Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CACHE CONSISTENCY AND CONCURRENCY
CONTROL IN A CLIENT/SERVER DBMS
ARCHITECTURE

by

Yongdong Wang and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/120

19 December 1990

CACHE CONSISTENCY AND CONCURRENCY
CONTROL IN A CLIENT/SERVER DBMS
ARCHITECTURE

by

Yongdong Wang and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/120

19 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

CACHE CONSISTENCY AND CONCURRENCY
CONTROL IN A CLIENT/SERVER DBMS
ARCHITECTURE

by

Yongdong Wang and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/120
19 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Cache Consistency and Concurrency Control in a
Client/Server DBMS Architecturef

Yongdong Wang
~ Lawrence A. Rowe

Computer Science Division-EECS
University of California
Berkeley, CA 94720

Abstract

This paper examines five application cache consistency algorithms in a client/server
database system: two-phase locking, certification, callback locking, no-wait locking, and
no-wait locking with notification. A simulator was developed to compare the average
transaction response time and server throughput for these algorithms under different
workloads and system configurations. Two-phase locking and callback locking dominate
no-wait locking and no-wait locking with notification when the server or the network is a
bottleneck. Callback locking is better than two-phase locking when the inter-transaction
locality is high or when inter-transaction locality is medium and the probability of object
update is low. When there is no network delay and the server is very fast, no-wait lock-
ing with notification and callback locking dominate two-phase and no-wait locking.

1. Introduction

This paper presents the results of a simulation study of database concurrency control
and application program cache consistency algorithms in a distributed computing system.
This work was motivated by the recent development of persistent programming
languages and object-oriented database systems [3-5,7, 10, 13-18,20], and client/server
database architectures. In a client/server architecture, the database resides on the server.
Objects in the database are accessed by application programs running on client worksta-
tions. Objects are cached in the application to reduce the time required to access an
object. Consequently, several copies of a shared object can exist in more than one appli-
cation cache at the same time. Mechanisms must be provided to guarantee that con-
current transactions accessing the cached objects and the database do not interfere.

Traditional database application development tools do not support application pro-
gram caches [9]. Consequently, the application programmer must implement a cache

T This research was supported by NASA grant NAG 2-530 and NSF grant MIP-8715557.

consistency algorithm or objects must be re-fetched for each transaction. Persistent pro-
gramming language systems provide an application cache to .simplify application
development. In addition, a cache can improve performance by eliminating object re-
fetches and reducing the load on the server [21]. The efficiency of the application cach-

ing mechanisms is very important to the performance of the applications and the database
system.

Concurrency control and cache consistency must be coordinated since caches are
invalidated on transaction boundaries. Object updates become permanent when transac-
tions commit. In this study, we extend concurrency control algorithms to include the
consistency check of cached objects. We will use the terms concurrency control and
cache consistency interchangeably.

Several researches have investigated the performance of database concurrency con-
trol algorithms. Agrawal, Carey, and Livny (ACL) compared the transaction throughput
rate of three algorithms for centralized database systems: (1) two-phase locking, (2)
immediate-restart (wound-wait), and (3) certification (optimistic concurrency control)t
[1,2]. Two-phase locking outperformed the immediate-restart and certification algo-
rithms for medium to high levels of resource utilization.

Carey and Livny investigated distributed concurrency control algorithms [8]. Four
algorithms were studied: (1) distributed two-phase locking, (2) wound-wait, (3) basic
timestamp ordering, and (4) distributed certification. Again, transaction throughput rate
was compared under different degrees of contention, data replication, and message cost.
Two-phase locking and certification dominated timestamp ordering and wound-wait.
When the CPU cost of sending and receiving messages was low, two-phase locking was
superior because it reduced transaction restarts. However, when message cost was high
and data was replicated, certification outperformed two-phase locking.

Wilkinson and Neimat studied application cache consistency algorithms in a
client/server database system [21]. They proposed two algorithms: (1) cache locking and
(2) notify locking. They showed that for both short batch and interactive transactions
cache locking is never worse than two-phase locking without caching. Furthermore,
notify locking is better than cache locking when server CPU utilization is not high, but it
is worse than two-phase locking without caching when the server CPU is saturated.
However, they did not study other algorithms such as two-phase locking with caching.
And, they did not measure transaction response time which we believe is a very impor-
tant metric for applications. Lastly, their simulation model did not address the cache
replacement problem.

None of the previous simulation models had an explicit buffer manager [2, 8,21].
We believe that the addition of a buffer manager in the simulator can make a difference

1 For a complete description of these algorithms and the other algorithms discussed below,
see the book by Bemstein [6].

in several ways:

(1) Realistically, objects may have to be written out to disk prior to transaction com-
mits which could cause I/O contention. A buffer manager can model this situa-
tion.

(2) The buffer manager can model hot spots better. Without a buffer manager, if
several transactions read the same object, each of them is charged with the disk
I/O for the object. On the other hand, only one transaction is charged with the
I/O with a buffer manager.

(3) When a transaction commits, updated objects do not have to be written out as
long as their logs are forced out. If the same object is updated by other transac-
tions, it would not be written out twice. Other models charge a disk I/O for every
committed object update.

(4) 'When a transaction restarts, objects in the buffer can be read directly. In models
without a buffer manager, a restarted transaction has to read its entire read set
from the disk again. Consequently, strategies that abort transactions more often
are penalized because they are charged with more disk I/O’s.

In this paper, we distinguish between caching within a transaction (intra-
transaction) and between transactions (inter-transaction). The performance of five inter-
transaction algorithms are compared: (1) two-phase locking, (2) certification, (3) callback
locking, (4) no-wait locking, and (5) no-wait locking with notification. A simulator simi-
lar to the one used by ACL was used to compare average response time and throughput
under different workloads and system configurations. Three workloads were included in
our experiments: small batch transactions, large batch transactions, and interactive tran- -
sactions. System configurations included a system where the server was a bottleneck, a
fast server system, and a fast server and fast network system.

The remainder of the paper is organized as follows. Section 2 describes the algo-
rithms that we studied. Section 3 describes the structure of our simulation model and the
simulation parameters. Section 4 describes two experiments that verify the correctness
of our simulator. Section 5 describes the results of our initial performance experiments.
Finally, section 6 summarizes our findings.

2. Cache Consistency Algorithms

This section describes the algorithms included in our study. The algorithms are

extensions or variations of existing concurrency control algorithms for centralized data-
base systems.

Two-phase locking was included in our study because numerous studies conclude
that it outperforms all other algorithms unless unrealistic assumptions are made (e.g.,
infinite physical resources) [2]. Certification was included because it is used by at least
one object-oriented DBMS that has a client/server architecture (GemStone [7]). More-
over, some recently proposed algorithms (e.g., cache locking) incorporate ideas from the

certification algorithm. Other concurrency control algorithms (e.g., time-stamp ordering)
were not included because we did not believe they would be better than two-phase lock-
ing or certification. '

We assume that all locking algorithms use in-place updates and that certification
algorithms use deferred updates. With in-place updates, a transaction updates the objects
in the database directly. If the transaction is later aborted, the updates are rolled back
(undone). With deferred updates, changes that a transaction makes are placed in a
private buffer until it has been certified that the transaction can commit. At that point,
the updates are merged into the database. We also assume that an object must be fetched
to the client before it is updated. In other words, all updates are executed on the clients
first. Updates are sent to the server either when an updated object is swapped out of the
client cache or at transaction commit time. Transactions within a client are executed
sequentially. There is at most one active transaction, called the current transaction, in a
client at any time.

