dummy terminal node Nt) reachable through a directed

path from ty. If node ty lies in the reachability set ofnode Nj, this implies that a precedence

constraint exists from Nj to Nt. Stated another way, nodes ty and Nj can be executed inparallel

if and only if each node is not contained in the other's reachability set To reveal parallelism

between paths of nodes, we use a "divide and conquer" approach that considers two paths at a

time. Recognizing that parallelism is created at branch nodes, we focus attention on paths that

diverge from these nodes. The branchnodes in the graphare sortedsmallest static level first, so

that the branch nodes near the end ofthe graph are initially considered. Foreach branch node AT,-,

the algorithm obtains a list of its immediate successors /£(#,) and sorts them largest static level

first Ateach step, the procedure considers the first two successors in the list and computes the

intersection of their reachability sets to categorize this instance into one of two classes, called the
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Nbranch andIbranch casesrespectively. We illustrate these casesusing anexample in which the

algorithm is considering branch node A and its immediate successors B and C.

Nonintersecting Branch Case

URS(B)r\RS(C) is empty, the paths stemming from B and C never combine. We clas

sify this instance into the Nbranch (Nonintersecting branch) case and isolate the longest paths

from nodes B and Ctodummy terminal node Nt (but not including Nt) for parallelism considera

tion. In the example Nbranch case shown in figure 7, the available parallelism between the two

paths is min {SL(B), SL(Q}. This is the maximum overlap in execution time possible if the

longest paths starting from B and Care separated onto different processors.

Intersecting Branch Case

If RS(B) n RS(C) is not empty, this instance fits into the Ibranch (Intersecting branch)

case because the paths stemming from nodes B and Ccombine at some point The node in the

intersection with largest static level is the first merge node at which paths starting from Band C

combine. The algorithm isolates the longest path from Bto the merge node and the longest path

from Cto the merge node for parallelism consideration. This is illustrated in figure 8, where

node Zis the merge node. Ifwe designate the string ofnodes from Bto Xas pathl and the string

ofnodes from Cto Y as path2, the available parallelism is die minimum ofthe sum ofnode exe-

-©

Figure 7. The nonintersecting branch case
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Figure 8. The intersecting branch case

cutiontimes in pathl and the sum ofnodeexecution times in path2.

3.2. Cut-arc Determination

This method of categorizing two-path parallelism instances into the Nbranch and Ibranch

classes provides a tractable means of determining cut-arcs, because finding the minimum mak-

espansolution for eachisolated parallelism instance is a straightforward calculation in eachcase.

If the parallelism instance can execute more rapidly on two processors than on one processor

(large communication costs may preclude this possibility) the algorithm finds the single arc that

will be cut in the Nbranch case, or the two arcs that will be cut in the Ibranch case.

3.3. Algorithm Description

To make the elementary cluster formation algorithm as lucid as possible, we first demon

strate the clustering process on the example graph in figure 1. We then close this section by

displaying thesteps of this procedure in an algorithmic C-like syntax in figure 14.

To break the graph in figure 1into two-path parallelism instances, the algorithm first

identifies nodes A and I as branchnodes. Node I, which is examined first is found to have two

immediate successors M and N, where RS(M)nRS(N)= <j>. This two-path parallelism instance,

shown in figure 9, therefore fits into the Nbranch case. Again, assuming the same shared-bus

architecture mentioned earlier, the algorithm quickly ascertains that separating paths {I-M-Q}

and {N-R} onto separate processors leads to the minimum makespan solution. It therefore adds
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Figure 9. A nonintersecting branch case

arc IN to the list of cut-arcs and moves on to examine branchnode A. Since node A has more

than two immediate successors, the procedure sorts them into a list largest static level first :

IS(A) = [E F D]. At each step, it considers the two remaining successors with largest static

level, which are initially E and Fin this case. After finding that RS(E) nRS(F) =$, the algo

rithm classifies this instance into the Nbranch case and isolates the two longest paths stemming

from nodes Eand Ffor parallelism consideration, as shown in figure 10. Here, the optimum solu

tion is to cut arc AF. Since this cut-arc lies in the path containing successor node F, the algorithm

removes nodeF from the list of successors, sothat IS (A) = [E D ].

The algorithm next examines the two successor nodes, Dand E, and determines that node Q

is the first merge node in RS(D)nRS(E), at which the paths starting from D and E combine.

