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Chapter 1

Introduction

1.1 A Perspective

With the advent of digital computers, Digital Signal Processing (DSP) has become

a dominant force in the fields of signal processing and communication. Examples of such
applications include digital audio, speech synthesis and recognition, telecommunication,
image and video processing and robotics. As the complexity of the algorithms increases,

the task ofverifying and optimizing them becomes formidable. The process often requires
high computation throughput and simulation of a large amount of data. For example a
computation rate of 800 MOPS or more is typical for High Definition Television (HDTV)
algorithms. Furthermore, to verify the behavior of the algorithms, many frames of data
have to be simulated. These requirements dictate a hardware solution.

While techniques such as bread-boarding and fast-prototyping can fulfill the re
quirements, they typically exhibit long development time and offer very little programmabil-
ity which is important in optimizing the parameters of some algorithms. Some commercial
multiprocessor computers are capable of providing high computation power but the high
overhead in inter-processor communication, difficulty in mapping the algorithms to the ar
chitecture, lack of instructions for supporting DSP applications and the usual high cost of
the machines often limit the effectiveness of these machines.

In this report, a dedicated compute-engine called SMART (an acronym for
Switchable Multiprocessor Architecture supporting Real Time applications) is presented.
The machine attempts to speedup simulation of DSP algorithms by at least two orders
of magnitude as compared to general purpose computer architectures. The DSP32C from
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AT&T Bell Labs, a high performance DSP processor with both floating point and fixed
point instructions is used as the core processing unit to provide high computation power,
resulting in an order ofmagnitude inspeedup. An additional order ofmagnitude inspeedup
is obtained by exploiting the high degree of concurrency, namely pipelining and parallelism,
present in most signal processing algorithms.

1.2 Organization of Report

This report introduces the SMART architecture using a top-down approach, with

the first few chapters presenting an overview of the system architecture and the later chap

ters explaining the design details and tradeoffs. The emphasis of the report is on the

hardware implementation of the VLSI chip set which handles memory accesses and inter-

processor communications of the system.

Chapter 2 gives a brief description of the SMART architecture and its special fea

tures. Some benchmark results are presentedto justify the architecture. Chapter 3 provides

a block diagram view of the proposedprototype system, its components, their functions and

their interconnections. Design considerations and approaches which ultimately guide the

system to its present shape are discussed in chapter 4. Chapter 5 and 6 details the func

tionalities and designs of the VLSI custom chip set implemented for the system. The next

chapter describes the circuit and logic design issues of some macro blocks implemented for

the chip set. Chapter 8 discusses the verification and test strategy adopted. Chapter 9 con

cludes by summarizing some after thoughts about the project. Some future developments

on SMART is also outlined.



Chapter 2

SMART Architecture

In this chapter, we will describe the four main features of the SMART architecture:

the Configurable Bus, the Distributed Shared Memory, the Write Queues and the Synchro

nization Mechanism. These features, implemented in special custom circuits, are designed

to reduce the communication and synchronization overheads significantly.

More details on the architecture can be found in [4] and [5].

2.1 Configurable Bus

In typical DSP algorithms, both types of concurrency, pipelining and parallelism

exist. An example is the pitch extractor algorithm shown in Figure 2.1 [3]. The blocks

represent the operations to be performed on the data stream and the numbers underneath

theblocks indicate the computation load ofthecorresponding block. Clearly the throughput

of the system can be improved by pipelining the entire system between blocks. However,

the computation intensive template matching operation becomes a bottleneck. To further

enhance the performance a cluster of processors can be allocated to share the computation

task in the block, resulting in the data dependence graph in Figure 2.2(a). A natural

implementation is to assign one processor for each node and use queues between processors

as data buffers. The resulting multi-processor architecture with customized communication

pattern is shown in Figure 2.2(b).

Unfortunately, DSP algorithms usually exhibit a large variety of communication

patterns and the use of customized multi-processor machines as a simulation engine is

grossly inefficient. SMART overcomes this problem by providing a switchable bus that can
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be configured by software to mimic the different communication patterns of a wide range
of algorithms without too much sacrifice in performance.