There are two models of object caching: caching within a transaction, called intra-
transaction caching, and caching between transactions, called inter-transaction caching.
In the case of intra-transaction caching, a client assumes that objects in its cache are
invalid at the beginning of each transaction. Objects are fetched into the cache when
they are first accessed by the transaction. Intra-transaction caching algorithms are easy to
implement, but they cannot benefit from inter-transaction reference locality. In the case
of inter-transaction caching, a client must check that objects in the cache are valid when
they are accessed. This check can be accomplished in two ways: (1) the client can con-
tact the server to verify object validity when the object is accessed (check-on-access) or
(2) the server can notify clients whenever an object in the cache is updadted by other
clients (notify-on-update).

The two-phase locking and certification algorithms can be easily extended to sup-
port both intra- and inter-transaction caching. In the rest of this section, four algorithms
that support inter-transaction caching are described: (1) two-phase locking; (2)
certification; (3) callback locking; and (4) no-wait locking. A potential problem with no-
wait locking is the high transaction restart rate. Update notification can be incorporated
with no-wait locking to reduce transaction restarts. Thus, we also include a fifth algo-
rithm, (5) no-wait locking with notification.

2.1. Two-Phase Locking

Inter-transaction caching attempts to use objects left in a cache by a previous tran-
saction. Two-phase locking uses a check-on-access strategy.

We assume that each object is tagged with a version number. The version number
can be the time the object is updated, the identifier of the transaction that updated it, or
some other number assigned by the server. When an object is cached in a client, its ver-
sion number is cached with it.

With two-phase locking, in the case of intra-transaction caching, all cached objects
are locked by the current transaction and are therefore valid. But with inter-transaction
caching, only those cached objects that are locked by the current transaction are
guaranteed to be valid. When a transaction accesses a cached object that is not locked, it
must query the server to determine if the object is valid. However, since it has to ask the
server to set a lock on the object anyway, it does not need to send an extra message to
check validity. Therefore, there is little additional overhead.

2.2. Certification

Certification does not block a transaction when it reads or writes an object. It
checks at commit time that the referenced objects have not been modified by other tran-
sactions that have committed since this transaction started. Certification also uses a
check-on-access strategy. A transaction checks with the server when it accesses a cached
object for the first time. The client remembers which cached objects have been checked
by the current transaction.

2.3. Callback Locking

Callback locking was first used in the Andrew File System to maintain the con-
sistency of cached files [12]. It guarantees the validity of cached objects by retaining
locks on them even after a transaction terminates. Therefore, there is no need for the
client to contact the server to check object validity or to acquire a lock when a transac-
tion accesses a cached object with the appropriate lock. However, if a transaction
accesses a cached object without a retained lock or with the wrong lock (e.g., the transac-
tion wants to update an object that has only a read lock), it will need to get the lock from
the server. The server sends a message to all clients that have uncompatible locks on this
object requesting them to return the locks. A client releases the lock requested by the
server immediately if the object has not been accessed by the current transaction on the
client. Otherwise, it waits until the current transaction terminates to release the lock.

The server cannot grant the requested lock until all uncompatible locks on the object are
released.

Both read and write locks can be retained. However, write locks are more likely to
cause incompatibility, and thus more likely to be retrieved by the server before it is used
by the next transaction. Consequently, we chose to retain only the read locks.

2.4. No-Wait Locking

In two-phase locking, the client application is blocked while waiting for a response
from the server that a cached object is valid. An alternative is to assume that all objects
in the cache are valid. The application program continues executing without being
blocked when accessing cached objects. If the cached object is valid and the requested
lock can be granted, the server does not send any response to the client. If the cached
object is invalid or the requested lock cannot be granted because of a deadlock, the server
aborts the transaction and the client must restart it. Note that the client must receive a

response from the server before it can commit because it needs to get locks even if all
objects are valid.

This algorithm was originally proposed by Gerson for Statice [11,20]. He called it
optimistic locking because of the optimistic assumption that cached objects are valid and
the requested locks can be granted.

2.5. No-Wait Locking with Notification

In no-wait locking, a transaction can be aborted because it has read an invalid object
or it is involved in a deadlock. While nothing can be done about transaction aborts due
to deadlocks, notification can be integrated into no-wait locking to reduce the transaction
aborts caused by reading invalid cached objects. This is achieved by making the server
send an invalidation message to clients when a cached object is updated by a committed
transaction. Client transactions will read valid objects from the server at a later time and
subsequently commit. Please note that notification cannot eliminate reading invalid
objects because a transaction can still read an invalid object before it receives the invali-
dation message from the server.

Instead of invalidating the cached objects, the server can also send the updated ver-
sion to the clients. Thus, the clients do not have to read the object from the server at a
later time. However, if the cached object is not accessed before being swapped out of the
cache, the updates sent to the client are a waste. In our study, we chose to send the
updates to the clients after a transaction commits.

3. Simulation Model

This section describes our simulation model. It is based on the ACL Model for a
centralized DBMS [1,2] and the Carey and Livny model for a distributed DBMS [8]. It
is similar to the client/server model developed by Wilkinson and Neimat [21].

Our model has important extensions to and modifications of the ACL Model. First,
it models a client/server DBMS, which is different from a centralized or distributed
DBMS. Second, it has client cache managers and a buffer manager in the server. Third,
it models subobjects shared by multiple complex objects and object clustering. Fourth, it
supports an arbitrary number of interleaved object reads and updates. And fifth, it
models inter-transaction object reference locality.

The Wilkinson and Neimat model simulates a client/server DBMS, but it does not
have a cache or buffer manager, nor does it model object sharing or clustering. It models
object reference locality between transactions by varying the client cache hit ratio.

There are three main parts to the simulation model: the database model, the transac-
tion model, and the system model. The database model captures the characteristics of the
database, such as the database size and the object structures. The transaction model cap-
tures the object reference behavior of transactions in a workload. And, the system model
captures the characteristics of the system’s hardware and software. The physical structure
of the modeled system is shown in Figure 1. It is composed of a database server and n

6

transaction generator

transaction | | cache
manager manager

transaction generator

transaction | | cache
manager manager

| resource manager | | resource manager |
CLIENT 1 CLIENT n
network
manager
SERVER
server interface
resource . buffer
manager transaction manager manager
log . lock
manager manager

Figure 1. Client/Server DBMS Structure

clients connected by a network. We assume that there is only one application on each
client workstation. Thus, the term client refers to both the application and the worksta-

fion.

The simulator is implemented in the simulation language CSIM, which is a C-based
simulation language developed at MCC [19]. The core of the simulator consists of about
4000 lines of CSIM code. Each cache consistency algorithm adds an additional 500 to

1000 lines of code, depending on the complexity of the algorithm.

3.1. Database Model

A database is composed of several classes (or relations). A class is a collection of
objects (or tuples) that have the same attributes. Logically, each class is a sequence of

atoms which is the minimum unit that can be shared by different objects. Each object
contains one or more atoms. The size of an object is the number of atoms contained in
that object. We assume that all objects in a class are of the same size. To model subob-
ject sharing, we assume that each object of class ¢ starts at a random atom within that
class with equal probability, and contains that and the next s-I atoms where s is the
object size. With this scheme, multiple objects can share atoms, as illustrated in Figure
2, where objects Ol and O2 share the atoms Ai through Aj. This design allows us to
model different degrees of object sharing by varying the number of atoms and the object
size in a class. :

The database parameters are summarized in Table 1. NClasses is the number of
classes in the database. NPages and ObjectSize are the number of atoms and the size of
objects in each class, respectively. ClusterFactor is the probability that consecutive
atoms in an object are stored sequentially on the disk. For simplicity, we assume that
each atom corresponds to a disk page. We assume that the unit of cache consistency
operations and the unit of data transportation between clients and the server is also a disk
page. Consequently, the assumption that an atom is a page does not affect the results of

0O1

Class C

02

Figure 2. Two Objects Share Atoms

Parameter Description
NClasses Number of classes in the database
NPages(i] Number of atoms (pages) in class i
ObjectSize[i] | Size of the objects in class i
ClusterFactor | Probability that atoms in an object are clustered together

Table 1. Database Parameters

our study.

