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ABSTRACT

A Three-Dimensional Optical Lithography Simulator has been developed based on a
new ray-string algorithm for dissolution etch-front advancement. In developing the new algo-
rithm, performance studies of cell, string and ray algorithms were carried out in two dimen-
sions. A key finding was that a recursive ray method for the calculation of the surface-
advancement vector produced numerically stable and highly accurate results. The optimum
algorithm was found to be one that combines the recursive-ray method with the string
approach, in which etch-rate-dependent rays are used to advance the nodes, segments and tri-
angles which make up the etching boundary. This algorithm has been implemented in 3D in
the C programming language, using a linked-list data structure to represent the etching boun-
dary mesh. Recursive time-step selection, mesh modification, and clipping and delooping of

the etch boundary surface have been implemented.

The 3D ray-string etch simulator has been coupled to 2D imaging and 3D resist-
exposure simulators to form SAMPLE-3D, a complete fast and accurate 3D photolithography

simulator. The complete simulator has been used to investigate the correlation between the



2D aerial image and the 3D developed resist profile. This includes applications to the printa-
bility of defects where the nonvertical resist dissolution effects play a strong role, as well as

the design of phase-shifted masks where phase-transitions tend to print.
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CHAPTER 1
INTRODUCTION

li-thog-ra-phy - the art or process of printing from a flat stone or metal plate: the design is put on the
surface with a greasy material, and then water and printing ink are successively applied; the
greasy parts, which repel water, absorb the ink, but the wet parts do not.

pho-to-li-thog-ra-phy - a printing process combining photography and lithography.

[From Webster's New World Dictionary, 2nd edition, 1974)

1.1. SIMULATION OF PHOTOLITHOGRAPHY

Photolithography simulation is increasingly being recognized as a critically important
tool for the fabrication of modern integrated circuits. As integrated circuit device dimensions
are pushed deeper and deeper into the submicron regime, the task of ensuring good yield and
throughput with photolithography (also referred to as optical lithography) becomes more and
more difficult. It is important to be able to understand and balance the many complex tradeoffs
between materials, exposure tools, and wafer conditions that govern the pattem transfer pro-

CESS.

Simulation represents a powerful tool for studying photolithography, because it provides
the means for systematically determining the effects of the many process parameters on the
lithographic pattern transfer process. This systematic study can yield important information
on the relationship between the various process parameters. It provides for a better under-
standing of the principles involved in the lithography process, which in tum allows for optimi-
zation of the performance of the pattern transfer process. And all this can be done much faster

than experimental approaches, and at a fraction of the cost.



The simulation of optical lithography involves modeling the process by which patterns
on a mask are transferred onto a photoresist-coated wafer via exposure to optical radiation.
The origins of lithography process simulation can be traced to the 1970s. The essential
ingredient was provided by Dill and co-workers,! * 2 who formulated a quantitative model for
the exposure and development of positive photoresists. In later years, this basic model was
extended to multiple wavelengths.3 A variety of optical effects such as defocus,? lens aberra-
tions> and mask phase-shifting® were also added on. Dill’s resist development model and the
extensions to it have since been implemented in a number of photolithography simulation pro-
grams, including the SAMPLE 7 simulation program at U.C. Berkeley.  Since SAMPLE was
introduced in April 1979, it has been used with great success for studying the issues involved

in printing one-dimensional (1D) lines and spaces.

SAMPLE produces, principally, the two-dimensional cross-sections of line-edge profiles
transferred from one-dimensional mask patterns. However, at small device dimensions,
three-dimensional (3D) effects become more important in clearing out and properly filling
comers, determining the effects of mask defects, and, in general, printing two-dimensional
(2D) pattems such as elbows and squares. To deal with the issues related to patteming 2D
mask pattems, it is necessary to be able to simulate the three-dimensional photoresist profile
transferred from a two-dimensional mask pattern. And to do this, it is necessary to simulate

the resist development, that is, the etching of the photoresist by an alkaline developer.

t SAMPLE is a FORTRAN program for Simulation And Modeling of Profiles in Lithography and Etch-
ing. It is capable of simulating the time evolution of topographical features of Integrated Circuit devices dur-
ing multiple process steps. SAMPLE is being developed at the University of California at Berkeley by a stu-
dent research group on process modeling and technology, under the guidance of Professors A.R. Neureuther
and W.G Oldham.®



1.2. ETCHING ALGORITHMS

The problem of etching photoresist can be generalized to that of modeling the shape or
profile of a material as its surfaces are being etched. The etching is assumed to take place
only on the surface of a time-varying front, and the etch-rate at each point in the volume of the
material is given by some previously calculated etch-rate distribution. Furthermore, the pho-

toresist is modeled as an inhomogeneous and isotropic medium.

In two dimensions, there are basically three algorithms for modeling etching. Dill’s cell
model,? introduced in 1975, was the very first algorithm to be used for development-etching
simulation. The cell method is a volumetric algorithm; the material to be etched is divided
into a matrix of tiny cells, and the etch surface is tracked by noting the etch state of each cell
in the material. This algorithm, however, is slow and inefficient, and requires a frightening

amount of computation time and memory in order to produce accurate resuits.

Jewett’s string model® (used by SAMPLE) and Hagouel’s ray model,!? on the other
hand, are faster and more accurate etching algorithms. These two models are both surface-
advancement algorithms, in which a mesh of connected points is used to represent the surface
of the material as it is being etched. However, the surface-advancement algorithms are
difficult to implement, and also present difficult algorithmic and geometric problems in the

treatment of boundaries and in loop formation.

These etching algorithms can still be used for modeling three-dimensional etching. But,
as might be expected, the addition of an extra dimension does complicate matters consider-

ably.



1.3. 3D PHOTOLITHOGRAPHY SIMULATORS

A number of 3D photolithography simulators have been introduced lately, the great
majority of which use the cell method for 3D etching. The simulators written by Jones
(RD3D),1! Hirai,!2 and Bauer (LITHSIM)!? all use the original cell algorithm. But in 3D,
the cell method is painfully slow. The large memory required to run the simulation also limits
the cell-based programs to supercomputers or large mainframes. There have been some recent
attempts to correct the deficiencies of the cell method. The SOLID simulation program,l4
introduced recently by Pelka of the Fraunhofer Institute, and Mutsibishi’s 3D-MULSS 15 pro-
gram both use faster modified versions of the cell method. Unfortunately, the accuracy of

these simulators has not yet been established.

The string and ray algorithms are inherently faster and more accurate than the cell-based
methods. However, these algorithms are quite difficult to implement in 3D. This difficulty is
mirrored in the relatively small number of 3D simulators that use these algorithms.
RESPROT!S seems to be the only 3D process simulator using the string algorithm. Moniwa
(TRIPS-I),)7 Jial® and Barouch!? * 20 use variations of the ray algorithm for 3D etching.
Despite its implementation difficulty, the 3D surface-advancement algorithm remains a most
interesting area of research. There are many interesting tradeoffs, for example, speed vs.

accuracy and front-smoothing vs. delooping, that have yet to be explored in detail.

1.4. RESEARCH OUTLINE

The work described in this document is aimed at implementing a fast, robust and accu-
rate 3D lithography process simulator. In selecting an etching algorithm for 3D process simu-

lation, it is especially important to consider the needs of process engineers. The process



simulator should be easy to use, and it should run on computing resources, such as worksta-
tions, that are easily accessible to process engineers. Therefore, the process simulator must be
fast, and it should not need to use large amounts of computation memory. There should also

be a good graphics interface for easy interpretation of the simulation results.

Special attention also needs to be paid to the accuracy and robustness of the etching
simulation. Cell methods are stable, but slow and sometimes inaccurate. Even the ray and
string algorithms produce inaccurate results if care is not taken during interpolation or boun-
dary clipping. And in all three algorithms, there will be special cases which could disrupt the
execution of the program. In the string algorithm, for example, the formation of loops could

cause the program to crash.

Study of the literature reveals two clear areas of research in etching simulation. One
safe and well-trod approach is to examine the cell method in greater detail, and to modify the
algorithm to achieve greater speed and accuracy. The alternate approach is to delve into the
intricacies of the surface-advancement algorithms. This latter method is high-risk, as it
requires implementing the surface-advancement algorithms in 3D, which is no easy task. But
at the same time, the inherent speed and accuracy advantages of the surface-advancement

algorithms would provide a high payoff if these algorithms can be successfully implemented.

It was decided that a better choice of the etching algorithm for 3D simulation could bev
made if the etching algorithms themselves were better understood. Therefore, the first step in
the decision process was to make a systematic and comprehensive comparison of the various
etching algon‘thms in two dimensions. The algorithms for simulating the time-evolution of
2D etch profiles were implemented and compared in cost, convenience, and accuracy. In par-

ticular, a great deal of attention was paid to understanding and determining the conditions



under which the algorithms would provide accurate results.

Chapter 2 provides an overview of photolithography simulation in both two and three
dimensions. The cell-removal algorithm for etching simulation is discussed in Chapter 3. One
unexpected result of the study of the cell-removal algorithm was a promising new 3D cell-
based algorithm, described in Chapter 4. Chapter 5 is devoted to a discussion of the
mathematical basis of the surface-advancement algorithm. It is shown here that the string and
the ray approaches are related closely to each other. The string and the ray algorithms are
then examined in greater detail in Chapter 6, while an approach combining the two is dis-

cussed in Chapter 7.

Based on the study of 2D etching algorithms in Chapters 3-7, the algorithms that were
more suited for 3D etching were selected and implemented. The ray-string algorithm, which
combines the ray and string methods, showed the most potential for 3D etching simulation; its
implementation in three dimensions is described in Chapter 8. The ray-string algorithm has
been found to be both accurate and fast, and has been successfully coupled to 2D imaging and
3D resist-exposure simulators to form the basis of a complete 3D photolithography process
simulator. In addition, supporting graphics programs have also been implemented and linked
to the simulator for easy display of the simulation results. Application examples of the
integrated 3D photolithography simulator are given in Chapter 9. Finally, the dissertation is

concluded in Chapter 10.
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CHAPTER 2
PHOTOLITHOGRAPHY SIMULATION

2.1. 2D PHOTOLITHOGRAPHY SIMULATION WITH SAMPLE

The simulation of optical lithography involves modeling the process by which pattems
on a mask are transferred onto a photoresist-coated wafer via exposure to optical radiation.
Essentially, this process can be divided into three major components : imaging, ex;;osure and
development-etching. The SAMPLE! simulation program simulates the two-dimensional
(2D) profile of the developed photoresist as a function of time by first calculating the aerial
image intensity incident upon the photoresist (Figure 2.1). The exposure of the photoresist to
light triggers chemical changes in the photoresist; the chemical changes (and modifications
through baking and chemical amplification) are modeled using Dill’s2 algorithm (Figure 2.2).
The exposure of the photoresist is related to the etch-rate in the volume of the photoresist by
an empirically-constructed rate equation. This rate equation is used to generate a two-
dimensional etch-rate distribution throughout the volume of the photoresist (Figure 2.3). This
distribution is then used in a two-dimensional development-etch simulator to generate a two-

dimensional profile of the photoresist (Figure 2.4).

Note in Figure 2.2 that the exposure of the photoresist is a strong function of distance
into the photoresist. Because of multiple reflections between the surface of the photoresist and
the substrate, standing waves are formed in the vertical intensity distribution. These standing

waves affect the etch-rate distribution as well as the developed resist profile.

The apbmach outlined above to simulate the exposure of the photoresist avoids a time-

consuming and rigorous solution of Maxwell’s equations inside the photoresist by assuming
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Aerial Image Simulation
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Aerial image simulation of 1.25 um (0.8 A/NA) isolated space. The image was
simulated using SPLAT, with A = 0.436 pm, NA = 0.28, and 6 =0.5.

Normalized PAC Concentration, M(x,z)
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Figure 2.2 :

S 1 1.5 2
Distance on Wafer (um)
Nommalized concentration of photoactive compound, simulated from the aerial
image of Figure 2.1. The simulation was performed on 1.0 um of Kodak 820

resist on 0.0741 um oxide. The resist exposure parameters are : A = 0.551
um™1, B = 0.058 pm™!, C = 0.010 cm?*/mJ.
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Etch Rate Distribution, R(x,z)
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Figure 2.3 : Two-dimensional etch-rate distribution in the photoresist. The etch-rate is
related to the photoactive compound concentration (Figure 2.2) by the Kim!
rate-model, with parameters R1 = 0.1143 um/s, R2 = 0.0001683 pm/s, R3 =
4.667,R4 =0.1 pm, R5 =045,R6=0.3.
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Figure 2.4 :

Edge profiles for a 1.25 pum isolated space in Kodak 820 resist developed for

15, 30, 45, 60 and 75 seconds. The profiles were simulated with SAMPLE,
using the string algorithm.

1 DJ. Kim, W.G. Oldham, AR. Neureuther, *Development of Positive Photoresist,"* JEEE Transactions
on Electron Devices, vol. ED-31, no. 12, pp. 1730-1735, December 1984.
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that non-vertical ray propagation effects are negligible. The imaging and the exposure calcu-
lations then become separable, and the exposure calculation can then be performed using
Beming’s algorithm for reflection? assuming a single normally incident plane wave. Unfor-
tunately, this assumption, while useful in the majority of simulations, is violated when large
numerical aperture (NA) projection systems are used - the plane waves in such systems can be
as much as 30° off-axis. For greater accuracy, it is necessary to apply electromagnetic diffrac-
tion theory to obtain a rigorous and comprehensive description of the imaging and exposure
process in photolithography. A number of simulators that solve Maxwell’s equations in two
dimensions have been described recently in the literature.4 * 5 * 6 Alternately, high numerical
aperture projection printing may be simulated by including first order corrections to the verti-

cal propagation model, as has been done by Bemnard’ and Mack.8

A flow diagram of the optical lithography simulation process is shown in Figure 2.5. As
depicted in this diagram, there are two methods for simulating the exposure of the photoresist,
both of which have been discussed. The rigorous method, in which Maxwell’s eql'xations are
solved, treats the imaging and exposure as a single inseparable simulation step. This method,
although more accurate than the vertical propagation model, is difficult to implement and is
very computation-intensive. In contrast, the vertical propagation method, which allows the
imaging and resist-exposure simulations to be separated, is much easier to implemenf and also
less time-consuming. The resist development-etching simulation is independent of the expo-
sure calculation; an empirically determined rate equation is used with either method to gen-
erate a etch-rate distribution in the resist. This distribution is then used to simulate the time-

varying profile of the developing photoresist.
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2.2. 3D PHOTOLITHOGRAPHY SIMULATION WITH SPLAT

SAMPLE is a powerful tool for investigating the issues involved in printing one-
dimensional (1D) lines and spaces. Unfortunately, in the real world, mask sets typically con-
sist of two-dimensional patterns, such as elbows and squares. To properly analyze the effects

of such two-dimensional mask patterns, a FORTRAN program, SPLAT,? was developed.

2.2.1. SPLAT : 2D Aerlal Image Simulation

SPLAT (SimMaﬁon of Projection Lens Aberrations via TCCs) is a FORTRAN program,
associated with SAMPLE, that simulates a two-dimensional optical image from a projection
printer. The program calculates the intensity from an arbitrary two-dimensional mask pattern,
using the Hopkins 10 theory of partially coherent imaging. The current version of the program
can handle defocus effects, projection lens aberrations, as well as phase-shifted masks.
SPLAT has been used to study feature-dependent effects in optical lithography, including
proximity effects between neighboring features, clearing of comers and contact holes, and
feature-dependent printing biases.1! * 12 + 13 This simulation capability has also been used to
design test patterns for isolating key optical parameters, and also for quantitatively interpret-
ing the experimental results obtained using these test patterns.!4 * 15+ 16 And most recently,
SPLAT has been used to systematically investigate the effects of phase-shifting masks in opti-

SPLAT by itself is not a complete tool, since it only simulates the image on the surface
of the photoresist. It is possible to use SPLAT to generate intensity profiles along a cutline
through a 2D mask, and then to feed that profile to SAMPLE for further resist development-

etching. As an example, Figure 2.6 shows an image intensity contour plot of equal lines and
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Intensity Contour Plot : 1.0 um Elbows
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Figure2.6: SPLAT aerial image simulation of 1.0 pm equal line-space elbows,

run with wavelength A = 0.436 pm, NA = 0.28, and ¢ =0.5. The
mask outline is overlaid with dark solid lines. The image in Figure
2.7a is taken from a cutline along the diagonal, from (0.0,0.0) to
(5.0,5.0).
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Figure2.7: 2D lithography simulation along a cutline. The aerial image (a) is
taken from a diagonal cutline of a SPLAT-simulated image of two
elbows. (b) The PAC contours and (c) the resist profiles are simu-
lated using SAMPLE.
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spaces in an elbow pattem. An intensity cutline along the comers. of the elbows yields the
intensity profile of Figure 2.7a. The plots in Figure 2.7b and 2.7c are produced when the

SPLAT-generated intensity profile is fed into SAMPLE for resist development-etching.

2.2.2. 3D Simulation using 2D Cutlines

The 2D cutline procedure described previously is often used, not only in process simula-
tion, to simulate three-dimensional (3D) behavior. Typically, a 3D volume is cut into parallel
2D planes, the simulation equations are solved along these planes, and the results are merged
to form a "complete” solution. This pseudo-3D approach is usually used when the full 3D

simulations are difficult to perform, or when simulators exist for 2D but not 3D calculations.

However, there are only certain conditions under which the cutline procedure will pro-
duce accurate results. This can be illustrated using the simple example of uniform isotropic
etching, where a material exposed to an etchant is etched at a constant rate. In the examples
shown in Figures 2.8 and 2.9, the material to be etched is exposed to an etchant along a
masked surface, so that only a portion of the surface of the material is in contact with the
etchant. As the material is etched away, the portions of the material undemeath the unex-
posed surface will gradually come into contact with the etchant. Thus, etching proceeds uni-
formly from the initial exposed surface. In a 2D world, this uniform two-dimensional etching
results in a surface similar to that shown in Figure 2.8b. In 1D, however, etching will proceed
only along a one-dimensional line perpendicular to the original surface. A point on the
exposed surface will move straight down into the material as it is being etched, while a point

on the unexposed surface will not move at all. This result is shown in Figure 2.8a.
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b

Figure 2.8 :

THE NEED FOR 2D ETCHING

1D ETCHING

ETCHANT

2D ETCHING

ETCHANT

(@) 1D uniform etching along an exposed surface. The material
underneath the unexposed surface remains unetched.

(b) 2D uniform etching along an exposed surface. = The material
underneath the unexposed suface is etched uniformly.
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It is quite clear that there is a vast improvement in the etching simulation as one goes
from 1D to 2D. The 1D simulation produces a box-like surface with 90° walls, while the 2D
simulation results in a surface with cylindrical walls undemeath the original unexposed sur-
face. Similar results are observed in going from 2D to 3D. In a 3D world, 3D etching takes
place undemeath all the unexposed surfaces, so uniform isotropic etching of a square exposed
surface will result in a profile similar to that shown in Figure 2.9a. The surface is cylindrical at
the sides and spherical at the comners. It is important to note that it is impossible to obtain the
surface of Figure 2.9a with 2D etching along cutline planes. Such a procedure with 2D cut-
lines parallel to the x-axis will produce rounded wall-edges along the x-axis and sharp wall-
edges along the y-axis (Figure 2.9b). This could be fixed, of course, by using multiple cutlines
aligned in different directions. But even so, there would still be problems at the comers of the

masked surface.

In resist development-etching simulation using cutlines, care has to be taken to ensure
that the development-etching will proceed only within the plane of the cutline. Thus, one
requirement is that the cutline must be perpendicular to the intensity contours of the two-
dimensional image. The etch-rates within the resist are dependent on the intensity contours,
so the resist development-etching starting from that cutline will proceed only along the plane
of the cutline. A second requirement is that there must be no centers of fast development-
etching close to the cutline. If there are such centers nearby, then it is conceivable that
development-etching from these centers might cross the plane of the cutline underneath the
original resist surface. It is not easy to determine if this last requirement can be met, since
there is a nonlinear relationship between the intensity incident on the resist and the actual
etch-rates within the volume of the resist. In the example of Figures 2.6 and 2.7, the first cri-

teria is met; the intensity contours are normal to the diagonal cutline, so etching from the ori-
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(@) 3D uniform etching along an exposed surface. The material
underneath the unexposed surface is etched uniformly.
(b) 3D etching using 2D cutlines. The composite result is not accu-
rate, since etching does not take place underneath the edges paral-
lel to the x-axis.
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ginally flat surface will proceed only in the cutline plane. However, it is possible that the
second criteria will not be met; the standing waves caused by muitiple reflections between the
resist and substrate might result in etching that crosses the diagonal cutline plane. These

standing waves could affect the final resist profile.

Modeling 3D etching with 2D etching along cutlines is potentially fraught with the
danger of not meeting the two requirements discussed above. This makes it very difficult to

implement 3D etching using 2D multiple cutlines.

23. COMPLETE 3D PHOTOLITHOGRAPHY SIMULATION

In order to properly investigate issues associated with 2D mask patterns, it is much
better to use a complete 3D photolithography simulator. The simulation process flow
described in Figure 2.5 also applies for 3D simulation. Just as in 2D, the three-dimensional
simulation of photolithography can be performed assuming vertical propagation. In this case,
the simulation can be broken into the three major components described earlier - imaging,
exposure and development-etching. Alternately, the imaging and exposure could be treated as
a whole, and solved for rigorously.- However, the rigorous electromagnetic diffraction method
is computation-intensive even in 2D; a rigorous 3D solution of Maxwell’s equations will

undoubtedly be much more time-consuming.

Given the advantages of the vertical propagation scheme, it makes a great deal of sense
to implement a 3D resist simulator with modular and separate imaging, exposure and
development-etching parts. The first two components of this simulator are not difficult to
build. SPLAT already exists, and extending Dill's 1D exposure model to 3D is straight-

forward. However, writing a 3D development-etch simulator is a more difficult proposition,
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for a careful choice of algorithms and data structures has to be made in order to obtain é fast,
robust and efficient etch simulator. But if the 3D development-etch simulator is developed
and implemented carefully, it can be used with both vertical-propagation and rigorous 3D

resist-exposure simulators for complete and accurate simulation of photolithography.
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CHAPTER 3
THE CELL-REMOVAL ALGORITHM

3.1. INTRODUCTION

The cell-removal algorithm is a volume etching method that was first proposed for etch-
ing simulation by Dill, et. al.,! in 1975. It has remained quite popular, with both 2D and 3D

implementations having been reported in the literature, 2+3+4.5.6

The cell-removal method, as originally proposed by Dill, divides the the material being
etched into rectangular cells, each characterized as completely etched, completely unetched,
or partially etched. The surface or etching boundary consists of unetched or partially etched
cells that are in contact with fully etched cells. The cells on the etching boundary are exposed
to the etchant, and etching proceeds along this surface. During the etch process, cells are
removed by the etchant according to the local etch-rate and the number of sides of the cell in
contact with the etchant. When an old cell is removed, the new cells exposed are allowed to

start etching.

3.2. THE ALGORITHM FOR CELL-REMOVAL

The algorithm for moving the etch surface can be stated as follows :

[I1 For each cell on the etching boundary, find the etch-time ¢, needed to remove the
cell. The etch-time is calculated according to the etch-rate at the center of the cell,
and the number of sides of the cell in contact with the etchant. The equations

govemning the etch-times for typical cases are shown in Figure 3.1.
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Figure3.1: Time to remove cells for different exposure conditions. In the 3 cas-
es above, a cell is exposed along (a) the top surface, (b) the top
and a side surface, and (c) the top and two sides.
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(Il Remove the cell that has etched the fastest, and update the cells on the boundary.
This involves taking the smallest value of . from step [I], and recalculating the

remaining area of all the cells on the boundary for that particular value of ¢, .

(III] Remove cells that have been completely etched from the list of boundary cells.

Unetched cells that touch the removed cells are added to the boundary list.

[IV] Proceed to step (I}, and repeat.

The movement of the etching boundary via the cell method is demonstrated in Figure
3.2. In this particular example, the etch-rate is assumed to be constant and uniform throughout
the volume of the material. Now, suppose at some time T1, the material consists of cells that
are either completely etched or completely unetched. The etching boundary then consists of
all the unetched cells that are in contact with an completely etched cell. At time T1, cell "A"
in Figure 3.2 has two sides exposed to the etchant, so this cell etches the fastest. The etch-time
for this cell is used as the time-step, to step from the configuration of time T1 to that of time
T2. By time T2, cell "A" has been completely etched, so it is removed from the boundary list.
At the same time, the cells with only one side exposed (marked "B") have become partially
etched. Thus, at time T2, the boundary consists of partially etched cells and completely
unetched cells. The etching process is then repeated. Again, the time to etch for each boun-
dary cell is calculated, and the boundary is moved according to the minimum cell etch-time.
At time T3, the partially exposed cells from the previous step have been completely etched,
- while the comer cells marked "C" now have become partially etched. This surface boundary

movement proceeds until the total etch-time equals or exceeds some targeted etch-time.
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Figure 3.2: The Cell Algorithm. The material is divided into cells, each fully
etched, partially etched, or unetched. For each time step, the
fastest etching cell is removed, and the area of the slower etching

cells is updated.
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3.3. IMPLEMENTATION OF THE CELL-REMOVAL ALGORITHM

The beauty of the cell approach is that it is computationally simpler than directly follow-
ing the moving boundary of the material being etched. The cell-removal algorithm can be
implemented simply by using an array of cells, each with flags denoting its etched or unetched
condition. The cells on the boundary are placed in a list, together with data on the unetched
(or etched) area of each cell in the list. Because of the rectangular structure of the cells,
updating the boundary is simple; every time a cell is removed, its four neighboring cells are

cheéked, and added to the boundary list if necessary.
3.4. ACCURACY AND THE CELL-REMOVAL ALGORITHM

3.4.1. Faceting during Uniform Circular Etching

Unfortunately, the cell model as described above does not produce accurate results;
starting with a single etched cell, a two-dimensional uniform etch produces an octagon instead
of a circle. Figure 3.3 shows uniform etch profiles for 3 different cell densities. When only 25
x 25 cells are used in the 1 pm X 1 um simulation, the profiles do look somewhat circular.
The raggedness of the profiles are due to the relatively large cell width, 1 If the number of
cells is increased to 100 x 100, the curves become smoother because of the smaller discretiza-
tion. However, the etched profiles now show distinct facets in the horizontal, vertical and

diagonal directions! Furthermore, the etch-profile becomes more octagon-like if the number

1 The cell-removal algorithm keeps track of the area but not the shape of the cell that has been etched.
This leads to uncertainty in the shape of the unetched material within the cell itself. For example, a cell with
50% etched material could have any of the sheded shapes shown in Figure 3.1. As a result, the accuracy of
the cell algorithm depends on the width of each cell. In Figure 3.3, the profiles are drawn from the cells on
the boundary list; contouring routines could be used to smooth out these curves.
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Figure33: 2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the cell-etched profiles at etching
times of 0.1 - 1.0 seconds. The expected result, a semi-circle, is
plotted in a dashed line. The simulations were run with (a) 25 x 25
cells, (b) 100 by 100 cells, and (c) 200 by 200 cells. The etch rate
is 1 um/sec.
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of cells is increased to 200 x 200.

This octagonal behavior is most likely due to the fact that each cell has only four neigh-
bors. In fact, etching with the cell algorithm can be likened to etching a crystalline material
with a cubic atomic lattice. It is well known that crystalline materials such as silicon will etch
faster along certain crystal planes. (See, for example, Foote,” Bean.8 ) In a cubic atomic lat-
tice, preferential etching will occur along the horizontal, vertical and diagonal planes, thus

producing octagonal facets similar to those shown in Figure 3.3.

It is not easy to eliminate or decrease the faceting problem in cell-etching. Increasing
the number of cells in the material does not help. As mentioned previously, the facets become |
sharper as the number of cells are increased. This is probably because as the number of cells
are increased, the material becomes more similar to a cubic atomic lattice, and crystal plane
etching dominates. One could try to increase the number of neighbors of a cell, perhaps by
using a hexagonal cell structure. In this case, however, there will still be preferred directions
of etching perpendicular to the hexagon surfaces. Again, facets will be formed. Another
method that might work is to subdivide each cell, and to keep track of the area and shape of
the material that has been etched. This method, however, greatly increases the difficulty in
implementing the cell algorithm. Another interesting "fix" uses a spill-over technique, in
which the etch is "spilled over” to neighboring cells. This method, used in the SOLID’ simu-

lation program, will be described in a later section.

3.4.2. Photoresist Etching

An example of etching photoresist using the cell-removal method (without correction for

faceting) is shown in Figure 3.4. Also plotted are the results from SAMPLE, in which the
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Figure3.4: Resist profiles simulated using the cell-removal algorithm, at devel-

opment times of 15, 30, 45, 60 and 75 seconds. The simulations use
the etch-rate distribution plotted in Figure 2.3, with (a) 100 by 50
cells, and (b) 200 by 100 cells. The dotted lines are the profiles
from the SAMPLE string simulation (Figure 2.4).
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string method is used to advance the etch surface.t It is quite clear that the agreement between
the cell and string methods increases as the number of cells is increased. At development
times of 45, 60, and 75 seconds, the 20,000-cell and string profiles agree quite well; when
only 5,000 cells are used, the agreement is not as good. This is perhaps to be expected. A
smaller cell size leads to smaller discretization error, and thus to greater accuracy. In the 100
x 50 cell simulation, each cell is 0.02 um wide; thus the accuracy of the simulation is within
0.02 um. When the cell density is increased to 100 cells per micron, the accuracy increases

100, to within 0.01 pm.

At the earlier development times of 15 and 30 seconds, however, the cell and string
profiles disagree, especially at the bottom-most standing wave. It is somewhat discomforting
to find that the disagreement gets worse when the number of cells is increased from 5,000 to
20,000. However, the etch profiles do converge as more cells are used in the simulation. Fig-
ure 3.5 shows a blow-up of the resist profile at a development time of 15 seconds. The four
" curves show simulated profiles using the string method and the cell method, with 100 x 50
cells, 200 x 100 cells, and 400 x 200 cells respectively. The 20,000-cell and 80,000-cell
profiles agree with each other, indicating that the simulation has converged. However, this
convergent cell-profile is definitely not the same as the string profile; at the bottom-most
standing wave, the cell-etched profile is approximately 0.05 pm wider than the string-etched

profile.

Unfortunately, it is not really possible to point out which simulation profile is "correct”,
as the actual resist profile is not known. However, it is possible to draw conclusions on accu-

racy based on convergence. The string algorithm converges to the very same solid-line profile

+ The string etching algorithm is described in Chapter 6.
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Figure3.5: Simulated resist profiles at a development time of 15 seconds. The
simulations use the etch-rate distribution plotted in Figure 2.3.
The different curves represent simulations using different etching
algorithms.
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shown in Figure 3.5 as the string segment length is decreased. Further, as will be shown in
Chapter 7, the ray algorithm, in which the etch differential equation is actually solved (albeit
discretely), also produces the same profile. Thus, there is greater confidence in the string-

etched profile than in the cell-etched resist profile.

The effects of faceting also have to be considered. In the uniform etch simulations
shown Ain Figure 3.3, the cellular Structule causes the etch-profile to overshoot the theoretical
circular profile, with the maximum overshoot occurring 22.5° from the horizontal and vertical
axes. This increase in the effective etch-rate in certain directions could also be a factor affect-
ing the final etch profile. The strong octagonal facets displayed in uniform etching do not
show up in the resist simulation# of Figure 3.4 or 3.5, probably because the faceting has been
averaged out by the non-uniform etch-rate throughout the volume of the resist. However, it is
quite possible that the effective etch-rate has been increased in certain places, due to the cellu-
lar faceting problem. Also, recall that in the uniform circular etch, the facets on the profiles
became sharper as more cells were used. This effective increase in etch-rate with increasing
cell numbers could account for the fact that in the resist simulations, the 5,000-cell profile is
closer to the string profile that the 20,000-cell profile is. Thus, faceting could be causing

faster-etched profiles at the 15 and 30 second development times.

3.5. COMPUTATION TIME

Another drawback of the cell-removal algorithm is that the cell method is quite slow.
To advance the boundary layer, it is necessary to compare the etch-time of every cell in the
boundary list. The time-step for moving the boundary is controlled by the minimum etch-time
of the fastest etching cell in the boundary list, so it could take a long long time to reach a

desired etch-time if there were a lot of cells in the material. In two dimensions, the
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computation time quadruples as the number of cells per dimension is doubled. The number of
cells in the boundary list also increases at the same time, adding another multiplicative factor
of two to the computation time. So, in a 2D cell approach, the computation time goes roughly
as O (N?), where N is the number of cells in one dimension. The computation times for the
15-second development simulation in Figure 3.5 are shown in Table 3.1. These computation

. times were measured on a SUN 4/280 (0.8 MFLOPS, 10 MIPS).

Number of Cells Computation Time CPU Increase
100 x 50= 5,000 22 sec. 1.0
|| 200 x 100 = 20,000 141 sec. 6.4
400 x 200 = 80,000 1058 sec. 64x7.5

Table 3.1 : Cell-Removal Algorithm : Computation time on a SUN 4/280

The computation time increases by a factor of 48 when the number of cells is increased from
50 per micron to 200 per micron. The O (V) formula predicts an increase of 4° = 64, which is
not too far off. Nevertheless, an 80,000-cell simulation takes up 1058 seconds, or almost 18
minutes of CPU time. By comparison, the SAMPLE string simulation uses only some 13

seconds on the same machine!