The SMART system consists of an array of processing units connected in a linear

fashion byasingle shared bus. The key feature is that there are switches ((S) in Figure 2.3)
between all neighboring processors which can be opened or closed to divide the processors
into groups. Processors with local communications are put into onegroup so that they can

communicate among themselves independent of activities in other groups, thus boostingthe

overall communication bandwidth of the bus. In general processers working in parallel are

grouped together and processors operating in pipelined fashion are put in different groups.

Figure 2.2(c) shows how the bus can beconfigured to simulate the pitch extractor algorithm.

Sometimes data has to be forwarded to a processor several processor groups away,

for example, from processor P2 to processor P8 in Figure 2.2(c). The solution is a hardware

supported bypass unit ((B) in Figure 2.3) which allows data to go through an open switch

without program intervention but at the cost of extralatency. The bypass unit implements

global communication by allowing a processor to access the memory of any processor which

may be in a different bus group1. Thus programs can be written independently of the bus

configuration. From the programmer's point of view, the configurable bus is still a single
shared bus supporting shared memory. However transfer of data through bypass units
incurs higher communication latency.

In addition, a ring connection is formed by connecting one end of the processor

array to the other end to reduce the maximal distance between any two processors in the
array.

The configurable bus can simulate a single-shared bus (by closing all switches),

a one-dimensional systolic array (by opening all switches) or an irregular communication

pattern which is specific to the application algorithm, as shown in Figure 2.4. Optimal

bus configuration can be obtained by trading off communication latency and overall bus
bandwidth.

2.2 Distributed Shared Memory and Write Queues

Thememory architecture is as important as theinterconnection scheme inreducing
the overhead ofinterprocessor communication. In traditional shared memory multiprocessor

Global read access is not supported in the first prototype system.
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machines where processors are connected to a central memory by some shared connections,

e.g. a shared bus, there are heavy penalities in accessing shared data in the memory due to

bus contention. The SMART Architecture provides two features, namely the dual-ported

distributed shared memory and write queues ((M) and (Q) respectively in Figure 2.3), to

alleviate this problem.

In SMART, the large global shared memory is partitioned into small memory

units among processors. Each memory unit has dual ports, one of which is connected to

its corresponding processor while the other is connected to the shared configurable bus

(Figure 2.3). The basic schemeof communicating data between two processors is that of a

source-write and destination-read scheme, that is, the processor which produces the source

data writes the data to the local memory unit of the destination processor through the

shared bus. Then the destination processor can read the data via its private port. Using

this scheme and a distributed memory system, contention for the shared bus can be relieved

by reducing the number of accesses to the shared bus roughly by half.

In case of multiple requests to use the shared bus, some requests will be stalled,

resulting in communication overhead. SMART provides a write queue for all the write

operations so that the processor can immediately resume its computation as soon as data

has been written to the queue. By overlapping the computation time with the overhead

time due bus arbitration, the effective communication overhead is reduced.

2.3 Synchronization

The synchronization mechanism is an important factor in the performance of a

multiprocessor system. There are two frequently found synchronization mechanisms: mu
tual exclusive synchronization and barrier synchronization. When several processes try to
access a shared resource, the mutual exclusive synchronization guarantees that only one
process will get the access right while the others must wait until the resource is available.

On the other hand, barrier synchronization is useful to ensure the order of execution by
synchronizing all the processes at a certain point of the program. In a typical application,
data coherency is maintained by requiring both the process that produces the data and
the process that consumes the data to issue a barrier synchronization instruction before

proceeding. In most of the applications we have studied, barrier synchronization seems to
be the most effective technique.
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Implementing synchronization mechanism using software is inherently slow. Sys

tem performance can be seriously degraded especially in applications where the processors

are tightly coupledand synchronization between processors is often needed. In SMART, low

overhead for barrier synchronization is achieved by providing special haidware supported

synchronization instructions. Two semaphore operations are also provided for the mutual

exclusive synchronization.

2.4 Benchmark

To show that SMART is powerful enough to simulate a large variety of algorithms,

we chose four very different and yet common signal processing algorithms for benchmarking:

Fast Fourier Transform, Echo Canceller, Pitch Extractor and Matrix-Vector Multiplication.

