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ALGORITHMS FOR THREE-DIMENSIONAL SIMULATION

OF PHOTORESIST DEVELOPMENT

Ph.D. Kenny Kai HockToh EECSDepartment

ABSTRACT

A Three-Dimensional Optical Lithography Simulator has been developed based on a

newray-string algorithm for dissolution etch-front advancement. In developing thenewalgo

rithm, performance studies of cell, string and ray algorithms were carried out in two dimen

sions. A key finding was that a recursive ray method for the calculation of the surface-

advancement vector produced numerically stable and highly accurate results. The optimum

algorithm was found to be one that combines the recursive-ray method with the string

approach, in which etch-rate-dependent rays are used to advance thenodes, segments and tri

angles which makeup the etching boundary. This algorithm has been implemented in 3Din

the C programming language, using alinked-list data structure to represent the etching boun

dary mesh. Recursive time-step selection, mesh modification, and clipping and delooping of

the etch boundarysurfacehave been implemented.

The 3D ray-string etch simulator has been coupled to 2D imaging and 3D resist-

exposure simulators to form SAMPLE-3D, acomplete fast and accurate 3D photolithography

simulator. The complete simulator has been used to investigate the correlation between the



2D aerial image and the 3D developed resist profile. This includes applications to the printa-

bility of defects where the nonvertical resist dissolution effects play a strong role, as well as

the design ofphase-shifted masks wherephase-transitions tendto print

<<#rr Adl#$'S<«ftt.&7
Prof. A. R. Neureuther '

Committee Chairman
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CHAPTER 1

INTRODUCTION

U-thog-ra-pby - theart orprocess of printing from a flat stone ormetal plate: die design is putonthe
surface with a greasy materia], and then water and printing ink are successively applied; the
greasy parts, whichrepelwater, absorb theink,but thewet parts donot

pho-to-li-thog-ra-phy - aprinting process combining photography and lithography.

[From Webster's NewWorld Dictionary, 2ndedition, 1974]

1.1. SIMULATION OF PHOTOLITHOGRAPHY

Photolithography simulation is increasingly being recognized as a critically important

tool for the fabrication of modemintegrated circuits. As integrated circuit device dimensions

are pushed deeper and deeper into the submicron regime, the taskof ensuring good yield and

throughput with photolithography (also referred to as optical lithography) becomes more and

more difficult It is important to be able to understand and balance the many complextradeoffs

between materials, exposure tools, and wafer conditions that govern the pattem transfer pro

cess.

Simulation represents a powerful tool for studying photolithography, because it provides

the means for systematically determining the effects of the many process parameters on the

lithographic pattem transfer process. This systematic study can yield important information

on the relationship between the various process parameters. It provides for a better under

standing of the principles involved in thelithography process, which in turn allows for optimi

zationof the performance of the pattemtransfer process. And all this canbe donemuch faster

than experimental approaches, and at a fraction ofthe cost



The simulation of optical lithography involves modeling the process by which patterns

on a mask are transferred onto a photoresist-coated wafer via exposure to optical radiation.

The origins of lithography process simulation can be traced to the 1970s. The essential

ingredient was provided by Dill and co-workers,1'2 who formulated aquantitative model for

the exposure and development of positive photoresists. In later years, this basic model was

extended to multiple wavelengths.3 A variety of optical effects such as defocus,4 lens aberra

tions5 and mask phase-shifting6 were also added on. Dill's resist development model and the

extensions to it have since been implemented in a number of photolithography simulation pro

grams, including the SAMPLE 7 simulation program at U.C. Berkeley, t Since SAMPLE was

introduced in April 1979, it has been used with great success for studying the issues involved

in printing one-dimensional (ID) lines and spaces.

SAMPLE produces, principally, the two-dimensional cross-sections of line-edge profiles

transferred from one-dimensional mask patterns. However, at small device dimensions,

three-dimensional (3D) effects become more important in clearing out and properly filling

comers, determining the effects of mask defects, and, in general, printing two-dimensional

(2D) patterns such as elbows and squares. To deal with the issues related to patterning 2D

mask patterns, it is necessaryto be able to simulate the three-dimensional photoresist profile

transferred from a two-dimensional mask pattern. And to do this, it is necessary to simulate

the resist development, that is, the etching of the photoresistby an alkaline developer.

t SAMPLE is a FORTRAN program for Simulation And Modeling of Profiles in Lithography andEtch
ing. It is capable of simulating the time evolutionof topographical features of Integrated Circuitdevicesdur
ing multiple processsteps. SAMPLEis beingdeveloped at the University of California atBerkeley by a stu
dent research groupon process modeling and technology, underthe guidance of Professors A.R. Neureuther
and W.G Oldham.8



1.2. ETCHING ALGORITHMS

The problem of etching photoresist canbe generalized to that of modeling the shape or

profile of a material as its surfaces are being etched. The etching is assumed to take place

only on the surface of atime-varying front, andthe etch-rate ateachpoint in the volume of the

material is given by some previously calculated etch-rate distribution. Furthermore, the pho

toresist is modeled asan inhomogeneous and isotropic medium.

In two dimensions, there are basically three algorithms formodelingetching. Dill's cell

model,2 introduced in 1975, was the very first algorithm to be used for development-etching

simulation. The cell method is a volumetric algorithm; the material to be etched is divided

into a matrix of tiny cells, andthe etch surface is tracked by noting the etch stateof eachcell

in the material. This algorithm, however, is slow and inefficient, and requires a frightening

amountofcomputationtime andmemory in order to produce accurate results.

Jewett's string model9 (used by SAMPLE) and Hagouers ray model,10 on the other

hand, are faster and more accurate etching algorithms. These two models are both surface-

advancement algorithms, in which a mesh of connected points is used to represent the surface

of the material as it is being etched. However, the surface-advancement algorithms are

difficult to implement, and also present difficult algorithmic and geometric problems in the

treatment ofboundaries and in loop formation.

These etching algorithms can still be used formodeling three-dimensional etching. But,

as might be expected, the addition of an extra dimension does complicate matters consider

ably.



1.3. 3D PHOTOLITHOGRAPHY SIMULATORS

A number of 3D photolithography simulators have been introduced lately, the great

majority of which use the cell method for 3D etching. The simulators written by Jones

(RD3D)tn Hirai,12 and Bauer (jUTHSIM)13 all use the original cell algorithm. But in 3D,

the cell method is painfully slow. The largememory required to runthe simulation also limits

the cell-based programs to supercomputers or largemainframes. There have been some recent

attempts to correct the deficiencies of the cell method. The SOLID simulation program,14

introduced recently byPelka of the Fraunhofer Institute, and Mutsibishi's 3D-MULSS15 pro

gram both use faster modified versions of the cell method. Unfortunately, the accuracy of

these simulators has not yet been established.

The string and ray algorithms are inherently faster and more accurate than the cell-based

methods. However, these algorithms are quite difficult to implement in 3D. This difficulty is

mirrored in the relatively small number of 3D simulators that use these algorithms.

RESPROT16 seems to be the only 3D process simulator using the string algorithm. Moniwa

(TRIPS-I),17 Jia18 and Barouch19 • 20 use variations of the ray algorithm for 3D etching.

Despite its implementation difficulty, the 3D surface-advancement algorithm remains a most

interesting area of research. There are many interesting tradeoffs, for example, speed vs.

accuracyand front-smoothing vs. delooping, that have yet to be explored in detail.

1.4. RESEARCH OUTLINE

The work described in this document is aimed at implementing a fast, robust and accu

rate 3D lithography processsimulator. In selecting anetching algorithm for 3D processsimu

lation, it is especially important to consider the needs of process engineers. The process



simulator should be easy to use, and it should run on computing resources, such as worksta

tions, that areeasily accessible to process engineers. Therefore, the process simulatormust be

fast, and it should not need to use large amounts of computation memory. There should also

be a good graphics interface foreasy interpretation of the simulation results.

Special attention also needs to be paid to the accuracy and robustness of the etching

simulation. Cell methods are stable, but slow and sometimes inaccurate. Even the ray and

string algorithms produce inaccurate results if care is not taken during interpolation or boun

dary clipping. And in all three algorithms, there will be special cases which coulddisrupt the

execution of the program. In the string algorithm, for example, the formation of loops could

cause the program to crash.

Study of the literature reveals two clear areas of research in etching simulation. One

safe and well-trod approach is to examine the cell method in greater detail, and to modify the

algorithm to achieve greater speed and accuracy. The alternate approach is to delve into the

intricacies of the surface-advancement algorithms. This latter method is high-risk, as it

requires implementingthe surface-advancement algorithms in 3D, which is no easy task. But

at the same time, the inherent speed and accuracy advantages of the surface-advancement

algorithms would provide a high payoff if these algorithms canbe successfully implemented.

It was decided that a better choice of the etching algorithm for 3D simulation could be

made if the etching algorithms themselves were betterunderstood. Therefore, the first step in

the decision process was to make a systematic and comprehensive comparison of the various

etching algorithms in two dimensions. The algorithms for simulating the time-evolution of

2D etch profiles were implemented and compared in cost, convenience, and accuracy. In par

ticular, a great deal of attention was paid to understanding and determining the conditions



under which the algorithms would provide accurate results.

Chapter 2 provides an overview of photolithography simulation in both two and three

dimensions. The cell-removal algorithm foretchingsimulation is discussedin Chapter 3. One

unexpected result of the study of the cell-removal algorithm was a promising new 3D cell-

based algorithm, described in Chapter 4. Chapter 5 is devoted to a discussion of the

mathematical basis of the surface-advancement algorithm. It is shown here that the string and

the ray approaches are related closely to each other. The string and the ray algorithms are

then examined in greater detail in Chapter 6, while an approach combining the two is dis

cussed in Chapter 7.

Based on the study of 2D etching algorithms in Chapters 3-7, the algorithms that were

more suited for 3D etching were selected and implemented. The ray-string algorithm, which

combines the ray and stringmethods, showedthe most potential for 3D etching simulation; its

implementation in three dimensions is described in Chapter 8. The ray-string algorithm has

been found to be both accurate and fast, and has beensuccessfully coupled to 2D imaging and

3D resist-exposure simulators to form the basis of a complete 3D photolithography process

simulator. In addition, supporting graphics programs havealso beenimplemented and linked

to the simulator for easy display of the simulation results. Application examples of the

integrated 3D photolithography simulator are given in Chapter 9. Finally, the dissertation is

concluded in Chapter 10.
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CHAPTER 2

PHOTOLITHOGRAPHY SIMULATION

2.1. 2D PHOTOLITHOGRAPHY SIMULATION WITH SAMPLE

The simulation of optical lithography involves modeling the process by which patterns

on a mask are transferred onto a photoresist-coated wafer via exposure to optical radiation.

Essentially, this process can be divided into three major components : imaging, exposure and

development-etching. The SAMPLE1 simulation program simulates the two-dimensional

(2D) profile of the developed photoresist as a function of time by first calculating the aerial

image intensity incident upon the photoresist (Figure 2.1). The exposure of the photoresist to

light triggers chemical changes in the photoresist; the chemical changes (and modifications

through baking and chemical amplification) are modeled using Dill's2 algorithm (Figure 2.2).

The exposure of the photoresist is related to the etch-rate in the volume of the photoresist by

an empirically-constructed rate equation. This rate equation is used to generate a two-

dimensional etch-ratedistribution throughout the volume of the photoresist (Figure 2.3). This

distribution is then used in a two-dimensional development-etch simulatorto generate a two-

dimensional profile of the photoresist (Figure2.4).

Note in Figure 2.2 that the exposure of the photoresist is a strong function of distance

into the photoresist Because of multiple reflections between the surfaceof the photoresistand

the substrate, standing waves are formed in the vertical intensity distribution. These standing

waves affect the etch-ratedistribution as well as the developed resist profile.

The approach outlined above to simulate the exposure of the photoresist avoids a time-

consuming and rigorous solution of Maxwell's equations inside the photoresist by assuming
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Aerial Image Simulation

Distance on Wafer (um)

Figure 2.1: Aerial image simulation of 1.25 um (0.8 X/NA) isolated space. The image was
simulated using SPLAT, with X=0.436 um, NA = 028, and o = 0.5.
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Figure 22 : Normalized concentration of photoactive compound, simulated from the aerial

image of Figure 2.1. The simulation was performed on 1.0 um of Kodak 820
resist on 0.0741 um oxide. The resist exposure parameters are : A = 0.551
um"1, B =0.058 um'1,C=0.010 cm2/mJ.
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Figure 23 : Two-dimensional etch-rate distribution in the photoresist The etch-rate is
related to the photoactive compound concentration (Figure 2.2) by the Kim1
rate-model, with parameters Rl = 0.1143 um/s, R2 = 0.0001683 um/s, R3 =
4.667, R4 = 0.1 um, R5 = 0.45, R6 = 0.3.

SAMPLE String-Etch

Distance on wafer (um)

Figure 2.4 : Edge profiles for a 1.25 urn isolated space in Kodak 820 resist developed for
15, 30, 45, 60 and 75 seconds. The profiles were simulated with SAMPLE,
using the string algorithm.

1 DJ. Kim, W.G. Oldham, A.R.Neureuther, "Development of Positive Photoresist," IEEE Transactions
on ElectronDevices, vol. ED-31. no. 12, pp. 1730-1735,December 1984.
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thatnon-vertical ray propagation effects are negligible. The imaging and the exposure calcu

lations then become separable, and the exposure calculation can then be performed using

Beming's algorithm for reflection3 assuming a single normally incident plane wave. Unfor

tunately, this assumption, while useful in the majority of simulations, is violated when large

numerical aperture (NA) projection systems are used - the plane waves in such systems canbe

asmuch as 30° off-axis. Forgreater accuracy, it is necessary to applyelectromagnetic diffrac

tion theory to obtain a rigorous and comprehensive description of the imaging and exposure

process in photolithography. A number of simulators that solve Maxwell's equations in two

dimensions have been described recently in theliterature.4 •5 •6 Alternately, high numerical

aperture projection printing may be simulated by including first order corrections to the verti

cal propagation model, as has been done by Bernard7 and Mack.8

A flow diagram of the optical lithography simulationprocessis shown in Figure 2.5. As

depicted in this diagram, there aretwo methods for simulating the exposure of the photoresist,

both of which have been discussed. The rigorous method, in which Maxwell's equations are

solved, treats the imaging and exposure as a single inseparable simulation step. This method,

although more accurate than the vertical propagation model, is difficult to implement and is

very computation-intensive. In contrast, the vertical propagation method, which allows the

imaging and resist-exposure simulations to be separated, is much easier to implement and also

less time-consuming. The resist development-etching simulation is independent of the expo

sure calculation; an empirically determined rate equation is used with either method to gen

erate a etch-rate distribution in the resist This distribution is then used to simulate the time-

varying profile of the developing photoresist
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2.2. 3D PHOTOLITHOGRAPHY SIMULATION WITH SPLAT

SAMPLE is a powerful tool for investigating the issues involved in printing one-

dimensional (ID) lines and spaces. Unfortunately, inthe real world, mask sets typically con

sist of two-dimensional patterns, such as elbows and squares. To properly analyze the effects

of such two-dimensional mask patterns, aFORTRAN program, SPLAT? was developed.

2.2.1. SPLAT: 2D Aerial Image Simulation

SPLAT (Simulation of Projection Lens Aberrations viaTCCs) is aFORTRAN program,

associated with SAMPLE, that simulates a two-dimensional optical image from a projection

printer. The program calculates the intensity from anarbitrary two-dimensional mask pattern,

using the Hopkins10 theory ofpartially coherent imaging. The current version ofthe program

can handle defocus effects, projection lens aberrations, as well as phase-shifted masks.

SPLAT has been used to study feature-dependent effects in optical lithography, including

proximity effects between neighboring features, clearing of comers and contact holes, and

feature-dependent printing biases.11 •12 •13 This simulation capability has also been used to

design test patterns for isolating key optical parameters, and also for quantitatively interpret

ing the experimental results obtained using these test patterns.14 *15 •16 And most recently,

SPLAT hasbeenusedto systematically investigate the effectsof phase-shifting masks in opti

cal lithography.17 •18 •19

SPLAT by itself is not a complete tool, since it only simulates the image on the surface

of the photoresist It is possible to use SPLAT to generate intensity profiles along a outline

through a 2D mask, and then to feed that profile to SAMPLE for further resist development-

etching. As an example, Figure 2.6 shows an image intensitycontour plot of equal lines and
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Intensity Contour Plot: 1.0 um Elbows

2 3

X-Axis (um)

Figure 2.6 : SPLAT aerial image simulation of 1.0 am equal line-space elbows,
run with wavelength X = 0.436 um, NA = 028, and a =0.5. The
mask outline is overlaid with dark solid lines. The image in Figure
2.7a is taken from a outline along the diagonal, from (0.0,0.0) to
(5.0,5.0).
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Figure 2.7: 2D lithography simulation along a outline. The aerial image (a) is
taken from a diagonal outline of a SPLAT-simulated image of two
elbows, (b) The PAC contours and (c) the resist profiles are simu
lated using SAMPLE.
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spaces in an elbow pattern. An intensity cutline along the comers of the elbows yields the

intensity profile of Figure 2.7a. The plots in Figure 2.7b and 2.7c are produced when the

SPLAr-generated intensity profile is fed into SAMPLE for resist development-etching.

2.2.2. 3D Simulation using 2D Outlines

The 2D cutline procedure described previously isoften used, not only in process simula

tion, to simulate three-dimensional (3D) behavior. Typically, a3D volume is cut into parallel

2D planes, the simulation equations are solved along these planes, and the results are merged

to form a "complete" solution^ This pseudo-3D approach is usually used when the full 3D

simulations are difficult to perform, orwhen simulators exist for 2Dbutnot 3Dcalculations.

However, there are only certain conditions under which the cutline procedure will pro

duce accurate results. This can be illustrated using the simple example ofunifoim isotropic

etching, where amaterial exposed to an etchant is etched at aconstant rate. In the examples

shown in Figures 2.8 and 2.9, the material to be etched is exposed to an etchant along a

masked surface, so that only a portion of the surface of the material is in contact with the

etchant. As the material is etched away, the portions of the material underneath the unex

posed surface will gradually come into contact with the etchant Thus, etching proceeds uni

formly from the initial exposed surface. In a2D world, this uniform two-dimensional etching

results in asurface similar to that shown in Figure 2.8b. In ID, however, etching will proceed

only along a one-dimensional line perpendicular to the original surface. A point on the

exposed surface will move straight down into the material as it is being etched, while apoint

on the unexposed surface will not move at all. This result is shown in Figure 2.8a.
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THE NEED FOR 2D ETCHING

(a) ID ETCHING

ETCHANT

(b) 2D ETCHING

ETCHANT

Figure 2.8: (a) ID uniform etching along an exposed surface. The material
underneath the unexposed surface remains unetched.
(b) 2D uniform etching along an exposed surface. The material
underneath the unexposed suface is etched uniformly.
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It is quite clear mat there is a vast improvement in the etching simulation as one goes

from ID to 2D. The ID simulation produces a box-like surface with 90° walls, while the 2D

simulation results in a surface with cylindrical walls undemeath the original unexposed sur

face. Similar results are observed in going from 2D to 3D. In a 3D world, 3D etching takes

place undemeath all the unexposed surfaces, so uniform isotropicetching of a square exposed

surface will resultin a profile similarto thatshownin Figure 2.9a. The surface is cylindrical at

the sides and spherical at the comers. It is important to note thatit is impossible to obtain the

surface of Figure 2.9a with 2D etching along cutline planes. Such a procedure with 2D cut-

lines parallel to the x-axis will produce rounded wall-edges along the x-axis and sharp wall-

edges along the y-axis (Figure 2.9b). This could be fixed, of course, by using multiple cutlines

aligned in different directions. Butevenso,there would still be problems atthe comers of the

masked surface.

In resist development-etching simulation using cutlines, care has to be taken to ensure

that the development-etching will proceed only within the plane of the cutline. Thus, one

requirement is that the cutline must be perpendicular to the intensity contours of the two-

dimensional image. The etch-rates within the resist are dependent onthe intensity contours,

so the resist development-etching starting from that cutline will proceed only along the plane

of the cutline. A second requirement is that there must be no centers of fast development-

etching close to the cutline. If there are such centers nearby, then it is conceivable that

development-etching from these centers might cross the plane of the cutline undemeath the

original resist surface. It is not easy to determine if this last requirement can be met, since

there is a nonlinear relationship between the intensity incident on the resist and the actual

etch-rates within the volume of the resist. In the example of Figures 2.6 and 2.7, the first cri

teria is met; the intensity contours are normal to the diagonal cutline, soetching from the ori-
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THE NEED FOR 3D ETCHING

(a) 3D ETCHING

(b) 3D ETCHING USING 2D CUTLINES

Figure 2.9: (a) 3D uniform etching along an exposed surface. The material
underneath the unexposed surface is etched uniformly,
(b) 3D etching using 2D cutlines. The composite result is not accu
rate, since etching does not take place underneath the edges paral
lel to the x-axis.
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ginally flat surface will proceed only in the cutline plane. However, it is possible that the

second criteria will not be met; the standing waves caused by multiple reflections between the

resist and substrate might result in etching that crosses the diagonal cutline plane. These

standing waves could affect the final resist profile.

Modeling 3D etching with 2D etching along cutlines is potentially fraught with the

danger of not meeting the two requirements discussed above. This makes it very difficult to

implement 3D etching using 2D multiple cutlines.

2.3. COMPLETE 3D PHOTOLITHOGRAPHY SIMULATION

In order to properly investigate issues associated with 2D mask patterns, it is much

better to use a complete 3D photolithography simulator. The simulation process flow

described in Figure 2.5 also applies for 3D simulation. Just as in 2D, the three-dimensional

simulation of photolithography can be performed assuming vertical propagation. In this case,

the simulation can be broken into the three major components described earlier - imaging,

exposure and development-etching. Alternately, the imaging and exposure could be treated as

a whole, and solved for rigorously. However, the rigorous electromagnetic diffraction method

is computation-intensive even in 2D; a rigorous 3D solution of Maxwell's equations will

undoubtedly be much more time-consuming.

Given the advantages of the vertical propagation scheme, it makes a great deal of sense

to implement a 3D resist simulator with modular and separate imaging, exposure and

development-etching parts. The first two components of this simulator are not difficult to

build. SPLAT already exists, and extending Dill's ID exposure model to 3D is straight

forward. However, writing a 3D development-etch simulator is a more difficult proposition,
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for a careful choice of algorithms and data stroctures has to be made in order to obtain a fast,

robust and efficient etch simulator. But if the 3D developmem-etch simulator is developed

and implemented carefully, it can be used with both vertical-propagation and rigorous 3D

resist-exposure simulators for complete and accurate simulation of photolithography.
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CHAPTER 3

THE CELL-REMOVAL ALGORITHM

3.1. INTRODUCTION

The cell-removal algorithm is a volume etching method that was first proposed for etch

ing simulation by Dill, et al.,1 in 1975. It has remained quite popular, with both 2D and 3D

implementations having been reported in theliterature.2 •3•4*5 *6

The cell-removal method, as originally proposed by Dill, divides the the material being

etched into rectangular cells, each characterized as completely etched, completely unetched,

or partially etched. The surfaceor etching boundary consists of unetched or partially etched

cells that are in contact with fully etched cells.The cells on the etching boundary areexposed

to the etchant, and etching proceeds along this surface. During the etch process, cells are

removed by the etchant according to the local etch-rate and the number of sides of the cell in

contact with the etchant When an old cell is removed, the new cells exposed are allowed to

start etching.

3.2. THE ALGORITHM FOR CELL-REMOVAL

The algorithm for moving the etch surface can be stated as follows:

[I] For each cell on the etching boundary, find the etch-time tr needed to remove the

cell. The etch-time is calculated according to the etch-rate at the center of the cell,

and the number of sides of the cell in contact with the etchant The equations

governing the etch-times for typical cases areshown in Figure 3.1.
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Figure 3.1: Time toremove cells for different exposure conditions. la the 3 cas
es above, a cell is exposed along (a) the top surface, (b) the top
and a side surface, and (c) the topand two sides.
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\U] Remove the cell that has etched the fastest, and update the cells on the boundary.

This involves taking the smallest value of tr from step [I], and recalculating the

remaining area of all thecells on theboundary for that particular value of tr.

[HI] Remove cells that have been completely etched from the list of boundary cells.

Unetched cellsthattouch theremoved cellsare added to the boundary list

[IV] Proceedto step [I], and repeat

The movement of the etching boundary via the cell method is demonstrated in Figure

3.2. In this particular example, the etch-rate is assumedto be constant anduniform throughout

the volume of the material. Now, suppose at some time Tl, the material consists of cells that

are either completely etched or completely unetched. The etching boundary then consists of

all the unetched cells that are in contact with an completely etched cell. At time Tl, cell "A"

in Figure 3.2 has two sides exposed to the etchant so this cell etches the fastest The etch-time

for this cell is used as the time-step, to step from the configuration of time Tl to mat of time

T2. By time T2, cell "A" has been completely etched, so it is removed from the boundary list

At the same time, the cells with only one side exposed (marked "B") have become partially

etched. Thus, at time T2, the boundary consists of partially etched cells and completely

unetched cells. The etching process is then repeated. Again, the time to etch for each boun

dary cell is calculated, and the boundary is moved according to the minimum cell etch-time.

At time T3, the partially exposed cells from the previous step have been completely etched,

while the comer cells marked "C" now have become partially etched. This surface boundary

movement proceeds until the total etch-time equals or exceeds some targeted etch-time.
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Figure 3.2 : The Cell Algorithm. The material is divided into cells, each fully
etched, partially etched, or unetched. For each time step, the
fastest etching cell is removed, and the area of the slower etching
cells is updated.



31

3.3. IMPLEMENTATION OF THE CELL-REMOVAL ALGORITHM

The beauty of the cell approach isthat itiscomputationally simpler than directly follow

ing the moving boundary of the material being etched. The cell-removal algorithm can be

implemented simply by using an array of cells, each with flags denoting itsetched orunetched

condition. The cells on the boundary are placed in a list together with data on the unetched

(or etched) area of each cell in the list Because of the rectangular structure of the cells,

updating the boundary is simple; every time a cell is removed, its four neighboring cells are

checked, and addedto the boundary list if necessary.

3.4. ACCURACY AND THE CELL-REMOVAL ALGORITHM

3.4.1. Faceting during Uniform Circular Etching

Unfortunately, the cell model as described above does not produce accurate results;

startingwith a single etched cell, a two-dimensional uniform etch produces an octagon instead

of a circle. Figure 3.3 shows uniform etch profiles for 3 different cell densities. When only 25

x 25 cells are used in the 1 um x 1 um simulation, the profiles do look somewhat circular.

The raggedness of the profiles are due to the relatively large cell width, f If the number of

cells is increased to 100 x 100, the curves become smoother because of the smaller discretiza

tion. However, the etched profiles now show distinct facets in the horizontal, vertical and

diagonal directions! Furthermore, the etch-profile becomes more octagon-like if the number

t The cell-removal algorithmkeeps track of the areabut not the shape of the cell that has been etched
This leadsto uncertainty in the shapeof the unetched material within the cell itself. Forexample, a cell with
50% etched materialcould have any of the shadedshapesshown in Figure3.1. As a result, the accuracy of
the cell algorithm depends on the width of each cell. In Figure 33, the profiles aredrawn from the cells on
the boundary list; contouring routines could be used to smooth out these curves.
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(a) 25 x 25CELLS

(b) 100 x 100 CELLS

.H i ••"-»

X-AXIS

(c) 200 x 200 CELLS

X-AXIS

X-AXIS

Figure 33: 2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the cell-etched profiles at etching
times of 0.1 - 1.0 seconds. The expected result, a semi-circle, is
plotted in a dashed line. The simulations were run with (a) 25 x 25
cells, (b) 100 by 100 cells, and (c) 200 by 200 cells. The etch rate
is 1 um/sec.
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ofcells is increased to 200 x 200.

This octagonal behavior ismost likely due to the fact that each cell has only four neigh

bors. In fact, etching with the cell algorithm can belikened to etching a crystalline material

with a cubic atomic lattice. It is wellknown that crystalline materials suchassilicon will etch

faster along certain crystal planes. (See, for example, Foote,7 Bean.8 ) In a cubic atomic lat

tice, preferential etching will occur along the horizontal, vertical and diagonal planes, thus

producing octagonal facets similar to those shownin Figure 3.3.

It is not easy to eliminate or decrease the faceting problem in cell-etching. Increasing

the number of cells in the material does not help. As mentioned previously, the facets become

sharper as the number of cells are increased. This is probably because as the number of cells

are increased, the material becomes more similar to a cubic atomic lattice, and crystal plane

etching dominates. One could try to increase the number of neighbors of a cell, perhaps by

using a hexagonal cell structure. In this case, however, there will still be preferreddirections

of etching perpendicular to the hexagon surfaces. Again, facets will be formed. Another

method that might work is to subdivide each cell, and to keep track of the area and shape of

the material that has been etched. This method, however, greatly increases the difficulty in

implementing the cell algorithm. Another interesting "fix" uses a spill-over technique, in

which the etch is "spilled over" toneighboring cells. This method, used inthe SOUD^ simu

lation program, will be described in a later section.

3.4.2. Photoresist Etching

An example of etching photoresist using the cell-removal method (without correction for

faceting) is shown in Figure 3.4. Also plotted are the results from SAMPLE, in which the
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Figure 3.4 : Resist profiles simulated using the cell-removal algorithm, at devel
opment times of 15, 30, 45, 60 and 75 seconds. The simulations use
the etch-rate distribution plotted in Figure 2.3, with (a) 100 by 50
cells, and (b) 200 by 100 cells. The dotted lines are the profiles
from theSAMPLE string simulation (Figure 2.4).
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string method isused toadvance the etch surface^ It isquite clear that the agreement between

the cell and string methods increases as the number of cells is increased. At development

times of 45, 60, and 75 seconds, the 20,000-cell and string profiles agree quite well; when

only 5,000 cells are used, the agreement is not as good. This is perhaps to be expected. A

smaller cell size leads to smaller discretization error, and thus to greater accuracy. In the 100

x 50 cell simulation, eachcell is 0.02 um wide; thus the accuracy of the simulation is within

0.02 um. When the cell density is increased to 100 cells per micron, the accuracy increases

too, to within 0.01 um.

At the earlier development times of 15 and 30 seconds, however, the cell and string

profiles disagree, especially at the bottom-most standing wave. It is somewhat discomforting

to find that the disagreement gets worse when the number of cells is increased from 5,000 to

20,000. However, the etch profiles do converge as more cells are used in the simulation. Fig

ure 3.5 shows a blow-up of the resist profile at a development time of 15 seconds. The four

curves show simulated profiles using the string method and the cell method, with 100 x 50

cells, 200 x 100 cells, and 400 x 200 cells respectively. The 20,000-cell and 80,000-cell

profiles agree with each other, indicating that the simulation has converged. However, this

convergent cell-profile is definitely not the same as the string profile; at the bottom-most

standing wave, the cell-etched profile is approximately 0.05 um wider than the string-etched

profile.

Unfortunately, it is not really possible to point out which simulation profile is "correct",

as the actual resist profile is not known. However, it is possible to draw conclusions on accu

racybasedon convergence. The string algorithm converges to the very same solid-line profile

t The string etching algorithm is described in Chapter6.
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Figure 3.5 : Simulated resist profiles at a development time of 15 seconds. "Hie
simulations use the etch-rate distribution plotted in Figure 2.3.
The different curves represent simulations using different etching
algorithms.
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shown in Figure 3.5 as the string segment length is decreased. Further, as will be shown in

Chapter 7, the ray algorithm, in which the etch differential equation is actually solved (albeit

discretely), also produces the same profile. Thus, there is greater confidence in the string-

etched profile thanin the cell-etched resist profile.

The effects of faceting also have to be considered. In the uniform etch simulations

shown in Figure 3.3, the cellular structure causes the etch-profile to overshoot the theoretical

circular profile, with the maximum overshoot occuning 22.5° from the horizontal andvertical

axes. This increase in the effective etch-rate in certain directions could also be a factor affect

ing the final etch profile. The strong octagonal facets displayed in uniform etching do not

show up in the resist simulations of Figure 3.4 or33, probably because the faceting has been

averaged out by the non-uniform etch-rate throughout the volume of the resist However, it is

quite possible that theeffective etch-rate has been increased in certain places, due to thecellu

lar faceting problem. Also, recall that in the uniform circular etch, the facets on the profiles

became sharper as more cells were used. This effective increase in etch-rate with increasing

cell numbers could account for the fact that in the resist simulations, the 5,000-cell profile is

closer to the string profile that the 20,000-cell profile is. Thus, faceting could be causing

faster-etched profiles atthe 15 and 30second development times.

3.5. COMPUTATION TIME

Another drawback of the cell-removal algorithm is that the cell method is quite slow.

To advance the boundary layer, it is necessary to compare the etch-time of every cell in the

boundary list.The time-step for moving theboundary is controlled by the minimum etch-time

of the fastest etching cell in the boundary list, so it could take a long long time to reach a

desired etch-time if there were a lot of cells in the material. In two dimensions, the
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computation time quadruples as the numberofcells perdimensionis doubled. The number of

cells in the boundary list also increases at the same time, addinganothermultiplicative factor

of two to the computation time. So, in a 2D cell approach, the computationtime goes roughly

as O(N3), where N is the number of cells in one dimension. The computation times for the

15-second development simulation in Figure 3.5 are shown in Table 3.1. These computation

times were measured on a SUN 4/280 (0.8 MFLOPS, 10 MIPS), t

Number of Cells Computation Time CPU Increase

100 x 50= 5,000 22 sec. 1.0

200x100 = 20,000 141 sec. 6.4

400x200=80,000 1058 sec. 6.4x73

Table 3.1: Cell-Removal Algorithm : Computation time on a SUN 4/280

The computation time increases by a factor of 48 when the number of cells is increased from

50per micron to 200 per micron. TheO(JV3) formula predicts an increase of 43 =64, which is

not too far off. Nevertheless, an 80,000-cell simulation takes up 1058 seconds, or almost 18

minutes of CPU time. By comparison, the SAMPLE string simulation uses only some 13

seconds on the same machine!