The general thrust of research in the cell algorithm has been to increase the speed of the
cell method without spending an excessive amount of computer memory. One approach for
speeding up the computation is to track the area of the cells with integers instead of floating-
point variables. Computers can typically handle a higher rate of integer instructions compared
to floating-point operations, so the use of integer mathematics confers a considerable speed

advantage (approximately 3-10 times faster). Another method for increasing the computation

+ MFLOPS = Millions of Floating Point Operations per Second, MIPS = Millions of (integer) Instructions
per Second
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speed is to modify the method of advancing the surface. Recall that in the original cell algo-
rithm, the time-step for moving the boundary is controlled by the minimum etch-time for all
the cells currently on the boundary. So, at every advancement, the etch-time of each cell must
be compared. If, however, the surface could be moved with a constant time-step, it will no
longer be necessary to compare the etch-speed of each cell in the boundary, and the computa-
tion can proceed at a faster rate. The constant time-step scheme, which has been used by Toh
(Chapter 4) and Pelka,’ decreases the 2D computation time from roughly O (V3) to O (N2), N

being the number of cells per dimension.

Pelka’s 5 cell-removal scheme, implemented in 3D in the SOLID simulator, is a particu-
larly interesting approach that combines both the constant time-step with integer cell calcula-
tions. In this "spill-over" method, each cell is made up of an integer number of microcells.
The surface is advanced by subtracting a certain number of microcells from each cell on the
surface; the actual number of microcells removed is proportional to the local etch-rate multi-
pled by the constant time-step. If the etch uses up more microcells than are currently avail-
able in the active cell, the etch is allowed to spill-over to neighboring cells, and spill-over

microcells are subtracted from the neighboring cells.

The spill-over cell method is impressively fast especially for a 3D cell-based simulation.
The program executes with CPU time between 2 and 20 minutes on a VAXstation 3540,
which seems to be a parallel multiprocessor machine.? It is very likely that the computation
time required for the 3D etch simulation would be much greater than 20 minutes on a typical
serial single-processor workstation. At the same time, the spill-over technique is also expen-
sive in its needs for memory. The SOLID brochure states that fairly large memory (24-
32MB) is required for optimum 3D performance. The spill-over technique is supposedly also

more accurate than Dill’s cell algorithm. Pelka claims that facets are not encountered in
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circular or spherical etching. Nevertheless, the accuracy of the spill-over technique has not
yet been established conclusively. There is still some doubt over the validity of the spill-over
method for handling over-etched cells. Another area of concem is with etching situations
where the etch-rate has a high aspect ratio, that is, the etch-rate varies from very large values
to very small values throughout the volume of the material. In areas of small etch-rate, the
surface will not move if the etch-rate is smaller than 1 microcell per time-step. This could

lead to discretization errors that could in tum affect the accuracy of the simulation.

3.6. THE CELL-REMOVAL ALGORITHM IN 3D

The cell algorithm is quite easy to implement. However, its primary drawback is the
lack of accuracy in the simulation results. The cell algorithm becomes more accurate as the
number of cells in the simulation volume are increased. This is because the discretization
error decreases with cell width. However, at the same time, when the number of cells is
increased, faceting becomes more of a problem, producing incorrect profiles in certain loca-
tions. It does not help that it is difficult, if not impossible, to predict which parts of the profile
are affected by faceting. Thus, when the cell density is increased, the discretization error
decreases and accuracy increas&s; but faceting increases, and the accuracy decreases. The

overall result is a lack of confidence in the accuracy of the simulations.

The advantages and disadvantages of the cell algorithm in 2D apply also in 3D. The
addition of an additional dimension pushes the computation time up further to roughly O (V%)
or even O (N5), where as before, N is the number of cells in one dimension. Using both con-
stant time-steps and integer calculations, the computation time can be speeded up to at best
O (N3). Implementing the cell algorithm in 3D is also more difficult, because of the need to

keep track of a cell’s 6 neighbors, as compared to only 4 neighbors in 2D. Furthermore,
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memory becomes a limiting factor. 200 x 200 x 200 cells will consume some 16 Mbytes of
memory, assuming optimistically that each cell only uses 2 bytes of memory. The large
amount of memory and computation time needed for the 3D cell method makes it quite
unsuitable for non-mainframe applications. And of course, the accuracy, or lack of it, also

counts against the cell method.
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CHAPTER 4
THE MODIFIED CELL METHOD

4.1. INTRODUCTION

As discussed in Chapter 3, the cell-removal algorithm is an atomistic approach, where
each cell/atom is removed as it comes into contact with an etchant. However, this atomistic
model also produces facets, which should not be present in an etch of a uniform homogeneous
material. In addition, the cell-removal algorithm is slow and requires a considerable amount
of computer memory. But the cell-removal algorithm is easy to implement and is very robust
as well. It can easily handle simulation boundaries and underlying topography, and does not
have the looping problems encountered in surface-advancement algorithms. For these rea-

sons, the cell algorithm remains an active area of research.

One area in which the cell-removal algorithm could be improved is the method of the
etch-front advancement. This chapter describes a constant time-step method in which the
Huygens principle is used to advance the etch-front. The improvement in accuracy and the

role of etch discretization on the accuracy of the cell-based simulation are considered.

4.2. THE HUYGENS PRINCIPLE APPLIED TO CELL-ETCHING

The faceting problem encountered in Dill’s cell algorithm seems to be directly related to
the treatment of the cells as atoms arranged in cubic lattices. Fortunately, a better etching
model can be derived from the Huygens principle. 1 This theorem asserts that each element on

a propagating wavefront may be regarded as the center of a secondary disturbance which gives

t Bom & Wolf,! Chapter 3, p.132.
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rise to spherical wavelets. Moreover, the position of the wavefront at any later time is the
envelope of all such wavelets. The Huygens principle is actually used to describe the diffrac-
tion of light, but it can be applied quite nicely to isotropic etching too. Here, the etching
proceeds along an etch front, and each point on the etch front is an etching center, "radiating"

etch wavelets. The etch front at some later time is the envelope of these etch wavelets.

The modified cell algorithm presented in this chapter is a new and novel etching simula-
tion method based on the Huygens principle. The volume of the material is divided into tiny
cells, each either etched or unetched. Just like the cell-removal method, etching proceeds
along a surface in contact with the etchant. But unlike the usual cell-removal method where
only the nearest neighbors are removed, in the modified version, the cells are removed using
the Huygens principle applied to each cell on the etch boundary. All the cells within the
radius of a Huygens etch front centered at a cell on the boundary are removed. After each
time-step, the boundary is updated; the boundary cells are those etched cells that are in contact

with unetched cells.

4.3. THE ALGORITHM FOR CELL-REMOVAL

The modified cell simulation begins with the selection of a constant time-step based on
the etch-rate configuration. During every time-step, boundary cells are swept, and new boun-
dary cells are determined. The algorithm can be stated as follows :

(11 For each boundary cell :

(@) Determine the local etch-rate at the center of the boundary cell. The radius
of influence of the boundary cell is the local etch-rate multiplied by the (con-

stant) time-step.
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(b) Modify the etch flags of all the cells within the radius of influence. Unetched

cells inside this radius become etched.
[II] Find the new boundary cells; these are etched cells next to unetched cells.

{IIT] Proceed to {I] and continue until the total etch-time has been reached.

Figure 4.1 shows examples of etching with the modified cell method. In Figure 4.1a,
there is only a single etched cell, which also is a boundary cell. Assuming that the local etch-
rate is 3.5 cells per time-step, all the cells within the soiid circle shown in Figure 4.1a will
become etched during the next time-step. The boundary cell list now contains all the cells on
the outer perimeter of the circle. Figure 4.1b shows another example, this time with multiple
boundary cells. Again, the etch-rate is 3.5 cells per time-step. During the time-step, all the
cells within the radius of influence of each boundary cell become etched. The etch front is

then the envelope of all the overlapping circles.

4.4. IMPLEMENTATION OF THE MODIFIED CELL-REMOVAL ALGORITHM

The modified cell algorithm is very easy to implement in either 2D or 3D. This algo-
rithm merely requires an array of integer flags to keep track of the etched (or unetched) state
of each cell in the volume of the material. At the same time, a list of all the boundary cells
has to be maintained. This can best be done with a linked list. During each time-step, the
local etch-rate at a boundary cell is multiplied by the time-step to find the cell’s radius of
influence. All the cells with centers within this radius become etched. After each time-step,
all the cells in the material are scanned; etched cells that have neighboring unetched cells are

added to the boundary list.
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(a) SINGLE BOUNDARY CELL

UNETCHED
CELL

(b) MULTIPLE BOUNDARY CELLS

Figure4.1: The modified cell method. All the cells within the radius of influence
of the boundary cells are etched.
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4.5. TESTING THE MODIFIED CELL-REMOVAL ALGORITHM

4.5.1. Uniform Circular Etching

Figure 4.2 shows examples of a uniform circular etch using the modified cell method.
The etch-rate is 1.0 pm/sec. In the simulation of Figure 4.2a, the cell density is 100 cells/pum,
so the etch-radius is 10 cells per time-step. The density is mcreased to 400 cells/um in Figure
4.2b, for an etch radius of 40 cells/time-step. Both plots in Figure 4.2 show reasonably circu-
lar profiles, although the profiles are definitely more circular when 40 cells/time-step are used.
Nevertheless, facets are formed on the circular etch profiles. This is actually quite understand-
able given the nature of the etch algorithm. The problem actually can be stated as follows :
how many squares does one have to use to fill a circle? As Figure 4.1a shows, a circle with a
radius of 3 cell-widths is not very circular at all; in fact, the cellular circle of Figure 4.1a looks
more like an octagon! But as more and more cells are packed into the circle, the cellular
shape looks more and more like a circle. The same reasoning applies for the simulations
shown in Figure 4.2. In Figure 4.2a, the first time-step creates a circle with a radius of 10
cell-widths. The circular profile is discretized, and the discretization error propagates outward
to affect the profiles at later time-steps. However, the discretization is decreased with greater
cell density. When 40 cells are swept per time-step, the first circle etched out looks reasonably
c1rcular The discretization error is decreased, and as a result, the later profiles look more cir-

cular.

The modified cell algorithm is easy to extend to three dimensions. The algorithm basi-
cally remains unchanged, except that to find all the cells within the radius of influence of the
boundary cells, a Huygens sphere is used instead of a circle. Figure 4.3 shows examples of

the uniform circular etch in 3D. The etch begins from two seed points at coordinates (0,0,0)
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100 x 100 Cells, 10 Cells/Time-Step

Z-AXIS

-1

400 X 400 Cells, 40 Cells/Time-Step

Z-AXIS

X-AXIS

2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the cell-etched profiles at etching
times of 0.1 - 1.0 seconds. The expected result, a semi-circle, is
plotted in a dashed line. The simulations were run with (a) 10 cells
per time step, and (b) 40 cells per time-step. The etch rate is 1
umy/sec.
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3D uniform etching beginning from two seed points at coordinates
The cell-etched profiles are shown at etch

(0,0,0) and (0,1,0).

times of (a) 0.5 sec, and (b) 1.0 sec. The etch rate is 1 um/sec, and
the time-step is 0.1 sec. The etch radius is 10 cells per time-step.
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and (0,1,0), and proceeds outwards in time-steps of 0.1 seconds. The etch-rate is uniform, and
as in the previous example, has a value of 1 pm/sec. The simulation cube consists of 100 x
100 x 100 = 10° cells, and the etch radius is 10 cells per time-step. The etched profile after
0.5 seconds (5 time-steps) is shown in Figure 4.3a. As can be seen, two spheres are formed,
both with 0.5 pm radius. Both of these spheres do have multiple facets, but as in the 2D case,

these facets are formed due to the errors from the cellular discretization of the spheres.

Figure 4.3b shows the profile of the etch front after 10 time-steps, or 1 second of etch-
ing. The two spheres have continued to etch outward at a uniform pace. Both spheres are still
faceted. In addition, the two spherical etch fronts have intersected and merged. It is important
to note that no loops have formed at the intersection. The intersection of the two spheres is
very clean and tidy, as would be expected of a volume etching algorithm. As shall be seen in
the following chapters on surface-advancement algorithms, this same etching case results in a
looped intersecting mesh when either the ray or string algorithms are used to simulate the

etching.

It is possible to pack more cells into the simulation volume in order to reduce faceting.
But computers do have an upper limit on memory. The 105 cells used in this particular simu-
lation use about 2 bytes each; if 400 x 400 x 400 cells were used for an etch radius of 40 cells
per time-step, some 2x400° or 128 MBytes of memory would be required.} This is beyond the
capabilities of most engineering workstations. But even the 1,000,000 cell simulation con-
sumes some 2 MBytes of memory and a few hours of computation time. The 5-time-step

simulation of Figure 4.3a took approximately 20 minutes on a SUN4/280, while the 10-time-

T Note though that these numbers are based on 2 bytes for each cell in the 3D array. Actually, only 2 bits
need to be used for the two integer flags at each cell. Thus, the memory can be reduced by a factor of 8. But
in the C programming language, it is not easy to manipulate bits. To save coding time, the code was imple-
mented using integer flags instead of bit flags.
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step simulation lasted approximately 4 hours.

4.5.2. Etching with Triangular Analytic Functions

So far, the modified cell algorithm looks quite promising. The behavior of the modified
cell algorithm may be analyzed further using a variety of analytical etch-rate functions. One

such useful function is a triangular etch-rate with the equation

R(xy,2z)=2Ix| pm/sec, Ixl <0.5 [4.1]

Figure 4.4 shows the profiles produced at 0.1 second intervals from the above triangular
etch-rate function. In Figure 4.4a, the etch is fastest at the edges corresponding to x =-0.5
and x =0.5. The etch radius is 10 cells per time-step at these edges, and decreases linearly
with decreasing |x!. In Figure 4.4b, the maximum etch-radius is 40 cells per time-step. A
comparison of the two plots in Figure 4.4 shows that the etched profiles are quite similar for
larger values of 1x!. The profiles of Figure 4.4b are smoother, but this can be attributed to the

increased cell density used in the simulation.

The behavior of the profiles for small values of |x| is particularly interesting. When 10
cells per time-step are used, the etch depth (vertical distance from the z =0 axis) is zero for
x =0, remains zero for small values of Ix!, and then suddenly jumps to a non-zero value.
The sudden step is more noticeable in the 10 cellftime-step simulation. This fascinating
behavior is actually caused by discretization. If the etch-rate is small, and the etch radius is
less than one cell-width, then no cells are etched regardless of the total etching time spent. To
illustrate, suppose the etch-rate is 1 unit per time-step, and the cell is 1 unit wide, so that the
etch radius is one cell-width. At every time-step, the etch circle emanating from the center of

the boundary cell is large enough to touch the center of the boundary cell’s neighbor. This
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Figure 4.4 : 2D etching using the triangular etch-rate function of Equation [4.1].
The solid lines represent the cell-etched profiles at etching times of
0.1 - 1.0 seconds.  The simulations were run with (a) 10 cells per
time step, and (b) 40 cells per time-step. The maximum etch rate
is 1 um/sec.
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neighboring cell then becomes etched, and the etch proceeds at 1 cell per time-step. But now,
suppose the etch-rate is a mere 0.9 units per time-step, so that the etch radius is only 0.9 cell-
widths. Now, the etch radius does not hit the center of the boundary cell’s neighbor, and as a
result, the neighbor remains unetched. This continues for all subsequent time-steps, and the

boundary remains unchanged.

Thus, one weakness of the modified cell algorithm is that it is sensitive to discretization.
Because the algorithm does not keep track of the etched area of the cell, discretization errors
occur when the etch radius is not an integer muitiple of the cell width. The discretization error
is of particular importance when the etch radius is comparable to the cell width. This typi-
cally happens when the etch-rate varies widely in range, as was the case in the triangular

etch-rate function.

Another interesting test function is that of a triangular function with a constant offset.

R(x,y.z)=21x| +0.2 pm/sec, Ixl <0.5 [4.2]
This function actually produces a loop when either the ray or string algorithm is used to simu-
late etching. Figure 4.5 shows the simulated profiles for 12 cellstime-step and 48 cells/time-
step respectively. The two plots are similar, and as in the previous example, the curves
become smoother when the etch-radius includes a larger number of cells. But notice that at
the center, at x =0, the etch has proceeded to a depth of -0.4 um after 1 second of etching.
However, according to Equation [4.2], the etch-rate is only 0.2 pm/sec at the center. After 1
second of etching, the profile should be only at -0.2 um. So, why has the simulated etch gone
further than predicted by the center etch-rate? The answer lies in the two-dimensional nature
of the etch. In the center, the etch is dominated by off-center elements. The etch-rate is larger
away from the center, so the off-center points will etch away areas that have not yet been

reached by the center etch elements. As a result, etching proceeds faster than would be
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2D etching using the triangular etch-rate function of Equation [4.2).
The solid lines represent the cell-etched profiles at etching times of
0.1 - 1.0 seconds.  The simulations were run with (a) 12 cells per
time step, and (b) 48 cells per time-step. The maximum etch rate
is 1.2 um/sec, and the minimum etch rate is 0.2 um/sec.
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expected from a simple one-dimensional vertical etch.

It is also noteworthy that the discretization error that showed up in the previous example
does not seem to have occurred in this particular example. This is probably because the smal-
lest etch radius in the 100 x 120 cell simulation is relatively large compared to the cell width,

covering 2 cells per time-step.

4.5.3. Photoresist Etching

The discretization error in the modified cell algorithm makes photoresist etching very
difficult. Typically, multiple reflections cause standing waves to form in the photoresist when
the resist is exposed to light. As a result, the etch-rate fluctuates widely with depth into the
resist. Figure 4.6 shows the etch-rate profile versus depth at the center of a large isolated
space. This rate-vs-depth profile is actually taken from a vertical cut across the etch-rate con-
tours shown in Figure 2.3. As shown in Figure 4.6, the etch-rate changes from approximately
0.009 um/sec to 0.11 pm/sec in a sinusoid-like manner. Now, the etch radius in the modified
cell algorithm depends on the incremental time-step chosen for the algorithm. With a time-
step of 0.1 sec, the etch radius will vary from 0.0009 pum to 0.011 pum. The cell size must be
smaller or equal to the smallest etch radius, so as to avoid discretization error. So, for a cell-
size of 0.0005 pm and a simulation area of 2 pm X 1 pm, 4000 % 2000 cells are required for
the simulation! This eight-million-cell simulation will undoubtedly consume huge amounts of

memory and computation time.

But what happens if the cell size is larger than 0.0009 pm? Suppose the cell size is 0.01
um, so that only 200 x 100 cells are used in the whole 2 pm X 1 pm simulation area. Now, at

the start of the simulation, the etch-rate at a boundary cell at coordinates (0.0,0.0) is
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Figured4.6: Etch-rate vs depth in the photoresist. The data is taken from a ver-
tical cut across the center of the etch-rate distribution plotted in
Figure 2.3.
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Figure4.7: Simulated resist profiles at a development time of 5 seconds, using
the modified cell and string algorithms. The simulations use part of

the etch-rate distribution plotted in Figure 2.3.
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approximately 0.03 pum/sec, from Figure 4.6. For a 0.1 sec time-step, the etch-radius of the
cell is 0.003 um. The cell size is 0.01 pm, so the etch-radius does not hit the center of the cell
next to the boundary cell, and the boundary does not move. The etch area does not accumu-
late with time, so this sequence will be repeated for every subsequent time-step. Thus, in
effect, because the cells are too large, the etch boundary does not move at all! Therefore, in
order for the modified cell algorithm to work, the cell size has to be comparable in size or
smaller than the smallest etch radius. Small time-steps have to be used for accuracy, and the
etch rate typically has small values, so as a result, the resnst development simulation will have
to use a large number of cells. As a direct result, large amounts of memory and computation

time are required for the simulation.

Figure 4.7 shows the profile of an isolated space in photoresist after S seconds of
development, simulated with the modified cell algorithm. For comparison, the SAMPLE
string simulation is overlaid. As in the resist simulation of Chapter 3, this simulation used the
etch-rate distribution plotted in Figure 2.3. The modified cell simulation was run with a time-
step of 0.1 seconds, and a cell size of 0.00025 pm. The simulation was limited to a 0.5 pm X
1.0 pum area to save time; this corresponded to a total of 2000 x 4000 cells. It is clear from
Figure 4.7 that the profiles simulated using the two techniques do not agree. The discrepancy
between the two profiles is most probably due to discretization errors in the cell algorithm. It

-is also important to note that the modified cell simulation lasted about an hour on a SUN
4/280, compared to some 10 seconds for the SAMPLE string simulation. Furthermore, if the
cell size is increased to 0.001 um, the profile does not change, but remains in its initial

straight-surface configuration.
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4.6. SUMMARY

The modified cell algorithm is easy to implement in both two and three dimensions. The
algorithm, based on Huygens principle, is physically correct and robust. As a volumetric etch-
ing algorithm, no loops are formed during the simulation. In addition, the algorithm etch
fronts produced by this algorithm are more spherical than those produced using the cell-

removal algorithm,

There are two sources of error in this algorithm. The first comes from the discretization
of circles with square cells. This discretization error can propagate and affect the later simula-
tions. The discretization error may, however, be reduced by increasing the cell density so that
more cells are swept or touched during each time-step. In order to retain accuracy, a typical
Huygens etch should have a radius of approximately 10 cells. But this in turn means that the

material being etched must contain a large number of cells to begin with.

The second type of discretization error occurs when the size of the cell is large compared
to the radius of the Huygens etch. The algorithm does not keep track of the area of the cell
that has been etched; it only knows whether the cell has been etched or not etched. Because of
this, etching does not accumulate, and the etch front does not move. To handle this, the cell

size has to be comparable in size or smaller than the smallest etch radius.

In order to accurately simulate the etching of photoresist, a large number of cells,
perhaps on the order of 10° per micron, have to be used. In a 3D simulation of 1 pm X 1lpm x
1um cube, some 10 cells are required. With this number of cells, it is not difficult to see that
the modified cell method will require lots of computer memory. Computation speed is

another issue of considerable importance. In this algorithm, the computation speed is directly
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proportional to the number of cells on the simulation boundary. The modified cell algorithm
is similar to the Dill cell model in this respect. But the modified cell method uses a constant-
size time-step, whereas the Dill method determines the time-step based on the fastest etch-
speed of all the cells in the boundary. Therefore the modified cell method is more efficient
and faster than the Dill model. Nevertheless, if the algorithm has to keep track of some 10°

boundary cells in a volume filled with 10° cells, the algorithm undoubtedly will be quite slow.

It appears that the modified cell algorithm is useful for simple etch functions and might
come in handy for simulating isotropic uniform etching. But at present, the algorithm cannot
handle widely fluctuating etch-rates such as are found in photoresist development. The prob-
lems encountered with inhomogeneous etch-rates and discretization errors have interesting
implications on other integer-based cell algorithms such as the spill-over technique (Section
3.5) as well. Nevertheless, this modified cell algorithm is quite promising, and should be

explored further.
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CHAPTER 5
THE MATHEMATICAL BASIS OF
THE SURFACE-ADVANCEMENT ALGORITHMS

5.1. INTRODUCTION

The string! and the ray? methods are both surface-etching algorithms that have been
used successfully for calculating 2D profiles in etching simulations. These algorithms are
more accurate, faster and require far less memory than any of the cell-etching methods dis-
cussed thus far. However, since both the string and the ray methods describe only the surface

of the material being etched, each algorithm does have certain characteristic weaknesses.

Before launching into a detailed description of the string and the ray etching algorithms,
it is most useful to examine the mathematical foundation of each of these algorithms. These
two methods have traditionally been treated as separate algorithms, but it shall be shown in
this chapter that both algorithms are actually based on the same mathematical solution to the
general problem of tracing a time-evolving surface. And as shall be seen in later chapters, the
differences in the way this mathematical solution is implemented lead to key differences in

both the accuracy and the robustness of the simulations.

In this chapter, basic ways of viewing and solving the general problem of surface-
advancement will be discussed. It shall be shown that a straight-forward solution cannot be
obtained due to the implicit nature of the differential equation goveming the surface-
advancement. Instead, the principle of least-time must be used to determine the advancement
of the etch surface as a function of time. The formal derivation based on the principle of least

time leads to two complementary equations that link the string and the ray algorithms.
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5.2. MATHEMATICAL FORMULATION

5.2.1. Formulation of the Problem

The basic goal of the etching simulation is to determine the time-evolving surface or
profile of the material. Figures 5.1 and 5.2 show the formulation of the problem in 2D and 3D
respectively. Mathematically, the problem can be stated as follows : Given a velocity field
v(x,y,z) and a curve {; that divides regions 1 and 2 at time T',, find at time T, the shape and
position of the curve {5, where {; is the new interface between regions 1 and 2. This very
basic problem is encountered in many different branches of physics. In geometrical optics, for
example, the curve could be the wavefront of light propagating through some arbitrary
medium. To understand the behavior of waves rippling on the surface of water, or to deter-

mine the passage of sound waves in air, one also has to tackle the very same problem.

In etching, the isochronous curve to be solved for represents the surface of the etch-
front, that is, the surface dividing the etched and unetched regions in the material. The surface
moves according to the etch-rate or speed at which the material is being etched, and again, it

is desired to determine the profile or shape of the surface as a function of time.

The problem of tracing a time-evolving surface can be examined from different points of
view. One could try to trace the movement of the entire surface by using a Huygens wave-
front approach, in which each point on the surface or front is treated as a secondary source of
disturbance. In geometrical optics, application of the Huygens principle leads to the theory of
diffraction, which is perhaps the basic postulate of the wave theory of light. And in etching,
the Huygens principle could be used to trace out the etch-front by treating each point on the

surface as an expanding etch wavelet. An implementation of the Huygens principle using cells



Figure 5.1: 2D Etching : The surface advancement problem is that of tracking
the 2D surface as it moves in time.

Figure5.2: 3D Etching : The surface movement problem is to determine the
shape and location of the 3D surface as it moves in time.
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was discussed in some detail in the previous chapter.

Another way to view the general problem is to divide up the curve into smaller segments
or even points. Instead of tracing the movement of the entire curve, it is useful to consider the
movement of a single point on the curve. The problem then is reduced to finding the path or
trajectory of a point in space as it moves in time. This problem is in fact very closely related
to the problem in geometrical optics of tracing a light ray as it passes through some optical
media. If this trajectory or ray can be determined mathematically, then the curve can be

reconstructed out of the end-positions of various initial points.

5.2.2. The Etching Problem in One-Dimensional Space

The "simplified" etching problem is to determine the location of a single point on the
etch-front as it moves in time. The 1D problem may be stated as follows : Given that a particle
is moving in a velocity field v(z), where the velocity is a function of position, find the posi-
tion of the particle at some time ¢. Unfortunately, when v (z).is position-dependent, a prob-
lem arises in that it is not possible to solve explicitly for the distance AZ moved in some time

AT.

Figure 5.3 shows the one-dimensional movement of the particle. In some time interval

dt, the particle travels a distance
v(z)dt =dz (5.1]
The total distance traveled as a function of time is found from integrating the expression
above. Note that the velocity is a function of position and not of time, so v (z) must be moved
to the right side of the equation before the integration is performed. Thus, the integral .
becomes
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Figure 53 : 1D Etching is equivalent to tracking the position or trajectory of a

particle as it moves through a position-dependent velocity field.
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2D and 3D Etching is equivalent to tracking the position or trajecto-
ry of a particle as it moves through a position-dependent velocity

field, where the velocity is a function of the coordinates (x,y,z). In
some time d, the particle moves a distance ds = v(x,y,z) dt.
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T Z
dz
;‘dz = z{ o [5.2]
Z
T
AT=T,-T;-£V(2) (53]

where Z; is the location of the particle at some initial time T;, and Z; is the location at the
final time 7. The expression above can be evaluated if Z; and Z, are known or given; if T; is
also given, then the final etch-time T, can be solved for by doing the integration and evaluat-

ing the limits.

The problem becomes more complicated when one tries to determine how far the parti-
cle moves in some time-step AT. Equation [5.3] states that the time-interval AT is a function
of the total distance traversed AZ, i.e.,

AT =f (AZ) [5.4]

Note that Equation [5.3] is not an explicit function of AT. Thus, given some time-step AT, a

straight-forward evaluation of [5.3] for AZ or Z; is not possible. In theory, to obtain AZ, one
could determine the inverse £ ~! of the function f such that

AZ =f~YAT) [5.5]

But the function f is often not a simple function, as it is itself the integral of the inverse of a

velocity function. Therefore the inverse function £ ~! might not exist. So, in general, it is not

possible to evaluate AZ explicitly as a function of the time-step AT. The only recourse is to

evaluate Equation [5.3] numerically to determine the distance traversed by the particle as a

function of time.

Clearly, it is not easy to find the distance traveled by a particle during some time-step
AT in a position-dependent velocity field, even when the problem is restricted to one dimen-
sion. A straight-forward integration does not work, because the velocity field is not a function

of time. It is possible to solve the problem numerically, but the result will be sensitive to the
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choice of numerical algorithm and to the intemnal details of the numerical algorithm itself.

Unfortunately, the problem does not get any easier in 3D.

5.2.3. The Etching Problem In Three-Dimensional Space

In 3D, the etching problem can be formulated as follows : Given that a particle is mov-
ing in a velocity field v(x,y,z), find the position or trajectory of the particle as it travels in
time. Figure 5.4 shows the movement of a particle in a two-dimensional velocity field. Simi-
larly, if the velocity field is extended to three dimensions, the particle will be able to move in
three dimensions. From practical experience, it is known that the trajectory of the particle will
be affected by the local velocity field. If the field is a fast-moving stream of water, and the
particle a floating leaf, the leaf might be propelled towards the center of the stream where the
water flows fastest, or it might, as often happens, be pushed towards the shore. What controls
the movement of this leaf? Where will the leaf go? Or more generally, is it possible to deter-
mine where the particle will move to, given knowledge of the velocity field and the particle’s

initial conditions?

As in the 1D case, it is possible to write a differential equation for the distance traveled
by the particle in some time dt. If ds is the change in the position of the particle, then
ds =v(x.y,z)dt [5.6]
The position s and velocity v of the particle are functions of the coordinates (x, y, z), so the
differential equation can be integrated over the path of the particle as it moves from point P;
to Py in some time AT =T, —T;.

Ui Py 1

Jar= [ oo
i , V(X y.2)
This situation is illustrated in the inset of Figure 5.4. The problem with Equation [5.7] is that

[5.7]
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the velocity is a scalar function; [5.7] tells us how far the particle moves, but not the direction
in which it moves. There is no information in either [5.6] or [5.7] as to changes in direction
due to the changing velocity field. Another problem is that the integral in [5.7] has to be
evaluated over the path or trajectory s of the particle. But this path is not known to begin
with! Thus, it is not possible to evaluate [5.7). And for the same reasons, it is pointless to

discretize Equation [5.6] or [5.7] to find the trajectory or distance traveled by the particle.

5.2.4. The Principle of Least Time

The problem of determining the trajectory of the particle can be solved if it is assumed
that the path along which the particle travels minimizes the transit time. There are many
curves joining the points P; and P;, but there is only one curve on which the particle’s travel

time is minimized. This assumption is actually a statement of the principle of least time.

The principle of least time, also known as Fermat’s Principle, asserts that the time

T Py

T= j I v(x.y,z) .81

for a particle to move along an actual ray between two points P; and Py is shorter than the
time taken along the path of any other curve which joins these points.t The problem of finding
this minimum time can be solved using variational calculus. If the time T is to be a minima
over the true path, then if the path of integration is changed slightly, there must be, to first

order, no change in T. The variation in T, 8T, must be zero. This is stated as follows.

t Fermat's Principle actually refers to optical path lengths in geometrical optics. However, since
[Eds =car

the principle of the shortest optical path is also the principle of least time. For proof of Fermat's Principle,
see Born & Wolf3 Section 3.3.2.
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8T =5Pj, —L _&=0 [59]

P V(Y 2)
Using this as a beginning point, it is possible to derive a differential equation describing the
trajectory of a ray. (A derivation using variational calculus is shown in Appendix A.1.) If r is
a position vector of a typical point on a ray, and s the length of the ray measured from a fixed

point on it, then

al 1 ar 1 |
E[ v(x.y.z)z] ..v[ v(x.,y.z)] [5.10}

This equation, typically referred to as the differential ray equation, is the basic equation
describing the trajectory of a ray in some velocity field v(x,y,z). The unit vector 8 is related

to the position vector r by

dar
=L 5.11
s s [5.11]

As a consequence, the differential ray equation may be written as

d 1 1
—| ———8| =V| ——— 5.12
JS[V(x.y.Z) ] [v(xJ.Z)] B.121
Figure 5.5 describes the behavior of a ray and its relationship to the differential ray equation.

As a ray moves through space, it will be deflected by the local velocity field. The change in

the direction 8 of the ray is related to the velocity field by the differential ray equation.

Related to the differential ray equation is the eikonal equation.

IVE12=n? (5.13]
This may be written explicitly as
o9 : L9 : 9% i
=n2
[ax] +[a ] -l-[ az] =n“x,y.2) [5.14)

The eikonal can also be written in terms of the unit vector S, where S is, as above, the unit

vector in the direction of the ray.
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THE RAY EQUATION

d

1
R G IRARASIGL

r+sds=r+dr

S=—w—

dr

ds r+dr

DEFINITIONS :
s :length of the ray
ds : incremental line-element
S : unit vector in the direction of the ray
I : position vector

v(r) : velocity-field as function of position

Figure 5.5 :

The Ray Equation : The change in the direction of a ray is propor-
tional to the gradient of the inverse of the velocity field.
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Vi=ns [5.15)
It is shown in Appendix A.2 that the eikonal equation satisfies the differential ray equation,

which in tum, is a solution to the least time principle. The ray and eikonal equations can be
understood as follows. Suppose there is a surface {(x,y ,z) = constant. By definition, the gra-
dient of the surface {(x,y,z) is the normal vector to this surface. But the eikonal [5.15] states
that this normal vector is parallel to the ray vector 8. Therefore, the surface { is normal to all
the rays that satisfy the differential ray equation. In other words, the surface { is the surface of
the propagating wave or front. The surfaces

{(r) = constant [5.16]
are called the geometrical wave surfaces or the geometrical wave fronts, and the rays are the
orthogonal trajectories of the wave surfaces. The orthogonal relationship between the rays

and the wave surfaces is shown in Figure 5.6.

