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FINITE-TERMINATION SCHEMES FOR SOLVING

SEMI-INFINITE SATISFYCING PROBLEMS*

by

E. Polak and L. He

ABSTRACT

The problem of finding a parameter which satisfies a set of specifications in inequality form is

sometimes referred to as the satisfycing problem. We present a family of methods for solving, in a

finite number of iterations, satisfycing problems stated in the form of semi-infinite inequalities. These

methods range from adaptive uniform discretization methods to outer approximation methods.
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1. INTRODUCTION

Both engineering and economic system design problems often involve specifications in terms

envelopes within which dynamic responses must be contained (see, e.g. [Pol.2],[Wie.l]). The

mathematical expression for these specifications is likely to be of the form of a system of semi-infinite

inequalities, such as

max V(x,yj) £ bjt j = 1,2,...,/, (1.1a)
yjG Yj

where xe R", the sets Y, 4 [lj,uj[ are compact intervals, all the functions are locally Lipschitz continu

ous, and the bj express the desired satisfycing level. The satisfycing problem inequalities are obviously

equivalent to the more compact form

V(x) <J 0, (Lib)

where, with 1£ { 1,2 /},

y(jc) £ max max [ tyix.yj) -bj]. (1.1c)
ye I yjeYj

It is immediately clear from (1.1b) that whenever there exists anjceR" such that y(*) <0, then any

conceptual semi-infinite minimax descent algorithm, such as the Pironneau-Polak-Pshenichnyi algorithm

([Pir.l], [Pol.2], [Psh.l]) or conceptual outer approximations algorithm, such as the one in [Gon.l,

May.l], are capable of finding a solution to (1.1b) in a finite number of iterations. The reason we insist

that in the context of semi-infinite inequalities these algorithms are only conceptual, is that neither \|/(x)

nor any of theother quantities which these algorithms require ateach iteration can be computed without

discretization of the sets Yy-. Thus we see that the main issues are (i) computational efficiency of the

implementation and (ii) the development of special features which will result in finite termination using

finite precision.

In this paper we present a fairly general, implementable master algorithm for solving semi-infinite

inequalities in a finite number of iterations under fairly mild assumptions. The master algorithm con

structs approximating inequalities by discretizing the original inequalities and then invokes a descent

method to try to solve these approximating inequalities. The finite termination property results from the



fact that whenever possible, the master algorithm runs the descent method for one iteration over what is

needed to solve the current approximating inequalities, and the use of Lipschitz constants which enable

one to conclude that the original set of inequalities is satisfied from the fact that a discretized set of ine

qualities is satisfied The required Lipschitz constants can be estimated in the course of algorithm exe

cution. The discretizations are performed using either an outer approximations form of construction

(see [Gon.l, May.l]), or an adaptive uniform discretization scheme (see [Pol.l, He.l]). Our numerical

results show that even without the inclusion of constraint dropping schemes, such as those described in

[Gon.l], the form of the algorithm based on outer approximations is considerably more efficient than

the one based on adaptive uniform discretization scheme.

2. THE MASTER ALGORITHM

We will consider the following, normalized, semi-infinite satisfycing problems:

• SP : find jc* e R* such that y(;c*) £ 0 . (2.1a)

where

\|/(x) £ max QQcy) . (2.1b)
ye Y x '

<K*,y) ^ max <j/(x,y) , (2.ic)
ye 1 v '

where 1 £ { 1,2,...,/}, Y =* [0,1], and tf : IR* x Y -> R. We will assume that the functions <J/(v)

and their gradients V^(v). are locally Lipschitz continuous.

The normalized form (2.1a) is obtained from the general form (1.1b) by (a) absorbing the con

stants y into the definition of the functions <(/(*,*). and (b) by changing the definition of </(•,•) so that

$Lw(x,y) =tfot/x.lj + y/[uj - /;]), which then requires that y e Y 4 [0,1].