Atoms are only shared by objects from the same class. Navigation between objects
of different classes is represented in the transaction model described in the next section.

3.2. Transaction Model
The transaction model supports the following operations:
(1) BeginXact: start a new transaction,
(2) ReadObject: read an object into the client cache,
(3) UpdateObject: update an object in the client cache,
(4) UserDelay: delay by the application,
(5) CommitXact: commit a transaction,
(6) AbortXact: abort a transaction.
The operation UserDelay is included to model non-database processing time by the
application and interactive applications.

A transaction is modeled by a finite loop of ReadObject and UpdateObject opera-
tions, as shown in Figure 3. Different types of transactions are modeled by varying the
average number of ReadObject operations in a transaction, the read/write ratio (i.e., the
ratio of the number of objects modified vs. the number of objects read), whether transac-
tions are executed interactively or in batches, and so forth. A simulation run can simu-
late transactions belonging to the same type, or a mix of transactions belonging to dif-
ferent types. Table 2 summarizes parameters that characterize a transaction type.

The number of ReadObject operations in a transaction is called the transaction size.
Transaction size is uniformly distributed between MinXactSize and MaxXactSize. The
UpdateObject operation updates atoms of the object read by the preceding ReadObject
operation. The parameter ProbWrite is the probability that each atom of the object is

BeginXact
dotimes (transaction_size)
ReadObject
UserDelay (UpdateDelay)
UpdateObject
UserDelay (InternalDelay)
end dotimes
CommitXact

Figure 3. A General Transaction Model

Parameter Description

MinXactSize Minimum number of ReadObject operations in a transaction
MaxXactSize Maximum number of ReadObject operations in a transaction
ProbWrite Probability that a page in an object is updated

UpdateDelay Average think time between a ReadObject and an UpdateObject
InternalDelay Average think time for each pass of the loop in a transaction
ExternalDelay Average think time between two transactions

InterXactSetSize | Number of objects in InterXactSet

InterXactLoc Probability that an object read belongs to InterXactSet

Table 2. Parameters for A Transaction Type

updated.t The delay parameters (i.e., UpdateDelay, InternalDelay, and ExternalDelay)
are exponentially distributed delay times which are introduced to model interactive tran-
sactions. They can be set to 0 to model batch transactions.

To model inter-transaction object reference locality, we introduce a new concept,
InterXactSet, which contains the last x objects read by the most recent transactions where
x is the value of the parameter InterXactSetSize. The parameter InterXactLoc specifies
the probability that an object read by the current transaction is in the /nterXactSet. The
larger the InterXactLoc is, the more overlap the read sets of consecutive transactions
have, and the higher the inter-transaction object reference locality. This type of locality
can be called temporal locality because the same objects are referenced repeatedly at
times close to each other. We chose InterXactSetSize as a simulation parameter so that
we can adjust it according to the size of the client cache to make sure that objects in the
InterXactSet can almost always be found in the cache.

3.3. System Model

The system model describes the network manager, the resource manager, and the
other client and server modules. The parameters for all the modules are summaried in
Table 3.

3.3.1. Network Manager

The network manager models communication among clients and between clients
and the server. Messages are assumed to be transferred in packets, with each packet
incurring certain CPU overhead at both the sending and receiving sites and a certain

 This implies that the write set of a transaction is always a subset of its read set.

10

Parameter Description
NetDelay Average message delay time on the network
PacketSize Maximum number of bytes in a packet
MsgCost CPU cost of sending/receiving a message packet
NClients Number of clients
NClientCPUs Number of CPU’s on a client
ClientMips Speed of each client CPU
NServerCPUs Number of CPU’s on the server
ServerMips Speed of each server CPU
NDataDisks Number of data disks on the server
NLogDisks Number of log disks on the server
CacheSize Number of pages in a client cache
| BufferSize Number of pages in the server buffer pool
SeekLow Minimal disk seek time
SeekHigh Maximum disk seek time
DiskTran Transfer time for one disk block
PageSize Disk block size
InitDiskCost CPU cost of initiating a disk access
ServerProcPage | CPU cost of processing a page on the server
ClientProcPage | CPU cost of processing a page on the client
MPL Maximum number of active transactions allowed on the server

Table 3. System Parameters

delay on the network. Large messages are broken into packets and transferred. NetDelay
is the mean of an exponentially distributed network delay time for packets. PackerSize is
the maximum number of bytes allowed in a message body. And MsgCost is the number
of instructions executed to send or receive a message on a client or server. The network
manager uses a first come, first served (FCFS) policy.

3.3.2. Resource Manager

The resource managers on the clients and the server manage physical resources
(e.g., CPU’s and disks). NClients is the number of client workstations. We assume that
all clients are uniform (i.e., they have the same amount of physical resources).
NClientCPUs is the number of processors on each client, and ClientMips is the speed of
each processor. NServerCPUs and ServerMips are the corresponding parameters for the
server. We assume that all clients are diskless so objects reside in the main memory of
clients. The server has a number of data disks and log disks, all with the same physical
characteristics. We separate disk seek time (including rotation time) and data transfer

11

time so we can model sequential disk accesses. Disk seek time is uniformly distributed
between SeekLow and SeekHigh. We assume that classes are uniformly distributed to the
data disks. All objects in one class reside on the same disk.

PageSize is the size of a disk block. For convenience, we assume that it is also the
size of memory pages. InitDiskCost is the number of instructions executed to initiate a
disk access. ServerProcPage is the number of instructions executed on the server to pro-
cess each page read or update by user transactions. And ClientProcPage is the number
of instructions executed on the client to process each page read or update. We assume
that all pages incur the same CPU cost.

Different resource allocation policies can be implemented. The disks use an FCFS
policy. CPUs also use an FCFS policy by default. We assume that the server and client
resources described above are used by the DBMS exclusively. In other words, we do not
consider other processes running concurrently with the DBMS.

3.3.3. The Client

The client transaction generator generates user transactions. The client cache
manager manages the client cache. It implements object lookup, object replacement on a
cache miss, and flushing dirty objects on transaction commits. An LRU cache replace-
ment policy is used (i.e., on a cache miss, the least recently used pages are replaced from
the cache to make room for the new object). For intra-transaction caching algorithms,
the entire cache is invalidated on transaction boundaries. For inter-transaction caching
algorithms, objects are kept in the cache after a transaction terminates, and they are
verified when they are accessed. The verification protocol is algorithm dependent and is
implemented in the transaction manager.

If the cache is full on a cache miss, some objects are replaced from the cache.
When this happens, a function in the algorithm dependent transaction manager is called.
The action taken depends on the specific cache consistency algorithm. In the simplest
case (e.g., two-phase locking), an object that has not been updated (i.e., a clean object)
replaced from the cache is ignored. While in the callback locking algorithm, the server
has to be notified when a clean object with a lock is replaced. In all algorithms, a
modified object that is replaced must be sent to the server. The cache hit ratio is deter-
mined by the database size, the client cache size, and the object access pattern.

The client transaction manager is responsible for executing user transactions gen-
erated by the transaction generator. If a transaction commits, it returns to the transaction
generator. If a transaction aborts, it restarts the same transaction again and again until it
finally commits. Whether there is a restart delay between the time when a transaction
aborts and the time when a transaction restarts depends on the particular algorithm.