5.3. SURFACE-ADVANCEMENT ALGORITHMS AND THE PRINCIPLE OF LEAST
TIME

The eikonal and the differential ray equations are the two basic equations applicable to
the simulation of etching. In fact, the string algorithm for etching is based on the eikonal

equation, while the ray etching algorithm is derived from the differential ray equation.

The string etching algorithm was originally conceived by Jewent! in 1977 as a
"common-sense” method for discretizing the movement of the etch-boundary in time. In the
string model, the etching boundary between etched and unetched regions is approximated by a
series of points joined by straight line segments. Jewett! states that “each point advances
along the angle bisector of the two adjoining segments...". But notice that the angle bisector is

also the normal vector to the local surface. Therefore the string algorithm is actually an
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C = constant

Vg =

THE EIKONAL EQUATION

v(D)

S

€ + dC = constant

RAY

STRING ALGORITHM

Figure 5.6 :

-
-
-

The rays are the orthogonal trajectories of the wave surfaces {(x,y,z)

= constant, ( being a solution of the eikonal equation. The string
algorithm is based on the eikonal, while the ray algorithm is based on

the ray equation.
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implementation of the eikonal equation; the etching surface is constructed out of a string of

points, and the surface is moved along vectors (rays) normal to the surface.

The ray etching algorithm too is an implementation of the differential ray equation. But
while the string algorithm is based indirectly on the eikonal equation, the ray algorithm was
derived by Hagouel2 in 1976 directly from the differential ray equation. The ray etching algo-
rithm traces out the trajectory of the points on the etching boundary using a discretized form
of the differential ray equation. The etch surface is then constructed out of the end-points of

the rays.

A situation very similar to the above applies to Barouch’s "least action” etching model,
which was introduced quite recently in 1988.4 * 5 Barouch’s "least action" model is also a ray-
tracing algorithm based directly on the differential ray equation. As discussed in Appendix A,
Barouch’s "least action" model can be traced back to a discretization of the scalar form of the
differential ray equation. The approach is actually identical to the Hagouel ray-tracing algo-
rithm, which is itself a discretization of the vector form of the differential ray equation. In
both cases, the rays passing through the material are tracked, and the etch-front is recon-

structed from the end-points of the rays.

So, to recap, the string algorithm is based indirectly on the eikonal equation, while both
Hagouel’s and Barouch’s ray tracing algorithms are based on the differential ray equation.
But since the differential ray equation and the eikonal equation are really complementary
solutions of the least time principle, the ray-tracing and the string algorithms are thus based on

the same principles.

In practice, however, the calculation of the advancement vector based on the ray equa-
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tion or the surface normal does affect the simulated profiles. As shall be seen in the next
chapter, the method of calculating the vector tumns out to be a very important factor distin-

guishing the ray algorithm from the string etching algorithm.
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CHAPTER 6
THE STRING AND THE RAY
SURFACE-ADVANCEMENT ALGORITHMS

6.1. INTRODUCTION

As discussed in the previous chapter, the string and the ray etching algorithms are based
on the very same mathematical solution to the general problem of tracing a surface or profile
as it evolves in time. But as shall be seen in this chapter, the string and the ray algorithms do
differ significantly in the accuracy, robustness and also completeness of the simulation. These
differences are directly related to the implementation of the above-mentioned “basic”

mathematical solution.

In this chapter, the two algorithms shall be discussed in some detail. Since both of these
algorithms are really discrete methods of solving for the approximate etch-surface, emphasis
will be laid upon determining those techniques and modifications required for improving the

accuracy, correctness, efficiency and robustness of the simulations. {

6.2. THE STRING ALGORITHM

The 2D string model, proposed by Jewett,! uses a "string” of points or nodes to approxi-
mate the etching boundary between the etched and unetched regions. Each point or node
advances along a vector normal to the local surface. This advancement or direction vector is,

as shown in Figure 6.1, the average of the normal vectors of the segments adjacent to the

T Accuracy and correctness are used in this chapter to refer to different aspects of the simulations. Accu-
racy refers to the conformity of the result to the "true" value, while correctness is used to refer primarily to
the formation of loops.
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node. As mentioned before, this is exactly the condition of the eikonal; the rays that satisfy

the least time principle are also normal to the etch front.

6.2.1. The Algorithm for String Advancement

A typical string, consisting of 50 - 100 segments, is started on the surface of the

material. The algorithm for moving the string is as follows :

[I1 For each node on the string, find the node’s direction vector by averaging the nor-
mals to the adjoining segments.
[II] Advance each node along its direction vector. The distance advanced is equal to

the local etch-rate multiplied by the (constant) incremental time-step.

[III] Add nodes where the string has expanded, and delete nodes in regions of contrac-
tion.

{IV] Proceed to [I] and repeat until the total etch-time has been reached.

6.2.2. Implementation of the String Algorithm

The string method is not particularly easy to set up in 2D, because of the logistical prob-
lem of keeping track of all the nodes and segments that make up the etching boundary. The
problem is complicated by the need to keep track of the ordering of the nodes on a segment.
The need for order in tumn is imposed by the method of advancing the surface. For a node to
find its direction or advancement vector, it needs to know the normal vectors of its adjoining
segments. And to find the normal vector of a segment, the segment must know the coordinates
of the two nodes that make up the segment, as well as the order in which they occur. In other

words, it is necessary to have a directed line segment in the form § =[Ny, N], where N, and
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Figure 6.1 : The string model. (a) A node is advanced along a vector that is the
average of the normal vectors of the adjacent segments. (b) The
string is started on the surface of the material. Each node is moved

. . by an amount ds = (local etch-rate)x(time-step).
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N, are the two nodes on the segment. This last condition comes about because the coordinates -
alone are not sufficient to define the direction of the vector normal to the segment; without

any order to the nodes, the direction vector could point in either of two opposing directions.

In order to test the accuracy and determine the requirements or limitations of the string
algorithm, the string algorithm has been implemented in the C programming language. The
implementation is based on the FORTRAN string implementation in SAMPLE. As in SAM-
PLE, the string is implemented as an array of nodes. The segments are determined by the
arrangement of the nodes within the array; the i -th segment thus contains the nodes at the i
and {+1 positions in the array, i.e., S; =[N;, N;,;]. This arrangement provides a natural order

to the nodes on the string, and is equivalent to having an array of directed line segments.

6.2.3. Mesh Modification

The string algorithm uses an ordered list of nodes and segments to approximate the etch
boundary separating the etched regions from the unetched regions in the material. But as the
string moves in time, nodes on the string could move closer together or further away from
each other. In the former case, nodes that are too closely packed should be removed. There
are two strong reasons for node deletion. First, without node deletion, the number of nodes on
the string could grow indefinitely. And if the number of nodes exceeds the pre-defined array
size, the string algorithm will fail.t The second incentive for removing dense nodes is to avoid

floating-point errors. If the nodes are packed too closely together, floating-point errors could

t The array implementation imposes a compile-time limit on the number of nodes in the string. Once the
number of nodes exceeds the array size the program will fail to execute correctly. This problem could be
avoided using a linked list implementation of segments and nodes. The linked list allows dynamic allocation
of memory, so that the number of segments or nodes is limited only by the computer’s memory size. Even
s, it is still undesirable to allow the number of nodes to grow unchecked, since the computation time in-
creases with the number of nodes on the string.
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affect the relative positions of the nodes. The movement of the nodes depends very much on
the ordering of the nodes, so if floating-point errors do occur, very small segments could
become misoriented. As a result, the nodes would move in incorrect directions and the simu-

lation itself could become incorrect.

The reasons for node addition are somewhat different. Here, the primary concem is for
accuracy. If the nodes on the string become too distant, the string will no longer be a good
approximation to the true etched surface. So, nodes need to be added periodically so that the

density of the nodes on the string remain approximately constant.

In SAMPLE, the nodes are added or deleted according to the length of the segment join-
ing two nodes. A nominal or ideal segment size Sy, is first defined, and minimum and max-
imum allowable segment lengths are defined in terms of this ideal segment length. After
every surface advancement, the lengths of the segments are checked. If the segment is too
short, i.e., § < Sy, then one of the nodes on the short segment is removed, as shown in Fig-
ure 6.2. Or if the segment is too long, such that S > S, as in Figure 6.3, then nodes need to
be added to the string. The easist way to do this is to add nodes linearly between sparse
nodes. Alternately, a polynomial fit can be used to produce a smoother and perhaps more

accurate surface. This is shown in the picture on the left in Figure 6.3.

As might be expected, the accuracy of the simulation does depend on the density of the
mesh. If the etch-rate varies rapidly with distance, then shorter segments will produce more
accurate results. Figure 6.4 shows the results of a circular uniform etch using the string algo-
rithm. Figure 6.4a is a result of a simulation with a large ideal segment length Sy;,,; =0.1 pm.
The profiles at the earlier time-steps are clearly not very circular, but as the string expands,

more nodes are added. After 10 time-steps, the string profile resembles the expected circular
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Figure 6.2: Node Deletion : If a segment is shorter than some predefined mini-
mum length, the segment and one of the nodes on the segment is
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Figure 6.3: Node Addition :
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Nodes must be added to sparse regions of the
string in order to preserve accuracy. Nodes can be added to long
segments, using either a linear or polynomial fit.
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Figure 6.4 :

2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the string-etched profiles at etch-
ing times of 0.1 - 1.0 seconds. The expected result, a semi-circle,
is plotted in a dashed line. The simulations were run with (a) large
0.1 um segments, and (b) small 0.02 um segments. The etch rate is
1 um/sec.
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result. When a smaller ideal segment length Sz, =0.02 pum is used in the simulation, the
profiles appear more circular even at the early stages of the simulation. However, more nodes
are used in the simulation, and as a result, the computation time increases. Nevertheless, it is
interesting to note that the computation time for the string simulation is, in this case, no more
than a few seconds on a SUN 4/280. The string algorithm is much faster than either of the cell

methods discussed in the previous chapters.

6.2.3.1. Rounding Errors at Diverging Corners

Unfortunately, the string ‘modification process described above will not work accurately
for sharp comers. The example shown in Figure 6.5 shows a string expanding outwards from a
90° diverging comer. The simulation begins with a grooved surface, and the profile etches
outward with a uniform etch-rate. According to the Huygens principle of overlapping etch-
fronts, the etch surface should be circular directly undemeath the sharp comer, and linear far
from the comer. 1 In Figure 6.5a, the simulation resulted in a significantly tapered profile even
after 5 time-steps. The simulated profiles of Figure 6.5b, on the other hand, were run with the
same segment size but with multiple nodes added at the comers. The resultant curves are
quite satisfactorily circular. This result is due to the fact that the addition of multiple nodes at
the sharp comers increases the accuracy of the simulation; the profile after the first time-step is
a better approximation to the theoretical circular front. If no additional nodes are added, as in
the simulation of Figure 6.5a, the circular front will be approximated by only two straight-line
segments. As a result, as shown in the schematic of Figure 6.5a, roundingA errors are intro-
duced in the vicinity of the comer. The rounding errors propagate with the etch simulation

and will affect the final profile,

+ The Huygens principle is described in some detail in Chapter 4, Section 4.2.
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(a) STRING : Single-Point Insertion

-0

Depth (um)

[0—0O INITIAL SURFACE
FINAL SURFACE
-------  THEORETICAL SURFACE

Distance on wafer (um)

(b) STRING : Multiple-Point Insertion

O—{ INITIAL SURFACE Distance on wafer (um)
] FINAL SURFACE
-------- THEORETICAL SURFACE

Figure 6.5: (a) Rounding errors are introduced when only a single node is used
to advance a sharp corner. (b) In order to follow more closely the
theoretical or Huygen’s etch front, more nodes should be added at
the corners.
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As a rule of thumb, multiple nodes should be added to the string if the angle between the
two diverging segments at the comer is smaller or equal to 90°. In the example shown in Fig-
ure 6.5b, one node is placed at the bisector of the comer, while two other nodes are placed

normal to the edges of the original segments.

It should also be pointed out that the sharp tapered profile in Figure 6.5a is partially due
to the relatively large segments sizes (S;z,; =0.2 pm) used in this set of simulations. If the
ideal segment size is kept relatively small, the accuracy of the profile will undoubtedly
increase. In this particular diverging comer eiample, the rounding emmors will become less
significant if smaller segment sizes are used. But the key is that for a given segment size,

greater accuracy will be obtained if multiple nodes are added to sharp diverging comers.

6.2.3.2. Scissoring and Looping at Converging Corners

The string algorithm also runs into difficulties at converging comers. "Scissoring” or
"looping” are effects that take place at sharp converging comers. They represent instabilities
and require corrective measures. Both effects occur when the etch front consists of a number
of nodes on a sharp converging comer, as shown in Figure 6.6. In a physical sense, the comer
is the intersection of two etch fronts. So, if the etch rate is uniform, both etch fronts will move
along uniformly and the shape of the comer should remain unchanged. However, in the string
algorithm, a node at the comer will move along a vector normal to the corner, while the nodes
away from the comer will move normal to the straight sides of the corner (Figure 6.6a). Asa
result, a node at the comer does not move as far normal to the sides of the cormer compared to
the nodes far from the comer, even though each node might move the same distance. This
causes a "scissoring" effect where the comer is effectively sharpened by the algorithm. In

order to correct for this effect, it is necessary to increase the effective etch distance of the
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(a) SCISSORING

O
|

!

1 INITIAL SURFACE
FINAL SURFACE
-------- THEORETICAL SURFACE

(b) LOOPING

0

—{1 INITIAL SURFACE
FINAL SURFACE
-------- THEORETICAL SURFACE

Figure 6.6 : Problems with the string algorithm. (a) Scissoring : Lagging nodes
in converging comers cause inaccurate sharpening of the corners.
(b) Looping : Segments can cross each other, forming loops.
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comer node.

In a sharp comner, the segments could also move far enough that they intersect each other
and form loops. This effect, shown in Figure 6.6b, can occur at converging corners, or at the
intersection of converging etch fronts. The formation of loops is purely a result of the algo-
rithm; it occurs because the surface is moved without any knowledge of whether one part of
the surface is going to cross into an already etched region. String looping is a very serious
problem because of its destructiveness. The string algorithm moves the etch front normal to
the stringed surface. But when the surface is incorrect, as shown in the inset of Figure 6.6b,
the algorithm will also produce incorrect results. In the example of Figure 6.6b, the loop will
expand outwards, thus etching into already-etched regions. Unless the loop is removed, it will

destabilize the entire simulation and cause the program to crash.

6.2.3.3. Loop Formation In Photoresist Development

Figure 6.7 shows the string-simulated profiles of photoresist development with the etch-
rate distribution of Figure 2.3. After 15 seconds of development time (150 time-steps) small
loops have formed at the standing Wave comers. After 20 seconds (200 time-steps), the loops
have increased in size and complexity, and have begun to intersect each other. 40 time-steps
later, the loops are completely out of control; the profile now looks like a ball of yam. There
are more nodes in the loop than in the correct outside profile. Also, the number of nodes in
the string has increased due to the loops. The program will fail a few time-steps later when
the number of nodes increases beyond the pre-defined storage limit (typically 1000 nodes in

SAMPLE).
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STRING : 15 sec Development Time
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Figure 6.7a : String-simulated resist profile at development time of 15 seconds.
The etch-rate distribution of Figure 2.3 is used. Loops have begun
to form in the surface. The ideal segment length is 0.04 um.

STRING : 20 sec Development Time

Depth (um)
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0 1 2
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Figure 6.7b : String-simulated resist profile at development time of 20 seconds.
The etch-rate distribution of Figure 2.3 is used. The loops have
increased in size and complexity.
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STRING : 24 sec Development Time

Depth (um)

Distance on wafer (um)

Figure 6.7c : String-simulated resist profile at development time of 24 seconds.
The loops have blown up. The number of points in the string is
close to the array size; the simulation will crash a few time-steps
later.

SAMPLE : 15, 20, 25 sec Development Time

Depth (um)
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Figure 6.7d : Resist profile, simulated with SAMPLE, at development times of
15, 20 and 25 seconds. The loops have been removed by delooping
at selected intervals.
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It is very important to realize that the destructive loop behavior observed in this set of
simulations is caused by the surface-advancement method itself.t The string algorithm moves
the surface using vectors determined from the local surface. But if the local surface is itself
incorrect, then clearly the advanced surface will also be incorrect. Another complication arises
from the etch-rate distribution itself. In typical photoresist development, there are areas of
low etch-rate sandwiched in between areas of high etch-rate. The loops are formed at the
areas of low etch-rate. But as the loops begin to expand, they will hit the areas of high etch-
rate and the loops will expand more rapidly. The number of nodes in each loop could double,
and each loop could in turn generate more loops. The result would be an exponentially grow-

ing process that could prove fatal to the continued execution of the program.

Therefore, in a string etching simulation, it is necessary to remove the loops before they
become too complex. The string has to be "delooped” every few time-steps. This involves
finding the intersection of all the segments in the string and removing the loops from the array
of nodes. In SAMPLE, this is done approximately every 10 time-steps. Another approach

would be to look at the etch-rate encountered and vary the deloop frequency accordingly.

The simulations shown in Figure 6.7 used a fairly small segment size of Sy, =0.04
pum. It is quite interesting to note that loops are not formed when larger segments are used in
the simulation. This is because when the segments are long compared to the etch-distance of
each node, the segments will not cross each other to form loops. Instead, there will be a scis-
soring effect at the converging comers of the profile; this effect can be corrected for without

too much difficulty. However, if long segments are used to avoid loops, the overall profile will

t The loop formation depends on the advancement distance to the segment length. If the advancement
distance is small compared to the segment length, the nodes at the converging comers will be removed before
loops can be formed.
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no longer be as accurate, since long segments cannot accurately describe a curved surface.

Also note that loops will not be formed in the string algorithm if the surface is advanced
by very small time-steps, such that the distance advanced by each node is small compared to
the average segment length. However, it is not practical to use very small time-steps, since the
computation time will increase dramatically. The computation time is directly proportional to

the number of simulation time-steps.

6.2.4. The String Algorithm : Issues In 3D

The previous discussion has highlighted the difficulty of implementing the string algo-
rithm in 2D. The algorithm is faster and more accurate than the cell methods, but it is difficult
to set up and requires careful attention to detail. First, the algorithm requires an ordered series
of nodes. Then, the string of nodes has to be modified frequently to keep the string density
constant. During this modification, comer effects such as rounding and scissoring must be
accounted for; the corners could adversely affect the string profile and the errors so introduced
could propagate with the evolution of the string. Finally, loops have to be deleted every few

iterations; otherwise, the loops will cause the number of nodes in the string to blow up.

Clearly, implementing the string algorithm in 3D will be quite difficult. Again three

main issues must be dealt with. These are : (1) ordering, (2) density, and (3) deloop.

The need to have an ordered mesh complicates considerably the implementation of the
string model in three dimensions. In 3D, the boundary between the etched and unetched
regions can be approximated by a series of nodes, joined by segments and triangles. The sur-

face is moved by advancing the nodes along vectors, and each direction vector is the average
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of the normal vectors to all thé triangles that surround a node. In addition, each triangle must
consist of an ordered set of nodes; the node ordering implicitly defines the direction of the
nomal to the triangle. This setup is shown in Figure 6.8, where the normal follows the

"right-hand” rule from the sequence of nodes.

To retain a constant-density mesh, the segments have to be cut or merged if they become
too long or too short. This is particularly difficult in an ordered mesh, especially since the
orientation or order of the nodes in each triangle have to be rearranged so that the normal vec-
tor to the triangle remains unchanged. A great deal of care must be taken to reestablish the
connections between the modified segments and the rest of the nodes, segments and triangles

of the mesh.

Additional complications arise from comer effects. In 3D, it is not easy to remesh the
surface, yet the 2D experience has shown that without remeshing, i.e., accounting for comers,
errors will be introduced. A straight-forward implementation of the string algorithm without
correction for comer effects would run, but the results might not be trustworthy. Another com-
plication unique to 3D comes from the approximation of a 3D surface with triangles. Facets
are formed whenever triangles are used to approximate an arbitrary curved 3D surface. An
example of the 3D faceting problem is shown in Figure 6.9. Here, the true etch sﬁrface is
cylindrical in shape, and the cylinder is aligned parallel to the x-axis. If four triangles are
used to approximate the surface, each of the four triangles will point in different directions.
One would hope that the variation in the triangle normal vectors due to the facets of each tri-
angle will cancel out at each node, so that the averaged normal vector remains normal to the

true curvature of the surface. But it is not difficult to envision situations in which inaccurate

t Keeping track of the mesh interconnections is in essence a book-keeping problem. But because of the
ordered mesh, the book-keeping is a difficult task and must be error-free.
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(a)

Normal
Vector

(b)

Figure 6.8:

The string model : 3D implementation. (a) The mesh consists of
nodes, directed line segments and triangles. The normal vector to
the triangle is found from the cross-product of two line vectors. (b)
Nodes on the surface are moved along direction vectors; each direc-
tion vector is the average of the normal vectors of the triangles sur-
rounding a node.
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SIDE VIEW SIDE VIEW

Figure 6.9:

3D Faceting. Facets are formed when triangles are used to approx-
imate a curved surface. The facets could affect the accuracy of the
3D string simulation.
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faceted triangles would adversely affect the determination of the averaged normal vectors. In

such situations, the triangles could potentially intersect each other and form loops.2

The delooping problem is also somewhat disheartening in 3D. To deloop, it is necessary
to find the intersections of all the triangles in the surface mesh. This is no trivial matter espe-
cially since a typical mesh could contain between 10,000 to 100,000 triangles. But also recall
that deloop is essential to the string algorithm. Without deloop, the number of nodes on the
3D surface could grow exponentially as loops are formed. But with deloop, the computation

time will definitely increase dramatically.

The string algorithm is duite attractive for 3D etching simulation, primarily because it
has been used with great success in 2D. Its strengths are that it is fast, efficient, and accurate.
But its greatest weakness is that errors in the approximation of the surface have excessively
large influences on the accuracy and robustness of the simulation as the surface is advanced.
In order to retain accuracy and correctness, a number of operations must be carried out on the
mesh. The mesh must be modified periodically so that the nodes on the mesh remain approxi-
mately equidistant. At the same time, the ordering of the nodes must remain unchanged during
mesh modification. A considerably more difficult operation is the delooping of the mesh. 3D
delooping is a computationally expensive operation. Since the parts of the mesh that have
looped begin expanding in all directions into previously etched material, the mesh must be
delooped very often. Mesh delooping may have to be carried out as often as every 10 time-
steps or whenever the segment length equals the cumulative surface advancement distance.
As a consequence, a string-based algorithm with deloop would probably be quite slow. So,
unless a good technique can be found to deal with loops in the 3D string algorithm, this algo-

rithm will not be an efficient algorithm for 3D etching.
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6.3. THE RAY ALGORITHM

The ray algorithm for etching, proposed by Hagouel® in 1976, is a method by which
nodes are advanced along rays which are refracted at the boundaries of regions of different
etch-rates. The algorithm is based upon a rigorous mathematical solution to the least time
principle, given by the differential ray equation [5.12]. The differential ray equation is

reprinted below.

d 1 1
—| ———8| = V| ———— 6.1
ds[v(x,y.z) ] [v(x,y,z)] [6.11
To recap, the equation describes the trajectory of a ray through a position-dependent velocity

field. This equation could therefore describe the movement of a particle through a velocity
field (e.g. air), or the passage of a light ray through an optical media, or, in a case of particular

interest, the passage of an etch ray through a material during surface-etching.

There is a close analogy between geometrical optics and etch ray-tracing. In both cases,
the medium has a position-dependent velocity field (optical refractive index vs. etch-rate dis-
tribution), and it is desired to trace the movement of a front or a surface (optical wave-front
vs. etch-boundary) as a function of time. The rays are the trajectories of nodes on the surface,
and are orthogonal to the moving surface. Thus, one could use the principles of geometrical
optics ray-tracing (e.g. the laws of reflection and refraction) to trace the trajectory of an etch
ray, where the etch-material’s refractive index is defined as the ratio of the maximum etch-rate

R max to the etch-rate R (x,y ,2 ) as a function of position.

Rmax
Peich = Rxy2)
In fact, the analogy to optics was used by Hagouel? to derive the fundamental equation of etch

[6.2]

ray-tracing, i.e., Equation [6.1]. It is also worth mentioning at this point that in optics, the

eikonal [5.13] and differential ray [5.12] equations are also rigorous solutions to the
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electromagnetic wave equhtion. t

For the purposes of etching simulation, the differential ray equation must be recast in
terms of etching quantities. Let s be the total distance etched by an etch point, S the vector
along the direction of the etch ray, and R (x,y,z) the etch-rate in the material as a function of
position. Then the equation govemning the changes in direction of the etch ray as a function of

the etch-rate can be rewritten as

d 1 1
ds[R(xJ.z)s] 'V[R(x.y,z)] (631

This equation may be discretized by replacing the differential d by the variation A.

1 1 1

LAl —t—s|=v] —— 6.4

As [R(x.y.z)] [R(x-y.z)] 104l
So, over two points P, and P, the relationship between the etch rays is

2 S| _ol1
A

where S, and 8, are the unit ray vectors at the two points. The differential ray equation in this
form may be simplified further. After some manipulation (Appendix A.4), the following form
is obtained.

Ry +R>)

$;-8,=-05 R,

V(R)AT + sl[—ﬁi - l] [6.6]
1

6.3.1. The Algorithm for Advancing the Rays

Equation [6.6] can be used quite nicely to find the trajectory of the etch ray as the ray
moves in time. Given a unit direction vector 8; at point P, = (x;,y1,21), first find the point

P3=(x2,y2,22) by advancing point P, along the direction vector 8.

+ Born & Wolf.3 Section 3.1



x2=X1+ (81): R (x1.y 1,21)AT

y2=y1+ (81)yR (x1,y1,21)AT

23=21+(8)) R (x1.y1.21)AT [6.7)
The total distance advanced is just the rate at point P, multipled by the incremental time-step

AT. The next step is to find the new direction vector 8, at P,. For this, evaluate the etch-rate
gradient at P, and calculate 8, using the discrete ray equation [6.6]. This procedure is shown

in Figure 6.10.

The ray algorithm is depicted in Figure 6.11. The simulation begins by initializing the
rays such that they are normal to the initial surface. As shown in Figure 6.11, the surface is
typically a smooth horizontal surface, in which case the rays are oriented vertically. The algo-

rithm then proceeds as follows.
[I) Advance each node along its direction vector.

[II] Calculate the new direction vector at the new node location using the discretized

form of the differential ray equation, Equation [6.6].

(III] Proceed to [I] and repeat until the total etch time has been reached. Then construct

the final etch front out of the end-points of the rays.

6.3.2. Implementation of the Ray Algorithm

The ray algorithm is unique in that each ray is independent of all other rays. The trajec-
tory of a ray is dependent only on the ray’s previous trajectory and the local etch-rate, so it is
not necessary to keep track of the connections between different rays. Little memory is
needed for individual ray calculations. (In fact, Hagouel’s initial 2D ray simulations were
done interactively on a desk calculator!)! In direct contrast, the string algorithm picks up tra-

jectory information from the local surface; this information can only be obtained from a
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1. ADVANCE THE POINT
Pixpypz) @

R(x};,y;.21)AT

Py(x3.9222) @

AS = R(xlvylle) AT

2. CALCULATE NEW VECTOR
Pyxpypzp) @

S, = -0.5(1 + Ry/R;)VRAT + S, (Ry/R;)

Figure 6.10 : The Ray Algorithm : At every time-step, first advance the point, then
calculate the new direction vector at the new point using the dis-
cretized ray equation, Equation [6.6].
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1. INITIALIZE THE RAYS ON A SURFACE

N1 N2 N3
s 2 s 4 .
Direction | s S S
Vector 1 2 3

2. ADVANCE THE NODES
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Figure 6.11 : The Ray Algorithm. Begin by initializing the rays normal to the ini-
tial surface. Then during each step, advance the nodes and find the
direction changes due to etch-rate refraction. Finally, reconstruct

the surface from the end-points of the rays.
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connected surface mesh which in turn requires access to the coordinate data of each node.
Because of the independence of the rays, the rays can be implemented as a linked list of
nodes, where each node retains information on the current position and direction vector of the
node. The linked list arrangement is optional; it allows for greater flexibility in the number of

rays in the simulation volume.
6.3.3. Testing the Ray Algorithm

6.3.3.1. Etching with An Exponential Etch-Rate Function

Figure 6.12 shows an etching simulation using a simple exponential function

Rxyz)=e™ [6.8]
This function resembles the development etch-rate from electron-beam exposure.

Using this function in the discretized ray .equation [6.4], the differential equation

describing the change in the vector of the ray becomes

1 1 _ 1
AsA[R(x,y.ns] —V[R(xo’.z)]

=V|—

e-4x’
=8x e¥ (6.9)
where | is the unit vector in the x-direction. As before, As =R (x,y,2)AT. According to

Equation [6.9], the gradient of the inverse of the etch-rate is a vector pointing in the positive
x-direction for positive x. In this case, a ray starting out from a point with a positive x coor-
dinate will curve away from the x =0 plane; its dite;:tion vector will have an increasingly
larger x-component as the ray marches forward. Similarly, because the gradient is negative

for negative x, a ray in the negative x-quadrant will have a vector with a negative x
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Figure 6.12a : The Ray Algorithm : 51 etch rays in an exponential etch-rate func-
tion. The simulation uses 10 time-steps of 0.1 seconds each. The
etch front is formed from the end-points of the rays at every time-
step.

S51-pt STRING ETCH
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Figure 6.12b : String-simulated etch profile in an exponential etch-rate function.
The simulation uses 10 time-steps of 0.1 seconds each. The rays
from (a) have been overlaid. Note that the end-points of the rays
do coincide with the string profiles.
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component, and the ray again curve away from the x =0 plane. This behavior is indeed seen
in the ray-tracing simulation of Figure 6.12a. As expected, the rays bend away from the x =0

plane.

Figure 6.12b shows a simulation of the same etch-rate function with the string algo-
rithm. The string profiles are shown in solid lines, while the dashed lines represent the ray tra-
jectories from the ray simulation. It is evident that there is an excellent match between the
strings and the rays; after the final time-step, the end-points of the rays all end up on the final
string profile. In addition, the two sets of curves are clearly orthogonal, i.e., the rays are nor-
mal to the string-profiles and vice-versa. This is to be expected, since, as mentioned previ-

ously, the rays are the normal trajectories to the etch fronts.

6.3.3.2. Ray-Spreading and Looping In Triangular Etch-Rates

The use of a triangular etch-rate function also provides interesting information about the
spreading and looping of rays. As with the modified cell algorithm (Chapter 4, Section 4.5.2),
two triangular etch-rate functions are used to test the ray algorithm. These functions are the
saw-tooth function

. R(x,y,.z)=2I1x| pm/sec [6.10]
and a saw-tooth with an offset

R(x,y,z)=2lx! +0.2 pm/sec {6.11]
Figure 6.13 shows the trajectories of the rays in the above etch-rate functions. One can see that
in both simulations, the rays all curve towards the x =0 plane. Thus there are, in both cases,
ray-scarce regions, i.e., regions in which no or few rays pass. This is an inherent weakness of
the ray algorithm; there are certain regions which may not be reached by the first choice of ini-

tial locations on the surface.!
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Figure 6.13: 2D ray etching using triangular etch-rate functions, (a)R=2/x/ and
(b) R=2/x/+02. Simulation proceeds for 10 0.1-second time-
steps. All the 51 rays have curved inward, leaving a ray-scarce

region for large Ix! values.

crossed.

In addition, in (b) some rays have
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In addition, in the simulation with the offset rate function (Figure 6.13b), some of the
rays have even crossed each other in the center. Physically, these rays are now in the etched
region and lag behind the actual etch front. Thus there will be loops m the surface formed by
the end-points of the rays. The formation of loops was also seen in the string algorithm. But
the ray-formed loops do not tumn inside-out and expand outwards in all directions as in the
string algorithm. It is also worth noting that loops are not formed in a volume etching simula-
tion. The modified-cell simulations of the etch-fronts for the triangular etch-rate functions

above were shown in Figures 4.4b and 4.5b respectively.

6.3.3.3. Ray-Spreading and Looping in Sinusoidal Etch-Rates

The etch-rate function
R(x.y z)=e~4(1.05 — cos(2nz)) [6.12]
is a function that resembles the standing-wave etch-rate distribution in photoresist develop-

ment. This function has x and z dependence and thus makes for a good test of the ray algo-
rithm.

Figure 6.14 shows the ray ﬁ'ajectoﬁes for a 3-second etching simulation with 30 0.1-
second time-steps and 300 0.01-second time-steps respectively. There are a total of 51 rays in
each simulation; the rays are initially placed uniformly between x =~0.4 and x =04. The
rays are seen to move down and outwards into the material. Most of the rays have bent back
towards the initial surface; some of these have also crossed each other, forming loops. There

are also ray-scarce regions in the center of the simulated area.

It is worth noting that the ray trajectories in both the 30 and 300 time-step simulations

trace out similar etch fronts, that is, the surface traced by the envelope of the rays are similar
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R=exp(-4x2)e(1.05-cos(2nz))
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Figure 6.14 : 2D ray etching using a sinusoidal etch-rate function. Simulation pro-
ceeds for a total of 3 seconds, with (a) 30 time-steps of 0.1 sec-
onds and (b) 300 time-steps of 0.01 seconds each. The difference

_ in the size of the time-step causes the ray trajectories to change.
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in Figures 6.14a and 6.14b. However, the actual paths of the rays differ in the two figures.
This is due to the fact that the accuracy of any discretized simulation will increase if more
points are sampled, or in this case, if more iterations are used. In the 30 time-step simulation,
the differential ray equation is only evaluated 30 times. As a result, the simulation is not as

accurate, and the rays do not curve as much as the 300-time-step rays.