Since, in general, the exact calculation of the global maximum of <K*.*) over the interval Y is not

a numerically feasible operation, numerical methods for solving the problem SP must involve a scheme

for the discretization of the interval Y. Hence, for any finite discrete set D c= Y, we define a problem

SPD, whose solutions approximate those of problem SP, by



SPD : find x*D e RB such that \|/d(**d) ^ 0, (2.2a)

where

Yd(*) = max <K*,y).. (2.2b)
ye D

The master algorithm for solving the problem SP that we will shortly introduce, calls the

Pironneau-Polak-Pshenichnyi (PPP) minimax algorithm [Pir.l, PoU, Psh.l] as a subroutine. The PPP

algorithm computes search directions by evaluating an optimality function. Hence, proceeding as in

[Pol.2], we define the optimality functions 9(x), 9D(x), for the problems SP and SPD, respectively, as

follows:

G(x) £ min max max { tf(x,y) +WMx,y),h)+ Vtlhl2 - y(x) }, (2.3a)
AelR« >eY Jel

9d(jc) £ min max max {(j/(x,y) +{VMx,y),h)+ MM2 - yD(x) }. (2.3b)
h e JR* y 6 D Ie '

Note that because the discrete set D is finite, (2.3b) is an ordinary quadratic programming problem

which can be solved finitely using standard quadratic programming subroutines.

Let h,hj>:]RH -» R be the PPP search direction functions defined by

h{x) k arg min max max {#(x,y) +WxV(x,y),h)+ VilhP - \j/(x) } , (2.3c)

hD(x) £ arg min max max { tf(x,y) +WMx,y),h)+ ViM2 - \jrD(x) } . (2.3d)

In the case of problem SP, the PPP minimax algorithm is only conceptual; it uses the search direction

function h(r). In the case of problem SPD the PPP minimax algorithm is implementable; it uses the

search direction function ftD(). In both cases, the PPP algorithm uses an Armijo type step size rule,

which requires two parameters a, P e (0,1).

The master algorithm, below, uses two sequences of discrete subsets of Y: one sequence,

{ Ej }£o, is used in conjunction with the PPP algorithm, while the second sequence, { C, }£o. is used

in the stopping criterion. We will consider two alternative schemes for constructing the sequence

{ Ef }£o. We choose the sequence { C, }£o to be a strictly increasing sequence of sets consisting of

uniformly spaced a £ 2 grid points in [0,1], i.e., C, c CM and C, £ { A/fa - 1) Ik =0,1 Ci - 1 }.



We assume that for x in a sufficiently large subset of R", the Lipschitz constant of the functions <{/(•,•)

with respect to y isL<<» . Note that in view of this fact, if ycfx) +£/(2(c,- - 1)) ^ 0» ^Qn Y(*) - °

must also hold.

Assumption 2.1: We assume: (i) The functions ^(v), their gradients V^O,-) and V<j4(v) are con

tinuous fory e 1; (ii) For anyx e Rn such that y(x) £ 0, 6(x) <0. •

Note that Assumption 2.1 (ii) implies (i) that there exists an x* e Rn such that y(x*) <0 and

hence, in turn that vE(x*) <0 for any discrete subset E c Y, and (ii) that the conceptual PPP algorithm

is guaranteed to find such a point. However, it does not ensure that the implementable PPP algorithm

is able to find such a point when applied to the problem min yE(x). That would require the much
xe IR"

stronger assumption that for any discrete subset EcY, for any x e R" such that \\rE(x) £ 0, 0E(x) < 0.

This fact isreflected in the problem SPEj abandonment test (2.5b) in the master algorithm below.

The master algorithm below, constructs a problem SPE/ and applies the PPP minimax algorithm to

it until it finds apoint x"M such that VEf(x"w) £0. Then it performs one more iteration to construct a

point xi such that Ye/*;') <0. Although this is not transparent from our proofs, because we use con

tradiction arguments, the finite termination property of the master algorithm below depends on the fact

that there exists a constant 5 >0 such that, after a while, Ye/*.-') <- 5 must hold.

