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Abstract

Many CAD problems are NP-complete or coNP-complete. They can usually be stated

naturally as discrete functions defined on multi-valued variables which take values from

discrete sets. Traditionally, heuristics are devised for these problems to find good solution(s).

The technique of this report implicitly enumerates all possible solutions which are stored

in a compact graph structure, called the multi-valued decision diagram (MDD). Thus, such

an approach guarantees to find the exact, optimum solution(s) if they exist, or proves the

non-existence of a solution. This research was inspired by its binary analog, the binary

decision diagrams (BDD's), as presented by Bryant [Bry86].

In this report, the MDD is defined and its properties are analyzed. Algorithms

for constructing and manipulating MDD's are provided. Various problems, ranging from

graph coloring to routing to scheduling, are formulated and solved using MDD's. The first,

direct implementation of the MDD structure was reported in an earlier paper [SKMB90].

With the advent of an efficient BDD package based on [BRB90], a new MDD package was

developed in which MDD's are mapped onto BDD's according to an optimal encoding. The

limits on the sizes of real problems which can be handled by the MDD package is explored.

With good variable ordering and mapping heuristics, all the benchmark examples tried can

be solved within a minute on a VAX 8800. Various efficient encoding, ordering and mapping

techniques axe discussed.

This work represents just a beginning for exploring the capabilities of MDD's and

the results are encouraging. As a natural setting to approach discrete symbolic variable

problems, MDD's should have many other applications. One exciting application involves

using the MDD package for the formal verification of finite state machines. We are currently

integrating this with the AT&T COSPAN verification system [HK88].
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Chapter 1

Introduction

Many CAD problems have been proved to be NP-hard or coNP-complete [GJ79],

which means that the best algorithms for solving such problems will suffer exponential-time

(and sometimes exponential-space) complexities in the worst case. In some cases, there

exists algorithms that are not polynomial but we can find, most of the time, a solution

of the problem quickly, even in linear time. An example of this behavior is the tautology

algorithm described in [BHMSV84]. A key to devising such algorithms so that they are

practical is to use a compact representation of the problem itself or its solutions. We also

need a set of efficient algorithms to manipulate the data structure. The approach of this

report uses a graph-based representation of all solutions. We give it the name multi-valued

decision diagram (MDD).

1.1 Optimization Problems and Decision Problems

Many CAD problems are formulated as combinatorial optimization problems. Graph

coloring is a well-known combinatorial optimization problem and is used here as an example

for illustration. Given a graph G(V,E) and a set of colors, the vertices are to be colored such

that no two vertices connected by an edge will have the same color. Optimization problems

requires the computation of a certain value (e.g. the minimum number of colors needed to

color G) or the construction of a certain solution object (e.g. the coloring for G such that

the minimum number of colors is used). Optimization problems can usually be solved as a

sequence of decision problems - problems for which the only solutions are "Yes" and "No",

(e.g. is there a coloring of G using at most k colors?) For example, the minimum number
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min = 0;

max =| V |;

while (min ^ max) {
U min+max.
ft. — 2 ,

if there is a coloring of G using at most k colors (decision problem)

then max = fc;

else min = k;

}

return (k);

Figure 1.1: Binary search of optimal solution by solving decision problems.

of colors (the answer to the optimization problem) can be found by solving the decision

problem at most /o</2(| V I) times using a binary search as illustrated in Figure 1.1.

This report concentrates mainly on solving decision problems. Such problems can

be stated naturally as discrete functions using multi-valued variables that can take values

from a discrete set. For the graph coloring example, the color assignment of each vertex

can be represented by a multi-valued variable, each of which can take one of the k colors.

For the graph example shown in Figure 1.2, we have four 3-valued variables, ci, C2, c$ and

C4. Each can be assigned a color from the color set {r, g, &}.

A solution to the graph coloring problem is called a satisfying color assignment

and can be denoted by a 4-tuple, e.g. (r, g, b, r). Now a discrete function T can be defined

as:

J 1 if (ci, C2, C3, C4) is a satisfying assignment
^r(ci,c2,C3,c4) = <

[ 0 otherwise

With the definition of J", the solution to the decision problem is a "Yes" if and

only if there is a satisfying color assignment, i.e.

3(Ci,C2,C3,C4) S.t. ^"(ci,C2,C3,C4) = 1

Thus the graph coloring problem can be transformed into the discrete function
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color set:

Figure 1.2: Graph coloring example.

T. Other CAD problems can be similarly formulated using discrete functions, and will be

described in Chapter 3. It is crucial to have a good representation for T such that

• satisfiability can be easily checked,

• if satisfiable, all/some satisfying assignments can be easily found.

The satisfiability test serves also as a proof of the existence or non-existence of solutions

for the decision problem.

As we shall see in Chapter 2, the multi-valued decision diagram (MDD) has such

properties, and will be used to represent the discrete function T.

1.2 Previous Work

The multi-valued decision diagram (MDD) is inspired by and intimately related to

its binary analog, the binary decision diagram (BDD). BDD's were first proposed by Akers

[Ake78] and popularized by Bryant in [Bry86]. BDD's are graph-based representations of

Boolean functions. Bryant imposed restrictions on them and proposed the reduced ordered

BDD which is a canonical form, i.e. there is a unique (up to isomorphism) representation

for any given function. Consequently, testing for satisfiability of a function and equivalence

of two functions become trivial tasks using BDD's. The notion of a strong canonical form

was introduced by Karplus in [Kar87]. Brace et al. provided efficient techniques for ma

nipulating BDD's which have been incorporated in the Berkeley BDD package. The size
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of the BDD of a function is sensitive to the ordering of the input variables. Friedman et

al. in [FS87] found an 0(n2Zn) algorithm for finding the optimal variable ordering. Faster

variable ordering heuristics for BDD's have been provided by Malik et al in [MWBSV88]

and Fujita et al. in [FFK88]. Devadas [Dev89] formulated the channel routing, partitioning

and placement problems using Boolean satisfiability and solved them using BDD's. We also

formulate a variety of CAD problems as satisfiability tests but we do not restrict ourselves

in the Boolean domain. We extend the graph-based representation to the more natural

multi-valued setting. Most CAD problems can be stated naturally in terms of multi-valued

variables instead of binary-valued ones. Discrete functions defined on these variables can

also take on multi-valued output. The notation and definitions used in this report closely

follow these publications. The first direct implementation of the MDD structure was devel

oped by Srinivasan and was jointly published in [SKMB90]. This report will concentrate

more on the second- and third-generation MDD package which uses BDD's indirectly, by

mapping MDD's into BDD's.

1.3 Overview

The focus of this report is on solving the decision version of CAD problems. On

the other hand, most schedulers, routers, etc, tackle the optimization problem. Although

MDD's can be used to solve optimization problems, as described in Section 1.1 and 3.1, the

strength of the MDD approach is in a slightly different domain. Thus the MDD approach

should be viewed as complementing traditional approaches.

Traditional heuristic approaches do not guarantee to find a solution if it exists.

Moreover, if it gives a solution, there is no guarantee on its optimality. Thus, the MDD

approach is valuable for problems which have the following characteristics:

• A very tight set of constraints.

• A tight range of values for the multi-valued variables.

• Heuristic methods fail to generate a solution, or an acceptable solution.

• We want to know if an acceptable solution exists.

Interestingly enough, MDD's are very good at solving such highly constrained

problems which we know have no or only a few solutions. The more constrained the problem
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is, the less solutions it will have, the smaller the intermediate and final MDD's will be and

the faster the algorithm will run. Some examples of such applications will be given in

Section 3.6

Chapter 2 is concerned with definitions and notation for MDD's. The theory

behind MDD's is described. To emphasize its practicality, a variety of CAD problems

are formulated using the MDD approach in Chapter 3. The remaining two-thirds of the

report is devoted to the implementation of an efficient MDD package using mapped-BDD's.

Chapter 4 describes the process of mapping MDD's into BDD's. Variable ordering is crucial

to limit exponential complexities and some ordering heuristics are presented in Chapter 5.

The user interface to the MDD package implementation is described in Chapter 6. Some

benchmark results are presented in Chapter 7. Finally, Chapter 8 offers some conclusions

and future directions of research.



Chapter 2

MDD Theory

2.1 Notation

2.1.1 Multi-valued Function

Definition 2.1 Let T be a multiple-valued input, multiple-valued output function ofn vari

ables - Xi, #2, • • •?xn •

T : Pi x P2 x ... x Pn -* Y (2.1)

Each variable, a;,-, may take any one of the Pi values from a finite set P,- =

{0,1,...,pi - l}. The output of T may take m values from the set Y —{0,1,..., m - l}.

Without loss of generality, we may assume that the domain and range of T are integers. In

particular, T is a binary-valued output function if m = 2, and T is a binary-valued input

function if px —2 V i < n.

2.1.2 Literal

Definition 2.2 Let Ti be a subset of Pi., #,•* represents a literal of variable Xi which is

defined as the Boolean function:

T [ 0 ifxi 4Tixj^l '* (2.2)
{ 1 ifxieTi

2.1.3 Cofactor

Definition 2.3 The cofactor of F with respect to a variable xx taking a constant value j
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is denoted by Ti and is the function resulting when X{ is replaced by j:
i

Fxj(xi,...,xn) = T(xi,...,xi-i,j,Xi+i,...1xn) (2.3)

Definition 2.4 The cofactor of T with respect to a literal x^ is denoted by T t{ and is

the union of the cofactors of T with respect to each value the literal represents:

^ = U ?** (2-4)

The cofactor of T is a simpler function than T itself because the cofactor no longer depends

on the variable x-t.

2.1.4 Shannon Decomposition

Definition 2.5 The Shannon decomposition of a junction T with respect to a variable

Xi is:

Pi-i

?=Exi':Fxi (2.5)

The Shannon decomposition expresses function fas a sum of simpler functions, i.e. its

cofactors Ti. This allows us to construct a function by recursive decomposition.

2.1.5 Smoothing Operator

Definition 2.6 The smoothing of a function T by a variable Xi is denoted by SXiT and

is defined as:
Pi-i

S^=E^. (2-6)

2.1.6 Support

Definition 2.7 The support of T, denoted by D?, is the set of variables that T depends

upon:

Djr = {xi | 3j,fc s.t. T^ ± Txh} (2.7)
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2.2 Multi-valued Decision Diagrams

This section describes a new data structure - the multi-valued decision diagram

that is used to solve discrete variable problems. Our definition of multi-valued decision

diagrams closely follows that of Bryant, [Bry86], with two exceptions: we do not restrict

ourselves to the Boolean domain, and the range of our functions is multi-valued. From

Chapter 3 on, we use only binary-valued output functions, however the theory is valid for

the more general multi-valued functions.

Definition 2.8 An multi-valued decision diagram (MDD) is a rooted, directed acyclic

graph with a vertex set V containing two types of vertices. Each nonterminal vertex vj is

labeled with a multi-valued variable Xi. It has as attributes an argument index index(vj),

which designates a variable associated with that vertex, where 1 < index(vj) < n, a range

range{vj) where range{vj) = Pindex(vj)> <™d I Pindex(Vj) I children, childk(vj) € V, Vk G
Pindex(vj)' A terminal vertex um has as attribute avalue value(um) 6 Y = {0, 1, ..., m—

i}.

Example The MDD in Figure 2.1 represents the discrete function F = max(0, x - y)

where x and y are 3-valued variables.