Another interesting aspect of the ray algorithm is seen in Figure 6.15, where the simula-

tions have been run with a higher-frequency sinusoidal etch-rate function.
R(xy 2)=e~(1.05 - cos(8nz)) : [6.13]
In the 30-time-step simulation, shown in Figure 6.15a, almost all the rays are grouped at the
initial surface. Even the ray at the center has not moved very far from the surface. In contrast,

the rays in the 300-time-step simulation shown in Figure 6.15b have fascinating smoothly

curved trajectories.

Notice that in Figure 6.15b, the rays are curled up around depths of z =0, z =-0.25 and
z =-0.5 um. It is no coincidence that the etch-rate is slowest at these depths. As can easily be
seen from Equation [6.13] above, the etch-rate function is periodic in the z -coordinate, with a
period of 0.25 um. Thus, at the surface z =0, and at depths of integer multiples of the 0.25
um period (e.g. z =-0.25 pm, z =-0.50 pm), the etch-rate is at a minimum value. This is
also seen clearly in Figure 6.16, which shows the contour map of this particular etch-rate func-

tion.

Comparing the etch ray trajectories of Figure 6.15b with the contour map of the etch-rate
in Figure 6.16, one can see that some of the etch rays have been trapped inside regions of rela-
tively low etch-rate. This behavior of the rays can be understood with the aid of the discre-

tized ray equation [6.5], rewritten below.
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Figure 6.15 : 2D ray etching using a high-frequency sinusoidal etch-rate function.

Simulation proceeds for a total of 3 seconds, with (a) 30 time-steps
of 0.1 seconds and (b) 300 time-steps of 0.01 seconds each. The
rays in (a) are the result of incorrect reflections.
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Figure 6.16 : 2D etch-rate contours for a high-frequency sinusoidal etch-rate
function. The etch-rate is at a minimum at 2=0.0, -0.25, -0.5, -0.75

and -1.0 um.
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2_5 vl
R, "R, +V[ R] As [6.14]

If the magnitude of the last term in this equation is larger than that of the vector 8,/R ;, there
could be a drastic change in the direction of the ray vector. To illustrate this, consider a flat
boundary separating two regions of low and high etch-rate respectively (Figure 6.17). Now
suppose that a ray with direction vector 8, is approaching the boundary from the low etch-rate
region. 1/R is larger in region 1 than in region 2, so as shown in Figure 6.17, the gradient of
the inverse of the etch-rate is a vector that points upwards from the boundary. Adding this
vector to 8,/R ;, one finds that the ray 8, has bounced off the boundary and is now shooting
offin a completel); different direction. This is similar to reflection in optics and is the analog

of Snell's Law.

The situation just described is really an over-simplification. One constraint on the
discretized ray equation [6.4] is that the variation A must remain small so that the differential
equation [6.3] is obeyed. As a consequence, the change in the vectors A(S/R) must remain

small, and abrupt changes in direction such as described in Figure 6.17 are not allowed.

Nevertheless, the basic principle of reflection can still be used to explain the curling of
the etch rays in Figure 6.15b. In this case, the etch-rate is continuous, and there is a region of
low etch-rate sandwiched between regions of high etch-rate. This situation is illustrated in
Figure 6.18. A ray that starts out from the low etch-rate region towards the high etch-rate
region will encounter a gradient that opposes the passage of the ray. As a result, the ray

curves back towards the low etch-rate region. This gradual ray reflection occurs on both sides

+ If reflection does occur at a boundary, the laws of geometrical optics say that the angle of incidence is
equal to the angle of reflection. This law is clearly not obeyed in the example of Figure 6.17. This is because
the differential ray equation only applies for continuous etch-rate R(x.y,z). At abrupt boundaries, the ray
equation has to be disregarded in favor of Snell’s Law of refraction.
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Figure 6.18 : Etch-Ray Trapping : A ray is trapped in a low etch-rate region
sandwiched between high-etch-rate regions. The gradual change
in etch-rate causes the ray to bend smoothly.

Figure 6.19 : An optical waveguide. A material with high refractive index (low
wave velocity) is sandwiched in between materials of low refractive
index (high wave velocity). Rays entering at certain incident
angles will be trapped and guided by the waveguide.
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of the low-etch-rate valley, so, as a result, the ray is trapped in the region with low etch-rate.
However, the ray can still move within that region. Thus, the ray traces out an S-curved tra-
jectory similar to those observed in the simulation of Figure 6.15b. This situation is, in fact,
analogous to the waveguide structure in geometrical optics, illustrated in Figure 6.19. The
optical waveguide is constructed out of a a region of high refractive index (low wave velocity)
sandwiched by layers of low refractive index (high wave velocity). The light rays are
reflected at the boundaries, and as a result, the rays are trapped and can thus propagate along

the waveguide.

The strange behavior of the rays in Figure 6.15a can also be traced back to the reflection
of rays at etch-rate boundaries. Note that in the simulation shown in Figure 6.15a, most of the
rays are curved smoothly. But some rays in the center have sharp jagged trajectories. These
rays have undergone sharp reflections in the low-etch-rate region about the surface. The
abrupt reflection described earlier in Figure 6.17 has occurred. This abrupt reflection of rays
is undoubtedly due to the large time-step of 0.1 seconds. Since the time-step is large, the
etch-distance As is also correspondingly large, and so, the magnitude of the gradient vector
term in Equation [6.14] is large, leading to an abrupt change in the ray vector S. But as just
discussed, the abrupt reflection, with large A(S/R), is a violation of the ray equation! There-
fore, the large time-step combined with blind application of the differential ray equation has

led to incorrect ray trajectories.

6.3.4. The Ray Algorithm : Issues in 3D

The 3D ray algorithm is not very different from the 2D ray algorithm. The ray algorithm
is very easy to implement in 3D; all that is required is the addition of an extra dimension to

the calculations. Figure 6.20 shows a 3D simulation of ray-etching with the analytic
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sinusoidal function below.
R(x.y.z)=e~ ¥ +7)(1.05 — cos(8xz)) (6.15]
The trajectories of 121 rays were traced though 300 time-steps of 0.1 seconds each, resulting

in the jelly-fish-like profiles shown.

Figure 6.20 is an excellent example that illustrates the advantages and disadvantages of
the ray algorithm. The ray algorithm is easy to implement in both 2D and 3D. It is accurate
and fast, although some care must be taken to limit the size of the time-step in order to avoid
abrupt loop reflection. The major advantage of the ray algorithm is that the rays are indepen-
dent of each other; the rays do not depend on the local etch-front for calculation of their trajec-
tories. Thus, unlike the string algorithm, the rays are not affected by incorrect surfaces or
facets. The weakness of the ray algorithm, however, is that certain regions may not be
reached by the first choice of initial ray locations on the surface. It is also quite difficult to
reconstruct an etch-front from the end-points of rays. This is especially true when loops are

formed during the simulation.

6.4. SUMMARY : 3D SURFACE-MOVEMENT ALGORITHMS

Both the string and ray methods are surface movement algorithms that track the surface
of the material as it is being etched. The three-dimensional string method approximates the
etching boundary between the etched and unetched regions with a series of nodes, joined by
segments and triangles. The surface is moved by advancing the nodes along vectors calcu-
lated by averaging the normal vectors to all the triangles that surround a node. The ray algo-
rithm, on the other hand, does not keep track of the 3D surface - it merely traces selected
points on the time-evolving etch surface. In this algorithm, the nodes are advanced along rays

which are refracted at the boundaries of regions of different etch-rates.
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Figure 6.20: 3D ray etching using a high-frequency sinusoidal etch-rate function.
121 etch rays are traced for 3 seconds with 300 time-steps of 0.01
seconds each.
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The string method is difficult to set up in 3D, due to the logistical problem of keeping
track of all the nodes, segments and triangles that make up the etching boundary. Additional
difficulties are encountered because. of the necessity of adding and deleting new nodes so that
the triangular mesh is neither too dense nor too sparse. The ray method is easy to implement
in 3D, but its weakness is that there are certain regions that are not reached by the choice of
the initial rays. Thus, it is not easy to reconstruct the etch-surface formed by the endpoints of

the rays.

The string and the ray algorithms are, in a sense, complementary algorithms, in that they
are both based on solutions to the least time principle. The string mesh represents the eikonal
wavefront surfaces, while the rays are the normal vectors to the wavefronts. In the ray algo-
rithm, the rays or advancement vectors are calculated using the differential ray equation. In
contrast, the string calculates the advancement vectors from the local surface. This method of
calculating the advancement vectors is a key difference between the ray and string methods.
Comprehensive testing of the two approaches has shown that the vector calculation method
used in the string algorithm is more error-prone than that used in the ray algorithm. In the
string algorithm, the advancement vectors calculated from the local surface will be inaccurate
if the local surface is incorrect or inaccurate. In contrast, in the ray algorithm, the vectors are
calculated from the local etch-rate distribution and are independent of the local surface. The
ray vectors are also independent of each other. Therefore, because of the difference in the
way the solution to the least-time principle is implemented, the ray algorithm is less sensitive

to error and thus more accurate than the string algorithm.

However, the ray algorithm is not a complete solution to the original problem of tracing
the time-evolving etch front. The ray algorithm accurately calculates the trajectory of rays, but

there are often insufficient rays to adequately describe the entire surface. Somehow,
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additional rays must be added to ray-scarce regions. One way of doing this is to connect the
rays with a string-like mesh. This method combines the advantages of both the string and ray
methods; the string-like mesh covers the entire etch surface, while the rays accurately describe
the normals to the etch surface. This combined ray-string approach is described in the follow-

ing chapter.
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CHAPTER 7
THE RAY-STRING ALGORITHM :
2D IMPLEMENTATION ISSUES

7.1. INTRODUCTION

The ray-string approach is a powerful algorithm for the simulation of etching that com-
bines the advantages of both the ray and the string algorithms. As with the ray and the string
algorithms, the ray-string algorithm is also based on a rigorous mathematical solution to the
principle of least time. In this approach, the etch surface is approximated by a string-like
mesh of nodes and segments. Like the ray algorithm, the surface is moved by advancing the
nodes along rays determined by the local etch-rate in the material. The string-like mesh is
used to keep track of the connection between the nodes; as the nodes move further apart or

closer together, nodes can be added or deleted.

This combination offers a number of advantages. As a surface-advancement algorithm,
the ray-string approach is fast and accurate, and has modest memory requirements. The ray-
technique of calculating the direction vectors of the nodes is independent of the local etch sur-
face. This avoids the introduction and propagation of errors from incorrect portions of the
mesh. The ray-string algorithm thus is more accurate and less error-prone than the string
algorithm. At the same time, the interconnectivity conferred by the string-mesh avoids the for-

mation of ray-scarce regions, and allows for easy reconstruction of the etch-surface.

The concept of the ray-string algorithm itself is not new. Moniwa et.al.! recently intro-
duced a 3D photoresist simulator based on this approach. However, Moniwa did not address

the issues of accuracy and efficiency, which are of considerable importance in a surface-
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advancement algorithm. It is these very topics that shall be the emphasis of this chapter.

As was seen in the previous chapter, both the string and ray algorithms needed a number
of adjustments in order to produce accurate and correct simulation results without using exces-
sive amounts of computer memory and time. The same is true of the ray-string algorithm. It
t0oo must deal with the tradeoff between accuracy and speed. There are really two general
issues that have to be addressed. First, is it possible to improve the calculation of the ray tra-
jectories so that an optimum balance between accuracy and speed is obtained? And second,
how do the mesh operations affect the accuracy and execution speed of the simulation? These
issues will be addressed and new improvements to the ray-string algorithm will be discussed

in the following pages.

7.2. IMPLEMENTATION OF THE RAY-STRING ALGORITHM IN 2D

In order to investigate the accuracy vs speed tradeoffs in the ray-string algorithm, a 2D
version of the algorithm has been implemented in the C programming language. The data
structure consists of two separate linked lists of nodes and segments. As in the ray algorithm,
each node retains information on its current position and direction vector. But now, each node
also contains pointers to its adjoining segments. Each segment too is linked by pointers to

two nodes. Thus, the connection between the nodes and the segments is two-way.

7.3. THE ALGORITHM FOR SURFACE ADVANCEMENT

The procedure for advancing the surface mesh in the ray-string algorithm is very similar
to that of the string and the ray algorithms. The simulation begins by creating and initializing

a surface consisting of a number of interconnected nodes. Each node is initialized with a ray
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or direction vector normal to the initial surface. The algorithm then proceeds as follows (Fig-

ure 7.1) :
[I1 Advance each node on the mesh along its direction vector. The distance advanced
is equal to the local etch-rate multiplied by the incremental time-step.
(1] Calculate the new direction vector at the new node location using the discretized
form of the differential ray equation, Equation [6.6].
[II] Add nodes in regions where the mesh has expanded, and delete nodes in regions of

contraction.

[IV] Proceed to [I] and repeat until the total etch-time has been reached.

7.4. SELECTION OF THE SIZE OF THE TIME-STEP

There is, however, a problem with the algorithm outlined above. The ray-algorithm
simulations described in Chapter 6 have shown that the ray trajectories are sensitive to the size
of the time-step taken to advance the rays. If the time-step is too large, abrupt ray reflections
could take place (Figure 6.15a, Section 6.3.3.3). The trajectory of the rays would then be
incorrect. To avoid such gross errors in the ray trajectories, one could, of course, use very
small time-steps. But this improvement in accuracy would come at a cost of increased com-
putation time. So, how does one choose the time-step so that the rays can be calculated both

accurately and efficiently?

7.4.1. Avolding Abrupt Ray Reflection

One rule of thumb in selecting the time-step is to just use a time-step AT that has been

determined by trial and error. For example, in the ray simulation with the high-frequency
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Figure 7.1 : The Ray-String Algorithm. Begin by initializing the rays normal to
the initial surface. Then during each step, advance the nodes and
find the direction changes due to etch-rate refraction.

surface advancement, add or delete nodes where necessary.

After each
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sinusoidal etch-rate shown in Figure 6.15, a time-step of AT =0.01 seconds appears to be a
good choice. But if the vertical frequency of the etch-rate is increased, the AT chosen above
might not be sufficient to ensure accuracy. In other words, the trial-and-error selection of the

time-step must be repeated for all the different etch configurations to be simulated.

An even better approach for selecting the time-step can be derived from the ray equa-

tion. Begin with the discretized ray equation [6.5].

—-—=V[—] As (7.1}
To simplify the equation above, assume that the etch-rates are of the same order of magnitude

within a small sphere of radius As. Then, R =R3 =R, and Equation [7.1] becomes

S 8 1 -1
—_———_———=V| = =—V 7.2
"R V[ R] 22 (R)RAT [7.2]
Simplifying further, one obtains
8, -8, =-V(R)AT [7.3]

The relevance of this equation to the selection of the time-step can be understood with the aid
| of Figure 7.2. It is not difficult to see that if the magnitude of the last vector term in [7.1] is
kept small, then the change in the direction of the vectors will be small too. But when this last
term is large, then the rays could change direction abruptly. To avoid such abrupt reflections
in the ray trajectories, the magnitude of the last term in [7.3] should be limited. If the gradient
term is allowed to have a magnitude only less than 1.0, then the change in direction of the vec-
tors will be at most 60°. Thus, the conditions for avoiding reflection can be stated as follows.
IVR)IAT < 1 (7.4]
This equation is a concise statement of the conditions under which rays will not undergo
abrupt reflection. Abrupt ray reflection will not occur if (i) the time-step AT is small, and (ii)

the magnitude of the gradient of the etch-rate is small (i.e., if the variation of the etch-rate
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with distance is small).

Equation [7.4] states that the optimum size of the time-step should scale inversely with
the maximum slope of the etch-rate distribution. For example, the maximum slope of the
sinusoidal etch-rate function [6.13] is dR/dz = 8=, so a good time-step size for that particular
function would be AT = (9R/9z)"! =0.04 seconds. In typical photoresist development simu-
lations, though, the etch-rate distribution consists of discrete values. In such distributions, it is
not practical to search for the maximum etch-rate gradient. However, if the etch-rate distribu-
tion varies periodically in the vertical direction due to standing waves, then it is possible to
construct a criteria similar to that of [7.4). If Zy is the period of the standing waves, and R pox

is the maximum etch-rate in the volume of the photoresist, then the condition

max
Zri2m)
is sufficient to ensure that the rays do not bounce abruptly.

AT <1 [7.5]

Equation [7.5] can be tested on the etch-rate distribution shown in Figure 2.3. In this
case, the vertical period is Zr = 0.125 pm, while the maximum etch-rate is 0.11 pum/sec. The,
according to Equation [7.5], the maximum time-step size that can be tolerated is AT =0.18
seconds. This number actually turns out to be a very good choice. As shall be seen later in
the chapter, AT =0.1 seconds produces good simulated profiles, whereas with AT =0.5

seconds, the rays are seen to bounce back to the initial surface.

7.4.2. Recursive Vector Checking

Equation [7.4] is not itself a rigorous condition for accuracy, because of it is based on

the assumption that the etch-rates are approximately equal at the two points traversed by the
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ray in a single time-step. However, it can serve as a good rule of thumb for selecting the size

of the time-step.

The accuracy of the ray-calculation can be further refined by subdividing the initial
choice of time-step. In the "recursive vector checking” procedure, the size of the time-step is

selected by limiting the change in the direction of the ray vectors to a few degrees.

Recall that the implicit constraint on the discretized ray equation [6.4] is that the vector
variation A(S/R ) must be kept small, so that the variance A is approximately equal to the dif-
ferential d. Now, keeping the change in the vectors A(8/R) small is almost equivalent to
ensuring that the change in ur;it vectors AS is kept small. So, the condition for satisfying the
differential ray equation becomes

I8,-8)l «1 [7.6]

The relationship between the unit vectors 8,, 8, and the difference between the two vectors,

$; — Sy, is shown in Figure 7.3. If the magnitude of 8, ~ 8, is kept small, then clearly the
angle between the vectors S; and S, will be small as well. It is possible to show that

ISy~ 8| =2 —2c0s%0 (7.7]

So, if the magnitude of the vector difference is limited to 0.1 (1S, ~8;1 <£0.1), the angle 6

between the vectors will be at most 4° (0 < 4°).

The procedure for recursive vector checking may now be outlined. First, define a
minimum recursive length |AS| i, = 183 = 8 | in = Imin (€-8. Imin=0.1) and an initial step-
step size AT .

(I] Evaluate the length of the vector |AS| = 18, -8, .

[II] If the length of the vector |1AS| is greater than /,;;, divide the time-step in two.

Recalculate the new vector S, Retum to [I] and continue until
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1AS] = 18, =8| <lpip.
[III] If the time-step is now such that the condition |AS| < Iy, is satisfied, advance the
ray to the new node according to the size of the current time-step. Return to [T},

and repeat recursively.

The pseudo-code for this recursive procedure is as follows.

advance_both (point,vector,dt)

{
/* advance the point along its vector */
advance_the_point (point, newpoint, vector,dt)

/* calculate the new vector at the new point */
advance_the_vector (point,newpoint, vector, newvector)

/* if vector difference is too large, dt is too large */
vector_difference = magnitude ( newvector - vector )
if (vector_difference > 0.1) then
advance_both (point,vector, 0.5*dt)
advance_both(point,vector,0.5*dt)
else
point = newpoint
vector = newvector
end if

Examples of the effect of recursive vector checking on the ray simulations are shown in
Figure 7.4. The simulation conditions are similar to those of Figure 6.15, except that in this
set of simulations, the recursive vector procedure is used to limit the direction changes of the

rays.

In Figure 7.4a, a recursive vector length of 0.1 is used, and as in Figure 6.15a, the ray
simulation is over 30 time-steps of 0.1 seconds each. The results are indeed quite satisfactory;

the ray trajectories do compare favorably with the 300-time-step simulation of Figure 6.15b.
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Figure 74 : 2D ray etching using a high-frequency sinusoidal etch-rate function.

The use of recursive vector checking with recursive length of 0.1
increases the accuracy of the simulations and avoids incorrect

reflections of the rays.
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The rays' do have sharp-edged trajectories, but this is due to the large time-step and the fact
that the intermediate points calculated during the recursive procedure are not saved. The ray
trajectories are not quite as accurate as those of Figure 6.15b, but at least they are much more

accurate than those in the original 30-step simulation in Figure 6.15a.

Figure 7.4b shows the result of the ray simulation with 300 time-steps of 0.01 seconds
each. As before, recursive vector checking is used with a recursive length of 0.1. This time,
the ray trajectories appear to be similar to those of Figure 6.15b. The recursive checking pro-

cedure has had little effect on the accuracy of the simulation.

The computation times for the simulations of Figure 6.15 and 7.4 are tabulated in Table
7.1. The simulation of Figure 6.15a runs the fastest, but in this particular simulation, the rays
trajectories are quite incorrect. When recursive-vector checking is used with a large time-step,
the computation time almost doubles, but the ray trajectories become relatively accurate.
Clearly, for large time-steps, recursive vector checking is well worth the price paid in compu-
tation time. But for small time-steps, recursive vector checking has little or no effect on the
accuracy or on the computation time. So, in effect, recursive vector checking is a procedure

that increases the accuracy of the simulations only when it is necessary to do so.

Figure | Time-Step Size | Vector Recursion

6.15a 0.1 sec No 5 sec
6.15b 0.1 sec No 44 sec
7.4a 0.01 sec Yes 11 sec
7.4b 0.01 sec Yes 46 sec

Table 7.1 : The effect of recursive vector checking on computation time.
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7.4.3. NEW MODIFICATIONS TO THE SURFACE-ADVANCEMENT METHOD

The constraints on the vectors implicit in the ray equation has led to two new procedures
that are useful for optimizing the accuracy and the efficiency of the simulations. The first is a
rule-of-thumb which allows for the selection of a "good" time-step in which abrupt ray-
reflection is avoided. This procedure, however, is of use only when the etch-rate distribution is
periodic. There is no such constraint on the second procedure, which is a recursive method for
accurately tracking the trajectory of the rays in some given time interval. This recursive pro-
cedure is of particular use in situations where the etch-rate is varying rapidly in only small
localized regions. In this case, it is not efficient to choose a global time-step optimized for the
fast-varying etch-rate regions. It is far better to use a larger time-step suited for the more
widespread low-varying etch regions; the recursive vector procedure becomes useful primarily

in the fast-varying etch-rate regions.

These two procedures can be easily added to the algorithm for surface-advancement.
The first step is, as before, to select an initial time-step. If the etch-rate is periodic, then Equa-
tion [7.4] or [7.5] could be used to select an optimum time-step. Otherwise, the time-step
could be chosen based on the average or the maximum etch-rate in the volume of the material
being etched. Once the initial time-step has been chosen, the surface can be advanced as
described in Section 7.3. The recursive procedure would cover steps [I] and [II] in Section

7.3. The algorithm for the surface advancement then becomes :

[I] Advance each node and vector recursively according to the procedure outlined in

Section 7.4.2.

(II] Add nodes in regions where the mesh has expanded, and delete nodes in regions of

contraction.
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{ITII] Proceed to [I] and repeat until the total etch-time has been reached.

7.5. MESH OPERATIONS

Another issue of considerable importance in the ray-string algorithm concems step [II]
in the algorithm outlined above. As in the string algorithm, a number of operations have to be
repeatedly carried out on the ray-string surface mesh, so that the mesh remains both accurate
and correct. These mesh operations, and their effect on the accuracy and efficiency of the

ray-string simulations will be described in some detail in this section.

7.5.1. Mesh Modification

Surface-advancement algorithms in general suffer from the disadvantage that as the sur-
face mesh moves in time, the nodes on the mesh will move farther apart or closer together.
The goal of mesh-modification is to modify the mesh so that all the nodes on the mesh are

equidistant.t As a result, the simulation will become more accurate and also more efficient.

In the ray-string algorithm, the connection between the nodes on the mesh is maintained
by a list of segments. Therefore, in order to retain a constant node density in the mesh, seg-
ments have to be cut up if they become too long. Or, if the segments become too short, these

segments have to be deleted.

The mesh should ideally be modified after every surface advancement. To do this, a

range of acceptable segment lengths should first be defined. As in the string algorithm, one

¥ One alternative method for modifying the mesh is to tie the density of nodes to the etch-rate, i.e., to use
more nodes where the mesh is moving fast, and to use fewer nodes in slow-moving regions. This method,
while useful in some applications, does not appear suited for the simulation of photoresist development,
where the etch-rate changes rapidly with distance.
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can define a nominal or ideal segment length S;4.,; and maximum (S p,,) and minimum (S ;)
acceptable lengths. Then, each segment in the list is examined in tum. If the segment leﬂgm
S is greater than the maximum allowable length, i.e., S > Smax, the segment must be cut up.
Or if the segment length is less than the minimum allowable value, that is, S < Sy, the seg-
ment is deleted or merged. After each cut or merge, the interconnections between segments

and nodes in the mesh must be updated.

7.5.1.1. Segment Cutting

During the etch simulation, nodes on a mesh could move far enough apart that certain
areas on the mesh will become sparsely populated. The mesh is then no longer accurate in the
sparse region. As an example, Figure 7.5 depicts the growth of a 2D etch front during a uni-
form circular etch. Without mesh modification, the nodes on the circular front will move
farther apart, and as a result, the mesh becomes faceted. From Figure 7.5a, it is quite clear that
the simulation results will be inaccurate in the sparse areas of the mesh. In contrast, if new
nodes are added whenever the segments grow too large, then a more ideal circular profile will

be formed, as shown in Figure 7.5b.

To add new nodes to the mesh, the segment lengths should be checked after every
advancement of the surface. If a segment is too long, then it should be cut in half. This can
most easily be done using linear interpolation, where, as shown in Figure 7.6a, the new node
is placed on the original segment, equidistant from the two original nodes. The direction vec-
tor of the new node is similarly an average of the direction vectors of the two original nodes.
An alternate method, described briefly in Section 6.2.3, is to add nodes using a polynomial fit.
This method, which is used in SAMPLE, does result in smoother and more accurate results.

However, it is important to realize polynomial fitting cannot be easily applied to 3D
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MESH MODIFICATION MESH MODIFICATION

o

(a)

Figure 7.5: 2D etch profiles without and with mesh modification. On the left
(a), the rays propagate radially outward, but the segments are not
resized. This results in facets. On the right (b), the segments are
cut if they become too long, thus producing circular etch profiles.

Vi %

LINEAR INTERPOLATION ARC:, INTERPOLA'{'ION

v v

(a) (b)

Figure 7.6 : Segment cutting with different interpolation schemes. In the left fig-
ure (a), a new node and a new vector is added using linear interpo-
lation. On the right, (b), the new node is added on the arc of the cir-
cle defined by the two direction vectors of the original segment.
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interpolation. In fact, fitting a surface to 3D data-points (which usually involves inverting

matrices) can be quite costly in terms of computation time.

A much easier and faster interpolation method is to add the new node on the arc of the
circle defined by the two original direction vectors of the original nodes. Arc interpolation,
shown in Figure 7.6b, actually produces better results than the linear interpolation in this par-

ticular test case.

Figure 7.7 shows the ray-string simulated results for a uniform circular etch. The simu-
lation begins with a éingle short segment placed at the upper left comer of a square. The two
nodes on the segment have ray vectors initially oriented vertically and horizontally respec-
tively. The simulation proceeds for 10 time-steps of 0.1 seconds each. After every time-step,
the segment length of each segment is checked against the ideal segment length. If the seg-
ment length S is greater than the maximum allowable length S 4,5, then the segment is cut up.
(For this particular simulation, S g = 1.25;4,,;.) From Figure 7.7, it is easily seen the arc
interpolation produces more accurate results than linear interpolation; the profile after 10
time-steps lies exactly on the dashed semi-circle. This is true for both large and small ideal
segment lengths. It is also seen that when linear interpolation is used to add nodes to the mesh,
the use of smaller ideal segment lengths results in smoother and more accurate profiles. But
note that the linearly-interpolated small-segment simulation is still not as accurate as either of

the simulations with arc interpolation.

7.5.1.2. Segment Merging

When nodes on a mesh move too closely together, portions of the mesh will become too

densely packed. This is inefficient in a computational sense, because nodes that are placed
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IDEAL SEGMENT LENGTH = 0.10 um

Linear Interpolation Arc Interpolation

Z-AXIS (um)
Z-AXIS (um)

IDEAL SEGMENT LENGTH = 0.02 um

Linear Interpolation Arc Interpolation

Z-AXIS (um)

Z-AXIS (um)

X-AXIS (um)

Figure 7.7: 2D simulation of uniform circular etching with the ray-string algo-
rithm, using linear and arc interpolation with two different ideal seg-
ment lengths. The etch begins from a single segment placed at coordi-
nates (0,0), and proceeds for 1 second of etching time. The time-step
is 0.1 seconds. The dashed line shows the expected semi-circular

result.
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close together essentially bear the same coordinate and vector information. For example, in
Figure 7.8, nodes on a circular front have converged. Consequently, the curved portion of the
mesh is dense compared to the straight portion of the mesh. There is nothing really wrong
about this; in fact, the dense circular mesh is quite accurate in its description of the etch sur-
face. But to be efficient, there should be fewer nodes on the curved portion of the mesh.
Fewer nodes means fewer computations, which translates into faster computation speed. If,
however, no nodes are deleted in dense regions while nodes are added continually in sparse
regions of the mesh, then the number of nodes on the mesh will only grow larger, thus increas-
ing the computation time. Also, if the number of nodes in the mesh is allowed to grow
unchecked. mesh operations such as delooping and clipping will also become more computa-
tionally expensive. Another consideration is that a dense mesh is ideal for loop formation; if a

dense mesh suddenly encounters a high etch-rate region, loops could be formed!

Therefore, to speed up the computation, nodes should be deleted in dense regions on the
mesh. An example of node deletion is shown in the lower portion of Figure 7.8. The six seg-
ments on the curved surface are merged to produce two longer segments. There is some loss
of accuracy, of course, but the tradeoff is that the computation time is decreased and the

efficiency of the simulation is increased.

Some care must be taken in the selection of the minimum allowéble segment length
Smin- In the segment merging procedure, segments shorter than this minimum (S < § ;) Will
be deleted or merged. But if the segments merged are too long, then too much detail will be
lost and the profiles will lose accuracy. An example of this is shown in Figure 7.9 for a 2D
profile. In this case, the short segment to be deleted is located on a sharp comer. If this not-
so-short segment is deemed too short, its deletion will result in a rounded profile quite dis-

similar to the original profile. The merged profile is also sensitive to the choice of node to be
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TOO DENSE!

BEFORE AFTER
SEGMENT MERGING SEGMENT MERGING

Figure7.8: Nodes on a mesh could move closer together, forming a densely
packed mesh. This is accurate, yet computationally inefficient.
Less accurate but more efficient results can be obtained by merging
short segments.
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(A) (B)

— Segment to be deleted = Scgment to be deleted
O Node to be deleted O Node to be deleted

Figure 7.9: 2D Segment merging. Short segments that are deleted could result
in inaccurate profiles. The way in which nodes are merged will also

affect the final profile.
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merged. If a different node on the segment is merged, as in Figure 7.9b, the profile becomes
markedly different from that in Figure 7.9a. In the next chapter, it shall be shown that this

non-commutative node-merging behavior will produce asymmetrical 3D profiles.

7.5.2. Mesh Clipping and Other Boundary Operations

Surface-advancement algorithms also have to be able to handle the problems encoun-

tered at the simulation boundaries. The ray-string algorithm is no exception to this.

7.5.2.1. Mesh Clipping

The typical etching simulation aspires to determine the time-evolving surface inside a
rectangular box, where the etch-rate distribution has been defined. The etch-rate is often not
known outside the box, so the surface profile outside the boundaries of the box is of little
interest. However, as the surface mesh movés and evolves in time, portions of the mesh could
move outside the simulation boundaries. These portions of the mesh should be clipped

because they do not contribute to the solution inside the surface.

Figure 7.10 is a good example of a mesh that has grown outside the simulation boun-
daries. The simulation begins with a 90° grooved surface, and the profile etches outward at a
uniform rate. After a few time-steps, most of the material inside the original square has been
etched away, and large portions of the 2D mesh are outside the simulation boundary. These
portions of the mesh are not of interest; only those points of the mesh inside the box are of use
in the simulation. Consequently, the continual tracking of the points outside the simulation
boundaries is a waste of both computer time and memory. Instead, these points should be

deleted.
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6 Time-Steps, DT=0.1 sec

Figure 7.10 : A surface mesh could move outside its simulation boundaries. In
this case, the simulation begins from a grooved surface, and pro-

ceeds outward at a uniform rate.
SIMULATION SIMULATION
BOUNDARY BOUNDARY
Outside  Inside “~., Outside £ Inside

e, s
o... ?

ut up this Remove these
segment nodes & segments

BEFORE CLIPPING AFTER CLIPPING

Figure 7.11 : 2D Clipping : First find the intersection of the segments with the
boundary. Cut up the segments that intersect the boundary. Then
remove all the nodes and segments outside the boundary.
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In two dimensions, clipping involves scarchmg for those segments that cross the simula-
tion boundary. The segments that do intersect the boundary are cut up at the boundary inter-
section. Then, all the nodes and segments outside the boundary are deleted. This pmces;s is
illustrated in Figure 7.11. Figure 7.12 shows the results of clipping applied to the uniform
grooved etch discussed above. In the simulation, the mesh was clipped after every surface
advancement. In pfacﬁce, though, it is not desirable to clip after every time-step, since clip-
ping is an operation expensive in terms of computation time. A more efficient approach is to

clip every 10 time-steps or so.