The general thrust of research in the cell algorithm has been to increasethe speed of the

cell method without spending an excessive amount of computer memory. One approach for

speeding up the computation is to track the area of the cells with integers insteadof floating

point variables. Computers can typically handle a higherrate of integer instructions compared

to floating-point operations, so the use of integer mathematics confers a considerable speed

advantage (approximately 3-10 times faster). Anothermethod for increasing the computation

t MFLOPS = Millions of Floating Point Operations perSecond, MIPS =Millions of (integer) Instructions
per Second



39

speed is to modify the method of advancing the surface. Recall that in the original cell algo

rithm, the time-step for moving the boundary is controlled by theminimum etch-time for all

thecells currently on theboundary. So,atevery advancement, theetch-time of each cellmust

be compared. If, however, the surface could bemoved with a constant time-step, it will no

longer be necessary to compare the etch-speed ofeach cell inthe boundary, and the computa

tion can proceed at a faster rate. The constant time-step scheme, which has been used byToh

(Chapter 4) and Pelka,5 decreases the 2D computation time from roughly O(N3) to O(AT2), N

being the number of cells perdimension.

Pelka's 5cell-removal scheme, implemented in 3D in the SOLID simulator, is aparticu

larly interesting approach thatcombines boththe constant time-step with integer cell calcula

tions. In this "spill-over" method, each cell is made up of an integer number of microcells.

The surface is advanced by subtracting a certain number of microcells from each cell on the

surface; the actualnumber of microcells removed is proportional to the local etch-rate multi-

pled by the constant time-step. If the etch uses up more microcells than are currently avail

able in the active cell, the etch is allowed to spill-over to neighboring cells, and spill-over

microcells aresubtracted from the neighboringcells.

The spill-over cell method is impressively fast especially for a 3D cell-based simulation.

The program executes with CPU time between 2 and 20 minutes on a VAXstation 3540,

which seems to be a parallel multiprocessor machine.9 It is very likely that the computation

time required for the 3D etch simulation would be much greaterthan 20 minutes on a typical

serial single-processor workstation. At the same time, the spill-over technique is also expen

sive in its needs for memory. The SOLID brochure states that fairly large memory (24-

32MB) is required for optimum 3D performance. The spill-over technique is supposedly also

more accurate than Dill's cell algorithm. Pelka claims that facets are not encountered in
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circular or spherical etching. Nevertheless, the accuracy of the spill-over technique has not

yet been established conclusively. There is still some doubt over the validity of the spill-over

method for handling over-etched cells. Another area of concern is with etching situations

where the etch-rate has a high aspect ratio, that is, the etch-rate varies from very large values

to very small values throughout the volume of the material. In areas of small etch-rate, the

surface will not move if the etch-rate is smaller than 1 microcell per time-step. This could

lead to discretization errorsthat could in turn affect the accuracyof the simulation.

3.6. THE CELL-REMOVAL ALGORITHM IN 3D

The cell algorithm is quite easy to implement However, its primary drawback is the

lack of accuracy in the simulation results. The cell algorithm becomes more accurate as the

number of cells in the simulation volume are increased. This is because the discretization

error decreases with cell width. However, at the same time, when the number of cells is

increased, faceting becomes more of a problem, producing incorrect profiles in certain loca

tions. Itdoes not help that it is difficult, if not impossible, topredict which parts of the profile

are affected by faceting. Thus, when the cell density is increased, the discretization error

decreases and accuracy increases, but faceting increases, and the accuracy decreases. The

overall result is alackof confidence in theaccuracy of thesimulations.

The advantages and disadvantages of the cell algorithm in 2D apply also in 3D. The

addition of an additional dimension pushes the computation time up further to roughly O(N4)

or even O(AT5), where as before, N is the number ofcells in one dimension. Using both con

stant time-steps and integer calculations, the computation time can be speeded up to at best

0(N3). Implementing the cell algorithm in 3D is also more difficult, because of the need to

keep track of a cell's 6 neighbors, as compared to only 4 neighbors in 2D. Furthermore,
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memory becomes a limiting factor. 200 x 200 x 200 cells will consume some 16 Mbytes of

memory, assuming optimistically that each cell only uses 2 bytes of memory. The large

amount of memory and computation time needed for the 3D cell method makes it quite

unsuitable for non-mainframe applications. And of course, the accuracy, or lack of it, also

counts against the cell method.
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CHAPTER 4

THE MODIFIED CELL METHOD

4.1. INTRODUCTION

As discussed in Chapter 3, the cell-removal algorithm is an atomistic approach, where

each cell/atom is removed as it comes into contact with an etchant However, this atomistic

model also produces facets, which should not be present in an etch of a uniform homogeneous

material. In addition, the cell-removal algorithm is slow and requires a considerable amount

of computer memory. But the cell-removal algorithm is easy to implement and is very robust

as well. It can easily handle simulation boundaries and underlying topography, and does not

have the looping problems encountered in surface-advancement algorithms. For these rea

sons, the cell algorithm remains an active area of research.

One area in which the cell-removal algorithm could be improved is the method of the

etch-front advancement This chapter describes a constant time-step method in which the

Huygens principle is used to advance the etch-front The improvement in accuracy and the

role of etch discretization on the accuracyof the cell-basedsimulation areconsidered.

4.2. THE HUYGENS PRINCIPLE APPLIED TO CELL-ETCHING

The faceting problem encountered in Dill's cell algorithm seems to be directly related to

the treatment of the cells as atoms arranged in cubic lattices. Fortunately, a better etching

model can be derived from the Huygens principle, t This theorem asserts that each element on

a propagating wavefront may be regarded as the centerof a secondarydisturbance which gives

t Bom & Wolf,1 Chapter 3, p.132.
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rise to spherical wavelets. Moreover, the position of the wavefront at any later time is the

envelope of all such wavelets. The Huygens principle is actually used to describe the diffrac

tion of light, but it can be applied quite nicely to isotropic etching too. Here, the etching

proceeds along anetch front, and each point on the etch front is anetching center, "radiating"

etch wavelets. The etch front at somelater time is the envelopeofthese etch wavelets.

The modified cell algorithm presented in this chapter is a new and novel etching simula

tion method based on the Huygens principle. The volumeof the material is divided into tiny

cells, each either etched or unetched. Just like the cell-removal method, etching proceeds

along a surface in contact with the etchant But unlike the usual cell-removal method where

only the nearest neighbors are removed, in the modified version, the cells are removed using

the Huygens principle applied to each cell on the etch boundary. All the cells within the

radius of a Huygens etch front centered at a cell on the boundary are removed. After each

time-step, the boundary is updated; the boundary cells are thoseetchedcells that are in contact

with unetched cells.

4.3. THE ALGORITHM FOR CELL-REMOVAL

The modified cell simulation begins withthe selection of a constant time-step based on

theetch-rate configuration. During every time-step, boundary cells are swept, and new boun

darycells aredetermined. The algorithm canbe statedas follows:

[I] Foreachboundary cell:

(a) Determine the local etch-rate at the center of the boundary cell. The radius

of influence of the boundary cell is the local etch-rate multiplied by the (con

stant) time-step.
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(b) Modify the etch flags of all the cells within the radius of influence. Unetched

cells inside this radius become etched.

[II] Find the new boundary cells; these are etched cells next to unetched cells.

[III] Proceed to [I] and continue until the total etch-time has been reached.

Figure 4.1 shows examples of etching with the modified cell method. In Figure 4.1a,

there is only a single etched cell, which also is a boundary cell. Assuming that the local etch-

rate is 3.5 cells per time-step, all the cells within the solid circle shown in Figure 4.1a will

become etched during the next time-step. The boundary cell list now contains all the cells on

the outer perimeter of the circle. Figure 4.1b shows another example, this time with multiple

boundary cells. Again, the etch-rate is 35 cells per time-step. During the time-step, all the

cells within the radius of influence of each boundary cell become etched. The etch front is

then the envelope of all the overlapping circles.

4.4. IMPLEMENTATION OF THE MODIFIED CELL-REMOVAL ALGORITHM

The modified cell algorithm is very easy to implement in either 2D or 3D. This algo

rithm merely requires an array of integer flags to keep track of the etched (or unetched) state

of each cell in the volume of the material At the same time, a list of all the boundary cells

has to be maintained. This can best be done with a linked list During each time-step, the

local etch-rate at a boundary cell is multiplied by the time-step to find the cell's radius of

influence. All the cells with centers within this radius become etched. Alter each time-step,

all the cells in the material are scanned; etched cells that have neighboring unetched cells are

added to the boundary list
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(b) MULTIPLE BOUNDARY CELLS

Figure 4.1: The modified cell method. All the cells within the radius of influence
of the boundary cells are etched.
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4.5. TESTING THE MODIFIED CELL-REMOVAL ALGORITHM

4.5.1. Uniform Circular Etching

Figure 4.2 shows examples of a uniform circular etch using the modified cell method.

The etch-rate is 1.0 um/sec. In the simulation of Hgure 4.2a, the cell density is 100 cells/um,

so the etch-radius is 10 cells per time-step. The density is increased to 400 cells/um in Figure

4.2b, for an etch radius of40 cells/time-step. Both plots in Figure 4.2 snow reasonably circu

lar profiles, although the profiles are definitely more circular when 40 cells/time-step are used.

Nevertheless, facets are formed on the circularetch profiles. This is actually quite understand

able given the nature of the etch algorithm. The problem actually can be stated as follows :

how many squares does one have to use to fill a circle? As Hgure 4.1a shows, a circle with a

radius of 3 cell-widths is not very circular at all; in fact, the cellular circle ofFigure 4.1a looks

more like an octagon! But as more and more cells are packed into the circle, the cellular

shape looks more and more like a circle. The same reasoning applies for the simulations

shown in Figure 4.2. In Hgure 4.2a, the first time-step creates a circle with a radius of 10

cell-widths. The circular profile is discretized, and the discretization error propagatesoutward

to affect the profiles at later time-steps. However, the discretization is decreased with greater

cell density. When 40 cells are swept per time-step, the first circle etched out looks reasonably

circular. The discretization error is decreased, and as a result, the later profiles look more cir

cular.

The modified cell algorithm is easy to extend to three dimensions. The algorithm basi

cally remains unchanged, except that to find all the cells within the radius of influence of the

boundary cells, a Huygens sphere is used instead of a circle. Figure 4.3 shows examples of

the uniform circular etch in 3D. The etch begins from two seed points at coordinates (0,0,0)



(a)

(b)

Figure 4.2:

100 x 100 Cells, 10 Cells/Time-Step

^^bnLaafaiM*

X-AXIS

400 x 400 Cells, 40 Cells/Time-Step
-o

X-AXIS

49

2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the cell-etched profiles at etching
times of 0.1 - 1.0 seconds. The expected result, a semi-circle, is
plotted in a dashed line. The simulations were run with (a) 10 cells
per time step, and (b) 40 cells per time-step. The etch rate is 1
um/sec.



(a) 3D UNIFORM ETCHING : 5 TIME STEPS

(b) 3D UNIFORM ETCHING : 10 TIME STEPS

o

Q

y^S°r° l-oo i.oo %-AXis

o.oo

50

Figure 43 : 3D uniform etching beginning from two seed points at coordinates
(0,0,0) and (0,1,0). The cell-etched profiles are shown at etch
times of (a) 0.5 sec, and (b) 1.0 sec. The etch rate is 1 um/sec, and
the time-step is 0.1 sec. The etchradiusis 10cells per time-step.
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and (0,1,0), and proceedsoutwards in time-steps of0.1 seconds. The etch-rateis uniform, and

as in the previous example, has a value of 1 um/sec. The simulation cube consists of 100 x

100 x 100 =106 cells, and the etch radius is 10 cells per time-step. The etched profile after

05 seconds (5 time-steps) is shown in Hgure 4.3a. As can be seen, two spheres are formed,

bothwith0.5 um radius. Bothof these spheres dohave multiple facets, but as in the 2Dcase,

these facets are formed due to the errors from the cellular discretization of the spheres.

Figure 4.3b shows the profile of the etch front after 10time-steps, or 1 second of etch

ing. The two spheres have continued toetch outward at auniform pace. Both spheres are still

faceted. In addition, the two spherical etch fronts have intersected and merged. Itis important

to note that no loops have formed at the intersection. The intersection of the two spheres is

veryclean and tidy, as would be expected of avolume etching algorithm. As shall be seen in

the following chapters onsurface-advancement algorithms, this same etching case results ina

looped intersecting mesh when either the ray or string algorithms are used to simulate the

etching.

It is possible to pack more cells into the simulation volume in order to reduce faceting.

But computers do have an upper limit on memory. The Kr5 cells used in this particular simu

lationuse about2 bytes each; if400 x 400 x 400 cells wereused for anetch radius of40 cells

per time-step, some 2x400s or 128 MBytes ofmemory would be required.t This is beyond the

capabilities of most engineering workstations. But even the 1,000,000 cell simulation con

sumes some 2 MBytes of memory and a few hours of computation time. The 5-time-step

simulation of Figure 4.3a took approximately 20 minutes on a SUN4/280, while the 10-time-

t Note though that these numbers are based on 2bytes for each cell inthe 3D array. Actually, only 2bits
need to beused for the two integer flags ateach cell. Thus, the memory can bereduced byafactor of8. But
in the Cprogramming language, it is not easy to manipulate bits. To save coding time, the code was imple
mentedusing integerflags instead ofbit flags.
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step simulation lasted approximately 4 hours.

4.5.2. Etching with Triangular Analytic Functions

So far, the modified cell algorithm looks quite promising. The behavior of the modified

cell algorithm may be analyzed further using a variety of analytical etch-rate functions. One

such useful function is a triangular etch-rate with the equation

tf(x^z) = 2Ixl um/sec, Ixl <0.5 [4.1]

Figure 4.4 shows the profiles produced at 0.1 second intervals from the above triangular

etch-rate function. In Figure 4.4a, the etch is fastest at the edges corresponding to x =-05

and x = 0.5. The etch radius is 10 cells per time-step at these edges, and decreases linearly

with decreasing Ixl. In Figure 4.4b, the maximum etch-radius is 40 cells per time-step. A

comparison of the two plots in Figure 4.4 shows that the etched profiles are quite similar for

larger values of Ix I. The profiles ofFigure 4.4b are smoother, but this can be attributed to the

increased cell density used in the simulatioa

The behavior of the profiles for small values of Ixl is particularly interesting. When 10

cells per time-step are used, the etch depth (vertical distance from the z =0 axis) is zero for

x = 0, remains zero for small values of Ixl, and then suddenly jumps to a non-zero value.

The sudden step is more noticeable in the 10 cell/time-step simulation. This fascinating

behavior is actually caused by discretization. If the etch-rate is small, and the etch radius is

less than one cell-width, then no cells areetched regardless of the total etching time spent To

illustrate, suppose the etch-rate is 1 unit per time-step, and the cell is 1 unit wide, so that the

etch radius is one cell-width. At every time-step, the etch circle emanating from the center of

the boundary cell is large enough to touch the center of the boundary cell's neighbor. This
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Figure 4.4 : 2D etching using the triangular etch-rate function of Equation [4.1].
The solid lines represent the cell-etched profiles at etching times of
0.1 - 1.0 seconds. The simulations were run with (a) 10 cells per
time step, and (b) 40 cells per time-step. The mavimnm etch rate
is 1 um/sec.
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neighboring cell then becomes etched, and the etch proceeds at 1 cell per time-step. But now,

suppose the etch-rate is a mere 0.9 units per time-step, so that the etch radius is only 0.9 cell-

widths. Now, the etch radius does not hit the center of the boundary cell's neighbor, and as a

result, the neighbor remains unetched. This continues for all subsequent time-steps, and the

boundary remains unchanged.

Thus, one weakness of the modified cell algorithm is that it is sensitive to discretization.

Because the algorithm does not keep track of the etched areaof the cell, discretization errors

occur when the etch radius is not an integer multiple of the cell width. The discretization error

is of particular importance when the etch radius is comparable to the cell width. This typi

cally happens when the etch-rate varies widely in range, as was the case in the triangular

etch-rate function.

Another interesting test function is that of a triangular function with a constant offset.

tf(x,y,z) = 2lxl +0.2um/sec, Ixl <0.5 [4.2]

This function actually produces a loop when either the ray or string algorithm is used to simu

late etching. Figure 4.5 shows the simulated profiles for 12 cells/time-step and 48 cells/time-

step respectively. The two plots are similar, and as in the previous example, the curves

become smoother when the etch-radius includes a larger number of cells. But notice that at

the center, at x = 0, the etch has proceeded to a depth of -0.4 um after 1 second of etching.

However, according to Equation [4.2], the etch-rate is only 0.2 um/sec at the center. After 1

second of etching, the profile should be only at -0.2 um. So, why has the simulated etch gone

further than predicted by the center etch-rate? The answer lies in the two-dimensional nature

of the etch. In the center, the etch is dominated by off-center elements. The etch-rate is larger

away from the center, so the off-center points will etch away areas that have not yet been

reached by the center etch elements. As a result, etching proceeds faster than would be
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2D etching using the triangular etch-rate function of Equation [4.2].
The solid lines represent the cell-etched profiles at etching times of
0.1 - 1.0 seconds. The simulations were run with (a) 12 cells per
time step, and (b) 48 cells per time-step. The maximum etch rate
is 1.2 um/sec, and the minimum etch rate is 0.2 um/sec.
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expected from a simple one-dimensional vertical etch.

It is also noteworthy thatthe discretization error thatshowed up in the previous example

doesnot seem to have occurred in this particular example. This is probably because the smal

lest etch radius in the 100x 120cell simulation is relatively large compared to the cell width,

covering 2 cells per time-step.

4.5.3. Photoresist Etching

The discretization error in the modified cell algorithm makes photoresist etching very

difficult Typically, multiple reflections cause standing waves to form in the photoresist when

the resist is exposed to light As a result, the etch-rate fluctuates widely with depth into the

resist Figure 4.6 shows the etch-rate profile versus depth at the center of a large isolated

space. This rate-vs-depth profile is actually taken from a vertical cut across the etch-rate con

tours shown in Figure 2.3. As shown in Figure 4.6, the etch-rate changes from approximately

0.009 um/sec to 0.11 um/sec in a sinusoid-like manner. Now, the etch radius in the modified

cell algorithm depends on the incremental time-step chosen for the algorithm. With a time-

step of 0.1 sec, the etch radius will vary from 0.0009 um to 0.011 urn. The cell size must be

smaller or equal to the smallest etch radius, so as to avoid discretization error. So, for a cell-

size of 0.0005 um and a simulation area of 2 um x 1 um, 4000 x 2000 cells are required for

the simulation! This eight-million-cell simulation will undoubtedly consumehuge amounts of

memory and computation time.

But what happens if the cell size is larger than 0.0009 urn? Suppose the cell size is 0.01

um, so that only 200 x 100 cells areused in the whole 2 um x 1 um simulation area. Now, at

the start of the simulation, the etch-rate at a boundary cell at coordinates (0.0,0.0) is
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Figure 4.6 : Etch-rate vs depth in the photoresist The data is taken from a ver

tical cut across the center of the etch-rate distribution plotted in
Hgure 2.3.
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Distance on Wafer (um)
Figure 4.7 : Simulated resist profiles at a development time of 5 seconds, using

the modified cell and string algorithms. The simulations use pan of
the etch-rate distribution plotted in Figure 2.3.
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approximately 0.03 um/sec, from Figure 4.6. For a 0.1 sec time-step, the etch-radius of the

cell is 0.003 um. The cell size is 0.01 um, so the etch-radius does not hit the center of the cell

next to the boundary cell, and the boundary does not move. The etch area does not accumu

late with time, so this sequence will be repeated for every subsequent time-step. Thus, in

effect, because the cells are too large, the etch boundary does not move at all! Therefore, in

order for the modified cell algorithm to work, the cell size has to be comparable in size or

smaller than the smallest etch radius. Small time-steps have to be used for accuracy, and the

etch rate typically has small values, so as a result the resist development simulation will have

to use a large number of cells. As a direct result large amounts of memory and computation

time are required for the simulation.

Hgure 4.7 shows the profile of an isolated space in photoresist after 5 seconds of

development simulated with the modified cell algorithm. For comparison, the SAMPLE

string simulation is overlaid. As in the resist simulation of Chapter 3, this simulation used the

etch-rate distribution plotted in Hgure 2.3. The modified cell simulation was run with a time-

step of 0.1 seconds, and a cell size of 0.00025 um. The simulation was limited to a 0.5 um x

1.0 um area to save time; this corresponded to a total of 2000 x 4000 cells. It is clear from

Hgure 4.7 that the profiles simulated using the two techniques do not agree. The discrepancy

between the two profiles is most probably due to discretization errors in the cell algorithm. It

is also important to note that the modified cell simulation lasted about an hour on a SUN

4/280, compared to some 10 seconds for the SAMPLE string simulatioa Furthermore, if the

cell size is increased to 0.001 um, the profile does not change, but remains in its initial

straight-surface configuration.
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4.6. SUMMARY

The modified cell algorithm is easy to implement in both two and three dimensions. The

algorithm, basedon Huygens principle, is physicallycorrectand robust As a volumetric etch

ing algorithm, no loops are formed during the simulation. In addition, the algorithm etch

fronts produced by this algorithm are more spherical than those produced using the cell-

removal algorithm.

There aretwo sources of error in this algorithm. The first comes from the discretization

of circles with square cells. This discretization error canpropagate and affectthe later simula

tions. Thediscretization error may, however, bereduced by increasing the cell density sothat

more cells are sweptor touched during each time-step. In order to retain accuracy, a typical

Huygens etch shouldhave a radius of approximately 10cells. But this in turnmeans that the

material being etched mustcontain alarge number of cells to begin with.

The second typeof discretization error occurs when the sizeofthecellis large compared

to the radius of the Huygens etch. The algorithm does not keep track of the area of the cell

that has been etched; it only knows whether the cell has been etched or not etched. Because of

this, etching does not accumulate, and the etch front does not move. To handle this, the cell

size has to be comparable in size or smaller than the smallest etch radius.

In order to accurately simulate the etching of photoresist a large number of cells,

perhaps onthe order of 103 per micron, have tobeused. Ina 3D simulation of lum x lum x

lum cube, some 109 cells are required. With this number of cells, it is notdifficult to see that

the modified cell method will require lots of computer memory. Computation speed is

another issue of considerable importance. In this algorithm, thecomputation speed is directly



60

proportional to the number of cells on the simulation boundary. The modified cell algorithm

is similar to the Dill cell model in this respect But the modified cell method uses a constant-

size time-step, whereas the Dill method determines the time-step based on the fastest etch-

speed of all the cells in the boundary. Therefore the modified cell method is more efficient

and faster than the Dill model. Nevertheless, if the algorithm has to keep track of some 106

boundary cells in avolume filled with 109 cells, thealgorithm undoubtedly willbequite slow.

It appears that the modified cell algorithm is useful for simple etch functions and might

come in handy for simulating isotropic uniform etching. But at present, the algorithm cannot

handle widely fluctuating etch-rates such as are found in photoresist development The prob

lems encountered with inhomogeneous etch-rates and discretization errors have interesting

implications on other integer-based cell algorithms such as the spill-over technique (Section

3.5) as well. Nevertheless, this modified cell algorithm is quite promising, and should be

explored further.
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CHAPTER 5

THE MATHEMATICAL BASIS OF

THE SURFACE-ADVANCEMENT ALGORITHMS

5.1. INTRODUCTION

The string1 and the ray2 methods are both surface-etching algorithms that have been

used successfully for calculating 2D profiles in etching simulations. These algorithms are

more accurate, faster and require far less memory than any of the cell-etching methods dis

cussed thus far. However, since both the stringand the ray methods describeonly the surface

of the material being etched, each algorithm does have certain characteristic weaknesses.

Before launching into a detailed description of the string andthe rayetching algorithms,

it is most useful to examine the mathematical foundation of each of these algorithms. These

two methods have traditionally been treated as separate algorithms, but it shall be shown in

this chapter that both algorithms are actually based on the same mathematical solution to the

general problem of tracinga time-evolving surface. And as shallbe seen in later chapters, the

differences in the way this mathematical solution is implemented lead to key differences in

both the accuracy and the robustness of the simulations.

In this chapter, basic ways of viewing and solving the general problem of surface-

advancement will be discussed. It shall be shown that a straight-forward solution cannot be

obtained due to the implicit nature of the differential equation governing the surface-

advancement Instead, the principle of least-time must be used to determine the advancement

of the etch surface as a function of time. The formal derivation based on the principle of least

time leads to two complementary equations thatlink the string and the rayalgorithms.
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5.2. MATHEMATICAL FORMULATION

5.2.1. Formulation of the Problem

The basic goal of the etching simulation is to determine the time-evolving surface or

profile of the material. Figures 5.1 and 5.2 show the formulation ofthe problem in 2D and 3D

respectively. Mathematically, the problem can be stated as follows : Given a velocity field

v(x,y ,z) and a curve £i that divides regions 1 and 2 at time Th find at time T2 the shape and

position of the curve fe. where £2 is the new interface between regions 1 and 2. This very

basic problem is encountered in many differentbranches of physics. In geometrical optics, for

example, the curve could be the wavefront of light propagating through some arbitrary

medium. To understand the behavior of waves rippling on the surface of water, or to deter

mine the passage of soundwavesin air, one also hasto tackle the very same problem.

In etching, the isochronous curve to be solved for represents the surface of the etch-

front that is, the surfacedividing the etched andunetched regionsin the material The surface

moves according to the etch-rate or speed at which the material is being etched, and again, it

is desired to determine the profileor shapeof the surfaceas a function of time.

The problem of tracing atime-evolving surface canbe examined from different pointsof

view. One could try to trace the movement of the entire surface by using a Huygens wave-

front approach, in which each point on the surface or front is treated as a secondary source of

disturbance. In geometrical optics, application of the Huygens principle leads to the theoryof

diffraction, which is perhaps the basic postulate of the wave theory of light And in etching,

the Huygens principle could be used to trace out the etch-front by treating each pointon the

surface as an expanding etch wavelet An implementation of the Huygens principle using cells
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Figure 5.1: 2D Etching : The surface advancement problem is that of tracking
the 2D surface as it moves in time.

Figure 5.2 : 3D Etching : The surface movement problem is to determine the
shape and location of the 3D surface as it moves in time.
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was discussed in some detail in the previous chapter.

Another way to view the general problemis to divide up the curve into smallersegments

or even points. Instead of tracing the movement of the entire curve, it is useful to consider the

movement of a single point on the curve. The problem men is reduced to finding the pathor

trajectory of a point in space as it moves in time. This problem is in fact very closelyrelated

to the problem in geometrical optics of tracing a light ray as it passes through some optical

media. If this trajectory or ray can be determined mathematically, then the curve can be

reconstructed out of the end-positions ofvarious initial points.

5.2.2. The Etching Problem in One-Dimensional Space

The "simplified" etching problem is to determine the location of a single point on the

etch-front as it moves intime. The ID problem may bestated as follows: Given that aparticle

is moving in avelocity field v(z), where the velocity is a function of position, find the posi

tion of the particle at some time t. Unfortunately, when v(z) is position-dependent a prob

lem arises in that it is not possible to solve explicitly for the distance AZ movedin sometime

AT.

Figure 5.3 shows the one-dimensional movement of the particle. In some time interval

dt, the particle travels a distance

v(z)dt=dz [5.1]

The total distance traveled as a function of time is found from integrating the expression

above. Note thatthe velocity is a function of position and not of time, so v (z ) must be moved

to the right side of the equation before the integration is performed. Thus, the integral

becomes
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p. T.
Velocity, v(z)

Pf,Tf

Depth, z

Figure S3 : ID Etching is equivalent to tracking the position or trajectory of a
particle as it moves through a position-dependent velocity field.

Depth, z

p. T.
ri» Li

Horizontal Distance, x
•

\ \

Velocity Field
Contours

Pf.Tf

Figure 5.4 : 2D and 3D Etching is equivalent to tracking the position or trajecto
ry of a particle as it moves through a position-dependent velocity
field, where the velocity is a function of the coordinates (x,y,z). In
some time dt, the particle moves a distance ds = v(x,y,z) dt.
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Tf Zf

I I v<z>

where Z(- is the location of the particle at some initial time T,, andZ/ is the location at the

final timeTf. Theexpression above can beevaluated if Z, and Zf are known orgiven; if T, is

also given, then the final etch-time Tf can be solved for by doing the integration and evaluat

ing the limits.

The problem becomes more complicated when one tries to determine how far the parti

cle moves in some time-step AT. Equation [5.3] states that the time-interval AT is a function

of the total distance traversed AZ, i.e.,

AT=/(AZ) [5.4]

Note that Equation [5.3] is not anexplicit function of AT. Thus, given some time-step AT, a

straight-forward evaluation of [5.3] for AZ orZf is notpossible. In theory, to obtain AZ, one

could determine the inverse/"1 of the function/ such that

AZ=/"1(AT) [5.5]

But the function / is often not a simple function, as it is itself the integral of the inverse of a

velocity function. Therefore the inverse function/"1 might notexist So, in general, it isnot

possible to evaluate AZ explicitly as a function of the time-step AT. The only recourse is to

evaluate Equation [5.3] numerically to determine the distance traversed by the particle as a

function of time.

Clearly, it is not easy to find the distance traveled by a particle during some time-step

AT in a position-dependent velocity field, even when the problem is restricted to one dimen

sion. A straight-forward integration doesnot work,because the velocity field is not a function

of time. It is possible to solve the problem numerically, but the result will be sensitive to the



68

choice of numerical algorithm and to the internal details of the numerical algorithm itself.

Unfortunately, the problem does not get any easierin 3D.

5.2.3. The Etching Problem In Three-Dimensional Space

In 3D, the etching problem can be formulated as follows : Given that a particle is mov

ing in a velocity field v(x,y ,z), find the position or trajectory of the particle as it travels in

time. Hgure 5.4 shows the movement of a particle in a two-dimensional velocity field. Simi

larly, if the velocity field is extended to three dimensions, the particle will be able to move in

three dimensions. From practical experience, it is known that the trajectoryofthe particlewill

be affected by the local velocity field. If the field is a fast-moving stream of water, and the

particle a floating leaf, the leaf might be propelled towards the center of the stream where the

water flows fastest or it might as often happens, be pushed towards the shore. What controls

the movement of this leaf? Where will the leaf go? Ormore generally, is it possible to deter

mine where the particle will move to, given knowledge of the velocity field and the particle's

initial conditions?

As in the ID case, it is possible to write a differential equation for the distance traveled

by the particle in some time dt. If ds is the change in the position of the particle, then

ds=v(x,y,z)dt [5.6]

The position s and velocity v of the particle are functions of the coordinates (x, y, z), so the

differential equationcan be integrated over the pathof the particle as it moves from point Pt

to Pf in sometime AT=Tf - T,-.

jdt = j .ds [5.7]

This situation is illustrated in the inset of Figure 5.4. The problem with Equation [5.7] is that
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the velocity is a scalar function; [5.7] tells us how far the particle moves, but not the direction

in which it moves. There is no information in either [5.6] or [5.7] as to changes in direction

due to the changing velocity field. Another problem is that the integral in [5.7] has to be

evaluated over the pam or trajectory s of the particle. But this path is not known to begin

with! Thus, it is not possible to evaluate [5.7]. And for the same reasons, it is pointless to

discretize Equation [5.6] or [5.7] to find the trajectory or distancetraveledby the particle.

5.2.4. The Principle of Least Time

The problem of determining the trajectory of the particle can be solved if it is assumed

that the path along which the particle travels minimizes the transit time. There are many

curves joining the points />,- and Pf, butthere is only one curve onwhich the particle's travel

timeis minimized. This assumption isactually astatement of the principle ofleasttime.

The principle of leasttime, alsoknown asFermafs Principle, asserts that the time

r"l*"l^b>* [58]
for a particle to move along an actual ray between two points Pt and Pf is shorter than the

time taken along the path of anyother curve which joins these points,t The problem of finding

this minimum time can be solved using variational calculus. If the time T is to be a minima

over the true path, then if the path of integration is changed slightly, there must be, to first

order, no change in T. The variation in T, ST, must be zero. This is stated as follows.

t Fermat's Principle actually refers tooptical path lengths in geometrical optics. However, since

the principle of the shortest optical path is also theprinciple of least time. For proof of Fermat's Principle,
see Born & Wolf,3 Section 332.
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Using mis as a beginning point, it is possible to derive a differential equation describing the

trajectory of a ray. (A derivationusing variational calculus is shown in Appendix A.l.) If r is
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[5.9]

[5.10]

This equation, typically referred to as the differential ray equation, is the basic equation

describing the trajectory of a ray in some velocity field v (x,y ,z). The unit vector s is related

to the position vector r by

s =
jrfr
ds

As a consequence, the differential ray equation may be written as

d_
ds

1

v(x,y,z)
s =v

1

v(x#.0

[5.11]

[5.12]

Figure 5.5 describes the behavior of a ray and its relationship to the differential ray equation.

As a ray moves through space, it will be deflected by the local velocity field. The change in

the direction s of the ray is related to the velocity field by the differential ray equation.

Related to the differential ray equation is the eikonalequation.

This may be written explicitly as

&
dx

2^„2IVCl2=n

r ** 2 f "\ 2 f "\

3£
dz

^»2,= n\x,yj)

[5.13]

[5.14]

The eikonal can also be written in terms of the unit vector S, where S is, as above, the unit

vector in the direction of the ray.
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s : length of the ray

ds : incremental line-element

S : unit vector in the direction of the ray

r : position vector

v(r): velocity-field as function of position
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Figure 5.5 : The Ray Equation : The change in the direction of a ray is propor
tional to the gradient of the inverse of the velocity field.
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V£ = «s [5.15]

It is shown in Appendix A.2 that the eikonal equation satisfies the differential ray equation,

which in turn, is a solution to the least time principle. The ray and eikonal equations can be

understood as follows. Supposethereis a surface Z,(xyj) = constant. By definition, the gra

dient of the surface C,(x ,y j) is the normal vectorto this surface. But the eikonal [5.15] states

thatthis normal vector is parallel to the ray vector 3. Therefore, the surface £ is normal to all

the rays thatsatisfy the differential ray equation. Inother words, the surface £ is the surface of

the propagating wave or front The surfaces

£(r)= constant [5.16]

are called the geometrical wave surfaces or the geometrical wave fronts, and the rays are the

orthogonal trajectories of the wave surfaces. The orthogonal relationship between the rays

and the wave surfaces is shown in Figure 5.6.

5.3. SURFACE-ADVANCEMENT ALGORITHMS AND THE PRINCIPLE OF LEAST

TIME

The eikonal and the differential ray equations are the two basic equations applicable to

the simulation of etching. In fact, the string algorithm for etching is based on the eikonal

equation,while the ray etching algorithm is derived fromthe differentialray equation.