In the master algorithm, the index i counts the number of times the approximations to Y (i.e., Ej)

have been updated, the index j counts the number of iterations performed by the PPP minimax algo

rithm on the problem SPEf, and the index n,- counts the number of iterations performed in solving the

problem SPE/.

Master Algorithm 2.1 (for problem SP):

Data: Xq e RB, a sequence of sets { C< }£o c Y, a finite discrete set E0 e Y, a, p e (0,1), and a

sequence { e,- }£o, such that e,- > 0, e,- -» 0 as i -»<».

Step 0: Setx8 =xq, i = 0 and/ =0.



Step 1: Compute YE/(xj), 6E|(xi), and hE.(xi).

Step 2: Compute the step size Mby the Armijo-like rule:

M=max{ p* \k e IN , vE((x{ +P*/iE,(x&) - yE|(xi) <; ctP*eE,(xD }. (2.4)

Setxf^xi +^xi).

Step 3: Consider three exclusive cases:

(a) If

VEfCci) >0 and - 6E,(x{) >e,- , (2.5a)

set,/ = y+1, and go to Step 1.

(b) If

Ye,(*0 >0and - eEi(x& £ tt , (2.5b)

go to Step 5.

(c) If

VE.(xO <; 0, (2.5c)

go to Step 4.

Step 4: Stopping criterion: If

Vcl(^1) +M2(c,-1))^0, (2.6)

set «| = /+1 and stop. Else, go to Step 5.

Step 5: Construct a discrete set EM satisfying E,cE/+1 c Y, E^E;. Set nt =/fl, xw =x,-,

i = i+l and; = 0, and go to Step 1. •

Note that when (2.6) is satisfied, we must have that yfot1) ^ 0, and hence we have found a solu

tion to our problem.

We will consider two schemes for constructing the sequence of discrete sets E,-. The first is a

uniform discretization scheme, while the second one is that used in outer approximations algorithms



(see, e.g„ [Gon.l]).

Adaptive Uniform Discretization Scheme 2.1:

In this scheme we set Et to be a set of 2' + 1 uniformly spaced points in the interval Y, i.e.,

M { U? I* « 0,1 2'}, i =0,1,2,... (2.7)
•

Outer Approximation Scheme 2.2:

This scheme is recursive: Given i e IN, a finite discrete set E,- c Y and x,-1' e RB, find a yt e Q such

that

and set

Ew = ElU{ y£} . (2.8b)

•

Lemma 2.1: Let { z\ )%$ and { z? }£o be any two converging sequences in R" with z) -> z and z? -» z

as i -> oo. Let £2,- c Y, i = 0,1,..., be any sequence of compact sets contained in Y. Then

tya,.(*J) - Vq/^I -> 0 asi-x*. (2.9)

Proof: Suppose that (2.9) does not hold. Then there exists a 5 > 0 and an infinite set K c N such that

IVq,(z}) - Yq,(z?)I ^6. for all i e K. (2.10)

Now, XfafA) - W£*®\) and Yq.(z?) =<t>(z?,co?) for some co/, co? e £2,-. Without loss of generality, we

may assume that

<D(zJ,coJ)^<Kz?,co?) + 5. (2.11)

Since z\ ->%£->% and Y is a compact set, it follows from the continuity of <Kv), which is uniform

in y, that there exists an i0 such that

<j)(z?,co}) £ Kzf.coJ) - 8/2 for all i e Kt iZ i0 . (2.12)

But (2.11) and (2.12) imply that co? is not a maximizer of <Kz?»0 over Cih which is a contradiction.



Hence (2.9) is true. •

Lemma 2.2: For any discrete set D e Y and any x e R",

(i) 0D(x) + yD(x) <; 0(x) + y(x) , (2.13a)

(ii) iaD(x)l2<;-2eD(x). (2.13b)

Proof: (i) The inequality (2.13a) follows directly from (2.3a-b) and the fact that DcY.