An alternative to clipping is to stop the nodes from moving outside the boundary. One
way to do this to set the etch-rate to zero outside the simulation boundaries.t The etch profiles
simulated under this scheme are shown in Figure 7.13. This method is easier than clipping,
primarily because it is no longer necessary to search for boundary intersections. However,
this method does have drawbacks. One of these is that excess nodes and segments will accu-
mulate along the simulation borders. These nodes and scgments do not contribute to the
simulation, and as a result, computation time and memory is wasted. Another drawback is
that the profiles can have lagging tails at the boundaries. As shown in the illustration on the
left of Figure 7.13, a lagging tail will be formed if one node of a segment is pinned to the

boundary while the other node is left free to move inside the boundary.

t However, as discussed in relation to Figure 6.17 (Section 6.33.3), the differential ray equation does not
hold at abrupt rate-boundaries, where the etch-rate is discontinuous. Therefore, the ray equation cannot be
used in a scheme where the etch-rate suddenly drops to zero. To get around this, the etch-rate can be gradual-
ly ramped down to zero in a narrow region outside the boundaries. In the simulation of Figure 7.13, the etch-
rate is linearly ramped down to zero in an intermediate region of thickness 0.01 pm.
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Figure 7.12 : Uniform etch from a grooved surface, with clipping after every sur-

face advancement.
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Figure 7.13 : Zero-etch-rate outside the boundaries results in the above pro-
files. This method, however, could produce lagging profiles, as illus-
trated on the left. Note that the second profile in the simulation has
developed a lagging tail at the x-boundaries.
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7.5.2.2. Boundary Flattening

The inverse of mesh expansion is mesh contraction. During the course of the simula-
tion, the mesh could also contract; some nodes on the boundary could move inside the bord-
ers. Mesh contraction occurs quite commonly during surface advancement. If a node on the
boundary has a direction vector that points into the simulation volume, then that node could
move away from the boundary. This situation is illustrated in Figure 7.14a. If the node is
allowed to move away from the boundary, part of the true etched surface will no longer be

blanketed by a mesh. As a result, the simulation is no longer correct.

An example of a simulation where mesh contraction occurs is shown in Figure 7.14b.

The simulation is run with a triangular etch-rate
R(xy.z)=2lx| pm/sec [7.8]
for 10 time-steps of 0.1 second duration each. As can be seen, the etch-fronts curve inwards
towards the x =0 plane. This behavior was also observed in the ray-tracing simulation shown
in Figure 6.13a (Section 6.3.3.2), where the trajectories of the individual rays were calculated.
It is not difficult to see that the rays in Figure 6.13a and the etch-fronts in Figure 7.14b are
orthogonal to each other. And as in Figure 6.13a, there are also ray-scarce xegions in the ray-

string simulation.

In order to avoid the incomplete-mesh situation just described above, it is necessary to
pin the boundary nodes to the boundary. So, in Figure 7.15a, the direction vector of the node
on the boundary should be adjusted so that the vector is parallel to the boundary. To do this,
the vector must be "flattened”; the component of the vector normal to the boundary surface is
set to zero, and the vector is renormalized. As shown in Figure 7.15a, the result of the vector

"flattening” procedure is that the node on the boundary will slide along the boundary, and the
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SIMULATION
BOUNDARY

Outside ¢ Inside

Figure 7.14a : 2D Boundary Movement. The nodes on the boundary could move
inside the boundary, leaving part of the surface uncovered by the
mesh.

NOo BOUNDARY CONSTRAINTS

Depth (um)

| || R=2xl

_1 N N N N 1 N o N

-5 0 5
Distance on wafer (um)

Figure 7.14b : 2D ray-string etching using the triangular etch-rate function
R=2/x/. The simulation is run without any boundary constraints, so
that the border nodes can and do leave the border. The simulations
were run for 10 time-steps of 0.1 seconds each.
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SIMULATION
BOUNDARY

Outside £ Inside

Figure 7.15a : Nodes on the boundary should only be allowed to move on the
boundary. The node’s direction vector is "flattened" so that the
node can only move on the boundary.

BOUNODARY VECTOR FLATTENING

Depth (um)

R=2Ix|

‘l N " P o (] N o N o

-5 0 5
Distance on wafer (um)

Figure 7.15b : 2D ray-string etching using the triangular etch-rate function
R=2/x|. In the simulation, nodes on the boundary are prohibited
from moving into the simulation volume. The simulations were run
for 10 time-steps of 0.1 seconds each.
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full etch surface will remain covered by the mesh. Figure 7.15b shows the profiles of the tri-
angular etch-rate simulation with vector flattening. The profiles formed now cover the entire
etch surface; the mesh has been prevented from contracting inwards. Note that these profiles
also look very similar to those shown in Figure 4.4b, where the modified cell algorithm was

used to determine the etched surface.

It must be emphasized that the boundary-node vectors should be flattened only if the
node on the boundary is moving into the simulation volume. If the node is moving out of the
volume, it should be allowed to move freely. Otherwise, inaccurate lagging tails such as those

seen in Figure 7.13 will occur in the vicinity of the boundary.

7.5.3. Mesh Delooping

7.5.3.1. Loop Formation

Loop formation is perhaps the greatest weakness of the surface-advancement algorithm.
Surface advancement algorithms move the mesh representing the etch surface without forek-
nowledge of the etch-state in the local volume of the material. As a result, the mesh could

move into an already-etched region and so form loops.

In general, loops will be formed at the intersection of two converging etch-fronts.
Examples of loop formation are shown in Figure 7.16. In the example in Figure 7.16a, the
surface is being etched both from the left and from the right; physically, the etchant is tunnel-
ing though the tall mesa-like structure to form a bridge. The loop is formed when the etch-
fronts converge. The removal of the loop leaves a blob of material floating freely - this is

actually the 2D cross-section of a bridge.
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Loops could also be formed at sharp converging comers, as seen in Figure 7.16b. If the
mesh moves slower at the comer than at the sides of the comer, a loop could be formed when

the etch-fronts from the sides of the comer converge. The loop then has to be removed.

7.5.3.2. Loop Avoidance

The formation of loops in the surface mesh poses difficult problems. The loops do not
represent the actual etched surface, and are present only because the algorithm has failed to
keep track of the true etched surface. Unlike the volume etching methods discussed in
Chapters 3 and 4, the string, the ray, and the ray-string etching methods do not retain informa-
tion on the etch-state throughout the volume of the material. As a consequence, the etch-

fronts are free to move into already-etched regions.

One way of dealing with this problem is to keep track of the etch-state in the entire
volume of the material. Scheckler? has proposed a hybrid cell/surface-advancement algorithm
in which a cellular array is used to store the etch-state of the material at uniform grid-points
throughout the volume of the material. In some ways, this is similar to the cell-removal
method, but the decision of cell-removal is made based on the surface motion and thus many
cells may be removed at a single time-step. The hybrid cell/surface-advancement algorithm
has been demonstrated in preliminary 3D simulations of small-volume photoresist develop-
ment. However, the algorithm does run into memory allocation problems when the volume of
the material to be simulated is large, since large simulation volumes also require large arrays.
'I'hé algorithm also pays a price in computation time and complexity for the continual updat-

ing of the cellular array.
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Another method for avoiding loops is remesh the surface periodically with splines.
Barouch? uses a tensor-product B-spline interpolation function to locally smooth the evolving
surface at every time-step. This method has been demonstrated in photoresist simulations
with weak standing waves. Unfortunately, the use of splines to smooth the surface is compu-
tationally expensive - not much specific data is available, but the work reported by Barouch
was done on a supercomputer. Furthermore, surface smoothing or remeshing can introduce
errors, since the surface is unduly affected by a few incorrect points. Another consideration is
that surface-smoothing with splines will only work locally; it cannot handle cases in which

distant etch-fronts intersect as in Figure 7.16a.

7.5.3.3. 2D Delooping

As indicated in the previous section, avoiding loops is both difficult and computationally
expensive. So, if it is not possible to detect and avoid the loops before they do occur, the only
recourse is to remove the loops when they do form. But it is not always easy to predict when,
where or even if loops will be formed. So, the next best thing is to inspect the surface mesh

periodically and remove any loops that are encountered.

Figure 7.17 shows the procedure for removing loops in 2D. This procedure can be bro-

ken up into four steps.
(11 Find the intersecting segments by examining the list of segments.
(II] Cut up the segments that do intersect.
() 'Determine the segments and nodes in the loop.

(IIT] Remove the segments and nodes inside the loop.
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Loop Formation
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Figure 7.17 : Procedure for removing loops
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Of these four steps, the most difficult is that of determining which of the segments and
nodes in the surface mesh are inside or outside the loop. One method of determining which
points in the mesh are inside or outside the loop is outlined in Figure 7.18. This method relies
on the direction of the motion of the intersecting segments to determine which of the nodes on
the segments are inside or outside the loop. .In Figure 7.18a, it is easily seen that node NB, is
behind segment SA , since the two nodes on SA are moving away from NB,. Similarly, node
NA; lags segment SB. Therefore, the nodes NA, and NB, are both in the loop, while the
other two nodes, NA; and NB, are outside the loop. The other nodes in the loop can now be
identified by traversing the loop, that is, by moving along the segments adjoining the loop
nodes NA ; and NB,. And once these loop segments and nodes have been identified, they can

be removed.

An example of the delooping procedure is shown in Figure 7.19, in which the profiles

have been simulated using the ray-string algorithm with the the triangular etch-rate function
R(xy.z)=21xl +0.2 pm/sec, Ixl <0.5 [7.9]
As can be seen, the profile develops a loop after 8 time-steps. The loop is removed using the
delooping procedure described earlier. However, when the mesh is advanced further, it inter-
sects again at a later time. The intersection of the two fronts again has to be removed. After

the final deloop, the profile in the lower left of Figure 7.19 is obtained.

It must be emphasized that the delooping procedure as described above works best when
there is only a single loop in the profile. The procedure will not work correctly when the
profile is plagued by multiple intersecting loops, such as in Figures 6.7b-c. Figure 7.20a shows
another example of a Gordian knot. Clearly, it is not easy to determine which parts of the sur-
face are inside or outside the loop. Another confusing situation arises when one or both of a

pair of intersecting segments is a pinwheeling segment. A pinwheeling segment, as shown in
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Figure 7.19 : 2D ray-string etching using the triangular etch-rate function
R=2[x/+0.2. The simulations were run for a total of 10 time-steps
of 0.1 seconds each. The mesh was delooped at 0.8 seconds and

1.0 seconds.
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Figure 7.20b, is a segment whose nodes are traveling in opposite directions. If an intersecting
segment is pinwheeling, it is not easy to determine which part of the surface is etched or
unetched. An incorrect determination could lead to the deletion of "correct” nodes outside the

loop.

7.5.4. Loop Formation In Photoresist Development

The loop behavior in the ray-string algorithm may be understood better by testing the
algorithm with a high-frequency sinusoidal etch-rate function. This function resembles the
etch-rate distribution found in photoresist development.

R(xy.2)=e*'(1.05 - cos(8rz)) [7.10)
Figure 7.21a shows the etch profile after 300 time-steps. The profile was simulated using the
2D ray-string algorithm with the etch-rate function above. The simulation was run without
delqoping and with linear (instead of arc) interpolation. It is clearly seen that loops have
formed at the comers of the profile where the etch-rate is relatively slow. But also note that
the loops are quite narrow and restricted to certain regions in space. In fact, if the ray-
trajectories from Figure 6.15b are superimposed on the ray-string profile of 7.21a, as has been
done in Figure 7.21b, one can see that most of the multiply-curved rays have ended up on the
loops of the ray-string profile! So, in effect, the loops have formed because the rays are
trapped and guided in the regions of relatively low etch-rate within the material, very much

like optical rays are guided in waveguides.

Similar loop behavior is observed when the ray-string simulation is run with real pho-
toresist parameters. Figure 7.22 shows the resist profiles at development times of 3 - 30
seconds. The etch-rate distribution used was that of Figure 2.3, for a 1.25 um isolated space

on 1.0 um of Kodak 820 resist. Again, loops are formed at the nodes of the standing waves.



156

R=exp(Q4x2)-(1.os-cos(Snz))
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Figure 7.21: 2D ray-string etching using a sinusoidal etch-rate function. Simula-

tion proceeds for a total of 3 seconds, with 300 time-steps of 0.01
seconds each. The ray trajectories from Figure 6.15b are superim-
posed on the ray-string profile of (a) in the lower figure (b).
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Figure 7.22a : Resist profile at development times of 3-30 seconds. The etch-
rate distribution of Figure 2.3 is used for the ray-string simulation.

The mesh has not been delooped.
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Figure 7.22b : Resist profile at development times of 3-30 seconds. The etch-

rate distribution of Figure 2.3 is used for the ray-string simulation.
The mesh is delooped every 3 seconds.
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And again, the loops are restricted to the low-etch-rate regions.

At this point, it is instructive to compare the behavior of the loops in the string and in the
ray-string. Recall that under the same simulation conditions described above, the string simu-
lation produces lots of interlocking loops (Figure 6.7). In contrast, as previously noted, loops
formed by the ray-string algorithm are restricted to the low etch-rate regions in the pho-
toresist. This key difference is, as discussed in the previous chapter, due to the way in which

the advancement vectors are calculated in the two algorithms.

In order to produce more pleasing profiles, the surface mesh can delooped. In the simu-
lation shown in Figure 7.22b, the profiles have been delooped every 3 seconds (30 time-steps).
The profiles become much easier to analyze. But also note that in Figure 7.22b, there are a
number of "hanging" segments unconnected to the main body of the mesh. This is a result of

errors in the delooping code. It all goes to show that even in 2D, delooping is not easy.

It should also be noted that in theory, it should be possible to use only a single deloop
operation at the final step to remove all the loops that have formed in the surface. This is
because the ray method of vector calculation restricts the loops to certain regions in space.
Unfortunately, final-step delooping is not easy to do in practice. For example, if the simulation
described in Figure 7.22 is allowed to run for the full 300 time-steps before delooping, some
of the intersecting segments will be pinwheeling segments. These segments are not accounted

for correctly as yet, and as a result, the deloop will fail and the program will crash.



159

7.6. TUNING SIMULATION PARAMETERS FOR ACCURACY

The discussion thus far has shown that the ray-string etch simulator, like any other
numerical program, has a number of intemal simulation parameters that affect both the accu-
racy of the results and the efficiency/speed of the simulations. It is quite important to know
which parameters are of the most significance. It is also necessary to understand the tradeoffs

in efficiency and accuracy obtained from tuning these simulation parameters.

The effect of a number of simulation parameters on the developed resist profile is shown
in Figures 7.23 and 7.24. In all cases, the simulations were run using the 2D ray-string algo-
rithm with the etch-rate distribution of Figure 2.3. Each simulation was run for a total of 30
seconds of development time. The effect of the parameters on the simulation is tabulated in

Table 7.2.

The parameters investigated and their effects are listed below in no particular order.

Interpolation Scheme
There are two interpolation schemes for adding nodes to sparse regions of the mesh. As
discussed in Section 7.5.1.1, the nodes may be added on a straight or linear line joining
two distant nodes, or they may be added on the arc of a circle defined by the direction
vectors of the two distant nodes. The profiles produced by arc interpolation (Fig
7.23c,d) are definitely smoother than those produced using linear interpolation (Fig
7.23a,b). The computation time does not appear to change significantly when either of
the two methods are used.

Time-Step Size
The size of the time-step is quite important in determining the accuracy of the simula-

tions. As might be expected, the results do become more accurate when a smaller time-
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Figure 7.23 : The effect of the interpolation scheme, time-step size, and recur-
sive length on the simulated resist profile after 30 seconds of devel-
opment. The segment length and allowable range are kept con-
stant. The etch-rate distribution of Figure 2.3 is used for the ray-

string simulation.
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Figure 7.24 : The effect of the ideal, maximum and minimum segment lengths on
the simulated resist profile after 30 seconds of development. All
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2.3 is used for the ray-string simulation.
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Effect of Simulation Parameters on 2D Ray-String Simulation
Constant Segment Length (Figure 7.23)
Figure | Segments Interpolauo:- Time-Step | Recursive | Max/Min Surface CPU
Scheme Size Length | Segm Size! || Smoothness | Time?
1.2a 50 Linear 0.1 0.1 1.20.1 Moderate 80 sec
7.2b 50 Linear 05 0.1 1.2/0.1 Rough 54 sec
7.28¢ 50 Arc 0.1 0.1 120.1 Smooth 80 sec
7.23d 50 Arc 05 0.1 1.2/0.1 Smooth 52 sec
1.23¢ 50 Arc 0.1 20 1.2/0.1 Smooth 67 sec
7.23¢ 50 Arc 05 20 1.20.1 N/A3 10 sec
Varlations In Segment Length (Figure 724)
| Figure MImw Time-Step | Recursive | Max/Min Surface CPU
Scheme Size Length | Segm Size! || Smoothness | Time2
7.24a 30 Arc 0.1 0.1 1.20.1 Moderate 53 sec
7.24b° 50 Arc 0.1 0.1 1.2/0.1 Smooth 80 sec
7.24c 100 Arc 0.1 0.1 1201 || Very Smooth | 157 sec
7.24d4 50 Arc 0.1 0.1 2.0/0.1 Rough 53 sec
7.24e 50 Arc 0.1 0.1 1.2/03 Moderate 80 sec

Table 7.2 : The effect of selected simulation parameters.

These numbers are ratios of the ideal segment length S;3. Two numbers are listed. The first is the ratio
of the maximum size to the ideal size, S,,,/S;; and the second is the ratio of the minimum allowable size
to the ideal size S.;/Siq.

Computation time was measured on a SUN 4/280, for simulation of 30-second resist development with
the etch-rate distribution of Figure 2.3. The data printed is the average of 3 data-points.
The profile in this simulation was incorrect, due to abrupt reflection of the etch-rays.

Figure 7.23c and 7.24b are identical.
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step is used. In Figutes 7.23a-b, there is a very noticeable change when the time-step is
increased from 0.1 seconds to 0.5 seconds - the profile in the latter simulation is rougher
and sharp-edged. However, the use of arc interpolation appears to offset this. As can be

seen, the profiles of Figures 7.23c and 7.23d appear similar in shape and smoothness.

Recursive Length

Recursive vector checking, discussed in Section 7.4.2, is very important for ensuring
that the rays do not bounce abruptly when large time-steps are taken. This procedure
uses recursive time-steps to calculate the trajectory of the rays with greater accuracy.
The maximum change in the angle of the direction vectors of the rays is proportional to
the recursive length. A recursive length of 0.1 corresponds to a maximum change of 4°,
while a recursive length of 2 ensures that no recursive vector checking is used. Figures
7.23e and 7.23f demonstrate the effectiveness of recursive vector checking. If the time-
step of the simulation is small to begin with (Figure 7.23¢) recursive vector checking
appears to have little effect on the accuracy of the simulation. But there is a slight
increase in the computation time when recursive vector checking is used. However,
when the time-step is large, the lack of recursive vector checking causes the rays to
bounce and reflect off regions of high etch-rate slope.t As a result, the simulated profile,
shown in Figure 7.23f, is incorrect. With recursive vector checking (Figures 7.23b,d),
the profiles are relatively accurate even though the time-step is large. Therefore, it
appears that recursive vector checking is well worth the price paid in increased computa-
tion time.

Ideal Segment Length

1 Recall from the discussion in Section 7.4.1 that the threshold time-step size for no abrupt ray reflection
is 0.18 seconds. These simulations show that without recursive vector checking, the rays are accurate when
the time-step is 0.1 seconds, but bounce for a time-step of 0.5 seconds.
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The ideal ségment length, or the number of segments on the initial mesh, does play an
important role in the accuracy of the simulation. As might be expected, the accuracy
increases as more segments (smaller segment lengths) are used initially in the simula-
tion. This is easily seen in Figures 7.24a-c. But note in Table 7.2 that that the computa-
tion time increases linearly with the number of segments used.
Allowable Segment Length Range

The range in the allowable segment lengths also affect the accuracy of the simulation.
This was previously discussed in Sections 7.5.1.1-2. To recap, if the maximum allow-
able segment length is too large, the simulation will be inaccurate, since there will be
relatively sparse regions on the surface. The inaccuracy hurts particularly in photoresist
development simulations, where the surface changes rapidly with distance. The profile
in Figure 7.24d, where S« = 2.0S;4.os does look somewhat uneven. The minimum seg-
ment length also affects the accuracy of the profiles. If the minimum allowable segment
is too long, then the segments will poorly approximate the surface. But as seen in Figure
7.24e, increasing the minimum allowable segment length from 0.1S;4,,; t0 0.3S;4..s does

not appear to affect the simulated profile.

7.7. SUMMARY : 2D IMPLEMENTATION ISSUES

In this chapter, the issues affecting the accuracy and efficiency of the ray-string simula-
tion have been examined in some detail. This was done with the aid of numerous 2D simula-

tions using the ray-string algorithm.

Two important modifications to the ray-string algorithm have been developed based on

the iinplicit constraints of the ray equation. The first is a rule-of-thumb procedure for select-
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ing the threshold.time-step for which abrupt ray reflection will not occur. In simulations
involving periodic etch-rate distributions, this threshold time-step is one in which the accuracy
and efficiency of the ray calculations are most optimized. The second procedure, recursive
vector checking, is one that has a tremendous impact on the accuracy of the simulations.
Recursive vector checking effectively increases the accuracy of large-time-step simulations by
taking small recursive time-steps in which the change in the ray trajectories are limited to a
few degrees. The price éaid for the improvement in accuracy is that of computation time; the
simulations reveal that the increase in computation time due to the recursive procedure is

directly proportional to the size of the time step.

The ray-string algorithm also requires that a number of mesh operations be performed on
the mesh during the course of the simulation. These operations are mesh modification, mesh
boundary clipping, boundary vector flattening, and delooping. The comprehensive testing of
the 2D ray-string algorithm has shown that the accuracy of the simulations is increased with
the use of (a) small time-steps, (b) small segments lengths, (c) small maximum allowable seg-
ment length, (d) arc interpolation, and (e) recursive vector checking. In all cases except (d)
arc interpolation, the increase in accuracy is accompanied by an increase in computational

time.

It is said that knowledge is power. The rigorous testing of the ray-string algorithm has
provided a great deal of information about the behavior of the ray-string algorithm and on the
issues, procedures and operations that affect the accuracy and speed of the computations. This
knowledge is of great value in the implementation of the ray-string algorithm in three dimen-

sions.



166

REFERENCES

A. Moniwa, T. Matsuzawa, T. Ito, H. Sunami, ‘‘A Three-Dimensional Photoresist Imag-
ing Process Simulator for Strong Standing-Wave Effect Environment,’’ IEEE Transac-
tions on Computer Aided Design, vol. CAD-6, no. 3, pp. 431437, May 1987. TRIPS-I :

3D Ray-String method.
E.W. Scheckler, June 1989. Personal communication, work in progress.

E. Barouch, B. Bradie, H. Fowler, S.V. Babu, ‘‘Three-Dimensional Modeling of Optical
Lithography for Positive Photoresists,” Interface’89 : Proceedings of KTI Microelec-

tronics Seminar, pp. 123-136, November 1989. 3D Ray method.



167

CHAPTER 8
THE RAY-STRING ALGORITHM :
3D IMPLEMENTATION ISSUES

8.1. INTRODUCTION

Resist development algorithms using the cell, string, and ray approaches have been
implemented and utilized to examine basic tradeoffs in accuracy, delooping requirements, and
efficiency. ‘A combined ray-string approach is by far the most advantageous, as it is fast,
efficient and has modest memory requirements. The algorithm is also accurate and insensitive
to errors in the local etch-surface. Consequently, the decision was made to implement the

ray-string algorithm in three dimensions.

But the study of the algorithm in the previous chapter has revealed that the simulated
mesh requires periodic mesh modification, boundary clipping and flattening, and an occa-
sional deloop in order to preserve the balance between accuracy and efficiency. The informa-
tion gleaned from the testing of the 2D algorithm proves to be of great aid in implementing
the mesh operations in 3D. As will be shown in this chapter, the mesh implementation issues
explored in 2D do carry over to 3D as well. But the 3D implementation is considerably more
difficult, as there are a number of 3D "traps” which must be avoided. In addition, a careful
choice of the data structure must be made so as to enable the accurate and robust implementa-

tion of these essential mesh operations.
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8.2. IMPLEMENTATION OF THE RAY-STRING ALGORITHM IN 3D

8.2.1. Data-Structure Requirements

The first step in the implementation of the ray-string algorithm in 3D is to select a data-
structure that can be used to efficiently represent a time-evolving surface. In the ray-string
algorithm, the most important objects on this surface are the nodes or points, since it is these
nodes that make up the etching surface. The data-structure must reflect this fact. Therefore,
the data-structure must, at the very least, consist of a list of nodes. Each node in turn must

contain the coordinates and direction vector of the node,

But other than the basic node information, what other data must the data- structure hold?
The answer to this question lies in the various operations that have to be carried out on the

surface mesh. These operations are listed below, in order of importance.

Mesh Modification
In the interests of efficiency and accuracy, the density of nodes on the mesh has to be
controlled. The mesh has to be modified so that additional nodes are added to node-

scarce regions, while nodes that are too close together are deleted.

Mesh Clipping
If the mesh expands outside the simulation boundaries, then it should be clipped. This is
really necessary to control the size of the mesh. Without clipping, a mesh could grow
outside the simulation boundaries. Nodes outside the simulation boundaries do not con-
tribute to the simulation in the area of interest, so it would be inefficient to continue

tracking these nodes.

Mesh Delooping
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In both the ray and string algorithms, it is quite possible for the surface to form loops.
The same is true of the ray-string algorithm. The loops formed are non-physical in

nature, and should be deleted for correctness.

Mesh Plotting
The graphical interface is also of some importance, for it is an invaluable tool for inter-
preting the simulated data. The data-structure must be set up so that data can easily be

plotted.

Given that all the above mesh operations are necessary to retain the accuracy and correctness
of the mesh, what data structure can best be used to implement these operations accurately and

efficiently?

8.2.2. 3D Data-Structures

After some consideration, it was decided that the essential mesh operations previously
described could best be implemented using a hierarchical structure of nodes, segments and tri-
angles. Each object in this data-structure has its uses. The nodes contain the surface coordi-
nate and vector information. The segments are used for mesh modification and clipping. And

the triangles are used in the 3D mesh delooping and plotting operations.

The 3D ray-string algorithm has been implemented in the C programming language,
using a linked list data structure to represent the nodes, segments, and triangles that make up
the etching boundary. This data-structure is shown in Figure 8.1. As shown, each triangle
contains 3 segments, and each segment in turn contains 2 nodes. Each node-segment-triangle
interconnection is two-way. A triangle has pointers to the three segments attached to it, and

each segment has pointers to its neighboring triangles. The same applies to the nodes; each
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Figure 8.1 :Data structure used for 3D ray-string algorithm. The data structure consists of
linked lists of nodes, segments, and triangles. Each triangle is connected to 3 seg-
ments, while each segment is connected to 2 nodes. Each segment also has a link
to its neighboring triangles, while each node maintains a list of its neighboring
segments.
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node contains an array of pointers to its neighboring segments. This last interconnection is

necessary to retain mesh integrity during mesh modification, clipping and delooping.

8.3. THE ALGORITHM FOR SURFACE ADVANCEMENT

The procedure for advancing the surface mesh in 3D is identical to that described for 2D
in the previous chapter. To recap, the simulation begins by creating and initializing a surface
consisting of a number of interconnected nodes, each with a ray vector normal to the initial
surface. The algorithm then proceeds as follows :

[I] Advance each node on the boundary mesh along its direction vector, and calculate
the new direction vector at the new node location using the discretized form of the
differential ray equation. Use recursive vector checking for more accurate calcula-
tion of the node trajectory. In addition, since boundary nodes must not be allowed
to enter the simulation volume, the boundary vector nodes must be flattened if
necessary. .

{II1 Add nodes in regions where the mesh has expanded, and delete nodes in regions of

contraction.
(III] Clip the mesh if it extends outside the boundary.

(IV] Deloop the mesh if necessary. An algorithm for delooping the mesh will be

described and demonstrated in a later section.

[V] Proceed to [I] and repeat until the total etch-time has been reached.
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8.4. MESH OPERATIONS

Mesh operations are a necessary but distasteful ingredient of the ray-string algorithm.
These operations must be carried out to ensure that the mesh remains accurate and efficient
and manageable. But these operations are also not easy to implement in 3D, primarily
because of the complications involved in manipulating a three-tiered data-structure such as is

used in the ray-string approach.

8.4.1. Mesh Modification

Mesh modification is as important in 3D as in 2D. During the course of the simulation,
the nodes on the surface mesh will move farther apart or closer together. In order to retain a

balance between accuracy and efficiency, nodes have to be added to or deleted from the mesh.

As in 2D, mesh modification in 3D is segment-based. The connection between the
nodes on the mesh is maintained by a list of seéments. 80, in order to control the density of
nodes in the mesh, segments have to be cut up if they become too long or deleted when they
become too short. This procedure is somewhat complicated in 3D, because after mesh-
modification, the interconnections between the triangles, segments and nodes in the mesh

must be updated.

8.4.1.1. Segment Cutting

Segment cutting is somewhat more difficult in 3D than in 2D. Figure 8.2 depicts the
steps that are taken whenever an over-long segment is discovered. First, a new node bisecting

the segment has to be created. This node could be placed using linear interpolation, or as in
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Segment S1 is too long.

Create a node N1
bisecting S1

Create two
segments Sla, S1b

Delete S1

Create new
segments S2, S3

Delete T1, T2

Create new
triangles T3, T4, TS, T6

Reset mesh interconnections.

Figure 8.2: 3D Segment Cutting. If a segment is too long, it must be cut up into
smaller segments. This entails creating new nodes, segments and
triangles. The interconnections between the nodes, segments and
triangles must then be reset.
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the 2D case, it could be placed on an arc defined by the direction vectors of the two nodes on
the segment. The segment is then cut up and replaced by two new segments. New triangies
are also created during this process. And finally, interconnections between the nodes, seg-

ments and triangles are updated to reflect the changes made in the mesh.

Figure 8.3 shows 3D profiles from simulations of a uniform spherical etch. The plots
show the mesh profile after 10 0.1-second time-steps; the solid dark lines superimposed on the
top-view plots are the expected circular result. The top pair of plots use linear interpolation
during the segment cutting procedure, while the lower pair use arc interpolation for node addi-
tion. It is not difficult to seethat the arc interpolation produces "fuller” and more accurate
results. In the top-view plots of Figure 8.3, it is readily seen that the linearly interpolated
mesh falls short of the expected circular result. In contrast, when arc interpolation is used to

modify the mesh, the resultant mesh is more accurate and quite satisfactorily spherical.

8.4.1.2. Segment Merging

The procedure for 3D node deletion, shown in Figure 8.4, is based upon merging short
segments. This means that if a segment is deemed too short, i.e., S < S, then one of the
nodes on that segment is deleted.t Segments and triangles common to the deleted node and
the short segment are also deleted. At the same time, the neighbors of the deleted node are
reconnected to the undeleted node on the short segment. The original short segment is then
deleted. The final step is to reset the interconnections between the nodes, segments and trian-

gles on the mesh.

t The algorithmic decision on the node to be deleted is made based on the number of segments attached to
the node - the deleted node is that with the most segments attached. This implicitly controls the number of
triangles attached to a single node. In addition, the node to be deleted must not be on the boundary.
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Figure 8.3: Simulation of uniform spherical etching with the ray-string algo-
rithm, using linear interpolation and arc interpolation. The etch
begins from a single seed point at coordinates (0,0,0), and proceeds
for 1 second of etching time. The time-step is 0.1 sec.
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S1 is too short.

Select a node on S1

to be deleted.

Delete S1

Delete T1, T2

adjoining S1

Delete S2, S3

adjoining N1 &

connected to T1,72

& Delete N1

Connect S4 to N2

Reset mesh

interconnections.

Figure 8.4 :

3D Segment Merging. A segment is merged by first selecting a
node on the segment to be deleted, then deleting the segments and
triangles common to the node and to the triangles adjoining the seg-
ment. The interconnections between the nodes, segments and tri-
angles then must be reset.
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It is quite important to note that the segment-merging procedure outlined above merges
one node on a segment onto the other node of the segment. This procedure, as shall be seen
shortly, could change symmetrical 3D profiles to asymmetrical 3D profiles. Also, the profiles
will look different if the order of the merged nodes is changed, i.e., instead of merging N1
onto N2, merge N2 onto N1. In other words, the segment cutting procedure is not commuta-
tive. One could, of course, merge the two nodes to a node in between the two "bad" nodes.
But if the two "bad” nodes are merged onto an interpolated "average" node, interpolation
errors could creep into the simulation. In contrast, if the nodes are merged onto one single sta-

tionary node, the simulation will, at the very least, remain accurate at that particular node.

In 3D segment meshing, there are a number of areas where care has to be exercised.
One of these areas is the mesh boundary. If a segment has one node inside the boundary and
the other node on the boundary, the node on the boundary should not be deleted. The reason
for this restriction is shown in Figure 8.5. The mesh is identical to that previously shown in
Figure 8.4, except that instead of merging node N1 on the short segment S1, N2 on the boun-
dary is deleted. Following the procedure of node-deletion and segment merging outlined in
Figure 8.4, one finds that at the end of the procedure, there is a large triangular region within
the rectangular boundary that is not covered by the triangular mesh! The mesh has contracted
in on itself. And as a result, the simulated etch-surface no longer represents the true etch sur-

face correctly.

The size of the minimum allowable segment length S, is also another source of error.
The 2D tests showed that if the segments merged were t0o long, the profiles would lose accu-
racy. The same is true in 3D. An example is shown in Figure 8.6. The mesh initially consists
of six triangles on a sharp stepped surface. There are two short segments on opposite vertical

sides of the step. Now, suppose that one segment is merged upwards (i.e. the lower node is
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A
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— Scgment to be deleted
O Node to be deleted

Figure 8.5: 3D Segment merging. If the node deleted is on the boundary of the
mesh, the mesh will contract in on itself. This is undesirable.
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— Scgment to be deleted
O Node to be deleted

Figure8.6: 3D Segment merging on a folded surface. If the short segments
marked in thick dark lines are merged, the resultant surface will be
asymmetrical and inaccurate.
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merged onto the upper node) while the other short segment is merged downwards. Then, as
shown in Figure 8.6, after the segment merging procedure, the resultant mesh will become
asymmetrical! The profiles of Figure 8.6a and 8.6f do not bear much resemblance to each
other; the segment merging procedure has in effect "averaged" the profile. However, if only
very small segments are merged, the averaging error will have a lesser impact on the mesh.