The transaction manager is also responsible for communication with the server. It
forms messages and sends them to the server. It also processes all messages from the
server. For example, in the callback locking algorithm, the transaction manager deter-
mines whether a lock can be released when requested to do so by the server. The client

12

protocols of the cache consistency algorithms described in Section 2 are implemented by
the client transaction manager. This module is the only client module that is algorithm
dependent.

3.3.4. The Server

The buffer manager is responsible for managing the buffer pool on the server. It
implements an LRU replacement policy, and holds the most recently referenced objects
by transactions from all clients.

The transaction manager models the execution of transactions on the server. It
implements the server protocol of the different cache consistency algorithms described in
Section 2. This module is the only server module that is algorithm dependent.

The lock manager implements locking for the lock-based algorithms. Locks are
usually released when a transaction terminates (except in the case of callback locking,
which retains locks even after transactions terminate). In our implementation, all locks
are set at the page granularity. We do not model locks on multiple granularities.

The log manager implements a log-based recovery scheme. We assume that the log
is written to disks dedicated to that use. The log manager is provided to model transac-
tion behavior more accurately. Since we allow uncommitted updates to be replaced from
the buffer pool, transaction aborts involve processing the log and undoing the updates
forced out to disk. Thus, protocols that cause more transaction aborts are charged for
them. In previous models, transaction aborts are essentially free.

The parameter MPL is the multiple programming level which is the maximum
number of active transactions allowed on the server. It is varied to model server conten-
tion.

3.4. Logical Structure of the Simulator

Figure 4 shows the logical queuing model of our simulator. We will use this logical
model to explain how a transaction is executed by the simulator.

A transaction originates at the application generator. Operations are entered into the
operations queue. An operation from the queue goes to the client transaction module
(CTM). If it is an object access (read or write) operation, and the object is in the cache
and the appropriate access permission (e.g., locks) have already been granted, the read
and update operations are performed. Otherwise, a message is sent to server to fetch the
object or get access permission. The client may or may not wait for a response, depend-
ing on the particular cache consistency algorithm.

A successful ReadObject operation is followed by an update delay, and a successful
UpdateObject is followed by an internal delay. A transaction restart is followed by an
optional restart delay, depending on the algorithm. Then the same operations of the
aborted transaction are entered into the operations queue again. We follow the ACL
model to use the average transaction response time as the mean of an exponentially dis-
tributed restart delay time. A committed transaction is followed by an external think

13

update queue access queue

Calls

update| /access
STM granted
\ 4
o (s ﬁ

commit/abort
blocked|
mgr
blocked queue 10g queue

Figure 4. Logical Queuing Model

time before the next transaction is originated.

When a new transaction arrives at the server, if the server has already reached the
limit of active transactions, the new transaction is placed in the ready queue. It will be
activated when an active transaction commits or aborts. The message then enters the
server transaction module (STM) queue. If the cache consistency request cannot be
granted immediately, the transaction is blocked. When it is awakened later, it enters the

14

STM queue again. If a simple request (e.g., getting a lock on a particular object) is
granted, it returns immediately. If an object access is requested by the message, the
object is accessed directly if it is in the buffer pool. Otherwise, the request is placed on
the object access queue. Commit/Abort requests are placed on the log queue where the
log is processed. If a transaction is committed, and deferred updates are used, the
updates are entered into the update queue where the updates are performed. Finally, if a
message to the client is necessary, a message is entered into the outgoing message queue.

On a client, the CPU cost for reading and updating an object is charged after the
access permission is granted. On the server, the CPU cost for reading an object is
charged for each object sent to a client. The CPU cost for updating an object is charged
for each updated object received from the clients. The CPU costs for sending and receiv-
ing messages are charged when a message is sent and received.

4. Simulator Verification Experiments

This section describes two experiments that we performed to verify the simulator. In
the first experiment, the simulation parameters were set to those of the ACL experiments
and two-phase locking and certification algorithms were simulated [2]. Since our simula-
tor was designed for a client/server DBMS architecture, we had to make a few changes in
order to compare our results with their results which were obtained on a centralized
DBMS. Table 4 shows the values of the related simulation parameters for this experi-
ment. The database had two classes, each with 500 pages, which yielded a combined
database size of 1000 pages. One class resided on each data disk. Since each object had
equal probability of being accessed, object I/O’s were distributed evenly to the two disks.
CacheSize was set to 12 pages, which was the MaxXactSize, so that updates were not

Parameter Value Parameter Value

NClasses 2 NServerCPUs 1

NPages[i] 500 CacheSize 12 pages

ObjectSize(i] | 1 BufferSize 1page

MinXactSize 4 SeekLow 35 milliseconds

MaxXactSize 12 SeekHigh 35 milliseconds

ProbWrite 0.25 ServerProcPage | 15,000 instructions
ExternalDelay | 1second || NDataDisks 2

NClients 200 MPL 5, 10, 25, 50, 75, 100, and 200
ServerMips 1

Table 4. Parameters for the ACL Comparison Experiment

flushed to the server until transaction commit time, which simulated deferred updates for
both algorithms. BufferSize was set to 1, thus forcing all dirty pages to disk at commit
time. The log manager was disabled. Other irrelevant parameters (e.g., NetDelay,
MsgCost, InterXactLoc, etc.) were set to 0. We measured the transaction throughput rate,
as ACL did. The transactions executed were short transactions that read an average of 8
pages, and there were no internal delays within a transaction. We found that two-phase
locking dominated certification which matches the limited resource case (i.e., 1 CPU and
2 data disks) reported by ACL.

In the second experiment, we compared the performance of intra- and inter-
transaction caching algorithms for both two-phase locking and certification. This experi-
ment was performed for two reasons. First, we wanted to check that inter-transaction
caching algorithms performed better when inter-transaction locality was high. Second,
since Wilkinson and Neimat only compared their algorithms against two-phase locking
with intra-transaction caching, we wanted to find out the magnitude of difference
between the intra- and inter-transaction caching algorithms to determine the effect of
their assumption.

Parameter Value Parameter Value
NClasses 40 NClientCPUs 1

NPages(i] 50 ClientMips 1

ObjectSizefi] 1 NServerCPUs 1

ClusterFactor 1.0 ServerMips 2

MinXactSize 4 NDataDisks 2

MaxXactSize 12 NLogDisks 1

ProbWrite 0.0, 0.2, and 0.5 CacheSize 100 pages
UpdateDelay 0 BufferSize 400 pages
InternalDelay 0 SeekLow 0 milliseconds
ExternalDelay 1 second SeekHigh 44 milliseconds
InterXactSetSize | 20 DiskTran 2 milliseconds
InterXactLoc 0.05, 0.25, 0.50, and 0.75 || PageSize 4096 bytes
NetDelay 2 milliseconds InitDiskCost 5,000 instructions
PacketSize 4096 bytes ServerProcPage | 10,000 instructions
MsgCost 5,000 instructions ClientProcPage | 20,000 instructions
NClients 2, 10, 30, and 50 MPL 50

Table 5. Simulation Parameter Setting

16

Table 5 shows the values of the simulation parameters used for this experiment and
the experiments reported in the next section unless noted otherwise. The database has 40
classes, each with 50 pages. Since each page is 4K bytes, the database has 8M bytes of
data.t All objects contained a single page.} The transactions executed were short transac-
tion reading an average of 8 objects. There was no internal delay within transactions.
The server had a 400 page buffer pool and each client had a 100 page cache.

