

Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HUMAN FACTORS EVALUATION OF A

TEXTUAL, GRAPHICAL, AND NATURAL

LANGUAGE QUERY INTERFACES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/12

22 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

HUMAN FACTORS EVALUATION OF A

TEXTUAL, GRAPHICAL, AND NATURAL

LANGUAGE QUERY INTERFACES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/12

22 February 1990

HUMAN FACTORS EVALUATION OF A

TEXTUAL, GRAPHICAL, AND NATURAL

LANGUAGE QUERY INTERFACES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/12

22 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Califor

94720

University of California, Berkeley

Human Factors Evaluation of a Textual, Graphical, and

Natural Language Query Interfaces

John E. Bell
Lawrence A. Rowe

Computer Science Division-EECS
University of California

Berkeley, CA 94720

ABSTRACT

This paper describes a human factors experiment performed to

compare three different interface styles for database query. Over sixty

subjects with wide ranging computer experience performed queries of

varying difficulty using either an artificial, graphical, or natural

language interface. All three interfaces were commercial products.

The experiment showed that none of the interfaces was best for all

queries or users.

L Introduction

Increasing computer power and decreasing costs is causing radical

changes in user interfaces. Graphical and natural language user

interfaces are now practical alternatives to alphanumeric user

interfaces. This paper describes a human factors experiment that

compared three different interface styles for database query: 1)

artificial language (SQL), 2) graphical language, and 3) natural

language.

Other researchers have compared different interfaces to query

languages with varying success. Reisner, Boyce and Chamberlin

compared a relational algebra query language (SQUARE) and a

relational calculus query language (SQL) [Reis75]. Using 33 subjects,

they compared these full function query languages and they found that

the relational calculus was easier for non-programmers to learn.

Greenblatt and Waxman [GrWa78] and Boyle, Bury and Evey

[BoBE83] performed experiments comparing SQL and QBE, each with

25 or fewer subjects. Greenblatt and Waxman concluded that QBE was

better but they did not use actual systems. Boyle, Bury and Evey used

actual systems and they found that subjects took longer to learn QBE

and that SQL was better for some types of queries while QBE was

better for others.

Shneiderman [Shne78] and Small and Weldon [SmWe831

performed experiments that compared SQL and natural language.

Their results were inconclusive because the experiments were limited

by experimental design problems (e.g., limited query language

functionality and small subject sample size) and by the lack of a

working natural language interface.

Jarke, et al. [Jark85] performed a field study that also compared

SQL and natural language, but again with inconclusive results. SQL

appeared better than natural language because users achieved a higher

success rate on queries. However, there were very few subjects and

little control of the experimental conditions.

Other experiments have been performed which studied only one

interface (QBE [ThGo75] or NL [OgBr83], [FiSB85], [OgSo87], [Krau80],

[Dame81]) or were designed to answer different questions (e.g.,

procedural versus non-procedural [WeSt81], different data models

[Loch78], [BrSh78], or programming using natural language [Bier831).

This paper describes an experiment comparing full function query

languages with sixty subjects working on actual interfaces in a

controlled environment. Subjects ranged in computer experience

from none at all to experienced database users with programming

experience. The tasks included simple queries (e.g., single table) to

complex queries (e.g., multiple table, counting, and existential).

Subject performance was analyzed across interfaces and across task

types giving a rich and complete picture of the usability of these

interfaces.

The remainder of this paper describes the experiment and the

results. Section 2 describes the sample database and the three

interfaces. Section 3 describes the details of the experiment,

including its design, the subjects involved, and the treatment. Section

4 presents the experimental results, and section 5 contains our

conclusions.

2. The Sample Database and Interfaces

The sample database included information about students, teachers,

classes and activities for a high school. Figure 1 shows an entity-

relationship diagram for the database. Entities are represented by

boxes; relationships are represented by diamonds, and attributes are

represented by circles.

The high school database was chosen because it would be familiar to

all subjects and it is easy to understand. In addition, it has sufficient

entities and relationships to allow a variety of simple and complex

questions to be asked.