Therefore, it is best to merge or delete only very small segments.

A real example of the symmetrical-to-asj'mmetﬁcal profile conversion with segment
deletion is shown in Figure 8.7, where the 3D profile has been simulated using the 2D
sinusoidal etch-rate function -

R(xy 2)=e"(1.05 - cos(2nz)) 8.1]
The simulations were both run for 200 time-steps of 0.01 seconds. Figure 8.7a shows the
profile with a minimum segment length of S y;, = 0.7S;4.4;, While Figure 8.7b uses a smaller
minimum allowable segment length of S;, =0.25;4,. The feature of interest in these two
figures is the sharp comer at the upper portion of the plot. It is quite interesting to see that in
this region, the profile in Figure 8.7a is not constant with the y-coordinate even though the
etch-rate function [8.1] is not a function of y. The profile appears rounded on the y =0 plane,
and sharp-edged on the y =0.1 plane. This profile is a result of asymmetrical segment-
merging; a segment on the y =0 plane has been merged in a different direction than its
corresponding segment on the y =0.1 plane. A much better profile is produced when a
shorter Smin is used, as shown in Figure 8.7b. However, note that in this case, there are
several obtuse triangles at the bottom portion of the mesh. These triangles are formed when

long segments are cut; since only very short segments are merged, the triangles remain obtuse.

It is often said that a "good" mesh is one that consists primarily of equilateral triangles.

This may be true for finite-element analyses, but not for mesh-based surface-advancement
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7.

oy'.leis

Figure8.7: 3D ray-string etching simulation using a sinusoidal etch-rate func-
tion. The simulation proceeds for 200 time-steps of 0.01 second
duration each. The simulations in (a) and (b) differ in the size of
the shortest allowable segment length. Note that the profile in (a)
has a y-dependence even though the etch-rate function is indepen-
dentof y.
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algorithms. Figures 8.6 and 8.7 indicate that it is not realistic to expect accurate results with
equilateral triangles. To obtain equilateral triangles, or approximately equidistant nodes, the
segment length ratios S min/Sigeqs aNd Smax/Sideq; Must be close to 1. But as seen in Figure
8.7a, if the segment length rati§ S min/Sidear is relatively large, the simulation produces an inac-
curate profile. This reflects the fact that equilateral triangles are not suitable for approximat-
ing rough irregular surfaces. Such surfaces are better described by triangles with unequal
sides. A segment length ratio S min/Sizeasr =0.2 produces uneven triangles which don't look

very eye-pleasing, but at least the mesh does represent the surface accurately!

It is also worth mentioning that the short S ;, simulation (Figure 8.7b) used up approxi-
mately 7.1 CPU seconds of on a SUN 4/280, whereas the long S nin simulation (Figure 8.7a)
cost 6.4 seconds. The use of smaller allowable segments increased the accuracy of the simula-
tions, but at a cost of an increase of about 10% in the computation time. This is one aspect of

the efficiency vs. accuracy tradeoff.

Another problem specific to 3D surface remeshing is that of zero-volume surfaces, as
shown in Figure 8.8. The situation is as follows. Suppose that during the evolution of the
mesh, a triangular pyramid composed of three smaller triangles has been formed, as shown in
Figure 8.8a. Now, if a segment at the base of this pyramid is merged or deleted, the segment
merging procedure will result in a folded surface, in which two triangles share the same nodes
and segments. In other words, the pyramid has been flattened into a double-triangle! The
flattened pyramid is depicted in Figure 8.8c. This result is not only physically incorrect, but it
could also cause computational problems further on during the simulation. To avoid this par-
ticular problem, it is necessary to check each segment before it is merged, to find out if the
segment to be merged is part of a 3-triangle pyramid. If the test is positive, the segment should

not be merged.
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Figure 8.8 : 3D Segment merging. If a segment to be deleted is part of a 3-tri-
angle pyramid, merging that segment will result in a flat fold where
2 triangles share the same segments and nodes.
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8.4.1.3. Mesh Modification Procedures

There are, at present, two procedures for mesh modification. Both procedures are
segment-based - long segments are cut up while short segments are merged. But the method

for selecting the segments to be cut up or merged differs in the two procedures.

The first mesh-modification procedure is based on modifying all the segments in the seg-
ment list. In this procedure, each segment in the segment list is examined in tum.
[I1 Foreach segment :
[a] If a segment is too long, cut it up. Cut-up segments are placed at the end of
the seginent list.

[b] If a segment is too short, merge it.

The placement of cut-up segments at the end of the list ensures that long segments will be cut

up until they become shorter than the maximum allowable segment length.}

One weakness of the segment-based mesh-modification procedure is that overly-obtuse
triangles are routinely created. This is because if a triangle has two long segments, the deci-
sion on which segment to cut up is made based on the order in which the segments appear in
the segment list. If this "cut-up” segment tumns out to not to be the longest segment on the tri-
angle, then the modified triangles that are created will become more obtuse than the original

triangle.

The second mesh-modification procedure is better suited for producing acute triangles.

+ Note that short segments created from cut-up long segments are not merged unless these segments occur
later on in the segment list. This avoids an infinite loop.
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This procedure is based on examining the segments on a triangle.
[I] Each triangle in the triangle list is examined in turn. For each triangle :
(a) If the longest segment on the triangle is too long, then the segment is cut up.
(b) If the above condition is not met, then the segments are checked for short-
ness. If the shortest segment on the triangle is too short, then it is merged.

(c) If neither of the above are true, then the segments are in the correct range and

the triangle is left unmodified.

This procedure results in reasonably well-shaped triangles. It does not guarantee the produc-
tion of only acute triangles, but at least the triangles that have been modified do not become

over-obtuse in shape.

8.4.2. Mesh Clipping

The mesh should be clipped periodically to trim off those parts of the mesh that have
moved outside the simulation boundaries. This is not too difficult to do in two dimensions.
However, in 3D, clipping can be a very expensive and difficult operation. As with mesh
modification, the mesh can be clipped by cutting up segments. Figure 8.9 shows the basic
procedure for 3D clipping. First, all the segments are tested for intersections with a boundary.
Segments that do intersect the boundary are cut up, and new segments and triangles are
created. This procedure is repeated for the six borders of the 3D box. Finally, the triangles,
segments and nodes are checked; any of these objects outside the 3D boundaries are deleted.
An example of clipping is shown in Figure 8.10, where a mesh conmmng 100 triangles is
clipped. Note that the clipping procedure itself creates many small triangles. These triangles

can be removed, if desired, by following the clipping operation with a mesh modification step.
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Cut Segment  Form New Cut Segment Form New

Delete
Triangles

Form New

i

Figure8.9: 3D Clipping : All the segments that cross a boundary are cut up in
turn. Each segment cut produces new triangles. Finally, the trian-
gles, segments and nodes outside the boundary are deleted.

INITIAL MESH AFTER CLIPPING AFTER MODIFICATION
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Figure 8.10 : 3D Clipping : An initial mesh containing 100 triangles is clipped
from x=-0.26 to x=0.26, and from y=-0.76 to y=0.76. The obtuse tri-
angles can be removed by mesh modification. The minimum allow-

able segment length is 0.04 um.
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Clipping is expensive in 3D primarily because its basic component,‘ segment cutting, is
itself a lengthy procedure. When a single segment is cut up, triangles and segments have to be
created and deleted, and interconnections to the mesh have to be updated. A typical mesh with
50 x 50 nodes would contain perhaps 7500 segments; each of these segments has to be
checked for intersections with the six boundaries. Clipping this mesh would be quite time-
consuming. But at the same time, if the majority of these nodes have moved outside the simu-
lation boundaries, it is wasteful to continue tracking their movement. Therefore, again, there
is a tradeoff. Clipping removes useless nodes that are outside the simulation boundaries, thus
saving computation time and memory. But at the same time, the clipping operation itself is
time-consuming. So, there is a tradeoff between the time saved by deleting useless nodes and
the time consumed during clipping. The compromise is, as previously mentioned, to clip only

periodically, after a selected number of iterations.

8.4.3. Mesh Delooping

The procedure for removing loops in 3D follows very much along the lines of 2D
delooping. But as might be expected, 3D delooping is a great deal more difficult, because it is
now necessary to find the intersection of triangles in three-dimensional space. The very first
step in 3D delooping is to examine all the triangles in turn and determine if these triangles do
intersect other triangles. Intersecting pairs of triangles are cut up as outlined in Figure 8.11.
The line of intersection of the two triangles is first determined. The triangles are then cut up
at that intersection, by cutting up the segments of the triangle that cross the line of intersec-

tion. New triangles and segments are formed. The next step is to find the nodes at the

+ At present, the mesh is clipped every 10 time-steps. A more intelligent approach would be to vary the
clipping frequency with the local etch-rate. An alternative approach would be to find the bounds of all the
nodes before clipping; if the outermost node is reasonably close to the boundary, the clipping could be de-
layed.
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Two Intersecting Triangles

Find The Imtersection

Intersection

Cut Each Triangle
At The Intersection

Remove Triangles

Figure 8.11 : 3D Deloop. The triangles are cut up at their intersections. The tri-
angles in the loop are then removed.
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boundary of the loop. This can be done as shown previously in Figure 7.18 by examining the
motion of the intersecting triangles relative to their nodes. Once these boundary nodes have
been specified, the loop is then traversed recursively to find and identify the triangles, seg-

ments and nodes in the loop. Finally, all the structures in the loop are removed.

The deloop procedure outlined above is illustrated in the etching simulation shown in
Figure 8.12. In this example, the 3D ray-string algorithm was used to move the etch-front for
8 time-steps with the triangular etch-rate function

R(x,y,z)=21x| +02 pm/sec, Ix!<0.5 [8.2]
The mesh was then delooped. The intersecting triangles were first cut up so that the triangles
intersected cleanly at the boundary of the loop. The loop triangles, segments and nodes were

then identified and deleted.

Another example of delooping is shown in Figure 8.13. In this case, the simulation is of
two intersecting spherical etch-fronts, beginning from seed-points at (0,0,0) and (0,1,0). The
etch proceeds at a uniform 1 pm/sec, and each time-step is of 0.1 second duration. The
spheres first intersect each other after 5 time-steps. At 8 time-steps, the mesh was delooped;
the sections of the mesh behind the two spheres were removed. The mesh was then advanced
again. At the final etch-time, two time-steps later, the mesh was found to have intersected
again. The mesh was then delooped, resulting in the curved profile in the bottom left of Fig-

ure 8.13.

Approximately 20 CPU seconds on a SUN 4/280 were required to obtain the delooped
profile on the bottom left of Figure 8.13. In contrast, a similar simulation using the modified
cell algorithm (Figure 4.3b) lasted some 4 hours on the same computer. The profiles from the

two different etching simulations are quite similar, except for the facets on the spherical
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R(x,y,z)=2Ix1+0.2
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Figure 8.12: 3D ray-string etching using the triangular etch-rate function
=2/[x/+0.2. The deloop procedure after 8 time-steps is illustrated.



191

Uniform Etch Rate : 2 Seed Points at (0,0,0) & (0,1,0)
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Figure 8.13 Uniform spherical etch using the ray-string algorithm. The mesh is
delooped after 8 and 10 time-steps. The etch-rate is 1 um/sec and

the time-step is 0.1 seconds long.



192

surfaces of the modified-cell profile. But unlike the ray-string algorithm, the modified cell
profile did not have to be delooped, since the volume algorithm automatically takes care of
intersecting etch-fronts. However, the modified-cell algorithm is slow. The ray-string algo-
rithm, even with delooping, enjoys a tremendous speed advantage over the modified cell algo-
rithm. This advantage alone makes the ray-string algorithm very attractive for 3D simula-

tions.

8.5. TO DELOOP OR NOT TO DELOOP

It cannot be denied that 3D delooping in the ray-string algorithm is a problem of consid-
erable computational complexity. Delooping also consumes a great amount of computation
time. The ray-string simulation of the intersecting spheres described in the previous section
went relatively fast because it involved only approximately 200 triangles. But in a typical
simulation of photoresist development, a mesh could contain several tens of thousands of tri-
angles. It is no easy task to determine the intersection of so many triangles. 1 Neither is it easy

to do so robustly.

The approach taken in implementing the deloop section of the ray-string algorithm was a
conservative one in which a brute-force and computation-intensive approach was used to
explore 3D delooping. Extensive testing in 2D and 3D revealed that to eliminate loops in a
fool-proof manner was not easy. In particular, deloop does not work correctly when more
than a single triangle intersects another triangle, e.g. when 3 or more triangles intersect each

other. Problems also arise when nodes on a triangle move in opposite directions; this is the

t A brute force approach requires 0.5N? intersection tests, where N is the number of triangles in the list. If
N = 10,000, then 50 million pairs of triangles have to be tested for intersections] However, the use of a
plane-sweep algorithm would reduce the number of intersection tests to Nlog(N). The delooping procedure
could also benefit from a more intelligent approach in which only loop-prone areas are examined.
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triangular analog of a pinwheeling segment. And then, in cases where the delooping does
work, the integrity of the mesh is sometimes disrupted (incorrect interconnections between the

triangles, segments and nodes in the mesh) and the program fails.

Given the realities of the delooping procedure, it is important to consider carefully
whether or not delooping the mesh is actually necessary. The question of delooping does not
come up in the string algorithm, as there is a very real need for loop removal in that algorithm.
Without delooping in the string algorithm, the loops will blow up, making it impossible to
proceed after some time. But in the ray-string algorithm, the loops are not dependent on the
local surface of the mesh. The nodes in the mesh are moved using rays independent of each
other. Therefore, the incorrect rays will hardly affect the profile, and the loops will not cause

the program to self-destruct.

The loops developed during the course of the ray-string simulation do not have a serious
impact on the simulation. The loops are restricted in form and shape, so they do not cross
correct regions of the surface. Furthermore, the loops do not have a destructive impact on the
simulation. In fact, in 3D, the simulation is more robust when the loops are not removed. The
loops actually represent incorrect portions of the simulated surface, and as such, they do not
truly represent the actual etched surface of the material. And since these portions of the mesh
are incorrect to begin with, it is also a waste of computation time to continually trace the
motion of the loops, and to store the triangles, segments and nodes that make up the loops.
Unfortunately, these loops are also difficult and computationally expensive to remove. How-

ever, the loops can be easily identified visually.

So, is delooping a truly integral part of the ray-string algorithm? The loops do not affect

the accuracy of the ray-string simulations, and the simulations will run without removal of the
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loops. Thus the answer to the above question is a resounding "NO". But at the same time, it is
desirable to remove the loops for purely aesthetic reasons. Also, certain pattern transfer

processes require information of the true resist profile. In such cases, delooping is necessary.

8.6. 3D SIMULATION OF PHOTORESIST DEVELOPMENT

The ray-string etch simulator has been coupled to 2D imaging and exposure simulators
to form the basis of a complete 3D photoresist development simulator. This simulator, named

SAMPLE-3D, also provides display, print, and post-simulation analytical capabilities.

The flow of the 3D photolithography simulation is demonstrated in Figures 8.14 - 8.18.
SAMPLE-3D simulates the three-dimensional (3D) profile of the developed photoresist as a
function of time by first using SPLAT to calculate the aerial image intensity incident upon the
photoresist (Figure 8.14). The exposure of the photoresist to light triggers chemical changes in
the photoresist; this is modeled using BLEACH, a 3D exposure simulator based on Dill’s!
algorithm (Figure 8.15). An exposure model then generates a three-dimensional etch-rate dis-
tribution throughout the volume of the photoresist. This distribution is used in ETCH, a
three-dimensional etch simulator, to generate a three-dimensional profile of the photoresist as

a function of time (Figure 8.16).

The simulations shown in Figures 8.15 and 8.16 were run using 0.7 um of Olin Hunt
photoresist on a bare silicon substrate. The multiple reflections in the photoresist during the
exposure have resulted in a photoresist profile with standing waves. Note also that loops have

formed at the fingers of the photoresist profile.

The standing waves produced by optical interference makes linewidth control difficult in
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Figure 8.14 : Aerial image simulation of a 1.25 pum (0.8 A/NA) isolated contact.
The image was simulated using SPLAT, with A = 0.436 um, NA =

0.28, and partial coherence 6 =0.5.
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3D Exposure-Bleaching Simulation

Olin Hunt 6512, Dose = 80 mJ/cm2, No Diffusion
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Figure 8.15: Normalized concentration of photoactive compound. The plot is a
contour map of constant M=0.8.
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Figure 8.16: Profile of an isolated contact in 0.7 um Olin Hunt 6512 resist.
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printing micrometer linewidths.2 To reduce the extent of the standing waves, the photoresist
can be baked‘ after exposure and before development. Post-exposure bake is modeled by
assuming that the chemical inhibitor diffuses from high concentration regions to low concen-
tration regions. Figure 8.17 shows the effect of post-exposure bake on the concentration of
the photoactive compound. The post-exposure bake is modeled using a one-dimensional
Gaussian diffusion in the z -direction, with an average diffusion length of 0.08um. The stand-
ing waves in the chemical concentration have been greatly reduced. This has a significant
impacts on the photoresist development. As seen in Figure 8.18, the resultant photoresist

profile is smooth and devoid of standing waves or loops.

In cases where loops are created, it is useful to have the capability to remove the loops.
The delooping procedure described in the previous section was used to try to deloop the mesh
of Figure 8.16. The result is shown in Figure 8.19. The loops have disappeared. But so has
most of the mesh! This interesting result has been traced to the problem of pinwheeling trian-
gles discussed earlier. The pinwheeling triangles have caused errors in the determination of
which parts of the mesh are inside or outside the loops. As a result, most of the mesh is deter-

mined to be in error and the program goes on a mesh-deleting binge.

8.7. COMPUTATION ISSUES

The development-etch simulations shown in Figures 8.16 and 8.18 cost approximately
10 and 5 minutes respectively on a SUN 4/280 (0.8 MFLOPS, 10 MIPS). Approximately 2
MBytes of memory was used in the simulations; most of this amount was used to store the
discrete etch-rate data. In addition, the resist-exposure simulator required approximately 8

MB of memory to calculate the photoactive compound concentration at 50 x 50 x 300 points.
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Figure 8.17: Normalized concentration of photoactive compound, after diffusion.
The plot is a contour map of constant M=0.8.

10 sec Development Time
B =
2
P
>
N
> %
-1
¥, f _AXIS
Y 0 1 T

Figure 8.18: Profile of an isolated contact in 0.7 pm Olin Hunt 6512 resist.
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8.8. SUMMARY : IMPLEMENTATION OF A 3D PHOTORESIST DEVELOPMENT
SIMULATOR

A fast, robust and accurate 3D photolithography simulator has been developed. This
simulator, named SAMPLE-3D, integrates a number of process simulator modules while also

providing display and print capabilities.

The key element of this process simulator is a 3D etch simulator based on a combined
string and ray model approach. In this approach, the nodes on the etch surface are advanced
using the ray method, but the nodes are joined using a string-like triangular mesh. This algo-
rithm has been implemented in the C programming language, using a linked list data structure
to represent the nodes, segments, and triangles that make up the etching boundary. Delooping

of the boundary surface has also recently been added on.

There are still a number of issues and problems to be solved in the etch simulator. Chief
among these is that the etch simulator still lacks a robust and reliable deloop mechanism.
However, the simulation does run without delooping. The loops formed are typically res-
tricted to the low-etch-rate regions in the material, so the true etch-surface can be identified
visually. But more importantly, the loops do not, as in the string algorithm, disrupt the robust-
ness or the accuracy of the simulation itself. So, although delooping is a computationally
expensive and complex operation, it may not be a truly necessary component of a 3D etch

simulator.
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CHAPTER 9
THREE-DIMENSIONAL SIMULATION OF OPTICAL LITHOGRAPHY

9.1. INTRODUCTION

In submicron optical lithography, optical simulation has proved to be a useful and
important technique for understanding and balancing the many complex tradeoffs between
materials, exposure tools, and wafer conditions. Research to date has emphasized the applica-
tion of two-dimensional aerial image simulation for investigating 2D mask-related issues in
optical lithography. These issues include diverse topics such as the optical proximity effect,!
defect interactions with features,2*3 * 4 * 5 projection lens aberrations,6 * 7 The 2D simulation
capability has also been used to design image-monitoring test-patterns,3 * 2 and to examine the

resolution impact of different phase-shifting mask designs.10+ 11+ 12

Most of the aerial-image studies thus far havé relied on a simple threshold interpretation
of the intensity, in which a constant intensity contour is assumed to correspond to the
developed photoresist profile. However, simulation and experimental studies? * 8 * 13 have
shown that in certain mask configurations, nonvertical resist dissolution effects could cause
discrepancies between the simulated intensity contours and the experimentally printed
features. In such situations, it is necessary to resort to a full rigorous 3D simulation to deter-
mine the resist profiles and thus understand the resist development process. The discrepancies
caused by nonlinear and nonvertical resist effects has been the major driving force behind the
development of a complete 3D photolithography simulator. Now that a fast and complete 3D
resist development simulator has been developed, it is possible to study and model the effect

of nonlinear and nonvertical resist dissolution on the projection-printed pattems.
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9.2. NON-VERTICAL RESIST DISSOLUTION EFFECTS

9.2.1. The Intensity Threshold Model

The intensity threshold model has proved to be a useful tool for studying the issues asso-
ciated with printing 2D mask pattems. This approach avoids a rigorous and time-consuming
3D resist development simulation in favor of a simpler threshold interpretation of the intensity

contours to determine the shape of the final developed profile.

SAMPLE-3D has been used to investigate the correlation between the 2D aerial image
and the 3D developed resist profile. Simulations have been carried out on three different posi-
tive photoresists, Shipley 1470, Olin Hunt 6512, and Kodak 820. Shipley 1470 represents a
prototypical medium-contrast photoresist which was used heavily in the 1970’s. Lately, a
number of newer improved photoresists with higher contrast have been introduced. For the
purposes of simulation, Olin Hunt 6512 was selected as an example of a high-contrast positive
photoresist. Resists with surface-rate retardation, such as Kodak 820, are also frequently used
to print pattems with square profiles; surface-rate retardation decreases the top-loss in the
unexposed regions and results in better wall-angles. The simulation parameters for each of
these photoresists is provided in Table 9.1. In addition, the SAMPLE-simulated resist profiles
of 0.8 A/NA lines and spaces printed on the three different photoresists are plotted in Figure
9.1. Also plotted in Figure 9.1 are the etch-rate (R) vs photoactive compound concentration

(M) for the three different photoresists.

Figure 9.2 shows the aerial image and 3D resist profile simulations of a 1.25 um (0.8
A/NA) isolated transparent elbow in a dark field mask. The aerial image simulation in this

case used an exposune.wavelength A of 0.436 um, numerical aperture NA of 0.28, and partial



Olin Hunt 6512 resist system - |
Projection System :
A = 0436 um, NA = 0.28, 6 = 0.5
Exposure :
A = 0.640 pm™!, B =0.040 pm’!, C=0.010 cm?/mJ
Post-Exposure Bake Diffusion = 0.08 pm
Best Exposure Dose = 240 mJ/cm?
Refractive Index = 1.68
Resist Thickness = 0.70 pm
Substrate : Si (n = 4.73-j0.14)
Development (Kim model)
R1 = 0.062 um/s, R2 = 0.0001 R3 =85

]Shigle! Microgosit 1470 resist gstem |

Projection System :
A = 0436 um, NA = 0.28, 6 = 0.5
Exposure :
A =0.580 um’!, B =0.030 um!, C=0.014 cm?*/mJ
Post-Exposure Bake Diffusion = 0.08 pym
Best Exposure Dose = 80 mJ/cm?
Refractive Index = 1.68
Resist Thickness = 0.70 pum
Substrate : Si (n = 4.73-j0.14)
Development (Kim model)
R1 = 0.24 pm/s, R2 = 0.0005 um/s, R3 = 8.1

I R4 = 0.24 ym, RS =0.76, R6 = 0.55

| KODAK 820 resist system
Projection System :
A =0.436 um, NA = 0.28, 6 = 0.5
Exposure :
A =0.510 pm*!, B =0.031 pm™!, C=0.013 cm?/mJ
Post-Exposure Bake Diffusion = 0.08 um
Best Exposure Dose = 110 mJ/cm?
Refractive Index = 1.68
Resist Thickness = 1.20 pm
Substrate : Si (n = 4.73-j0.14)
Development (Kim model)
R1 = 0.23 um/s, R2 =0.0016 um/s, R3 = 5.6

R4 = 0.25 um, RS =0.62, R6 = 0.08

Table 9.1 : Photoresist/Substrate Parameters
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Figure9.1: Photoresist systems : Etch-rate vs photoactive compound concen-
tration and SAMPLE resist profiles for 3 different photoresists.
The dose was adjusted so that 1.25 um (0.8 A/NA) lines and

" spaces printed 1:1 with 30 seconds of development time.
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1.25 um (0.8 A/NA) Isolated Transparent Elbow
Olin Hunt 6512 : Dev. Time =30 sec, Dose =240 mJ/cm?

2D Mask Intensity Contours
4
3 3
> >
Resist Profile : Top View
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Figure9.2: Demonstration of the intensity threshold model. The resist profile,
simulated on 0.7 um of Olin Hunt 6512 resist, agrees with the 30%
intensity contour. Thus the intensity contour is sufficient for pre-
dicting the linewidth of the developed profile.
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coherence ¢ ="0.5.” The image was then passed on to the 3D resist-exposure simulation for
exposure (with 0.08 um post-exposure-bake diffusion) on 0.7 pm of Olin Hunt 6512 resist.
The resultant etch-rate distribution was then used to calculate the profile after 30 seconds of

development time.

The aerial image contours and the developed resist profile are plotted on top of each
other in Figure 9.2d. The dark solid line, which represents the resist profile, is very similar to
the 20-40% intensity contour plots. This means that in this particular simulation, it is
sufficient to use a constant intensity contour to model the opening in the photoresist. Similar

simulations on Shipley 1470 and Kodak 820 also bear out this result.

In the elbow configuration of Figure 9.2, the dissolution or etch-front starts out from the
center of the elbow and sweeps towards the outside edges of the elbow. This is essentially a
diverging etch in which the development of the resist is dominated primarily by the dissolu-
tion action from the center of the elbow. Furthermore, the intensity throughout the elbow
remains high along the elbow, so the development speed is relatively constant along the
elbow. As a result, the resist development of the elbow is essentially a linear process and can
be described using the intensity threshold model. There has been, however, some experimen-
tal evidence that the intensity threshold model does not hold true in all cases.4 * 8 The devia-
tions from the intensity threshold model and their causes will be discussed in the following

sections.

9.2.2. A Centered Opaque Defect in a Line-Space Array

Figure 9.3 shows SEM photographs of a 0.5 pm opaque defect placed at the center of a

VtranSpanem space in a 1.3 pum line-space array. The pattemns were printed on 1.2 pm of Kodak
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820 positive resist on a Si substrate, using a GCA g-line (A = 0.436 um) stepper with NA of
0.28. The two photographs show the resist profile at best focus and dose, and at best focus and
22% underexposed. At best dose, the presence of the opaque defect has caused a significant
linewidth variation; in the vicinity of the defect, the width of the resist opening is approxi-
mately 0.7 pm, almost half of the 1.3 um opening far from the defect. Underexposure causes

the two resist lines to bridge.

The defect pattern in Figure 9.3 has been simulated with SPLAT and the results are
shown in Figure 9.4. Interesting nonlinear results can be seen from comparing the intensity
contours with the SEMs of Figure 9.3. Away from the defect, the 30% intensity contour
predicts the linewidth. But in the presence of the defect, the protrusion from the line reaches
out to the 40-60% contours; the resist profile has a shape more similar to the 50% contour.
This failure to follow a single constant threshold is evidence that the intensity in the neighbor-
hood of the final profile edge is also important. The dissolution appears to proceed initially by
moving downwards (vertically) in regions of high intensity and then moving laterally into the
regions of low intensity. Thus the reduction of the intensity in the neighborhood of the defect
delays the arrival of the dissolution front and reduces the subsequent removal of the foot of

the resist material.4

The movement of the dissolution front is, in this particular mask configuration, three-
dimensional in nature. Two-dimensional resist simulation is totally inadequate for predicting
the linewidth vaﬁatiot'ls as is shown in Figure 9.5. Here, the simulations were carried out
using SAMPLE to simulate the resist profiles from 2D intensity cutlines calculated with
SPLAT. The SAMPLE simulations were run on 0.7 pm of Shipley 1470 positive photoresist,
and the profiles are shown at 5, 10, 15 and 20 seconds of development time. The 15 second

developed profile is very interesting. Using a north-south intensity cut, the simulation predicts
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Figure 9.4: Image intensity contour plot of a 0.5 pm opaque square defect in a
1.3 um equal line-space array. The simulation was run using A =
0.436 pm, NA=0.28 and partial coherence ¢ = 0.5.
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Resist Simulation with Cutlines
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Figure 9.5: Resist Simulation with Cutlines. The north-south and east-west
intensity cutlines result in different remaining resist heights at the
center of the defect after 15 sec of development.
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that the resist will be almost completely developed by 15 seconds. But at the very same loca-
tion at the center of the defect, the east-west cutline simulation predicts a remaining resist
height of almost 0.1 pm. The difference between the two sets of simulations is due to differ-
ences in the speed of the downwards/vertical and lateral development. The dissolution parallel
to the lines is faster than from that proceeding downwards from the initial surface of the resist.
Thus the development along the vertical cutline describes more accurately the state of the

resist as a function of time.

A much better understanding of the influence of the defect can be obtained from a full
3D resist simulation using SAMPLE-3D. Figure 9.6 shows 3D simulations of Shipley 1470
resist profiles at 10, 20 and 30 seconds of development time. After 10 seconds of develop-
ment time, the resist in the region of the defect has a saddle-like shape; the dissolution has
proceeded downwards from the top of the resist and also from the sides parallel to the lines.
After 20 seconds, the side development fronts parallel to the lines has crossed, forming a loop
at the foot of the resist material. The loop is nonphysical in nature, and it is really part of the
resist that has already been developed. But the presence of the loop does serve a useful pur-
pose as it illustrates the differences in the lateral and downwards dissolution. If the dissolution
only proceeds in the plane perpendicular to the resist lines (i.e. along the east-west cutline in
Figure 9.5), then the resist opening near the defect will be only 0.4 um wide as predicted by
the 2D horizontal cutline simulation in Figure 9.5. In Figure 9.6b, this corresponds to the
edges of the loop furthest away from the resist lines. But what has actually happened is that
the resist saddle has been developed away primarily along the lateral plane parallel to the
lines. The development of the resist foot left by the defect is thus dominated by the lateral
north-south dissolution, and the foot develops faster than predicted in the east-west cutline

simulation.
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Shipley 1470 : Best Exposure (Dose=80mdJ/cm?)
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Figure 9.6 : 3D Resist Development, simulated on 0.7 pm of Shipley 1470 posi-
tive resist with 0.08 pm of post-exposure bake diffusion.
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Shipley 1470 . Best Exposure (Dose=80 mJ/cm?
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Figure 9.6 (cont) : 3D Resist Development, simulated on 0.7 um of Shipley 1470
positive resist with 0.08 pm of post-exposure bake diffusion.
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After 30 seconds of development, the resist at the center of the defect has been com-
pletely developed away, leaving a protruding foot at the sides of the lines. In Figure 9.6d, the
30-second developed profile at the Si substrate is plotted against the 20-40% intensity con-
tours from Figure 9.4. The resist profile comresponds to the 30% intensity contour far from the
defect, but in the region of the defect, the resist profile stretches out to the 40% intensity level.

This is very similar to the situation observed experimentally (Figure 9.3).

The 3D resist profile has also been simulated with underexposure and overexposure as
shown in Figure 9.7. At a lower exposure dose, the lateral dissolution plays a greater role in
the resist development. As shown in Figure 9.7a, with a lower dose (20% lower than "best”
exposure), the resist profile at the Si substrate consists of two intersecting lateral dissolution
fronts. The true resist profile (outside the loop) has a sharp foot in the vicinity of the opaque
defect. The protrusion due to the defect is, however, reduced at higher exposure doses. This
effect is due to the dependence of the etch-rates on the exposure dose. At a higher exposure
dose, the dissolution speed in the downwards direction is increased, and thus the lateral

development parallel to the lines is almost canceled out.

The type of resist used also affects the development process. The previous results are
typical for medium-contrast resists used in the late 70°s and early 80°s. Improved resists with
higher contrasts such as Olin Hunt 6512 will reduce the printability of defects. Figure 9.8
shows the 3D simulated patterns printed on 0.7 pm of Olin Hunt resist, at best exposure, 20%
underexposed, and 20% overexposed. Olin Hunt 6512 is a high-contrast resist, so the
development etch-rate is relatively constant as long as the intensity remains above a certain
intensity level. In the opaque defect mask configuration, the intensity at the center of the
defect is still high enough so that the downwards etch speed in the vicinity of the defect is

approximately the same as that far from the defect. As a result, there is little or no lateral
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Figure9.7: 3D Resist Development simulated on Shipley 1470 resist.
Changes in the exposure dose affects the linewidth variation due to

the defect.
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development parallel to the resist lines. However, the lowering of the intensity at the defect
center still slows down the development fronts and reduces the subsequent removal of the foot

of the resist material.

The simulations also indicate that the use of surface-rate retardation increases the sensi-
tivity of the printed pattern to defects. Figure 9.9 shows the 3D simulated profiles printed on
Kodak 820 photoresist. When the resist is underexposed by 20%, the resist pattemns bridge. At
"best" exposure of 110 mJ/cm?, the lateral etch-fronts have crossed, so there is a sharp foot at
the edges of the resist near the defect. This simulated result, as well as that of the underex-
posed simulation, is in excellent agreement with the experimental data shown in the SEMs of
Figure 9.3. Overexposure by 20% decreases the size of the foot, but the protrusion caused by
the defect is still quite significant. With surface-rate retardation, the role of lateral dissolution
in the development of the Kodak 820 resist has increased, thus increasing the sensitivity of

- this resist to small opaque defects.