This Ibranch case, shown in figure 11, requires two cut-arcs to split paths onto separate proces

sors. The algorithm first calculates the makespans for cutting pairs of arcs in the four "comer"

cases (AD, LQ), (AD, MQ), (AE, LQ), and (AE, MQ), which are pairs ofarcs directiy connected

to the branch node or merge node. The procedure uses the shortest makespan obtained over the

MD-^nHXr)
3 4 2

3 4 2

Figure 10. Another nonintersecting branch case
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Figure 11. An intersecting branch case

cornercases as a bound to quickly eliminate othereligible pairs of cut-arcs. Due to the excessive

communication costs, the minimum makespan solution is to leave all arcsuncut; that is, schedule

the entire structure on a singleprocessor. Sinceno path is cut, the algorithm deletes the successor

with smaller static level from /5(A) to prevent the same two paths from being analyzed again,

and moves on to examinethe next two nodes in IS(A). If only one successor remains, the routine

passes to the next branch node.

After exhausting thebranch nodes, the algorithm connects adummy start node Ns to all the

initial nodes in the graph, and computes static levels and reachability sets for each node in the

reverse direction (right to left), denoting these quantities as SLR (fy) and RSR (ty) respectively.

The procedure identifies all themerge nodes in thegraph and repeats the procedure applied to the

branch nodes, except that path analysis proceeds in the opposite direction (This is equivalent to

inverting the direction of everydirected arc in the graph, recomputing the static level and reacha

bility set for each node, and repeating the branch analysis procedure on this inverted graph). In

addition to treating cases in which the parallelism is initially extant, this consideration of merge

nodes handles situations in which two paths combine in several places. Since the parallelism

detection strategy only considers the first merge node (with largest static level) when isolating an

Ibranch case, the parallel paths combining at the later merge nodes would be ignored if all the

merge nodes were not identified andanalyzed.
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Continuing our example, the algorithm examines merge node F and its two immediate

predecessors A and B. After classifying this instance into the nonintersecting merge (Nmerge)

case, die procedure determines that the best solution is not to cut any arcs. When considering

merge node Q, the algorithm recognizes that this hnerge case has already been examined as an

Ibranch case for node A and skips on to consider merge node S and its two immediate predeces

sors O and P. Since RSR(0)nRSR(P) = $, the algorithm classifies this instance into the

Nmerge case, traces the two longest paths tothe dummy start node as illustrated in figure 12, and

isolates KP as the optimal cut-arc. Notice that arc KP is not directiy connected to a branch or

merge node. The significance of this point will become apparent when we compare clustering

schemes in section 7.

After all the cut-arcs have been determined, the algorithm temporarily removes them from

the graph and invokes adepth-first search to isolate the connected components remaining in the

graph. Each remaining component is designated as an elementary cluster. After cutting arcs IN,

AF, and KP, the elementary clusters in our example are shown below in figure 13. Selecting an

arc to be acut-arc does not force the nodes at each end onto separate processors; rather, the cut-

arcs represent promising locations for splitting paths onto different processors. The actual map

ping decisions are made inlater phases of the algorithm.

We summarize the steps taken by the elementary cluster formation phase in figure 14.

(B>^<F>-m>-^

7 2 5

Figure 12. A nonintersecting merge case



16

—.7 2 V.3...

Figure 13. The elementary clusters in the graph

INPUT: The acyclic precedence expansion graph
OUTPUT: A set of elementary clusters

0) Hnd the static level (SL) and reachability set (RS) for each node
1) Sort graph branch nodes smallest SL first
2) Foreach branch node BN {

Sort immediate successors of BN Into list IS(BN), largest SL first
while(l/5(£A0l£2){

IS1 s first node In iS(BN), IS2 =second node In IS(BN)
If(INTSET =RS(IS 1) n RS(IS2) = <j>) f NBranch case •/

Trace paths from IS1 and IS2 to terminal node JV,
Find the optimal cut-arc for this 2-path parallelism Instance
If (cut-arc Is null) t* Excessive communication cost */

Remove the successor (IS1 or IS2) with smaller SL from iS(BN)
else

Remove the successor (IS1 or IS2) closest to the cut-arc from IS(BN)
else { /* IBraneh case */

Identify merge node Mas the node with highest SL InINTSET
Trace paths from IS1 to M and from IS2 to M
Find the 2 optimal cut-arcs for this 2-path parallelism Instance
If (cut-arcs are null) /* Excessive communication cost •/

Remove the successor (IS1 or IS2)with smaller SL from IS(BN)
else

Remove the successor (IS1 or IS2) closest to a cut-arc from IS(BN)
}

3) Invert the direction of every grapharc and repeat steps 0-2
4) Temporarily remove the cut-arcs from the graph
5) Findthe connected components remaining in the graph

(Each remaining connected component Is an elementary cluster)

Figure 14. The elementary cluster formation algorithm
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4. HIERARCHICAL CLUSTER GROUPING

The hierarchical cluster grouping stage combines existing clusters in a pairwise fashion

until a single cluster remains that contains every node in the graph. This procedure establishes a

parallelism hierarchy, effectively sorting the graph parallelism by importance in preparation for

declustering.