These algorithms possess different computation complexity, communication patterns and

degrees of concurrency and granularity.

To optimize the performance, we used four different bus configurations. For ex

ample we used a one-dimensional systolic array to implement the FFT algorithm and a

single shared bus to perform the matrix-vector multiplication. This indicates that the bus

configuration indeed has a great impact on performance.

The benchmark results show close to ideal speedup and very low communication

overhead in all cases (Table 2.1). Speedup is defined as the relative amount of time we

saved compared to running the same algorithm on a uniprocessor machine. Communication

overhead gives the extra amount of time used in communication compared to an ideal

multiprocessor machine in which there is no contention or penalty in accessing any portions

of the global memory. The low communication overhead in all test cases confirms the ability

of SMART to adapt to different communication patterns. The idle time is a measure of

how well the load is partitioned among processors and has a direct effect on speedup. The

other figures are included to indicate the nature of the algorithms. The average bus usage

simply tells us whether the algorithm is computation intensive or communication intensive.

The average number of requests is sort of a time domain measure of the communication

pattern. It indicates whether communications are clustered or spread out in time.

These results were obtained with the bus configuration fixed at all time. In some

algorithms, we found that we can push the performance further by allowing the bus config

uration to change in the middle of the program to take advantage of the changing commu-
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256-pts FFT Echo Canceller Pitch Extr. Matrix-Vector Mult.

Speedup 13.65 14.04 13.29 14.58

Communication

Overhead (%)
0.64 0.13 0.03 1.11

Idle Time (%) 8.91 18.52 16.12 1.80

# of Buses 16 3 4 1

Average Bus
Usage (%)

32.67 0.65 4.05 14.33

Average # of
Bus Requests

1.00 1.59 1.50 8.62

Table 2.1: Benchmark Results for 16 Processors.

nication patterns.



Chapter 3

SMART Prototype System

3.1 System Overview

The majorcomponents of the system are the SMART board array, the CPU Board,

the Analog/Digital Unit, and the host system, as depicted in Figure 3.1. Computation is

performed by the SMARTboard array which consists of aset of programmable core proces

sors (AT&T's DSP32C) connected to each other via a configurable shared bus. The CPU

Board, a single-board micro-computer (HKV2F by Heurikon) running a real-time Unix-like

Operating System called VxWork, Version 4.3, serves as the master of the VME bus[9].
Data can be supplied to and received from the processor array in real-time through a data
acquisition board consisting of A/D, D/A and two TMS320 signal processors. The host

is an enginerring workstation that provides a UNIX environment for cross-compiling and
developing application programs and also serves as alarge auxiliary data storage unit. Com
munication between the host computer and the CPU board is established by the Ethernet

which also allows the CPU board to access data files in the file server of the host system

directly. In addition to the VME bus an optional custom bus can be implemented to speed
up communication between the components. All the components except the host are housed

inside a VME cardcage.

3.2 SMART Processor Board

A simplified block diagram of the SMART Processor Board is shown in Figure 3.2.
Each SMART board has anarray of four processing units1, input and output first-in-first-out

12
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buffers (FIFO's) and a VME interface. The VME interface is responsible for downloading

programs to the core processors, monitoring the internal status of the processors and trans

ferring data in and out of the SMART processor array. It is capable of supporting a peak

data rate of 10 Mbytes per second.

In order to take advantage of the high computation power of SMART architecture,

SMART provides very flexible and configurable input and output facilities. In addition to

the VME interface and the left and right switchable buses (40 Mbytes per second) which

transfer data between adjacent boards, the board can also be configured to receive or send

data from or to an optional user configurable port if higher bandwidth is desired. For

example data to the user configured input port can be fed directly from a dedicated analog

to digital board and the userconfigured output port canbe connected to the user configured

input port of another SMART processor arrayfor additional computation power. In all cases

data to and from the board are buffered with FIFO's which establish a very clean interface

between the board and the outside world.

Not shown aresome control registers that can be programmed by software through

the VME interface. These registers are used to generate control signals that are not time

critical. They implement system reset and the controls for the scan paths on the board for

board testing and on-board chip testing.