The string etching algorithm was originally conceived by Jewett1 in 1977 as a

"common-sense" method for discretizing the movement of the etch-boundary in time. In the

stringmodel, the etching boundarybetween etched andunetchedregionsis approximated by a

series of points joined by straight line segments. Jewett1 states that "each point advances

along the angle bisectorof the two adjoining segments...". But noticethatthe angle bisectoris

also the normal vector to the local surface. Therefore the string algorithm is actually an
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C, = constant

£ + a% = constant

RAY

RAY

Figure 5.6: The rays are the orthogonal trajectories of the wave surfaces C,(x,y,z)
= constant, £ being a solution of the eikonal equation. The string
algorithm is based on the eikonal, while the ray algorithm is based on
the ray equation.
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implementation of the eikonal equation; the etching surface is constructed out of a string of

points, and the surface is moved along vectors (rays)normal to the surface.

The ray etching algorithmtoo is an implementationof the differential ray equation. But

while the string algorithm is based indirectly on the eikonal equation, the ray algorithm was

derived by Hagouel2 in 1976 directly from the differential ray equation. The ray etching algo

rithm traces out the trajectory of the points on the etching boundary using a discretized form

of the differential ray equation. The etch surface is thenconstructed out of the end-points of

the rays.

A situation very similar to the above applies to Barouch's "least action" etching model,

which was introduced quite recently in 1988.4 •5Barouch's "least action" model is also aray-

tracing algorithm based directly on thedifferential ray equation. As discussed in Appendix A,

Barouch's "least action" model can be traced back to a discretization of the scalar form of the

differential ray equation. The approach is actually identical to the Hagouel ray-tracing algo

rithm, which is itself a discretization of the vector form of the differential ray equation. In

both cases, the rays passing through the material are tracked, and the etch-front is recon

structed from the end-points of the rays.

So, to recap, the string algorithm is based indirectly on theeikonal equation, whileboth

Hagouel's and Barouch's ray tracing algorithms are based on the differential ray equation.

But since the differential ray equation and the eikonal equation are really complementary

solutions of the least time principle, the ray-tracing and the string algorithms are thus based on

the same principles.

In practice, however, the calculation of the advancement vector based on the ray equa-
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tion or the surface normal does affect the simulated profiles. As shall be seen in the next

chapter, the method of calculating the vector turns out to be a very important factor distin

guishing the ray algorithm from the string etching algorithm.



76

REFERENCES

1. R.E. Jewett, P.I. Hagouel, A.R. Neureuther, T. Van Duzer, "Line-Profile Resist

Development Simulation Techniques," Polymer Eng. Sci., vol. 17, no. 6, pp. 381-384,

June 1977.

2. P.I. Hagouel, "X-ray Lithographic Fabrication of Blazed Diffraction Gratings," Ph.D.

Dissertation, University of California, Berkeley, 1976.

3. M. Born, E. Wolf, in Principles ofOptics, SixthEdition, Pergamon Press, London 1980.

4. E. Barouch, B. Bradie, S.V. Babu, "Calculation of Developed Resist Profiles by Least

Action Principle," Interface'88 : Proceedings of KTl Microelectronics Seminar, pp.

187-196, November 1988. 2D Ray method.

5. E. Barouch, B. Bradie, H. Fowler, S.V. Babu, "Three-Dimensional Modeling of Optical

Lithography for Positive Photoresists," Interface'89 : Proceedings of KTI Microelec

tronics Seminar, pp. 123-136, November 1989. 3D Ray method.



77

CHAPTER6

THE STRING AND THE RAY

SURFACE-ADVANCEMENT ALGORITHMS

6.1. INTRODUCTION

As discussed in the previous chapter,the string and the ray etching algorithms are based

on the very same mathematical solution to the general problem of tracing a surface or profile

as it evolves in time. But as shall be seen in this chapter, the string and the ray algorithms do

differ significantly in the accuracy, robusmess and also completeness of the simulation. These

differences are directly related to the implementation of the above-mentioned "basic"

mathematical solution.

In this chapter, the two algorithms shall be discussed in some detail. Since both of these

algorithms are really discrete methods of solving for the approximate etch-surface, emphasis

will be laid upon determining those techniques and modifications required for improving the

accuracy, correctness, efficiency and robusmess of the simulations.t

6.2. THE STRING ALGORITHM

The 2Dstring model, proposed by Jewett,1 uses a"string" of points ornodes to approxi

mate the etching boundary between the etched and unetched regions. Each point or node

advances along a vector normal to the local surface. This advancement or direction vector is,

as shown in Figure 6.1, the average of the normal vectors of the segments adjacent to the

t Accuracy andcorrectness areused in this chapter to referto different aspects of the simulations. Accu
racy refers to the conformity of the result to the "true" value, while correctness is used to refer primarily to
the formation of loops.
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node. As mentioned before, this is exactly the condition of the eikonal; the rays that satisfy

the least time principle are also normal to the etch front

6.2.1. The Algorithm for String Advancement

A typical string, consisting of 50 - 100 segments, is started on the surface of the

material. The algorithm for moving the string is as follows:

[I] For each node on the string, find the node's direction vector by averaging the nor

mals to the adjoining segments.

[II] Advance each node along its direction vector. The distance advanced is equal to

the local etch-rate multiplied by the (constant) incremental time-step.

[III] Add nodes where the string has expanded, and delete nodes in regions of contrac

tion.

[IV] Proceed to [I] and repeat until the total etch-time has been reached.

6.2.2. Implementation of the String Algorithm

The string method is not particularly easy to set up in 2D, becauseof the logistical prob

lem of keeping track of all the nodes and segments that make up the etching boundary. The

problem is complicated by the need to keep track of the ordering of the nodes on a segment

The need for order in turn is imposed by the method of advancing the surface. For a node to

find its direction or advancement vector, it needs to know the normal vectors of its adjoining

segments. And to find the normalvector of a segment, the segment must know the coordinates

of the two nodes that make up the segment, as well as the order in which they occur. In other

words, it is necessaryto have a directed line segment in the form S = [Ni, N£, where Ni and



(a)

(b)

Nl

Normal
to SI

Direction
Vector

S2

Normal
toS2

79

•D N3

Figure 6.1: The string model, (a) A node is advanced along a vector that is the
average of the normal vectors of the adjacent segments, (b) The
string is started on the surface of the material. Each node is moved

. by an amount ds = (local etch-rate)x(time-step).
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JV*2 are the two nodes on the segment This last condition comes about because the coordinates

alone are not sufficient to define the direction of the vector normal to the segment; without

any order to the nodes, the direction vector could point in either of two opposing directions.

In order to test the accuracy and determine the requirements or limitations of the string

algorithm, the string algorithm has been implemented in the C programming language. The

implementation is based on the FORTRAN stringimplementation in SAMPLE. As in SAM

PLE, the string is implemented as an array of nodes. The segments are determined by the

arrangement of the nodes within the array; the i-th segment thus contains the nodes at the i

and /+1 positions in the array, i.e., St = [fy, NM], This arrangement provides a natural order

to the nodes on the string, and is equivalent to having an array of directed line segments.

6.2.3. Mesh Modification

The string algorithm uses an ordered list of nodes andsegments to approximate the etch

boundary separating the etched regions from the unetched regions in the material. But as the

suing moves in time, nodes on the string could move closer together or further away from

each other. In the former case, nodes that are too closely packed should be removed. There

aretwo strong reasons for node deletion. First, without node deletion, the number ofnodes on

the string could grow indefinitely. And if the number of nodes exceeds the pre-defined array

size, the stringalgorithm will fail.t The secondincentive forremoving dense nodes is to avoid

floating-point errors. If the nodes are packed too closely together, floating-point errors could

f The array implementation imposesa compile-time limit on thenumberof nodes in the string. Once the
number of nodes exceeds the array size the program will fail to execute correctly. This problem could be
avoidedusing a linked list implementation of segments andnodes. The linkedlist allows dynamic allocation
of memory, so that the numberof segments or nodes is limitedonly by the computer'smemory size. Even
so, it is still undesirable to allow the number of nodes to growunchecked, since the computation time in
creases with the number ofnodes on the string.
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affect the relative positions of the nodes. The movement of the nodes depends very much on

the ordering of the nodes, so if floating-point errors do occur, very small segments could

become misoriented. As a result the nodes would move in incorrect directions and the simu

lation itself could become incorrect

The reasons for node addition are somewhat different Here, the primary concern is for

accuracy. If the nodes on the string become too distant the string will no longer be a good

approximation to the true etched surface. So, nodes need to be added periodically so that the

density of the nodes on the stringremainapproximately constant

In SAMPLE, the nodesare added ordeleted according to the lengthof the segmentjoin

ing two nodes. A nominal or ideal segment size St^ is first defined, andminimum and max

imum allowable segment lengths are defined in terms of this ideal segment length. After

every surface advancement the lengths of the segments are checked. If the segment is too

short, i.e., S < S^, then oneof the nodes on the short segment is removed, as shownin Hg

ure 6.2. Orif the segment is too long, suchthatS > Smax asin Figure 6.3, then nodesneedto

be added to the string. The easist way to do this is to add nodes linearly between sparse

nodes. Alternately, a polynomial fit can be used to produce a smoother and perhaps more

accurate surface. This is shownin the picture on the left in Figure 6.3.

As might be expected, the accuracy of the simulation does depend on the density of the

mesh. If the etch-rate varies rapidly with distance, then shorter segments will produce more

accurate results. Figure 6.4 showsthe results of a circular uniform etch usingthe string algo

rithm. Figure 6.4a is a result of a simulation with alarge ideal segment length Suuai =0.1 um.

The profiles at the earlier time-steps are clearly not very circular, but as the string expands,

more nodes are added. After 10 time-steps, the string profile resembles the expected circular
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Figure 62: Node Deletion : If a segment is shorter than some predefined mini
mum length, the segment and one of the nodes on the segment is
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Node Addition : Nodes must be added to sparse regions of the
string in order to preserve accuracy. Nodes can be added to long
segments, using either a linear or polynomial fit
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Figure 6.4: 2D uniform etching beginning from a seed point at coordinates
(0,0). The solid lines represent the string-etched profiles at etch
ing times of 0.1 - 1.0 seconds. The expected result, a semi-circle,
is plotted in a dashed line. The simulations were run with (a) large
0.1 um segments, and (b) small 0.02 um segments. The etch rate is
1 um/sec.
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result When a smaller ideal segment length S&aj = 0.02 um is used in the simulation, the

profiles appear more circular even at the early stages of the simulatioa However, more nodes

are used in the simulation, and as a result the computation time increases. Nevertheless, it is

interesting to note that the computation time for the stringsimulation is, in this case, no more

than a few seconds on a SUN 4/280. The stringalgorithm is much faster than eitherof the cell

methods discussed in the previous chapters.

6.2.3.1. Rounding Errors at Diverging Corners

Unfortunately, the string modification process described above will not work accurately

for sharpcomers. The example shown in Figure 6.5 shows a stringexpandingoutwards from a

90° diverging comer. The simulation begins with a grooved surface, and the profile etches

outward with a uniform etch-rate. According to the Huygens principle of overlapping etch-

fronts, the etch surface should be circulardirectly underneath the sharp comer, and linear far

from the comer, t In Figure 6.5a, the simulation resulted in a significantly tapered profile even

after 5 time-steps. The simulated profilesof Figure6.5b, on the other hand, were run with the

same segment size but with multiple nodes added at the comers. The resultant curves are

quite satisfactorily circular. This result is due to the fact that the addition of multiple nodes at

the sharpcomers increasesthe accuracy of the simulation; the profile after the first time-step is

a better approximation to the theoretical circular front If no additional nodes are added, as in

the simulation of Figure 6.5a, the circular front will be approximated by only two straight-line

segments. As a result as shown in the schematic of Figure 6.5a, rounding errors are intro

duced in the vicinity of the comer. The rounding errors propagate with the etch simulation

and will affect the final profile.

t The Huygens principle is described in some detail in Chapter4, Section 4.2.
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Figure 6.5 : (a) Rounding errors are introduced when only a single node is used
to advance a sharp corner, (b) In order to follow more closely the
theoretical or Huygen's etch front more nodes should be added at
the corners.
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As a rule of thumb, multiple nodes should be added to the string if the angle between the

two diverging segments at the comer is smaller or equal to 90°. In the example shown in Hg

ure 6.5b, one node is placed at the bisector of the comer, while two other nodes are placed

normal to the edges of the original segments.

It should also be pointed out that the sharptapered profile in Figure 6.5a is partially due

to the relatively large segments sizes (&w = 0.2 um) used in this set of simulations. If the

ideal segment size is kept relatively small, the accuracy of the profile will undoubtedly

increase. In this particular diverging comer example, the rounding errors will become less

significant if smaller segment sizes are used. But the key is that for a given segment size,

greater accuracy will be obtained ifmultiple nodes are added to sharp diverging comers.

6.2.3.2. Scissoring and Looping at Converging Corners

The string algorithm also runs into difficulties at converging comers. "Scissoring" or

"looping" are effects that take place at sharp converging comers. They represent instabilities

and require corrective measures. Both effects occur when the etch front consists of a number

of nodes on a sharp converging comer, as shown in Figure6.6. In a physical sense, the comer

is the intersection of two etch fronts. So, if the etch rate is uniform, both etch fronts will move

along uniformly and the shape of the comer should remain unchanged. However, in the string

algorithm, a node at the comer will move along a vector normal to the comer, while the nodes

away from the comer will move normal to the straight sides of the comer (Figure 6.6a). As a

result, a node at the comer does not move as far normal to the sides of the comer compared to

the nodes far from the comer, even though each node might move the same distance. This

causes a "scissoring" effect where the comer is effectively sharpened by the algorithm. In

order to correct for this effect, it is necessary to increase the effective etch distance of the
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Figure 6.6 : Problems with the string algorithm, (a) Scissoring : Lagging nodes
in converging corners cause inaccurate sharpening of the corners,
(b) Looping: Segments can cross each other, forming loops.
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comer node.

In a sharp comer, the segments could also move far enough that they intersect each other

and form loops. This effect, shown in Figure 6.6b, can occur at converging comers, or at the

intersection of converging etch fronts. The formation of loops is purely a result of the algo

rithm; it occurs because the surface is moved without any knowledge of whether one part of

the surface is going to cross into an already etched region. String looping is a very serious

problem because of its destructiveness. The string algorithm moves the etch front normal to

the stringed surface. But when the surface is incorrect, as shown in the inset of Figure 6.6b,

the algorithm will also produceincorrectresults. In the example of Hgure 6.6b, the loop will

expand outwards, thus etching into already-etched regions. Unless the loop is removed, it will

destabilize the entire simulation and cause the program to crash.

6.2.3.3. Loop Formation In Photoresist Development

Figure 6.7 shows the string-simulated profilesof photoresist development with the etch-

rate distribution of Hgure 2.3. After 15 seconds of development time (150 time-steps) small

loops have formed at the standing wave comers. After 20 seconds (200 time-steps), the loops

have increased in size and complexity, and have begun to intersect each other. 40 time-steps

later, the loops arecompletely out of control; the profilenow looks like a ball of yam. There

are more nodes in the loop than in the correct outside profile. Also, the number of nodes in

the string has increased due to the loops. The program will fail a few time-steps later when

the number of nodes increases beyond the pre-defined storage limit (typically 1000 nodes in

SAMPLE).
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STRING : 15 sec Development Time

Distance on wafer (um)

Figure 6.7a: String-simulated resist profile at development time of 15 seconds.
The etch-rate distribution of Figure 2.3 is used. Loops have begun
to form in the surface.The ideal segment length is 0.04 um.

STRING : 20 sec Development Time

Distance on wafer (um)

Figure 6.7b: String-simulated resist profile at development time of 20 seconds.
The etch-rate distribution of Figure 2.3 is used. The loops have
increased in size and complexity.
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STRING : 24 sec Development Time

Distance on wafer (um)

Figure 6.7c: String-simulated resist profile at development time of 24 seconds.
The loops have blown up. The number of points in the string is
close to the array size; the simulation will crash a few time-steps
later.

SAMPLE : 15,20,25 sec Development Time

Distance on wafer (um)

Figure 6.7d: Resist profile, simulated with SAMPLE, at development times of
15, 20 and 25 seconds. The loops have been removed by delooping
at selected intervals.
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It is very important to realize that the destructive loop behavior observed in this set of

simulations is caused by the surface-advancementmethod itself,t The string algorithm moves

the surface using vectors determined from the local surface. But if the local surface is itself

incorrect, then clearly the advanced surface will also be incorrect Another complication arises

from the etch-rate distribution itself. In typical photoresist development, there are areas of

low etch-rate sandwiched in between areas of high etch-rate. The loops are formed at the

areas of low etch-rate. But as the loops begin to expand, they will hit the areas of high etch-

rate and the loops will expand more rapidly. The number of nodes in each loop could double,

and each loop could in turn generate more loops. The result would be an exponentially grow

ing process that could prove fatal to the continued execution of the program.

Therefore, in a string etching simulation, it is necessary to remove the loops before they

become too complex. The string has to be "delooped" every few time-steps. This involves

finding the intersection of all the segments in the string and removing the loops from the array

of nodes. In SAMPLE, mis is done approximately every 10 time-steps. Another approach

would be to look at the etch-rateencountered andvary the deloop frequency accordingly.

The simulations shown in Figure 6.7 used a fairly small segment size of S^i = 0.04

um. It is quite interesting to note that loops arenot formed when larger segments areused in

the simulation. This is because when the segments are long compared to the etch-distance of

each node, the segments will not cross each other to form loops. Instead, there will be a scis

soring effect at the converging comers of the profile; this effect can be corrected for without

too much difficulty. However, if long segments areused to avoid loops, the overall profile will

t The loop formation depends on the advancement distance to the segmentlength. If the advancement
distance is small compared to the segment length, the nodes at the converging cornerswill be removed before
loops can be formed.
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no longer be as accurate, since long segments cannot accurately describe a curved surface.

Also note that loops will not be formed in the string algorithm if the surface is advanced

by very small time-steps, such that the distance advanced by each node is small compared to

the average segment length. However, it is not practical to use very small time-steps, since the

computation time will increasedramatically. The computation time is directly proportional to

the number of simulation time-steps.

6.2.4. The String Algorithm : Issues In 3D

The previous discussion has highlighted the difficulty of implementing the string algo

rithm in 2D. The algorithm is faster and more accurate than the cell methods, but it is difficult

to set up and requires careful attention to detail. First, the algorithm requires an ordered series

of nodes. Then, the string of nodes has to be modified frequently to keep the string density

constant During this modification, comer effects such as rounding and scissoring must be

accounted for, the comers could adversely affect the string profile and the errorsso introduced

could propagate with the evolution of the string. Finally, loops have to be deleted every few

iterations; otherwise, the loops will cause the number ofnodes in the string to blow up.

Clearly, implementing the string algorithm in 3D will be quite difficult Again three

main issues must be dealt with. These are: (1) ordering, (2) density, and (3) deloop.

The need to have an ordered mesh complicates considerably the implementation of the

string model in three dimensions. In 3D, the boundary between the etched and unetched

regions can be approximated by a series of nodes, joined by segments and triangles. The sur

face is moved by advancing the nodes along vectors, and each direction vector is the average
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of the normal vectors to all the triangles that surround a node. In addition, each triangle must

consist of an ordered set of nodes; the node ordering implicitly defines the direction of the

normal to the triangle. This setup is shown in Figure 6.8, where the normal follows the

"right-hand" rule from the sequence ofnodes.

To retain a constant-density mesh, the segments have to be cut or merged if they become

too long or too short This is particularly difficult in an ordered mesh, especially since the

orientation or order of the nodes in each triangle have to be rearranged so that the normal vec

tor to the triangle remains unchanged. A great deal of care must be taken to reestablish the

connections between the modified segments and the rest of the nodes, segments and triangles

of the mesh, t

Additional complications arise from comer effects. In 3D, it is not easy to remesh the

surface, yet the 2D experience has shown that without remeshing, i.e., accounting for comers,

errors will be introduced. A straight-forward implementation of the string algorithm without

correction for comer effects would run,but the results might not be trustworthy. Another com

plication unique to 3D comes from the approximation of a 3D surface with triangles. Facets

are formed whenever triangles are used to approximate an arbitrary curved 3D surface. An

example of the 3D faceting problem is shown in Figure 6.9. Here, the true etch surface is

cylindrical in shape, and the cylinder is aligned parallel to the x-axis. If four triangles are

used to approximate the surface, each of the four triangles will point in different directions.

One would hope that the variation in the triangle normal vectors due to the facets of each tri

angle will cancel out at each node, so that the averaged normal vector remains normal to the

true curvature of the surface. But it is not difficult to envision situations in which inaccurate

t Keeping trackof the mesh interconnections is in essencea book-keeping problem. But because of the
orderedmesh, the book-keeping is a difficult task andmust be error-free.
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Figure 6.8: The string model : 3D implementation, (a) The mesh consists of
nodes, directed line segments and triangles. The normal vector to
the triangle is found from the cross-product of two line vectors, (b)
Nodes on the surface are moved along direction vectors; each direc
tion vector is the average of the normal vectors of the triangles sur
rounding a node.
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SIDE VIEW SIDE VIEW

ORTHOGRAPHIC PROJECTION

Figure 6.9: 3D Faceting. Facets are formed when triangles are used to approx
imate a curved surface. The facets could affect the accuracy of the
3D string simulation.
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faceted triangles would adversely affect the determination of the averaged normal vectors. In

such situations, thetriangles could potentially intersect each other and form loops.2

The delooping problem is also somewhat dishearteningin 3D. To deloop, it is necessary

to find the intersections of all the triangles in the surfacemesh. This is no trivial matter espe

cially since a typical mesh could contain between 10,000 to 100,000 triangles. But also recall

that deloop is essential to the string algorithm. Without deloop, the number of nodes on the

3D surface could grow exponentially as loops are formed. But with deloop, the computation

time will definitely increase dramatically.

The string algorithm is quite attractive for 3D etching simulation, primarily becauseit

has been used with great success in 2D. Its strengths arethat it is fast, efficient, and accurate.

But its greatest weakness is that errors in the approximation of the surface have excessively

large influences on the accuracy and robusmess of the simulation as the surface is advanced.

In orderto retain accuracy and correctness, a numberof operations must be carried out on the

mesh. The mesh must be modified periodically so that the nodes on the mesh remain approxi

mately equidistant At the same time, the ordering of the nodes must remainunchangedduring

mesh modification. A considerablymore difficult operation is the delooping of the mesh. 3D

delooping is a computationally expensive operation. Since the parts of the mesh that have

looped begin expanding in all directions into previously etched material, the mesh must be

delooped very often. Mesh delooping may have to be carried out as often as every 10 time-

steps or whenever the segment length equals the cumulative surface advancement distance.

As a consequence, a string-based algorithm with deloop would probably be quite slow. So,

unless a good technique can be found to deal with loops in the 3D string algorithm, this algo

rithm will not be an efficient algorithm for 3D etching.
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6.3. THE RAY ALGORITHM •

The ray algorithm for etching, proposed by Hagouel3 in 1976, is a method by which

nodes are advanced along rays which are refracted at the boundaries of regions of different

etch-rates. The algorithm is based upon a rigorous mathematical solution to the least time

principle, given by the differential ray equation [5.12]. The differential ray equation is

reprinted below.

d_
ds

^

1 8
v(x,yj)

= V
1

vixyj)
[6.1]

To recap, the equation describes the trajectory of a ray through a position-dependent velocity

field. This equation could therefore describe the movement of a particle through a velocity

field (e.g. air), or the passage of a light ray through an optical media, or, in a case of particular

interest, the passage of an etch ray through a material during surface-etching.

There is a close analogy between geometrical optics and etch ray-tracing. In both cases,

the medium has a position-dependent velocity field (optical refractive index vs. etch-rate dis

tribution), and it is desired to trace the movement of a front or a surface (optical wave-front

vs. etch-boundary) as a function of time. The rays are the trajectories ofnodes on the surface,

and are orthogonal to the moving surface. Thus, one could use the principles of geometrical

optics ray-tracing (e.g. the laws of reflection and refraction) to trace the trajectory of an etch

ray, where the etch-material's refractive index is defined as the ratio of the maximum etch-rate

Rma,to the etch-rate R (x ,y j) as a function of position.

"M* re. ii

"""•"Tq^) l62]
In fact, the analogy to optics was used by Hagouel3 to derive the fundamental equation of etch

ray-tracing, i.e., Equation [6.1]. It is also worth mentioning at this point that in optics, the

eikonal [5.13] and differential ray [5.12] equations are also rigorous solutions to the
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electromagnetic wave equation, f

For the purposes of etching simulation, the differential ray equation must be recast in

terms of etching quantities. Let j be the total distance etched by an etch point, s the vector

along the direction of the etch ray, and R(x ,y j) the etch-rate in the material as a function of

position. Then the equationgoveming the changes in direction of the etch ray as a function of

the etch-rate can be rewritten as

ds

1

R(xyj)
s =v

1

R(xyj)

This equation may be discretized by replacing the differential d by the variation A.

i*
1

R{xyj)
3 = V

1

R(xya)

So, over two points P \ andP2, the relationship between the etch rays is

R2 Ri

where Sx and S2 are the unit ray vectors at the two points. The differential ray equation in this

= V As

[6.3]

[6.4]

[6.5]

form may be simplified further. After some manipulation (Appendix A.4), the following form

is obtained.

(*!+* 2)„
S2-Si=-0.5—-r-^-V(R)AT+Si

6.3.1. The Algorithm for Advancing the Rays

£- [6.6]

Equation [6.6] can be used quite nicely to find the trajectory of the etch ray as the ray

moves in time. Given a unit direction vector Si at point Pi = (*i,y i**i)t first find the point

Pi = (*2»y 2**2) by advancing point P \ alongthe direction vector Si.

t Born & Wolf.4 Section 3.1
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x2=xi + (Sl)xR(xly1jlW

y2=yi +(S1y?(x1,yi.zi)Ar

z2=2! + (SO,/? (x,* i* i)AT [6.7]

The total distance advanced is just the rateat point P i multipled by the incremental time-step

AT. The next step is to find the new direction vector S2 at P2- For this, evaluate the etch-rate

gradient at P2 and calculate S2 using the discrete ray equation [6.6]. This procedure is shown

in Figure 6.10.

The ray algorithm is depicted in Figure 6.11. The simulation begins by initializing the

rays such that they are normal to the initial surface. As shown in Hgure 6.11, the surface is

typically a smooth horizontal surface, in which case the rays are oriented vertically. The algo

rithm then proceeds as follows.

[I] Advance each node along its direction vector.

[II] Calculate the new direction vector at the new node location using the discretized

form of the differential ray equation, Equation [6.6].

[III] Proceed to [I] and repeat until the total etch time has been reached. Then construct

the final etch front out of the end-points of the rays.

6.3.2. Implementation of the Ray Algorithm

The ray algorithm is unique in that each ray is independent of all other rays. The trajec

tory of a ray is dependent only on the ray's previous trajectory and the local etch-rate, so it is

not necessary to keep track of the connections between different rays. Little memory is

needed for individual ray calculations. (In fact, Hagouel's initial 2D ray simulations were

done interactively onadesk calculator!)1 In direct contrast, the string algorithm picks uptra

jectory information from the local surface; this information can only be obtained from a
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Figure 6.10: The Ray Algorithm : At every time-step, first advance the point, then
calculate the new direction vector at the new point using the dis-
cretized ray equation, Equation [6.6].
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Figure6.11: The Ray Algorithm. Begin by initializing the rays normal to the ini
tial surface. Then during each step, advance the nodes and find the
direction changes due to etch-rate refraction. Finally, reconstruct
the surface from the end-points of the rays.
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connected surface mesh which in turn requires access to the coordinate data of each node.

Because of the independence of the rays, the rays can be implemented as a linked list of

nodes, where each node retainsmfonnation on the current position and direction vector of the

node. The linked list arrangement is optional; it allows for greater flexibility in the number of

rays in the simulation volume.

6.3.3. Testing the Ray Algorithm

6.3.3.1. Etching with An Exponential Etch-Rate Function

Figure 6.12 shows an etching simulationusing a simple exponential function

R(x,ya)=e^
This function resembles the development etch-rate from electron-beam exposure.

[6.8]

Using this function in the discretized ray .equation [6.4], the differential equation

describing the change in the vector of the ray becomes

As

1

R(x,yj)
s =v

=v

1

RQcyj)

1

.-4X2

=&ce4x'l [6.9]

where I is the unit vector in the x-direction. As before, As =R(xyj)AT. According to

Equation [6.9], the gradient of the inverse of the etch-rate is a vector pointing in the positive

x -direction for positive x. In this case, a ray starting out from a point with a positive x coor

dinate will curve away from the x = 0 plane; its direction vector will have an increasingly

larger x -component as the ray marches forward. Similarly, because the gradient is negative

for negative x, a ray in the negative x -quadrant will have a vector with a negative x
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EXPONENTIAL RAY ETCH

R=exp(-4x2)

Distance on wafer (um)

Figure 6.12a : The Ray Algorithm : 51 etch rays in an exponential etch-rate func
tion. The simulation uses 10 time-steps of 0.1 seconds each. The
etch front is formed from the end-points of the rays at every time-
step.
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Figure 6.12b : String-simulated etch profile in an exponential etch-rate function.

The simulation uses 10 time-steps of 0.1 seconds each. The rays
from (a) have been overlaid. Note that the end-points of the rays
do coincide with the string profiles.
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component, and the ray again curve away from the x =0 plane. This behavioris indeed seen

in the ray-tracing simulation of Hgure 6.12a. As expected, the rays bend away from the x =0

plane.

Hgure 6.12b shows a simulation of the same etch-rate function with the string algo

rithm. The string profiles areshown in solid lines, while the dashed lines represent the ray tra

jectories from the ray simulation. It is evident that there is an excellent match between the

strings andthe rays; afterthe final time-step, the end-points of the raysall end up on the final

string profile. In addition, the two sets of curves areclearly orthogonal, i.e., the rays arenor

mal to the string-profiles and vice-versa. This is to be expected, since, as mentioned previ

ously, the rays are the normal trajectories to the etch fronts.

6.3.3.2. Ray-Spreading and Looping In Triangular Etch-Rates

The use of a triangular etch-rate function also provides interesting information about the

spreadingand looping of rays. As with the modified cell algorithm (Chapter4, Section 4.5.2),

two triangular etch-rate functions are used to test the ray algorithm. These functions are the

saw-tooth function

R(xyj) = 2\x\ um/sec [6.10]

and a saw-tooth with an offset

R(x,yj) = 2 Ixl +0.2 um/sec [6.11]

Hgure 6.13 shows the trajectories of the rays in the above etch-rate functions. One can see that

in both simulations, the rays all curve towards the x =0 plane. Thus there are, in both cases,

ray-scarceregions, i.e., regions in which no or few rays pass. This is an inherent weakness of

the ray algorithm; there arecertain regions which may not be reachedby the first choice of ini

tial locations on the surface.1
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RAY: TRIANGULAR ETCH
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RAY: TRIANGULAR ETCH W OFFSET
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Figure 6.13: 2D ray etching using triangular etch-rate functions, (a)rt=2/x/ and
(b) R=2lx/+02. Simulation proceeds for 10 0.1-second time-
steps. All the 51 rays have curved inward, leaving a ray-scarce
region for large Ixl values. In addition, in (b) some rays have
crossed.



106

In addition, in the simulation with the offset rate function (Hgure 6.13b), some of the

rays have even crossed eachother in the center. Physically, these rays are now in the etched

region and lag behind the actual etch front Thus there will be loops in the surface formed by

the end-points of the rays. The formation of loops was also seen in tiie string algorithm. But

the ray-formed loops do not turn inside-out and expand outwards in all directions as in the

string algorithm. It is also worth noting that loops arenot formed in a volume etching simula

tion. The modified-cell simulations of the etch-fronts for the triangular etch-rate functions

above were shown in Figures 4.4b and 4.5b respectively.

6.3.3.3. Ray-Spreading and Looping in Sinusoidal Etch-Rates

The etch-rate function

R(xy ,z)=^(1.05 - cos(2nz)) [6.12]

is a function that resembles the standing-wave etch-rate distribution in photoresist develop

ment This function hasx and z dependence and thus makes for a good test of the ray algo

rithm.

Hgure 6.14 shows the ray trajectories for a 3-second etching simulation with 30 0.1-

second time-steps and 300 0.01-second time-steps respectively. There are atotal of 51 rays in

each simulation; the rays are initially placed uniformly between x =-0.4 and x =0.4. The

rays are seento move down and outwards intothe material. Most of the rays have bent back

towards the initial surface; some of these have also crossed each other, forming loops. There

arealso ray-scarce regions in the center of the simulated area.

It is worth noting that the ray trajectories in both the 30 and 300time-step simulations

trace out similar etch fronts, that is, the surface traced by the envelope of the rays are similar
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Figure 6.14 : 2D ray etching using a sinusoidal etch-rate function. Simulation pro
ceeds for a total of 3 seconds, with (a) 30 time-steps of 0.1 sec
onds and (b) 300 time-steps of 0.01 seconds each. The difference
in the size of the time-step causes the ray trajectories to change.
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in Figures 6.14a and 6.14b. However, the actual paths of the rays differ in the two figures.

This is due to the fact that the accuracy of any discretized simulation will increase if more

points are sampled, orin this case, if more iterations are used. In the 30time-step simulation,

the differential ray equation is only evaluated 30 times. As a result, the simulation is not as

accurate, and the rays do not curve asmuch asthe 300-time-step rays.

Anotherinteresting aspect of the rayalgorithm is seen in Hgure 6.15, wherethe simula

tions have been run with a higher-frequency sinusoidaletch-rate function.

/?(x,y^) =e-4x2(1.05-cos(8jcz)) [6.13]

In the 30-time-step simulation, shown in Figure 6.15a, almost all the rays are grouped at the

initial surface. Even the ray at the center has not moved very far from the surface. In contrast,

the rays in the 300-time-step simulation shown in Figure 6.15b have fascinating smoothly

curved trajectories.