This procedure initially sorts the elementary clusters by the sum of the execution times of

the nodes they contain (smallest first). This allows the smallest cluster, say Cu tobeconsidered

for merging at each step. The algorithm determines the cluster that communicates most heavily

with C! byexamining the intercluster cut-arcs. Ties are broken by arbitrarily selecting the cluster

with smaller total execution time. The algorithm proceeds to merge Cx and its selected cluster

into anew larger cluster, and records this cluster combination step (e.g. [C x+C2 =C3]) in order

of execution for future reference. After a cluster combination step is invoked, the algorithm

removes the two component clusters from die list ofcurrent clusters, adds the new larger cluster

to the list in sorted order, and considers the next smallest cluster for merging. When only asingle

cluster remains, the algorithm schedules this cluster onto aprocessor (we arbitrarily pick PO) to

obtain an initial makespan. These steps are summarized below in figure 15.

INPUT:The elementary clusters
OUTPUT: Anordered listof cluster combination steps
LetC(l) denotetheset of clusters at timestep I

0) i a 0; C(0) =set of elementaryclusters
1) while (|C(I)|>1) {

C1(l) aSmallest cluster (smallest sum ofnode execution times) in C(l)
C2(i) s Cluster In C(l) that communicates themostdata with C1(i)

(Break ties by selecting smallercluster)
Merge clusters CI(I) and C2(i) togetnew cluster C3(l)
Store cluster combination step [C1(l) +C2(l) =C3(l)l
Remove C1(I) and C2(i) from C(Q
Add C3(i) to cluster set C(i)
1 = 1 + 1

>

Figure 15. The hierarchical cluster grouping algorithm



18

Theorder in which the clusters are combined is important Theprocedure selects the smal

lest cluster for combination at each step because combining this cluster with another does not

suppress much parallelism. While this technique incorporates interprocessor communication

considerations, it builds clusters in such a fashion tomaintain asmuch parallelism aspossible for

as long aspossible. Theresult is that thecombination steps neartheendmerge clusters thathave

the largest amounts of parallelism between them, subject to the communication pattern in the

graph. This effectively imposes a ranking of the instances of parallelism present in the graph,

where thecombination steps neartherjegmning suppress theless important parallelism instances,

andthe combination stepsnear the endsuppress the mostprominent parallelism instances.

5. CLUSTER HIERARCHY DECOMPOSITION

The cluster hierarchy decomposition phase begins the declustering process, in which the

parallelism hierarchy constructed in the first two stages is decomposed into successively smaller

levels. To avoid the inflexibility induced by the clustering process, the algorithm traverses clus

ter granularity levels from large to small to find the level that is roughly consistent with the

characteristics of the target architecture.

This procedure examines the list of cluster combination steps in reverse order, so that the

last consolidation step (say [C18 + C19 = CM]) is considered first. It then invokes a decomposi

tion step on C20 byshifting either subcluster C18 or C19 onto a selected group of candidate pro

cessors, which are selected by the topology-dependent section by considering the cut arcs of the

chosen subcluster and the finishing times of the processors. The algorithm shifts thechosen sub-

cluster onto each of the candidate processors in turn, and list schedules [10] the graph to deter

mine the makespan foreachof the subcluster placements.

In contrast with the normal list scheduling approach, our list scheduling method schedules

all communications aswell asall computations. The topology-dependent section of the scheduler

contains a routing algorithm tailored for the particular architecture, which routes a path between

source and destination processors. The scheduler eliminates the possibility of communication
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resource contention by reserving all the necessary resources for the duration of the data transmis

sion. Our list scheduling method is also unique in that it has no global timeclock to distinguish

nodes as being ninnableor processors as being available. A node is runnable if all its immediate

predecessors have already been scheduled, and the processor assignments for each node are

already fixed by the declustering algorithm before scheduling is invoked. Since there are many

possible orderings of nodes on each processor, a given processor assignment can lead to many

possible schedules. Static levels are used as priorities to determine the ordering, so that at each

step, the node with highest priority is scheduled on its assigned processor. Dynamic levels,

which were used to select node-processor assignments in [8], are not necessary here because of

the fixed processorassignments.