Figure 1. ER diagram ofhigh school database

A fundamental problem encountered when comparing different

interfaces for the same task is to find a fair method to present the task

to the experimental subject. For example, a natural language

description of the task is inappropriate because one of the interfaces

being compared is a natural language interface which could bias the

results. In addition, one task presentation was needed so that

differences could be eliminated in how subjects using different

interfaces understood the task.

A pictorial representation was chosen to present the task. Figure 2

shows an example.

/\

Teacher Number: 101
First Name:
Last Name:

Salary:

Figure 2. An example of pictorial task presentation.

The task represented in the figure is to find the first and last names

and salary of teacher number 101.*The icon represents the entity, in

this case a teacher, and the captions represent the attributes.

Attributes with a value are restrictions and attributes without a value

specific the information to be retrieved. Other icons used in the

pictures are shown in Figure 3. Subjects could refer to a sheet showing

these icons and their meaning during the experiment.

1The actual representation was slightly different but the difference did not affect
understanding by the subjects. Formore details, see [Bell 90].

Teachers

cm
Students

Courses

Activities

Directory of Icons

Department
load

Departments

h
X

&
X

Sections

b

Enrollments

Involvements

Figure 3: The icons used for pictures in the high school database.

Figure 4 shows a task description for a two table query, the task is

to list all courses taught by each teacher. Notice that the join between

teachers and sections is represented by using attributes in the

different entities. The remainder of this section shows how this query

can be entered into the three interfaces.

Teacher Name:

Department Code:
ourse Number:

Period:

Figure 4: Task description: List all courses taught byeach teacher.

The first interface was an artificial language interface that used SQL

(AL). It uses English keywords (e.g., select fronu and where) to make

it more readable and easier to remember. SQL is claimed to be user

friendly because it is a nonprocedural language. An SQL query that

solves the sample task is:

select teachers.tfname, teachers.11 name,

sect ions.dcode,

sect i ons.cnumber, sect i ons.sper i od

from teachers, sections

•here teachers.tnumber 8 sect ions.tnumber

The second interface was a graphical language, called Simplify

developed by Sun Microsystems (GL). Earlier versions of Simplify were

developed at Xerox PARC [Catt80]. Simplify is essentially a graphical

interface to an SQL processor. A query constructed in Simplify is

translated into an SQL query which is then run. Consequently, Simplify

and SQL users are specifying the same commands but they enter the

commands in very different ways.

Figure 5 shows a Simplify window that contains the query for the

sample task.

Entity ^
Buttons'

«-*» Graph Query Editor

,[activities^
courses

[departments

[enrollments"

^involvements
flections

a

B

coumber

ipptiod

•loct&GD

txranbor

[students

(teachers

tuiny

Results List
1—T

ItUamc Idcode {caianber jtpcriodHetder

Value

K7(m

Hcmcnera.Bii...t»»aio».un.~8»Bwwia.«»*»~i»«i**»*'i»^.i».rt»»«»««»—»T~~t

V(no«rt) jVfooiort))V(nowrt) fonoton) «VftM«ort) }Sort

-GEEK

j_

Figure 5: A sample Simplify screen/

Qualification
Window

Output
Format
Window

The query is created by the following steps:

• Click on entity buttons for the tables in the query (i.e.,

teachers and sections). The entity boxes in the qualification

window are displayed when the entity is selected.

• Click on the attributes in the entity boxes that are to be

included in the query. Selected attributes are indicated by

check marks and are automatically entered into the output

format window.

2The entity boxes In Figure 5 are shown slde-by-side to enhancereadability.

8

• Click on tnumber in teachers, select "Create a join" in a pop

up menu, and click on tnumber in sections. This specifies the

join between teachers and sections. A line joining these two

attributes is displayed.

The query is then executed by choosing "Execute query" in a pop

up menu. The query result is displayed in another window.

The third interface was a natural language interface, called

DataTalker, developed by Natural Language, Inc. (NL). It allows users to

specify a query by entering plain English on a keyboard.

One solution to the sample task is the following:

Show the courses taught by each teacher

It is important to realize that this is only one way among many that the

user can enter to request this information. For example, another way

to ask for this information is:

List the teachers and their courses

One objective of a natural language interface is to allow a variety of

questions to access the same data.