Notice that in Hgure 6.15b, the raysare curled up around depthsof z =0, z =-0.25 and

z =-0.5 um. It is no coincidence thatthe etch-rate is slowest atthese depths. As caneasilybe

seen from Equation [6.13] above, the etch-rate function is periodic in the z-coordinate, with a

period of 0.25 um. Thus, at the surface z =0, and at depths of integer multiples of the 0.25

um period (e.g. z =-0.25 um, z =-0.50 um), the etch-rate is at a minimum value. This is

alsoseen clearly in Hgure 6.16,which showsthe contour map ofthis particular etch-rate func

tion.

Comparing the etch raytrajectories of Hgure 6.15bwith the contourmap ofthe etch-rate

in Hgure6.16,one canseethat someof the etch rays havebeentrapped insideregions of rela

tively low etch-rate. This behavior of the rays can be understood with the aid of the discre

tized ray equation [6.5], rewritten below.
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Figure 6.15 : 2D ray etching using a high-frequency sinusoidal etch-rate function.
Simulation proceeds for a total of 3 seconds, with (a) 30 time-steps
of 0.1 seconds and (b) 300 time-steps of 0.01 seconds each. The
rays in (a) are the result of incorrect reflections.
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Figure 6.16: 2D etch-rate contours for a high-frequency sinusoidal etch-rate
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Figure 6.17: Reflection of an etch-ray. This occurs for certain angles of incidence
if the etch-rate Rl in region 1 is less than the etch-rate R2 in
region 2.
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If themagnitude of the last term in this equation is larger than matof thevector s^Rlf there

could be a drastic change in the direction of the ray vector. To illustrate this, considera flat

boundary separating two regions of low and high etch-rate respectively (Figure 6.17). Now

suppose mat a ray with directionvector 81 is approaching the boundary from the low etch-rate

region. VR is larger in region 1 than in region 2, so as shown in Hgure 6.17, the gradient of

the inverse of the etch-rate is a vector that points upwards from the boundary. Adding this

vector to S\/R lt one finds that the ray 82 has bounced off the boundary and is now shooting

off in a completely different direction. This is similar to reflection in optics and is the analog

ofSnelTsLaw.

The situation just described is really an over-simplification. One constraint on the

discretized rayequation [6.4] is that the variation A must remain small so that the differential

equation [6.3] is obeyed. As a consequence, the change in the vectors A(S/R ) must remain

small, and abrupt changes in direction such asdescribed in Figure 6.17 are not allowed.!

Nevertheless, the basic principle of reflection can still be used to explain the curling of

theetchrays in Figure 6.15b. In this case, theetch-rate is continuous, and there is a region of

low etch-rate sandwiched between regions of high etch-rate. This situation is illustrated in

Figure 6.18. A ray that starts out from the low etch-rate region towards the high etch-rate

region will encounter a gradient that opposes the passage of the ray. As a result, the ray

curves back towards the low etch-rate region. This gradual rayreflection occurs on both sides

t If reflection does occurat a boundary, the lawsof geometrical optics say that the angle of incidence is
equal to theangle of reflection. Thislawisclearly notobeyed intheexample of Figure 6.17. This is because
the differential ray equation only applies for continuous etch-rate R(x,yj). At abrupt boundaries, the ray
equation has to be disregarded in favor of Snell's Lawof refraction.
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Etch-Rate, R(z)

Depth, z

Figure6.18 : Etch-Ray Trapping : A ray is trapped in a low etch-rate region
sandwiched between high-etch-rate regions. The gradual change
in etch-ratecauses the ray to bendsmoothly.

Figure 6.19 : An optical waveguide. A material with high refractive index (low
wave velocity) is sandwiched in between materials of low refractive
index (high wave velocity). Rays entering at certain incident
angles will be trapped and guided by the waveguide.
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of the low-etch-rate valley, so, as a result, the ray is trapped in the region withlow etch-rate.

However, the ray can stillmove within that region. Thus, the ray traces out an S-curved tra

jectory similar to those observed in the simulation of Hgure 6.15b. This situation is, in fact,

analogous to the waveguide structure in geometrical optics, illustrated in Hgure 6.19. The

optical waveguide is constructed out of a a region ofhigh refractive index (low wave velocity)

sandwiched by layers of low refractive index (high wave velocity). The light rays are

reflected at the boundaries, and as a result, the rays aretrapped and can thus propagatealong

the waveguide.

The strangebehavior of the rays in Hgure 6.15a can also be traced back to the reflection

of raysat etch-rate boundaries. Note that in the simulation shown in Hgure 6.15a,most of the

rays are curved smoothly. But some rays in the centerhave sharp jagged trajectories. These

rays have undergone sharp reflections in the low-etch-rate region about the surface. The

abrupt reflection described earlier in Hgure 6.17 has occurred. This abrupt reflection of rays

is undoubtedly due to the large time-step of 0.1 seconds. Since the time-step is large, the

etch-distance Ay is also correspondingly large, and so, the magnitude of the gradient vector

term in Equation [6.14] is large, leading to an abrupt change in the ray vector S. But as just

discussed, the abrupt reflection, with large A(3/R), is a violation of the ray equation! There

fore, the large time-step combined with blind application of the differential ray equation has

led to incorrect ray trajectories.

6.3.4. The Ray Algorithm : Issues In 3D

The 3Dray algorithm is notverydifferent from the2Dray algorithm. The ray algorithm

is very easy to implement in 3D; all that is required is the addition of an extra dimension to

the calculations. Hgure 6.20 shows a 3D simulation of ray-etching with the analytic



114

sinusoidal function below.

R(x,y ,z)=e-^+^1^5 - cos(8rcz)) [6.15]
The trajectories of 121 rays were traced thougfr 300time-steps of 0.1 seconds each, resulting

in the jelly-fish-like profiles shown.

Hgure 6.20 is an excellent example that illustrates the advantages and disadvantages of

the ray algorithm. The ray algorithm is easy to implement in both 2D and 3D. It is accurate

and fast, although some care must be taken to limit the size of the time-step in order to avoid

abrupt loop reflection. The major advantage of the ray algorithm is that the rays are indepen

dent of each other; the rays do not depend on the local etch-front for calculationof their trajec

tories. Thus, unlike the string algorithm, the rays are not affected by incorrect surfaces or

facets. The weakness of the ray algorithm, however, is that certain regions may not be

reached by the first choice of initial ray locations on the surface. It is also quite difficult to

reconstruct an etch-front from the end-points of rays. This is especially true when loops are

formed during the simulation.

6.4. SUMMARY : 3D SURFACE-MOVEMENT ALGORITHMS

Both the string and ray methods are surface movement algorithms that track the surface

of the material as it is being etched. The three-dimensional string method approximates the

etching boundary between the etched and unetched regions with a series of nodes, joined by

segments and triangles. The surface is moved by advancing the nodes along vectors calcu

lated by averaging the normal vectors to all the triangles that surround a node. The ray algo

rithm, on the other hand, does not keep track of the 3D surface - it merely traces selected

points onthetime-evolving etch surface. Inthis algorithm, the nodes are advanced along rays

which are refracted at the boundaries of regions ofdifferent etch-rates.
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Figure 6.20: 3D ray etching using a high-frequency sinusoidal etch-rate function.
121 etch rays are traced for 3 seconds with 300 time-steps of 0.01
seconds each.
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The string method is difficult to setup in 3D, due to the logistical problem of keeping

track of all the nodes, segments and triangles that makeup the etching boundary. Additional

difficulties areencounteredbecause of the necessity of addingand deleting new nodes so that

the triangular mesh is neither too dense nor too sparse. The ray method is easy to implement

in 3D, but its weakness is that there are certain regions that arenot reached by the choice of

the initial rays. Thus, it is not easy to reconstroa the etch-surface formed by the endpoints of

the rays.

The string and the ray algorithms are, in a sense, complementaryalgorithms, in that they

are both based on solutions to the least time principle. The stringmesh represents the eikonal

wavefront surfaces, while the rays are the normal vectors to the wavefronts. In the ray algo

rithm, the rays or advancement vectors are calculated using the differential ray equation. In

contrast, the string calculates the advancement vectors from the local surface. This method of

calculating the advancement vectors is a key difference between the ray and string methods.

Comprehensive testing of the two approaches has shownthat the vector calculation method

used in the string algorithm is more error-prone than that used in the ray algorithm. In the

string algorithm, the advancement vectors calculated from the local surface will be inaccurate

if thelocal surface is incorrect orinaccurate. In contrast, in the ray algorithm, the vectors are

calculated from the local etch-rate distribution and are independent of the local surface. The

ray vectors are also independent of each other. Therefore, because of the difference in the

waythe solution to the least-time principle is implemented, the ray algorithm is less sensitive

to error andthus more accurate thanthe string algorithm.

However, the ray algorithm is not a complete solution to the original problem of tracing

thetime-evolving etch front The ray algorithm accurately calculates thetrajectory of rays, but

there are often insufficient rays to adequately describe the entire surface. Somehow,
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additional rays must be added to ray-scarce regions. One way of doing this is to connect the

rays with a string-like mesh. This method combines the advantages of both the string and ray

methods; the string-like mesh covers the entire etchsurface, whilethe raysaccurately describe

the normals to the etch surface. This combinedray-string approach is described in the follow

ing chapter.
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CHAPTER 7

THE RAY-STRING ALGORITHM :

2D IMPLEMENTATION ISSUES

7.1. INTRODUCTION

The ray-string approach is a powerful algorithm for the simulation of etching that com

binesthe advantages of boththe ray and the string algorithms. As with the ray and the string

algorithms, the ray-string algorithm is also based on a rigorous mathematical solution to the

principle of least time. In this approach, the etch surface is approximated by a string-like

mesh of nodes and segments. Like the ray algorithm, the surface is moved by advancing the

nodes along rays determined by the local etch-rate in the material. The string-like mesh is

used to keep track of the connection between the nodes; as the nodes move further apart or

closer together, nodes can be added or deleted.

This combination offers a number of advantages. As a surface-advancement algorithm,

the ray-string approach is fast and accurate, and has modest memory requirements. The ray-

technique of calculating the direction vectors of the nodes is independent of the local etch sur

face. This avoids the introduction and propagation of errors from incorrect portions of the

mesh. The ray-string algorithm thus is more accurate and less error-prone than the string

algorithm. At the sametime, the interconnectivity conferred by the string-mesh avoids the for

mation of ray-scarce regions,and allows foreasy reconstruction ofthe etch-surface.

The concept of the ray-string algorithm itselfis notnew. Moniwa etaL1 recently intro

duced a 3D photoresist simulator based on this approach. However, Moniwa did not address

the issues of accuracy and efficiency, which are of considerable importance in a surface-
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advancement algorithm. It is these very topics that shallbe the emphasisof this chapter.

As was seen in the previous chapter,both the string and ray algorithms needed a number

of adjustments in orderto produce accurate andcorrect simulation results withoutusing exces

sive amounts of computer memory and time. The same is trueof the ray-string algorithm. It

too must deal with the tradeoff between accuracy and speed. There are really two general

issues thathave to be addressed. First, is it possible to improve the calculation of the raytra

jectories so that an optimum balance between accuracy and speed is obtained? And second,

how do the mesh operations affect the accuracy and execution speed of the simulation? These

issues will be addressed and new improvements to the ray-string algorithm will be discussed

in the following pages.

7.2. IMPLEMENTATION OF THE RAY-STRING ALGORITHM IN 2D

In order to investigate the accuracy vs speed tradeoffs in the ray-string algorithm, a 2D

version of the algorithm has been implemented in the C programming language. The data

structure consists of two separatelinked lists of nodes and segments. As in the ray algorithm,

each node retains information on its current position and direction vector. But now, each node

also contains pointers to its adjoining segments. Each segment too is linked by pointers to

two nodes. Thus, the connection between the nodes and the segments is two-way.

7.3. THE ALGORITHM FOR SURFACE ADVANCEMENT

The procedure for advancing the surface mesh in the ray-string algorithm is very similar

to that of the string and theray algorithms. The simulation begins by creating and initializing

a surface consisting of a number of interconnected nodes. Each node is initialized with a ray
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or direction vector normal to the initial surface. The algorithm then proceeds as follows (Fig

ure 7.1):

[I] Advance each node on the mesh along its direction vector. The distance advanced

is equal to the local etch-rate multiplied by the incrementaltime-step.

[II] Calculate the new direction vector at the new node location using the discretized

form of the differential ray equation, Equation [6.6].

[III] Add nodes in regions where the mesh has expanded, and delete nodes in regions of

contraction.

[IV] Proceed to [I] and repeat until the total etch-time has been reached.

7.4. SELECTION OF THE SIZE OF THE TIME-STEP

There is, however, a problem with the algorithm outlined above. The ray-algorithm

simulations described in Chapter6 have shown that the ray trajectories aresensitive to the size

of the time-step taken to advancethe rays. If the time-step is too large, abruptray reflections

could take place (Hgure 6.15a, Section 6.3.3.3). The trajectory of the rays would then be

incorrect. To avoid such gross errors in the ray trajectories, one could, of course, use very

small time-steps. But this improvement in accuracy would come at a cost of increased com

putation time. So, how does one choose the time-step so that the rays can be calculated both

accurately and efficiently?

7.4.1. Avoiding Abrupt Ray Reflection

One rule of thumb in selecting the time-step is to just use a time-step AT that has been

determined by trial and error. For example, in the ray simulation with the high-frequency
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Figure 7.1: The Ray-String Algorithm. Begin by initializing the rays normal to
the initial surface. Then during each step, advance the nodes and
find the direction changes due to etch-rate refraction. After each
surface advancement, add or delete nodes where necessary.
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sinusoidal etch-rate shown in Figure 6.15, a time-step of AT =0.01 seconds appears to be a

good choice. But if the vertical frequency of the etch-rate is increased, the AT chosen above

might not be sufficient to ensure accuracy. In other words, the trial-and-error selection of the

time-step must be repeated for all the different etch configurationsto be simulated.

An even better approach for selecting the time-step can be derived from the ray equa

tion. Begin with the discretized ray equation [6.5].

r "\

R2 Ri
As [7.1]

To simplify the equation above, assume that the etch-rates are of the same order of magnitude

within a small sphere of radius As. Then, R \ = R2=/?, and Equation [7.1]becomes

r "\

RR R

Simplifying further, one obtains

As=^^(R)RAT [7.2]
R2

S2-S,=-V(*)AT [7.3]

The relevance of this equation to the selection of the time-step can be understood with the aid

of Figure 7.2. It is not difficult to see that if the magnitude of the last vector term in [7.1] is

kept small, then the change in the direction of the vectors will be small too. But when this last

term is large, thenthe rays could change direction abruptly. To avoid such abrupt reflections

in the ray trajectories, the magnitude of the last term in [7.3] should belimited. If the gradient

term is allowed to haveamagnitude onlylessthan 1.0, thenthe change in direction of the vec

tors will be at most 60°.Thus, the conditions foravoiding reflection canbe stated as follows.

\V(R)\AT<1 [7.4]

This equation is a concise statement of the conditions under which rays will not undergo

abrupt reflection. Abrupt ray reflection will not occur if (i) the time-step AT is small, and (ii)

the magnitude of the gradient of the etch-rate is small (i.e., if the variation of the etch-rate
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Figure12:VectorChecking:ThevectordifferenceV(R)ATshouldbekept
smalltoavoidabruptrayreflection.

*^

Figure7.3:VectorChecking:Theangle0hastobekeptsmallsothatthereis
littlechangeinthedirectionoftherays.
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with distance is small).

Equation [7.4] states that the optimum size of the time-step should scale inversely with

the maximum slope of the etch-rate distribution. For example, the maximum slope of the

sinusoidal etch-rate function [6.13] is dRIdz = 8«, so a good time-step size for that particular

function would be AT =(dR/dz)'1 =0.04 seconds. In typical photoresist development simu

lations, though, the etch-ratedistributionconsists ofdiscrete values. In such distributions, it is

not practical to search for the maximum etch-rate gradient However, if the etch-rate distribu

tion varies periodically in the vertical direction due to standing waves, then it is possible to

construct a criteria similar to that of [7.4]. If Zr is the period of the standing waves, and i?,^

is the maximum etch-rate in the volume of the photoresist, then the condition

is sufficient to ensure that the rays do not bounce abruptly.

Equation [7.5] can be tested on the etch-rate distribution shown in Figure 2.3. In this

case, the vertical period is Zr = 0.125 jxm, while the maximum etch-rate is 0.11 urn/sec. The,

according to Equation [7.5], the maximum time-step size that can be tolerated is AT =0.18

seconds. This number actually turns out to be a very good choice. As shall be seen later in

the chapter, Ar = 0.1 seconds produces good simulated profiles, whereas with AT =0.5

seconds, the rays are seen to bounce back to the initial surface.

7.4.2. Recursive Vector Checking

Equation [7.4] is not itself a rigorous condition for accuracy, because of it is based on

the assumption that the etch-rates are approximately equal at the two points traversed by the



126

ray in a single time-step. However, it can serve as a good rule of thumb for selecting the size

of the time-step.

The accuracy of the ray-calculation can be further refined by subdividing the initial

choice of time-step. In the "recursive vector checking" procedure, the size of the time-step is

selectedby limiting the changein the direction ofthe rayvectors to a few degrees.

Recall that the implicit constraint on the discretized ray equation [6.4] is that the vector

variation A(s/R) must be kept small, so that the variance A is approximately equal to the dif

ferential d. Now, keeping the change in the vectors A(S/R) small is almost equivalent to

ensuring that the change in unit vectors As is kept small So, the condition for satisfying the

differential ray equation becomes

IS2-S1I <ss: 1 [7.6]

The relationship between the unit vectors Si, S2 and the difference between the two vectors,

S2- Si, is shown in Figure 7.3. If the magnitude of S2-S1 is kept small, then cleariy the

angle between the vectors Si and S2 will be small as well. It is possible to show that

IS2-Sil=2-2cos2e [7.7]

So, if the magnitude of the vector difference is limited to 0.1 (I S2- Si I £ 0.1), the angle 0

between the vectors will be at most 4° (9 £ 4°).

The procedure for recursive vector checking may now be outlined. First, define a

minimum recursive length IAS In^ = IS2 - Si Imin = l^ (e.g. l^ = 0.1) and an initial step-

step size AT.

[I] Evaluate the length of the vector IAs I = IS2 - Si I.

[II] If the length of the vector IAs I is greater than /„„„, divide the time-step in two.

Recalculate the new vector S2. Return to [I] and continue until
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lASl = IS2-Sil </„,*,.

[HI] If the time-stepis now suchthatthe condition IAs I < /„*, is satisfied, advance the

ray to the new node according to the size of the current time-step. Return to [I],

and repeat recursively.

The pseudo-code for this recursive procedure is as follows.

advance__both (point, vector, dt)
{

/* advance the point along its vector */
advance__the_jpoint (point, newpoint, vector, dt)

/* calculate the new vector at the new point */
advance_tnewvector(point,newpoint,vector,newvector)

/* if vector difference is too large, dt is too large */
vector__difference = magnitude ( newvector - vector )
if (vector_difference > 0.1) then

advance_both(point,vector,0.5*dt)
advance_both(point,vector,0.5*dt)

else

point •» newpoint
vector = newvector

end if

Examples of the effect of recursivevector checking on the ray simulations are shown in

Figure 7.4. The simulation conditions are similar to those of Figure 6.15, except that in this

set of simulations, the recursive vector procedure is used to limit the direction changes of the

rays.

In Figure 7.4a, a recursive vector length of 0.1 is used, and as in Figure 6.15a, the ray

simulation is over 30time-steps of 0.1 seconds each. The results are indeed quite satisfactory;

the ray trajectories do compare favorably with the 300-time-step simulation of Rgure 6.15b.
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Figure 7.4 : 2D ray etching using a high-frequency sinusoidal etch-rate function.
The use of recursive vector checking with recursive length of 0.1
increases the accuracy of the simulations and avoids incorrect
reflections of the rays.
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The rays do have sharp-edged trajectories, but this is due to the large time-step and the fact

that the intermediate points calculated during the recursive procedure are not saved. The ray

trajectories are not quite as accurateas those of Figure 6.15b, but at least they are much more

accurate than those in the original 30-step simulation in Hgure 6.15a.

Hgure 7.4b shows the result of the ray simulation with 300 time-steps of 0.01 seconds

each. As before, recursive vector checking is used with a recursive length of 0.1. This time,

the ray trajectories appear to be similarto those of Hgure 6.15b. The recursive checking pro

cedure has had little effect on the accuracyof the simulation.

The computation times for the simulations of Figure6.15 and 7.4 are tabulated in Table

7.1. The simulation of Hgure 6.15a runs the fastest, but in this particular simulation, the rays

trajectories are quite incorrect. When recursive-vector checking is used with alarge time-step,

the computation time almost doubles, but the ray trajectories become relatively accurate.

Clearly, for large time-steps, recursive vector checking is well worth theprice paid incompu

tation time. But for small time-steps, recursive vector checking has little orno effecton the

accuracy oron the computation time. So, in effect, recursive vector checking is a procedure

that increases the accuracy of the simulations only when it isnecessary to doso.

Hgure Time-Step Size Vector Recursion Computation Time

6.15a 0.1 sec No 5 sec

6.15b 0.1 sec No 44 sec

7.4a 0.01 sec Yes 11 sec

7.4b 0.01 sec Yes 46 sec

Table 7.1: The effect of recursive vector checking oncomputation time.
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7.4.3. NEW MODIFICATIONS TO THE SURFACE-ADVANCEMENT METHOD

The constraints on the vectors implicit in the ray equation has led to two new procedures

that are useful for optimizing the accuracy and the efficiency of the simulations. The first is a

rule-of-thumb which allows for the selection of a "good" time-step in which abrupt ray-

reflection is avoided. This procedure, however, is ofuse only when the etch-rate distribution is

periodic. There is no such constraint on the second procedure, which is a recursive method for

accurately tracking the trajectory of the rays in some given time interval. This recursive pro

cedure is of particularuse in situations where the etch-rate is varying rapidly in only small

localized regions. In this case, it is not efficient to choose a global time-step optimized for the

fast-varying etch-rate regions. It is far better to use a larger time-step suited for the more

widespread low-varying etch regions; the recursive vector procedure becomes useful primarily

in the fast-varying etch-rate regions.

These two procedures can be easily added to the algorithm for surface-advancement

The first step is, as before, to select an initial time-step. If the etch-rateis periodic, then Equa

tion [7.4] or [7.5] could be used to select an optimum time-step. Otherwise, the time-step

could be chosen based on the averageor the maximum etch-rate in the volume of the material

being etched. Once the initial time-step has been chosen, the surface can be advanced as

described in Section 7.3. The recursive procedure would cover steps [I] and [II] in Section

7.3. The algorithm forthe surface advancement then becomes:

[I] Advance each node and vector recursively according to the procedure outlined in

Section 7.4.2.

[II] Add nodes in regions where themeshhas expanded, and delete nodes in regions of

contraction.
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[III] Proceed to [I] and repeat until the total etch-time has been reached.

7.5. MESH OPERATIONS

Another issue of considerable importance in the ray-string algorithm concerns step [II]

in the algorithmoutlined above. As in the stringalgorithm, a number of operations have to be

repeatedly carried out on the ray-string surface mesh, so that the mesh remains both accurate

and correct These mesh operations, and their effect on the accuracy and efficiency of the

ray-string simulations will be described in some detail in this section.

7.5.1. Mesh Modification

Surface-advancement algorithms in general suffer from the disadvantage that as the sur

face mesh moves in time, the nodes on the mesh will move farther apart or closer together.

The goal of mesh-modification is to modify the mesh so that all the nodes on the mesh are

equidistantt As a result, the simulation will become more accurate and also more efficient

In the ray-string algorithm, the connection between the nodes on the mesh is maintained

by a list of segments. Therefore, in order to retain a constant node density in the mesh, seg

ments have to be cut up if they become too long. Or, if the segments become too short, these

segments have to be deleted.

The mesh should ideally be modified after every surface advancement To do this, a

range of acceptable segment lengths should first be defined. As in the string algorithm, one

f One alternative method formodifying the mesh is to tie the densityof nodes to the etch-rate, i.e„to use
morenodes where the mesh is moving fast, and to use fewer nodes in slow-moving regions. This method,
while useful in some applications, does not appear suited for the simulation of photoresist development,
where the etch-rate changes rapidly with distance.
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can define a nominal or ideal segment length Syjeai and maximum {Smi^) and minimum OSmm)

acceptable lengths. Then, each segment in the list is examined in turn. If the segment length

S is greater than the maximum allowable length, Le., S > $„,», the segment must be cut up.

Or if the segment length is less than the minimum allowable value, that is, S < Sj^, the seg

ment is deleted or merged. After each cut or merge, the interconnections between segments

and nodes in the mesh must be updated.

7.5.1.1. Segment Cutting

During the etch simulation, nodes on a mesh could move far enough apart that certain

areas on the mesh will become sparsely populated. The mesh is then no longer accurate in the

sparse region. As an example, Figure 7.5 depicts the growth of a 2D etch front during a uni

form circular etch. Without mesh modification, the nodes on the circular front will move

farther apart, and as a result, the mesh becomes faceted. From Figure 7.5a, it is quite clear that

the simulation results will be inaccurate in the sparse areas of the mesh. In contrast, if new

nodes are added whenever the segments grow too large, then a more ideal circular profile will

be formed, as shown in Figure 7Sb.

To add new nodes to the mesh, the segment lengths should be checked after every

advancement of the surface. If a segment is too long, then it should be cut in half. This can

most easily be done using linear interpolation, where, as shown in Hgure 7.6a, the new node

is placed on the original segment, equidistant from the two original nodes. The direction vec

tor of the new node is similarly an averageof the direction vectors of the two original nodes.

An alternate method, described briefly in Section 6.2.3, is to add nodes using a polynomial fit

This method, which is used in SAMPLE, does result in smoother and more accurate results.

However, it is important to realize polynomial fitting cannot be easily applied to 3D
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Figure 7J:

(a) (b)

2D etch profiles without and with mesh modification. On the left
(a), the rays propagate radially outward, but the segments are not
resized. This results in facets. On the right (b), the segments are
cut if they become too long, thus producing circular etch profiles.

A

LINEAR INTERPOLATION

D

ARC, INTERPOLATION

Figure 7.6:

(a) (b)
Segment cutting with different interpolation schemes. In the left fig
ure (a), a new node and a new vector is added using linear interpo
lation. On the right, (b), the new node is added on the arc of the cir
cle defined by the two direction vectors of the originalsegment
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interpolation. In fact fitting a surface to 3D data-points (which usually involves inverting

matrices) can be quite costly in terms ofcomputation time.

A much easier and faster interpolation method is to add the new node on the arc of the

circle defined by the two original direction vectors of the original nodes. Arc interpolation,

shown in Hgure 7.6b, actually produces better results than the linear interpolation in this par

ticular test case.

Hgure 7.7 shows the ray-string simulated results for a uniform circular etch. The simu

lation begins with a single short segment placed at the upper left comer of a square. The two

nodes on the segment have ray vectors initially oriented vertically and horizontally respec

tively. The simulation proceeds for 10 time-steps of 0.1 seconds each. After every time-step,

the segment length of each segment is checked against the ideal segment length. If the seg

ment length S is greaterthan the maximum allowable length £„,„, then the segment is cut up.

(For this particular simulation, 5,^ = 1.25^/.) From Hgure 7.7, it is easily seen the arc

interpolation produces more accurate results than linear interpolation; the profile after 10

time-steps lies exactly on the dashed semi-circle. This is true for both large and small ideal

segment lengths. It is also seen that when linear interpolation is used to add nodes to the mesh,

the use of smaller ideal segment lengths results in smoother and more accurate profiles. But

note that the linearly-interpolated small-segment simulation is still not as accurate as either of

the simulations with arc interpolation.

7.5.1.2. Segment Merging

When nodes on a mesh move too closely together, portions of the mesh will become too

densely packed. This is inefficient in a computational sense, because nodes that are placed
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IDEAL SEGMENT LENGTH = 0.10 urn

Linear Interpolation Arc Interpolation

X-AXIS (um) X-AXIS (um)

IDEAL SEGMENT LENGTH = 0.02 um

Linear Interpolation Arc Interpolation

X-AXIS (um) X-AXIS (um)

Figure 7.7: 2D simulation of uniform circular etching with the ray-suing algo
rithm, using linear and arc interpolation with two different ideal seg
ment lengths. The etch begins from a single segment placed at coordi
nates (0,0), and proceeds for 1 second of etching time. The time-step
is 0.1 seconds. The dashed line shows the expected semi-circular
result
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close together essentially bear the same coordinate and vectorinformation. For example, in

Figure 7.8, nodes on a circular front have converged. Consequently, the curved portion of the

mesh is dense compared to the straight portion of die mesh. There is nothing really wrong

about this; in fact, the dense circularmesh is quite accurate in its description of the etch sur

face. Put to be efficient, there should be fewer nodes on the curved portion of the mesh.

Fewer nodes means fewer computations, which translates into faster computation speed. If,

however, no nodes are deleted in dense regions while nodes are added continually in sparse

regions of the mesh,thenthe number ofnodeson the meshwill only grow larger, thus increas

ing the computation time. Also, if the number of nodes in the mesh is allowed to grow

unchecked, mesh operations such as delooping andclipping will alsobecome more computa

tionally expensive. Anotherconsideration is thata dense mesh is ideal for loop formation; if a

dense mesh suddenly encounters ahigh etch-rate region, loops could be formed!

Therefore, to speedup the computation, nodes should be deleted in denseregions on the

mesh. An example of node deletion is shown in the lowerportion of Figure 7.8. The six seg

ments on the curved surface aremerged to produce two longer segments. There is some loss

of accuracy, of course, but the tradeoff is that the computation time is decreased and the

efficiency of the simulation is increased.

Some care must be taken in the selection of the minimum allowable segment length

Sjnin. In the segment merging procedure, segments shorter than thisminimum (5 <S^ will

be deleted or merged. But if the segments merged are too long, then too much detail will be

lost and the profiles will lose accuracy. An example of this is shown in Hgure 7.9 for a 2D

profile. In this case, the short segment to be deleted is located on a sharp comer. If thisnot-

so-short segment is deemed too short, its deletion will result in a rounded profile quite dis

similar to the original profile. The merged profile is also sensitive to the choice of node to be
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Figure 7.8: Nodes on a mesh could move closer together, forming a densely
packed mesh. This is accurate, yet computationally inefficient
Less accurate but more efficient results can be obtained by merging
short segments.
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Segment to be deleted

O Node to be deleted

Figure 7.9: 2D Segment merging. Short segments that are deleted could result
in inaccurate profiles. The way in which nodes are merged will also
affect the final profile.
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merged. If a different node on the segment is merged, as in Figure 7.9b, the profile becomes

markedly different from that in Figure 7.9a. In the next chapter, it shall be shown that mis

non-commutative node-merging behavior will produce asymmetrical 3D profiles.

7.5.2. Mesh Clipping and Other Boundary Operations

Surface-advancement algorithms also have to be able to handle the problems encoun

tered at the simulation boundaries. The ray-stringalgorithm is no exception to this.

7.5.2.1. Mesh Clipping

The typical etching simulation aspires to determine the time-evolving surface inside a

rectangular box, where the etch-rate distribution has been defined. The etch-rate is often not

known outside the box, so the surface profile outside the boundaries of the box is of little

interest However, as the surface mesh moves and evolves in time, portions of the mesh could

move outside the simulation boundaries. These portions of the mesh should be clipped

because they do not contribute to the solution inside the surface.

Hgure 7.10 is a good example of a mesh that has grown outside the simulation boun

daries. The simulation begins with a 90° grooved surface, and the profile etches outward at a

uniform rate. After a few time-steps, most of the material inside the original squarehas been

etched away, and large portions of the 2D mesh are outside the simulation boundary. These

portions of the mesh are not of interest; only those points of the mesh inside the box areofuse

in the simulation. Consequently, the continual tracking of the points outside the simulation

boundaries is a waste of both computer time and memory. Instead, these points should be

deleted.
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6 Time-Steps, DT=0.1 sec

er (um)

Figure 7.10: A surface mesh could move outside its simulation boundaries. In
this case, the simulation begins from a grooved surface, and pro
ceeds outward at a uniform rate.

SIMULATION

BOUNDARY

Outside | Inside

BEFORE CUPPING

SIMULATION

I.. BOUNDARY
\*"\ Outside i Inside

Remove these

nodes & segments

AFTER CUPPING

Figure 7.11: 2D Qipping : First find the intersection of the segments with the
boundary. Cut up the segments that intersect the boundary. Then
remove all the nodes and segments outside the boundary.
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In two dimensions, clipping involves searching for those segments that cross the simula

tion boundary. The segments that do intersect the boundary are cut up at the boundary inter

section. Then, all the nodes and segments outside the boundary are deleted. This process is

illustrated in Hgure 7.11. Figure 7.12 shows the results of clipping applied to the uniform

grooved etch discussed above. In the simulation, the mesh was clipped after every surface

advancement In practice, though, it is not desirable to clip after every time-step, since clip

ping is an operation expensive in terms of computation time. A more efficient approach is to

clip every 10 time-steps or so.

An alternative to clipping is to stop the nodes from moving outside the boundary. One

way to do this to set the etch-rate to zerooutside the simulation boundaries.tThe etch profiles

simulated underthis scheme are shownin Figure 7.13. This method is easier than clipping,

primarily because it is no longer necessary to search for boundary intersections. However,

this method does have drawbacks. One of these is that excess nodes and segments will accu

mulate along the simulation borders. These nodes and segments do not contribute to the

simulation, and as a result, computation time and memory is wasted. Another drawback is

that the profiles can have lagging tails at the boundaries. As shown in the illustration on the

left of Figure 7.13, a lagging tail will be formed if one node of a segment is pinned to the

boundarywhile the other node is left freeto move inside the boundary.

t However, asdiscussed in relation to Hgure 6.17 (Section 6333), thedifferential ray equation does not
hold at abrupt rate-boundaries, where the etch-rate is discontinuous. Therefore, the rayequation cannot be
usedin ascheme where theetch-rate suddenly drops to zero. To getaround this,theetch-rate canbe gradual
ly ramped downto zero in anarrow region outside theboundaries. In thesimulation of Hgure 7.13, theetch-
rateis linearly rampeddown to zero in an intermediate regionof thickness0.01 um.
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With Mesh Clipping

Distance on wafer (um)

Figure 7.12: Uniform etch from a grooved surface, with clipping after every sur
face advancement

SIMULATION

BOUNDARY

Outside I Inside

R=0

R=0 Outside Boundary

0 ———"- ^™~ww- J

Distance on wafer (um)

Figure 7.13: Zero-etch-rate outside the boundaries results in the above pro
files. This method, however, could produce lagging profiles, as illus
trated on the left Note that the second profile in the simulation has
developed a lagging tail at the x-boundaries.
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7.5.2.2. Boundary Flattening

The inverse of mesh expansion is mesh contraction. During the course of the simula

tion, the mesh could also contract; some nodes on the boundary could move inside the bord

ers. Mesh contraction occurs quite commonly during surface advancement If a node on the

boundary has a direction vector that points into the simulation volume, then that node could

move away from the boundary. This situation is illustrated in Figure 7.14a. If the node is

allowed to move away from the boundary, part of the true etched surface will no longer be

blanketed by a mesh. As a result, die simulation is no longer correct

An example of a simulation where mesh contraction occurs is shown in Figure 7.14b.