The parameters varied were: NClients, ProbWrite, and InterXactLoc. NClients
determined the server resource contention rate. ProbWrite and InterXactLoc modeled the
user workload. ProbWrite determined the database object contention rate. InterXactLoc
determined the inter-transaction reference locality, called locality hereafter, for consecu-
tive transactions. Response times and throughput results are given in seconds and tran-
sactions committed per second, respectively.

Figures 5(a) and 5(b) show the average transaction response time with low locality
(InterXactLoc set to 0.05) and different write probabilitiecs. When the number of clients
is small (i.e., no more than 10), there is little difference between the algorithms regard-
less of the write probability. As shown in Figure 5(a), with low write probability, there is
virtually no difference between the algorithms. But, when the object update probability
is high (ProbWrite set to 0.5), as shown in Figures 5(b), certification algorithms perform
poorly compared to two-phase locking algorithms as the number of clients increases.
This is because certification causes more transaction aborts which waste valuable server
resources. In fact, the server is saturated so these aborts are very costly. The inter-
transaction algorithms perform about the same as intra-transaction algorithms because
caching objects between transactions gives them no advantage due to the lack of locality.

Figures 6(a) and 6(b) show the average transaction response time with high locality
(InterXactLoc set to 0.5) and different write probabilities. The inter-transaction caching
algorithms are clearly better than their corresponding intra-transaction algorithms regard-
less of the write probability or the number of clients. The largest difference (about 30%)
occurs when the write probability is zero because cached objects are always valid. When
the object update probability is non-zero, the difference is reduced because cached
objects are more likely to be invalid and thus they may have to be refetched from the
server. For two-phase locking, the difference is about 12% when ProbWrite is 0.5.
Again, as shown in Figure 6(b), the certification algorithms perform worse than the two-
phase locking algorithms because of the high transaction abort rate.

Figures 7(a) and 7(b) show the corresponding transaction throughput rates for Fig-
ures 6(a) and 6(b). The relative performance of the algorithms are the same as shown in

T This is a small database. However, the results do not depend on database size rather on the

degree of resource and data contention. A larger database will allow more clients for the same de-
gree of data contention.

} We did not study the impact of large objects or object clustering in our initial experiments.

17

——————— 2-phase intra G—=18 2-phase inter ~-~--— cettintra & - - -4 certinter

20' ml
‘WProb = 0.00 ‘WProb = 0.50 <
159

of~+] ompounal™
[
e 4
of=w] oupognal

-]
Qo

0 10 20 30 4 50 0 10 20 3 40 50
Number of Clieats . Number of Clients
Figure 5(a). Response Time (Loc = 0.05) Figure 5(b). Response Time (Loc = 0.05)
20' ml
WProb = 0.00 WProb = 0.50 ,
R 15' R 15- 7 ‘
[] []
5 -
: :
s 101 g
e e
T T
3 1
2 5 o
0 0
0 10 20 30 40 S0 0 10 20 30 40 50
Number of Clients Number of Clients
Figure 6(a). Response Time (Loc = 0.50) Figure 6(b). Response Time (Loc = 0.50)
101 109
‘WProb = 0.00 WProb = 0.50

- 50D eE o]
b

EE-L L R]
el

0

(=}

Os 10 20 30 40 50 0 10 20 30 40 50
Number of Clients Number of Clients
Figure 7(a). Throughput (Loc = 0.50) Figure 7(b). Throughput (Loc = 0.50)

18

Figures 6(a) and 6(b). In both figures, throughput first goes up as the number of clients
increases because the server does not have enough work to do when there are a small
number of clients, then the curve becomes flat as the server is saturated. When there are
object updates, there will be more transaction aborts with a larger number of clients, thus
the throughput rate begins to decline when the number of clients increases further.

To summarize, there is very little difference between algorithms when the locality
and write probability are low. Inter-transaction algorithms dominate the corresponding
intra-transaction algorithms when locality is high. Two-phase locking algorithms dom-
inate the certification algorithms when the write probability is high and there are a large
number of clients. These results match our expectations.

Wilkinson and Neimat compared other algorithms against two-phase locking with
intra-transaction caching. Because two-phase locking with inter-transaction caching is
12% to 30% better when locality is high, we will use two-phase locking with inter-
transaction caching, called two-phase locking hereafter, as a benchmark against which
other algorithms are compared.

S. Experiments and Results

This section describes a set of experiments that summarize our initial findings. We
compared the performance of callback locking, no-wait locking, and no-wait locking
with notification against that of two-phase locking under the following conditions: (1)
when small transactions were executed, (2) when large transactions were executed, (3)
when the server had a very fast CPU, (4) when the server had a very fast CPU and there
was no network delay, and (5) when interactive transactions were executed. The experi-
ment parameters that varied from the values in Table S are given in the description of the
experiments.

S.1. Short Transaction Experiment

In this experiment, short transactions were executed that read an average of 8
objects without any internal delay.

The transaction response time is determined by the following factors: (1) the client
CPU cost, (2) the network delay caused by messages exchanged between clients and the
server, (3) the server CPU and disk I/O cost, and (4) waiting time due to data contention.
In this experiment, the server becomes a bottleneck when there are a large number of
clients. Therefore, algorithms that can reduce server load should win. Algorithms that
cause more transaction aborts lose.

Figures 8(a) through 8(c) show the average transaction response time with low
locality (InterXactLoc set to 0.05). None of the algorithms appears to be better than
two-phase locking regardless of the write probability. The four algorithms behave virtu-
ally the same when transactions are read-only, as shown in Figure 8(a). This is because

they are all variations of two-phase locking, and these variations make no difference in
this case.

19

B——=2two-phase X% - - =X callback

201

WProb = 0.00
151

101

of~~) onpouaol

51

0 10 20 30 40 S0
Number of Clients

Figure 8(a). Response Time (Loc = 0.05)

201

WProb =0.20

"
b4

o~} onpodno’™
Y 2

n

0 10 20 30 40 S0
Number of Clients

Figure 8(b). Response Time (Loc = 0.05)

201
‘WProb = 0.50 »

2
N\,

of=~] onbognoX

0 10 20 30 40 S0
Number of Clients

Figure 8(c). Response Time (Loc = 0.05)

@——-—--Ono-wait +-—-—-—= no-wait w/ notification

204

‘WProb = 0.00

&

of=~] oubouwo™
8

0 10 20 30 40 50
Number of Clients

Figure 9(a). Response Time (Loc =0.25)

ml

WProb =0.20

of=~] oupnodna
3 &

hrd

0
0 10 20 30 40 S
Number of Clients

Figure 9(b). Response Time (Loc = 0.25)

201
‘WProb =050

&

oB~+-] onpounelX
P
o 2

0 10 20 30 4 SO
Number of Clients

Figure 9(c). Response Time (Loc =0.25)

G—8 two-phase % - - -X callback ©O---——Opo-wait <-——-—< no-wait w/ notification

201
‘WProb = 0.00

159

107

o] oapoonoeR

59 -

0 10 20 30 40 50
Number of Clients

Figure 10(a). Response Time (Loc = 0.50)

201

‘WProb =0.20

151

107

o= anpoUnol

0 10 20 30 40 50
Number of Clients

Figure 10(b). Response Time (Loc = 0.50)

201 :
‘WProb =0.50

&

of~~] capovneX
[
e <

0
0 10 20 30 40 SO

Number of Clients

Figure 10(c). Response Time (Loc = 0.50)

WProb = 0.00

104

o~} ondounoR

s.