2.3 Reduced Ordered MDD's

Definition 2.9 An MDD is ordered ifindex(v) < index(childk(v)) for any nonterminal

vertex v such that childk(v) is also nonterminal.

Definition 2.10 An MDD is reduced if (1) it contains no vertex v such that for all

children, childj(v) = childk{v), and (2) it does not contain two distinct vertices v and v

such that the subgraphs rooted at v and v are isomorphic.

Definition 2.11 A reduced ordered multi-valued decision diagram (ROMDD) is

an MDD which is both reduced and ordered.

Henceforth, we consider only ROMDD's and the name MDD will be used to mean

ROMDD,

Variable ordering must be decided before the construction of any MDD. We as

sume that this has been decided and that the input variables have been permuted so that
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index(x) = 1

index(y) = 2 l y

1

child1(v)

F = max(0, x-y)

nonterminal vertex v

child3(v)

terminal vertex u *** v value(u)= 2

Figure 2.1: Example of an MDD for a discrete function.

index(xi) < index(xi+\). MDD's are guaranteed to be reduced at any time during the

constructions and operations on MDD's discussed in Chapter 4. Each operation returns a

resultant MDD in a reduced ordered form.

Example The ROMDD for the MDD in Figure 2.1 is shown in Figure 2.2. The vari

able ordering is x -< y. i.e. index(x) = 1 and index(y) = 2. Note that one redundant

nonterminal vertex and six terminal vertices have been eliminated.

A very desirable property of a ROMDD is that it is a canonical representation.

Theorem 2.1 For any multi-valued function T, there is a unique reduced ordered (up to

isomorphism) MDD denoting T. Any other MDD denoting T contains more vertices.

Proof The proof is given in [SKMB90]. D

Corollary 2.2 Two functions are equivalent if and only if the ROMDD's for each function

are isomorphic.
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F = max(0, x-y)

2 1 0

CHAPTER 2. MDD THEORY

Figure 2.2: Reduced ordered MDD for the same function.

2.4 Strong Canonical Form

The notion of a strong canonical form was first introduced by Karplus in [Kar87]

and was used for BDD's in [BRB90]. Equivalent functions are represented by the same

address pointer in memory. So each function is represented exactly once in memory.

Each MDD vertex vj, with its subgraph rooted from it, represents an multi-valued

function F. Each function F has a top-variable x,-, which is the variable labeled at the

vertex Vj which represents F. Each MDD vertex can be denoted by a (pi + l)-tuple

(x,-, childo(vj), childi(vj), ..., childP{-i(vj)) where p, = | range(xi) |.

In the first generation MDD package, unique identifiers are associated to each

(Pi + l)-tuple. The strong canonical form is maintained by the use of a unique-table which

maps identifiers to MDD vertices. When a new vertex is needed, the unique table is first

checked. If the corresponding (pi + 1)-tuple already exists, its address pointer is reused,

otherwise a new vertex (table entry) for the new (p,- + l)-tuple is created. With a strong

canonical representation, equivalence between functions can be checked very easily by:

Corollary 2.3 Two functions are equivalent if and only if they are mapped into the same

unique-table entry.
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2.5 CASE Operator

In providing an MDD package, it is desirable to disallow the user to modify the

MDD data structure directly. Rather, we manipulate MDD's indirectly by performing a set

of operations on the MDD function. The CASE operator forms the basis for constructing

and manipulating MDD's. Most operations on discrete functions can be expressed in terms

of the CASE operator on MDD's. It is the singly most important operator in the MDD

package. The rest of this chapter and the next chapter is devoted to the CASE operator.

Definition 2.12 The CASE operator selects and returns a function Gi according to the

value of the junction F:

CASE(F, Go,<?!,..., Gm-i) = Giif(F = i) (2.8)

The operator is defined only if range(F) = {0, 1, ..., m-i). The function returned from

the CASE operation has a range of range(Gi). In particular, if the Gi are binary-valued,

the resultant function will also be a binary-valued output function.

The input parameters to the CASE operator are, in general, multi-valued func

tions given in the form of MDD's. The task is to generate the resultant function H =

CA55(f,Go,Gi,...,Gra_i). Since the selector F can be a function instead of a variable,

we need a recursive algorithm to compute the CASE operator.

In Section 2.4, we described how we represent MDD vertices by (p,- + l)-tuples.

The (pi + l)-tuple for a vertex vj with top-variable x is actually:

(x,G0,Gi,...,Gp,._1)= CA5^(x,G0,G1,...,Gp._1) (2.9)

and also we know that

CASE(F, 0,1,..., m - 1) = F (2.10)

Equation 2.9 and 2.10 will form the terminal cases for our recursive algorithm.

Notice that the Shannon decomposition of H with respect to x can be realized by

CASE using:

h = xy.jr,,-
3=0

= CASE(x,Hxo,Hxi,...,HxP-i)

= (x,Hafl,Hxi,...1HxP-i) (2.11)
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Recursion is based on the following reasoning. Remember in Section 2.1 that we

can express a complex function in terms of its cofactors using Shannon decomposition. The

cofactors of a function are simpler to compute than the original function. So to compute

the CASE of complex functions, we first compute the CASE of their cofactors and then

compose them together using Shannon decomposition. More rigorously,

p-i

CA5£(F,G0,G1,...,Gm_1) = £>«' •CASE(F,G0,Gu...,Gm-l)xi
i'=0

p-i

= y£xi-(Gjif(F = j))xi
i=0

p-i

= 5>'.(Gix,-i/(F =.,%,•)
i=0

p-i

= £aMGjx.i/(Fxi=j))
t=0

= CASE(x,

CASE(Fxo,G0 xo,Gi xo,.. •,GTO_j xo),

CASE(Fxi, G0 xi, Gj xi,...,Gm_j xi),

(2.12)

CASE(FxP-i, G0 xP-i, Gj xP-i,...,Gm_j xP-i))

The pseudo-code for the recursive CASE algorithm is given in Figure 2.3. First, the

algorithm checks for terminal cases. Then if the function needed has already been computed

and stored in the unique table, it will be returned. It not, the cofactors Hxj of the function

H are computed by calling CASE recursively with the cofactors jFxj,G0xJ, .. .,Gm_lxj as

its arguments. These are composed together using Shannon decomposition. By Equa

tion 2.11, Shannon decomposition with respect to x is equivalent to the (p + 1)-tuple

(x, Hxo,...,Hxp-i).

It is shown in [SKMB90] that the worst-case time complexity of the CASE algo

rithm is 0(pmax- | F | • | G0 | ... | Gm_! |).

2.6 Other Operators using CASE

All operators on discrete functions can be expressed in terms of the CASE operator

only.
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function CASE(F,G0,.. .,Gm_x)

begin

if terminal case, return result;

if table has entry for CASE(F, Go,. • •, Gm_i), return table entry;

let x be the top-variable of F, Go,..., Gm_i

let p be the number of values x takes

for j = 0 to (p - 1)

Hxj = CASE(jPxj,G0xj,...,Gm_ixj);

add (x, Hxo,..., HxP-i) to table;

return (x,#xo,...,HxP-i);

end;

Figure 2.3: Pseudo-code for the CASE algorithm.

2.6.1 If-then-else

The if-then-else construct can be realized simply by:

if condition then resulti else resulto & CASE(condition, resulto, resulti) (2.13)

2.6.2 Multi-valued Input, binary-valued Output Operators

F = G & CASE(F,(G=0),(G=l),...,(G=m-l)) (2.14)

F^G <3> CASE(F,(G^0),(G^l),...,(G^m-l)) (2.15)

F>G & CASE(jP,0,(G< 1),...,(G< m - 1)) (2.16)

F>G <S> CASE(JP,(G = 0),(G< 1),...,(G< m-1)) (2.17)

F>i ^ CASE(F,0,0,...,0,1,1,...,1) (2.18)

iwii/i i zeros where i is some constant

Similarly, other operators such as F < G + i,..., can be expressed using CASE.
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2.6.3 Binary-valued Input, binary-valued Output Operators

NOT(F) & CASE(F,1,0) (2.19)

AND(F,G) O CASE(F,0,G) (2.20)

NAND(F,G) & CASE(JF*,1, NOT(G)) (2.21)

OR(F,G) & CASE(F,G,1) (2.22)

NOR(F,G) ^ CASE{F,NOT(G),0) (2.23)

XOR{F,G) <S> CASE(F,G,NOT(G)) (2.24)

XNOR(F,G) <S> CASE(JP, NOT(G),G) (2.25)

Similarly, other binary operators can be expressed using the CASE operator.



Chapter 3

Applications

3.1 General Paradigm

MDD can be used to solve a wide variety of problems, from graph coloring to

routing, to scheduling, to verification of FSM's. Before describing each application in detail,

we first discuss the general paradigm used for solving such problems.

Many CAD problems can be naturally formulated in a multi-valued setting. Often,

we inherit a graph structure from the problem. For example, the constraint graphs for

routing, the flow graphs for scheduling and the state transition graphs for FSM's. With

such information, the problem can be mapped into a number of multi-valued variables and

a set of constraints between these variables. In our current implementation, such a mapping

is done manually and all the constraint relationships are put into an input file provided by

the user. The constraint input format to the MDD package is described in Section 6.1. From

the inherited graph structure, we also derive a good ordering of the multi-valued variables,

which is discussed in Chapter 5.

The input constraint file is first scanned and an MDD is built for each constraint.

To minimize memory usage for storing the intermediate MDD's, they are ANDed together as

soon as they are created, as illustrated on the right of Figure 3.1. This is actually a tradeoff

between speed and memory requirements. We decided to AND the MDD's together as soon

as possible because it is observed that with moderate-sized benchmarks, the MDD approach

always gives a solution in reasonable time unless it runs out of memory. This observation

is generally true for other graph-based representation such as the BDD's.

The final MDD contains implicitly all solutions of the problem. Satisfiability can

15
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Figure 3.1: Two ways of ANDing together MDD constraints.

be checked trivially, as the final MDD will consist of a single terminal vertex l0' if, and only

if, it is not satisfiable.

If the problem is satisfiable, we can enumerate some, or all solutions and print

them out. As pointed out in Chapter 1, we use MDD's to solve the decision problem,

instead of its corresponding optimization problem. We've also investigated some possible

ways to perform optimization which will be discussed in Section 3.6.

In this report, we focus on some restricted versions of the following CAD ap

plications to illustrate the power of MDD's. Extensions to the general cases are fairly

straightforward.

3.2 Hardware Resource Scheduling

The resource scheduling problem arises frequently in synthesis of VLSI layouts

from high level descriptions of digital systems. We chose a general formulation as follows:

Given a flow graph specifying temporal and spatial relationships between opera

tions oi,..., on € 0 that can be performed at discrete time intervals on machine types or
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t1 <t2
t2<t3
t2<t4
if(t3 = t4)then(s3!=s4
if(s3 =s4)then(t3!=t4'

Figure 3.2: Hardware resource scheduling example.

functional units <Ji,..., crjt and a table specifying the single machine type that each opera

tion can be performed on, determine an optimal schedule for the operations based on some

user specified optimality criteria. Some criteria may be: (1) Minimum total time to perform

all operations, given an allocation of Oj machines of each type oj, (2) Minimum number

of machines of type <t,-, (3) Minimum total cost of machines, given that all operations are

completed in time r.