The simulation is run with a triangularetch-rate

R(xyj) = 2\x\ um/sec [7.81

for 10 time-steps of 0.1 second duration each. As can be seen, the etch-fronts curve inwards

towards the x = 0 plane. This behavior was also observed in die ray-tracing simulation shown

in Figure6.13a (Section 6.3.3.2), where the trajectories of the individual rays were calculated.

It is not difficult to see that the rays in Figure 6.13a and the etch-fronts in Figure 7.14b are

orthogonal to each other. And as in Figure 6.13a, there are alsoray-scarce regions in the ray-

suing simulation.

In order to avoid the incomplete-mesh situation just described above, it is necessary to

pin the boundary nodes to the boundary. So, in Figure 7.15a, the direction vector of the node

on the boundary should be adjusted so that the vector is parallel to the boundary. To do this,

the vector must be "flattened"; the component of the vector normal to the boundary surfaceis

set to zero, and the vector is renormalized. As shown in Figure7.15a, the result of the vector

"flattening" procedure is that the node on the boundary will slide along the boundary, and the
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Figure 7.14a: 2D Boundary Movement The nodes on the boundary could move
inside the boundary, leaving part of the surface uncovered by the
mesh.

NO BOUNDARY CONSTRAINTS

-.5 0

Distance on wafer (um)
.5

R=2lxl

Figure 7.14b: 2D ray-string etching using the triangular etch-rate function
R=2/x/. The simulation is run without any boundary constraints, so
that the border nodes can and do leave the border. The simulations
were run for 10 time-steps of 0.1 seconds each.
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Figure 7.15a: Nodes on the boundary should only be allowed to move on the
boundary. The node's direction vector is ,,flattened,, so that the
node can only move on the boundary.

BOUNDARY VECTOR FLATTENING

R=2lxl

Distance on wafer (um)

Figure 7.15b: 2D ray-string etching using the triangular etch-rate function
R=2/x/. In the simulation, nodes on the boundary are prohibited
from moving into the simulation volume. The simulations were run
for 10 time-steps of 0.1 seconds each.
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full etch surface will remain covered by the mesh. Figure 7.15b shows the profiles of the tri

angular etch-rate simulation with vector flattening. The profiles formed now cover the entire

etch surface; the mesh has been prevented from contracting inwards. Note that these profiles

also look very similar to those shown in Hgure 4.4b, where the modified cell algorithm was

used to determine the etched surface.

It must be emphasized that the boundary-node vectors should be flattened only if the

node on the boundary is moving into the simulation volume. If the node is moving out of the

volume, it should be allowed to move freely. Otherwise, inaccurate lagging tails such as those

seen in Hgure 7.13 will occur in the vicinity ofthe boundary.

7.5.3. Mesh Delooping

7.5.3.1. Loop Formation

Loop formation is perhapsthe greatestweakness of die surface-advancement algorithm.

Surface advancement algorithms move the mesh representing die etch surface without forek

nowledge of the etch-state in the local volume of the material. As a result, the mesh could

move into an already-etchedregion and so form loops.

In general, loops will be formed at die intersection of two converging etch-fronts.

Examples of loop formation are shown in Hgure 7.16. In the example in Hgure 7.16a, the

surface is being etched both from die left and from the right; physically, the etchant is tunnel

ing though the tall mesa-like structure to form a bridge. The loop is formed when the etch-

fronts converge. The removal of the loop leaves a blob of material floating freely - this is

actually the 2D cross-section of a bridge.
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Figure7.16:Loopscouldbeformedatlaggingcornersorattheintersectionof
convergingetch-fronts.Themeshthenhastobedelooped,thatis,
theloopsmustberemoved.
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Loopscould also be formed at sharp converging comers, as seenin Hgure 7.16b. If die

mesh moves slower at the comer than at the sides of the comer, a loop could be formed when

the etch-fronts from the sides ofdie comer converge. The loop then has to be removed.

7.5.3.2. Loop Avoidance

The formation of loops in the surfacemesh poses difficult problems. The loops do not

represent the actual etched surface, and are present only because the algorithm has failed to

keep track of die true etched surface. Unlike die volume etching methods discussed in

Chapters 3 and 4, die suing, die ray, and the ray-suing etching methodsdo not retain informa

tion on die etch-state throughout the volume of the material. As a consequence, the etch-

fronts are free to move into already-etched regions.

One way of dealing with this problem is to keep track of the etch-state in the entire

volume of thematerial. Scheckler2 has proposed ahybrid cell/surface-advancement algorithm

in which a cellular array is used to store die etch-state of the material at uniform grid-points

throughout the volume of die material. In some ways, this is similar to the cell-removal

method, but the decision of cell-removal is made based on the surface motion and thus many

cells may be removed at a single time-step. The hybrid cell/surface-advancement algorithm

has been demonstrated in preliminary 3D simulations of small-volume photoresist develop

ment However, the algorithm does run into memory allocation problems when the volume of

the material to be simulated is large, since large simulation volumes also require large arrays.

The algorithm also pays a price in computation time and complexity for die continual updat

ing of the cellular array.
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Another method for avoiding loops is remesh the surface periodically with splines.

Barouch3 uses atensor-product B-spline interpolation function tolocally smooth the evolving

surface at every time-step. This method has been demonstrated in photoresist simulations

with weak standingwaves. Unfortunately, the use of splines to smooth the surfaceis compu

tationally expensive - not much specific data is avaflable, but the work reported by Barouch

was done on a supercomputer. Furthermore, surface smoothing or remeshing can introduce

errors, since the surfaceis unduly affectedby a few incorrect points. Another consideration is

that surface-smoothing with splines will only work locally; it cannot handle cases in which

distant etch-fronts intersect as in Figure 7.16a.

7.5.3.3. 2D Delooplng

As indicated in the previous section, avoiding loopsis both difficult andcomputationally

expensive. So, if it is not possible to detect and avoid the loops before they do occur, the only

recourse is to remove theloops when theydo form. But it is not always easyto predict when,

where or even if loops will be formed. So, the next best thing is to inspect the surface mesh

periodically and remove any loops that areencountered.

Hgure 7.17 shows the procedure forremoving loops in 2D. This procedure canbe bro

ken up into four steps.

[I] Find the intersecting segmentsby examiningthe list of segments.

[II] Cut up die segments that do intersect

[Till Determine the segments andnodes in the loop,

[mi Remove the segments and nodesinsidedie loop.
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Figure 7.17 : Procedure for removing loops
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Of these four steps, the most difficult is that of determining which of the segments and

nodes in the surface mesh are inside or outside the loop. One mediod of determining which

points in die mesh are inside or outside the loop is outlined in Hgure 7.18. This method relies

on the direction of the motion of the intersecting segments to determine which ofthe nodes on

the segments are inside or outside the loop. In Hgure 7.18a, it is easily seen that node NB2 is

behind segment SA, since the two nodes on SA aremoving away from NB2. Similarly, node

NA2 lags segment SB. Therefore, the nodes NA2 and NB2 are both in die loop, while die

other two nodes, NA j and NB xare outside the loop. The other nodes in the loop can now be

identified by traversing the loop, that is, by moving along die segments adjoining the loop

nodes NA2 and NB2. And once these loop segments and nodes have been identified, they can

be removed.

An example of the delooping procedure is shown in Hgure 7.19, in which the profiles

have been simulated using die ray-stringalgorithm with the the triangularetch-rate function

rt(x,y,z) = 2l;cl+0.2um/sec, 1*1 <0.5 [7.91

As can be seen, the profile develops a loop after 8 time-steps. The loop is removed using the

delooping procedure described earlier. However, when the mesh is advanced further, it inter

sects again at a later time. The intersection of the two fronts again has to be removed. After

the final deloop, the profile in die lower left of Hgure 7.19 is obtained.

It must be emphasized that the delooping procedure as described above works best when

there is only a single loop in the profile. The procedure will not work correctly when the

profile is plaguedby multiple intersectingloops, such as in Figures6.7b-c. Hgure 7.20a shows

anotherexample of a Gordianknot Geariy, it is not easy to determine which parts of the sur

face are inside or outside the loop. Another confusing situation arises when one or both of a

pair of intersecting segments is a pinwheeling segment A pinwheeling segment, as shown in
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Figure7.18:Procedureforfindingthesegmentsintheloop.Rrst,findthelag
gingnodesintheoriginalpairofintersectingsegments.Then
traversetheloopandidentifyallthesegmentsandnodesinthe
loop.
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Figure 7.19: 2D ray-string etching using the triangular etch-rate function
R=2/x/+02. The simulations were run for a total of 10 time-steps
of 0.1 seconds each. The mesh was delooped at 0.8 seconds and
1.0 seconds.
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Figure7.20:DeloopComplications,(a)MultipleInterlockingLoopsarequitedif
ficulttounravel,(b)PinwheelingSegmentscouldcauseerrorsin
identifyingnodesinsidetheloop.
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Hgure 7.20b, is a segment whose nodes aretraveling in opposite directions. If an intersecting

segment is pinwheeling, it is not easy to determine which part of the surface is etched or

unetched. An incorrect determination could lead to the deletion of "cornea" nodes outside the

loop.

7.5.4. Loop Formation In Photoresist Development

The loop behavior in die ray-suing algorithm may be understood better by testing the

algorithm with a high-frequency sinusoidal etch-rate function. This function resembles the

etch-rate distribution found in photoresist development

R(x y j) =e^l.OS - cos(8rcz)) [7.101

Hgure 7.21a shows the etch profile after 300 time-steps. The profile was simulated using the

2D ray-string algorithm with the etch-rate function above. The simulation was run without

delooping and with linear (instead of arc) interpolation. It is clearly seen that loops have

formed at the comers of die profile where the etch-rate is relatively slow. But also note that

the loops are quite narrow and restricted to certain regions in space. In fact, if the ray-

trajectories from Hgure 6.15b aresuperimposed on the ray-suing profileof7.21a, ashas been

done in Hgure 7.21b, one can see that most of the multiply-curved rays have ended up on the

loops of die ray-string profile! So, in effect, die loops have formed because the rays are

trapped and guided in the regions of relatively low etch-rate within the material, very much

like optical rays are guided in waveguides.

Similar loop behavior is observed when the ray-suing simulation is run with real pho

toresist parameters. Figure 7.22 shows the resist profiles at development times of 3 - 30

seconds. The etch-rate distribution used was that of Figure 2.3, for a 1.25 um isolated space

on 1.0 um of Kodak 820 resist Again, loops are formed at the nodes of the standing waves.
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Figure 7.21: 2D ray-string etching using a sinusoidal etch-rate function. Simula
tion proceeds for a total of 3 seconds, with 300 time-steps of 0.01
seconds each. The ray trajectories from Figure 6.15b are superim
posed on the ray-string profile of (a) in the lower figure (b).
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100 Segments, DT=0.1, No Deloop

Distance on wafer (um)

Figure 7.22a: Resist profile at development times of 3-30 seconds. The etch-
rate distribution of Figure 2.3 is used for the ray-suing simulation.
The mesh has not been delooped.

100 Segments, DT=0.1, With Deloop

Distance on wafer (um)

Figure 7.22b: Resist profile at development times of 3-30 seconds. The etch-
rate distribution of Figure 2.3 is used for the ray-string simulation.
The mesh is delooped every 3 seconds.
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And again, the loops arerestricted to the low-etch-rate regions.

At this point, it is instructive to compare the behavior ofthe loops in die suing andin the

ray-string. Recallthatunderthe samesimulation conditions described above, die suing simu

lation produces lots of interlocking loops (Figure 6.7). In contrast, as previouslynoted, loops

formed by the ray-suing algorithm are restricted to the low etch-rate regions in the pho

toresist This key difference is, as discussed in the previous chapter, due to die way in which

the advancement vectors are calculated in the two algorithms.

In orderto produce more pleasing profiles, the surface mesh can delooped. In the simu

lation shown in Figure 722b, die profiles have been deloopedevery 3 seconds (30 time-steps).

The profiles become much easier to analyze. But also note that in Figure 722b, there are a

number of "hanging" segments unconnected to the main body of the mesh. This is a result of

errorsin the delooping code. It all goes to show that even in 2D, delooping is not easy.

It should also be noted that in theory, it should be possible to use only a single deloop

operation at die final step to remove all die loops that have formed in the surface. This is

because the ray method of vector calculation restricts the loops to certain regions in space.

Unfortunately, final-stepdelooping is not easy to do in practice. Forexample, if die simulation

described in Hgure 7.22 is allowed to run for die full 300 time-steps before delooping, some

of the intersecting segments will be pinwheeling segments. These segments arenot accounted

for correctly as yet, and as a result, die deloop will fail and die program will crash.
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7.6. TUNING SIMULATION PARAMETERS FOR ACCURACY

The discussion thus far has shown that die ray-suing etch simulator, like any other

numerical program, has a number of internal simulation parameters that affect both die accu

racy of die results and die efficiency/speed of the simulations. It is quite important to know

which parameters areof die most significance. It is also necessary to understand die tradeoffs

in efficiency and accuracy obtained from tuning these simulation parameters.

The effect of a number of simulation parameters on the developed resist profile is shown

in Figures 7.23 and 7.24. In all cases, the simulations were run using the 2D ray-string algo

rithm with the etch-rate distribution of Figure 2.3. Each simulation was run for a total of 30

seconds of development time. The effect of die parameters on the simulation is tabulated in

Table 7.2.

The parameters investigated and their effects are listed below in no particular order.

Interpolation Scheme

There are two interpolation schemes for adding nodes to sparse regions of the mesh. As

discussed in Section 7.5.1.1, die nodes may be added on a straight or linear line joining

two distant nodes, or they may be added on the arc of a circle defined by the direction

vectors of the two distant nodes. The profiles produced by arc interpolation (Fig

7.23c,d) are definitely smoother than those produced using linear interpolation (Fig

7.23a,b). The computation time does not appearto change significantiy when either of

the two methods are used.

Time-Step Size

The size of the time-step is quite important in determining die accuracy of die simula

tions. As might be expected, the results do become more accurate when a smaller time-
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Figure 7.23: The effect of the interpolation scheme, time-step size, and recur
sive length on the simulated resist profile after 30 seconds of devel
opment The segment length and allowable range are kept con
stant The etch-rate distribution of Figure 2.3 is used for the ray-
string simulation.
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Figure 124: The effect of the ideal, maximum and rmnimum segment lengths on

die simulated resist profile after 30 seconds of development All
the simulations use arc interpolation with time-step of 0.1 seconds
and recursive length of 0.1 um. The etch-rate distribution of Figure
2.3 is used for the ray-string simulation.
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Effect of Simulation Parameters on 2D Ray-String Simulation

Constant Segment Length (Figure 7.23)

Figure Segments Interpolation

Scheme

Time-Step

Size

Recursive

Length

Max/Min

Segm Size1

Surface

Smoothness

CPU

Time2

7.23a 50 Linear 0.1 0.1 1.2/0.1 Moderate 80 sec

7.23b 50 Linear 0.5 0.1 1.2/0.1 Rough 54 sec

7.23c 50 Arc 0.1 0.1 1.2/0.1 Smooth 80 sec

7.23d 50 Arc 0.5 0.1 1.2/0.1 Smooth 52 sec

7.23e 50 Arc 0.1 10 1.2/0.1 Smooth 67 sec

7.23f 50 Arc 0.5 10 1.2/0.1 N/A3 10 sec

Variations In Segment Length (Figure 7.24)

Figure Segments Interpolation

Scheme

Time-Step

Size

Recursive

Length

Max/Min

Segm Size1

Surface

Smoothness

CPU

Time2

7.24a 30 Arc 0.1 0.1 1.2/0.1 Moderate 53 sec

7.24b4 50 Arc 0.1 0.1 1.2/0.1 Smooth 80 sec

7.24c 100 Arc 0.1 0.1 1.2/0.1 Very Smooth 157 sec

7.24d 50 Arc 0.1 0.1 10/0.1 Rough 53 sec

7.24e 50 Arc 0.1 0.1 1.2/03 Moderate 80 sec

Table 12 : The effect of selected simulation parameters.

1. These numbers are ratios of die ideal segment length 5U. Two numbers are listed. The first is the rado
of die maximum size to the ideal size, S^Syj and the second is die ratio of the minimum allowable size
to die ideal size S^Sm.

2. Computation time was measured on a SUN 4/280, for simulation of 30-second resist development with
the etch-rate distribution of Figure23. The data printedis the average of 3 data-points.

3. The profile in this simulation was incorrect, due to abruptreflectionof die etch-rays.

4. Figure 7.23c and 7.24b are identical
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step is used. In Figures 7.23a-b, there is a very noticeable change when the time-step is'

increased from 0.1 secondsto 0.5 seconds - the profilein the latter simulation is rougher

and sharp-edged. However, the use of arc interpolation appears to offset this. As can be

seen, the profiles ofFigures723c and723d appearsimilar in shape and smoothness.

Recursive Length

Recursive vector checking, discussed in Section 7.4.2, is very important for ensuring

that the rays do not bounce abruptiy when large time-steps are taken. This procedure

uses recursive time-steps to calculate the trajectory of die rays with greater accuracy.

The maximum change in the angleof the direction vectors of the rays is proportional to

the recursive length. A recursive length of 0.1 corresponds to a maximum changeof 4°,

while a recursive length of 2 ensuresthat no recursive vector checking is used. Figures

7.23e and 7.23f demonstrate the effectiveness of recursive vector checking. If the time-

step of the simulation is small to begin with (Figure 7.23e) recursive vector checking

appears to have little effect on the accuracy of the simulation. But there is a slight

increase in the computation time when recursive vector checking is used. However,

when the time-step is large, the lack of recursive vector checking causes the rays to

bounceand reflect off regions of highetch-rate slope.! As a result, the simulated profile,

shown in Figure 7.23f, is incorrect With recursive vector checking (Figures 7.23b,d),

the profiles are relatively accurate even though the time-step is large. Therefore, it

appears that recursivevector checking is well worth the price paid in increased computa

tion time.

Ideal Segment Length

f Recall from the discussion in Section 7.4.1 that the threshold time-step size forno abrupt rayreflection
is 0.18 seconds. These simulations showthat without recursive vector checking, the rays are accurate when
the time-step is 0.1 seconds, but bounce fora time-stepof0.5 seconds.
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The ideal segment length, or the number of segments on the initial mesh, does'play an

important role in the accuracy of the simulation. As might be expected, the accuracy

increases as more segments (smaller segment lengths) are used initially in the simula

tion. This is easily seen in Figures7.24a-c. But note in Table 12 that that the computa

tion time increases linearly with the number of segments used.

Allowable Segment Length Range

The range in the allowable segment lengths also affect the accuracy of the simulation.

This was previously discussed in Sections 7.5.1.1-2. To recap, if the maximum allow

able segment length is too large, the simulation will be inaccurate, since there will be

relatively sparse regions on the surface. The inaccuracy hurts particularly in photoresist

development simulations, where the surface changes rapidly with distance. The profile

in Rgure 724d, where £„,»=2.0Sjdea/ does look somewhat uneven. The minimum seg

ment length also affects the accuracy of the profiles. If the minimum allowable segment

is too long, then the segments will poorly approximate the surface. But as seen in Hgure

7.24e, increasing the minimum allowable segment length from 0.15^/ to 0.3£&fei/ does

not appear to affect the simulated profile.

7.7. SUMMARY : 2D IMPLEMENTATION ISSUES

In this chapter, the issues affecting the accuracy and efficiency of the ray-string simula

tion have been examined in some detail. This was done with the aid of numerous 2D simula

tions using the ray-string algorithm.

Two imponant modifications to the ray-string algorithm have been developed based on

the implicit constraints of the ray equation. The first is a rule-of-thumb procedure for select-
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ing the threshold time-step for which abrupt ray reflection will not occur. In simulations

involving periodic etch-rate distributions, this threshold time-step is one in which the accuracy

and efficiency of die ray calculations are most optimized. The second procedure, recursive

vector checking, is one that has a tremendous impact on die accuracy of the simulations.

Recursive vector checkmg effectively increasesthe accuracyoflarge-time-step simulations by

taking small recursive time-steps in which the change in the ray trajectories are limited to a

few degrees. The price paid for the improvement in accuracy is that of computation time; die

simulations reveal that the increase in computation time due to the recursive procedure is

directly proportional to the size of the time step.

The ray-string algorithm also requires that a number ofmesh operationsbe performed on

the mesh during the course of the simulation. These operations are mesh modification, mesh

boundary clipping, boundary vector flattening, and delooping. The comprehensive testing of

the 2D ray-string algorithm has shown that the accuracy of the simulations is increased with

the use of (a) small time-steps, (b) small segments lengths, (c) small maximum allowable seg

ment length, (d) arc interpolation, and (e) recursive vector checking. In all cases except (d)

arc interpolation, the increase in accuracy is accompanied by an increase in computational

time.

It is said that knowledge is power. The rigorous testing of the ray-string algorithm has

provided a great deal of information about the behavior of die ray-string algorithm and on the

issues, procedures and operations that affect the accuracy and speed ofthe computations. This

knowledge is of great value in the implementation of die ray-string algorithm in three dimen

sions.
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CHAPTER 8

THE RAY-STRING ALGORITHM:

3D IMPLEMENTATION ISSUES

8.1. INTRODUCTION

Resist development algorithms using the cell, string, and ray approaches have been

implemented and utilized to examine basic tradeoffs in accuracy, delooping requirements, and

efficiency. A combined ray-string approach is by far the most advantageous, as it is fast,

efficient and has modest memory requirements. The algorithm is also accurate and insensitive

to errors in the local etch-surface. Consequendy, the decision was made to implement the

ray-string algorithm in three dimensions.

But the study of the algorithm in the previous chapter has revealed mat the simulated

mesh requires periodic mesh modification, boundary clipping and flattening, and an occa

sional deloop in order to preserve the balance between accuracy and efficiency. The informa

tion gleaned from the testing of the 2D algorithm proves to be of great aid in implementing

the mesh operations in 3D. As will be shown in this chapter, the mesh implementation issues

explored in 2D do carry over to 3D as well. But the 3D implementation is considerably more

difficult, as there are a number of 3D "traps" which must be avoided. In addition, a careful

choice of the data structure must be made so as to enable the accurate and robust implementa

tion of these essential mesh operations.
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8.2. IMPLEMENTATION OF THE RAY-STRING ALGORITHM IN 3D

8.2.1. Data-Structure Requirements

The first step in the implementation of the ray-string algorithm in 3D is to select a data-

structure that can be used to efficiently represent a time-evolving surface. In the ray-string

algorithm, die most important objects on this surface are die nodes or points, since it is these

nodes that make up the etching surface. The data-structure must reflect this fact Therefore,

the data-structure must, at the very least, consist of a list of nodes. Each node in turn must

contain the coordinates and direction vector ofthe node.

But other than the basic node information, what other data must the data- structure hold?

The answer to this question lies in the various operations that have to be carried out on the

surfacemesh. These operationsarelisted below, in orderof importance.

Mesh Modification

In die interests of efficiency and accuracy, the density of nodes on the mesh has to be

controlled. The mesh has to be modified so that additional nodes are added to node-

scarce regions, while nodes that aretoo close together aredeleted.

Mesh Clipping

If the mesh expandsoutside the simulation boundaries, then it shouldbe clipped. This is

really necessary to control the size of the mesh. Without clipping, a mesh could grow

outside the simulation boundaries. Nodes outside the simulation boundaries do not con

tribute to the simulation in the area of interest, so it would be inefficient to continue

tracking these nodes.

Mesh Delooping
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In both the ray and string algorithms, it is quite possible for the surface to form loops.

The same is true of the ray-string algorithm. The loops formed are non-physical in

nature, and should be deleted for correcmess.

Mesh Plotting

The graphical interface is also of some importance, for it is an invaluable tool for inter

preting the simulated data. The data-structure must be set up so that data can easily be

plotted.

Given that all die above mesh operations are necessary to retain the accuracy and correcmess

of the mesh, whatdata structure canbest be used to implementthese operations accurately and

efficiendy?

8.2.2. 3D Data-Structures

After some consideration, it was decided that the essential mesh operations previously

described couldbest be implemented usingahierarchical structure ofnodes, segments and tri

angles. Each object in this data-structure has its uses. The nodes contain the surface coordi

nate andveaor information. The segments are used formesh modification andclipping. And

the triangles areused in the 3D mesh deloopingand plottingoperations.

The 3D ray-string algorithm has been implemented in the C programming language,

using a linked list data structure to represent the nodes, segments, and triangles thatmake up

the etching boundary. This data-structure is shown in Figure 8.1. As shown, each triangle

contains 3 segments, andeach segmentin tum contains 2 nodes. Eachnode-segment-triangle

interconnection is two-way. A triangle has pointers to the three segments attached to it, and

each segment has pointers to its neighboring triangles. The same applies to the nodes; each
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Figure 8.1 :Data structure used for 3D ray-string algorithm. The data structure consists of
linked lists of nodes, segments, and triangles. Each triangle is connected to 3 seg
ments, while each segment is connected to 2 nodes. Each segment also has a link
to its neighboring triangles, while each node maintains a list of its neighboring
segments.
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node contains an array of pointers to its neighboring segments. This last interconnection is

necessary to retain mesh integrity during mesh modification, clipping and delooping.

8.3. THE ALGORITHM FOR SURFACE ADVANCEMENT

The procedure for advancing the surface mesh in 3D is identical to that described for 2D

in the previous chapter. To recap, the simulation begins by creating and initializing a surface

consisting of a number of interconnected nodes, each with a ray vector normal to the initial

surface. The algorithm then proceeds as follows:

[II Advance each node on the boundary mesh along its direction vector, and calculate

the new direction vector at the new node location using the discretized form of the

differential ray equation. Use recursive vector checking for more accurate calcula

tion of the node trajectory. In addition, since boundary nodes must not be allowed

to enter the simulation volume, the boundary vector nodes must be flattened if

necessary.

[II] Add nodes in regions where the mesh has expanded, and delete nodes in regions of

contraction.

[mi Clip the mesh if it extends outside die boundary.

[IV] Deloop the mesh if necessary. An algorithm for delooping the mesh will be

described and demonstrated in a later section.

[V] Proceed to [I] and repeat until the total etch-time has been reached.
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8.4. MESH OPERATIONS

Mesh operations are a necessary but distasteful ingredient of the ray-string algorithm.

These operations must be carried out to ensure that the mesh remains accurate and efficient

and manageable. But these operations are also not easy to implement in 3D, primarily

because of the complications involved in manipulating a three-tiered data-structure such as is

used in die ray-string approach.

8.4.1. Mesh Modification

Mesh modification is as important in 3D as in 2D. During the course of the simulation,

the nodes on the surface mesh will move farther apart or closer together. In order to retain a

balance between accuracy and efficiency, nodes have to be added to or deleted from the mesh.

As in 2D, mesh modification in 3D is segment-based. The connection between the

nodes on the mesh is maintained by a list of segments, so, in order to control the density of

nodes in the mesh, segments have to be cut up if they become too long or deleted when they

become too short This procedure is somewhat complicated in 3D, because after mesh-

modification, the interconnections between the triangles, segments and nodes in die mesh

must be updated.

8.4.1.1. Segment Cutting

Segment cutting is somewhat more difficult in 3D than in 2D. Hgure 8.2 depicts the

steps that are taken whenever an over-long segment is discovered. First, a new node bisecting

the segment has to be created. This node could be placed using linear interpolation, or as in
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Segment SI is too long.

Create a node Nl
bisecting SI

Create two

segments Sla, Sib

Delete SI
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Create new
segments S2, S3

Delete Tl, T2

Create new
triangles T3, T4, T5, T6

Reset mesh interconnections.

Figure 8.2: 3D Segment Cutting. If a segment is too long, it must be cut up into
smaller segments. This entails creating new nodes, segments and
triangles. The interconnections between the nodes, segments and
triangles must then be reset
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the 2D case, it could be placed on an arc defined by the direction vectors of the two nodes on

the segment The segment is then cut up and replaced by two new segments. New triangles

are also created during this process. And finally, interconnections between the nodes, seg

ments and triangles are updated to reflect the changes made in the mesh.

Figure 8.3 shows 3D profiles from simulations of a uniform spherical etch. The plots

show the mesh profile after 10 0.1-second time-steps; the solid dark lines superimposed on the

top-view plots are the expected circular result The top pair of plots use linear interpolation

during the segment cutting procedure,while the lower pairuse arc interpolation for node addi

tion. It is not difficult to see that the arc interpolation produces "fuller" and more accurate

results. In the top-view plots of Hgure 8.3, it is readily seen that die linearly interpolated

mesh falls short of the expected circular result In contrast, when arc interpolation is used to

modify the mesh, the resultant mesh is more accurateand quite satisfactorily spherical.

8.4.1.2. Segment Merging

The procedure for 3D node deletion, shown in Figure 8.4, is based upon merging short

segments. This means that if a segment is deemed too short, i.e., S < S^, then one of the

nodes on that segment is deleted.! Segments and triangles common to the deleted node and

the short segment are also deleted. At the same time, the neighbors of the deleted node are

reconnected to die undeleted node on die short segment The original short segment is then

deleted. The final step is to reset the interconnections between the nodes, segments and trian

gles on the mesh.

t The algorithmic decision on thenodetobe deleted ismade based on thenumber of segments attached to
the node - the deleted node is that with the most segmentsattached. This implicitly controls the number of
triangles attached to a singlenode. In addition, the node to be deletedmust notbe on the boundary.
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Figure 8.3: Simulation of uniform spherical etching with the ray-string algo
rithm, using linear interpolation and arc interpolation. The etch
begins from a single seed point at coordinates (0,0,0), and proceeds
for 1 secondof etchingtime. The time-step is 0.1 sec.
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SI is too short.

Select a node on SI

to be deleted.

Delete SI

Delete Tl, T2
adjoining SI

Delete S2, S3
adjoining Nl &
connected to 77,72

Delete Nl

Connect S4 to N2

Reset mesh
interconnections.

Figure 8.4 : 3D Segment Merging. A segment is merged by first selecting a
node on the segment to be deleted, then deleting the segments and
triangles common to the node and to the triangles adjoining the seg
ment The interconnections between the nodes, segments and tri
angles then must be reset.
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It is quite important to note that the segment-merging procedure outlined above merges

one node on a segment onto the other node of the segment This procedure, as shall be seen

shortly, couldchange symmetrical 3D profiles to asymmetrical 3D profiles. Also, the profiles

will look different if the order of the merged nodes is changed, i.e., instead of merging Nl

onto N2, merge N2 onto Nl. In otherwords, the segment cuttingprocedure is not commuta

tive. One could, of course, merge the two nodes to a node in between the two "bad" nodes.

But if the two "bad" nodes are merged onto an interpolated "average" node, interpolation

errors could creepinto the simulation. In contrast, if the nodesare mergedonto one singlesta

tionarynode, the simulationwill, at the very least, remain accurate at that particular node.

In 3D segment meshing, there are a number of areas where care has to be exercised.

Oneof these areas is the meshboundary. If a segment has onenodeinside the boundary and

the other node on the boundary, the node on the boundary should not be deleted. The reason

for this restriction is shownin Figure 85. The mesh is identical to that previously shownin

Rgure 8.4, except that instead of merging node Nl on the shortsegment SI, N2 on the boun

dary is deleted. Following the procedure of node-deletion and segment merging outlined in

Rgure 8.4, one finds that at the end of the procedure, there is a large triangular region within

the rectangular boundary that is not coveredby the triangular mesh! The mesh has contracted

in on itself. And as a result, the simulated etch-surface no longer represents the true etchsur

face correcdy.

The size of the minimum allowable segment length Smin is also anothersourceof error.

The 2D tests showed that if the segments merged were too long, the profiles would lose accu

racy. The same is true in 3D. An example is shownin Figure 8.6. The mesh initiallyconsists

of six triangles on a sharp stepped surface. There are two short segments on opposite vertical

sides of the step. Now, suppose that one segment is merged upwards (i.e. the lower node is
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Figure 8.5 : 3D Segment merging. If the node deleted is on the boundary of the
mesh, the mesh will contract in on itself. This is undesirable.
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Figure 8.6: 3D Segment merging on a folded surface. If the short segments
marked in thick dark lines are merged, the resultant surface will be
asymmetrical and inaccurate.
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merged onto the upper node) while the other short segment is merged downwards. Then, as

shown in Figure 8.6, after the segment merging procedure, the resultant mesh will become

asymmetrical! The profiles of Rgure 8.6a and 8.6f do not bear much resemblance to each

other; the segment merging procedure has in effect "averaged" the profile. However, if only

very small segments are merged, the averaging error will have a lesser impact on the mesh.

Therefore, it is best to merge or delete only very small segments.

A real example of the symmetrical-to-asymmetrical profile conversion with segment

deletion is shown in Rgure 8.7, where the 3D profile has been simulated using the 2D

sinusoidal etch-rate function

R(xyj) = e-***(l.05-cos(2nz)) [8.1]

The simulations were both run for 200 time-steps of 0.01 seconds. Rgure 8.7a shows the

profile with a minimum segment length of S^ = 0.7$^, while Rgure 8.7b uses a smaller

minimum allowable segment length of S^=0.25^. The feature of interest in these two

figures is the sharpcomer at the upper portionof the plot It is quite interesting to see that in

this region, the profile in Figure 8.7a is not constant with the y -coordinate even though the

etch-rate function [8.11 is not a function ofy. The profile appears roundedon the y = 0 plane,

and sharp-edged on the y =0.1 plane. This profile is a result of asymmetrical segment-

merging; a segment on the y =0 plane has been merged in a different direction than its

corresponding segment on the y =0.1 plane. A much better profile is produced when a

shorter S^ is used, as shown in Rgure 8.7b. However, note that in this case, there are

several obtuse triangles at the bottom portionof the mesh. These triangles are formed when

long segments arecut; since only very short segments aremerged, the triangles remain obtuse.