__,_.«/:

% 10 20 30 4 50

Number of Clicnts
Figure 11(a). Response Time (Loc = 0.75)

204
‘WProb = 0.20
151

107

of~~) onBounoX

0 10 20 30 40 SO
Number of Clients

Figure 11(b). Response Time (Loc =0.75)

204

‘WProb = 0.50

&

O] ooDoYan

0 10 20 30 40 50
Number of Clients

Figure 11(c). Response Time (Loc =0.75)

When the write probability is higher, two-phase locking with notification performs
poorly when there are a large number of clients, as shown in Figures 8(b) and 8(c).
Under the notification protocol, the server sends updates to the clients when objects are
updated. With very low locality, transactions almost never read objects cached by previ-
ous transactions. Consequently, these notification messages do not improve performance
(ie., reduce aborts) but they do increase server CPU contention which in turn increases
the transaction response time. Callback locking also performs marginally worse than
two-phase locking because the server has to send messages to clients asking them to
return locks, but the retained locks do not help the client transactions much due to the
low locality. With no-wait locking, the transaction restart rate is higher than two-phase
locking. But the server does not need to respond to every client message which reduces
the server CPU contention and offsets the wasted work of aborted transactions. Thus,
two-phase locking is the best.

Figures 9(a) through 9(c) show the average transaction response time with medium
locality (InterXactLoc set to 0.25). These graphes are similar to 8(a) through 8(c)
because the locality is not high enough to make a significant difference. However, call-
back locking performs a little better than two-phase locking when there are no object
updates, as shown in Figure 9(a). In this case, when a client accesses a cached object with
a retained lock, it does not need to send a message to the server, which saves client wait-
ing time and reduces the server CPU load which in turn improves the response time of
other transactions. But its performance degrades for write probabilities that are higher,
as shown in Figure 9(c). Thus, callback locking is best when transactions are read-only.
Otherwise two-phase locking is the best.

Figures 10(a) through 10(c) show the average response time for high locality tran-
sactions (InterXactLoc set to 0.50). Callback locking outperforms two-phase locking by
about 15% when there are no object updates, as shown in Figure 10(a). This is because
clients can take advantage of the retained locks, but the server never has to send mes-
sages to the clients requesting them to return locks. No-wait locking also outperforms

two-phase locking because the server does not need to respond to every client message
which reduces the server load.

However, the performance of callback and no-wait locking degrade for higher write
probabilities, as shown in Figures 10(b) and 10(c). When the write probability is 0.50,
two-phase locking is as good as callback locking, as shown in Figure 10(c), because the
cost of retrieving locks offsets the savings of retained locks. No-wait locking causes
more transaction aborts, which offsets the savings of the "no-wait" protocol. Although
notification can help no-wait locking to reduce transaction aborts, the notification mes-
sages cost even more than what they save. Thus, callback locking is best at low write
probabilities and either two-phase or callback locking is best at higher write probabilities.

Figures 11(a) through 11(c) show the average transaction response time for very
high locality transactions (InterXactLoc set to 0.75). Callback locking dominates the
other three algorithms. When there are no object updates, as shown in Figure 11(a),

22

callback locking performs about 35% better than two-phase locking and 17% better than
no-wait locking. No-wait locking also outperforms two-phase locking, because clients
do not have to wait for responses from the server when they access cached objects which
saves clients waiting time and reduces server CPU contention.

However, the performance of callback and no-wait locking degrades quickly for
higher write probabilities, as shown in Figures 11(b) and 11(c). When the write probabil-
ity is 0.2, callback locking only performs about 15% better than two-phase locking while
no-wait locking performs about the same as two-phase locking. When the write proba-
bility is 0.5, callback locking is just slightly better than two-phase locking while no-wait
locking performs worse than two-phase locking because it causes more transaction
aborts. Thus, callback locking is the best.

An interesting observation from these figures is that no-wait locking with
notification rarely performs better than no-wait locking. When there are no object
updates, they are the same, as shown in Figures 8(a)-11(a). Notification is very sensitive
to the server CPU load which is determined by the number of clients. With 2 clients,
notification does not make a difference because there is only one other client to notify
and there are few transaction aborts. When there are 10 clients and a high locality, as
shown in Figures 10(a), 10(b), 11(a), and 11(b), notification improves no-wait locking
slightly because the transaction aborts that it saves more than compensate for the cost of
sending updates to clients. When there are a large number of clients (30 to 50), the
server is a bottleneck, so sending updates to clients causes more contention which makes
notification not worthwhile even though it can reduce the number of transaction aborts.
When the locality is very high (InterXactLoc set to 0.75), clients access cached objects
most of the time. Consequently, the server becomes less loaded and more transaction
aborts can be avoided by notification. Even when there are a large number of clients, no-
wait locking with notification is only slightly worse than no-wait locking, as shown in
Figures 11(b) and 11(c),

We also measured transaction throughput rate for all cases. Figures 12(a) and 12(b)
show the transaction throughput rate for medium and very high locality, both with
medium write probability. The corresponding response time is shown in Figures 9(b)
and 11(b). Transaction throughput results are the same as response time.

In summary, we conclude that in the setup of our experiments where server CPU is
the bottleneck and the workload is short transactions without internal delay:

(1) Two-phase locking and callback locking dominate no-wait locking and no-wait
locking with notification.

(2) Callback locking is better than two-phase locking when locality is high (greater
than 0.5), or, it is better when locality is medium (between 0.25 and 0.5) and
write probability is low (less than 0.2).

(3) No-wait locking is better than two-phase locking when locality is high (greater
than 0.5) and write probability is low (less than 0.2). However, callback locking

23

G——8&two-phase X — —~ =X callback ©--—--©Ono-wait 4--———-+ no-wait w/ notification

109
WProb = 0.20
T T
h , h
T r
o o
u S u
P P
u u
t t
0 v 0 v
0 10 20 30 40 50 0 10 20 30 40 50
Number of Clients Number of Clients

Figure 12(a). Throughput (Loc = 0.25) Figure 12(b). Throughput (Loc = 0.75)

: > 0 0.50
Locality 0.00 .20 .
0.05 any algorithm two-phase locking | two-phase locking
0.25 callback locking | two-phase locking | two-phase locking
0.50 callback locking callback locking | two-phase locking
0.75 callback locking callback locking callback locking

Figure 13. Summary of Algorithm Performance

is better than both of them in these cases.

(4) No-wait locking with notification is slightly better than no-wait locking only
when the locality is very high (greater than 0.5) and there are a small number of
clients. It does not help under other circumstances.

24

Figure 13 summarizes our findings. In the upper-left corner, it doesn’t make any
difference which algorithm is used. In the lower-left area, callback locking should be

used. In the remaining area, two-phase locking should be used.

G———=8 two-phase X — — ~X callback ©@-----~-—-Ono-wait +-——-—- no-wait w/ notification

2001 2001

WProb = 0.20 WProb = 0.50
R 150 R 1501 Rl
e e -
s s
: B
g 1001 1 1001
e e
T T
m 504 h
T T 50
01 0

0 10 20 30 40 50
Number of Clients

Figure 14(a) Response Time (Loc = 0.25)

2009
WProb = 0.20

R 1501
e
;
n 1001
S
€
T
1
m 501
e

0" ﬁ/ﬂ

0 10 20 30 40 50
Number of Clients

Figure 15(a) Response Time (Loc = 0.75)

0 10 20 30 40 50
Number of Clients

Figure 14(b) Response Time (Loc = 0.25)

2001

WProb = 0.50

1501

1001

501

oHmm] ouSCTBnGR

0
0 10 20 30 40 50

Number of Clients

Figure 15(b) Response Time (Loc = 0.75)

25

5.2. Large Transaction Experiment

In this experiment, we studied the impact of large transactions on the performance
of cache consistency algorithms. MinXaciSize was set to 20 and MaxXactSize to 60.
Each transaction read an average of 40 objects.