3.3 SMART Processing Unit

This section takes a detailed look at the SMART processing unit. As shown

in Figure 3.3, each processing unit includes an AT&T WE DSP32C processor, two 4KB

FIFO's, 256KB of local RAM (LRAM), 16KB of Dual-Port RAM (DPRAM) and an Access

Controller chip set consisted of a Master Access Controller (MAC) and a Slave Access

Controller (SAC). Only the first (leftmost) processing unit on the board has its input FIFO

connected to the VME interface. Similarly the output FIFO is present only in the last

(rightmost) processing unit.

The DSP32C is a 32 bit CMOS Digital Signal Processor packaged in a standard

133-pinpin-grid-array (PGA). It offersa unique set of architectural features that include: 32

bit floating point arithmetic, 16 or24 bit integer arithmetic, 16MB of address space, on-chip

ROM and RAM, serial, parallel and external memory I/O ports all equipped with direct

The first prototype system only has two processing units on each board due to board area limitation.
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memory access capability (DMA), 4 40-bit accumulators and 22 general purpose registers,

2 external and 6 internal individually maskable interrupts. At its maximum operating clock

frequency (50MHz), the DSP32 executes 12.5 MIPS and 25 MFLOPS concurrently. In the

prototypesystem, the Rom-less memory configuration which provides 6KB of on-chip RAM

is chosen. For further information on the DSP32C please refer to [1]. Each processor in the

system is identified by a unique 6-bit processor identification number (PID) and therefore

a maximum of 64 processors can be supported. The PID's are assigned in such a way that

processors on the left have smaller PID numbers than their right-hand-side neighbors.

Communication between the processor and the CPU board is established through

the VME interface via the parallel I/O port of the processor. Through the Processor Bus
the processor can issue commands to the access controller for accessing its local LRAM,
DPRAM orFIFO's as well as the DPRAM ofanother processing unit. A detailed description

of the functions of the access controller will be presented in Chapter 5. The left and right
switchable buses connect adjacent processing units to form a linear array. Short ribbon

cables are used to connect the configurable bus for processing units sitting on different
boards. Another bus called the Slave Bus connects the Access Controller to the other port
of the DPRAM to facilitate concurrent access to the distributed shared memory.



Chapter 4

Design Considerations

4.1 Design Goals

In this section, the design goals of the SMART System are outlined. Their impli

cations on the final design decisions and design methodology will be presented below. The

main design goals are as follows:

• High Computation Throughput

• High Communication between Processor and the Access Controller

• Fast Switchable Bus

• Extendible System in terms of Processing Units

• Short Design Cycle

4.2 Design Issues and Methodology

Various design issues and design methodology are discussed in this section. Tim

ing issues include the clock speed of the system, the clocking system used on chip and

the problems with clock distribution. Hardware design issues involve the performance of

the switchable bus, static design techniques versus dynamic design techniques and power

consumption. System issues such as partitioning and extensibility are examined. Design

methodology with respect to layout and simulation is discussed. All these considerations

had great impacts on the design decisions that ultimately gave the system its present shape.

18
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Clock Speed

On one hand, the maximum computation rate can be achieved by clocking the

DSP32C at its peak clock frequency of 50MHz. On the other hand the speed limit of the

memory parts restricts the clocking rate unless a wait state is introduced to increase the

length of the external memory access cycle from two to three clock periods. Compromising

system throughput with communication bandwidth, we decided to clock the system at

40MHz. The lower clock frequency also makes the implementation of the processor interface

in the Access Controller less critical speedwise.

System Clocking

A 4-phase non-overlapping clockingstrategy is used in SMART (Figure 4.1). The

clock signals are all derived from the 40MHz system reference clock using a Digital Phase-

Locked Loop (DPLL). A thorough discussion of the hardware implementation of the clock

generator will be presented in Section 7.1. While the phi[l-4] clocks are present in both the

MAC and SAC, the al and a2 clocks exist only in MAC. In order to allow the DSP32C to

perform one memory transaction every two cycles, the al and a2 clocks which run faster

than the phi clocks are used in the MAC and DSP32C interface.

The pi and bl clocks define a bus cycle for the switchable bus in MAC and SAC

respectively. In one bus cycle, one message is transfered from one processor to another in

the same processor group. Notice that the bus cycle of SAC lags that of MAC by one phase.