With each operation o,-, we associate two integer variables, ti and s,- where ti

denotes the time slot in which o, is performed and Si denotes the "space" variable or the

machine on which o, is performed. If we would like to construct the MDD for all solutions

with r time slots, and Oj machines of type Oj, ti can take on r values and s, can assume Oj

values, where oj is the machine type on which o, can be performed.

Given the flow graph, for each pair of operations o,- and Oj, if there is an directed-

edge from o,- to Oj, we write: ti < tj. For each pair o, and oj that can be performed on the

same machine type, if there is no path between i and j in the flow graph, we write:

if (ti = tj) then (si ^ Sj) (3.1)

if (Si = sj) then (U ^ tj) (3.2)

Note that conditions 3.1 and 3.2 are logical equivalent because of the following logical

property:

if A then B *=> A or B (3.3)
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So they are redundant and only one is used in order to speed up the construction of the

final MDD.

The final MDD that is the conjunction of these constraints will test for the exis

tence of a solution with r time slots and Oj machines of type oj. Cofactoring may be used

to test for alternate solutions.

3.3 Channel Routing

We make the assumption that each routing layer runs in one direction. Given N

nets to be routed in a channel, the objective is to minimize the number of tracks used to

route them. The horizontal interval of net i is defined as: I(i) = r(i) - l(i) , where r(i) is

the column number in which the rightmost pin of net i lies and l(i) is the leftmost column

occupied by net i. Two nets with intersecting intervals cannot be placed on the same track.

The Vertical Constraint Graph (VCG) [YK82] restricts the relative positions of nets in the

channel. If there is a path from net i to net j in the VCG, then the track of net i must He

above the track of net j in the channel.

We first construct the VCG for the channel. All directed-edges in the VCG that

can be impHed by other edges are removed, i.e., the VCG is made irredundant. Let j/t-

denote the track occupied by net i. Then, for each net pair i,j if I(i) n I(j) ^ <f> and there

is no path from i to j in the VCG, we write the following condition:

Vi ^ Vj (3.4)

For each directed-edge from i to j in the irredundant VCG, we write:

Vi > Vj (3-5)

To determine if a route exists for the channel that uses t tracks, we let each variable y; take

on t values in the ordered set {0,..., t —1} and construct the MDD that is the conjunction

of the above conditions (3.4) and (3.5). If the resulting MDD is not the terminal vertex with

value 0, a solution using t tracks exists. We can then test for solutions using fewer tracks

by cofactoring each of the variables */,- with respect to the literal yf where 5 = {0,1,..., s}

and s < t —1. If however, the MDD is a terminal vertex with zero value, we must increase

t and reconstruct the graph. For extensions to doglegging and multiple layers, the reader

is referred to [Dev89].
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3.4 Switchbox Routing

We consider a restricted form of switchbox routing to illustrate the use of if...then...

conditions. Extensions to more general cases are possible. The restriction we place is that

nets must connect from the top of the switchbox to the bottom or from left to right, and

that all nets have been decomposed into two-terminal nets. Also, we only consider one-

bend patterns that connect such nets. We form two graphs - the Vertical Constraint Graph

(VCG) and the Horizontal Constraint Graph (HCG). Each graph gives rise to constraints

similar to the channel routing problem. Let y,- denote the y position of a vertical net, i.e., a

net that connects from top to bottom. Let xj denote the x position of a horizontal net. For

each net pair i and j in the VCG, if there is no path between them in the VCG, we write:

Vi ^ Vj (3.6)

Similarly, we write constraints for nets in the HCG. The interaction between nets in the

VCG and nets in the HCG generates cross-constraints. Two such sets of cross-constraints

are illustrated in Figure 3.3.

C1 c2

IFl H KMAMMAMMMAMVM

c3c4

y1 !=y2
if (x1 >=d)then(y1
if (x1 <= c2) then (y1
if (y1 >=r1)then(x1
if (y1 <= r2) then (x1

Figure 3.3: Switchbox routing example.

= r1)
= r2
= c3

-d)

In Figure 3.3, ci and C3 are the columns in which pins of horizontal net 1 are

located and c<i and C4 are for horizontal net 2. r\ and 7*2 are the rows in which pins of

vertical net 2 lie. Suppose the switchbox uses R rows and C columns. We let the variables

2/i take on R values and the variables xj take on C values. We then build the canonical

MDD for the binary-valued function that is the conjunction of the above constraints to test

for the existence of a solution that uses one-bend patterns.
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3.5 Graph Coloring

The objective of the graph coloring problem is to find the minimum number of

colors that suffice to color a given graph G. Starting with a reasonable estimate k of the

number of colors, let y,- denote the color of node i in G. y,- is allowed to assume k values.

For each pair of adjacent nodes in G, generate the following constraint:

Vi * Vj (3.7)

The final MDD for the conjunction of these constraints will test for the existence of a graph

coloring with k colors. The problem can be simplified slightly if a maximal clique in the

graph is preassigned a unique color for each node of the clique.

3.6 Finding Alternate Solutions

We've investigated some possible ways to perform optimization. With binary

search algorithms similar to the one in Figure 1.1, we can solve an optimization problem

as a sequence of decision problems. This however involves the solution of a similar decision

problem over and over again. For each iteration, we need to generate a new MDD. When a

decision problem is satisfiable, the final MDD represents the set of all satisfying solutions.

Hence, any optimum solution is guaranteed to be within this set. So instead of generating

another MDD from scratch again, we can constrain the MDD available by cofactoring. Two

examples for finding alternate solutions are given below. To find the absolute optimum

solution, a binary search can still be used.

Example The color assignment on Figure 1.2 shows that the graph is colorable in 3 colors.

Suppose we want to see if it is colorable in 2 colors only. The answer (to the satisfiability

test) can be easily obtained if we cofactor the original MDD with the literalsc ip, cip, c^p

and c4p where now P = {r,g}. The result of cofactoring gives the '0' vertex. Obviously in

this case, this is not satisfiable because the graph is not colorable with only two colors.

Example In Figure 3.3, we see that the switchbox has been routed in 5 columns and 4

rows. Suppose in our chip layout, we only have room for a switchbox of 4 columns by 4

rows. This is a more constrained problem. Suppose that the heuristic router fails to come

up with a solution. We want to first make sure that the switchbox cannot be routed in such
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an area before we are willing to modify the whole chip layout. Using the MDD approach,

satisfiabihty (the answer to the above query) can be trivially check by cofactoring the

original MDD with respect to the literals x ,-r where re,- is constrained to the value set T =

{0,1,2,3}.



Chapter 4

Mapping MDD's into BDD's

4.1 Introduction

So far, we have discussed the theory behind MDD's and some applications. The

first-generation MDD package is a direct implementation of these concepts. Around the

same time, the Berkeley BDD package became available, which incorporates the efficient

BDD techniques published in [BRB90]. Instead of incorporating these techniques into the

original MDD package, we decided to develop a new MDD package which makes use of the

efficient BDD package. Later, we discover other advantages of using such a mapped-BDD

approach instead of the direct MDD approach.

The implementation of MDD's using mapped-BDD's involves three distinct steps:

encoding, variable ordering and mapping.

Definition 4.1 Encoding is the process ofassociating a numberof binary-valued variables

to each multi-valued variable, and assigning codes to represent the values the multi-valued

variables can take.

An integer encoding is used on all multi-valued variables. For non-integer variables, the

code points are assigned using the algorithm described in Section 4.2.

Definition 4.2 Variable Ordering is the process of finding an ordering of the encoded

binary-valued variables such that the size of the final BDD is minimized.

Chapter 5 discusses two kinds of variable ordering techniques: natural ordering and in

terleaved ordering. The MDD package allows also the use of a mixture of both ordering

22
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techniques in a single mapped-BDD such that some variables can be specified to be inter

leaved while other variables just follow a natural ordering.

Definition 4.3 Mapping is the process of constructing a BDD subgraph to represent an

MDD. Mapping is performed after the encoding and variable ordering steps.

This chapter describes two kinds of mapping techniques. General mapping, suitable for

mapping any MDD into a BDD, is described in Section 4.3. Following from the direct

MDD approach, the idea is to map each MDD vertex into a subgraph of BDD vertices in

an optimal way. As we have seen in Section 2.5, the CASE operator forms the basis for the

construction and manipulation of MDD's. The ITE operator is the binary analog of CASE

and forms the basis for BDD manipulations. This general mapping can be conveniently

performed by replacing each CASE operation by a set of ITE operations. This will be

discussed in Section 4.3.3.

For MDD's representing arithmetic constraint relations mentioned in Chapter 3,

we can use a special mapping which is described in Section 4.4. By taking advantage of

the arithmetic properties of such functions, we can construct the mapped-BDD with much

less ITE operations than by the general mapping method. However, other functions such

as logical operations cannot take advantage of this special mapping.

Variable ordering and mapping are two separate processes. The choice of the

kind of mapping and ordering used can be made independent of one another. Thus any

combination of these techniques can be used. Variable ordering affects the size of the final

mapped-BDD while mapping affects the speed of construction of the final mapped-BDD.

Fortunately we can refine the mapping and ordering techniques independently.

In this chapter, we start by describing the encoding process. Then we describe

how the MDD for any arbitrary function can be constructed. We then investigate the rela

tionship between the CASE operator and the ITE operator. The way the CASE operator is

converted to ITE operators dictates the encoding used, and are discussed in Section 4.3.4.

Special mapping techniques for arithmetic/comparison operations are described in Sec

tion 4.4. Lastly, we discuss some methods to represent multi-valued output functions using

mapped-BDD's in Section 4.5.

Although the internal representation of an MDD is in the form of a BDD, all the

bookkeeping required between the MDD and the mapped-BDD is hidden from the users

of the package. Users can input functions, manipulate them and output results in terms
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of multi-valued variables only, without worrying about the implicit variable encoding and

ordering. The user-interface of the MDD package is described in Chapter 6.

F =1ifx>y

mapping

redundant j

a) ROMDD b) Mapped ROBDD

Figure 4.1: MDD and mapped-BDD representing the relation x > y.

Example Figure 4.1a shows an MDD representing the following function:

1 if x > y
F =

0 otherwise
(4.1)

x and y are 3-valued variables whichcan take values from Px = Py = {0,1,2}. To represent

the MDD using BDD's, each MDD nonterminal vertex must be mapped into a number of

BDD vertices interconnected in a subgraph. For example in Figure 4.1, the MDD vertex

labeled by variable x is mapped into the BDD vertices labeled by xq and xi. In addition,

different indices have to be assigned to these binary variables. In this case, since x -< y for

the MDD, this ordering is respected for the associated binary variables; xq •< xi -< yo •< y\.
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The mapping process dictates the encoding used. The same encoding, as well as ordering,

must be used consistently throughout all function manipulations. The issue of variable

ordering is discussed in Chapter 5.

4.2 Encoding

Clearly, at least k unique binary variables are required to encode a m-valued MDD

vertex where 2k~l < m <2k.

All variables are encoded using the minimum number of binary variables. In

addition, many multi-valued variables usually take values from the set of integers (an ordered

set) and the operations between them are sometimes integer-arithmetic in nature. Thus,

integer encoding is used on these. This enables fast construction and compact representation

of the mapped-BDD, as shown in Section 4.4 and 5.2.2.

Note that many encodings use the same number of variables. But different ones

may result in smaller or larger BDD's. Thus different multi-valued variables because of

the way they are used in the functions to be represent should have different encoding

requirements. However, techniques for encoding each variable separately have not been

thoroughly investigated yet.