All interfaces used the Ingres DBMS to store data. The SQL

interface used in the experiment was the isql full-screen editor

supplied with Ingres 5.0. The Simplify interface used was version 1.0

(beta) released in May 1989. The DataTalker interface used was

version 3.0 released in March 1989. The experiment was performed

on a Sun 3 computer. The same database was used for all subjects.

a The Experiment

The experimental design is shown in Figure 6. Subjects were

broken into five groups (the vertical axis), and were then randomly

assigned to three treatments {the horizontal axis). Each subject

worked through two phases: a learning phase and a performance

phase. The learning phase was composed of task levels that covered

seven types of queries. The query types taught in each level are

described in Figure 7. The performance phase included queries to test

how well the user learned to use each interface during the

experiment.

Novice

Performance Phase

End-User

Subject Programmer

DB Expert Learning Phase

Interface Expert

a || Ja,

Figure 6: Experimental Design with programmers assigned to NL highlighted-

10

LEVEL DESCRIPTION

One table, no restrictions

One table, one restriction

One table, two restrictions

One table, one or two restrictions, sorting

One table, no restrictions, aggregation (e.g., counting)

Two table join

Three table join

Figure 7: Learning phase task level definitions.

Most subjects were drawn from students at the University of

California at Berkeley. They were all volunteers who responded to

announcements or advertisements soliciting subjects. Each subject

spent about two hours working with one of the interfaces. The subjects

were classified according to prior computer experience as show in

figure 8.

Group

Novice

End User

Programmer

Database Expert

Interface Expert

Definition

less than 10 hours of computer experience
ever

experience with applications (e.g., spread
sheet or word processing), but no
programming experience

programming experience, but no database
experience

knowledgeable in SQL or QUEL

knowledgeable in the interface being used
(SQL, Simplify or DataTalker)

Figure 8: Subject group definitions.

Over 80 people participated in the experiment of which 61 were

used for analysis. Some subjects were used for a pilot study and others

11

were rejected because they had experience with the particular

interface. The subject distribution is shown in Figure 9. The cell

"database experts and AL" is empty because a database expert was

assumed to know SQL or QUEL, and only interface experts were

allowed to have any experience with the interface they were learning.

Hence, database experts using AL are actually interface experts

because of their SQL knowledge.

SUBJECT GROUP TOTAL AL GL NL

Novice 15 5 5 5

End User 15 5 5 5

Programmer 15 5 5 5

Database Expert 10 0 5 5

Interface Expert 6 2 2 2

Figure 9: Number of subjects in each category.

The interface expert category is smaller because the variation

between subjects was expected to be small and because its primary

purpose was to serve as a benchmark by which to compare the

performance of the other groups.

Subjects were randomly assigned to one of the three treatments:

AL, GL or NL. Everything was identical about the three treatments

except for the interface used and the content of the help materials

provided during the learning phase which is described below.

Each subject was given a brief Introduction to the experiment, the

high school database, and the pictorial task presentation method. They

were told they would be getting Information out of the computer using

a query language. After being shown a sample task, the subjects were

12

shown how that task could be performed with the interface to which

they were assigned.

Subjects then worked through the learning phase based on the

procedure shown in Figure 10. Subjects were given a task beginning at

level 1 which they were to perform. If they could not solve the task,

help was provided in the form of written advice. Help was broken

down into the four levels shown in figure 11.

i
—•(Give task j •[Subject a

Level

Hint

Example

Explained
Example

Answer

4 Give next help J [Begin next level j

Figure 10: Treatment In Learning Phase

Description

A two sentence description of the essence of
the solution.

A query used to solve a similar task.

The steps followed to generate the example
query.

A query that would solve the current task.

Figure 11: Help level descriptions.

Subjects who required help advanced to the next level when they

successfully completed a task without help. Subjects who got the first

13

task at a level correct without help were required to solve another

task at that level before being advanced.

After completing all levels, subjects moved to the performance

phase of the experiment. Subjects were give a series of tasks that

represented query types in the learning phase as well as query types

not seen before. The performance phase tasks and the corresponding

learning phase levels are shown in figure 12.

perform. description
Level

One table, no restrictions

One table, two restrictions

One table, aggregate counting

Three table join

Two table join, one restriction, sorting

Existence

Self-referential join

Figure 12: Performance phase task level definitions.