That one phase difference essentially accommodates the propagation delays from MAC to

SAC and therefore eliminates many time-critical interface signals between MAC and SAC.

A longer lag time could be chosen but it would increase the communication latency.

Before each access controller sends out a piece of data to the switchable bus, it

must first perform arbitration with all the other access controllers hanging on the same

shared bus. To obtain higher throughput on the bus, arbitration and data transfer are

pipelined in such a way that arbitration is performed one cycle ahead of the actual data

transfer, as depicted in Figure4.2. Furthermore MAC is responsible for sendingthe address

and some other control signals onto the bus. Hence the address always arrives one phase

ahead for decoding before the corresponding data arrive when accessing a remote memory.
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Clock Distribution

A careful and elaborate clock distribution scheme is adopted to solve the prob

lems with clock skews and transmission line effects when high frequency clock has to be

distributed throughout the multi-board system. To shorten wire length and balance clock

skews, the system clock is buffered locally on each board. Moreover, terminating resis

tors are used extensively to alleviate transmission line effects. As a rule of thumb, for the

printed circuit board used for our system, transmission line effects become serious when the

following inequality is satisfied[8]:

Ur < Ctd (4.1)

The transition time, ttr, is either the rise time or the fall time of the signal, td is the

intrinsic delay of the signal which depends on the physical medium the signal travels on. C

is a constant between \ and 5.

In the SMART system, processors only communicate with their immediate neigh

bors. Therefore only clock skew between adjacent processors has to be considered. The

worst case occurs between the first and the last processors which are located at opposite

ends of the array of processor boards. The solution is to drive the clock from a board in the

middle of the array. By balancing the loading of the clock line on both sides of the array,

the clock skews experienced by the first and the last processors hopefully will cancel out.

Design of Switchable Bus

In one bus cycle, data have to ripple through a series of closed switches to reach its

destination. Therefore the speed of the switchable bus is crucial to the performance of the

system because it imposes an upper bound on the number of processers working in parallel.

To improve this upper bound we can build a fast circuit for the switch and/or increases

the length of the bus cycle. However, lengthening the bus cycle results in low effective bus

bandwidth.

The decision was to use a synchronous bus with a 100ns long bus cycle (equal to 4

system clock cycles). The bus cycle is equally divided into 4 phases, 3 of which is allocated

for data propagation on the switchable bus. Estimating the delay through a single switch

based on SPICE simulation, we expect the system to support up to 8 processors on a shared

bus.
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The choice of a synchronous bus design over an asynchronous design deserves some

explanation. In addition to simple implementation, the synchronous design also enjoys a

speed advantage over its asynchronous counterpart in that handshaking with neighboring

access controllers is not necessary. In the asynchronous case each pair of adjacent access

controllers must perform handshaking to ensure proper transfer of data.

On the other hand, the synchronous bus design and hence a global system clock

presents a big obstacle to the extensibility of the SMART System. Clock skews and trans

mission line effects as a result of distributing the high frequency system clock over a couple

of boards are problems that we must carefully address.

Logic Design vs Circuit Design

An initial estimate revealed that the die sizes of the chips to be implemented are

likely to be limited by the number of pins. Thus the need to conserve silicon area has a

low priority.1 The strategy is to eliminate critical paths by redesigning the logic whenever
possible even at the expense of more gates and hence area. Circuit design with SPICE

simulation is done only for the critical paths or for circuits which must be optimized for

system performance. Otherwise the finger counting technique, i.e., estimating the total

delay by adding the delay of each gate based on a very simple timing model, is used for
timing verification.

Static vs Dynamic Design

While dynamic circuits are usually superior to their static counterparts in terms
of speed2 and area, they are also more difficult to integrate into the system due to their
timing constraints. A static data-path cell is easier to use and more likely to be reused than

a dynamic cell ofequivalent function. In addition, the power spikes, increased clock loading
and potential timing problems associated with dynamic designs may more than outweigh
its advantages. Static design is further favored when there is no urgent need to conserve
chip area.

Even though the die size isdictated bythe pinouts, the active chip area still has an effect on the process
yield.