4.2.1 Use of Don't Cares

Of course, not all 2k code points will be used since typically m < 2k. On the

other hand the mapped-BDD will have a path for such binary code point. Which path

is assigned to an unused code point is only relevant to the size of the BDD. Thus these

don't care should be used to decrease the BDD sizes, similar to their use in the constraint

operation [CBM89].

Example Suppose v is a 6-valued variable taking values from Pv = {0,1,2,3,4,5}. Three

binary-valued variables «o»wi and ui can be assigned to encode variable v as shown in

Table 4.1. The last column is used in the example in Section 4.3.3.

Note that if the value range is not a power of 2, some codes will not be used, e.g.

110 and 111. These encodings are don't cares since the values will never occur. In this case

these don't care are mapped into the same nodes as 100 and 101 respectively. The notation
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Value Binary F

of Encoding =

v U0U1U2

0 000 Go
1 001 Gi
2 010 G2
3 Oil G3
4 1*0 G4
5 1*1 G5

Table 4.1: Integer encoding with don't cares.

1 * 0 is used to represent both encodings 100 and 110 as we don't care about the variable

ux.

4.3 General Mapping

4.3.1 Constructing Functions using CASE Operator

Before going into the details of the mapping process as shown in Figure 4.1, we

first discuss how to obtain an MDD for any arbitrary function of two multi-valued variables.

Although we are not building the MDD structure directly, this extra level of abstraction

(MDD) will help us construct the function via the CASE operator indirectly. As seen from

Equation 2.9, we can view each MDD vertex as the result of a CASE operator with the

variable associated with the vertex being its first argument while its child functions being

the remaining arguments. As long as we know how to construct an MDD for any arbitrary

function, its mapped-BDD can be derived relatively easily by converting each of these CASE

operators into a number of ITE operators as detailed in Section 4.3.3.

The MDD for any arbitrary function of two multi-valued variables, such as the

one in Figure 2.1, can be constructed using a table lookup approach. These lookup ta

bles for multi-valued functions are analogous to the truth tables for completely-specified

Boolean functions. For simplicity in implementation, we need not worry about building a

reduced MDD because the MDD package will take care of that automatically by returning

an ROMDD after each MDD manipulation. As shown in Figure 2.1, the full unreduced

MDD consists of a fixed subgraph of MDD nonterminal vertices which are connected at
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the bottom to an array of terminal vertices. The interconnections between the terminal

vertices are fixed and represent a Shannon decomposition on the two multi-valued variables

involved, in this case x and y. The connections between the terminal and nonterminal ver

tices can be stored as a lookup table for each function we need. So to realize a function, we

first lookup for the nonterminal-to-terminal connections at the bottom, then connect them

together with MDD vertices by calling the routine mdd-case, which will be described in

Section 4.3.4. This builds up a subgraph of nonterminal vertices recursively in a bottom-up

fashion.

Example The function in Figure 4.1, x > y, is used as another example. We are ex

pressing the following multi-valued operators, described in Section 2.6.2, using the CASE

operator as follows:

x>y & CASE(x,(y<0),(y<l),...,(y<m-l)) (4.2)

y<i & CASE(y,l,l,..., 1,0,0,...,0) (4.3)

with i ones where i is some constant

Equation 4.2 corresponds to the top MDD vertex labeled with variable x in Figure 4.1a,

while Equation 4.3 corresponds to the set of MDD vertices labeled y. The lookup table for

this function is shown in Table 4.2. This function is implemented in the MDD package as

the function call, mddJtjg. It's C code is outlined in Figure 4.2. Note that the lookup table

is implicitly embedded into the code. Also note that the first MDD node that is built- from

this example is the one for y < 0. This case is taken from the first 3 rows of Table 4.2. This

produces a redundant node which is reduced to the 0 terminal node. The next node built

is the one from the case y < 1, then y < 2, using the second three and last three rows of

Table 4.2 respectively. Finally, these three are taken as the children of the a: node which is

constructed by calling CASE(x,(y < 0), (y < l),(y < 2)).

The MDD package uses the Berkeley dynamic array package whose function calls

have prefix array-. Since the C codes listed in this report calls the array package, part

of its documentation is included in Appendix A. The function call interface to the MDD

package is described in Section 6.2. The role of the mddjmanager, and the use of the Ust of

multi-valued and binary-valued variables, mvarJist and bvarJist, are discussed there also.

mddJt-g takes, as its parameter, an mddjmanager and two multi-valued variables, x and y,

and returns the MDD (in the form of a mapped-BDD) which represents the relation x < y.
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X y terminal

value value vertex

0 0 0

0 1 0

0 2 0

1 0 0

1 1 0

1 2 1

2 0 0

2 1 1

2 2 1

Table 4.2: Lookup table for x > y.

The nested for loops enumerate the proper connections to the nonterminal vertices. They

are packed into arrays of child functions, childJistjy (and then childJistjx), which together

with the top-variable y (x), are passed as parameters to the routine mddjcase. mdd-case

maps the CASE operator into ITE operators so that the MDD is ultimately created out of

BDD nodes. This is discussed in the Section 4.3.3. Note that mdd-case is performed in a

bottom-up fashion, first with the top-variable y and then with x.

4.3.2 Properties of General Mapping

Definition 4.4 A general mapping is valid if each mapped-BDD subgraph has the same

number of child-edges as the corresponding MDD vertex, and the mapped-BDD follows an

encoding and an ordering consistently.

Lemma 4.1 Any connected BDD subgraph of m-1 BDD nonterminal vertices is a valid

mapping for an m-valued MDD vertex if an ordering is followed.

Proof The proof is by induction on m. For 1 m=2, a binary-valued MDD nonterminal

vertex can be represented as a single BDD nonterminal vertex. The trivial encoding for the

two values of the MDD vertex is 0 and 1.

1Lemma4.1 also holds for the case m=t\ i.e. no BDD vertex is needed to represent a single-valued MDD
vertex. Actually in the encoding algorithm described in Section 4.3.4, such an MDD vertex is redundant
and will be eliminated and hence not encoded.
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radd_t *

mdd_lt_g(mgr, mvarl, mvar2)

mdcLmanager *mgr;

int mvarl, mvar2;

{

mvar.type x, y;

array_t *child_list_x, *child_list_y;

int i, j;

mdd_t *txl, *tyl;

array_t *mvar_list;

mvar_list = ((mdd_hook_type *)mgr->hooks.mdd)->mvar._list;

x = array_fetch(ravar_type, mvar.list, mvarl);

y = array_fetch(mvar_type, mvar_list, mvar2);

child_list_x = array_alloc(mdd_t *, 0);

for (i=0; i<x.values; i++) {

child_list_y = array.alloc(mdd_t *, 0);

for (j=0; j<y.values; j++) {

if (i < j) array.insert_last(radd_t *, child_list_y, one);

else array_insert_last(mdd_t *, child_list_y, zero);

>

tyl = mdd_case(mgr, mvar2, child_list_y);

array_insert_last(mdd_t *, child_list_x, tyl);

array_free(child_list_y);

}

txl = mdd_case(mgr, mvarl, child_list_x);

array_free(child_list_x);

return txl;

Figure 4.2: Simplified C code for mddJt.g.
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Assume that a fc-valued MDD nonterminal vertex can be mapped into a BDD

subgraph T with k-1 BDD nonterminal vertices. A valid mapping of k+1-vahied MDD

vertex, by Definition 4.4, requires a BDD subgraph T which has k+1 child-edges. T' can

be obtained by connecting an extra BDD nonterminal vertex v under any leaf vertex u of

T. As each BDD nonterminal vertex has one parent-edge and two child-edges, the overall

number of child-edges out of T' is exactly k+1, one more than that of T. To respect the

variable ordering, index(v) < index{u). The encoding for T" is inherited from T except

for the child-edges of the new BDD vertex v. The codes assigned to them can be found by

tracing their paths from the root, as illustrated in the example below. •

Example The mapped-BDD subgraph for a 5-valued MDD vertex is shown in Figure

4.3a. The code assigned to a child-edge depends on its decision path from the root. e.g.

the fourth child-edge is reached from the root via the path wo = 0, «i = 1, u2 = 1, thus the

code U0U1U2 = Oil is assigned. A BDD vertex can be added to this subgraph to represent a

6-valued MDD vertex. Depending on where the vertex is added and what index is assigned

to the vertex, different encodings will result. A BDD vertex is added under vertex uq in

Figure 4.3b and 4.3c. The vertex is assigned an index of 3 in Figure 4.3b and an index of

2 in Figure 4.3c, so they result in slightly different encodings.

Lemma 4.1 and its proof indicate that there are many ways to map an MDD

vertex into a BDD subgraph. One can construct an arbitrarily connected subgraph of

BDD vertices, and assign indices to vertices such that index(v) < index(childk(v)) for

any nonterminal vertex v where k GPindex{v) aad childk(v) is nonterminal. This mapping

procedure results in a consistent variable ordering. Given that we use the minimum number

of encoded variables, we know the mapping is as good as any other as it already uses the

minimum number of BDD vertices as well as variables.

As mentioned in Section 4.2.1, the decision path to each don't care code point

is chosen so as to minimize the BDD size. In fact, a don't care point is assigned to the

same path as the care point whose encoding is closest to the don't care code point. In

Figure 4.3b, the don't care point 110 shares the same path with the care point 100. This

mapping is related to the generalized cofactor operator in [TSL+90] which was initially

proposed in [CBM89] as the constraint operator. Given a function / and a care set c, the

generalized cofactor of / with respect to c is the projection of / that maps a don't care

point x to the care point y G c which has the closest distance to a;. Generalized cofactor



4.3. GENERAL MAPPING

000 001 010 011 V*

a) subgraph for 5-valued MDDvertex

mm

$ \
000 001 010 011 VO 1*1 000 001 010 Oil 10* 11'

b) subgraph for 6-valued MDD vertex c) another subgraph for 6-valued MDD vertex

Figure 4.3: Encodings uqUiu2 for different mapped-BDD subgraphs.
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operation results in a small and canonical BDD representation of the incompletely specified

function.

4.3.3 Relationships between CASE and ITE Operators

The ITE operator forms the basis for the construction and manipulation of BDD's.

The use of the ITE operator also guarantees that the resulting BDD is in strong canonical

form [BRB90]. It is defined as follows:

ITE(F,Gi,Go)=\ Gl lfF =1 (4.4)
y Go otherwise

where range(jP)={0,l}.

The CASE operator is the multi-valued analog of the ITE operator. An under

standing of the relationships between the CASE and ITE operators is important for con

verting the CASE operator into ITE operators for the second-generation MDD package.

The recursion step in Equation 2.12 is our starting point. It gives an outer CASE

operator in terms of a top-variable v, and enables conversion to a hierarchy of ITE operators.

The conversion can be summarized by the following recursive formulae:

if p is even: CASE(v,G'0,G[,G'2,G'3,...,G'p_2,G'p_i)

= CASE(v', ITE(u, G[, G'0),..., ITE(u, G'p_v G'p_2)) (4.5)

if pis odd: CASE(v,G^G[,G^,...,G'p_3,G'p_2,G'p_i)
= CASE(v,,ITE(u,G'i,G'0),...,ITE(u,G,p_2,G,p_3),Gtp_i) (4.6)

The recursive use of Equations 4.5 or 4.6 continues until this recursion terminates when

there are only two child-functions remaining in the outer CASE operator:

CASE(v,Gf0,G[) = ITE(v,G[,G0) (4.7)

While pairing up child-functions with the ITE operator, these formulae replace

the big MDD vertex labeled with variable v with a smaller one, labeled with a new multi

valued variable v', and a number of BDD vertices labeled with a new binary variable u.