(ii) Referring to Theorem 5.6 in [Pol.2], we see that the application of the von Neumann minimax

theorem to (2.3b) yields the fact that -9D(x) = /&(x) + V4MD(x)l2, where hl(x) Z0. Hence (2.13b) fol

lows immediately. •

Theorem 2.1: Suppose that the sequence {xj}£o Jo is a sequence constructed by Algorithm 2.1 using

either the Adaptive Uniform Discretization Scheme 2.1 or the Outer Approximation Scheme 2.2. Then

(i) /i; is finite for all i.

n n K *
(ii) For any converging subsequence {x? },• 6 Kt with x,-f -> x,

Ve,0£) ^ Y& • <2-14>

Proof: (i) Suppose that n{ is not finite for all i. Then, the tests (2.5b,c) were satisfied only a finite

number of times. Hence there exists i"o such that

YElo(*y >0, - 9E,o(x4) >ziQ , for ally =0,1 (2.15)

Making use of (2.4) and (2.15), we obtain that

-~< £ [Ve^1)- Ve^I*% °HPE((i) • (2.16)

Referring to Lemma 2.2 (ii) and (2.15), we deduce that lfcEf (x^D2 £ 29E. (x^r/e^ for all j' £ 0. Hence,

because of (2.16), for any positive integers k > s £ 0,

y»* y'si T / ° *



Therefore, { xj }£o is a Cauchy sequence in R", and hence it follows from Theorem 5.2b and Corollary

5.1 in [Pol.2] (which states that any accumulation point x*, ofthe sequence {x^ }£o, constructed by the

PPP algorithm, satisfies eE/ (x*) = 0) that 0E (xD -» 0 asy -» oo, contradicting (2.15).
0 0

(ii) We must consider the two discretization schemes separately.

(a) Suppose that the Adaptive Uniform Discretization Scheme 2.1 is used. Then \|fEf(x) -> \y(x) as

i -» oo because the sequence of sets E,- is dense in Y. Hence (2.14) follows immediately from Lemma

2.1.

(b) Suppose that the Outer Approximation Scheme 2.2 is used. Let K' be an infinite subset of K such

that yt -> y e Y, where yf is chosen according to the Outer Approximation Scheme 2.2. Since the

sequence ofsets Q is dense in Y,Yc/£) -> Y(£) as i -> «». Hence, it follows from Lemma 2.1 and the

fact that tfxi'iyd =Vcf?&)> that <J)(x"f,y.) -> y(x). Therefore <J>(x,y) =y(x). Now, for i e *T, let

y'(0 =max{ z" € K* Ii'<i}. Since y(i)<z and y^0 6 E,-, we have that v(x"*) £YE.(x?0 >^(x^.y^.

Making use of the continuity of \|f(-) and <Kv)» and the fact that x,' -» x and y^ -> y as i -» *», we

conclude that (i) yixi1) -» \p(x) as i -» *> and (ii) <J>(Xi'»y/(o) -» <t>(x,y) = y(x) as i -»«». Hence (2.14)

follows. •

Lemma 23: Suppose that a sequence {4}Zo^ constructed by Algorithm 2.1, is in a bounded set S

and that the Hessian matrices VcJ^O,-). y e 1, are continuous. Let M= max max lV$Ufcy)l.
x e S,y e Y /el

Then for all i andy = 0,...,nt—l,

Ve/^1) - VEpt) * paeE.(x|)/3f . (2.18)

Proof: Expanding some of the functions appearing in the test in (2.4) to second order, (with the

indices suppressed to simplify notation) we obtain, for X e [0,1/M],

yE(x + XhE(x)) - \jfE(x) - ctXGE(x)



^ max max {<J/(x,y) +X{VMx,y),h)+ */A2M\hP }- yE(x) - <xA.9E(x)
y e E /'el

< X(l - a)9E(x). (2.19)

The desired result now follows directly from the fact that in view of (2.19) the actual step size used

satisfies the inequality X £ p/Af. •

Theorem 2.2: Suppose that Assumption 2.1 holds and that Algorithm 2.1, using either the Adaptive

Uniform Discretization Scheme 2.1 or the Outer Approximation Scheme 2.2, constructs a bounded

sequence {x\ )Zo jm>- Then this sequence must be finite, i.e., there exists an i0 such that Y(x/0°) ^ 0.