After decomposing acluster by splitting one ofits component clusters onto another proces

sor, the algorithm accepts thedecomposition step if a faster schedule is obtained. If a tie in mak-

espan occurs, the first tiebreak criterion selects the schedule with less IPC, and the second cri

terion selects the schedule with a smaller sum of processor finishing times. If the step is

accepted, the procedure saves the new schedule and records a new processor location for the

shifted subcluster. Otherwise, it ignores the step and considers the next cluster combination step

(in reverse order) for decomposition. This process is repeated until all the cluster combination

steps have been considered. This procedure constrains the number ofprocessor placement per

mutations that are examined, because each cluster remains in its default position ifits decomposi

tion step is discarded.

When the list ofcluster combination steps is exhausted, the algorithm invokes the two clus

ter shifting procedures described in Appendix I, which search for better processor placements at

the current level ofcluster granularity. These techniques are repeated on successively lower lev

els of granularity until reaching the elementary clusters. This strategy is consistent with the

overall approach in examining placements at the higher levels ofcluster granularity before exa-

miriing placements at the lower granularity levels. This top-down strategy helps avoid
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overiooking the situation inwhich shifting two lower granularity component clusters individually

does not produce a better result, but shifting these components together results in a better place

ment If scheduling time is a critical factor, these cluster shifting techniques can be bypassed

without loss ofcontinuity; however, this omission incurs some loss of scheduling performance.

Rather than examine alternative placements in a haphazard fashion, the cluster shifting

techniques attack the schedule limiting progression (SLP), the progression of nodes and com

munications thatinhibits attainment of a faster schedule. This progression may span several pro

cessors, but it cannotcontain anyidle time. TheSLPis a function of the particular schedule, and

depends on the effectiveness of the scheduling procedure as well as the characteristics of the tar

geted architecture. In contrast with the critical path, the SLP is sensitive to changes in the

number of processing and communication resources. An example schedule is shown below in

figure 16, with the SLP markedby the sequence of arrows.

Although it may seem unusual tobuild and then tear down a parallelism hierarchy, this pro

cedure provides several benefits. The sorting of graph parallelism that occurs during hierarchy

construction allows effective use of the available processors. As each new processor is pressed

into service, the algorithm assigns it thelargest section ofunrealized parallelism remaining in the

graph thathasthesmallest IPCcost Faced with theinevitable problem ofhaving to exploit some

parallelism instances at the expense of others, the declustering algorithm insures that the most

significant sections of graph parallelism are assigned first The less important parallelism

instances will be exposed later if there are sufficient resources remaining to warrant exploitation.

8 10 12 14 16 18 20 22 24
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K

Figure 16. An example schedule with the SLP marked using arrows
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By sweeping through a range of cluster granularities during clusterdecomposition, this approach

also performs natural partitioning that automatically adapts to the grain size of the nodes. When

the cluster granularity reaches the pointwhere IPC costs negate any gains realized in exploiting

parallelism, the algorithm discards any further decomposition steps. So if the nodes are too fine

grained for the architecture to effectively use the internode parallelism, this process keeps the

hierarchy at a higher level that is conducive to parallelism exploitation. The cluster hierarchy

decomposition phase ofthe algorithm is outlined belowin figure 17.

6. CLUSTER BREAKDOWN

The cluster breakdown phase supplies the capability necessary for effective load balancing

when the appropriate cluster granularity is smaller than the level of the elementary clusters.

Since breaking clusters incurs IPC cost, the cluster breakdown phase only decomposes clusters if

this action produces a faster schedule; that is, if the gain from load balancing exceeds the addi

tional communication cost

The procedure first identifies the SLP nodes that are connected to at most one other SLP

node on the same processor. Each of these SLP edge nodes denotes a starting point for a

INPUT1 :A singleduster containing every node, mapped onto PO
INPUT2: A list of cluster combination steps, orderedmost recent first
OUTPUT:The best (shortest) schedule seen so far

0) Initial BestScheduie a Schedule every node on PO
1)For eachclustercombination step (CI +C2a C3) {