This mapping process is best explained by an example.
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Example Suppose v is a 6-valued MDD vertex, and G0,..., G'5 are the six child-functions

connected to it, the CASE to ITE mapping proceeds as follows:

CASE(v, G0, Gi,G2, G3,G4, G5)

= CASE(vf, ITE(u2,G'i,G'0), ITE(u2, G'z, G2),ITE(u2,G'5, G4))

(4.8)

(4.9)

= CASE{v",ITE(uu ITE(u2, G'z, G'2), ITE(u2,G[, G'0)), ITE(u2,G'5, <?i))(4.10)
N „ *

= ITE(u0, ITE(u2, G'5, G'4), ITE(uu ITE(u2, G'3, G2),ITE(u2, G[, G'Q))) (4.11)

Note that while pairing up child-functions for ITE operations in the first step, we effectively

replace the original 6-valued MDD vertex with a smaller 3-valued MDD vertex. During the

assignment of BDD variables, the ordering uq < Ui ^ u2 is used. Figure 4.4 shows the

bottom-up recursive mapping process. Note that the original MDD node labeled v has

been mapped into a BDD subgraph with 5 internal nodes.

Figure 4.4: Recursive mapping from an MDD vertex to a mapped-BDD subgraph.

4.3.4 'mdd-case' Algorithm

Figure 4.5 outlines the C code for the function call mdd-case. It takes as parameter

an mddjmanager, a multi-valued top-variable, and a Ust of child functions chila\.list in the

form of MDD's (actually mapped-BDD). The actual construction of the mapped-BDD is

performed by the efficient recursive routine mdd-encode.
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Figure 4.6 outlines the C code for mdd.encode. When invoked the first time,

mddjencode takes as parameters an mddjmanager, an array of existing child-functions

childJist, a pointer (highestjvertex) to the current BDD variable in the bvarJist, and

a parameter stride. The bvarJist is an ordered list of BDD variables stored with the

mddjmanager. The parameter stride will be discussed in Section 5.2.2, but for the time

being, we may assume it to be equal to 1. The terminal case of recursion is when the

whole mapped-BDD has been built and childJist contains only a single child-function; then

the original function is returned, mdd.encode pairs up child-functions and performs ITE's

with the current variable / given by the variable pointed to by highestjvertex. Resulting

ITE functions are appended to a new.childJist. The number of ITE operations can be

calculated by modulo-dividing the size of childJist by 2. If the size is odd, the remaining

function is appended also. Lastly, the mddjencode is called recursively bottom-up, with

the new.childJist and the decremented pointer in the ordering. The variable which is one

earlier in the ordering than the current one, i.e. with next lowest index, will be used in the

next recursion step.

As mentioned before, there are many valid mappings from MDD's into BDD's. A

particular mapping can be characterized by answering the following two questions:

• which child-functions are grouped together,

• which variable (or index) is assigned to the BDD vertex thus formed.

The general mapping process described so far is the default one used in the project. It can

be compactly defined by recursive Equations 4.5 and 4.6. In summary:

• child-functions are grouped consecutively in pairs,

• as many pairs as possible are assigned to a variable in each recursion step.

The BDD subgraph in Figure 4.4 corresponds to the following encoding as shown in Ta

ble 4.1. This corresponds to a natural integer encoding.

Lemma 4.2 The mapping algorithm, mdd.encode, uses the minimum number of BDD

vertices and variables. The mapped-BDD obtained by the algorithm is in strong canonical

form.
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mdd_t *

mdd_case(mgr, mvar, child_list)

mdd_manager *mgr;

int mvar;

array_t *child_list;

•C

mvar_type mv;

radd_t *mnode;

array_t *mvar_list;

mvar.list = ((mddJiook_type *)mgr->hooks.mdd)->mvar._list;

mv = array_fetch(mvar_type, mvar_list, mvar);

if (mv.values != array_n(child_list))

fail("mdd_case: mvar.values different from child_list\nM);

mnode = mdd.encode(mgr,

child.list,

mv.start_vertex + mv.stride*(no_bit_encode(mv.values)-l),

mv.stride);

return mnode;

Figure 4.5: Simplified C code for mdd-case.
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mdd_t *

mdd_encode(mgr, child_list, highest.vertex, stride)

mdd_raanager *mgr;

array_t *child_list;

int highest_vertex, stride;

i

array_t *new_child_list;

int i, child_count = 0;

mdd_t *f, *g, *h, *t;

array_t *bvar_list;

bvar_list = ((mdd_hook_type *)mgr->hooks.mdd)->bvar_list;

if (array_n(child_list) == 1)

return array_fetch(mdd_t *, child.list, 0);

new_child_list = array.alloc(mdd_t *, 0);

for (i=0; i<(array_n(child_list)/2); i++) {

f = array_fetch(mdd_t *, bvar_list, highest.vertex);

h = array_fetch(mdd_t *, child_list, child_count++);

g = array_fetch(mdd_t *, child.list, child_count++);

/* if trivial cases, return mdd */

t = mdd_ite(f, g, h, 1, 1, 1);

array.insert_last(mdd_t *, new_child_list, t);

}

if (array_n(child_list) */. 2) {

t = array_fetch(mdd_t *, child_list, child_count);

array_insert_last(mdd_t *, new_child_list, t);

}

f = mdd.encode(mgr, new_child_list, highest_vertex-stride, stride);

array_free(new_child_list);

return f;

Figure 4.6: Simplified C code for mdd-encode.
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Proof The first statement follows directly from the encoding process described in Sec

tion 4.2. In the package, the terminal vertices are generated only once by bdd-one and

bddjzero. To build the BDD, only the function bddJte from the BDD package is called.

When processing constraints, the bdd.and and bddjor are also used. As described in

[BRB90], BDD's built with these primitive operations are in strong canonical form. D

Example In Figure 4.4, a minimum of 5 BDD vertices and 3 BDD variables are used to

encode a 6-valued MDD vertex. The mapped-BDD on the right of Figure 4.4 is a canonical

ROBDD.

4.4 Special Mapping for Arithmetic Operations

The general mapping is a useful technique as it works for any arbitrary multi-valued

function. But for a certain class of arithmetic/comparison functions, the corresponding

MDD's can be constructed much faster if a special mapping is used. For most operators

described in Section 2.6.2, we can take advantage of their arithmetic properties to devise a

smaller set of ITE operations to realize such functions directly.

The idea of using special mapping for different functions can be extended fur

ther: Given a particular function and an encoding, we could represent the function as

an multi-level Boolean network. Using a multi-level logic minimization program such as

MIS [BRSVW87], the number of nodes in the network can be minimized. A special map

ping can be carried out as suggested by the topology of the minimized network and this

results in a minimal set of ITE operations to realize the function.

Example Figure 4.7a shows a mapped-BDD for the relation x < y where x and y can

each take four values. Again we could view each BDD vertex since an ITE operation whose

arguments are its top-variable and its two child functions. With the special mapping, we

shall not map the CASE operator to ITE operators. Instead, we construct a mapped-BDD

for each type of constraint function directly using the ITE operator.

The special mapping is done as follows. To compare the values of two multi-valued

variables, we start from the top of the MDD by comparing the most-significant-bit (MSB)

encoded variables, Xo and j/o- If xo = 0 and yo = 1, we know x < y and can conclude

that the function must evaluate to a 0 without looking at lesser significant bits. Similarly,
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if aro = 1 and yo = 0, we can conclude the result 1 since x is larger than y no matter

what the lesser significant bits are. But if xo = yo, we have to resort to comparisons of

the next significant bits, xi and y\. As shown in Figure 4.7, each pair of encoded variables

corresponds to a 3-vertex-cluster.

x>y

a) Special Mapping Example

A R ,| K
x = y 1 1 0 0
x !=y 0 0 1 1
x>=y 1 1 0 1
x > y 0 0 0 1
x<=y 1 1 1 0
x < y 0 0 1 0

b) Special Mapping Techniques

a\/b

Figure 4.7: Construction of mapped-BDD using special mapping.

The interconnections between these clusters, and the terminal vertices can be

summarized by the table in the middle of Figure 4.7. We have four outgoing edges for each

3-vertex-cluster which are labeled A, B, J and K. Edges A and B are taken if the values

of xo and yo are the same. No conclusion can be drawn about the overall comparison so

these edges point to the next significant bit x\. The exception is when A and B are coming

from the least-significant-bit (LSB) vertices and are pointing to terminal vertices. For this

case, the values of all encoded variables have already been checked. So the second and third

column of the table list the terminal vertices they should point to for each type of constraint

function. If the values of xo and yo are different, we can jump to a conclusion directly, i.e.

J and K can point directly to terminal vertices, which are listed in the fourth and fifth

column of the table. We have implemented six commonly used constraint functions using

this special mapping technique. These are listed in Section 6.2.1. Figure 4.8 outlines one
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of them, mddJtjs.

In general; to realize a comparison function of two multi-valued variables, each

having p values, the general mapping requires (p + l)(p - 1) ITE operations, while the

special mapping only needs 3(log2(p)) ITE operations. For example in Figure 4.7a, we

need only 6 ITE operations to realize the function using the special mapping, instead of 15

using the general mapping. The arithmetic property of the comparison function helps us

effectively 'fold' the MDD into a smaller number of ITE operations.

For the benchmark examples in Chapter 7, a 10% speed improvement is seen

by using the special mapping as compared to the general mapping. The improvement is

expected to be greater for larger problems with larger value ranges. We experimented with

some simple functions with a few constraints whose variables have a range of over one

hundred values. The final mapped-BDD can be constructed within a few seconds using the

special mapping. But if the general mapping is used, the construction of the partial BDD

is very slow and eventually the construction aborts due to memory constraints.

4.5 Representing Multi-valued Output Functions

We have been using discrete functions T which have a binary-valued range Y =

B = {0,1} since the beginning of Chapter 3. For a moment, consider the more general

multi-valued function where the output can assume m values, Y —{0,1,..., m —1}. When

mapping into a BDD, there are just two kinds of terminal vertices, 0 and 1. Therefore, we

need to transform the function first into binary-valued output function(s).

Three ways to represent multi-valued outputs are shown in Figure 4.9. In this

example, the discrete function T can output 4 values. The one hot method builds a separate

BDD to represent each possible output value of the function. Only one of the binary-valued

functions G\, G2, G3, G4 will be 1 at any time. Note that, as illustrated, sharing of common

subgraphs between the BDD's is used whenever allowed.