It is often said that a "good" mesh is one that consists primarily of equilateral triangles.

This may be tme for finite-element analyses, but not for mesh-based surface-advancement
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(a) S^ = 0.7 S5idl

(»>) S^ = 0.2 Sidl

Figure 8.7: 3D ray-string etching simulation using a sinusoidal etch-rate func
tion. The simulation proceeds for 200 time-steps of 0.01 second
duration each. The simulations in (a) and (b) differ in the size of
the shortest allowable segment length. Note that the profile in (a)
has a y-dependence even though the etch-rate function is indepen
dent of y.
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algorithms. Figures 8.6 and 8.7 indicate diat it is not realistic to expect accurate results with

equilateral triangles. To obtain equilateral triangles, or approximately equidistant nodes, the

segment length ratios Smh/SiiM/ and SnuoJS&ai must be close to 1. But as seen in Rgure

8.7a, if the segment length ratio Sj&JSideai is relatively large, the simulation produces an inac

curate profile. This reflects the fact that equilateral triangles are not suitable for approximat

ing rough irregular surfaces. Such surfaces are better described by triangles with unequal

sides. A segment length ratio S^S^uai =0.2 produces uneven triangles which don't look

very eye-pleasing, but at least the mesh does representthe surface accurately!

It is also worth mentioning that the short S^ simulation (Rgure 8.7b) used up approxi

mately 7.1 CPU seconds of on a SUN 4/280, whereas the long 5,^ simulation (Figure 8.7a)

cost 6.4 seconds. The use of smaller allowable segments increased the accuracy of the simula

tions, but at a cost of an increase of about 10% in the computation time. This is one aspea of

the efficiency vs. accuracy tradeoff.

Another problem specific to 3D surface remeshing is that of zero-volume surfaces, as

shown in Rgure 8.8. The situation is as follows. Suppose that during the evolution of the

mesh, a triangular pyramid composed of three smaller triangles has been formed, as shown in

Rgure 8.8a. Now, if a segment at the base of this pyramid is merged or deleted, the segment

merging procedurewill result in a folded surface,in which two triangles sharethe same nodes

and segments. In other words, the pyramid has been flattened into a double-triangle! The

flattened pyramid is depicted in Rgure 8.8c. This result is not only physically incorrect, but it

could also cause computational problems further on duringthe simulation. To avoid this par

ticular problem, it is necessary to check each segment before it is merged, to find out if the

segment to be merged is partof a 3-triangle pyramid. If the test is positive, the segment should

not be merged.
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(A) TOP VIEW SIDE VIEW
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Figure 8.8 :

Segment to be deleted

O Node to be deleted

3D Segment merging. If a segment to be deleted is part of a 3-tri-
angle pyramid, merging that segment will result in a flat fold where
2 triangles share the same segments and nodes.
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8.4.1.3. Mesh Modification Procedures

There are, at present, two procedures for mesh modification. Both procedures are

segment-based - long segments arecut up while short segments are merged. But the method

for selecting the segments to be cut up or merged differs in the two procedures.

The first mesh-modification procedure is basedon modifying all the segments in the seg

ment list In this procedure, each segment in the segment list is examined in turn.

[II For each segment:

[a] If a segment is too long, cut it up. Cut-up segments are placed at the end of

the segment list

[b] If a segment is too short, merge it

The placement of cut-up segments at the end of the list ensures that long segments will be cut

up until they become shorter than the maximum allowable segment length.!

One weakness of the segment-based mesh-modification procedure is that overly-obtuse

triangles are routinely created. This is because if a triangle has two long segments, the deci

sion on which segment to cut up is made based on the order in which the segments appearin

the segment list If this "cut-up" segment turns out to not to be the longest segment on the tri

angle, then the modified triangles that are created will become more obtuse than the original

triangle.

The second mesh-modification procedure is better suited for producing acute triangles.

f Note that short segments created from cut-up long segments arenot merged unless these segments occur
lateron in the segment list. This avoids an infinite loop.
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This procedure is based on examining die segments on a triangle.

[II Each triangle in the triangle list is examined in turn. For each triangle:

(a) If the longest segment on the triangle is too long, then the segment is cut up.

(b) If die above condition is not met, then the segments are checked for short

ness. If the shortest segment on the triangleis too short, then it is merged.

(c) If neither of the above aretrue, then the segments are in the correct range and

the triangle is left unmodified.

This procedure results in reasonablywell-shaped triangles. It does not guarantee the produc

tion of only acute triangles, but at least the triangles that have been modified do not become

over-obtuse in shape.

8.4.2. Mesh Clipping

The mesh should be clipped periodically to trim off those parts of the mesh diat have

moved outside the simulation boundaries. This is not too difficult to do in two dimensions.

However, in 3D, clipping can be a very expensive and difficult operation. As with mesh

modification, the mesh can be clipped by cutting up segments. Hgure 8.9 shows the basic

procedure for 3D clipping. First, all the segments aretested for intersections with a boundary.

Segments that do intersect the boundary are cut up, and new segments and triangles are

created. This procedure is repeated for the six borders of the 3D box. Finally, the triangles,

segments and nodes are checked; any of these objects outside the 3D boundaries are deleted.

An example of clipping is shown in Hgure 8.10, where a mesh containing 100 triangles is

clipped. Note that the clippingprocedure itself creates many small triangles. These triangles

can be removed, if desired, by following die clippingoperation with a mesh modification step.
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Cut Segment Form New
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Triangles

Figure8.9: 3D Qipping : All the segments that cross a boundary are cut up in
turn. Each segment cut produces new triangles. Finally, the trian
gles, segments and nodes outside the boundary are deleted.
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Figure 8.10: 3D Qipping : An initial mesh containing 100 triangles is clipped
from x=-0.26 to x=0.26, and from y=-0.76 to y=0.76. The obtuse tri
angles can be removed by mesh modification. The minimum allow
able segment length is 0.04 um.
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Clipping is expensive in 3D primarily because its basic component, segment cutting, is

itself a lengthy procedure. When a single segment is cut up, triangles and segments have to be

created and deleted, and interconnections to the mesh have to be updated. A typical mesh with

50 x 50 nodes would contain perhaps 7500 segments; each of these segments has to be

checked for intersections with the six boundaries. Qipping this mesh would be quite time-

consuming. But at the same time, if the majority ofthese nodes have moved outside the simu

lation boundaries, it is wasteful to continue tracking their movement Therefore, again, there

is a tradeoff. Qipping removes useless nodes that are outside the simulation boundaries, thus

saving computation time and memory. But at the same time, the clipping operation itself is

time-consuming. So, there is a tradeoff between the time saved by deleting useless nodes and

the time consumed during clipping. The compromise is, as previously mentioned, to clip only

periodically, after a selected numberof iterations,t

8.4.3. Mesh Delooping

The procedure for removing loops in 3D follows very much along the lines of 2D

delooping. But as might be expected, 3D delooping is a great deal more difficult, because it is

now necessary to find the intersection of triangles in three-dimensional space. The very first

step in 3D delooping is to examine all the triangles in turn and determine if these trianglesdo

intersect other triangles. Intersecting pairs of triangles are cut up as outlined in Hgure 8.11.

The line of intersection of the two triangles is first determined. The triangles are then cut up

at that intersection, by cutting up die segments of the triangle diat cross the line of intersec

tion. New triangles and segments are formed. The next step is to find the nodes at the

t At present, the mesh is clippedevery 10 tune-steps. A more intelligentapproach would be to vary the
clipping frequency with the local etch-rate. An alternative approach would be to find the bounds of all die
nodes before clipping; if the outermost node is reasonably close to the boundary, the clipping could be de
layed.
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Figure 8.11: 3D Deloop. The triangles are cut up at their intersections. The tri
angles in the loop are then removed.
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boundary of the loop. This can be done as shown previously in Figure 7.18 by examining the

motion of the intersecting triangles relative to their nodes. Once these boundary nodes have

been specified, the loop is then traversed recursively to find and identify the triangles, seg

ments and nodes in die loop. Finally, all the structures in the loop are removed.

The deloop procedure outlined above is illustrated in die etching simulation shown in

Figure 8.12. In this example, die 3D ray-string algorithm was used to move die etch-front for

8 time-steps with the triangular etch-rate function

tf(x,y,z)=21x1 +0.2 urn/sec, lxl<0J [8.2]

The mesh was then delooped. The intersecting triangles were first cut up so that the triangles

intersected cleanly at the boundary of the loop. The loop triangles, segments and nodes were

then identified and deleted.

Another example of delooping is shown in Figure 8.13. In this case, the simulation is of

two intersecting spherical etch-fronts, beginning from seed-points at (0,0,0) and (0,1,0). The

etch proceeds at a uniform 1 urn/sec, and each time-step is of 0.1 second duration. The

spheres first intersect each other after 5 time-steps. At 8 time-steps, the mesh was delooped;

the sections of the mesh behind the two spheres were removed. The mesh was then advanced

again. At the final etch-time, two time-steps later, the mesh was found to have intersected

again. The mesh was then delooped, resulting in the curved profile in the bottom left of Rg

ure 8.13.

Approximately 20 CPU seconds on a SUN 4/280 were required to obtain the delooped

profile on the bottom left of Figure 8.13. In contrast, a similar simulation using the modified

cell algorithm (Figure 4.3b) lasted some 4 hours on the same computer. The profiles from the

two different etching simulations are quite similar, except for die facets on the spherical
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Figure 8.12: 3D ray-string etching using the triangular etch-rate function
R=2/x/+02. The deloop procedure after8 time-steps is illustrated.
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Unifonn Etch Rate: 2 Seed Points at (0,0,0) & (0,1,0)

8 TIME STEPS, BEFORE DELOOP 8 TIME STEPS, AFTER DELOOP

leo \Sfi *4o ijoo

10 TIME STEPS, BEFORE DELOOP 10TIME STEPS, AFTER DELOOP

*<*> 1.00

Figure 8.13 Uniform spherical etch using the ray-string algorithm. The mesh is
delooped after 8 and 10 time-steps. The etch-rate is 1 um/sec and
the time-step is 0.1 seconds long.
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surfaces of the modified-cell profile. But unlike the ray-string algorithm, the modified cell

profile did not have to be delooped, since the volume algorithm automatically takes care of

intersecting etch-fronts. However, the modified-cell algorithm is slow. The ray-string algo

rithm, even with delooping, enjoys a tremendous speed advantageover the modified cell algo

rithm. This advantage alone makes the ray-string algorithm very attractive for 3D simula

tions.

8.5. TO DELOOP OR NOT TO DELOOP

It cannot be denied that 3D delooping in the ray-stringalgorithm is a problem ofconsid

erable computational complexity. Delooping also consumes a great amount of computation

time. The ray-string simulation of the intersecting spheres described in the previous section

went relatively fast because it involved only approximately 200 triangles. But in a typical

simulation of photoresist development, a mesh could contain several tens of thousands of tri

angles. It is no easy task to determine the intersection of so many triangles, t Neither is it easy

to do so robusdy.

The approach taken in implementing the deloop section of the ray-string algorithm was a

conservative one in which a brute-force and computation-intensive approach was used to

explore 3D delooping. Extensive testing in 2D and 3D revealed that to eliminate loops in a

fool-proof manner was not easy. In particular, deloop does not work correcdy when more

than a single triangle intersects another triangle, e.g. when 3 or more triangles intersect each

other. Problems also arise when nodes on a triangle move in opposite directions; this is the

t A brute force approach requires OJN2 intersection tests, where Nisthe number of triangles inthe list If
N = 10,000, then 50 million pairs of triangles have to be tested for intersections! However, the use of a
plane-sweep algorithm would reduce the number of intersection tests to NIog(N). The delooping procedure
could also benefit from a more intelligent approach in which only loop-proneareasareexamined.
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triangular analog of a pinwheeling segment And then, in cases where die delooping does

work, the integrity of the mesh is sometimes disrupted (incorrect interconnections between the

triangles, segments and nodes in die mesh) and the program fails.

Given the realities of the delooping procedure, it is important to consider carefully

whether or not delooping the mesh is actually necessary. The question of delooping does not

come up in the string algorithm, as there is a very realneed for loop removal in mat algorithm.

Without delooping in the string algorithm, the loops will blow up, making it impossible to

proceed after some time. But in the ray-string algorithm, the loops are not dependent on the

local surface of die mesh. The nodes in die mesh are moved using rays independent of each

other. Therefore, the incorrectrays will hardly affect die profile, and die loops will not cause

the program to self-destruct

The loops developed during the course of the ray-string simulation do not have a serious

impact on the simulation. The loops are restricted in form and shape, so they do not cross

correctregions of the surface. Furthermore, the loops do not have a destructive impact on the

simulation. In fact, in 3D, the simulation is more robust when the loops arenot removed. The

loops actually represent incorrectportions of the simulated surface, and as such, they do not

truly represent the actual etched surfaceof die material. And since these portions of the mesh

are incorrect to begin with, it is also a waste of computation time to continually trace die

motion of the loops, and to store die triangles, segments and nodes diat make up the loops.

Unfortunately, these loops are also difficult and computationally expensive to remove. How

ever, the loops can be easily identified visually.

So, is delooping a truly integral part of die ray-string algorithm? The loops do not affect

the accuracy of the ray-string simulations, and die simulations will run without removal of die
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loops. Thus die answer to the above question is a resounding "NO". But at the same time, it is

desirable to remove the loops for purely aesthetic reasons. Also, certain pattem transfer

processes require information of the true resist profile. In such cases, delooping is necessary.

8.6. 3D SIMULATION OF PHOTORESIST DEVELOPMENT

The ray-string etch simulator has been coupled to 2D imaging and exposure simulators

to form die basis of a complete 3D photoresist development simulator. This simulator, named

SAMPLE-3D, also provides display, print, and post-simulation analytical capabilities.

The flow of the 3D photolithography simulation is demonstrated in Figures 8.14 - 8.18.

SAMPLE-3D simulates the three-dimensional (3D) profile of the developed photoresist as a

function of time by first using SPLAT to calculate die aerial image intensity incident upon die

photoresist (Figure 8.14). The exposure of the photoresist to light triggers chemical changes in

the photoresist; this is modeled using BLEACH, a 3D exposure simulator based on Dill's1

algorithm (Figure 8.15). An exposure model men generates a three-dimensional etch-rate dis

tribution throughout the volume of the photoresist This distribution is used in ETCH, a

three-dimensional etch simulator, to generate a three-dimensional profile of the photoresist as

a function of time (Figure 8.16).

The simulations shown in Figures 8.15 and 8.16 were run using 0.7 um of Olin Hunt

photoresist on a bare silicon substrate. The multiple reflections in the photoresist during the

exposure have resulted in a photoresist profile with standing waves. Note also that loops have

formed at the fingers of die photoresist profile.

The standing waves produced by optical interference makes linewidth control difficult in
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Figure 8.14: Aerial image simulation of a 1.25 um (0.8 A/NA) isolated contact.
The image was simulated using SPLAT, with \ = 0.436 \un, NA =
0.28, and partial coherence a = 0.5.
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3D Exposure-Bleaching Simulation

Figure 8.15: Normalized concentration of photoactive compound. The plot is a
contour map of constant M=0.8.

3D Development-Etching Simulation

Figure 8.16: Profile of an isolated contact in 0.7 um Olin Hunt 6512 resist
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printing micrometer linewidths.2 To reduce die extent of the standing waves, die photoresist

can be baked alter exposure and before development Post-exposure bake is modeled by

assuming that the chemical inhibitor diffuses from highconcentration regions to low concen

tration regions. Figure 8.17 shows the effect of post-exposure bake on die concentration of

the photoactive compound. The post-exposure bake is modeled using a one-dimensional

Gaussian diffusion in the z -direction, withanaverage diffusion length of0.08um. The stand

ing waves in the chemical concentration have been gready reduced. This has a significant

impacts on the photoresist development As seen in Figure 8.18, the resultant photoresist

profile is smoothand devoid of standing waves orloops.

In cases where loops are created, it is useful to have diecapability to remove theloops.

The delooping procedure described in the previous section was used to try to deloop die mesh

of Rgure 8.16. The result is shown in Figure 8.19. The loops have disappeared. But so has

mostof themesh! This interesting result has been traced to the problem of pinwheeling trian

gles discussed earlier. The pinwheeling triangles have caused errors in die determination of

which parts of the mesh are inside oroutside die loops. As a result, most of the mesh is deter

mined to bein error and the program goes onamesh-deleting binge.

8.7. COMPUTATION ISSUES

The development-etch simulations shown in Figures 8.16 and 8.18 cost approximately

10 and 5 minutes respectively on a SUN 4/280 (0.8 MFLOPS, 10MIPS). Approximately 2

MBytes of memory was used in the simulations; most of this amount was used to store the

discrete etch-rate data. In addition, the resist-exposure simulator required approximately 8

MB of memory to calculate the photoactive compound concentration at50x 50x 300 points.
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3D Exposure-Bleaching Simulation

Olin Hunt 6512, Dose = 80 mj/cm2, 0.08|im Diffusion

Figure 8.17: Normalized concentration of photoactive compound, after diffusion.
The plot is a contour map of constant M=0.8.

Figure 8.18: Profile of an isolated contact in 0.7 um Olin Hunt 6512 resist
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3DDevelopment-EtchingSimulation

Figure8.19:Theeffectofdeloopgoneawry.Mostofthemeshhasbeendeleted
inadvertentiyduetoincorrectdeterminationofthein-loopmesh.
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8.8. SUMMARY : IMPLEMENTATION OF A 3D PHOTORESIST DEVELOPMENT

SIMULATOR

A fast, robust and accurate 3D photolithography simulator has been developed. This

simulator, named SAMPLE-3D, integrates a number of process simulator modules while also

providing display and print capabilities.

The key element of this process simulator is a 3D etch simulator based on a combined

suing and ray model approach. In this approach, the nodes on the etch surface are advanced

using the ray mediod, but die nodes arejoined using a string-like triangular mesh. This algo

rithm has been implemented in the C programming language, using a linked list data structure

to represent the nodes, segments, and triangles thatmake up the etchingboundary. Delooping

ofdie boundary surface has also recendy been addedon.

There are still a number of issues and problems to be solved in the etch simulator. Chief

among these is that die etch simulator still lacks a robust and reliable deloop mechanism.

However, the simulation does run without delooping. The loops formed are typically res

tricted to the low-etch-rate regions in the material, so the true etch-surface can be identified

visually. But more importandy, the loops donot,asin the suing algorithm, disrupt the robust

ness or the accuracy of the simulation itself. So, although delooping is a computationally

expensive and complex operation, it may not be a truly necessary component of a 3D etch

simulator.



201

REFERENCES

1. F.H. Dill, A.R. Neureudier, J.A. Tutde, E.J. Walker, "Modeling Projection Printing of

Positive Photoresists," IEEE Transactions on Electron Devices,vol ED-22, no. 7, pp.

456-464, July 1975.

2. E.J. Walker, "Reduction of Photoresist Standing-Wave Effects by Post-Exposure

Bake," IEEE Transactions on Electron Devices, voL ED-22, no. 7, pp. 464-466, July

1975.



202

CHAPTER 9

THREE-DIMENSIONAL SIMULATION OF OPTICAL LITHOGRAPHY

9.1. INTRODUCTION

In submicron optical lithography, optical simulation has proved to be a useful and

important technique for understanding and balancing the many complex tradeoffs between

materials, exposure tools, and wafer conditions. Researchto date has emphasized die applica

tion of two-dimensional aerial image simulation for investigating 2D mask-related issues in

optical lithography. These issues include diverse topics such as the optical proximity effect,1

defect interactions with features,2 •3 •4 •5 projection lens aberrations,6 •7The 2D simulation

capability has also been used to design image-monitoring test-patterns,8 *9 and to examine the

resolution impact of different phase-shifting mask designs.10 •n •12

Most of die aerial-image studiesthus farhave relied on a simple threshold interpretation

of the intensity, in which a constant intensity contour is assumed to correspond to the

developed photoresist profile. However, simulation and experimental studies4 • 8 • 13 have

shown that in certain mask configurations, nonvertical resist dissolution effects could cause

discrepancies between the simulated intensity contours and the experimentally printed

features. In such situations, it is necessary to resortto a full rigorous 3D simulation to deter

mine the resist profiles and thus understand the resist development process. The discrepancies

caused by nonlinearand nonvertical resisteffects has been the major driving force behind the

development of a complete 3D photolithography simulator. Now mat a fast and complete 3D

resist development simulatorhas been developed, it is possible to study and model the effect

ofnonlinear andnonvertical resistdissolution on die projection-printed patterns.
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9.2. NON-VERTICAL RESIST DISSOLUTION EFFECTS

9.2.1. The Intensity Threshold Model

The intensity threshold model has proved to be auseful tool for studying the issues asso

ciated with printing 2D mask patterns. This approach avoids arigorous and time-consuming

3D resist development simulation in favor of asimpler threshold interpretation of the intensity

contours to determine the shape ofthe final developedprofile.

SAMPLE-3D has been used to investigate the correlation between the 2D aerial image

and the3Ddeveloped resist profile. Simulations have been carried outon three different posi

tive photoresists, Shipley 1470, Olin Hunt 6512, and Kodak 820. Shipley 1470 represents a

prototypical medium-contrast photoresist which was used heavily in the 1970's. Lately, a

number of newer improved photoresists with higher contrast have been introduced. For the

purposes of simulation, Olin Hunt 6512 was selected as an example of ahigh-contrast positive

photoresist Resists with surface-rate retardation, such as Kodak 820, are also frequendy used

to print patterns with square profiles; surface-rate retardation decreases the top-loss in the

unexposed regions and results in better wall-angles. The simulation parameters for each of

these photoresists is provided inTable 9.1. In addition, the SAMPLE-simulated resist profiles

of 0.8 A/NA lines and spaces printed on die three different photoresists are plotted inFigure

9.1. Also plotted in Figure 9.1 are the etch-rate (R) vs photoactive compound concentration

(M) for the three different photoresists.

Figure 9.2 shows the aerial image and 3D resist profile simulations of a 1.25 urn (0.8

tyNA) isolated transparent elbow in a dark field mask. The aerial image simulation in this

case used an exposure wavelength Xof 0.436 um,numerical aperture NA of 0.28, and partial



Olin Hunt 6512 resist system

Projection System :
X a 0.436 um, NA = 0.28, a = 0.5

Exposure:
A =0.640 pm"1, B =0.040 pm"1, C=0.010 cm2/mJ
Post-Exposure Bake Diffusion = 0.08 um
Best Exposure Dose =240 mJ/cm2
Refractive Index = 1.68

Resist Thickness = 0.70 um

Substrate : Si (n = 4.73-J0.14)
Development (Kim model)

Rl = 0.062 um/s, R2 = 0.0001um/s. R3 = 8.5

Shipley Microposit 1470 resist system

Projection System:
X = 0.436 um, NA « 0.28, o = 0.5

Exposure:
A =0.580 pm"1, B =0.030 pm"1, C=0.014 cm2/mJ
Post-Exposure Bake Diffusion = 0.08 um
Best Exposure Dose =80 mJ/cm2
Refractive Index = 1.68

Resist Thickness = 0.70 um

Substrate : Si (n = 4.73-J0.14)
Development (Kim model)

Rl = 024 um/s, R2 = 0.0005 um/s, R3 = 8.1
R4 = 0.24 um. R5 = 0.76. R6 = 055

KODAK 820 resist system

Projection System :
X = 0.436 urn, NA = 0.28, o = 0.5

Exposure:
A = 0.510 um"1, B =0.031 um"1, C = 0.013 cm2/mJ
Post-Exposure Bake Diffusion = 0.08 um
Best Exposure Dose =110 mJ/cm2
Refractive Index = 1.68

Resist Thickness = 1.20 um

Substrate : Si (n = 4.73-J0.14)
Development (Kim model)

Rl = 0.23 um/s, R2 = 0.0016 um/s, R3 = 5.6
R4 = 0.25 um. R5 = 0.62, R6 = 0.08

Table 9.1: Photoresist/Substrate Parameters

204
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PHOTORESIST SYSTEMS

Olin Hunt 6512 :RvsM Olin Hunt 6512, DT = 10,20,30

M, Normalized PAC Distance on wafer (tnn)

Shipley 1470:RvsM Shipley 1470, DT = 10,20,30

M, Normalized PAC
1 1.23

Distance on wafer (am)

Kodak 820 :RvsM Kodak 820, DT = 10,20,30

•» 0j01

0.001 •

OJ0001
1JS

M, Normalized PAC Distance on wafer (ma)

Figure 9.1: Photoresist systems : Etch-rate vs photoactive compound concen
tration and SAMPLE resist profiles for 3 different photoresists.
Hie dose was adjusted so that 1.25 um (0.8 X/NA) lines and
spaces printed 1:1 with 30 seconds ofdevelopment time.
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Olin Hunt 6512 : Dev. Time =30 sec, Dose =240 mJ/cm
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(c) (d)
Demonstration of the intensity threshold model. The resist profile,
simulated on 0.7 um of Olin Hunt 6512 resist, agrees with the 30%
intensity contour. Thus the intensity contour is sufficient for pre
dicting the linewidth of the developed profile.
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coherence a = 0.5. The image was then passed on to the 3D resist-exposure simulation for

exposure (with 0.08 um post-exposure-bake diffusion) on 0.7 um of Olin Hunt 6512 resist

The resultant etch-rate distribution was men used to calculate the profile after 30 seconds of

development time.

The aerial image contours and the developed resist profile are plotted on top of each

other in Figure 9.2d. The dark solid line, which represents the resist profile, is very similar to

the 20-40% intensity contour plots. This means that in this particular simulation, it is

sufficient to use a constant intensity contour to model the opening in the photoresist Similar

simulations on Shipley 1470 and Kodak 820 also bear out this result

In the elbow configuration of Figure 92, the dissolution or etch-front startsout from the

center of the elbow and sweeps towards the outside edges of the elbow. This is essentially a

diverging etch in which the development of the resist is dominated primarily by the dissolu

tion action from the center of the elbow. Furthermore, the intensity throughout die elbow

remains high along the elbow, so the development speed is relatively constant along the

elbow. As a result, the resist development of the elbow is essentially a linear process and can

be described using die intensity threshold model. There has been, however, some experimen

tal evidence that the intensity threshold model does nothold true in all cases.4 *8 The devia

tions from the intensity threshold model and their causes will be discussed in the following

sections.

9.2.2. A Centered Opaque Defect in a Line-Space Array

Figure 9.3 shows SEM photographs of a 0.5 um opaque defect placed at the center of a

transparent space in a 1.3 urn line-space array. The patternswere printed on 1.2 um of Kodak
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Figure93:SEMphotographsofa0.5urnopaquecentereddefect,printedon
1.2JimofKodak820positivephotoresistonaSisubstrate.
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820 positive resist on a Si substrate, using a GCA g-line (X = 0.436 um) stepper with NA of

0.28. The two photographs show the resist profile at best focus and dose, and at best focus and

22% underexposed. At best dose, die presence of the opaque defect has caused a significant

linewidth variation; in the vicinity of the defect, the width of the resist opening is approxi

mately 0.7 um, almost halfofdie 1.3 um opening far from the defect Underexposure causes

the two resist lines to bridge.

The defect pattem in Hgure 9.3 has been simulated with SPLAT and die results are

shown in Figure 9.4. Interesting nonlinear results can be seen from comparing die intensity

contours with the SEMs of Hgure 9.3. Away from the defect, the 30% intensity contour

predicts the linewidth. But in die presence of the defect, the protrusion from the line reaches

out to die 40-60% contours; the resist profile has a shape more similar to the 50% contour.

This failure to follow a single constant threshold is evidence that the intensity in the neighbor

hood ofdie final profile edge is also important The dissolution appearsto proceed initially by

moving downwards (vertically) in regions of high intensity and then moving laterally into die

regions of low intensity. Thus the reduction of the intensity in die neighborhood of the defect

delays die arrival of the dissolution front and reduces die subsequent removal of the foot of

the resist material.4

The movement of die dissolution front is, in this particular mask configuration, three-

dimensional in nature. Two-dimensional resist simulation is totally inadequate for predicting

the linewidth variations as is shown in Hgure 9.5. Here, the simulations were carried out

using SAMPLE to simulate the resist profiles from 2D intensity outlines calculated with

SPLAT. The SAMPLE simulations were run on 0.7 urn of Shipley 1470 positive photoresist,

and the profiles are shown at 5,10,15 and 20 seconds of development time. The 15 second

developed profile is very interesting. Using a north-south intensity cut, die simulation predicts
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Figure 9.4: Image intensity contour plot of a 0.5 um opaque square defect in a
1.3 Jim equal line-space array. The simulation was run using X =
0.436 }im, NA=0.28 and partial coherence a = 0.5.



Resist Simulation with Outlines

Shipley 1470 : Dev. Time = 5-20 sec, Dose = 80 mJ/cm2

North-South Outline

SPLAT: Vertical Cutline

Distance (um)

SAMPLE: Vertical Cutline
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Figure 9.5: Resist Simulation with Cutlines. The north-south and east-west
intensity cutlines result in different remaining resist heights at the
center of the defect after 15 secof development.
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that die resist will be almost completely developed by 15 seconds. But at the very same loca

tion at the center of die defect, the east-west cutline simulation predicts a remaining resist

height of almost 0.1 um. The difference between the two sets of simulations is due to differ

ences in the speed of the downwards/vertical andlateral development The dissolution parallel

to the lines is fasterthan from that proceedingdownwards from the initial surface ofthe resist

Thus the development along the vertical cutline describes more accurately die state of the

resist as a function of time.

A much better understanding of die influence of die defect can be obtained from a full

3D resist simulation using SAMPLE-3D. Figure 9.6 shows 3D simulations of Shipley 1470

resist profiles at 10, 20 and 30 seconds of development time. After 10 seconds of develop

ment time, the resist in the region of the defect has a saddle-like shape; the dissolution has

proceeded downwards from the top of the resist and also from the sides parallel to the lines.

After20 seconds, die sidedevelopment fronts parallel to the lineshascrossed, forming aloop

at the foot of the resist material The loop is nonphysical in nature, and it is really part of the

resist mat has already been developed. But the presence of the loop does serve a useful pur

pose as it illustrates the differences in die lateral and downwards dissolution. If die dissolution

only proceeds in the plane perpendicular to the resist lines (i.e. along die east-westcutline in

Figure 9.5),men the resist opening near the defect will be only 0.4 um wide as predicted by

the 2D horizontal cutline simulation in Figure 9.5. In Figure 9.6b, this corresponds to die

edges of die loop furthest away from the resist lines. But whathas actually happened is that

the resist saddle has been developed away primarily along the lateral plane parallel to die

lines. The development of the resist foot left by the defect is thus dominated by the lateral

north-south dissolution, and the foot develops faster than predicted in the east-west cutline

simulation.
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After 30 seconds of development, the resist at the center of the defect has been com

pletelydeveloped away, leaving a protruding foot atthe sidesof the lines. In Figure 9.6d, the

30-second developed profile at the Si substrate is plotted against the 20-40% intensity con

tours from Figure 9.4. The resistprofile corresponds to the 30% intensity contour far fromthe

defect, but in the region of the defect, the resist profilestretchesout to the 40% intensity level.

This is very similar to the situation observedexperimentally (Figure9.3).

The 3D resist profile has also been simulated with underexposure and overexposure as

shown in Figure 9.7. At a lower exposure dose, the lateral dissolution plays a greater role in

the resist development. As shown in Figure 9.7a, with a lower dose (20% lower than "best"

exposure), the resist profile at the Si substrate consists of two intersecting lateral dissolution

fronts. The true resist profile (outside the loop) has a sharp foot in the vicinity of the opaque

defect The protrusion due to the defect is, however, reduced at higher exposure doses. This

effect is due to the dependence of the etch-rates on the exposure dose. At a higher exposure

dose, the dissolution speed in the downwards direction is increased, and thus the lateral

development parallel to the lines is almost canceled out

The type of resist used also affects the development process. The previous results are

typical for medium-contrast resists used in the late 70*s and early 80's. Improved resists with

higher contrasts such as Olin Hunt 6512 will reduce the printability of defects. Figure 9.8

shows the 3D simulated patterns printed on 0.7 um of Olin Hunt resist, at best exposure, 20%

underexposed, and 20% overexposed. Olin Hunt 6512 is a high-contrast resist, so the

development etch-rate is relatively constant as long as the intensity remains above a certain

intensity level. In the opaque defect mask configuration, the intensity at the center of the

defect is still high enough so that the downwards etch speed in the vicinity of the defect is

approximately the same as that far from the defect As a result, there is little or no lateral
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Shipley 1470 : 30 sec Development Time
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Figure 9.7: 3D Resist Development simulated on Shipley 1470 resist.
Changes in the exposure dose affects the linewidth variation due to
the defect.
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Olin Hunt 6512 : 30 sec Development Time
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Figure 9.8: 3D Resist Development simulated on Olin Hunt 6512 resist
Changes in the exposure dose affects the linewidth variation due to
the defect
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development parallel to the resist lines. However, the lowering of the intensity at the defect

center still slows down the development fronts and reduces the subsequent removal of the foot

of the resist material.

The simulations also indicate that the use of surface-rate retardation increases the sensi

tivity of the printed patternto defects. Figure 9.9 shows the 3D simulated profilesprintedon

Kodak 820 photoresist When the resist is underexposed by 20%, the resist patterns bridge. At

"best" exposure of 110 mJ/cm2, the lateral etch-fronts have crossed, so there is asharp foot at

the edges of the resist near the defect This simulated result as well as that of the underex

posed simulation, is in excellent agreement with the experimentaldata shown in the SEMs of

Figure 9.3. Overexposure by 20% decreasesthe size of the foot but the protrusion caused by

the defect is still quite significant With surface-rate retardation, the role of lateral dissolution

in the development of the Kodak 820 resist has increased, thus increasing the sensitivity of

this resist to small opaque defects.