Let Cshlft be the smaller of clusters CI or C2 in execution time
BestProcessor a processor thatCshlft is currently on
Ask topology-dependent section for candidate processors for Cshift
For each candidateprocessor P(i) {

Shift every node InCshift onto P(i)
List schedule the graph to get NewScheduIe
If((NewScheduIe period <BestScheduie period) ||

(NewScheduIe period=BestScheduie period) &&
(NewScheduIe has less IPC than BestScheduie))) {

BestScheduie a NewScheduIe
. BestProcessor a P(i)

. )
. Shift every node in Cshlft onto BestProcessor

Figure 17. Thecluster hierarchy decomposition algorithm
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breakpath, where abreakpath refers to aportion of the SLP that is agood candidate for being

shifted onto another processor. Starting from an edge node, the procedure extends a path one

node further into the SLP on the same processor. The current path of nodes is considered a

breakpath if the sum of execution times in the path falls between derived lower and upper

bounds. The lower bound insures that any gain created byshifting nodes onto adifferent proces

sor exceeds the net IPC cost The upper bound, setby considering the processor loads, insures

that potential shifts have a possibility of obtaining a faster schedule. For each edge node, the

algorithm finds the sequences of nodes that satisfy the bounding requirements. It individually

switches each breakpath onto another processor, obtains the makespan, and executes the split that

produces the fastest schedule.

To illustrate this procedure, consider once again the APEG in figure 3,which was split into

three elementary clusters. Although this example maps onto three processors effectively by

scheduling onecluster oneach processor, the fastest two-processor schedule obtained after cluster

hierarchy decomposition has makespan 30, as shown in figure 18. The load imbalance occurs

because the granularity of the elementary clusters is too large for the two processor case; a

smaller cluster granularity is required for effective processor utilization. The SLP, which lies

entirely on processor 0, consists of nodes {A SendAF JBKCLDEM). The algorithm

analyzes the two edge nodes in this group, E and M, and uses the bounding techniques to obtain

the possible breakpaths {E, DE, CDE, M, LM, and KLM). After shifting processor assignments

and list scheduling the graph in each of these cases, the procedure determines that splitting DE

8 10 12 14 16 18 20 22 24 26 28 30

B K

G

Figure 18. The fastest schedule obtained after cluster shifting
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onto processor 1 gives an optimal schedule, as shown in figure 19. This ability to break down

cluster granularity is essential, because as illustrated in the preceding example, the mosteffective

cluster granularity is determined by the characteristics of the architecture. The steps taken by the

clusterbreakdown phase are shownbelowin figure 20.

This cluster breakdown technique, although intrinsic tothe declustering process, is applica

ble to other clustering methods. After clustering nodes to handle IPC cost, it is often useful to

decompose clusters to gain flexibility for load balancing. The cluster shifting and breakdown

techniques can be iteratively repeated upon successively lower levels ofcluster granularity.

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 19. The schedule after cluster breakdown

INPUT: The elementary clusters and the current BestScheduie
OUTPUT: The final BestScheduie

1) Compute schedule limiting progression (SLP)
2) Identify SLP edge nodes
3) Foreach SLP edge node {

Initialize current path (Cpath) to contain justthe edge node
CpathProc Is the processor that Cpath Is on
CONTINUES TRUE

while (CONTINUE =sTRUE) { /* Look atSLPonCpathProc 7
LBound =Estimated IPC costtoshiftCPath toadifferent processor
if (Cpath execution timesum >LBound) {

candProcs s candidate processors to shift CPath onto
For each processor P(l) IncandProcs {

Set UBound[P(l)] to Insurethat shifting CPathto P(i) has
the possibility of obtaining a faster schedule

if (Cpath execution time <UBound) {
ShiftCpath to Pfl) and list schedule the graph
If(faster schedule) { Saveschedulein BestScheduie }

eiso{
. CONTINUES FALSE

, > }
elseif(there are SLP nodes onCpathProc that are notIn Cpath) {

Extend Cpath by 1 nodefurther intotheSLPon CpathProc
elsef
, CONTINUES FALSE

Figure 20. Thecluster breakdown algorithm
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7. SCHEDULING RESULTS