Proof: Suppose that the sequence {4 }£o ^o is not finite. Since /*,- is finite for all i, there are two

possibilities: (i) The test (2.5b) was satisfied an infinite number of times, or (ii) the test (2.5c) was

satisfied an infinite number of times, and, simultaneously, the stopping criterion (2.6) failed to be

satisfied. Now, because the sequence { x? }£o % is bounded, it has a converging infinite sequence,
K

indexed by K c N, such that x? -» x, say, as i -» «>, and either the test in (2.5b) is satisfied on this

subsequence, i.e.,

Ve^1) >0 and - Gu^r1) * e£ . for all ie K, (2.20a)

or the test in (2.5c) is satisfied and the test (2.6) fails on this subsequence, i.e.,

YE,(j£rl) ^0 and \irq(x,"i) +I/(2(cf-l)) >0 , for all ie *. (2.20b)

First, by considering these two cases separately, we will show that

0E,(x"rl) -» 0 , x?1 -» x as i -> oo , and \|/<x) ;> 0. (2-21)

(a) Suppose that (2.20a) holds. Since e,- -» 0 as i -> «>, O^fo' ) -> 0 as i -» «>. Thus, we conclude

K K K

from Lemma 2.2 (ii) that hEfx1rl) -» 0as i -><» . Hence, x"' - x"r -> 0as i -»«> . Since x?1' -> xas

n^-l K *
i —»<» by assumption, we conclude that xf -> x as i -> <». It follows from Lemma 2.1 and

Theorem 2.1 (ii) that YE,(x?rl) -> y(x). Since VEf(x*rl) >0for all ie N, we must have that y(x) £0.

10



(b) Suppose that (2.20b) holds. Since the sequence of sets { C, }%o is dense in Y, it follows from the

A Kreasoning used in proving (2.14) that \j/C/(*i') -» V(£)- Since ty (2.20b), for all i e K,

Yc,Gft +^/(2(c,-l)) >0 and c,- -> oo, we conclude that \|/(x) £0. Making use of Lemma 2.3 and the

fact that by (2.20b), for all i e K, yE(x"r )£ 0, we obtain that

VE((xh *Ye,0#) - VE^rl) *apeEf(xrV . for all ie K. (2.22)

It now follows from Theorem 2.1 that

lim inf 9E,(x"rl) ^ Mv(x)/ap . (2.23)
i e K, i -» » '

Making use of (2.23) and the feet that (i) \|/(x) £ 0 and (ii) 0E,(x) £ 0 for all x e Rn, we conclude that

0E/(x?rl) -> 0 as i -> oo . Now, from Lemma 22 (ii), we conclude that hEf£r )-> 0 as i -> oo .

Hence, xf' - xf -» 0 as /-><», and, since xf ->x as i -» » , this leads to the conclusion that

x*r -» x as i -» oo , which completes our demonstration that (2.21) must hold.

Now, since xf ->x as i -»oo, it follows from Lemma 2.1 and Theorem 2.1 (ii) that

ftr-l K
VKJfa* ) -* Y(2). By Lemma 22 (i), we have that for all / e IN,

GEi(xr1)^e(xr1) +V(^rl)-¥E^rl). (2.24)

Letting i -> oo in K, and making use of (2.21) and the fact that y(x"r )- yE[x*r ) -» 0, we obtain that

9(x) £ 0. Hence, it follows from the fact that 9(x) £ 0 for all x e R", that 9(x) = 0, which, together

with the feet that y(x) £ 0 in (2.21), contradicts Assumption 2.1(ii). •

3. NUMERICAL RESULTS

Algorithm 2.1 was coded in C and was executed on a SUN 3/140 Workstation. In the experi

ments below, the algorithm parameters were set as follows: a =0.9, P=0.9, y = 1.0, e,- =0.1*1"1. The

sets C, were chosen to consist of 2M+ 1 uniformly spaced points in [0,1]. In the Adaptive Uniform