The second and third method use a characteristic function G to represent the

multi-valued function T, which is defined as:

G:Pi*P2*...*Pn*Y -• B (4.12)
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mdd_t *

mdd_lt_s(mgr, mvarl, mvar2)

mdd_manager *mgr;

int mvarl, mvar2;

i

mvar_type x, y;

bvar_type bx, by;

mdd_t *t, *tt, *ttb;

int i;

array.t *mvar_list;

array_t *bvar_list;

mvar_list = ((mdd_hook_type *)mgr->hooks.mdd)->mvar_list;

bvar.list = ((mdd_hook_type *)mgr->hooks.mdd)->bvar_list;

x = array_ietch(mvar_type, mvar_list, mvarl);

y = array_fetch(mvar_type, mvarJList, mvar2);

if (x.values != y.values)

fail("mdd.lt_s: 2 mvars have incompatible value ranges.");

t = zero;

for (i=(x.encode_length-l); i>=0; i—) {

bx = array_fetch(bvar_type, bvar.list, x.start_vertex + i*x.stride);

by = array_fetch(bvar_type, bvar_list, y.start_vertex + i*y.stride);

ttb = mdd_ite(by.node, one, t, 1, 1, 1);

tt = mdd_ite(by.node, t, zero, 1, 1, 1);

t = mdd_ite(bx.node, tt, ttb, 1, 1, 1);

}

return t;

Figure 4.8: Simplified C code for mddJts.
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G(x,y)

GO G1 G2 G3

a) One Hot Method b) Characteristic Function Methods

Figure 4.9: Three ways to represent multi-valued output functions.
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, 1 iiT(x) = yG(x,y)={ K} (4.13)
0 otherwise

where x € Pi * P2 * ... * Pn, and y 67

Effectively, this treats the multi-valued output as another multi-valued input.

There are two ways to represent this characteristic function. First we could construct

the one-hot binary functions G\, G2,G3, G4 as before. Then we can use the CASE operator

to select one of them according to the value to y,

G(x,y) = (F(x) = i) if (y = i) (4.14)

= CASE(y, (F(x) = 0), (F(x) = 1),..., (F(x) = m - 1)) (4.15)

This is shown in the middle diagram in Figure 4.9. Of course, the ordering yj < x, need

not be used.

Alternatively, we could construct the encoded binary-valued functions Ho and Hi:

, 0 HT(x) = Oor 2 ,
H0(x,y)={ (4.16)

1 ii^(x) = lor 3

I 0 iiT(x) = Oor 1 ,Hi(x,y)={ (4.17)
[ 1 if^(x) = 2or 3

In this case we construct log2(m) Hi BDD's instead of m G,- BDD's for the previous case.

Each Hi has to be compared with the corresponding encoded variables y, of y.

f 1 if(J5T0 = t/o)AND(iT1 = m) ,„..
G(x,y)=< (4.18)

y 0 otherwise

As shown on the right diagram of Figure 4.9, G(x,y) is reahzed by XNORing H0 and

2/o together, and XNORing Hi and t/i together. Then these resultant BDD's are ANDed

together to realize the characteristic function G(x,y).
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Variable Ordering

We can frequently suffer from exponential time (and/or space) complexities if

we neglect the issue of variable ordering. As with other graph-based techniques such as

BDD's, the worst case space and time complexities for constructing an MDD for any discrete

function is exponential to the number of variable values of the function. Bryant proved that

to represent integer multiplication with BDD's, the BDD sizes grow exponentially in the

word size regardless of the ordering of the input variables. Luckily in real life, most discrete

functions have reasonable representations provided that a good variable ordering is chosen.

The goal in this chapter is to find a good variable ordering so as to minimize

the size of the final MDD. In our mapped-BDD implementation, we have the additional

freedom of ordering the encoded binary variables. The ordering process thus consists of two

steps: first we order the MDD variables, and then within this order the BDD variables. We

present one heuristic for ordering the MDD variables, and two other heuristics for ordering

the BDD variables.

5.1 Ordering of MDD Variables

From the graph structure inherent in the application (see Chapter 3), we can derive

the following ordering heuristic that works well for the applications we tried.

• Form a digraph from the problem. Each vertex corresponds to one or more multi

valued variables for the MDD. A directed edge is drawn between vertex i to vertex j

if variable i is directly related to variable j by a constraint.

43
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• Break the cycles of the digraph arbitrarily to form a DAG.

• Levelize the DAG using topological ordering.

• Assign indices such that the variables at the highest level of the graph have lower

indices (i.e., are at the top) in the MDD.

• For vertices on the same level, assign lower indices to vertices that are on longer

directed paths in the digraph.

• Further ties are broken arbitrarily.

The idea behind this heuristic is that variables on the top level of the digraph have

more freedom and hence will participate in more solutions. By placing them on the top

levels of the MDD, more compact MDD's should result.

Example Figure 5.1 is a partial flow graph from Figure 3.2. Following the ordering

heuristics outlined above, we obtain the ordering tl -< t2 -< t3 -< t4 or tl -< t2 -< t4 -< t3

which give the minimum MDD size of 8 vertices. Note that the graph has a dual-graph

whose edges are related by < instead of >, pointing in the opposite direction. Applying

our heuristics, the ordering for the dual-graph is t4 •< t3 -< t2 -< tl or t3 -< t4 -< t2 -< tl and

both of them also minimize the final MDD size. Other orderings generate MDD's of larger

sizes. For example, 11 vertices are needed for the ordering t3 -< t4 -< tl -< t2. The adverse

effect of a bad ordering on the MDD size is more serious when the multi-valued variables can

take large value ranges. As shown in Figure 5.1, the MDD obtained following our heuristic

is 1/4 the size of that formed with an arbitrary ordering. We note in comparing Figure 5.1

with Figure 3.2 that the if-then constraints are not involved in the ordering since they are

not topologically structured and cannot be easily taken into consideration when ordering

the variables.

Nevertheless, the ordering heuristic for MDD variables has proved to be very useful

for the hardware resource scheduling problems. We tried some large real-life digital filter

examples (results are given in Section 7.1). Surprisingly, they can be solved within one

minute if the ordering heuristic is followed. The variable ordering chosen by our heuristic

for the llth-order FIR filter is shown in Figure 5.2.
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ordering
range
no. of vertices

t1121314
2 3 2 2

8

t4131211
2 3 2 2

8

t3t4t1 t2
2 2 2 3

11

t1 t2 t3 t4
20 30 20 20

62

t3 t4 t1 t2
20 20 20 30

254

Figure 5.1: Effects of variable ordering on MDD size.

5.2 Ordering of Mapped-BDD Variables

45

For the second- and third-generation MDD package, MDD's are represented as

mapped-BDD's. A limitation of the current Berkeley BDD package is that once a binary

variable is registered, it's position in the order Hst is fixed. Variables can only be appended

to the end of the order hst. Thus the variable ordering process is performed before the

mapping process. The Ufting of such a Umitation wiU open up opportunities for new ordering

heuristics. For example, it would enable us to change the order Ust dynamically as the

function is being constructed with the variables. Also we could experiment on the effects

of alternate variable ordering after a final MDD has been constructed.

In this section, we first present two ordering heuristics which represents two ends

of the spectrum of variable ordering possibiUties. The natural ordering discussed in Sec

tion 5.2.1 works well for problems which involve many multi-valued variables, each having

small value ranges. The interleaved ordering discussed in Section 5.2.2 performs weU with

problems which have only a few variables but each having large value ranges. In Sec

tion 5.2.3, a mixed approach of these heuristics is introduced and its implementation is

discussed.
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Figure 5.2: Flow graph of 11th order FIR filter and derived ordering.
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5.2.1 Natural Ordering

After encoding the MDD variables with binary variables, we can order these en

coded variables as well. A natural way is to cluster together all the encoded variables which

correspond with the same multi-valued variable of the MDD. Within each cluster, the bi

nary variable which corresponds to the most significant bit (MSB) is assigned the least

index. Higher indices are assigned to variables which correspond to lesser significant bits.

A BDD subgraph is constructed for each MDD vertex according the method described in

Section 4.3. This natural ordering is used in all the MDD examples reported in Chapter 7.

The foUowing example iUustrates the natural ordering.

Example In Figure 5.3, the function F = 1 if x > y is represented as an MDD on the

left and a mapped-BDD on the right. Variables x and y can each take 4 values. Note that

the multi-valued variable x is encoded into two binary variables xo (MSB) and xi (LSB) on

the right. The shaded subgraph before reduction has the same number of outgoing arcs as

the MDD vertex and thus the two representations are equivalent. With the mapped-BDD

representation, additional redundant nodes can be reduced automatically as iUustrated by

the t/i vertices. Note that the number of edges exiting from the y vertices on the right is

significantly less than those on the left. The actual encoding used for the y variables affects

this.

5.2.2 Interleaved Ordering

Natural ordering works well for the appUcations we tried so far, which include

routing and scheduUng. Functions representing this class of problems usually have many

multi-valued variables, each taking a small range of values. As Usted in the tables in

Chapter 7, they have values ranges of at most 15 but the number of variable can be as high

as 88.

However, we are currently applying MDD's to the formal verification of interacting

FSM's. In these cases, we encounter some multi-valued variables which have large value

ranges. For example, the state variable of an n-bit counter can take 2" integer values. We

anticipate difficulties if we use the current mapping and ordering methods for such variables.

The problem of using natural ordering for variables with large value ranges is

illustrated by Figure 5.4. Imagine a; is a variable representing a short-integer, i.e. .t €
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Fs1ifx>y

Figure 5.3: Natural ordering of encoded variables.

{0,1,. ..,65535}. As mentioned before, there are 65536 outgoing edges from the mapped-

BDD subgraph cluster above the dotted Une. In the worst case, it would have 65536

subgraphs below, each rooted at such an edge. Thus the size of the MDD will grow expo

nentially in the number of binary encoded variables.

To avoid such exponential growth, we can interleave the encoded variables as

shown on Figure 5.4b. The encoded variables xo and xi for x are interleaved with yo and

2/i for y. The more significant bits are compared before the less significant ones as the

mapped-BDD is traversed from top to bottom. For a single constraint, each cluster is

made up of at most 3 BDD vertices, and the total number of outgoing edges is 4 which is

independent of the value range of the variables. With interleaving, we can keep the shape

of the mapped-BDD slim. The interleaved ordering is related but not dependent on the

special mapping described in Section 4.4. Actually, we tried special mapping with natural

ordering on the examples listed in Chapter 7. Interestingly, this approach is still faster than

using the natural mapping approach with natural ordering. When the natural mapping

is used in such an approach, for the example in Figure 4.1, the mapped-BDD subgraphs

for variable y are constructed at the bottom of the mapped-BDD as shown in Figure 4.1b.
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F = 1 if x > y

a) Natural Ordering b) Interleaving

Figure 5.4: Comparison between natural and interleaved ordering.
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When the interleaved ordering is used and the CASE on the encoded variable xi is next

performed, the BDD package wiU automatically interleave the x i BDD vertices in between

the j/o and yx vertices. As a result, the final mapped-BDD with interleaved ordering is the

same as that obtained by the special mapping but the speed of construction is faster using

the special mapping than the general mapping.

5.2.3 Mixed Natural/Interleaved Ordering

Usually as CAD problems are formulated using MDD's, some closely-related vari

ables should be interleaved as discussed in Section 5.2.2. However, there are usually other

variables or groups of variables which are not related to each other and should be put in a

natural ordering as in Section 5.2.1. This situation calls for the use of a mixture of both the

natural and interleaved ordering within a single mapped-BDD. The current MDD package

allows variables to be ordered by a mixture of such heuristics. This is accompUshed by a

parameter called stride for each MDD variable stored in the mddjmanager.