9.2.3. An Opaque Defect in a Corner

Nonvertical resist development effects have also been observed in situations where an
opaque defect is placed at a comer of a large opaque square.? Figure 9.10 shows an opaque
square area with 0.5 um opaque defects located diagonally from the comers. These comer
defects do not print except when underexposed. Figure 9.11 shows the aerial image simula-
tions corresponding to the upper left comer of this configuration. The opaque defect is placed
0.2 um from the comer of the large opaque square. At best dose, the resist profile follows
approximately the 30% intensity contour. But underexposure by 22% as shown in Figure
9.11b does not follow the 38% intensity contour as would be expected from the constant

intensity threshold model. Instead, the large area of 60% intensity does not clear completely
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Figure 9.9: 3D Resist Development simulated on Kodak 820 resist. Changes
in the exposure dose affects the linewidth variation due to the

defect.
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Square Opaque Defect in a Corner

Best Focus and Dose
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Figure 9.10 : SEM photographs of a 0.5 pm opaque defect at the diagonal corners
of a large opaque square. The patterns were printed on 1.2 pm of
Kodak 820 positive photoresist on a Si substrate.
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Figure 9.11: Image intensity contour plot of a 0.5 pm opaque square defect
placed 0.2 pm from the corner of a large square. The simulation,
which covers the left corner of the large square in Fig 9.10, was run
using A = 0.436 um, NA=0.28 and partial coherence & = 0.5.
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giving rise to the printed defect. Here it appears that with underexposure the 60% exposure
region no longer clears through vertical dissolution. Thus there is no chance for lateral disso-

lution to work inward toward the 38% intensity contour.

2D and 3D resist simulations have been run in an attempt to understand the development
behavior of this opaque defect mask configuration. Figure 9.12 shows the 3D developed
profiles on Shipley 1470 resist at best exposure. In Figure 9.12b, the resist foot left by the
defect has a mesa-like structure; it is being developed laterally as well as vertically. As in the
centered defect case discussed previously, the lateral dissolution dominates here while the
vertical dissolution is somewhat slow. After 30 seconds of development time, the lateral dis-
solution fronts have crossed leaving a sharp almost 90° comer at the edge of the large square
(Fig 9.12 c,d). There is clearly a difference between the 3D simulated resist profile and the
constant intensity contours. The presence of the defect has slowed down the lateral dissolution
and as a result the foot of the resist material is stretched from the 30% to approximately the

40% intensity level.

Figure 9.13 shows the underexposed and overexposed profiles on the same Shipley 1470
resist. Note that at 20% underexposure, the comer defect has printed; the resist profile appears
to be very similar to the SEM of Figure 9.10b. However, the resist peninsula formed by the
defect is on the verge of being etched away by the converging lateral dissolution fronts from
the surrounding high intensity areas. At higher exposure doses, the defect is swept away by

the converging lateral fronts, resulting in a sharp comer at the edge of the large resist square.

It is also instructive to compare the 3D simulations to SAMPLE. Figure 9.14 compares
the 3D profiles along the diagonal to the 2D profiles generated using SAMPLE with SPLAT

cutlines. The multiple lines seen on the left set of plots are caused by loops formed by the
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Shipley 1470 : Best Exposure (Dose=80mJ/cm?
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Figure 9.12 : 3D Resist Development, simulated on 0.7 pm of Shipley 1470 posi-
tive resist with 0.08 um of post-exposure bake diffusion.
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Figure 9.12 (cont) : 3D Resist Development, simulated on 0.7 pm of Shipley
1470 positive resist with 0.08 pm of post-exposure bake diffusion.
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Figure9.13: 3D Resist Development simulated on Shipley 1470 resist.
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Figure 9.14 : Resist Development : 3D simulations vs 2D with cutlines.
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intersection of converging lateral dissolution fronts. The true developed profile is actually
that of the innermost profile in each of the three plots on the right of Figure 9.14. In these
plots, the outermost "looped” profile is due to the vertical (downwards) dissolution, while the
innermost profile results from the intersection of converging lateral dissolution fronts. Com-
paring the two sets of curves, it is clear that the SAMPLE 2D profiles are similar to the outer
"looped" curves of the 3D simulations. The lateral dissolution effect, which is ignored in

SAMPLE, clearly has an dose-dependent impact on the developed profile.

A similar set of observations hold for simulations on the prototypical higher-contrast
Olin Hunt resist. These simulations are shown in Figures 9.15 - 9.16 respectively. Again, it is
seen that the defect has caused a sharpening of the resist comer not predicted by the intensity
threshold model. And once more, the magnitude of the deviation between the resist profile
and the constant intensity contours increases as the exposure dose is decreased. But the simu-
lations also show that the lateral dissolution effect is not as pronounced as in the Shipley
resist. There are no loops formed, and as can be seen in Figure 9.16, the 2D SAMPLE profiles

are identical to those simulated using SAMPLE-3D.

In contrast, multiple loops are formed on the surface-rate retarded Kodak 820 resist, as
shown in Figures 9.17 and 9.18. Surface-rate retardation has increased the influence of lateral
dissolution effects. As a result, the "true” developed profile can be determined only with a full
3D simulation. The 3D and 2D-cutline simulations have similar outer "looped curves, but the

3D simqlations reveal that the true profile is very different from that predicted by the 2D-

cutline simulations.
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Figure 9.15: 3D Resist Development simulated on Olin Hunt 6512 resist.
Changes in the exposure dose affects the linewidth variation due to

the defect.
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Olin Hunt 6512 : 30 sec Development Time
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Figure 9.16 : Resist Development : 3D simulations vs 2D with cutlines.
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Kodak 820 : 30 sec Development Time
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Figure 9.18 : Resist Development : 3D simulations vs 2D with cutlines.
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9.2.4. Adjoining Phase-Shifted Spaces

The two cases discussed previously both involved opaque defects in a clear area. In
such cases, nonvertical linear development effects typically occur and must be accounted for
using 3D simulation. These opaque defect cases may, however, be considered a subset of the

general case in which multiple dissolution or etch fronts converge onto one another.

A more dramatic example of a mask configuration that will result in multiple dissolution
fronts is that of a phase-transition phase-shifted mask, shown in Figure 9.19. A brief explana-
tion of this mask pattern is in order. In conventional lithography the working resolution of
periodic lines and spaces is roughly 0.8 A/NA. Lines and spaces smaller than this cannot be
printed reliably and consistently due to the lower intensity contrast caused by interfeature
interaction. Phase-shifting is one method that has been proposed for improving resolution in
optical lithography. It allows features to be placed closer together by relying on the destruc-
tive interference between phase-shifted and @pmt spaces to increase the contrast and
therefore the working resolution. Studies have shown that the image projected by an optical
stepper can be improved by incorporating transparent phase-shifting patterns on a conven-
tional chrome mask.14+ 15+ 16+ 17 A phase-shift layer delays the light from a pattem so that it
arrives 180° out of phase with the light through a clear area. In periodic structures, as in the
mask pattern shown in Figure 9.19, the light contrast can be improved dramatically by filling

in alternating spaces with phase-shifters.

The mask pattern shown in Figure 9.19 could be used to define metal lines in a device
structure such as a bipolar transistor. The outer feature could be part of a collector contact
which is to remain unbroken. In order to gain the most out of phase-shifting, the spaces and

phase-shifters must be placed in altenate order. But there is a complication here in that there



233

1 pm (0.64 A/NA) Phase-Shifted Lines

2D Mask
5
3.75
17p]
=
< 25
=
125
0
5 - . - . : - . .
MINIMUV.
4] 4 0.00081
Z 3} !
b
=
>,¢ 2t 1
1t 1 MAXIMUM
1.4
00 9
Figure 9.19: Image intensity contour plot of a phase-shifted mask pattern. The

simulation was run using A = 0.436 pm, NA=0.28 and partial coher-

ence o =0.5.
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is a transition from a 180° phase-shifted outer elbow to a 0° phase-shifted elbow. But if a
phase-shifted feature is joined abruptly to a non-phase-shifted feature, the desﬁuctive interfer-
ence at the transition will create a dark unilluminated area which will effectively separate the
features on either side of the joint. A metal line printed using this pattern will then be broken.
One way to get around this problem is to use an intermediate 90° phase-shifted space to join
the two 0° and 180° phase-shifted spaces. As shown in the intensity contour plot in the lower
haif of Figure 9.19, the intensity remains high along the joined features, although valleys of
70% intensity are formed at the areas where the 90° phase-shift meets either the 0° or 180°
phase-shifters. It is hoped that during development, the dissolution in the peak areas will

penetrate rapidly and then move laterally along the line to clear the 70% intensity valleys.

The intensity contours in this intermediate region are shown in greater detail in Figure
9.20. This intensity plot was used to generate 3D resist profiles on both Shipley 1470 resist
(Figure 9.21) and Olin Hunt 6512 resist (Figure 9.22). The dissolution proceeds initially by
moving downwards in the high intensity regions in the center of the transparent feature, then
laterally into the regions of low intensity. The lateral dissolution fronts converge at the inten-
sity valleys formed at the joints of the phase-shifters. The reduction of the intensity at the val-
leys delays the arrival of the dissolution fronts and causes the ms1st profile to lag in these
areas. This is seen in both resists. In both Figures 9.21 and 9.22, there is a deviation between
the constant intensity contours and the developed resist profile. The deviation is larger for the

lower-contrast Shipley 1470 resist. However, the overall feature is successfully patterned.

9.3. GENERAL APPLICATIONS

SAMPLE-3D has been used to examine a number of interesting 2D mask pattemns. This

section will discuss briefly some applications of the 3D photolithography simulator.
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Figure 9.20: Image intensity contour plot of a phase-shifted mask pattern. The
simulation was run using A = 0.436 pm, NA=0.28 and partial coher-
ence ¢ =0.5. '
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Figure 9.21 : 3D Resist Development, simulated on 0.7 pm of Shipley 1470 posi-
tive resist with 0.08 pm of post-exposure bake diffusion.
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Figure 9.22 : 3D Resist Development, simulated on 0.7 pm of Olin Hunt 6512
positive resist with 0.08 um of post-exposure bake diffusion.
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Simulation results will be presented.

9.3.1. Clear Fleld Lines & Spaces

One interesting case involving 2D interfeature effects is shown in Figure 9.23. 0.9 pm X
20 um opaque lines in a clear field were simulated; the intensity contour and resist profile
plots are shown in Figure 9.23. The Shipley 1470 resist was developed for 10 seconds, and as
can be seen, there still remains a thin layer of photoresist between the resist lines. However,
when the opaque lines are stretched out infinitely as shown in Figure 9.24, the resist has
cleared completely. There is clearly some length-dependent phenomena occurring in these two
cases. The explanation can be found form a simulation of medium-length lines. Figure 9.25
shows the intensity contours and resist profiles of 0.9 pm X 4 um lines. As can be seen from
the intensity contour plot in Figure 9.25, there is an intensity saddle in between the tips of the
opaque lines. The intensity here is approximately 75% of clear field, whereas the intensity in
the middle of the lines is almost 5% higher at 80% of clear field. This 5% difference in the
intensity, which is caused by the proximity effect, is sufficient to cause a difference in the
vertical development of the photoresist. The space has cleared in the center of the line-space

structure, but not at the tips of the lines and spaces.

9.3.2. Fine Lines & Spaces on Negative Photoresist

An acid-hardened chemically amplified negative resist model!8 has been added to the
3D resist-exposure simulator used in SAMPLE-3D. In Figure 9.26, simulation of a 0.3 pm
equal line-space pattern is shown using the 3D photolithography simulator. Note that the
width of the resist lines is narrower towards the substrate; this "necking” effect is observed

experimentally.
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0.9 um x 2 um Lines & Spaces in Clear Field
Shipley 1470 : Dev. Time = 10 sec, Dose = 80mJ/cm?
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Figure 9.23 : 3D Intensity and Resist Development simulations.
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0.9 um Infinite Lines & Spaces in Clear Field
Shipley 1470 : Dev. Time = 10 sec, Dose = 80mJ/cm?
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Figure 9.24 : 3D Intensity and Resist Development simulations.
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Figure 9.25 : 3D Intensity and Resist Development simulations.
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0.4 um Equally Spaced Lines
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Figure 9.26: Image intensity and resist development simulations. The aerial
image simulation was run using A = 0.248 pm, NA=0.42 and partial
coherence ¢ = 0.5. The dose was 25.2 mJ/cm2the bake was for
140°C for 60 seconds and the development time is 120 seconds.
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9.3.3. Projection Lens Aberrations

Coma and astigmatism are two primary lens aberrations which dominate image quality.
The presence of aberrations is often recognized by the fact that contact holes are distorted
from a shape with 90 degree rotational symmetry. The contour plots of the image intensity of
an isolated transparent square under the influence of astigmatism and coma are shown in Fig-
ures 9.27 and 9.28 respectively. Also shown in these two ﬁgmes are top views of the pho-
toresist profiles printed on Shipley 1470 and Olin Hunt 6512 resist. The aerial image simula-
tions were run with A = 0.436um, NA = 0.28, and partial coherence ¢ = 0.3. The lens aberra-
tion was assumed to have a maximum optical path distance (OPD) of 0.4\, while the contact
was defined to be at the field coordinates (1,0) which corresponds to the right-hand edge of a

circular lens field.

Coma tends to produce an "ice-cream cone” effect and movement along a radial line. 7
The small amount of coma in Figure 9.27 produces a build-up of the intensity on the side of
the feature towards the center of the field. The intensity slope is higher towards the negative
x-axis, which causes the contacts to print with steeper slopes in this direction too. The wall
angles of the contact are steeper on the Shipley 1470 resist than on the Olin Hunt resist. This
difference in the wall angles might be passed on to subsequent pattern transfer processes. But
aside from this uniform difference in the slope of the wall angles, there seems to be little

difference between the profiles printed on the two resists.

For astigmatism, there is no movement and spreading is produced both inward and out-
ward along a radial line. This results in a double ended "football" shape in the radial direction
as shown in Figure 9.28. The printed resist profiles appear at first glance to be more circular

than the intensity contours. But upon closer inspection, it is found that the 30% intensity
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Figure 9.27 : 3D Intensity and Resist Development simulations.
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Figure 9.28 : 3D Intensity and Resist Development simulations.
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contour agrees with the 30 second developed profile at the resist substrate intersection. The
slopes of the resist profiles also reflect the change in intensity slope; the wall angles are

steeper along the horizontal than along the vertical axis.

There are no surprises in the resist profiles of opaque contacts either. Figure 9.29 and
9.30 show the 3D resist profiles of a 0.8 A/NA square opaque defect simulated with coma and
astigmatism respectively. Again, the resist profiles agree with the intensity threshold model.
Astigmatism has produced a rectangular-shaped resist pad, while coma has left a circular but

asymmetrical resist island.

9.3.4. Isolated Contacts with Optimally-Placed Phase-Shifters

Small subimageable phase-shifters surrounding a transparent isolated contact can be
used to increase the intensity of the light passing through the contact. Figure 9.31 compares
the two-dimensional intensity profile and the three-dimensional developed resist profile of a
0.9 um (0.6 A/NA) square contact against that of the same contact surrounded by four 0.3 pm
(0.2 A/NA) phase-shifters. The phase-shifiers are placed so that their centers are 0.7 A/NA
from the center of the contact; it has been shown 12 that the 0.7 A/NA center-to-center distance
optimizes the peak image intensity and image slope of the contact. The peak intensity of the
phase-shifted contact is clearly greater than that of the conventional contact. The intensity
profile of the phase-shifted contact also shows that a circular ring of low intensity light has
formed around the main peak of the image. This ring is formed by the interaction between the

phase-shifters and the secondary lobe of the contact.

The 3D simulations of the resist profile in Figure 9.31 were run on 0.7133 um of Olin

Hunt 6512 resist, without and with post-exposure bake diffusion. Without any post-exposure



247

Opaque Contact
0.8 A/NA x 0.8 A/NA
=03
Coma = 0.4)(1,0)

Shipley 1470
Dose = 80 mJ/cm?2

Y-Axls (sm)

Olin Hunt 6512
Dose = 240 mJ/cm?

15 sec Development

15

1k

Y-AXIS
o
754

1f

A T
X-AXIS

15 sec

15

Development

-1

30 sec Development

15 Y

1k

Y-AXIS
o

AT
X-AXIS

Figure 9.29 : 3D Intensity and Resist Development simulations.
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Figure 9.30 : 3D Intensity and Resist Development simulations.
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Figure 9.31: 2D aerial image and 3D resist development simulation of a contact
with and without outrigger phase-shifters. The simulation used A
=0.436 um, NA =0.28, ¢ = 0.5, resist thickness = 0.713 pm.
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bake diffusion, standing waves are formed in the resist. Here, the impact of the phase-shifters
is obvious; the resist in the center of the contact does not clear unless phase-shifters are used.
However, when post-exposure bake is applied to the resist, both phase-shifted and conven-
tional contacts are opened. The phase-shifters still do provide some benefit though. The resist
wall angle is considerably steeper with the phase-shifters. The presence of the phase-shifters
also results in a small resist depression around the opening in the resist. This depression,
which is seen in both resist profiles simulated with phase-shifters, has a depth of approxi-
mately 0.06 pm which might be sufficient to cause processing problems during subsequent

process steps.

9.4. SUMMARY

A working version of a 2D exposure and 3D resist development simulator has been used to
study 3D resist profiles from 2D mask patterns, including isolated contacts, isolated islands,
elbow patterns, line-space pattems, and phase-shifted mask pattemns. Simulations have been
carried out on both conventional positive and acid-hardened chemically amplified negative

resists.

Extensive simulations have been used to determine the correlation between the 2D aerial
image and the 3D developed resist profile. It has been established that the 2D intensity thres-
hold model is adequate for predicting the developed resist profiles as long as the dissolution
front diverges during the development process. If multiple dissolution fropts converge during
the development process, the resist profile will no longer conform to a single constant inten-
sity contour. In such situations, full 3D resist simulation is required to determine the resist

profiles and thus to understand the printing process.
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Opaque defects in a clear area provide the most vivid illustrations of the need for 3D
resist development simulation. The lowering of the intensity in the vicinity of the defect
slows down the vertical dissolution and allows lateral dissolution effects to come into play.
Lateral dissolution will speed up the development in the neighborhood of the defect, and and
cause the formation of sharp protrusions in the resist material. The nonvertical dissolution
effects predicted by 3D resist simulations appear to be in accordance to experimental observa-
tions. Simulations have also shown that the nonvertical resist development effects decrease as
the exposure dose is increased. In addition, comparison of the intensity contours to the resist
profile shows that the linewidth variations caused by the presence of the opaque defects are

underestimated by the intensity threshold model.
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CHAPTER 10
CONCLUSIONS AND FUTURE RESEARCH

10.1. Concluslions

The research described in this document has been aimed at developing a fast, robust and
accurate computer program for the three-dimensional simulation of photoresist development.
To achieve this goal, an algorithm for 3D development-etching was selected by examining a
number of 2D etching algorithms, with emphasis paid to understanding and determining the
conditions under which the algorithms would provide accurate results. A 3D development-
etching simulator was then implemented and coupled to 2D imaging and 3D exposure simula-

tors to form a complete 3D photoresist development simulator.

Photoresist development-etching algorithms using the cell, string and ray approaches
have been implemented and utilized to examine basic tradeoffs in accuracy, delooping
requirements, CPU time and memory requirements. The advantages and disadvantages of each
algorithm are listed in Table 10.1. Cell-removal algorithms were found to be easy to imple-
ment but lacking in accuracy. These algorithms also require a considerable amount of
memory, and are thus unsuitable for engineering workstation applications. The string method
is fast and efficient, but is error-prone because incorrect surface representation excessively
affects the calculation of the advancement vectors. Another key finding was that the ray algo-
rithm produces incorrect results if the etch-rate changes too rapidly. Furthermore, the ray
algorithm merely traces out selected points on the time-evolving surface; there may be ray-

scarce regions that are not reached by the initial rays.
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Computation

Method

Ease of
Implementation

Memory
Requirements

Speed
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Computation

Time!

Comments

Cell
(Ch3)

Easy

Large

Slow

400 sec 2

Advantages
Algorithm is robust - no loops
Boundaries, underlying
topography handled easily
Disadvantages
Slow, Inefficient
Inaccurate - faceting

Modified
Cell
(Ch.4)

Very Large

Very Slow

N/A 3

Advantages
Algorithm is robust - no loops
Boundaries, underlying

topography handled easily

Disadvantages
Slow, Inefficient
Array requires lots of memory
Inaccurate

- discretization, faeen‘ng

String
(Ch.6)

Difficult

Moderate

Fast

30 sec 4

Advansages

Fast, Efficient, Accurate

Disadvantages

Requires ordered mesh

Needs boundary
clipping, delooping

Errors from incorrect surfaces
- scissoring, rounding

Ray
(Ch.6)

Fast

Small

N/AS

Advantages
Fast, Efficient, Accurate
Rays are independent
of surface
Disadvantages
Needs boundary clipping
Loops, Ray-Scarce Regions

Ray-String
(Ch.7-8)

Moderate

Moderate

Moderate

80 sec 6

Advantages
Fast, Efficient, Accurate
Nodes are independent
of surface
Disadvantages
Needs boundary clipping

| ﬂ are formed

Table 10.1

1. Computation time measured on a SUN 4/280, for 2D simulation of 30-second resist development with the etch-rate distri-
bution of Figure 2.3.

Cell simulation uses 200 x 100 cells.

The 5-second development simulation lasts approximately 1 hour on the SUN4/280, and is inaccurate to boot.

The simulation begins with 50 scgments, and uses a time-step of AT = 0.092 seconds.

The ray algorithm is unsuitable for resist simulation owing to the difficultly in reconstructing the surface from the rays.

The simulation begins with 50 segments, and uses a time-step of AT = 0.1 seconds. Recursive vector checking is used for
accuracy. Simulation with AT = 0.1 seconds and no recursive vector checking lasts 67 seconds. Simulation with AT = 0.5
and recursive vector checking lasts 52 seconds.

o oa W
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An approach in which etch-rate-dependent rays are used to advance a string-like mesh
has been found to be the most advantageous for the simulation of etching. This combined ray
and string algorithm is computationally fast and accurate, insensitive to errors in the local
etch-surface, and has modest memory requirements. The issues affecting the accuracy and
efficiency of the ray-string simulation have been examined in some detail by implementing
the algorithm in two dimensions. A recursive procedure that dramatically increases the accu-
racy of the ray-trajectory calculations has been developed and incorporated into the algorithm.
The use of arc interpolation, small time-steps, small segment sizes and small maximum allow-
able segment lengths also increases the accuracy of the simulations, but at a cost of increased

computation time.

The combined ray-string algorithm has been implemented in three dimensions in the C
programming language. The data-structure uses multiple linked-lists to represent the nodes,
segments and triangles that make up the etch boundary mesh. This hierarchical data-structure
is well suited for implementing a number of mesh operations which are vital for preserving
the balance between accuracy and efficiency. These operations include mesh modification,
boundary clipping and delooping of the etch boundary surface. The capability for plotting and

arbitrarily clipping the 3D surface has been added.

The 3D ray-string etch algorithm is the key element of a new fast, robust and accurate
3D photolithography simulator called SAMPLE-3D. This simulator integrates the 3D ray-
string etch simulator with 2D imaging and 3D resist-exposure simulators, while also providing
display and print capabilities. SAMPLE-3D has been used to study 3D resist profiles from 2D
mask pattems, including isolated contacts, isolated islands, elbow pattems, line-space patterns
as well as phase-shifted mask patterns. Simulations have been carried out on both medium-

contrast and high-contrast positive and acid-hardened chemically amplified negative resists.
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These simulations have provided valuable insight on the role of nonvertical resist dissolution

effects and resist contrast on the pattern printing process.

10.2. Future Research

The SAMPLE-3D simulation program is a powerful tool for studying photolithography.
SAMPLE-3D has been used to briefly examine a number of interesting issues in optical
lithography. However, further systematic simulations are needed to characterize 3D dissolu-
tion effects, and to fully determine the impact of these effects on the pattern printing process.

The simulation results should also be compared to experimental data in the near future.

SAMPLE-3D can also benefit from improvements and extensions to the 3D
development-etching simulator. There are two primary areas for further research, which are :

Delooping
The delooping of the mesh boundary surface must be made more reliable, more
robust, and faster. At present, the deloop procedure uses a brute force approach in
which all the triangles in the mesh are examined against each other for intersec-
tions. A plane-sweep aigorit.hm could be implemented to decrease the number of
intersection tests; this would decrease the computation time from O(N2) to
O(NlogN), N being the number of triangles in the mesh. In addition, delooping
could benefit from a more intelligent approach in which only loop-prone areas are
examined. One way in which this could be done is to rely on user-interaction, in
which the user specifies a volume or a part of the surface to be delooped.

Clipping Against Underlying Topography

In the future, the etch simulator should also be extended to handle underlying
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topography. Presently, the simulation is carried out within a rectangular boundary,
and the mesh is clipped against a constant z -plane. Addition procedures should be
added to enable clipping against an arbitrary 3D surface representing the surface
underlying the photoresist. An altemnate approach, described in Chapter 7, is to
drop the etch-rate to zero outside the boundary. However, in such an approach,
care must be taken to gradually ramp down the etch-rate, so as to ensure that the

rays do not bounce off any abrupt "reflective” boundaries.

SAMPLE-3D would also benefit from links to more accurate and rigorous 3D resist-
exposure simulators such as TEMPEST! or M.Yeung's vector-based simulator.2 Pattemn
transfer simulators could be added to SAMPLE-3D, for the simulation of additional process-
ing steps. In addition, simulators for electron-beam or X-ray lithography could be used to
generate etch-rate distribution data for use in the 3D etching simulator described in this docu-
ment. The integration of these simulation tools can be done with relative ease since
SAMPLE-3D is written in a C-shell script. A full simulator integrating a variety of 3D simu-
lation tools would undoubtedly be of great use for understanding the many complex tradeoffs

between materials, exposure tools and wafer conditions that govem the pattern transfer pro-

Cess.
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APPENDIX A
DERIVING THE DIFFERENTIAL RAY EQUATION

A.1. Solving the Least Action Problem with Variational Calculus

The problem of least action, as discussed in Chapter S, is to find conditions that will

minimize the expression

P
U=n(xy.2)ds = [n(xy.z)ds (A.1]
C P

where n(x,y,z) is a arbitrary continuous function. The integral is evaluated over the curve C,
and the limits of integration are fixed at points P; and P,. t If the variable U is to be a
minimum, then to first order, the variation about U must be zero. In other words, to first

order, there must be no change in the quantity U as the curve C over which the integral is

evaluated is changed slightly.
By
8U = Spj,n(x.y.z)ds =0 [A.2]
Applying the Chain Rule,
50 = || ox + gy + Mgl s =0 (A3]
5| ox dy 0z

The problem now is to find an equation for the curve C such that the minimum equation

above is satisfied.

The starting point is the relationship of the line element ds to its projections on a carte-

sian coordinate system. The line element ds is related to its projections dx, dy and dz on the

t The derivation in this section follows substantially from the analysis of Carll,! who refers to it as a
method of "decided advantages” for problems involving three coordinate axes. Carll’s derivation is over only
two dimensions x and z, but as shown in this section, it is easily extended to three dimensions.
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axes of a rectangular system by Pythagoras’ Theorem.

ds?=dx? + dy? + dz? [A.4]

dx dy.,, .dz
=(— +(—
1=(G P+ P+ (P

1=x2+y?%+2? [A.5]
In order to simplify the equations, the ‘ notation is used to denote differentiation with respect

t0s,ie.
ro X ] ok
*2u Y T
”__di " __ d "_giz_
X = ds? y = ds? z= ds?
Now, if [A.5] is differentiated with respect to s, the following equation is obtained.
xlxll+ylyll+zlz”=o [A.6]
This can also be written in variational form as
x'qx’ +y'8y’'+2'82’=0 [A.7)
where 8x” is defined as the change in x” as the variable x is changed to x + &x.
reg(Ey= 4
8’ = 850 = = (&%)
Using this relationship, Equation [A.7] can be rewritten as
[A.8]

. d ' d b d o
x ds(&x)+y dg(&y)-i-z ds(ﬁz)-O
Since [A.8] is true, any integral which has [A.8] as a factor must also be zero. Therefore, if

[A.8] is multipled by n(x,y,z) and integrated over the curve C, the result will still be zero.

Py

J nxyz) ;’%(ax)+y'z(8y)+z'-%(82) ds =0 [A9]

Now, in the definition of the problem, it was specified that the curve C over which the
integration is being performed is fixed at the points P; and Py. So there is no variation with s

at the end-points, and

X'(P)=x"(Pr)=y'(P;)=y'(Pr)=2'(P;)=2z"(P;)=0
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Integrating [A.9] by parts and using the end-point conditions specified above,
Pr

[ [ ey8 + 2y3y + uysd s =0 [A.10]
P;

The whole point of the exercise so far is to obtain a zero-valued expression in terms of

dx, 8y and 3z. Now, when Equation [A.10] is subtracted from [A.3), the result is

Py
= a_’l - ’ ﬁ - % a_’l ,
3U -P{[{ 3% (nx')}ﬁx +{ % (ny’)}sy +{ o -(nz’)}&] s  [A11]
In order for the quantity U to be a minimum, the first order variation 8U must be zero. t U

in [A.11] can only be zero if each term in the curly brackets is zero, so

on d ( dx*
—=—|n— {A.12a]
ox ds: ds:
on_d| dy
—=—In {A.12b]
i
g—:=% ”':s_z' [A.12c]

This set of equations [A.12a-c] is easily recognized as the scalar form of the vector differential

ray equation

—[n—] =Vn [A.13]

The differential ray equation is thus derived from the least action principle.

It is very important to recognize the conditions over which the differential ray equation
holds. The derivation holds as long as the function n(x,y,z) is continuous, with continuous
partial derivatives up to the second order in x, y and z. When the function is discontinuous,

the calculus of variations can also be used to derive the laws of refraction.}

+ The condition AU = 0 actually forces U to be an extremum, i.e. U could be a minima, a maxima, or a
saddle-point. In order for U to be a minima, the second order variation about U must be positive. Bomn? in
Appendix I, Sections 9-11, pp.731-734, proves that this condition is met.

$ Bom,2 Appendix I, Section 11, p.733.
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& ‘ nzsin92=n,sin9,
Furthermore, the condition of the minima 8U = 0 holds only as long as not more than one ray

passes through any point of the neighborhood. This condition limits the rays to the same side
of an envelope which can undergo multiple reflections and refractions. § In practical terms,
however, this does not impose any limitation on the use of the differential ray equation; it
merely recognizes that rays that are refracted or reflected will behave differently than rays that

do not undergo the same refractions or reflections.

A.2. The Differential Ray Equation and The Eikonal

The eikonal equation is the basic equation of geometrical optics. It is often written as

IVEI12=(n)? [A.14a)
or explicitly as
_3_;_ : ig. : i :
- 2
[ax] +[a] +[az] =(n) [A.14b]

The eikonal can also be written in terms of the unit vector 8, where 8 is related to the position

vector r by the simple differential relationship 8ds =dr.

dr
Vi=ns=n— .
{=ns=n o [A.14c]
In the above equations, # is the optical refractive index. But for the purposes of this discus-
sion, n will be regarded as an arbitrary but continuous function. This allows the results of this

section to be generalized, so that the references to geometrical optics are not necessary.

§ Born 2 discusses this condition in detail in Chapter 3, Section 3.3.2-3, pp.127-132. For example, in
geometrical optics, rays that pass through a lens are contained within an envelope where the least action prin-
ciple is satisfied; the optical length of all the rays within this envelope is minimized. Rays that do not pass
through the lens might have shorter optical lengths, but these rays cannot be compared to rays that pass
through the lens as they are not on the same side of the envelope.
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In this section, it will be proved that the eikonal equation is a solution to the vector dif-

ferential ray equation [A.13], reproduced below for convenience. }

d| dr| _
z[nz] =Vn [A.15]

The first step in the proof is to differentiate the vector form of the eikonal.

d| _dr d
I["ds] = ds(VC) [A.16]
Then, apply the Chain Rule to the right side of the equation.
d ar] . r
o "ds] -dds V(v [A.17)
Substitute for d r/ds using [A.14c]
df ar] 1
—|n=| ==V A.l
“an] nVCV(V(;) [A.18]

Now, in vector calculus, the Chain Rule has the form below.

V(A-A)=2A-V(A)
So, Equation [A.18] can be rewritten as

d| dr| _1 .
= [n dg] =5 V(L0 [A.19]
But according to the eikonal equation, V{-V{ =n2 Therefore,

daj drf 1o 2
ds["ds]_hv(n)

d[ dr] 2n
Z["TE] =2 )

d drl| _
E[nz] = V(n) [A.20]

This last equation, is, of course, the differential ray equation [A.15].

$ This proof follows substantially that of Born,2 Chapter 3.2, p.122.
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All the. pieces of the jigsaw puzzle may now be put together. The differential ray equa-
tion states that there is a ray with a trajectory that follows s (x .y ,z), where ds is the line ele-
ment, and the unit vector S is the direction of the ray at every point (x,y ,z). The eikonal equa-
tion, which has been shown to satisfy the differential ray equation, states that an arbitrary
function {(x,y,z) will satisfy the eikonal equation if |V{l12=n2 Now, if
§(x.y.z) = constant is a 3-dimensional surface, then by definition, the gradient V{(x,y,z) is a
vector that is normal or tangential to the surface at any point (x,y,z). And since Vi(xy.z)is
parallel to the unit vector 8, the surface {(x,y,z) must be normal to the ray. Therefore, the
eikonal and differential ray equations state that the surface {(x.y,z) is normal to all the rays
that satisfy the differential ray equation. The surfaces

C(r) = constant [A.21]
are called the geometrical wave surfaces or the geometrical wave fronts, and the rays are the

orthogonal trajectories of the wave surfaces.