This is generally true for medium to high clock frequencies where time lost due to clock skewis not a
significant portion of the clock period.
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Power Consumption

By using a CMOS technology and minimizing the use of circuit techniques that

consume static power, power consumption of the Access Controller is estimated to be small

(less than 2 Watts for the two-chip chip set) and therefore power is not a big concern in the

design process.

System Extensibility

Extensibility is sacrificed to achieve more speed and simplier implementation. For

the first prototype system which can accommodate no more than 64 processors, the syn

chronous bus is acceptable. To build an extendible system, we must adopt a design that

is immune to clock skews and has more tolerance on variations in propagation delays. An

asynchronous bus is a more logical choice.

System Partition

The functional complexity and the large number of inputs and outputs of the Ac

cess Controller dictate the need for partitioning into smaller sub-systems for VLSI imple

mentation. Considerations include die size, pinouts, package availability, testability issues

and minimization of interface signals and critical paths between sub-systems after parti

tion, etc. In the prototype system, the Access Controller is divided into two chips: the

Master Access Controller (MAC) and the Slave Access Controller (SAC), each of which

contains 208 pins. Their designs and functions will be described in details in Chapter 5

and Chaper 6. Essentially MAC is the master of the Access Controller and SAC, being the

slave, only responses to the control signals generated by MAC.

Computer Aided Design

It is expected that the design of the entire system be completed within a one and a

half year period. To accelerate the design process, CAD tools are used extensively to assist

layout, circuit and logic simulation and test vectors generation.
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Layout Strategy

Manual layout is avoided as much as possible by using the LAGER silicon compi

lation system[2] and a cell-based modular design. Manual layout is only done on the cell

level, above that the layout is generated automatically by LAGER. Moreover a bottom-up

approach is used in layout so that blocks of layout are first generated and simulated before

they are assembled to form more complex blocks. This strategy facilitates modification of

the design and hence accelerating the design-simulate-debug cycle. Manual optimization of

the layout is performed only after complete verification of the design.

Simulation

Simulation occupies a very significant portion of the design cycle and fast and

efficient CAD support is a must. In this design, the physical layout was simulated by

irsim, an interactive event-driven logic-level simulator for MOS transistor circuits. Using

the linearsimulation model, irsim can also function as a timing verifier. Inputs containing

netlists and capadtive loading information to irsim were directly extracted from the layout.

With accurate models for the transistors and parasitic capacitance, irsim can be used to

verify critical paths of the circuits. SPICE simulations were performed only on critical paths

picked out by irsim.

Parallel with the physical design, a complete behavioral description of the system

in a high level hardware description language called csl is also created. Not only does the

model allow verification of the architectural features in advance but it also speedups the

verification process by providing a cross-checking facility with the physical design. Vectors

used in simulating the physical design can be generated conveniently by the model using

the high level language.



Chapter 5

Master Access Controller: MAC

The main function of the Access Controller is to integrate the individual processors

to form the SMART multiprocessor machine. In addition to directing traffics between

processors through the configurable bus, it also handles synchronization and arbitrations

among processors. Access to local memoris and FIFO's by the processor axe also controlled

by the Access Controller to eliminate any glue logic.

As explained in Chapter 4, practical considerations dictate the need to partition

the Access Controller into two chips: the Master Access Controller (MAC) and the Slave

Access Controller (SAC). As its name implies, MAC is the brain of the Access Controller

and therefore its functions are much complicated than those of SAC. The functionality and

implementation of MAC will be given in this chapter while SAC will be discussed in the

next chapter. Each functional block of the chip will first be explained, followed by the

discussion of the circuit design issues of the swithable bus. Finally the floorplanning and

layout of MAC will be described. A summary of the MAC instructions and a description

of the pinouts of MAC axe included in Appendix A and Appendix B.

5.1 Functional Description

The functionality of MAC will be explained in this section. Figure 5.1 shows the

functional block diagram of MAC. It includes a master FIFO and a bypass FIFO, a switch

block for the configurable bus, master and slave control units, an arbiter for arbitration,

logic for synchronization and a clock generator. Each of the blocks will be discussed in

details in the following subsections except the clock generator block which will be covered

26
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in Section 7.1.