Learning
Level

2 &3

4 & 6

none

none

The existence and self-referential join tasks were included to see if

subjects were able to extend their knowledge of the Interfaces to

situations that had not been explicitly taught, and to see how experts

on each of the interfaces would deal with complex tasks.

An existence query asks if particular instances exist. For example,

find all activities that have no student participants. A self-referential

join query has a join of a table to itself.

Each subject was videotaped during the experiment. Records were

also kept by the experimenter (J. Bell) during each session. These

14

records included the time at each step through the procedure (e.g.,

when the task was given, when help was given, when the subject

moved to next level, etc.) as well as verbal comments made by the

subject and difficulties the subject encountered (e.g., forgetting to

clear out an old query before creating a new query). In addition, for

the AL and NL treatments, a transcript file was recorded.

4. User Performance Results

The results of the performance phase of the experiment are

presented in this section. Figure 13 shows the mean percentage of

correct queries completed by each group on the performance phase

tasks on which the subjects were trained (i.e., tasks 1-5). A value of 1.0

indicates that all subjects were able to complete that task, while a

value of 0.5 indicates that only half of the subjects were able to

complete it.

Novices were most successful on single table queries (i.e., tasks 1-

3) with AL. The SQL queries required a very simple structure with

English keywords. Novices were able to remember the commands and

to substitute the appropriate table and column names. For task 1,

novices did slightly better with GL, but then they did much worse on

tasks 2 and 3 primarily because of the complexity of the keyboard-

mouse interface. Novices were able to perform task 5 (two table join)

with NL. However, task 2 (one table with two restrictions) was difficult

for all user groups when using NL.

End users were most successful using GL, except for task 5 (two

table join) which was again the one task where NL was better. The

15

Figure 13: Mean percentage oftaskscompleted for trained queries.

similarity of the AL and GL graphs (e.g., tasks 2 and 4 were easier,

while tasks 3 and 5 were harder) was caused, we believe, by the

similarity in AL and GL operations (e.g., joins and counting). NL is

16

below AL on task 2, above AL on task 5, but otherwise essentially

equivalent.

Programmers were virtually perfect using GL. AL was worse on join

queries (tasks 3 and 5). Again, NL was nearly identical to AL on all

tasks except task 2.

DB experts were able to solve almost all tasks using both AL and GL.

Note that DB experts for AL were the same subjects as Interfaces

experts for ALbecause of their knowledge of SQL. NL was Inferior to

AL and GL.

Interface experts solved all tasks with AL and GL. Even experienced

NL interface users had problems with tasks 2 and 4.

Figure 14 shows the results of the untrained queries (i.e., tasks 6

and 7). NL worked extremely well for the existential task. Even

novices outperformed interface experts on either AL or GL. Notice that

no one was able to solve this task using GL.

1.0

0.8

0.6

0.4

0.2

0.0

Existential

AL GL

Self-Referential

1.0 -

0.8 ~

0.6 ~

0.4 ~

0.2 "

1
AL GL NL

D Novice

m End User

m Prog

m DBExp

• Inter Exp

Figure 14: Mean number of tasks completed for untrained queries.

17

On the self-referential task, database and interface experts working

on AL did the best. A few database experts were able to solve this task

using GL.

5. Conclusions

We draw the following conclusions from this experiment.

1. No interlace was uniformly best across all groups or even within

one group.

Each system outperformed the others in some areas. Consequently,

none of them can yet claim superiority.

2. The best performancewas achieved by experienced SQLinterface

users.

Those subjects who knew SQL were most able to complete the

tasks. The users* performance was most predictable and they were

able to perform all of the required tasks. If users are able to dedicate

the resources required to become an AL expert, then AL is likely to be

the query language interface of choice.

3. GLwas better than AL on queries that GL could handle, except for

novices.

Apart from novices, the GL interface outperformed AL on single

table restrictions, joins, counts and sorting. The problem with GL was

that users could not figure out how to do the self-referential join task

and the existential query is impossible. The novice problem was a

result of the keyboard/mouse interface complexity. The three button

mouse, pop-up menus, button menus, windows and dialog boxes were

18

too much for novices to figure out while also learning the query

language itself. In addition, the interface metaphor for counting

confused some users.