To test the scheduling effectiveness of the declustering technique, we scheduled several

digital signal processing algorithms onto a shared bus multiprocessor containing four DSP56001

processors. Since there is no dedicated communication hardware in this architecture, each pro

cessor must execute the send(write shared memory) and receive (read shared memory) communi

cation nodes for interprocessor communication. We invoked the declustering algorithm, Sarkar's

internalization algorithm, and a modified version of Kim and Browne's linear clustering algo

rithm on eachof these DSP applications to compare scheduling performance. The modification

to the linear clustering algorithm was necessary because the method used to assign clusters to

processors was not described cleariy enough for implementation. Our modified version, which

we refer to as the critical-path clustering algorithm, uses the linear clustering method to deter

mine a setof clusters, but substitutes phases 2 and 3 of the declustering algorithm for processor

assignment We tested these scheduling techniques using four different signal processing algo

rithms: two sound synthesis programs, atelephone channel simulator, and a 16-QAM (quadrature

amplitude modulation) transmitter. The schedule makespans (in processor cycles) are shown in

table 1 for each case. The declustering technique produced the best result (shortest schedule

length) in each instance.

By comparing the times required to construct each schedule, as shown in table 2, we see

that the critical-path clustering technique is the quickest and the internalization approach the

slowest of these algorithms. If n represents the number of nodes and p represents the number of

SCHEDULE LENGTHS IN PROGESSOR CYCLES

DSP Algorithm(#nodes) Declustering C-P Clustering Internalization

Sound Synthesis I (26) 173 179 218
Sound Synthesis n (27) 170 214 210
Telephone Channel Simulator (67) 297 297 488

QAM Transmitter (411) 4661 4881 5024

Table 1. Schedule lengths inprocessor cycles for 4 DSP algorithms
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processors, the critical path algorithm has complexity 0[n3p], while the internalization algo

rithm has complexity 0[n\n +/?)]. The declustering algorithm also has complexity

O[n\n +p) ], because the elementary cluster formation phase is O[n4]t the hierarchical cluster

grouping phase is O[n2], and the cluster hierarchy decomposition and cluster breakdown phases

are bothO [n3p ].

These signal processing algorithms were all homogeneous graphs, meaning that each arc

passes the same number of data units. For such graphs, the declustering algorithm usually pro

duces me same set of clusters as the critical-path clustering algorithm. Since the communication

penalty in breaking any arc in the graph is exactly the same, thegraph will almost always bebro

ken in locations that expose the greatest amount of parallelism, namely the arcs output from a

branch node or input to amerge node. The ability of thedeclustering algorithm to break arcs not

direcdy connected to a branch or merge node lies unused. To investigate the more interesting

nonhomogeneous case, we randomly generated a setof 100 APEGs containing between 70 and

140 nodes, where the node execution times were uniformly distributed over [4,20], and the

number of data units assigned to each arc were uniformly distributed over [1,5]. These graphs

were scheduled onto shared-bus architectures containing 4, 6, 8, 10, and 12 processors respec

tively, where the same communication protocol used in this paper was assumed. The decluster

ing algorithm again demonstrated the best scheduling performance, and the average percentage

speedup improvements (analogous to average percentage improvements in makespan) of the

declustering algorithm over the other two clustering techniques are shown in figure 21.

TIME REQUIRED FOR SCHEDUL]QNTG IN SECONDS
DSP Algorithm(#nodes) Declustering C-P Clustering Internalization

Sound Synthesis I (26) 5.65 2.35 5.60
Sound Synthesis n (27) 3.16 1.72 4.34
Telephone ChannelSimulator (67) 34.16 19.50 48.32
QAM Transmitter (411) 1523.20 265.72 5024.46

Table 2. Time required to construct aschedule (in seconds) for each scheduling technique
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Figure 21. Percentage improvement in speedup of declustering over critical-path clustering
and internalization

To supplement these results, we generated another set of APEGs containing between 170

and 260 nodes, where the node execution times were unifonnly distributed over [4,40], and the

number of data units on each arc were uniformly distributed over [1,10]. We scheduled these

graphs onto a simulated banyan switching network multiprocessor connecting eight processors

with eight memory modules. This architecture required four processor cycles to communicate

each data unit via shared memory, making the average node execution time equal to the mean

communication time. Here, we found the average speedup improvement of declustering over

critical-path clustering and internalization to be23.3% and 16.1% respectively.