9.2.3. An Opaque Defect In a Corner

Nonvertical resist development effects have also been observed in situations where an

opaque defect is placed at a comer of a large opaque square.4 Figure 9.10 shows an opaque

square area with 0.5 um opaque defects located diagonally from the comers. These comer

defects do not print except when underexposed. Figure 9.11 shows the aerial image simula

tions corresponding to the upper left comer of this configuration. The opaque defect is placed

0.2 um from the comer of the large opaque square. At best dose, the resist profile follows

approximately the 30% intensity contour. But underexposure by 22% as shown in Figure

9.11b does not follow the 38% intensity contour as would be expected from the constant

intensity threshold model. Instead, the large area of 60% intensity does not clearcompletely
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Kodak 820 : 30 sec Development Time
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Figure 9.9: 3D Resist Development simulated on Kodak 820 resist. Changes
in the exposure dose affects the linewidth variation due to the
defect.
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Square Opaque Defect in a Corner

Best Focus, 22% Underexposed

Figure 9.10 : SEM photographs of a 0.5 Jim opaque defect at the diagonal comers
of a large opaque square. The patterns were printed on 1.2 |im of
Kodak 820 positive photoresiston a Si substrate.
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Figure 9.11: Image intensity contour plot of a 0.5 fim opaque square defect

placed 0.2 um from the comer of a large square. The simulation,
which covers the left comer of the large square in Fig 9.10, was run
using X= 0.436 urn, NA=0.28 and partial coherence a = 0.5.



222

giving rise to the printed defect Here it appears that with underexposure the 60% exposure

region no longer clears through vertical dissolution. Thus there is no chance for lateral disso

lution to work inwardtowardthe 38% intensitycontour.

2D and 3D resist simulations havebeenrun in anattempt to understand the development

behavior of this opaque defect mask configuration. Figure 9.12 shows the 3D developed

profiles on Shipley 1470 resist at best exposure. In Figure 9.12b, the resist foot left by the

defect has a mesa-like structure; it is beingdeveloped laterally as well asvertically. As in the

centered defect case discussed previously, the lateral dissolution dominates here while the

vertical dissolution is somewhat slow. After 30 seconds of development time, the lateral dis

solution fronts have crossed leaving a sharp almost 90° comerat the edgeof the large square

(Fig 9.12 c,d). There is clearly a difference between the 3D simulated resist profile and the

constant intensity contours. The presenceof the defect has slowed down the lateral dissolution

and as a result the foot of the resist material is stretched from the 30% to approximately the

40% intensity level

Figure 9.13 shows theunderexposed and overexposed profiles onthesame Shipley 1470

resist Note that at20% underexposure, the corner defect has printed; the resist profile appears

to be very similar to the SEM of Figure 9.10b. However, the resist peninsula formed by the

defect is on the vergeof beingetched away by the converging lateral dissolution fronts from

the surrounding high intensity areas. At higher exposure doses, the defect is swept away by

theconverging lateral fronts, resulting in asharp comer attheedge of thelarge resist square.

It is also instructive to compare the 3Dsimulations to SAMPLE. Figure 9.14 compares

the 3D profiles along the diagonal to the 2D profiles generated using SAMPLE with SPLAT

outlines. The multiple lines seen on the left set of plots are caused by loops formed by the
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Shipley 1470 : Best Exposure (Dose=80mJ/cm2)
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Figure 9.12 : 3D Resist Development, simulated on 0.7 Jim of Shipley 1470 posi
tive resist with 0.08 urn of post-exposure bake diffusion.
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Shipley 1470 : Best Exposure (Dose=80mJ/cm2)
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Figure 9.12 (cont): 3D Resist Development, simulated on 0.7 um of Shipley
1470positive resist with 0.08 um of post-exposure bake diffusion.
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Shipley 1470 : 30 sec Development Time
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Figure 9.13: 3D Resist Development simulated on Shipley 1470 resist
Changes in the exposure dose affects the linewidth variation due to
the defect
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Shipley 1470 : 30 sec Development Time
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Figure 9.14 : Resist Development: 3D simulations vs 2D with outlines.
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intersection of converging lateral dissolution fronts. The true developed profile is actually

that of the innennost profile in each of the three plots on the right of Figure 9.14. In these

plots, the outennost "looped" profileis due to the vertical (downwanls) dissolution, while the

innermost profile results from the intersection of converging lateral dissolution fronts. Com

paringthe two sets of curves, it is clearthat the SAMPLE 2D profiles are similar to the outer

'looped" curves of the 3D simulations. The lateral dissolution effect, which is ignored in

SAMPLE, clearly has an dose-dependent impact on the developed profile.

A similar set of observations hold for simulations on the prototypical higher-contrast

Olin Hunt resist These simulations are shown in Figures9.15 - 9.16 respectively. Again, it is

seen that the defect has caused a sharpening of the resist comer not predicted by the intensity

threshold model And once more, the magnitude of the deviation between the resist profile

and the constant intensity contours increases as the exposure dose is decreased. But the simu

lations also show that the lateral dissolution effect is not as pronounced as in the Shipley

resist There areno loops formed, and as can be seen in Figure 9.16, the 2D SAMPLE profiles

are identical to those simulated using SAMPLE-3D.

In contrast, multiple loops are formed on the surface-rate retarded Kodak 820 resist, as

shown in Figures 9.17 and 9.18. Surface-rate retardation has increased the influence of lateral

dissolution effects. As a result, the "true" developed profile can be determined only with a full

3D simulation. The 3D and 2D-cutline simulations have similarouter "looped curves, but the

3D simulations reveal that the true profile is very different from that predicted by the 2D-

cutline simulations.
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Olin Hunt 6512 : 30 sec Development Time
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Figure 9.15: 3D Resist Development simulated on Olin Hunt 6512 resist.
Changes in the exposure dose affects the linewidth variation due to
the defect.
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Olin Hunt 6512 : 30 sec Development Time
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Figure 9.16 : Resist Development: 3D simulations vs 2D with cutlines.
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Kodak 820 : 30 sec Development Time
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Figure 9.17 : 3D Resist Development simulated on Kodak 820 resist. Changes
in the exposure dose affects the linewidth variation due to the
defect.
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Kodak 820 : 30 sec Development Time
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Figure 9.18 : Resist Development: 3D simulations vs 2D with cutlines.
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9.2.4. Adjoining Phase-Shifted Spaces

The two cases discussed previously both involved opaque defects in a clear area. In

such cases, nonveitical linear development effects typically occur and must be accounted for

using 3D simulation. These opaque defect cases may, however, be considered a subsetof the

general case in which multiple dissolutionor etch fronts convergeonto one another.

A more dramatic example of a mask configurationthat will result in multiple dissolution

fronts is that of a phase-transition phase-shifted mask, shown in Figure 9.19. A brief explana

tion of this mask pattern is in order. In conventional lithography the working resolution of

periodic lines and spaces is roughly0.8 A/NA. Lines and spaces smaller than this cannotbe

printed reliably and consistently due to the lower intensity contrast caused by interfeature

interaction. Phase-shifting is one method that has been proposed for improving resolution in

optical lithography. It allows features to be placed closer together by relying on the destruc

tive interference between phase-shifted and transparent spaces to increase the contrast and

therefore the working resolution. Studies have shown that the image projectedby an optical

stepper can be improved by incorporating transparent phase-shifting patterns on a conven

tional chrome mask.14 *15 •16 •17 A phase-shift layer delays the light from apattern so that it

arrives 180° out of phase with the light through a cleararea. In periodic structures, as in the

mask pattern shown in Figure 9.19, the light contrastcan be improved dramaticallyby filling

in alternating spaces with phase-shifters.

The mask pattern shown in Figure 9.19 could be used to define metal lines in a device

structure such as a bipolar transistor. The outer feature could be part of a collector contact

which is to remain unbroken. In order to gain the most out of phase-shifting, the spaces and

phase-shifters must be placed in alternate order. But there is a complication here in that there
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Figure 9.19: Image intensity contour plot of a phase-shifted mask pattern. The
simulation was run using X= 0.436 u.m, NA=0.28 and partial coher
ence o = 0.5.
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is a transition from a 180° phase-shifted outer elbow to a 0° phase-shifted elbow. But if a

phase-shifted feature is joined abruptlyto a non-phase-shifted feature, the destructive interfer

ence at the transition will create a dark uniUuminated area which will effectively separate the

features on either side ofthe joint A metal line printedusing this patternwill then be broken.

One way to get around this problem is to use an intermediate 90° phase-shifted spaceto join

the two 0° and 180° phase-shifted spaces. As shownin the intensity contourplot in the lower

half of Figure 9.19, the intensity remains high along the joined features, although valleys of

70% intensity are formed at the areas where the 90° phase-shift meets either the 0° or 180°

phase-shifters. It is hoped that during development, the dissolution in the peak areas will

penetrate rapidly andthen move laterally along the line to clear the 70% intensity valleys.

The intensity contours in this intermediate region are shown in greater detail in Figure

920. This intensity plot was used to generate 3D resist profiles on both Shipley 1470 resist

(Figure 9.21) and Olin Hunt 6512 resist (Figure 9.22). The dissolution proceeds initially by

moving downwards in the high intensity regions in the centerof the transparent feature, then

laterally into the regions oflow intensity. The lateral dissolution fronts converge at the inten

sity valleys formed at the jointsof the phase-shifters. The reduction ofthe intensityat the val

leys delays the arrival of the dissolution fronts and causes the resist profile to lag in these

areas. This is seen in both resists. In both Figures 921 and9.22, there is a deviation between

the constant intensity contours and the developed resist profile. The deviation is larger forthe

lower-contrast Shipley 1470 resist However, the overall feature is successfully patterned.

9.3. GENERAL APPLICATIONS

SAMPLE-3D has been used to examine a numberof interesting 2D mask patterns. This

section will discuss briefly some applications of the 3D photolithography simulator.
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1 um (0.64 X/UA) Phase-Shifted Lines

Shipley 1470 : Dev. Time =10 sec, Dose =80 mJ/cm:
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Figure 9.21: 3D Resist Development, simulated on 0.7 urn of Shipley 1470 posi
tive resist with 0.08 \im of post-exposure bake diffusion.
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1 um (0.64 X/UA) Phase-Shifted Lines

Olin Hunt 6512 : Dev. Time = 10 sec, Dose = 240 mJ/cnV

E
3

3.5

wa 323
"S
<

I

2.5

Resist Profile and Intensity Contours
i • • • • • < i « •

4 5

X-Axis (um)

a—L

"•" Resist Profile

'"' 20%Contour

— 30% Contour

— 40% Contour

Figure 9.22: 3D Resist Development, simulated on 0.7 u.m of Olin Hunt 6512
positiveresist with 0.08 urnof post-exposure bake diffusion.
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Simulation results will be presented.

9.3.1. Clear Field Lines & Spaces

One interesting case involving 2D interfeatureeffects is shown in Figure 9.23.0.9 um x

2.0 um opaque lines in a clear field were simulated; the intensity contour and resist profile

plots are shown in Figure9.23. The Shipley 1470resistwas developed for 10 seconds, and as

can be seen, there still remains a thin layer of photoresistbetween the resist lines. However,

when the opaque lines are stretched out infinitely as shown in Figure 9.24, the resist has

cleared completely. There is clearly some length-dependent phenomena occurring in these two

cases. The explanation can be found form a simulation of medium-length lines. Figure 9.25

shows the intensity contours and resist profilesof 0.9 um x 4 um lines. As can be seen from

the intensity contour plot in Figure9.25, there is an intensity saddle in between the tips of die

opaque lines. The intensity here is approximately 75% of clear field, whereasthe intensity in

the middle of the lines is almost 5% higher at 80% of clear field. This 5% difference in die

intensity, which is caused by the proximity effect, is sufficient to cause a difference in the

vertical development of the photoresist The space has cleared in the center of the line-space

structure, but not at the tips of the lines and spaces.

9.3.2. Fine Lines & Spaces on Negative Photoresist

An acid-hardened chemically amplified negative resist model18 has been added to the

3D resist-exposure simulator used in SAMPLE-3D. In Figure 9.26, simulation of a 0.3 um

equal line-space pattern is shown using the 3D photolithography simulator. Note that the

width of the resist lines is narrower towards the substrate; this "necking" effect is observed

experimentally.
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Figure 9.23 : 3D Intensity and Resist Development simulations.
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0.9 um Infinite Lines & Spaces in Clear Field

Shipley 1470 : Dev. Time =10 sec, Dose =80mJ/cm2
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Figure 9.24 : 3D Intensity and Resist Developmentsimulations.
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0.9 [im x 4 jim Lines & Spaces in Clear Field

Shipley 1470 : Dev. Time =10 sec, Dose =80mJ/cm2
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Figure 9.25 : 3D Intensity and Resist Development simulations.
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0.4 |im Equally Spaced Lines

0.4um Equal L/S

Figure 9.26: Image intensity and resist development simulations. The aerial
image simulation was run using X= 0.248 um, NA=0.42 and partial
coherence o = 0.5. The dose was 25.2 mJ/cm2,the bake was for
140"C for 60 seconds and the development time is 120 seconds.
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9.3.3. Projection Lens Aberrations

Coma and astigmatism are two primary lens aberrations which dominate image quality.

The presence of aberrations is often recognized by the fact that contact holes are distorted

from a shape with 90 degree rotational symmetry. The contour plots of the image intensity of

an isolated transparentsquare under the influence of astigmatism and coma are shown in Fig

ures 9.27 and 9.28 respectively. Also shown in these two figures are top views of the pho

toresist profiles printed on Shipley 1470 and Olin Hunt 6512 resist The aerial image simula

tions were run with X= 0.436um, NA = 0.28, and partial coherenceo = 0.3. The lens aberra

tion was assumed to have a maximum optical path distance (OPD) of 0.4X, while the contact

was defined to be at the field coordinates (1,0) which corresponds to the right-hand edge of a

circular lens field.

Coma tends to produce an "ice-cream cone" effectand movement along a radial line.7

The small amount of coma in Figure 9.27 produces a build-up of the intensity on the side of

the feature towards the center of the field. The intensity slope is higher towards the negative

x-axis, which causes the contacts to print with steeper slopes in this direction too. The wall

angles of the contact are steeper on the Shipley 1470 resist than on the Olin Hunt resist This

difference in the wall anglesmight be passedon to subsequent pattern transferprocesses. But

aside from this uniform difference in the slope of the wall angles, there seems to be little

difference between the profiles printed on the two resists.

For astigmatism, there is no movement and spreading is produced both inward and out

ward along a radial line. This resultsin a double ended "football" shapein the radial direction

as shown in Figure 9.28. The printed resist profiles appearat first glance to be more circular

than the intensity contours. But upon closer inspection, it is found that the 30% intensity



Transparent Contact

0.8 A/NA x 0.8 A/NA

a = 0.3

Coma = 0.4^(1,0)

SO

2'

Shipley 1470

Dose = 80 mj/cm2

15 sec Development
LS

•13.
U .1 0 1 LS

X-AXIS

30 sec Development

Intensity Contours

"3T o .» u

XwUk(n)

Olin Hunt 6512

Dose = 240 mj/cm2

15 sec Development

X-AXIS

30 sec Development

«©

Figure9.27: 3D Intensity and ResistDevelopment simulations.
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Figure 9.28: 3D Intensity and Resist Development simulations.
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contour agrees with the 30 second developed profile at the resist substrate intersection. The

slopes of the resist profiles also reflect the change in intensity slope; the wall angles are

steeper along the horizontal than along the vertical axis.

There are no surprises in the resist profiles of opaque contacts either. Figure 9.29 and

9.30 show the 3D resist profilesof a 0.8 tyNA square opaquedefect simulated with coma and

astigmatism respectively. Again, the resist profiles agree with the intensity threshold model.

Astigmatism has produced a rectangular-shaped resist pad, while coma has left a circularbut

asymmetrical resist island.

9.3.4. Isolated Contacts with Optimally-Placed Phase-Shifters

Small subimageable phase-shifters surrounding a transparent isolated contact can be

used to increase the intensity of the light passing through the contact Figure 9.31 compares

the two-dimensional intensity profile and the three-dimensional developed resist profile of a

0.9 urn (0.6 VNA) square contact against thatof the samecontact surrounded by four0.3 um

(02 X/NA) phase-shifters. The phase-shifters are placed so that their centers are 0.7 X/NA

from the centerof the contact; it hasbeenshown12 thatthe0.7 X/NAcenter-to-center distance

optimizes the peak image intensity and image slope of the contact The peak intensity of the

phase-shifted contact is clearly greater than that of the conventional contact The intensity

profile of the phase-shifted contact also shows that a circular ring of low intensity light has

formed around the main peak of the image. This ring is formed by the interaction between die

phase-shifters and the secondary lobe of the contact

The 3D simulations of the resist profile in Figure 9.31 were run on 0.7133 um of Olin

Hunt 6512 resist, without and with post-exposure bake diffusion. Without any post-exposure
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Aerial Image Intensity : 0.9 um Contact, 0.3 u.m Phase-Strips

Olin Hunt 6512 : No post-exposure bake, 30 sec Development

Olin Hunt 6512 : 0.08 ^im ID Diffusion, 30 sec Development

Figure 9.31: 2D aerial image and 3D resist development simulation of a contact
with and without outrigger phase-shifters. The simulation used X
= 0.436 um, NA = 0.28, a = 0.5, resist thickness = 0.713 um.
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bake diffusion, standing waves are formed in the resist Here, theimpaaof thephase-shifters

is obvious; the resist in the center of the contact does notclear unless phase-shifters are used.

However, when post-exposure bake is applied to the resist, both phase-shifted and conven

tional contacts are opened. The phase-shifters stilldo provide somebenefitthough. The resist

wall angle is considerably steeperwith the phase-shifters. The presence of the phase-shifters

also results in a small resist depression around the opening in the resist This depression,

which is seen in both resist profiles simulated with phase-shifters, has a depth of approxi

mately 0.06 um which might be sufficient to cause processing problems during subsequent

process steps.

9.4. SUMMARY

A working version of a 2D exposure and 3D resist development simulator has been used to

study 3D resist profiles from 2D mask patterns, including isolated contacts, isolated islands,

elbow patterns, line-space patterns, and phase-shifted mask patterns. Simulations have been

carried out on both conventional positive and acid-hardened chemically amplified negative

resists.

Extensive simulations have been used to determine the correlation between the 2D aerial

image and the 3D developed resist profile. It has been established that the 2D intensity thres

hold model is adequate for predicting the developed resist profiles as long as the dissolution

front diverges during the development process. If multiple dissolution fronts converge during

the development process, the resist profile will no longer conform to a single constant inten

sity contour. In such situations, full 3D resist simulation is required to determine the resist

profiles and thus to understand the printing process.
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Opaque defects in a clear area provide the most vivid illustrations of the need for 3D

resist development simulation. The lowering of the intensity in the vicinity of the defect

slows down the vertical dissolution and allows lateral dissolution effects to come into play.

Lateral dissolution will speed up the development in the neighborhood of the defect, and and

cause the formation of sharp protrusions in the resist material. The nonvertical dissolution

effects predictedby 3D resist simulations appear to be in accordance to experimentalobserva

tions. Simulations have also shown that the nonvertical resistdevelopment effects decrease as

the exposure dose is increased. In addition, comparison of the intensity contoursto the resist

profile shows that the linewidth variations caused by the presence of the opaque defects are

underestimated by the intensity threshold model.
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CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH

10.1. Conclusions

The research described in this document has been aimed at developing a fast robust and

accurate computer program for the three-dimensional simulation of photoresist development

To achieve this goal, an algorithm for 3D development-etching was selected by examining a

number of 2D etching algorithms, with emphasis paid to understanding and determining the

conditions under which the algorithms would provide accurate results. A 3D development-

etching simulatorwas then implemented and coupled to 2D imaging and 3D exposure simula

tors to form a complete 3D photoresistdevelopment simulator.

Photoresist development-etching algorithms using the cell, string and ray approaches

have been implemented and utilized to examine basic tradeoffs in accuracy, delooping

requirements, CPU time and memory requirements. The advantages and disadvantages of each

algorithm are listed in Table 10.1. Cell-removal algorithms were found to be easy to imple

ment but lacking in accuracy. These algorithms also require a considerable amount of

memory, and are thus unsuitable for engineering workstation applications. The suing method

is fast and efficient, but is error-prone because incorrect surface representation excessively

affects the calculation of the advancement vectors. Another key finding was that the ray algo

rithm produces incorrect results if the etch-rate changes too rapidly. Furthermore, the ray

algorithm merely traces out selected points on the time-evolving surface; there may be ray-

scarce regions thatarenot reached by the initial rays.
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Comoarison of 2D Etchine Algorithms
Method Ease of

Implementation
Memory

Requirements
Computation

Speed
Computation

Time1
Comments

Cell

(Ch.3)
Easy Large Slow 400 sec2 Advantages

Algorithm is robust - no loops
Boundaries, underlying

topography handled easily
Disadvantages
Slow, Inefficient

Inaccurate - faceting
Modified

Cell

(Ch.4)

Easy Very Large Very Slow N/A3 Advantages
Algorithm is robust - no loops
Boundaries,underlying

topography handled easily
Disadvantages
Slow, Inefficient

Array requires lots of memory
Inaccurate

• discretization, faceting
String
(Ch.6)

Difficult Moderate Fast 30 sec4 Advantages
Fast, Efficient, Accurate
Disadvantages
Requires ordered mesh
Needs boundary

clipping, delooping
Errors from incorrect surfaces

. scissoring, rounding
Ray

(Ch.6)
Easy Fast Small N/A5 Advantages

Fast, Efficient, Accurate
Rays are independent

of surface

Disadvantages
Needs boundary clipping
Loops, Ray-Scarce Regions

Ray-String
(Ch.7-8)

Moderate Moderate Moderate 80 sec6 Advantages
Fast, Efficient, Accurate
Nodes are independent

of surface

Disadvantages
Needs boundary clipping
Loops are formed

Table 10.1

1. Computation time measured on a SUN 4/280, for 2D simulation of 30-second resist development with theetch-rate distri
bution of Figure 23.

2. Cell simulation uses 200 x 100 cells.

3. The 5-second development simulation lastsapproximately 1 houron the SUN4/280, andis inaccurate to boot

4. The simulation begins with50 segments, and uses a time-step of AT=0.092 seconds.

5. The ray algorithm is unsuitable forresist simulation owing to thedifficultly in reconstructing the surface from therays.

6. The simulation begins with50 segments, and usesa time-step of AT a 0.1 seconds. Recursive vector checking is used for
accuracy. Simulation with AT = 0.1 seconds andno recursive vectorchecking lasts 67 seconds. Simulation with AT =0.5
and recursive vector checking lasts 52 seconds.
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An approach in which etch-rate^dependent rays are used to advance a string-like mesh

has been found to be the most advantageous for the simulation of etching. This combined ray

and suing algorithm is computationally fast and accurate, insensitive to errors in the local

etch-surface, and has modest memory requirements. The issues affecting the accuracy and

efficiency of the ray-string simulation have been examined in some detail by implementing

the algorithm in two dimensions. A recursive procedure that dramatically increases the accu

racy of the ray-trajectory calculations hasbeendeveloped and incorporated intothe algorithm.

The use of arc interpolation, small time-steps, small segment sizes and smallmaximum allow

able segmentlengths alsoincreases the accuracy of the simulations, but at a cost of increased

computation time.

The combined ray-string algorithm has been implemented in three dimensions in the C

programming language. The data-structure uses multiple linked-lists to represent the nodes,

segments andtriangles that make up the etch boundary mesh. This hierarchical data-structure

is well suited for implementing a number of mesh operations which are vital for preserving

the balance between accuracy and efficiency. These operations include mesh modification,

boundary cupping and delooping ofthe etch boundary surface. The capability for plotting and

arbitrarily clipping the 3D surfacehas been added.

The 3D ray-suing etch algorithm is the key element of a new fast, robust and accurate

3D photolithography simulator called SAMPLE-3D. This simulator integrates the 3D ray-

string etch simulator with 2D imaging and 3D resist-exposure simulators, while also providing

display and print capabilities. SAMPLE-3D has been used tostudy 3D resist profiles from 2D

mask patterns, including isolated contacts, isolated islands, elbow patterns, line-space patterns

as well as phase-shifted mask patterns. Simulations have been carried out on both medium-

contrast and high-contrast positive and acid-hardened chemically amplified negative resists.
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These simulations have provided valuable insight on the role of nonveitical resist dissolution

effects and resist contrast onthepattern printing process.

10.2. Future Research

The SAMPLE-3D simulation program is a powerful tool for studying photolithography.

SAMPLE-3D has been used to briefly examine a number of interesting issues in optical

lithography. However, further systematic simulations are needed to characterize 3D dissolu

tion effects, and to fully determine the impact of these effects onthe pattern printing process.

The simulation results should also be compared to experimental data in thenearfuture.

SAMPLE-3D can also benefit from improvements and extensions to the 3D

development-etching simulator. There are two primary areas for further research, whichare:

Delooping

The delooping of the mesh boundary surface must be made more reliable, more

robust, and faster. At present, the deloop procedure uses a brute force approach in

which all the triangles in the mesh are examined against each other for intersec

tions. A plane-sweep algorithm could be implemented to decrease the number of

intersection tests; this would decrease the computation time from 0(N2) to

O(tflogAO. N being the number of triangles in the mesh. In addition, delooping

could benefit from a more intelligent approach in which only loop-prone areas are

examined. One way in which this could be done is to rely on user-interaction, in

which theuserspecifies avolume orapart of thesurface to be delooped.

Clipping AgainstUnderlyingTopography

In the future, the etch simulator should also be extended to handle underlying
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topography. Presently, the simulation is carriedout within a rectangularboundary,

and the mesh is clipped against a constant z -plane. Addition procedures should be

added to enable clipping against an arbitrary 3D surface representing the surface

underlying the photoresist An alternate approach, described in Chapter 7, is to

drop the etch-rate to zero outside the boundary. However, in such an approach,

care must be taken to gradually ramp down the etch-rate, so as to ensure that the

rays do not bounce offany abrupt "reflective" boundaries.

SAMPLE-3D would also benefit from links to more accurate and rigorous 3D resist-

exposure simulators such as TEMPEST1 or MYeung's vector-based simulator.2 Pattern

transfer simulators could be added to SAMPLE-3D, for the simulation of additional process

ing steps. In addition, simulators for electron-beam or X-ray lithography could be used to

generate etch-rate distribution data for usein the 3Detching simulator described in thisdocu

ment The integration of these simulation tools can be done with relative ease since

SAMPLE-3D is written in aC-shell script A full simulator integrating avariety of 3D simu

lation tools would undoubtedly be of great use for understanding the many complex tradeoffs

between materials, exposure tools and wafer conditions that govern the pattern transfer pro

cess.
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APPENDIX A

DERIVING THE DIFFERENTIAL RAY EQUATION

A.1. Solving the Least Action Problem with Variational Calculus

The problem of least action, as discussed in Chapter 5, is to find conditions that will

minimize the expression

Pt

U=\n(xv*)ds =]n{xva)ds [A.1]
c p(

where n(x ,y ,z) is a arbitrary continuous function. The integral is evaluated over the curve C,

and the limits of integration are fixed at points Pi and Pf. t If the variable U is to be a

minimum, then to first order, the variation about U must be zero. In other words, to first

order, there must be no change in the quantity U as the curve C over which the integral is

evaluated is changed slightly.

Pj

SU=SJn(xyj)ds=0 [A.2]
Pt

Applying the Chain Rule,

W=j
Pt

The problem now is to find an equation for the curve C such that the minimum equation

above is satisfied.

The starting point is the relationship of the line element ds to its projections on a carte

sian coordinate system. The line element ds is related to its projections dx, ay and dz on the

on~ . on~ . on c
-r-fiX + -r-OV + rr-OZ
dx dy dz

ds=0 [A.3]

t The derivation in this section follows substantially from the analysis of Carll,1 who refers to it as a
methodof "decidedadvantages" forproblemsinvolvingthreecoordinate axes. Carll'sderivation is over only
two dimensions x and z, but as shown in this section, it is easily extended to threedimensions.
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axes of a rectangular system by Pythagoras' Theorem.

ds2=dx2+dy2+ dz2 [A.4]

l-<£*+<$*+<£*
l=*/2+y/2 +z/2 [A.5]

In orderto simplify the equations, the' notation is used to denote differentiation with respect

to s, i.e.

x'=— y'=-& z'= —
ds 7 ds ds

X»=&L y»=£L 2»-£l
ds2 y ds2 ds2

Now, if [A.5] is differentiated withrespect tos, the following equation is obtained.

xV+yy+ z'z" = 0

This can also be written in variational form as

x'&c'+y'&y + z'8z' =0

where 6V isdefined as the change inx' as the variable x ischanged tox +Sx.

Using this relationship, Equation [A.7] canbe rewritten as

[A.6]

[A.7]

[A.8]

Since [A.8] is true, any integral which has [A.8] as a factor must also be zero. Therefore, if

[A.8] is multipled by n(x y ,z) and integrated over thecurve C, theresult will still be zero.

Pt

jn(x,yj)
Pt

x'i^+y'i^+*'i^ ds=0 [A.9]

Now, in the definition of the problem, it was specified that the curve C over which the

integration is being performed is fixed at the points Pt and Pf. So there is no variation with s

at die end-points, and

'̂(/>l)=x'(i>/)=y'(/»|.)=y'(P/)=z'(P<.) =z'(P/) =0



Integrating [A.9] by parts and using theend-point conditions specified above,

PiJ[(racO'&c +(nzjfy +(/iz0'5zl ds =0
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[A.10]

The whole point of the exercise so far is to obtaina zero-valued expression in terms of

&c, By and 5z. Now,whenEquation [A.10] is subtracted from [A.3], the result is

Pt {f-(flxT}5x+{|-(^+{f-(«oj& ds [A.11]

In order for tiie quantity U to be a minimum, the firstorder variation W must be zero, t $U

in [A.11]can only be zero if each term in the curly brackets is zero, so

[A.12a]

[A.12b]

dn d dx

dx ds

dn

dy =
d

ds

dy_
ds

» «

dn d dz

dz" ds ds

d_
ds

dt_
ds

= Vn

[A.12c]

This set of equations [A.12a-c] is easily recognized as the scalarform ofthe vector differential

ray equation

[A.13]

The differential ray equation is thus derived from the least action principle.

It is very important to recognize the conditions over which the differential ray equation

holds. The derivation holds as long as the function n(x,yj) is continuous, with continuous

partial derivatives up to tiie second order in x, y and z. When the function is discontinuous,

the calculus of variations can also be used to derive the laws of refraction.^

t The condition AU = 0 actually forces U to be an extremum, Le. U could be a minima, a maxima, or a
saddle-point In order for U to be a minima, the second order variation about U mustbe positive. Bom2 in
Appendix I, Sections 9-11, pp.731-734, proves that this condition is met

t Bom,2Appendix I. Section 11,p.733.
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n2sin92 = ni sin9!

Furthermore, the condition of the minima 8i/ = 0 holds only as long as not more than one ray

passes through any point of the neighborhood. This condition limits the rays to the same side

of an envelope which can undergo multiple reflections and refractions. § In practical terms,

however, this does not impose any limitation on the use of the differential ray equation; it

merely recognizes that rays that arerefracted or reflected will behave differently than rays that

do not undergo the same refractions or reflections.

A.2. The Differential Ray Equation and The Eikonal

The eikonal equation is the basicequation of geometrical optics. It is often writtenas

Wt>\2 = {nf [A.14a]

or explicitly as

&
dx

&
dy

&
dz

=(n)2 [A.14b]

The eikonal can also bewritten in terms of the unit vector s, where s is related tothe position

vectorr by the simpledifferential relationship sds =dr.

VC =nS=n£ [A.14c]
In the above equations, n is the optical refractive index. But for the purposes of this discus

sion, n will be regarded asanarbitrary butcontinuous function. This allows the results of this

section to be generalized, so that the references to geometrical optics are not necessary.

§ Born 2discusses this condition in detail in Chapter 3, Section 3.3.2-3, pp.127-132. For example,
geometrical optics, rays that pass through alens are contained within an envelope where the least action prin
ciple is satisfied; the optical length ofall the rays within this envelope is minimized. Rays that do not pass
through the lens might have shorter optical lengths, but these rays cannot be compared to rays that pass
through the lens as they are notonthe same side of the envelope.

m
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In this section, it will beproved that the eikonal equation isa solution tothe vector dif

ferential ray equation [A.13], reproducedbelow for convenience. $

d_
ds

dx_
ds

n- = Vn

The first step in tiie proof is to differentiate the vector form of the eikonal.

d_
ds

dt_
ds =>o

Then, apply the Chain Rule to the right side ofthe equation.

_d_
ds

dr_
ds

n- =̂ .V(V0
Substitute fordr/ds using [A.14c]

ds

dt_
ds

=̂ VC-V(VO

Now, in vector calculus, the Chain Rule has the form below.

V(AA)=2AV(A)

So, Equation [A.18] can be rewritten as

ds

dr_
ds

=̂V(V<;.VO
But according tothe eikonal equation, V£-V£ = n2. Therefore,

d_
ds

d_
ds

• «

dt

ds

dx

"A" -£voo
d_
ds

dt_
ds

= V(n)

This last equation, is, of course, tiie differential ray equation [A.15].

t This prooffollows substantially thatof Born,2 Chapter 3.2,p.122.

[A.15]

[A.16]

[A. 17]

[A.18]

[A.19]

[A.20]
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All the.pieces of the jigsaw puzzle may now be put together. The differential ray equa

tion states that there is a ray with a trajectory that follows sCxya), where ds is the line ele

ment, and the unit vector s is the direction of the ray at every point (x ,y ,z). The eikonal equa

tion, which has been shown to satisfy the differential ray equation, states that an arbitrary

function £Cc,y,z) will satisfy the eikonal equation if IV£l2=/t2. Now, if

C(x*y >z) =constant is a 3-dimensional surface, thenby definition, the gradient V£(x ,y,z) is a

vector that is normal or tangential to the surface at any point (x,yj). And since VC,(x,yfz) is

parallel to the unit vector s, the surface t>{xy,z) must be normal to tiie ray. Therefore, the

eikonal and differential ray equations state that the surface C(jc ,y,z) is normal to all tiie rays

that satisfy the differential rayequation. The surfaces

C(r) =constant [A.21]

are called the geometrical wave surfaces or the geometrical wave fronts, and the rays are the

orthogonal trajectories of the wave surfaces.

It is worth mentioning at this point that the eikonal equation can also be derived from

the electromagnetic wave equation, f The eikonal can then be used to derive the differential

ray equation as shown in this section. This procedure is, in fact, the basis of geometrical

optics. However, tiie purpose of the discussion inthis appendix istoshow that the same equa

tions can be produced from the least action principle using variational and vector calculus.