Compared to the previous experiment, the server load was even higher because
there were more operations within a transaction. Transaction aborts became more expen-
sive due to the larger transaction size and the server load. Figures 14(a) and 14(b) show
the transaction response time for medium locality (InterXactLoc set to 0.25). Figures
15(a) and 15(b) show the transaction response time for very high locality (InterXactLoc
set to 0.75).

There are three interesting observations. First, results of this experiment are very
similar to those of the previous experiment because the server is still a bottleneck. The
shape of the lines in Figure 14(a) are very close to that of the same case for the previous
experiment shown in Figure 9(b).

Second, both no-wait locking and callback locking degrade more rapidly for higher
write probabilities than in the short transaction experiment because they cause more tran-
saction aborts that are more expensive. When there are no object updates, both callback
and no-wait locking outperform two-phase locking when locality is above medium. But
with high write probabilities, as shown in Figures 14(b) and 15(b), callback locking
became slightly worse than two-phase locking, and no-wait locking became much worse
than two-phase locking.

Third, notification helps no-wait locking, as shown in Figures 14(b) and 15(b),
because it reduces the number of transaction aborts. The savings of the reduced transac-
tion aborts more than compensate for the cost of notification messages. However, both
no-wait locking and no-wait locking with notification are still dominated by two-phase
and callback locking.

5.3. Fast Server Experiment

The server was the bottleneck in the previous two experiments. In this experiment,
we set the server CPU speed to 20 mips, 10 times faster than in the previous experiments.
All other parameters were the same as reported in Table 5. The workload was short tran-
sactions without internal delay.

In this experiment, we found that the system bottleneck shifted from the server CPU
to the network. The network became a bottleneck when the number of clients reached 30.
Therefore, algorithms that can reduce the number of messages exchanged between clients
and the server should have better performance. Figures 16(a) and 16(b) show the tran-
saction response time for medium locality (InterXactLoc set to 0.25). Figures 17(a) and
17(b) show the transaction response time for very high locality (InterXactLoc set to
0.75). They are very close to the corresponding figures for the short transaction experi-
ment (16(a) and 16(b) correspond to 9(b) and 9(c), 17(a) and 17(b) correspond to 11(b)
and 11(c)). The only obvious difference is that no-wait locking with notification

26

B——~8two-phase X - — =X callback ©-----~Ono-wait <-—--—<+ no-wait w/ notification

201 20
R 1 5 WProb = 0.20 g 15 WProb =0.50
e)
8 B
3101 3
e e
T - T
m oS e h
e L e

0
0 10 20 30 40 50
Number of Clients Number of Clients
Figure 16(a) Response Time (Loc = 0.25) Figure 16(b) Response Time (Loc = 0.25)

204 207

R 1 54 WProb = 0.20 154 WProb = 0.50
R
¢ e
é $
n 101 181 107
S H
T
m T s
e)
0 10 20 30 40 50 GO 10 20 30 40 50
Number of Clients Number of Clients
Figure 17(a) Response Time (Loc = 0.75) Figure 17(b) Response Time (Loc = 0.75)

performs more poorly with a large number of clients due to the large number of
notification messages.

This experiment gave virtually the same results as the short transaction experiment
because there is a close relationship between the number of messages and the server load.
Both the network and the server are resources for which clients compete. More messages
increase both network and server contention. Therefore, algorithms that perform poorly
in the short transaction experiment because of server contention perform equally poorly
in this experiment because of network contention.

27

S.4. Fast Network and Fast Server Experiment

In this experiment, we wanted to find out what would happen if the network
bottleneck was removed. We assumed that the network was infinitely fast and set NetDe-
lay t0 0. Server CPU speed was set to 20 mips. All other parameters were the same as in
Table 5. A short transaction workload without internal delay was executed.

In this experiment, there was no bottleneck. The resource with the highest degree of
contention was the server disks which reached a utilization rate of about 80% with 50
clients. Figures 18(a) and 18(b) show the transaction response time for medium locality
(InterXactLoc set to 0.25). Figures 19(a) and 19(b) show the transaction response time
for very high locality (InterXactLoc set to 0.75).

There are substantial differences between the results of this experiment and those of
the short transaction experiment. Comparing Figures 18(b) and 19(b) to their
corresponding Figures 9(c) and 11(b), we find that no-wait locking with notification per-
forms significantly better. It dominates other algorithms in both cases. In previous exper-
iments, notification performed poorly because it sent more messages than all other algo-
rithms and messages were expensive. The cost of messages was more than the savings
due to the reduced transaction aborts. However, in this experiment, with NetDelay set to
0 and a very fast server CPU, messages are very cheap while disk I/O’s become rela-
tively more expensive. Sending updates to clients can reduce the number of transaction
aborts and the number of disk accesses because clients do not need to fetch invalid
objects from the server which may require disk reads. Therefore, no-wait locking with
notification outperforms the other three algorithms.

When locality is high and write probability is low, as shown in Figure 19(a), call-
back performs slightly better than the other algorithms (this is not obvious in the figure
because of the scale). This is because notification does not make a difference when the
write probability is low. And, when locality and write probability are low, there is not
much difference between the algorithms.

Figures 20 and 21 show the transaction throughput rate for a medium locality
(InterXactLoc set to 0.25) and very high locality (InterXactLoc set to 0.75) workload.
No-wait locking with notification and callback locking dominate the other algorithms.

In summary, when locality and write probability are low, all algorithms behave vir-
tually the same. When locality is high and write probability is low, callback locking per-
forms best. In other situations, no-wait locking performs the best.

5.5. Interactive Transaction Experiment

In this experiment, we studied the impact of interactive transactions on the perfor-
mance of the algorithms. UpdateDelay was set to 5 seconds and InternalDelay to 2
seconds. All other parameters were the same as reported in Table 5.

Because of the long internal delay and the limited number of clients, all resources
are lightly used. Time saved from less communication with the server or not waiting for

28

B————£] two-phase % - — =X callback ©O-~——©Ono-wait <-——-—<¢ no-wait w/ notification

7
61
54
44
34
24
1

o] ansgonal

0

0 10 20 30 40 50

Number of Clients

Figure 18(a) Response Time (Loc = 0.25)

79
69
54
41

WProb = 0.00

31
21

of~~] cuboUnoX

11 —

0

Figure 19(a) Response Time (Loc = 0.75)

204
WProb = 0.20
T 15 h
h
T
(] 104
u =
E - f-" ./,:‘."’"""'”"’“ hate]
P 59
u
t
(4]

Figure 20. Throughput (Loc = 0.25)

29

7
61

WProb =050

0B} onpoywno™

0 10 20 30 4 50

Number of Clients

Figure 18(b) Response Time (Loc = 0.25)

‘WProb =0.20

oBrw] onbounol

m«

&

racensenseor®
PO
L

[
]

~EOPWE O
brd

Figure 21. Throughput (Loc = 0.75)

responses from the server is trivial compared with the internal delay time. Therefore,
differences in transaction response time are mainly caused by data contention, or the
number of restarts per transaction.

Figure 22(a) and 22(b) shows the transaction response time for medium locality
(InterXactLoc set to 0.25). When there are no object updates, as shown in Figure 22(a),
the response times for all algorithms are flat because they are all essentially determined
by the internal delays within transactions which average 56 seconds (7 seconds for each
object read and each transaction reads an average of 8 objects). However, with high
write probability (WriteProb set to 0.50), algorithms that cause more transaction aborts
perform poorly, as shown in Figure 22(b). The poor performance of callback and no-
wait locking shown in Figure 22(b) are also related to the way they are implemented in
our simulator. In both algorithms, clients receive asynchronous messages from the
server. In the current implementation, these messages are not processed during the inter-
nal delay time.