One reason for the performance advantage ofdeclustering over critical-path clustering is the

difference in clustering approaches. The graph parallelism analysis techniques allow the declus

tering algorithm to break arcs not directly connected to branch ormerge nodes, a capability that

critical-path clustering lacks. The declustering algorithm gains additional improvement by

directly attacking the scheduling limiting progression rather than the critical path, because the



27

two are often different. The increasing speedup improvement as additional processors are added

is primarily due to the enhanced load-balancing capability obtained through declustering. The

graph-analysis clustering technique also surpasses the clustering performance of the internaliza

tion method. Although the internalization procedure is more flexible than the critical-path clus

tering technique, it occasionally "overclusters" the graph by combining nodesthat should remain

separate. This effect is caused by the algorithm's inherent ambiguity in deciding the order in

which arcs that pass the same number of data units should beconsidered. Lacking a global view

of the graph, the internalization procedure oftenmerges arcs in a suboptimal order.

To illustrate why the parallelism-analysis clustering technique in the first stage of the

declustering algorithm ourperforms the critical-path clustering and internalization approaches,

consider the graph example shown below in figure 22, which will be scheduled onto a two-

processor shared-bus configuration. The declustering algorithm invokes the graph analysis tech

niques presented in section 3. After identifying nodes B and F as the immediate successors of

branch node A, the procedure finds that cut-arc AB gives the minimum makespan solution for

this Nbranch case. The algorithm proceeds to merge node I, identifies its immediate predecessors

as nodes Fand H, and determines that cutting arc HI yields the optimum solution inthis Nmerge

case. The elementary clusters are shown in figure 23, and the resulting schedule with makespan

24 is shown in figure 24.

<bH#^(d^(e)

Figure 22. An examplegraph
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Figure 23. Thedeclustering algorithm's elementary clusters

0 2 4 6 8 10 12 14 16 18 20 22 24

28

Figure 24. The declustering schedule

The critical-path clustering algorithm successively clusters paths {A-B-C-D-E}, {G-H-I},

and {F} to produce the set of clusters shown below in figure 25. The best placement of these

clusters results in the schedule with makespan 30 shown in figure 26. It is immediately apparent

that clustering the critical path can force alarge communication to occur. Regardless of whether

cluster Fis grouped with cluster ABCDE or cluster GHI, this cluster composition forces acom

munication of 6 data units either between nodes A and F ornodes F and I. This occurs because

C©^Mb)-Mc>-2-<d)-j-»®'

Figure 25. The clusters obtained through critical-path clustering
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Figure 26. The critical-path clustering schedule

the algorithm treats each path as a complete entity, ignoring the fact that communication should

weigh more heavily than computation for clustering purposes. Clustering the entire critical path

together may be unnecessary. Since the critical path is often different from the schedule limiting

path, clustering only part of the critical path (e.g. BCDE) may lead to amore effective solution.

The internalization algorithm initially invokes clustering steps [A +F=AF] and [AF +1 =

AFI], which avoids the transfers of six data units. Itthen executes [AFI +B=ABFI], [ABFI +C

=ABCFI], [ABCFI +D=ABCDH], [ABCDFI +E=ABCDEFI], [G +H=GH], [ABFI +H=

ABFHI], and [CDE +G=CDEG], to produce the clusters shown in figure 27. The cluster place

ment procedure leads to the schedule with makespan 29 shown in figure 28. The ordering of arcs

<B>^>^(D>Mi5i

Figure 28. The internalization schedule

Figure 27. Theclusters obtained through internalization

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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plays a major role in determining the clusters. In this example, there are 6 arcs that pass 2 data

units each, and the order in which these arcs are considered determines the cluster composition.

The ordering {DE CD BC GH HI AB} produces the same clusters as the declustering technique,

while the ordering {AB HIBC GHCD DE) produces clusters ABCFGHI and DE. This ordering

dependence reflects the local view exhibited by the internalization algorithm. By considering

each arc individually, the algorithm loses its global perspective on how each merge affects the

total cluster structure.

A quick comparison of these schedules illustrates the global scheduling perspective taken

by the declustering algorithm, instead of immediately invoking the two initially executable

nodes A and G on processors PO and PI respectively, the declustering algorithm maps both nodes

ontoPO and idlesPI for four time units to obtain theoptimal schedule.

Next, consider the graph shown in figure 29, which will be scheduled onto a 3 processor

shared-bus topology. The declustering algorithm identifies nodes C and D as the immediate suc

cessors of branch nodeA and determines that arc AC is theoptimal cut-arc for thisNbranch case.

Arcs FJ and IL are subsequently identified as the two best cut-arcs for the Ibranch case involving

nodes B, E, and F. The algorithm next turns tomerge node L, which has three immediate prede-

&l*@-±®

Figure 29. Anotherexample graph



31

cessors H, I, and J. Since I and J have the highest values of SLR (W,), the procedure initially con

siders the Imerge parallelism instance involving nodes I, J, and L. Recognizing that this Imerge

case was already examined when considering branch node B, the algorithm deletes node I from

the list of immediate predecessors and proceeds to the Nmerge case involving nodes H, J, andL.