This provides for amore general approach. And as aresult, the ray propagation equations can

be applied to wide-ranging problems, such as geometrical optics, the mechanics of amoving

particle, and even geometrical wave-front etching. This last problem, isof course, of particu

lar interest in this thesis.

Born,2 Chapter 3.1, pp.109-121.
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A.3. Dlscretizlng the Scalar Form of the Differential Ray Equation

The set of differential equations [A.12a-c] may be simplified even further to yield a

result that is more amenable to discretization. Writing out [A.12] in full, the following equa

tions are obtained.

dn _dn dx dh rA -..
-r— ss ———- + n—=- [A.zzaJ
dx ds ds ds2

dn _dn dy . _d}y ,.„.,
-r— = ——f- + n—X [A.22D]
dy ds ds ds2
dn dn dz , d2z .....

The term dn Ids can be eliminated by using the Chain Rule.

dn _ 9n dx_ dn dy dn dz
ds" dx ds dy ds dz ds

Substituting for dn/ds and dividing both sides by n yields the set of equations below.

d2x _ 1 dn I dn dx dx I dn dy dx I dn dz dx
ds2 n dx n dx ds ds n dy ds ds n dz ds ds

dty 1 dn J_jto.ffcjfy ldndydyldndzdy
ds2 n dy n dx ds ds n dy ds ds n dz ds ds

d2z I dn I dn dx dz I dn dy dz I dn dz dz
ds2 ~ n dz n dx ds ds n dy ds ds n dz ds ds

[A.23a]

[A.23b]

[A.23c]

This set of ordinary differential equations is the differential solution to the least action

problem. Now, in etching, tiie function n is related to the etch-rate R by

Therefore,

B(I^>=^k) [A-241

1 3b 1 3R 3 . „.
7aT=-R"37=-37(lnfi)

Similar expressions apply for the differentiation over y and z. The set of differential equa

tions [A.23a-c] may now be written in the following form: t

t This is the form usedby Barouch etal.3
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=-^(ln/?)+̂ (ln/?)^ +̂ -(ln/?)^-^ +l-(ln^)^ [A25a]
ds ds dy ds ds dz ds ds

<£L*OnR)+±QnR)%-&+±Q*R)$-%-+f QnR)%-%- [A.25b]
ds2 <ty djc dy dy dy ds dy dz ds ds

dh

ds2
i0n«)+̂0n«)f f 4an«)ff+ A(.n«)ff *w

The equations arenow in a form more suitedto discretization, since the partial terms

£(•»*) £<">*> £<">*>
canbe evaluated independent of tiie increments dx,dy,dz andds. The differential equation

[A.25a] can be discretized as follows. The discretized forms of [A.25b] and [A.25c] are simi

lar.

As

(*i+i-*«)
As

& -*M)

As

dx As As

^ a /i« »xCyi+i-yi) (*«+i-*i)
+ "T-\Ui k )

dy As Ay

+az"Qn^)—S S-"
Given astep size Ay,initial values ofx,,yt and zh and the identity (from [A.4])

[A.26]

Ax2+Ay2 +Az2=As2

it ispossible to solve for the values ofjci+1, yl+1 and z,+1 at the end ofthe time-step. Repeated

iterations can, ofcourse, be used to find the position ofthe curve s(x ,y j) atsome final time.

A.4. Dlscretizing the Vector Form of the Differential Ray Equation

The vector form of tiiedifferential ray equation [A. 13] canalso be discretized for use in

discrete multiple-time-step calculations. For the purposes of etching simulation, replace the

function n(x,y,z) with the inverse of the etch-rate distribution R(x,yj), as in [A.24]. The



differential ray.equation then becomes

d f 1
dy R(xyj)

s = V
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1

R(xyj)
[A.27]

The equationmay be simplified by using the chainrule on the right side.

=-^-V(K) [A.28]
R2

Discretization comes next If As is the distance etched in some time-step AT in an average

etch-rate R^, i.e. As = R^AT, then

Rearranging the terms,

V> J

d 1
—s

dy R

±*
1

V(tf)

-l-jVWR^AT =--^-V(K) AT

[A.29]

[A.30]

Now, if tiie equation above is made to apply between two points Pi and 7*2 an incremental

distance apart, then [A.30] becomes

jh Si 1
*2 K i Kave

S2 1 1
IT=-^-v(* )AT +•iT~
*2 ^ave *M

s2=-^i-V(/?)AJ+Sr
/?282-81=-^—V(/?)AT +S!

*2

*1

k «

Now, tiie average etch-rate Rave may be written as t

t Note that one could also write the averagerate as

/?««=0.5(/?i+/?2)

in which case the difference between the two forms is

1 (*, +*2) 1 1 (Xi-*tf
<>« —

(l/*)„. 2 i/_L +_Lx 2 (Ri +RJ
2KRi R2*

The difference is negligible as long as the difference in the etch-rates Ri and J? 2is small.

[A.31]
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_±
R\ R2R ave ^

The discrete etch-rate equation then becomes

(Ri+R 2)S2-Si=-0.5 p y V(/?)AT + S! -1
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[A.32]

[A.33]

This equation relates the difference in the unit vectors Si and S2 to the gradient of the etch-

rate. The differential ray equation in this form is used in the ray-based etch simulator

described in Chapters 5-8.

It is worth examining Equation [A.33] for different conditions. If/?2=/?iandV/?=0

then Si =s2 and there is no change in tiie direction vectors. This is to be expected; a ray

should not be deflected asit travels through a region with uniform etch-rate. Now, if V/? is a

vector parallel to Si, e.g. if Si and Vrt have only z-components, then clearly s2 will remain

parallel to st. Physically, this means that aray traveling normal to avelocity field willnotbe

refracted. In optics, a light ray perpendicular to a glass plate will not be deflected; the only

effect of the glass plate is toslow down the speed of the ray.

What happens if IV/? I»1? This could occur if the etch-rate is discontinuous, such as

at an abrupt interface. From Equation [A.33], there is clearly alimit on the magnitude of the

vectors. Taking tiie magnitude of thevectors in [A.33] yields

S2-Si=AS

IS2-Sil2=IASl2

Since S! and S2 are unitvectors, there is asize-limitation onAs, i.e.

[A.34]

IAS I <2 [A.35]

since the maximum length oftwo unit vectors is 2. Therefore, if IV/? I»1 ofif AT is very

large, then the term on the left of Equation [A.33] could have a magnitude larger than 2,

which violates [A.35]. This means that the differential ray equation will not work at abrupt
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boundaries or when the time-step chosenis too large. At abrupt boundaries, it is necessary to

use Snell's law of refraction. For large time-steps, if IAs I>2, the time-step has to be broken

up into smaller time-steps. This leads to the notion of recursivelength checking, discussed in

Chapter 7.
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NAME

sample3D- 3D Simulationof Photoresist Development

SYNOPSIS

sample3D [-if splat-inputfile] [-cf contourfile] [-bf bleach-inputfile] [-solid] [-ascii] [-rb
binary-etchrate-file] [-ra ascii-etchrate-ftle] [-et etchtime] [-ptprinttime] [-plot] [-h]

DESCRIPTION

SAMPLE3D is a user-oriented shell script for the Simulation and Modeling of Profiles in
Lithography and Etching. The program integrates aanumber of process simulators for three-
dimensional simulation of optical lithography, while also providing display and print capabili
ties.

The simulation of optical lithography involves modeling the process by which patterns on a
mask are transferred onto a photoresist-coated wafer via exposure tooptical radiation. Essen
tially, this process involves three major components : imaging, exposure-bleaching and etch
ing. SAMPLE3D simulates the three-dimensional (3D) profile of tiie developed photoresist as
a function of time by first using SPLAT to calculate the aerial image intensity incident upon
the photoresist. The exposure ofthe photoresist to light triggers chemical changes inthe pho
toresist; the chemical changes or exposure-bleaching is modeled using Dill's algorithm in
BLEACH. An exposure model then generates a three-dimensional etch-rate distribution
throughout the volume of the photoresist This distribution is then used in ETCH, a three-
dimensional etch simulator based on the ray-string algorithm, togenerate a three-dimensional
profileof the photoresist

The options for each of the process modules SPLAT, BLEACH and ETCH, are specified
through the command line. In order to run SPLAT, the splat-inputfile must be specified. (See
the SPLAT User Manual for details on SPLAT input formats.) Similarly, to run BLEACH for
exposure-bleaching simulation, the bleach-inputfile must be specified. This inputfile is similar
in format to that ofSAMPLE. (See the SAMPLE User Guide for details.) BLEACH will pro
duce athree-dimensional etch-rate array for use in ETCH. However, ETCH will only run if
theetch-time hasbeen specified in thecommand line.

A full 3D simulation involving all three modules can be run using the command:
%sample3D -ifsplat-inputfile -bfbleach-inputfile -et30

where splat-inputfile and bleach-inputfile are the names of the input files. The command
above will run the etch simulator for 30 seconds ofdevelopment time.

Alternately, SAMPLE3D can be run without using all the simulation modules mentioned pre
viously. For example

%sample3D -cfcontour-file -hibleach-inputfile
will only run BLEACH. BLEACH will in turn produce a binary etch-rate file,
"rval.3D.binary". ETCH can then be run using the following command.

%sample3D -rb rvaUD.binary -et30-pt10
Using commands such as the above, it isno longer necessary torun full 3D simulations. This
saves time, since the exposure-bleaching simulation can be quite time-consuming if the pro
cess involves post-exposure bake diffusion.
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OPTIONS

-if splat-inputfile

reads theSPLAT inputdata firom the file splat-inputfile. (See SPLAT UserManual for
detailed instructions.) SPLAT will only be run if the splat-inputfile is specified. If a
contour-file is defined using SPLATs Trial 11,then the script will pass on the contour-
file to BLEACH.

-cf contour-input-file

specifies the file in which the intensitycontour data is stored. This command is used to
bypass SPLAT. If both the contour-file and the bleach-inputfile are specified, the script
will branch to the BLEACHsimulator. The contourdata must be arranged as specified
in the contour manual.

-bf bleach-inputfile

reads the exposure-bleach instmctions from the file bleach-inputfile. This file has the
exact same format as that of the (2d) SAMPLE program. (See SAMPLE 1.7a User
Guide for detailed instructions.) BLEACHwill only run if both the contour-file and the
bleach-inputfile are specified. If the etch-time is specifiedas well, the script will branch
to the ETCH simulator for the etching simulations.

-solid

will cause the BLEACHprogram to printout 3D contours of constantM-values to tiie
file Mmxyz.solid.3D". The data is printed out in pdraw format, and can be plottedout
using the command

% pdraw -h -nosort mxyz.solid.3D

-ascii

forces the BLEACH simulator to print out the etch-ratedata in ascii format The ascii
file is nrval3D". This is useful if the data-file is to be ported to a different machine.
The default however, (if -ascii is not specified) is to print the data in a binary file,
"rval.3D.binary". Readingand writingin binarysignificantly reduces the I/O time.

-rb binary-etchrate-file

will force the program to read the etch-ratedata from the binary file binary-etchrate-file.
This option will bypass both SPLAT and BLEACH. However, ETCH will only run if
the etch-time has been specified.

-ra ascii-etchrate-file

will force the program to read die etch-rate data from die ascii file ascii-etchrate-file.
This option will bypass both SPLAT and BLEACH. However, ETCH will only run if
the etch-time has been specified.

-et etchtime

-pt printtime

specifies the total etch and print times for the ETCH simulationprogram. The etch-time
specifies the total development time, and the profile will be plotted every printtime
seconds. Note: ETCH will not run unless the etch-time has been specified.
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-plot

causes interactive plotting.

-h

forces theCTCtf-simulated plotsto be drawn with hiddenlines.

AUTHOR

Kenny KJI. Toh (ktoh@niascot.berkeley.edu)

FILES

mxyzjolidJD
rvalJD

rval3D.binary
curves.plot
curves.plot2D
dataplot.ps

contours ofconstant M

asciietch-rate data (3D array)
binary etch-rate data (3D array)
3D photoresist profile
3Dphotoresist profile projected ontothex-y plane
temporary POSTSCRIPT file

SEE ALSO

drawplot(L), contour(L), pdraw(L)
SPLATUserManual, BLEACH(L), ETCH(L)
SAMPLEUserGuide, parsejsplat(L)

277
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NAME

pdraw - 3D plotprogram forX-windows andPostscript

SYNOPSIS

pdraw [-v vx vy vz] [-ooptions-file] [-^printer] [-sscale] [-e] [-h] [-nosort] [-noplot] [-print]
[-ps] [-U "topIabeP] [-xl "xlabel"] [-yl "ylabel"] [-zl "zlabel"] plotfikl pk>tfile2~.

DESCRIPTIONS

Pdraw is a program for drawing 3D plots on X10 or XI1 windows. The program will also
produce a POSTSCRIPT plot which can be dumped out to an APPLE LaserWriter. Pdraw
reads in x-y-z data from a plot-file and manipulates that data according to options specified
either in the command-line or in a options-file. The plot-file can be compressed (see
compress(l)); compressed files will be uncompressed automatically. The program then plots
lines on a screen or dumps die plots to a POSTSCRIPT file.

The plot-file input data consists of alternating x, y and z values, in the format shown below.

Data File Format (plot-file)

xmin xmax ymin ymax zmin zmax
ncurves

npts

xl yl zl
x2y2z2

npts

xl yl zl
x2y2z2

In the above, xmin, xmax, ymin, ymax, zmin and zmax are lower and upper bounds of the
desired plot,ncurves arethe number of curvesto be plotted, andnptsarethe numberof points
in each curve. The data file can consist of more than one set of curves to be plotted; each set
(i.e. one set for each separategraph) is separated from the next by a blank line.

Upon starting up the program, pdraw will read in thedata stored in tiieplot-file, aswell asany
plotting options specifiedeither in the commandline or in the options-file. Pdraw then uses
me given view direction to rotate and transform die plot onto a plane perpendicular to the
viewing vector. Currently, only parallel projection is supported. If die program is being run
under X-windows, die plot will then be drawn on the screen. The viewing vector can be
changed using the "H", "J","K", "L" and"0" keys on the the keyboards; the ploton the screen
can be rotated sideways using the "H" or "L" keys, rotated up or down using the "J" and "K"
keys, and drawn with the original viewing vector using"O". The "A", nS", "D" and"F keys
will produce 90° rotations. "Z" will plot the image projected on the x-y plane (z=constant),
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"Y" will plot die image projected on the x-z plane (y=constant), and "X" will plot the image
projected on the y-z plane (x=constant). The final view angle will be saved and used for die
POSTCRIPT plot Finally, the user will be prompted as to whether or not the POSTSCRIPT
plot is to be sent to a printer.

OPTIONS

-vvxvyvz

reads in die viewing eye position, relative to (0,0,0). The plot will be rotated and
transformed so that the z-axis is parallel to this position. For example, a view position
of (1,0,0) means that the 3D structure is being viewed with parallel projection from the
x-axis.

-o options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parser recognizes only a limited set of key
words; their values are either numbers, quoted strings, or die words "on" and "off". All
the words in theoption specification mustbe on the sameline. The pound sign(#) indi
cates thattheremainder of thelineisa comment to be ignored by die parser.

List of Options (options-file)

xlabel "LABEL" #[default = "X-Axis"] - for the x-label

ylabel "LABEL" #[default = "Y-Axis"] - for the y-label
zlabel "LABEL" #[default = "Z-Axis"] • for the z-label

toplabel "LABEL" #[default = "3D Line Plot"] - for the top-label
equalscale on/off #[default = on] - for equal x-y scaling
postscript on/off #[default = on] - for postscript(PS) plot
printplot on/off #[default = off] - send PS file to printer
noplot on/off #[defeult = off] • no graphics plot
printer "PRINTER" #[default = SPRINTER] • define the printer
line on/off #[default = on] • draw die line

linechangeon/off #[default = off] • change die linetypes
marker on/off #[default = off] - draw die marker

markerchange on/off #[default = off] - change the markertypes
hiddenline on/off #[default = off] • for hidden-linedrawings
nosort on/off #[default = off] • for hidden-linedrawings
scale [0.1 • 1.0] #[default=1.00] - scales the PS plot
xticks [1 - 20] #[defauit = 2] -no. of x-divisions

yticks [1 - 20] #[default = 2] -no. of y-divisions
zticks [1 - 20] #[default = 2] -no. of z-divisions

-Pprinter

specifies which printer to which to send the postscript plot The current default sets the
printer name to theenvironment variable SPRINTER. If thisvariable is notset, then die
printer used is thelp550M printer in 550M Cory.

-s scale

sets a scale factor. This is used only for POSTSCRIPT plotting.

-e forces unequal scales tobeapplied todie x, yand z axes. The boundary of the 3D object
will then resemble a cube.
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-h draws polygons with hidden-lines.

-nosort

prevents sorting for tiie hidden-lineoption.

-noplot
prevents plots on the graphicsdisplay.

-print
sends plots to the printerautomatically.

-ps turns the postscript plotting option off. This can also be done by setting the
POSTSCRIPTenvironmentvariable to OFF. e.g. % setenvPOSTSCRIPToff

-tl toplabel

-xl xlabel

-yl ylabel

-zl zlabel

sets label options.

host:display
opens a window on the given host and display

=geom

-rv

-bw border-width

-bd color

-fg color

-bg color
sets input options for the X-window system.

BUGS

Not really that many. The POSTSCRIPTlabels need to be adjusted. The labels don't come
out well when the picture is rotated beyond the default view. The parser needs to be
improved. There should be a better way to put change linetypes and markertypes. Log axes
might be nice. Also should incorporate drawplotmodificationshere.

AUTHOR

Kenny K.H. Toh (ktoh@mascotberkeley.edu)

FILES

dataplot.ps temporary POSTSCRIPT file

SEE ALSO

contour(L), drawplouT)
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3D Line Plot
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NAME

contour - contourplot program for X-windows, HP2648s andPostscript

SYNOPSIS

contour [-o options-file] [-Pprinter] [-s scale] [-c level] [-cstep step-size] [-ex] [-g] [-j join-
level] [-1] [-noplot] [-print] [-ps] [-old] [-tl "toplabel"] [-xl "xlabel"] [-yl "ylabel"] [-3D]
contour-file

DESCRIPTIONS

Contour is a program for drawingcontour plots on X10/X11 windows or HP2648 terminals.
The program will also produce a POSTSCRIPT plot which can be dumped out to an APPLE
LaserWriter. Contour reads in data on a 3D surface firom a contour-file and manipulates that
data according to options specified either in the command-line or in a options-file. The plot-
file can be compressed (see compress(l)); compressed files will be uncompressed automati
cally. The program then drawscontours on a screenor dumps the contoursto a POSTSCRIPT
file.

The 3D surface input data consists of z-values of the 3D surface, arranged on a rectangular
gridof size (xmax - xmin) x (ymax - ymin). The datafile format is shown below.

Data File Format (contour-file)

xmin xmax ymin ymax
nxpts nypts

zl

z2

In the above, xmin, xmax, ymin and ymax are lower and upperbounds of the grid, and nxpts
andnyptsare die number of grid divisions in x andy. Alternately, if the -3D flag is specified,
the data-filecould consist of triangles, specifiedin pdraw(L) format i.e.,

Data File Format (plot-file)

xmin xmax ymin ymax zmin zmax
ncurves

4.0

xl yl zl
x2y2z2
x3y3z3
xl yl zl

4.0

xl yl zl
x2y2z2

x3y3z3
xl yl zl
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Upon starting up the program, contour willread in thedata stored in die contour-file andwill
then find the maximum and minimum z-values of the surface. It will then prompt for a con
tourstep-size(i.e. the contour increments), andread in any plottingoptionsspecified eitherin
the command line or in the options-file. The plot will then be drawn on the screenif possible.
Finally,the user will be promptedas to whetheror not the POSTSCRIPT plot is tt)be sent to a
printer.

OPTIONS

-o options-file
reads plotting options firom the file options-file. Each option specification consists of a
keyword and its correspondingvalue. The parserrecognizes only a limited set of key
words; their values are either numbers, quoted strings, or die words "on" and "off". All
the words in the option specification must be on the same line. The pound sign (#) indi
cates that tiieremainder of the line is a comment to be ignoredby die parser.

List of Options (options-file)

#[default = "X-AXIS"]

#[default = "Y-AXIS"]
for the x-label

for the y-label
xlabel "LABEL"

ylabel "LABEL"
toplabel "LABEL"
the top-label
grid on/off
equalscale on/off
noplot on/off
postscript on/off
printplot on/off
cally
printer "PRINTER"
contlabel on/off

joinlevel high/low
scale [0.1 -1.0]
linetypes [1 - 3]
xticks [1 - 20]

yticks [1 - 20]

#[defirolt = "CONTOUR PLOT"] for

#[default = off|

#[default = on]

#[default = off]

#[default = on]

#[default = off]

#[default = SPRINTER]
#[default = on]

#[default = ~]
#[default=1.00]
#[default = 2]

#[default = 4]
#[default = 4]

draws a grid
for equal x-y scaling
don't draw graphics plot
for postscript (PS) plot
• print PS file automati-

define the printer
for contour labels

for joining curves
scales the PS plot
no. ofcontour linetypes
no. of x-divisions

no. of y-divisions

-Pprinter

specifies which printer to which to send the postscript plot The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set, then the
printer usedis the IpSSOM printer in S50M Cory.

-s scale

setsa scale factor. This is usedonly for POSTSCRIPT plotting.

-c level

forces the program to compute the contours at a single value of z, specified by level.
The contours will be written to the file image.cont. The output data is organized in
SAMPLE plot format i.e.,
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Single contour (imagexont)

xmin, xmax, ymin, ymax
ncurves

npts

ptljcptl.y
pt2jcpt2.y

npts

ptljcptl.y

-cstep step-size
defines the contour step-size. If this is not defined, the program prompts for the step-
size.

-ex expands the data intoa triangular mesh. The meshis stored in contour-file3D. Thus, if
die initial contour file is named im.cont, then the surface mesh will be stored in
im.cont3D.

-g forces a grid to be drawn.

-} joinlevel
causescontourcurves to be joined where possible. This is done by defininga boundary
layer around die rectangular border, and setting the z-value of that boundary layer at
eitherdie maximum or minimum z-value. joinlevel =» HIGH or high sets the border z-
value to its maximum value: this is useful for plots which have high average z-values.
joinlevel =LOW or low sets theborder z-value to its minimum value: this is useful for
plots which have low averagez-values.

-I suppresses the contour labels.

-noplot
preventsplotson die graphics display.

-print
sends the POSTSCRIPT lot to the printer automatically.

-ps turns off the postscript plotting mode. This can also be done by setting the
POSTSCRIPT environment variable to OFF. e.g. % setenvPOSTSCRIPT off

-old accepts an older contour format for the contour-file, based on a rectangular 50 x 50
array. Thedata file format is similar to that described earlier except for the first 3 lines.
nxpts and nypts (both equal to 50)are omitted. Also, xmin and ymin are thecoordinates
of the lowerleft comer of die grid whilexlength andylength definedie area beingexam
ined.

Old Data File Format (contour-file)

xmin ymin xlength ylength
zl

z2



CONTOUR(L) USER GUIDE 285

-tl toplabel

-xl xlabel

-yl ylabel
sets label options.

-3D specifies the plotfile to be of pdraw(L) format As such, the plotfile shouldconsistof
triangles only. For example, "contour -3Dcurves.plot3D" willproducecontourplotsof
the 3D plotfile curves4>lot3D.

hosv.display
opens a windowon die givenhost and display

-d host:display

=geom

-rv

-bw border-width

-bd color

-fg color

-bg color

-Uifont-name

sets inputoptions for the X-window system.

AUTHOR

Kenny K.H. Toh(ktoh@mascotberkeley.edu)

FILES

dataplot.ps temporary POSTSCRIPT file
imagexont file produced by-c level option

SEE ALSO

SPLAT, drawplot(L), pdraw(L)
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NAME

drawplot - plot program forSunview, X-windows,HP2648s and Postscript

SYNOPSIS

drawplot [-o options-file] [Sprinter] [s scale] [-ar] [-clip] [-e] [-g] [-1] [-noplot] [-print] [-
ps] [-xlog] [-ylog] [-t template-file] [-tl "toplabel"] [-xl NxlabelH] [-yl "ylabel"] plot-filel
p!ot-file2.M

DESCRIPTIONS

Drawplot is a program for drawing 2D plots on XlO/Xll windows, SUNVIEW displays, or
HP2648 terminals. The program will also produce a POSTSCRIPT plot which can be dumped
out to an APPLE LaserWriter. Drawplot reads in x-y data from a plot-file and manipulates that
data according to options specified either in the command-line or in a options-file. The plot-
file can be compressed (see compress(l)); compressed files will be uncompressed automati
cally. The program then plots lineson a screen or dumps the plots to a POSTSCRIPT file.

The plot-file input dataconsistsof alternating x and y values, in the format shown below.

Data File Format (plot-file)

xmin xmax ymin ymax
ncurves

npts

xlyl
x2y2

npts

xlyl
x2y2

In the above, xmin, xmax, ymin and ymax are lower and upper bounds of the desired plot
ncurves are the number of curves to be plotted, and npts are the number of points in each
curve. The data file can consist of more than one setof curves to be plotted; each set (i.e. one
set foreach separate graph) is separated from thenextby a blankline.

Upon starting up the program, drawplot willread in thedata stored in theplot-file, aswellas
any plotting options specified either in the command line or in the options-file. The plotwill
then bedrawn onthescreen if possible. Finally, theuser willbe prompted asto whether ornot
thePOSTSCRIPT plotis to be sentto a printer.



DRAWPLOT(L) USER GUIDE 288

OPTIONS

-o options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parserrecognizes only a limited set of key
words; their values are either numbers, quoted strings, or the words "on" and "off". All
the words in the option specificationmust be on the same line. The pound sign (#) indi
cates that the remainder of the line is a comment to be ignored by the parser.

List of Options (options-file)

xlabel "LABEL" #[default =
ylabel "LABEL" #[default =
toplabel "LABEL" #[default=
autorangeon/off #[default=
clip on/off #[default=
equalscaleon/off #[default=
grid on/off #[default =
noplot on/off #[default =
postscript on/off #[default=
printplot on/off #[default
cally
printer TRINTER" #[default =
line on/off #[default =
linechange on/off #[default=
marker on/off #[default =

markerchangeon/off #[default=
landscape on/off #[default:
xlog on/off #[default=
ylog on/off #[default:
scale [0.1 -1.0] #[default =
xticks[l-20] #[default:

yticks[l-20] #[default=
sleeptime [1 - 20] #[default :
templatefile "template"#[default •

"X-AXIS"] -fbrthex-label
"Y-AXIS"] -forthey-label

:"X-Y LINE PLOT"]- for the top-label
:on] - automatic axis ranging
•off] - clips the picture
:off] - for equal x-y scaling
:off] - draws a grid
:off] - don't draw graphics plot
:on] - for postscript (PS) plot
s off] - print PS file automati-

SPRINTER]

on]

oft]

off]

off]

off]

off]
off]

'1.00]
'4]

<4]

•5]

- define the printer
- draw the line

• change the linetypes
• draw the marker

- change the markertypes
- printin landscape mode
• x-axis in log-scale
• y-axis in log-scale
• scales the PS plot
-no. ofx-divisions

-no. of y-divisions
-SUNVIEW plot time
- plot/markertemplates

-Pprinter
specifies which printer to which to send thepostscript plot The current default sets the
printer name to theenvironment variable SPRINTER. If this variable is notset then the
printer used is the lp550M printerin SSOM Cory.

-s scale

setsa scale factor. This is usedonly forPOSTSCRIPTplotting.

-ar forces no automatic ranging of thex and y axes. Without thisoption, automatic ranging
is set ON, and the program tries to select the best axis-scales possible. The autorange
option is also turned off when either xticks oryticks isdefined in theoption-file.

-clip forces clipping within the plot boundary.

-e causes the x and y gridsto be drawn with equalscales.

-g forces the grid to be drawn.
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-1 prints the postscript plot in landscape mode (rotated).

-noplot
stops the program from drawing on a SUN, X or HP graphics window. Only the
postscript plot will be made.

-print
sends the postscriptplot to the printerautomatically.

-ps turns off the postscript plotting mode. This can also be done by setting the
POSTSCRIPT environment variable to OFF. e.g. % setenv POSTSCRIPT off

-xlog
draws the x-axis on a log scale.

-ylog
draws the y-axis on a log scale.

-t template-file
reads the plot and marker template from the file template-file. This is used to set the line
type, marker type, and line-labelof each line. The file should have 2 numbers per line;
the first numbercorresponds to the line type [0-10], while the secondcorresponds to the
marker type [0-16]. The line-label is the first word that follows the keywords "label",
"linelabel" or "linejabel". The line-label should be placed inside quotes. The number
of lines in the template-file corresponds to the number of different line or marker types
that will appear in the plot - the curves will cycle through these plot/marker types. A
sample template-file is shown below.

Example Plot/Marker Template File (template-file)

lnjype = 1 mkrjype = 0 label = "Line 1"
ln_type =2 mkrjype = 0 label="Line 2"
ln_type =3 mkrjype = 1 label= "Line 3"
lnjype =4 mkrjype = 13 label = "Line4"
Injype =5 mkrjype =2 label= "Line 5"
lnjype =6 mkrjype =4 label ="Line 6"

POSTSCRIPT Line Types (example: % drawplot -t templateJn f771ines)

0 No Line

1 Solid Line

2 Dashed Line

3 Dotted Line

4 Dot Dash

5 Double Dot

6 Long Dash
7 Dot Dash

8 Long Dots
9 Short Dash

10 Dot-Dot Dash

POSTSCRIPT Marker Types (example : % drawplot -t templatcmkr
f771ines)
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0 No Marker

1 Point

2 Square (White)
3 Square (Gray)
4 Square (Black)
5 Diamond (White)
6 Diamond (Gray)
7 Diamond(Black)
8 UprightTriangle (White)
9 Upright Triangle (Gray)
10 Upright Triangle (Black)
11 Upsidedown Triangle(White)
12 UpsidedownTriangle (Gray)
13 Upsidedown Triangle (Black)
14 Circle (White)
15 Circle (Gray)
16 Circle (Black)
17 X marks die spot

-tl toplabel

-xl xlabel

-yl ylabel
sets label <)ptions

host:display
opens a window on the given host anddisplay

-d host.'display

=geom

-rv

-bw border-width

-bd color

-fg color

-bg color

-fafont-name
sets inputoptions for the X-window system.

AUTHOR

Kenny K.H. Toh (ktoh@mascotberkeley.edu)

FILES

aataplotjps temporary POSTSCRIPT file

290
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SEE ALSO

contour(L), pdraw(L)
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NAME

drawmask - draw an XI1 andPOSTSCRIPT plotof a SPLAT mask

SYNOPSIS

drawmask [-o options-file] [-^printer] [-1] [-lbl] [s scale][-noplot] [-ps] [-print] l-tl "topla
bel"] [-xl "xlabel"] [-yl "ylabel"] mask-file

DESCRIPTIONS

Drawmask is a program that draws an Xll and POSTSCRIPT plot of a SPLAT mask.
Drawmask reads in mask data froma mask-file andmanipulates thatdataaccording to options
specified either in thecommand-line orin aoptions-file. The program thendumpsthe plotto a
POSTSCRIPT file.

OPTIONS

-o options-file
reads plotting options from the file options-file. Each option specification consists of a
keyword and its corresponding value. The parser recognizes only a limited set of key
words; their values are either numbers, quoted strings,or die words "on" and "off". All
the words in the option specification must be on the same line. The pound sign (#) indi
cates that the remainderof the line is a comment to be ignoredby the parser.

List of Options (options-file)

xlabel "LABEL"

ylabel "LABEL"
toplabel "LABEL"
equalscale on/off
noplot on/off
postscript on/off
cally
printplot on/off
printer "PRINTER"
landscapeon/off
scale [0.1 • 1.0]

xticks [1 - 20]
yticks [1 • 20]
nolabel on/off

#[default = "X-AXIS"]

#[default = "Y-AXIS"]
#[default = "2DMask"]
#[default = on]

#[default = off]

#[default = on]

#[default = off]

#[default = SPRINTER]

#[default = off]
#[default=1.00]

#[default = 4]
#[default = 4]

#[default = on]

for the x-label

for the y-label
for the top-label
for equal x-y scaling
don't draw graphics plot
• print PS file automati-

send PS file to printer
define the printer
print in landscapemode
scales the PS plot
no. of x-divisions

no. ofy-divisions
don't print labels

-Pprinter
specifies which printer to which to send the postscriptplot The current default sets the
printer name to the environment variable SPRINTER. If this variable is not set then the
printerused is die lp550M printerin SSOM Cory.

-1 prints the postscript plot in landscape mode (rotated).

-lbl prints the mask with labels.

-s scale
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BUGS

sets a scale factor. This is used only forPOSTSCRIPT plotting.

-noplot

prevents plots on the graphics display.

-print
sends the POSTSCRIPT lot to die printerautomatically.

-ps turns off the postscript plotting mode. This can also be done by setting the
POSTSCRIPT environment variableto OFF. e.g. % setenv POSTSCRIPT off

Currentiy, the programis only able to plot opaque masks (transmission = 0) with rectangular
openings (no trianglesaccepted). There is no rectangle-intersection checking.

AUTHOR

Kenny K.H. Toh (ktoh@mascotberkeley.edu)

FILES

dataplot.ps temporary POSTSCRIPT file

SEE ALSO

SPLAT, drawplot(L), contour(L)
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NAME

conv - convert a 3D contour format data-fileto pdraw format

SYNOPSIS

conv [«t] [-old] [-o output-file]input-file

DESCRIPTION

Conv is a program for coverting a contour data-file to a pdraw data-file. The pdraw output-
file will be either a rectangular wire-mesh or a triangular solid-mesh (-t flag). If the name of
the output-file is not specified in the command line, the output-filewill be named input-file3D
(i.e. the "3D" will be appended to the input-file). The contour data-file can be compressed
(see compress(l)); compressed fileswill be uncompressed automatically.

See contour (L) and pdraw (L) for details on die input/output data formats.

OPTIONS

-t creates a triangular mesh. This is better for hidden-line plots.

-old accepts an older contour format for the contour-file, based on a rectangular 50 x 50
array. See contour (L) for more details.

-o output-file
specifies the name of die output-file.

AUTHOR

Kenny K.H. Toh (ktoh@mascotberkeley.edu)

SEE ALSO

drawplot(L), contour (L), pdraw(L)
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