In summary, when there are no object updates, the algorithms behave virtually the
same. When the write probability is non-zero, two-phase locking is best because it has
the least number of transaction aborts.

G——~H8 two-phase ¢ — — —X callback O--—-Ono-wait +-—-—--+ no-wait w/ notification

2001 2001
,l
R 1501 WProb = 0.00 R 1509 WProb = 0.50 7
g 8
8 B
2 1001 1
e e
H — . T
m 501 o m
0 v 0
0 10 20 30 40 50 0 10 20 30 40 SO
Number of Clients Number of Clients
Figure 22(a) Response Time (Loc = 0.25) Figure 22(b) Response Time (Loc = 0.25)

30

6. Conclusions

Five algorithms for inter-transaction caching were described and a simulation
experiment was performed to compare their performance under various conditions. We
found that two-phase locking and certification with inter-transaction caching almost
always outperform the corresponding intra-transaction algorithms. Among the inter-
transaction algorithms, when the network or the server is a bottleneck, two-phase locking
and callback locking dominate no-wait locking and no-wait locking with notification.
Callback locking is better than two-phase locking when the inter-transaction locality is
high or when the inter-transaction locality is medium and the probability of object update
is low.

When there is no network delay and the server is very fast, no-wait locking with
notification and callback locking dominate two-phase and no-wait locking. Callback
locking is better than no-wait locking with notification when inter-transaction locality is
high and write probability is low. Otherwise no-wait locking with notification is better.
For interactive transactions, two-phase locking is the best.

Current database applications typically have low inter-transaction locality and low
to medium probability of object update, thus two-phase locking is used. It remains to be
seen whether object-oriented DBMS applications have either high inter-transaction local-
ity or medium inter-transaction locality and low write probability to justify changing to
callback locking, or networks and server processing speed become fast enough to justify
changing to no-wait locking with notification.

Another factor that has to be taken into account is how difficult it is to implement
these algorithms. Two-phase locking with inter-transaction caching requires that the
server maintain a version number for each object. The version number is cached with the
object in each client cache. A client also needs to remember which cached objects have
been locked by the current transaction. All messages between clients and the server are
synchronous (i.e., all messages are initiated by clients and clients always wait for
responses from the server). Therefore, the communication protocol should be easy to
implement.

Callback locking requires more modifications. It is still necessary to have a version
number for each object.f A client must remember which cached objects have been
locked and whether they are locked by the current transaction. It also must process asyn-
chronous messages from the server requesting the release of locks. The server lock
manager needs to maintain a potentially much larger lock table. Deadlock detection
becomes more difficult because if all retained locks are considered part of the wait-for
graph, potentially many more deadlocks can happen. On the other hand, if retained locks
are not considered part of the wait-for graph, when the server cannot get back a retained

T The version number is not necessary if a client assumes that all unlocked objects are in-
valid and always refetches them.

31

lock, it has to decide whether to continue waiting for the client to release it or to abort the
client transaction.

No-wait locking also requires more modification than two-phase locking. It
requires that a client remember which cached objects it has asked the server to lock but
has not received a negative response. It also must handle asynchronous messages from
the server requesting that a transaction be restarted. Notification requires that the server
remember which objects have been cached by which clients if it sends updates to indivi-
dual clients instead of broadcasting them to all clients.

Acknowledgement

We want to thank Mike Stonebraker for his advice on the simulation model and
experiments, John Ousterhout for suggesting that we study callback locking, Luis
Miguel, Wei Hong, Young-Chul Shim, Kevin Wilkinson for their constructive comments
on our work, and Dan Gerson and Dan Weinreb for elaborating on the no-wait locking
algorithm in private communication.

References

1. Agrawal, R., Carey, M. J. and Livny, M., ‘‘Models for Studying Concurrency
Control Performance: Alternatives and Implications”, Proceedings of ACM-
SIGMOD Conf. on Management of Data, 1985.

2. Agrawal, R., Carey, M. J. and Livny, M., ““‘Concurrency Control Performance
Modeling: Alternatives and Implications’’, ACM Transactions on Database
Systems 12, 4 (December 1987).

3. Agrawal, R. and Gehani, N. H., ‘“ODE (Object Database and Environment): The
Language and the Data Model”, Proceedings of ACM-SIGMOD Conf. on
Management of Data, Portland, Oregon, June 1989.

4. Andrews, T. and Harris, C., ‘‘Combining Language and Database Advances in an
Object-Oriented Development Environment”, Proceedings of ACM Conference on
Object-Oriented Programming Systems, Languages and Applications, Orlando,
Florida, October 1987, 430-440.

5. Bancilhon, F., et. al., ‘“The Design and Implementation of O2, an Object-Oriented
Database System’’, Proceedings of the second International Workshop on Object-
Oriented Database Systems, Bad Miinster am Stein-Ebernburg, FRG, September,
1988.

6. Bemnstein, P. A., Hadzilacos, V. and Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

7. Bretl, R, et. al,, ‘““The GemStone Data Management System’’, in Object-Oriented
Concepts, Databases, and Applications, Kim, W. and Lochovsky, F. H. (editor),
1989, ACM Press.

32

10.

11.
12.

13.

14,

15.

16.
17.

18.

19.

20.

21.

Carey, M. J. and Livny, M., ‘‘Distributed Concurrency Control Performance: A
Study of Algorithms, Distribution, and Replication’’, Proceedings of the 14th
International Conference on Very Large Data Bases, Los Angeles, California,
August 29 - September 1, 1988.

Date, C. J., An Introduction to Database Systems, Volumn I, 5th Edition, Addison-
Wesley, 1990.

Deux, O., et. al., ‘*“The Story of O2’’, IEEE Transactions on Knowledge and Data
Engineering 2, 1 (March 1990), 91-108.
Gerson, D., Personal Communication, March 1989.

Howard, J. H., et. al., ‘‘Scale and Performance in a Distributed File System’’, ACM
Transactions on Computer Systems 6, 1 (February 1988), 51-81.

Kempf, J. and Snyder, A., ‘‘Persistent Objects on a Database’’, STL-86-12, HP
Labs, September, 1986.

Kim, W, et. al., “‘Architecture of the ORION Next-Generation Database System’’,
IEEE Transactions on Knowledge and Data Engineering 2, 1 (March 1990), 109-
124,

Object Design, Inc., ObjectStore DBMS, 1990.

Objectivity, Inc., Objectivity/DB, 1990.

Paepcke, A., ““PCLOS: A Flexible Implementation of CLOS Persistence”’,
European Conference on Object-Oriented Programming, 1988.

Richardson, J. E. and Carey, M. J., ‘‘Programming Constructs for Database System
Implementation in EXODUS’’, Proceedings of ACM-SIGMOD Conf. on
Management of Data, San Francisco, California, May 27-29, 1987.

Schwetman, H. D., ‘“‘CSIM: A C-Based, Process-Oriented Simulation Language’’,
Proceedings of the 1986 Winter simulation Conference, December 1986, 387-396.
Weinreb, D., et. al,, ‘‘An Object-Oriented Database System to Support an
Integrated Programming Environment’’, /[EEE Database Engineering Bulletin 11,
2 (June 1988), 33-43.

Wilkinson, K. and Neimat, M., ‘‘Maintaining Consistency of Client-Cached

Data’’, Proceedings of the 16th International Conference on Very Large Data
Bases, 1990.

33