Example Suppose a problem has six multi-valued variables with the foUowing constraints:

u > v;

w = 1;

x < y,

V < z;

The encoded binary-variables for u should be interleaved with those for v as they are

related by the first constraint. Similarly variables x, y and z are related by x < y < z

and their encoded variables should be interleaved with one another. Encoded variables

of w can just follow a natural ordering. In addition, there is no relationship between the

groups of variables {u, v}, {w}, and {x,y, z} so their encoded variables can be ordered one

after another. A desired order Ust of all encoded variables, bvarJist, which respects these

groupings is:

"o -< v0 •< ui < vi <u2 <v2 < wo -< wi -< xo •< Vo •< zq •< xi •< Vi •< Zi

With the MDD package, the user needs to specify only the information in Table 5.1

and the above bvarJist is derived automatically. The number of binary-variables used to
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MDD value stride

Variable range

u 8 2

V 8 2

w 4 1

X 4 3

y 4 3

z 4 3
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Table 5.1: MDD variables information stored in mddjmanager.

encode the multi-valued variable u is llog^rangeiu))]1. The parameter stridespecifies the

number of multi-valued variables that are in the same interleaving group as the variable,

e.g. x, y and y axe specified with strides of 3 as the associated 2 encoded variables of

each three multi-valued variables are interleaved with one another. Similarly, u and v have

strides of 2 while w, not interleaved with other variables, has a stride of 1. If stride of an

MDD variable is not specified, the stride is by default 1 which corresponds to the case of

natural ordering.

As the mddjmanager contains the order Ust as weU as the stride information,

various algorithms mentioned in Chapter 4 can locate the encoded variables they need in

the order Ust. For example, if an algorithm after processing with variable u o needs the next

variable «i for Shannon decomposition, ui can be found 2 (= u.stride) locations down the

list.

1\k] is the smallest integer larger than k.
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MDD Package User Interface

To solve the problems formulated in Chapter 3, the first- and second-generation of

the MDD packages take their input from constraint input files derived from the problems.

Another version of the MDD package is needed when we start to apply MDD to new

applications, such as the formal verification of interacting FSM's. The input format as

a constraint input file is not convenient for these appUcations. A clean user-interface is

needed where the user can construct and manipulate MDD's by calUng a common set of

MDD function calls. This function call interface wiU be described in Section 6.2. Also

since the original MDD package was part of the MIS [BRSVW87] environment, a portable

stand-alone MDD package is required for general use. Thus such a third-generation MDD

package has been developed and is described in this chapter.

6.1 Constraint Input File Interface

The header of the constraint input file consists of three lines. The first has one

number, the total number of multi-valued variables used. The second Une contains a Ust of

all the variable names; the third line is a list of their respective value ranges. The imphed

multi-valued variable ordering will be followed. The rest of the file is a Une by Une listing

of all the constraints. Each constraint can take the foUowing formats:

• variable i > variable2

• variablei >= variable2

• variablei < variable2

52
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• variablei <= variable2

• variablei == variable2

• variablei ! = variable2

• if constrainti then constraint

6.2 Function Call Interface

The following is the set of function calls available to the user, which serves as

the user-interface to the third-generation MDD package. For backward compatibiUty, a

conversion program has been written that takes the constraint input file and converts it

into an equivalent set of function calls for constructing the corresponding discrete function.

Beside the MDD graph structure, there is a run-time mddjmanager (similar to the

bddjmanager) which maintains all the bookkeeping information for the MDD's. It includes

a pointer (mdd.hook) to two arrays, mvarJist and bvarJist. mvarJist contains a Ust of

the multi-valued variables (mvar) while bvarJist contains a Ust of all the encoded binary

variables (bvar). They also contain enough information such that one can easily find the

correspondence between mvar's and bvar's.

6.2.1 Multi-valued Operator Function Calls

mdd_manager *

mdd_init(mvar .sizes)

array_t *mvar_sizes;

Given an array of mvar values (mvar_sizes), it initializes and returns a new mdd_manager

which includes mvarJist and bvarJist information. The name of each mvar has a prefix of

"mv" foUowed by its mvar id number.

mddjmanager *

mdd-init_name(mvar.sizes, mvar_names)

arrayJt *mvarjsizes;

arrayJt *mvar.names;

Given an array of mvar values (mvar_sizes) and another array of mvar names
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(mvar.names), it initializes and returns a new mdd_manager which includes mvarJist and

bvarJist information.

void

mdd_quit(mgr)

mdd_manager *mgr;

Free up all resources associated with the mddjnanager (and bdd_manager).

mddjt *

mdd_case(mgr, mvar, childJist)

int var;

arrayJ *child_Ust;

Given an mvar id and an array of child-functions id's, the MDD CASE operation

is performed on all the child-functions and the resultant MDD function is returned.

mdd_t *

mddJiteral(mgr, mvar, values)

mdd_manager *mgr;

int mvar;

arrayJ; *values;

Given an mvar id and an array of values which the mvar can have, the MDD

representing a multivalued Uteral is returned. The literal is an OR of terms of the form

mvar=value. If mvar can take 5 values {0,1,2,3,4}, to specify the Uteral (mvar=2 or mvar=4)

we would put in the array "values" the values {2,4}.

rndd-t *

mdd_eq_g(mgr, mvarl, mvar2)

mdd_manager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl = mvar2) is

returned.
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mdd_t *

mdd_neq_g(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl ^ mvar2) is

returned.

mdd_t *

mddJeqjg(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl < mvar2) is

returned.

mdd_t *

mddJt^g(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl < mvar2) is

returned.

mdd.t *

mdd_geq_g(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl > mvar2) is

returned.

mdd_t *
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mdd_gt_g(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representationof the relation (mvarl > mvar2) is

returned.

mdd_t *

mdd_eq_s(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl = mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mdd_neq_s(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl ^ mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mdd_leqjs(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl < mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mddJt_s(mgr, mvarl, mvar2)
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mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl < mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mdd^geqjs(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl > mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mdd^gt_s(mgr, mvarl, mvar2)

mddjmanager *mgr;

int mvarl;

int mvar2;

Given two mvar id's, the MDD representation of the relation (mvarl > mvar2) is

returned. Special mapping is used to speed up the MDD construction.

mdd_t *

mdd_cofactor(mgr, fn, cube)

mddjmanager *mgr;

mdd_t *fn;

mdd_t *cube;

Perform the cofactoring of a function 'fn' with respect to a multivalued cube 'cube'

using mddjandjsmooth. First all mvars present in 'cube' are extracted, then 'fn' and 'cube'

are ANDed together and smoothed with the mvars in 'cube'.

mdd_t *

mdd_smooth(mgr, fn, mvars)
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mddjmanager *mgr;

mdd_t *fn;

arrayJ *mvars;

Given an MDD function and an array of smoothing variables, mddjsmooth smooths

'fn' with respect to all the mvars.

mdd_t *

mdd^and_smooth(mgr, f, g, mvars)

mddjmanager *mgr;

mdd.t *f;

mdd_t *g;

arrayJ *mvars;

Given two MDD functions and an array of smoothing variables, mddjand_smooth

first AND 'f' and 'g' together and then smooth the intermediate function with respect of

the mvars. The resultant MDD function is returned.

mdd.t *

mddjsubstitute(mgr, fn, old-invars, newjmvars)

mddjmanager *mgr;

mdd_t *fn;

arrayJ *old_mvars;

arrayJt *new_mvars;

In function 'fn', multivalued variable old_vars[i] is substituted with the correspond

ing new_vars[i]. It checks that arrays oldjnvars and new_mvars are of the same length, and

within them, each corresponding pair of mvars have the same number of values.

6.2.2 Binary-valued Operator Function Calls

The foUowing function calls are actually equivalent to the corresponding function

calls from the BDD package. They are simply macro definitions. Their functions have been

documented in the Berkeley BDD package which is appended in Appendix B.

Note also that the structure of an MDD node is actually the same as that of a

BDD node:
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#define mdd.t bdd_t

#define mdd_and bdd_and

^define mdd_constant bdd.constant

#define mdd.dup bdd.dup

#define mdd.equal bdd.equal

#define mddJree bddjfree

#define mddJs.tautology bddJsJautology

#define mddJte bddJte

#define mddJeq bddJeq

# define mddjaot bdd_not

# define mddjone bdd_one

#define mdd_or bdd_or

#define mddjsize bdd_size

#define mdd_xor bdd_xor

^define mdd_xnor bddjxnor

#define mdd-zero bdd_zero
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Results

The following benchmark examples were run on a VAX 8800. The results wiU be

compared against Srinivasan's first-generation MDD package [SKMB90] which doesn't use

BDD's. These comparisons should not be taken as the final verdict between the effectiveness

of the straightforward MDD approach and the mapped BDD approach because efficient

BDD techniques have not been exploited in the first-generation MDD package.

7.1 Scheduling Problems

To find out how large a problem the MDD approach can handle, several real-Ufe

digital filter scheduUng problems were used as shown in Table 7.1. These include an 11th

order FIR filter (firll), a 5th order elUptic filter (elUp5), a 7th order quadratic filter (quad7)

and two small examples at the top of Table 7.1. The columns of Table 7.1 and 7.2 represent:

(1) the name of the benchmark example, (2) the number of multi-valued variables, (3) the

Example No. Value No. Size Run RunTime Speed
of Range of of BDD Time Mapped Up

Vars. Constr. Mapped MDD BDD

schedl 22 6,1-2 42 258 2.8 1.2 2.3

sched2 24 4,2 44 327 3.9 0.5 7.8

firll 88 14,1 256 1 109.9 20.0 5.5

elhp5 44 10,1-2 129 10503 472.3 79.4 5.9

quad7 54 15,1-2 121 22178 403.5 77.8 5.2

Table 7.1: Results on scheduUng benchmarks.
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Example No. Value No. Size Run RunTime Speed
of Range of of BDD Time Mapped Up

Vars. Constr. Mapped MDD BDD

n7.5 11 11 24 213 7.7 2.0 3.9

n7.7 13 12 41 2205 72.0 12.2 5.9

n9.5 13 13 22 224 13.2 2.3 5.7

n9.6 14 13 56 13471 290.1 51.6 5.6

n9.7 14 14 30 498 46.9 5.8 8.1

asc 20 9 70 5371 112.7 8.6 13.1
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Table 7.2: Results on routing benchmarks.

value ranges for variables (for Table 7.1, the first range is for time step and the second is

for number of machines for each type), (4) the number of constraints, (5) the number of

BDD vertices in the final mapped-BDD, (6) the run-time in seconds for the direct MDD

implementation by Srinivasan, (7) the run-time in seconds for the MDD package using

mapped-BDD's, (8) the speedup factor using the mapped MDD package as compared to

the direct MDD implementation.

firll is the most complicated example. The flow graph and variable ordering

is shown in Figure 5.2. It has 88 MDD variables and 256 constraints. AUowing only one

function unit per type, it cannot not be scheduled in 14 time steps. The final MDD, a single

zero BDD terminal vertex, can be considered a proof of the non-existence of a solution. If

one of the redundant constraints in Equation 3.1 and 3.2 are removed, all these benchmarks

can run within one minute. Except for the smallest example, all examples show a speed

improvement of about six times or more over the direct MDD implementation.

7.2 Routing Problems

Channel routing problems (n*.*) of different sizes were also tried as weU as a

switchbox routing example (asc). The results are shown in Table 7.2. Again except for

the smallest example, all show a speedup factor of about 6 or more. Relatively, larger

examples tends to run even more efficiently with the MDD package using mapped-BDD's.

To give a perspective on how well the MDD approach works, Table 7.3 gives a comparison

with Devadas results [Dev89], using a subset of the routing examples running on the same

machine, VAX 8800.
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Example No. Value RunTime RunTime Speed
of Range Boolean Mapped Up

Vars. Sat. BDD

n7.5 11 11 126 2.0 63

n7.7 13 12 174 12.2 14

n9.7 14 14 246 5.8 42

Table 7.3: Comparison with Devadas's results.