4. NL results were mixed

NL was the only interface that subjects other than interface experts

could get the existential query. Furthermore, novices were able to

outperform the experts on that query. NL was also the only interface

on which novices and end-users could solve any tasks that involved

joins. Apart from task 2, NL was generally the same as the lower ofAL

andGL.

We conclude that both GL and NL show promise as a better

interface than SQL. However. GL cannot handle some queries and user

performance with NL is too unpredictable. Note that the results

presented are for getting queries correct.* and for the performance

phase only. We are still analyzing the results on the time to solve a task

and on the learning phase.

References

[Bell90] Bell. J., (1990). Human Factors Evaluation of a Textual

Graphical and Natural Language Query Interfaces. Ph.D.

dissertation. University of California at Berkeley (in

progress, January 1990).

[BoBE83] Boyle, J.M., K.F. Bury and R.J. Evey (1983). Two studies

evaluating learning and use of QBE and SQL. In

Proceedings of the Human Factors Society 27th Annual

19

Meeting, (pp. 663-667). Santa Monica. CA: Human Factors

Society.

[BrSh781 Brosey. M. and B. Shneiderman (1978). Two experimental

comparisons of relational and hierarchical database

models. International Journal of Man-machine Studies, 10.

625-637.

[Catt80] Cattell, R.R.G. (1980). An entity-based user interface.

Proceedings 1980 ACM SIGMOD Conference on

Management ofData

[Dame81] Damerau, F.J. (1981). Operating statistics for the

transformational question answering system. American

Journal of Computational Linguistics, 7, 30-42.

[F1SB85] Fink, P.K.. A.H. Sigmon and A.W. Biermann (1985).

Computer control via limited natural language. IEEE

Transactions on Systems, Man, and Cybernetics, 15, 54-

68.

[GrWa78] Greenblatt, D. and J. Waxman (1978). A study of three

database query languages. In B. Shneiderman, Ed.),

Databases: Improving usability and responsiveness, New

York: Academic Press.

[Jark85] Jarke, M„ J .A. Turner. E.A. Stohr, Y. Vassiliou. N.W. White,

and K. Michielsen (1985). A field evaluation of natural

language for data retrieval. IEEE Transactions on Software

Engineering, SE-11. 97-114.

20

[Krau80] Krause. J. (1980). Natural language access to information

systems. An evaluation study of its acceptance by end users.

Information Systems, 5. 297-319.

[Loch78J Lochovsky. G.H. (1978). Data base management system

user performance. Ph.D. dissertation. University of

Toronto, Canada.

[OgBr83] Ogden, W.C. and S.R. Brooks (1983). Query languages for

the casual use: Exploring the middle ground between

formal and natural languages. In Proceedings of CHI '83:

Human Factors in Computing Systems (pp. 161-165). New

York: Association for Computing Machinery.

[OgSo87] Ogden. W.C. and A. Sorknes (1987). What do users say to

their natural language Interface? In Proceedings of

Interact '87 - 2nd IFIP conference on Human-Computer

Interaction Amsterdam: Elsevier Science.

[Reis75] Reisner. P.. R.F. Boyce. and D.D. Chamberlin (1975).

Human factors evaluation of two data base query languages

- Square and Sequel. In Proceedings of the National

Computer Conference, (pp. 447-452). Arlington. VA: AFIPS

Press.

[Shne78] Shneiderman. B. (1978). Improving the human factors

aspect of data base interactions. ACM Transactions on

Database Systems, 3(4). 417-439.

21

[SmWe83] SmaU. D.W.. and L.J. Weldon (1983). An experimental

comparison of natural and structured query languages.

Human Factors, 25. 253-263.

[ThGo75] Thomas. J.C. and J.D. Gould (1975). A psychological study

of query by example. In Proceedings of the National

Computer Conference, (pp. 439-445). Arlington: AFIPS

Press.

[WeSt81] Welty. C. and D.W. Stemple (1981). Human factors

comparison of a procedural and a nonprocedural query

language. ACM Transactions on Database Systems, 6. 626-

649.

22

	Copyright notice1990
	ERL-90-12