It is worth mentioning at this point that the eikonal equation can also be derived from
the electromagnetic wave equation. 1 The eikonal can then be used to derive the differential
ray equation as shown in this section. This procedure is, in fact, the basis of geometrical
optics. However, the purpose of the discussion in this appendix is to show that the same equa-
tions can be produced from the least action principle using variational and vector calculus.
This provides for a more general approach. And as a result, the ray propagation equations can
be applied to wide-ranging problems, such as geometrical optics, the mechanics of a moving

particle, and even geometrical wave-front etching. This last problem, is of course, of particu-

lar interest in this thesis.

Bomn,2 Chapter 3.1, pp.109-121.
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A.3. Discretizing the Scalar Form of the Differential Ray Equation

The set of differential equations [A.12a-c] may be simplified even further to yield a

result that is more amenable to discretization. Writing out [A.12] in full, the following equa-

tions are obtained.

on dndx  d%

Bx-dsds+ndsz | [A.22a]

on _dndy dﬁ

gt = A22

™ dsds+nds2 [A.22b)
2

on dn dz d*z [A.22¢]

Rl
The term dn/ds can be eliminated by using the Chain Rule.
dn _ondx ondy ond:
ds Jdxds dyds odzds
Substituting for dn/ds and dividing both sides by n yields the set of equations below.

d’x _1on

1 1
ds? nox noxdsds ndydsds nozdsds [A-232)
Py 1on_ldndxdy 1dmdydy 1dmddy
ds? ndy noxdsds ndydsds nozdsds
42 _10n _103ndcdz _13ndydz 10ndzds [A.23c]
ds? nodz noxdsds noydsds nodzdsds )

This set of ordinary differential equations is the differential solution to the least action

problem. Now, in etching, the function # is related to the etch-rate R by

n(x,y,z):ﬁ; [A.24]

Therefore,

1on__1R__3
nox ROox 3xanR)

Similar expressions apply for the differentiation over y and z. The set of differential equa-

tions [A.23a-c] may now be written in the following form : }

+ This is the form used by Barouch et.al.?
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d _ 3 - éx_ _. ZZ [A25a
—d?—-a nR)+ (]nR)dsds ay(lnR) + (lnR) [ ]
d 9 P, 9 ﬂﬂ._ Q
;2% ay(]nR)+ —(n Ry +ay(1nR)ds = +a (n Ry === [A.25b]
d% dx dz dy dz

== az(1nR)+ (]nR)d' ds+3y(lnR)ds =3 (lnR) [A.25c]

The equations are now in a form more suited to discretization, since the partial terms

0 d 0

ax(lnR) ay(lnR) az(lnR)
can be evaluated independent of the increments dx, dy, dz and ds. The differential equation
[A.25a] can be discretized as follows. The discretized forms of [A.25b] and [A.25¢) are simi-
lar.

1 || Gin=x) Gi=x) || 9 n
[ 22]- ge

xis1 = %) (i1 = x;)
As As

Ois1 =¥i) xisg—x:)
As As

d i1 = 2) i —x)
R As

Given a step size As, initial values of x;, y; and z;, and the identity (from [A.4])

+2anR)

+%mm

[A.26]

Ax? + Ay? + Az2 = As?
it is possible to solve for the values of x;,, y;+; and z;,, at the end of the time-step. Repeated

iterations can, of course, be used to find the position of the curve s(x,y ,z) at some final time.

A.4. Discretizing the Vector Form of the Differential Ray Equation

The vector form of the differential ray equation [A.13] can also be discretized for use in
discrete multiple-time-step calculations. For the purposes of etching simulation, replace the

function n(x,y,z) with the inverse of the etch-rate distribution R (x,y,2), as in [A.24]). The
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differential ray equation then becomes

d 1 1
—| =8| =V| —— A27
ds[k(x,y.z) ] [R(xo',z)] A-27]
The equation may be simplified by using the chain rule on the right side.
[A.28]

ds| R

d|1 1
| - [ —3] = —FV(R)
Discretization comes next. If As is the distance etched in some time-step AT -in an average

etch-rate R, , i.e. As =R, AT, then

1 1 1
A A[ R s] = -Rmz V(R) [A.29]
Rearranging the terms,
1 1 1
] 3 VR) R4y AT =———V(R) AT [A.30]
Rave

R ave

A[_s -
Now, if the equation above is made to apply between two points P and P, an incremental

distance apart, then [A.30] becomes

2 _5__ 1 ywyar

Ry Ri R
) 1 1
— =e——V(R) AT +8;—
R?. Rave ( lRl
R, Ry
%——TV(R)AT'*S‘R‘

R, Ry
82—31=—EVC—V(R)AT +31[R—l- ] [A.31]

Now, the average etch-rate R,,, may be written as

$ Note that one could also write the average rate as

Ree =05(R,+RD
in which case the difference between the two forms is
1 _ (Ri+R) 1 21 (R, =Ry
1 2 Ry +R)

Ree =RV = 2 -L(_l_+_)
2R, Ry

The difference is negligible as long as the difference in the etch-rates R, and R is small.
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1 1[1 1
R R | O S A32
[R]m 2[R,+R2] [A.32]

The discrete etch-rate equation then becomes

$;—-8;= —OSMV(R) AT + s,[ -Rl - l] [A.33]

R, Ry
This equation relates the difference in the unit vectors 8; and S, to the gradient of the etch-
rate. The differential ray equation in this form is used in the ray-based etch simulator

described in Chapters 5-8.

It is worth examining Equation [A.33] for different conditions. If R;=R; and VR =0
then $; =S, and there is no change in the direction vectors. This is to be expected; a ray
should not be deflected as it travels through a region with uniform etch-rate. Now, if VR is a
vector parallel to S, e.g. if 8; and VR have only z-components, then clearly 8, will remain
parallel to s,. Physically, this means that a ray traveling normal to a velocity field will not be
refracted. In optics, a light ray perpendicular to a glass plate will not be deflected; the only

effect of the glass plate is to slow down the speed of the ray.

What happens if | VR 1>>1? This could occur if the etch-rate is discontinuous, such as
at an abrupt interface. From Equation [A.33], there is clearly a limit on the magnitude of the
vectors. Taking the magnitude of the vectors in [A.33] yields

S-S =AS

I8;-8;12= 14812 [A.34)
Since §, and s; are unit vectors, there is a size-limitation on As, i.e.

1AS] <2 [A.35]
since the maximum length of two unit vectors is 2. Therefore, if | VR I3>1 of if AT is very
large, then the temm on the left of Equation [A.33] could have a magnitude larger than 2,

which violates [A.35]. This means that the differential ray equation will not work at abrupt
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boundaries or when the time-step chosen is too large. At abrupt boundaries, it is necessary to
use Snell’s law of refraction. For large time-steps, if |AS1>2, the time-step has to be broken
up into smaller time-steps. This leads to the notion of recursive length checking, discussed in

Chapter 7.
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NAME
sample3D - 3D Simulation of Photoresist Development

SYNOPSIS

sample3D [-if splat-inputfile] [-cf contourfile] [-bf bleach-inputfile] [-solid] [-ascii] [-rb
binary-etchrate-file] [-ra ascii-etchrate-file] [-et etchtime] [-pt printtime] [-plot] [-h]

DESCRIPTION

SAMPLE3D is a user-oriented shell script for the Simulation and Modeling of Profiles in
Lithography and Etching. The program integrates a a number of process simulators for three-
dimensional simulation of optical lithography, while also providing display and print capabili-
ties.

The simulation of optical lithography involves modeling the process by which patterns on a
mask are transferred onto a photoresist-coated wafer via exposure to optical radiation. Essen-
tially, this process involves three major components : imaging, exposure-bleaching and etch-
ing. SAMPLE3D simulates the three-dimensional (3D) profile of the developed photoresist as
a function of time by first using SPLAT to calculate the aerial image intensity incident upon
the photoresist. The exposure of the photoresist to light triggers chemical changes in the pho-
toresist; the chemical changes or exposure-bleaching is modeled using Dill’s algorithm in
BLEACH. An exposure model then generates a three-dimensional etch-rate distribution
throughout the volume of the photoresist. This distribution is then used in ETCH, a three-
dimensional etch simulator based on the ray-string algorithm, to generate a three-dimensional
profile of the photoresist.

The options for each of the process modules SPLAT, BLEACH and ETCH, are specified
through the command line. In order to run SPLAT, the splat-inputfile must be specified. (See
the SPLAT User Manual for details on SPLAT input formats.) Similarly, to run BLEACH for
exposure-bleaching simulation, the bleach-inputfile must be specified. This inputfile is similar
in format to that of SAMPLE. (See the SAMPLE User Guide for details.) BLEACH will pro-
duce a three-dimensional etch-rate array for use in ETCH. However, ETCH will only run if
the erch-time has been specified in the command line.

A full 3D simulation involving all three modules can be run using the command :

% sample3D -if splat-inputfile -bf bleach-inputfile -et 30
where splat-inputfile and bleach-inputfile are the names of the input files. The command
above will run the etch simulator for 30 seconds of development time.

Alternately, SAMPLE3D can be run without using all the simulation modules mentioned pre-
viously. For example

% sample3D -cf contour-file -bf bleach-inputfile
will only run BLEACH. BLEACH will in mm produce a binary etch-rate file,
"rval.3D.binary". ETCH can then be run using the following command.

% sample3D -rb rval.3D.binary -et 30 -pt 10
Using commands such as the above, it is no longer necessary to run full 3D simulations. This
saves time, since the exposure-bleaching simulation can be quite time-consuming if the pro-
cess involves post-exposure bake diffusion.
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OPTIONS

~if splat-inputfile

reads the SPLAT input data from the file splat-inputfile. (See SPLAT User Manual for
detailed instructions.) SPLAT will only be run if the splat-inputfile is specified. If a
contour-file is defined using SPLAT"s Trial 11, then the script will pass on the contour-
fileto BLEACH.

—cf contour-input-file

specifies the file in which the intensity contour data is stored. This command is used to
bypass SPLAT. If both the contour-file and the bleach-inputfile are specified, the script
will branch to the BLEACH simulator. The contour data must be arranged as specified
in the contour manual. '

=bf bleach-inputfile

reads the exposure-bleach instructions from the file bleach-inputfile. This file has the
exact same format as that of the (2d) SAMPLE program. (See SAMPLE 1.7a User
Guide for detailed instructions.) BLEACH will only run if both the contour-file and the
bleach-inputfile are specified. If the etch-time is specified as well, the script will branch
to the ETCH simulator for the etching simulations.

-solid
will cause the BLEACH program to print out 3D contours of constant M-values to the
file "mxyz.solid.3D". The data is printed out in pdraw format, and can be plotted out
using the command

% pdraw -h -nosort mxyz.solid.3D

—ascii
forces the BLEACH simulator to print out the etch-rate data in ascii format. The ascii
file is "rval.3D". This is useful if the data-file is to be ported to a different machine.
The default, however, (if -ascii is not specified) is to print the data in a binary file,
“rval.3D.binary”. Reading and writing in binary significantly reduces the I/O time.

~rb binary-etchrate-file

will force the program to read the etch-rate data from the binary file binary-etchrate-file.
This option will bypass both SPLAT and BLEACH. However, ETCH will only run if
the etch-time has been specified.

-ra ascii-etchrate-file

will force the program to read the etch-rate data from the ascii file ascii-etchrate-file.
This option will bypass both SPLAT and BLEACH. However, ETCH will only run if
the etch-time has been specified.

—et etchtime
—pt printtime
specifies the total etch and print times for the ETCH simulation program. The etch-time

specifies the total development time, and the profile will be plotted every printtime
seconds. Note : ETCH will not run unless the etch-time has been specified.
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—plot

causes interactive plotting.
-h

forces the ETCH-simulated plots to be drawn with hiddenlines.
AUTHOR
Kenny K.H. Toh (ktoh@mascot.berkeley.edu)

FILES
mxyz.solid.3D contours of constant M
rval3D ascii etch-rate data (3D array)
rval 3D .binary binary etch-rate data (3D array)
curves.plot 3D photoresist profile
curves.plot2D 3D photoresist profile projected onto the x-y plane
dataplot.ps temporary POSTSCRIPT file
SEE ALSO

drawplot(L), contour(L), pdraw(L)
SPLAT User Manual, BLEACH(L), ETCH(L)
SAMPLE User Guide, parse_splat(L)
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NAME
pdraw - 3D plot program for X-windows and Postscript
SYNOPSIS

pdraw [-v vx vy vz] [-0 options-file] [-Pprinter) [-8 scale] [-e] [-h] [-nosort] [-noplot] [-print]
[-ps] [-tl " toplabel”] [-x] "xlabel"] [-yl "ylabel"] [-z] "zlabel"] plotfilel plotfile2...

DESCRIPTIONS

Pdraw is a program for drawing 3D plots on X10 or X11 windows. The program will also
produce a POSTSCRIPT plot which can be dumped out to an APPLE Laserwriter. Pdraw
reads in x-y-z data from a plot-file and manipulates that data according to options specified
either in the command-line or in a options-file. The plot-file can be compressed (see
compress(1)); compressed files will be uncompressed automatically. The program then plots
lines on a screen or dumps the plots to a POSTSCRIPT file.

The plot-file input data consists of altemnating x, y and z values, in the format shown below.
Data File Format (plot-file)

Xmin xmax ymin ymax zmin zmax
ncurves

npts

x1ylzl

x2y2z2

npts
xlylzl
x2y222

In the above, xmin, xmax, ymin, ymax, zmin and zmax are lower and upper bounds of the
desired plot, ncurves are the number of curves to be plotted, and npts are the number of points
in each curve. The data file can consist of more than one set of curves to be plotted; each set
(i.e. one set for each separate graph) is separated from the next by a blank line.

Upon starting up the program, pdraw will read in the data stored in the plot-file, as well as any
plotting options specified either in the command line or in the options-file. Pdraw then uses
the given view direction to rotate and transform the plot onto a plane perpendicular to the
viewing vector. Currently, only parallel projection is supported. If the program is being run
under X-windows, the plot will then be drawn on the screen. The viewing vector can be
changed using the "H", "J", "K", "L" and "O" keys on the the keyboards; the plot on the screen
can be rotated sideways using the "H" or "L" keys, rotated up or down using the “J" and "K"
keys, and drawn with the original viewing vector using "O". The "A", "S", "D" and "F" keys
will produce 90° rotations. "Z" will plot the image projected on the x-y plane (z=constant),
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"Y" will plot the image projected on the x-z plane (y=constant), and "X" will plot the image
projected on the y-z plane (x=constant). The final view angle will be saved and used for the
POSTCRIPT plot. Finally, the user will be prompted as to whether or not the POSTSCRIPT
plot is to be sent to a printer.

OPTIONS

-V VX vy vz
reads in the viewing eye position, relative to (0,0,0). The plot will be rotated and
transformed so that the z-axis is parallel to this position. For example, a view position
of (1,0,0) means that the 3D structure is being viewed with parallel projection from the

X-axis.

-0 options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parser recognizes only a limited set of key-
words; their values are either numbers, quoted strings, or the words "on” and "off". All
the words in the option specification must be on the same line. The pound sign (#) indi-
cates that the remainder of the line is a comment to be ignored by the parser.

List of Options (options-file)

xlabel "LABEL" #[default = "X-Axis"]
ylabel "LABEL" #[default = "Y-Axis"]
zlabel "LABEL" #[default = "Z-Axis"]
toplabel "LABEL"  #[default = "3D Line Plot")
equalscale on/off #[default = on]
postscript on/off #[default = on]
printplot on/off #[default = off]

noplot on/off #{default = off]

printer "PRINTER"  #[default = SPRINTER]
line on/off #{default = on]
linechange on/off #[default = off]

marker on/off #{default = off]
markerchange on/off #[default = off]
hiddenline on/off #{default = off]

nosort on/off #{default = off]

scale [0.1 - 1.0) #[default = 1.00]

xticks [1 - 20] #[default = 2]

yticks [1 - 20] #[default = 2]

zticks [1 - 20] #[default = 2]

=Pprinter
specifies which printer to which to send the postscript plot. The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set, then the

printer used is the 1pS50M printer in SS0M Cory.

- scale
sets a scale factor. This is used only for POSTSCRIPT plotting.

forces unequal scales to be applied to the x, y and z axes. The boundary of the 3D object

-

will then resemble a cube.

- for the x-label

- for the y-label

- for the z-label

- for the top-label

- for equal x-y scaling

- for postscript (PS) plot

- send PS file to printer

- no graphics plot

- define the printer

- draw the line

- change the linetypes

- draw the marker

- change the markertypes
- for hidden-line drawings
- for hidden-line drawings
- scales the PS plot

- no. of x-divisions

- no. of y-divisions

- no. of z-divisions
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—h  draws polygons with hidden-lines.
-nosort

prevents sorting for the hidden-line option.
-noplot

prevents plots on the graphics display.

—print
sends plots to the printer automatically.

-ps twms the postscript plotting option off. This can also be done by setting the
POSTSCRIPT environment variable to OFF. e.g. % setenv POSTSCRIPT off

-1l toplabel
-x1 xlabel
-yl ylabel

~z1 zlabel
sets label options.

host:display
opens a window on the given host and display

=geom

-rv

~bw border-width
-bd color

—fg color

~bg color
sets input options for the X-window system.

Not really that many. The POSTSCRIPT labels need to be adjusted. The labels don’t come
out well when the picture is rotated beyond the default view. The parser needs to be
improved. There should be a better way to put change linetypes and markertypes. Log axes
might be nice. Also should incorporate drawplot modifications here.

AUTHOR

FILES

Kenny K.H. Toh (ktoh@mascot.berkeley.edu)

dataplot.ps temporary POSTSCRIPT file

SEE ALSO

contour(L), drawplot(L)
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NAME
contour - contour plot program for X-windows, HP2648s and Postscript
SYNOPSIS

contour [-0 options-file] [-Pprinter] [-8 scale] [-c level] [-cstep step-size} [-ex] [-g] [-j join-
level] [-1] [-noplot] [-print] [-ps] [-old] [-t] "toplabel™] [-x] “xlabel”] [-yl "ylabel"] [-3D]
contour-file

DESCRIPTIONS

Contour is a program for drawing contour plots on X10/X11 windows or HP2648 terminals.
The program will also produce a POSTSCRIPT plot which can be dumped out to an APPLE
Laserwriter. Contour reads in data on a 3D surface from a contour-file and manipulates that
data according to options specified either in the command-line or in a options-file. The plot-
file can be compressed (see compress(1)); compressed files will be uncompressed automati-
cally. The program then draws contours on a screen or dumps the contours to a POSTSCRIPT
file.

The 3D surface input data consists of z-values of the 3D surface, arranged on a rectangular
grid of size (xmax - xmin) X (ymax - ymin). The data file format is shown below.

Data File Format (contour-file)

xmin xmax ymin ymax
nxpts nypts

zl

22

In the above, xmin, xmax, ymin and ymax are lower and upper bounds of the grid, and nxpts
and nypts are the number of grid divisions in x and y. Alternately, if the -3D flag is specified,
the data-file could consist of triangles, specified in pdraw(L) format, i.e.,

Data File Format (plot-file)

xmin xmax ymin ymax zmin zmax
ncurves
40
xlylzl
x2y222
x3y3z3
xlylzl
40
xlylzl
x2y2z2
x3y32z3
xlylzl
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Upon starting up the program, contour will read in the data stored in the contour-file and will
then find the maximum and minimum z-values of the surface. It will then prompt for a con-
tour step-size (i.e. the contour increments), and read in any plotting options specified either in
the command line or in the options-file. The plot will then be drawn on the screen if possible.
Finally, the user will be prompted as to whether or not the POSTSCRIPT plot is to be sent to a

printer.

OPTIONS

-0 options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parser recognizes only a limited set of key-
words; their values are either numbers, quoted strings, or the words "on” and "off”. All
the words in the option specification must be on the same line. The pound sign (#) indi-
cates that the remainder of the line is a comment to be ignored by the parser.

List of Options (options-file)

xlabel "LABEL" #[default = "X-AXIS™) - for the x-label

ylabel "LABEL" #[default = "Y-AXIS"] - for the y-label

toplabel "LABEL"  #[default = "CONTOUR PLOT"] - for
the top-label

grid on/off #[default = off] - draws a grid

equalscale on/off #[default = on) - for equal x-y scaling
nroplot on/off #[default = off] - don’t draw graphics plot
postscript on/off #[default = on] - for postscript (PS) plot
printplot on/off #[default = off] - print PS file automati-
cally

printer "PRINTER"  #(default = $PRINTER] - define the printer
contlabel on/off #[default = on] - for contour labels
joinlevel high/low #[default = --] - for joining curves

scale (0.1 - 1.0] #{default = 1.00] - scales the PS plot
linetypes [1 - 3] #{default = 2] - no. of contour linetypes
xticks {1 - 20] #{default = 4] - no. of x-divisions

yticks [1 - 20] #{default = 4] - no. of y-divisions

=Pprinter
specifies which printer to which to send the postscript plot. The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set, then the
printer used is the IpS50M printer in 550M Cory.

-5 scale
sets a scale factor. This is used only for POSTSCRIPT plotting.

—c¢ level
forces the program to compute the contours at a single value of z, specified by level.

The contours will be written to the file image.cont. The output data is organized in
SAMPLE plot format, i.e.,
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Single contour (image.cont)

xmin, xmax, ymin, ymax
ncurves

npts

ptlxptly

p2.x pr2.y

npts
ptlxptly

—cstep step-size

defines the contour step-size. If this is not defined, the program prompts for the step-
size.

—ex expands the data into a triangular mesh. The mesh is stored in contour-file.3D. Thus, if
the initial contour file is named im.cont, then the surface mesh will be stored in
im.comt.3D.

—g forces a grid to be drawn.

~j joinlevel
causes contour curves to be joined where possible. This is done by defining a boundary
layer around the rectangular border, and setting the z-value of that boundary layer at
either the maximum or minimum z-value. joinlevel = HIGH or high sets the border z-
value to its maximum value: this is useful for plots which have high average z-values.
joinlevel = LOW or low sets the border z-value to its minimum value: this is useful for
plots which have low average 2-values.

-1  suppresses the contour labels.

-noplot
prevents plots on the graphics display.

~print

sends the POSTSCRIPT lot to the printer automatically.

-ps tuns off the postscript plotting mode. This can also be done by setting the

POSTSCRIPT environment variable to OFF. e.g. % setenv POSTSCRIPT off

—old accepts an older contour format for the contour-file, based on a rectangular 50 x 50

array. The data file format is similar to that described earlier except for the first 3 lines.
nxpts and nypts (both equal to 50) are omitted. Also, xmin and ymin are the coordinates
of the lower left comer of the grid while xlength and ylength define the area being exam-
ined.

Old Data File Format (contour-file)

xmin ymin xlength ylength
zl
2

284
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—tl toplabel
—xl xlabel

-yl ylabel
sets label options.

-3D specifies the plotfile to be of pdraw(L) format. As such, the plotfile should consist of
triangles only. For example, "contour -3D curves.plot.3D" will produce contour plots of
the 3D plotfile curves.plot.3D.

host:display
opens a window on the given host and display

—d host:display

=geom

-Iv

=bw border-width

~bd color

~fg color

-bg color

~fn font-name

sets input options for the X-window system.

AUTHOR |

Kenny K.H. Toh (ktoh@mascot.berkeley.edu)

FILES

dataplot.ps temporary POSTSCRIPT file
image.cont file produced by -c level option

SEE ALSO
SPLAT, drawplot(L), pdraw(L)
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NAME
drawplot - plot program for Sunview, X-windows, HP2648s and Postscript

SYNOPSIS

drawplot [-o options-file] [-Pprinter] [-s scale] [-ar] [-clip] [-e] [-g] [-1] [-noplot] [-print] [-
ps] [-xlog] [-ylog] [-t template-file] [-t1 "toplabel”] [-x] "xlabel"] [-yl "ylabel"] plot-filel
plot-file2...

DESCRIPTIONS

Drawplot is a program for drawing 2D plots on X10/X11 windows, SUNVIEW displays, or
HP2648 terminals. The program will also produce a POSTSCRIPT plot which can be dumped
out to an APPLE Laserwriter. Drawplot reads in x-y data from a plot-file and manipulates that
data according to options specified either in the command-line or in a options-file. The plot-
file can be compressed (see compress(1)); compressed files will be uncompressed automati-
cally. The program then plots lines on a screen or dumps the plots to a POSTSCRIPT file.

The plot-file input data consists of alternating x and y values, in the format shown below.
Data File Format (plot-file)

xmin xmax ymin ymax
ncurves

npts

x1lyl

x2y2

npts
x1yl
x2y2

o

In the above, xmin, xmax, ymin and ymax are lower and upper bounds of the desired plot,
ncurves are the number of curves to be plotted, and npts are the number of points in each
curve. The data file can consist of more than one set of curves to be plotted; each set (i.e. one
set for each separate graph) is separated from the next by a blank line.

Upon starting up the program, drawplot will read in the data stored in the plot-file, as well as
any plotting options specified either in the command line or in the options-file. The plot will
then be drawn on the screen if possible. Finally, the user will be prompted as to whether or not
the POSTSCRIPT plot is to be sent to a printer.
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OPTIONS
—0 options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value, The parser recognizes only a limited set of key-
words; their values are either numbers, quoted strings, or the words "on" and "off". All
the words in the option specification must be on the same line. The pound sign (#) indi-
cates that the remainder of the line is a comment to be ignored by the parser.
List of Options (options-file)
xlabel "LABEL" #{default = "X-AXIS"] - for the x-label
ylabel "LABEL" #[default = "Y-AXIS"] - for the y-label
toplabel "LABEL"  #[default = "X-Y LINE PLOT"]- for the top-label
autorange on/off #{default = on] - automatic axis ranging
clip on/off #{default = off] - clips the picture
equalscale on/off #{default = off] - for equal x-y scaling
grid on/off #{default = off] - draws a grid
noplot on/off #{default = off] - don’t draw graphics plot
postscript on/off #[default = on] - for postscript (PS) plot
printplot on/off #{default = off] - print PS file automati-
cally
printer "PRINTER"  #[defauit = SPRINTER]) - define the printer
line on/off #{defauit = on] - draw the line
linechange on/off #{default = off] - change the linetypes
marker on/off #{default = off] - draw the marker
markerchange on/off #{default = off] - change the markertypes
landscape on/off #{default = off] - print in landscape mode
xlog on/off #{default = off] - x-axis in log-scale
ylog on/off #{defanlt = off] - y-axis in log-scale
scale [0.1 - 1.0] #[default = 1.00] - scales the PS plot
xticks [1 - 20] #i{default = 4] - no. of x-divisions
yticks [1-20] - #[default = 4] - no. of y-divisions
sleeptime [1 - 20] #{default = 5] - SUNVIEW plot time
templatefile "template” #{default = "] - plot/marker templates
—Pprinter

specifies which printer to which to send the postscript plot. The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set, then the
printer used is the 1p550M printer in S50M Cory.

-s scale
sets a scale factor. This is used only for POSTSCRIPT plotting.

-ar forces no automatic ranging of the x and y axes. Without this option, automatic ranging
is set ON, and the program tries to select the best axis-scales possible. The autorange
option is also turned off when either xticks or yticks is defined in the option-file.

—clip forces clipping within the plot boundary.
—e  causes the x and y grids to be drawn with equal scales.
—g forces the grid to be drawn.

288
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-1  prints the postscript plot in landscape mode (rotated).

~noplot
stops the program from drawing on a SUN, X or HP graphics window. Only the
postscript plot will be made.

~print
sends the postscript plot to the printer automatically.

—ps wms off the postscript plotting mode. This can also be done by sctting the
POSTSCRIPT environment variable to OFF. e.g. % setenv POSTSCRIPT off

_xlog
draws the x-axis on a log scale.

~ylog
draws the y-axis on a log scale.

—t template-file
reads the plot and marker template from the file template-file. This is used to set the line
type, marker type, and line-label of each line. The file should have 2 numbers per line;
the first number corresponds to the line type [0-10], while the second corresponds to the
marker type [0-16). The line-label is the first word that follows the keywords "label”,
"linelabel” or "line_label". The line-label should be placed inside quotes. The number
of lines in the template-file corresponds to the number of different line or marker types
that will appear in the plot - the curves will cycle through these plot/marker types. A
sample template-file is shown below.

Example Plot/Marker Template File (template-file)

In_type=1 mkr_type =0 label = "Line 1"
In_type=2 mkr_type =0 label = "Line 2"
In_type=3 mkr_type=1 label = "Line 3"
In_type =4 mkr_type = 13 label = "Line 4"
In_type=5 mkr_type=2 label = "Line 5"
In_type=6 mkr_type =4 label = "Line 6"

POSTSCRIPT Line Types (example : % drawplot -t template.n f77lines)

No Line
Solid Line
Dashed Line
Dotted Line
Dot Dash
Double Dot
Long Dash
Dot Dash
Long Dots
Short Dash
Dot-Dot Dash

— V00NN HB WO

o

POSTSCRIPT Marker Types (example : % drawplot -t template.mkr
f77lines)
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No Marker

Point

Square (White)

Square (Gray)

Square (Black)

Diamond (White)

Diamond (Gray)

Diamond (Black)

Upright Triangle (White)
Upright Triangle (Gray)

10  Upright Triangle (Black)

11  Upsidedown Triangle (White)
12 Upsidedown Triangle (Gray)
13  Upsidedown Triangle (Black)

WOoOONAWNEWND=O

14  Circle (White)
15 Circle (Gray)
16 Circle (Black)
17 X marks the spot.
~tl toplabel
—x1 xlabel
-yl ylabel
sets label options.
host.display
opens a window on the given host and display
~d host:display
=geom
-rv
~bw border-width
~bd color
~fg color
~bg color
—fn font-name

sets input options for the X-window system.

AUTHOR
Kenny K.H. Toh (ktoh@mascot.berkeley.edu)

FILES
dataplot.ps temporary POSTSCRIPT file
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SEE ALSO
contour(L), pdraw(L)
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NAME

drawmask - draw an X11 and POSTSCRIPT plot of a SPLAT mask

SYNOPSIS

drawmask [-0 options-file] [-Pprinter] [-1] [-Ibl] [-s scale] [-noplot] [-ps] [-print] [-t] "topla-
bel"] [-x] "xlabel”] [-yl "ylabel"] mask-file

DESCRIPTIONS

Drawmask is a program that draws an X11 and POSTSCRIPT plot of a SPLAT mask.
Drawmask reads in mask data from a mask-file and manipulates that data according to options
specified either in the command-line or in a options-file. The program then dumps the plot to a
POSTSCRIPT file.

OPTIONS

-0 options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parser recognizes only a limited set of key-
words; their values are either numbers, quoted strings, or the words "on” and "off". All
the words in the option specification must be on the same line. The pound sign (#) indi-
cates that the remainder of the line is a comment to be ignored by the parser.

List of Options (options-file)

xlabel "LABEL" #{default = "X-AXIS"] - for the x-label

ylabel "LABEL" #{default = "Y-AXIS"] - for the y-label

toplabel "LABEL"  #[default = "2D Mask"] - for the top-label
equalscale on/off #{defauit = on] - for equal x-y scaling
noplot on/off #{default = off] - don’t draw graphics plot
postscript on/off #[default = on) - print PS file automati-
cally

printplot on/off #[default = off] - send PS file to printer
printer "PRINTER"  #[default = $PRINTER] - define the printer
landscape on/off #[default = off] - print in landscape mode
scale [0.1 - 1.0] #[default = 1.00] - scales the PS plot

xticks [1 - 20] #{default = 4] - no. of x-divisions

yticks [1 - 20) #{default = 4] - no. of y-divisions
nolabel on/off #[default = on] - don't print labels

=Pprinter
specifies which printer to which to send the postscript plot. The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set, then the
printer used is the Ip550M printer in 550M Cory.

=1  prints the postscript plot in landscape mode (rotated).
=Ibl prints the mask with labels.

-8 scale
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sets a scale factor. This is used only for POSTSCRIPT plotting.

—noplot
prevents plots on the graphics display.
—print
sends the POSTSCRIPT lot to the printer automatically.

—ps turns off the postscript plotting mode. This can also be done by setting the
POSTSCRIPT environment variable to OFF. e.g. % setenv POSTSCRIPT off

BUGS

Currently, the program is only able to plot opaque masks (transmission = 0) with rectangular
openings (no triangles accepted). There is no rectangle-intersection checking.

AUTHOR

Kenny K.H. Toh (ktoh@mascot.berkeley.edu)
FILES

dataplot.ps temporary POSTSCRIPT file

SEE ALSO
SPLAT, drawplot(L), contour(L)



Y-AXIS

TR
N
R

2D Mask

296



CONV (L) USER GUIDE 297

NAME
conv - convert a 3D contour format data-file to pdraw format

SYNOPSIS
conv [-t] [-o0ld] [-0 output-file] input-file

DESCRIPTION
Conv is a program for coverting a contour data-file to a pdraw data-file. The pdraw output-
file will be either a rectangular wire-mesh or a triangular solid-mesh (-t flag). If the name of
the output-file is not specified in the command line, the output-file will be named input-file.3D
(i.e. the ".3D" will be appended to the input-file). The contour data-file can be compressed
(see compress(1)); compressed files will be uncompressed automatically.
See contour (L) and pdraw (L) for details on the input/output data formats.

OPTIONS

~t  creates a triangular mesh. This is better for hidden-line plots.

—old accepts an older contour format for the comtour-file, based on a rectangular 50 x 50
array. See contour (L) for more details.

-0 output-file
specifies the name of the output-file.

AUTHOR

Kenny K.H. Toh (ktoh@mascot.berkeley.edu)
SEE ALSO

drawplot(L), contour (L), pdraw(L)
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