This instance gives cut-arc FJ, which was already selected earlier. The elementary clusters,

shown below in figure 30, result in a schedule withmakespan 24. Notice the irregular structure

of clusters BEFI and ADHJL. To avoid excessive IPC cost, thealgorithm suppresses some of the

available parallelism inthe graph byclustering together nodes that can beexecuted in parallel.

The critical-path clustering method iteratively clusters paths {A-D-H-L}, {B-E-I}, {C-G-

K), and {F-J} to obtain the setof clusters shown below in figure 31, which results in a schedule

with makespan 32. Unlike the declustering algorithm, the technique of iteratively clustering

linear paths cannot break arc FJ because it is not directly connected to abranch or merge node. It

is therefore forced to break arcs BF and JL that transfer four and five units ofdata respectively.

This inability to break arcs in the middle of a sequential string can cause large scheduling

inefficiencies fornonhomogeneous graphs.

Figure 30. The declustering clusters
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Figure 31. The critical-path clusteringclusters

The internalization algorithm constructs thesetof clusters shown below in figure 32,which

produces a schedule with makespan 28. Although the internalization technique can construct

irregular cluster shapes, it again illustrates a lack of global scheduling perspective by merging

nodes A and C into the same cluster. Lacking the parallelism analysis techniques of the declus

tering method, the internalization algorithm does not see that merging arc CG instead of AC will

expose a greater amount of graph parallelism.

Figure 32. The internalization clusters
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8. SUMMARY AND CONCLUSIONS

We have introduced a new compile-timemultiprocessor schedulingheuristic called declus

tering, which accounts for interprocessor communication costs. The first stage of this algorithm

is a new clustering strategy that outperforms traditional clustering schemes by using parallelism

analysis techniques to explicitly compare the tradeoff between parallelism exploitation and IPC

cost By systematically establishing and then decomposing a parallelism hierarchy, declustering

exposes graph parallelism instances inorder of importance and adjusts the level of cluster granu

larity to suit the characteristics of the specified architecture. So while it retains the ability to

account for IPC, it also displays the flexibility necessary for effective load balancing to ensure

efficient processor utilization. The algorithm gains additional performance by methodically

attacking the schedule limiting progression, rather than the critical path. Because of the hierarch

ical nature of this approach, the algorithm scales well to handle larger problems, especially for

architectures that possess a hierarchical structure.

Although declustering is intended to target multiprocessors, we expect that message-passing

multicomputers are also valid targets. The major difference isthat whereas processors inashared

memory architecture are essentially equidistant for purposes ofIPC, the distance between proces

sors inamulticomputer varies according to the number ofhops between processor locations. A

technique that reassigns placements according to processor proximities will no doubt be

beneficial in the multicomputer case.

APPENDIX I
Cluster Shifting Techniques

The communication reduction routine, which attempts to remove instances of IPC from the

SLP, first isolates the SLP clusters at the current level ofgranularity. For each SLP cluster, the
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routine evaluates the difference between the number of data units passed to clusters onadifferent

processor and thenumber of data units passed to other clusters on the same processor. Express

ingthis mathematically, wedefine D [C;, P(C,)] tobethe number of data units passed from clus

terCt to other clusters on the same processor P(Ct), D [Ci, P (Ci)] to bethenumber of data units

passed from C, to clusters on any other processor, and A(Ct )=D[CitP (CL)] - D [Ci, P(Ci)] as

the difference between these quantities. We arbitrarily designate the three SLP clusters with

highest values of A(Cf) ascluster switch candidates, because there is a good chance that switch

ing these clusters onto a different processor can reduce the amount of IPC incurred. For each

cluster switch candidate, the A(Q) criterion is used to identify other clusters as candidates for

exchanging processor locations. It invokes each cluster location switch individually and executes

the switchthatproduces the greatest improvement in makespan.

The load shift routine moves clusters onto different processors to balance processor loads

more effectively. It categorizes each processor as being heavily loaded orlightly loaded byusing

a loadthreshold that is set to half of the largest sumof the computation andcommunication costs

on any processor. The procedure invokes a sequence of cluster shifts from heavily to lightly

loaded processors, obtains thenewmakespan ineach case, and implements theshift that provides

the greatest improvement in makespan.
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