Chapter 8

Conclusions

A rigorous theoretical basis for MDD's has been provided. Also developed are

efficient algorithms that map MDD into BDD's, and variable ordering heuristics that work

well on most problems. For problems which need large value ranges, the concept of variable

interleaving has been introduced, and an alternate set of mapping and ordering techniques

have been developed. After three versions of development, a highly efficient and general

purpose MDD package is available.

With MDD's, we can approach CAD problems in a natural setting, using multi

valued symboUc variables which associate directly with the problem statement. MDD's

imphcitly enumerate all the solutions. Finding an optimum solution is guaranteed if it

exists. Otherwise the non-existence of a solution is proved. Because of these desirable

properties, MDD's can be used as a complement to traditional heuristic methods in some

domains of application. A variety of CAD applications have been formulated using the

MDD approach. Results of realistic benchmark examples are encouraging.

This work represents just a beginning for exploring the capabiUties of MDD's.

There are many other apphcations of MDD's, one of which is the formal verification of

interacting FSM's. The two ordering heuristics presented in this report work weU for two

ends of the spectrum of CAD problems. We beUeve that future experimentation with

ordering heuristics wiU be key for using MDD's to solve many other CAD related problems.
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Appendix A

Documentation for array package

An array_t is a dynamically allocated array. As elements are inserted

the array is automatically grown to accomodate the new elements.

The first element of the array is always element 0, and the last

element is element n-1 (if the array contains n elements).

This array package is intended for generic objects (i.e., an array of
int, array of char, array of double, array of struct foo *, or even

array of struct foo).

Be careful when creating an array with holes (i.e., when there is no
object stored at a particular position). An attempt to read such a
position will return a 'zero' object. It is poor practice to assume

that this value will be properly interpreted as, for example, (double)
0.0 or (char *) 0.

In the definitions below, 'typeof' indicates that the argument to the

'function' is a C data type; these 'functions' are actually implemented

as macros.

array_t *

array_alloc(type, number)
typeof type;

int number;

Allocate and initialize an array of objects of type 'type'.
Polymorphic arrays are okay as long as the type of largest
object is used for initialization. The array can initially
hold 'number' objects. Typical use sets 'number' to 0, and
allows the array to grow dynamically.

void

array_free(array)
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array_t *array;

Deallocate an array. Freeing the individual elements of the
array is the responsibility of the user.

int

array_n(array)
array_t *array;

Returns the number of elements stored in the array. If this is

'n', then the last element of the array is at position 'n' - 1.

void

array_insert(type, array, position, object)
typeof type;

array_t *array;

int position;

type object;
Insert a new element into an array at the given position. The

array is dynamically extended if necessary to accomodate the
new item. It is a serious error if sizeof(type) is not the
same as the type used when the array was allocated. It is also

a serious error for 'position' to be less than zero.

void

array_insert_last(type, array, object)
typeof type;

array_t *array;

type object;
Insert a new element at the end of the array. Equivalent to:

array_insert(type, array, array_n(array), object).

type

array_fetch(type, array, position)
typeof type;

array.t *array;

int position;

Fetch an element from an array. A runtime error occurs on an

attempt to reference outside the bounds of the array. There is

no type-checking that the value at the given position is

actually of the type used when dereferencing the array.

type

array_fetch_last(type, array)
typeof type;

array_t *array;

Fetch the last element from an array. A runtime error occurs
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if there are no elements in the array. There is no type-checking
that the value at the given position is actually of the type used
when dereferencing the array. Equivalent to:

array_fetch(type, array, array_n(array))



Appendix B

Documentation for BDD Package

The BDD package has been modified to be independent of misll so that it

can be used in any application. Many of the functions which previously

existed in the BDD package have been moved to the misll package NTBDD.

Compatibility with misll Release 2.1 has not been maintained.

Release 2.2 provides the capability of maintaining several different
orderings. This is done through the concept of a bdd.manager, where a
manager is associated with a particular ordering. Thus, a manager may be
created by specifying an ordering of variables. Other variables may be

added later at the end of this ordering.

Summary:

bdd_free();

bdd_dup();

bdd.equalO;
bdd_compose();
bdd_leq();
bdd_is_tautology();

bdd_not();

bdd_and();

bdd_or();

bdd_xor();

bdd_xnor();

bdd_cofactor0;
bdd_smooth();

bdd_substitute();

bdd_and_smooth();

bdd.iteO;

bdd_one();

bdd_zero();

bdd_top_var();
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bdd_then();
bdd_else();

bdd_start();

bdd_end();

bdd_get_variable();
bdd_create_variable();

bdd_size();

bdd.print();
bdd_get_stats();
bdd_print_stats();
bdd_set_gc_mode();

void

bdd_free(bdd)

bdd_t *bdd;

Frees up 'bdd'.

bdd_t *

bdd_dup(bdd)
bdd_t *bdd;

Returns a copy of the BDD,

boolean

bdd_equal(bddi, bdd2)
bdd_t *bddl, *bdd2;

Checks if the two BDDs are identical, returns '1' if they are,.
'0' otherwise. Both BDDs should belong to the same bdd manager.

bdd_t *

bdd_compose(bddl,bdd2,bdd3)
bdd_t *bddl,*bdd2,*bdd3;

'bdd2' is the bdd of variable 'v'. Replaces 'v' with 'bdd3' in
'bddl'. 'bdd2' should be a single variable bdd.

boolean

bdd_leq(bddl,bdd2,phasel,phase2)
bdd_t *bddl, *bdd2;

boolean phasel, phase2;

Checks for implications, 'phasel' and 'phase2' indicate the phases to be
used for 'bddl' and 'bdd2'. For example:

bdd_leq(bddl,bdd2,1,0)
returns returns the value of bddl => bdd2'.(While this can be done using
bdd.or and then checking if this result is a constant value, using
bdd_leq is generally faster.)

boolean

bdd_is_tautology(f.phase)



bdd_t *f;

boolean phase;

Checks if the given function is tautologously true, 'phase'
indicates the phase to be used for 'f, i.e. phase==l checks
if f—1 and phase==0 checks if f'==1.

bdd_t *

bdd_not(bdd)

bdd_t *bdd;

Returns the BDD for the complement of 'bdd'.

bdd_t *

bdd_and(bddl, bdd2, phasel, phase2)
bdd_t *bddl, *bdd2;

boolean phasel, phase2;

Returns the BDD for the AND of 'bddl' and 'bdd2' in the phases

specified by 'phasel' and 'phase2'. For example if phasel == 0
and phase2 == 1, the function will return the bdd for

(bddl' and bdd2). Both BDDs should belong to the same bdd manager.

bdd_t *

bdd_or(bddl, bdd2, phasel, phase2)
bdd_t *bddl, *bdd2;

boolean phasel, phase2;

Returns the BDD for the OR of 'bddl' and 'bdd2' in the phases
specified by 'phasel' and 'phase2'. For example if phasel == 0
and phase2 == 1, the function will return the bdd for

(bddl' or bdd2). 'bddl' and 'bdd2' should belong to the same
bdd manager.

bdd_t *

bdd_xor(bddl, bdd)

bdd_t *bddl, *bdd2;

Returns the BDD for the XOR of the two BDDs.

'bddl' and 'bdd2' should belong to the same bdd manager.

bdd_t *

bdd_xnor(bddl, bdd)

bdd_t *bddl, *bdd2;

Returns the BDD for the XNOR of the two BDDs.

'bddl' and 'bdd2' should belong to the same bdd manager.

bdd_t *

bdd_cofactor(bddl, bdd2)

bdd_t *bddl, *bdd2;

Returns the cofactor of the 'bddl' with respect to *bdd2'. 'bdd2'

should be a single cube, 'bddl' and 'bdd2' should belong to
the same bdd manager.

69



70 APPENDIX B. DOCUMENTATION FOR BDD PACKAGE

bdd_t *

bdd_smooth(f, var.array)
bdd_t *f;

array_t *var_array;

The smoothing function. 'var_array' is an array of bdd_t.

bdd_t *

bdd_substitute(f, old_array, new_array)
bdd_t *f;

array_t *old_array, *new_array;

Substitute all old_array vars with new_array vars. *old_array' and
'new_array' are arrays of bdd_t. Given two arrays of variables a and b
consisting of member values (al .. an) and (bl .. bn), replace all
occurrences of ai by bi. This could be done iteratively with

bdd_compose but would require n passes instead of one. Thus this algorithm
is only a performance optimization.

bdd_t *

bdd_and_smooth(f, g, smoothing.vars)
bdd_t *f, *g;

array.t *smoothing_vars;

Smooth and AND at the same time. 'smoothing.vars' is an array of bdd_t,
which are the input variables to be smoothed out.

bdd_t *

bdd_ite(f, g, h, f.phase, g.phase, h.phase)
bdd_t *f, *g, *h;

boolean f.phase, g.phase, h.phase;

Returns the ite (IF-THEN-ELSE) of three bdd's: ITE(f.g.h).

bdd_t *

bdd_one(mgr)
bdd_manager *mgr;

Returns a new copy of the 1 BDD.

bdd_t *

bdd.zero(mgr)
bdd_manager *mgr;

Returns a new copy of the 0 BDD.

bdd_t *bdd_top_var(bdd)
bdd_t *bdd;

Returns the bdd corresponding to the top variable of 'bdd'.

bdd_t *bdd_then(bdd)

bdd_t *bdd;

Returns the bdd of the function when the top.var of 'bdd' evaluates
to 1.



bdd_t *bdd_else(bdd)

bdd_t *bdd;

Returns the bdd of the function when the top.var of 'bdd' evaluates

to 0.

bdd_manager *

bdd_start(nvariables)
int nvariables;

Initialize and return a bdd_manager. 'nvariables' is
the maximum number of variables allowed in this bdd manager,

and cannot change over the lifetime of the bdd manager.

void

bdd_end(manager)
bdd_manager ^manager;

Terminate a bdd manager.
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bdd_t *

bdd.get.variable(manager, variable_i)
bdd.manager ^manager;

bdd_variableld variable.i;

Get or create a new variable and add it to the bdd. The variable

must be in the range 0 to nvariables, as specified in the call to bdd.start,
else a failure occurs. A bdd of the form (v, 1, 0) is returned. This is
the only acceptable way of getting or creating variables in the manager.

bdd_t *

bdd_create_variable(bdd.manager)
bdd.manager *bdd_manager;

Returns a BDD for a new variable after registering it with the

manager. This BDD is of the form (v, 1, 0). The variable is added
to the end of the current ordering.

int

bdd_size(bdd)

bdd_t *bdd;

Returns the size of the BDD, 0 for the constant function 0, 1 for

the constant function 1, and the number of vertices in the BDD

otherwise.

void

bdd_print(f)
bdd_t *f;

Print a bdd.

void

bdd_get_stats(manager, stats)
bdd.manager ♦manager;
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bdd.stats *stats;

Get the statistics from the bdd package, and return 'stats'.

void

bdd_print_stats(stats, file)
bdd_stats stats;

FILE *file;

Print the given statistics to 'file'.

void

bdd_set_gc_mode(bdd, no_gc)
bdd.manager *bdd;

boolean no.gc;

If no_gc==0, turn on garbage collection, else if no_gc==l, turn

off garbage collection.
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