Discretization Scheme 2.1, the sets E,-, i - 0,1...., were chosen to consist of 2*2 + 1 uniformly spaced

11



points in [0,1]. The Outer Approximations Scheme 22 was initialized by setting Eo to consist of 5

uniformly spaced points in [0,1]. In our experiments, the Lipschitz constant L was calculated by

averaging the estimates of local Lipschitz constants, Z£ around the points xf, with respect to the set Q,

where L\ is obtained as follows

Lj =max max m4Mcr^)-^0iXk+l)KcrW(ci--l). (3.1)
pe I *»0,l,...,cj-l

Because there are few semi-infinite satisfycing test problems in the literature, we have constructed

four semi-infinite minimax problems by converting four constrained problems in [Tan.l] into semi-

infinite satisfycing problems using I*. exact penalty functions. Two versions of each problem were

tested, both with the Adaptive Uniform Discretization Scheme 2.1 and with the Outer Approximation

Scheme 2.2. The first version used a large penalty coefficient (PC = 100.0),while in the second version

used a smaller penalty coefficient (PC = 10.0). Table 3.1 summarizes the performance of the two

discretization schemes on these problems. We evaluate the performance of the two discretization

schemes by comparing the number of function evaluations (denoted as NF), the number of gradient

evaluations (denoted as NG), and the total number of evaluations (NT = NF + n*NG). It is clear from

our experimental results that with the exception of one case, the Outer Approximation Scheme 2.2 out

performed the Adaptive Uniform Discretization Scheme 2.1. The test problems were as follows:

TFI1 Problem[Tan.l]:

\jf(x) = (xO2 + (X2)2 + (x3)2 + PCmax{ max (xx + x&xpixiy) + exp(2y) - 2sin(4y) ) , 0 } - 5.5 .
y e [o,i]

Initial point xq = (1.0,1.0,1.0).

TF12.1 Problem[Tan.l]:

\|f(x) = xi + X2/2 + X3/3 + PCmax{ max (tan(y)-xi -x^y-xay2)^ } -0.66 .
y e [o,i]

Initial point xb = (0.0,0.0,0.0).

TFI2.2 Problem[Tan.l]:

\j/(x) = xi + X2/2 + X3/3 + X4/4 + X5/5 + x«/6 +

12



PCmax{ max (tan(y) -xi -x2y-x3y2-X4V3 -xsy*-xg? ),0 }-0.63 .
J e [0,1]

Initial point xo = (0.0,0.0,0.0,0.0,0.0,0.0).

TF13 Problem[Tan.l]:

\i/(x) = exp(xi) + exp(xi) + exp(x3) +PCmax{ max ( 1/(1 +y2) - X! - x^y - X3V2) , 0 }- 4.45
y e [0,1]

Initial point xo = (1.0,0.5,0.0).

Problems Adaptive Uniform Discretization Outer Approximation

NF NG NT NF NG NT

TFILa 56808 2476 64236 11332 468 12736

TFILb 10338 648 12282 4494 168 4998

TFI2.1.a 100884 4394 114066 20546 278 21380

TFI2.1.b 6014 344 7046 4338* 158 4812

TFI2.2.a 9454 750 13954 11669 346 13745

TFI2.2.b 1890 248 3378 1600 180 2600

TFI3.a 2160 168 2664 1376 71 1589

TFI3.b 286 22 352 232 19 289

Table 3.1 Summary of Numerical Results

4. CONCLUSION

We have presented an efficient method for solving semi-infinite inequalities in a finite number of

operations, which can incorporate either outer approximations type discretization or adaptive uniform

discretization. It is most interesting to observe that even without the inclusion of constraint dropping

schemes, such as those described in [Gon.l], the version of our method based on outer approximations

is considerably faster than the version based on an adaptive uniform discretization scheme.
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