Master Control

The majority of the operations in MAC is controlled by the Master Control Unit

(MCU). The DSP32C issues instructions to MAC byperforming an externalmemory access.

MACdecodes the address according to an addressmap and carriesout the necessary actions.

The MAC instructions can be broadly categorized into two groups according to

their execution time. Group 1 instructions include instructions whose execution can be

completed within a pre-determined periodof time and therefore no handshaking is required

between MAC and the processor. On the other hand Group 2 instructions usually take a

variable amount of time to execute,for example, synchronization or semaphore instructions.

In this case DSP32C must busy-wait until MAC asserts the system ready signal (SRDYN).

For a further description of the address map and the MAC instructions, the reader is referred

to Appendix A.

The instructions can also be divided into 4 types according to their functions:

1. Configuration Instructions

2. Local Memory Access Instructions

3. Network Memory Access Instructions

4. Synchronization Instructions

MAC maintains a set of 21 configuration registers accessible to the DSP32C by

executing the configuration instructions. Their roles include switchconfiguration, operation

enabling or disabling and identification (pid registers). A list of the configuration registers

and their functions is given in Table 5.1. Their precise functions will be explained in more

details as they are encountered in the following discussion. Asan example, the processor can

write the pid into the pidReg during system startup or close the switch on the configurable
bus by setting switchStatel high.

The local memory access instructions involve accessing local memories which in

clude the LRAM, the processor-port of the DPRAM and the external FIFO's. The MCU

simply asserts the corresponding chip enable signal(s) such as ceF[].

Network memory access instructions are used when the processor needs to read or

write from a distant processor. In the case of write operation, the MCU enqueues the write
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Name Number of Bits Functions

pidReg Processor Identification Number
syncSwitch Control switches of the synchronization bus
syncDisable

switchStatel

switchState2

Disabling of the synchronization patterns
Control switch of the configurable bus
Control switch2 for arbitration

swapState Control Bank Select

bypassEn Enable Bypass Operation

Table 5.1: List of Configuration Registers in MAC.

request into the master FIFO and acknowledges DSP32C the completion of the instruction

by asserting SRDYNas long as the FIFO isnot full yet. Otherwise the acknowledgment is
delayed until space in the FIFO is freed up. In the case of read operation, the read request

is enqueued as before but the acknowledgment is not issued until the read message is sent
out to the network and the datato be read are returned. Read operations axe to be avoided

whenever possible because the processor must be idle throughout the operation.

It is also possible to issue a Group 1 network memory access instruction with no

handshaking between the processor and MAC. In this case the compiler has to guarantee
that executing the instruction does not overflow the master FIFO.

The MCU is also responsible for generating the control section of the message to
be stored in the master FIFO. Special network memory accesses such as broadcasting are
realized by enabling the corresponding control bits (be).

Synchronization and semaphore instructions are not handled directly by the MCU.

Upon receiving a synchronization type instruction from the processor, the MCU sends

the appropriate request signals to the Synchronization Block or Semaphore Block which

communicate directly with neighboring Access Controllers. Upon the completion of the

instruction, the Synchronization Block or Semaphore Block sends back an acknowledge
signal to the MCU which in turns signals tothe processor. These operations will bediscussed
in more details in later sections.

Besides handling instructions, the MCU also monitors the status of the master

FIFO. The MCU will send a request for bus usage to the arbiter as long as there are
requests stored in the FIFO. An acknowledge from the arbiter to the MCU will trigger a
transfer of a request/message from the FIFO to the switchable bus.
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Since MAC onlyhandles the control and address portions of the message, for some

operations occurred in MAC, companion actions that involve the data may be required in

SAC. For example whenever a write message is loaded into the master FIFO in MAC, the

data to be written must also be stored in the master FIFO in SAC at the same time. MCU

controls these companion actions by asserting the appropriate control signals to SAC.

Master FIFO

The master FIFO is a 27 bits wide, 16 words deep first-in-first-out buffer. Its

primary function is to provide a temporary storage for messages consisting of a control

section from the MCU and an address section from DSP32C address bus. The read or

write operations of the FIFO are controlled by the MCU based on two flags (the Pull Flag
and the One Flag), generated by the FIFO. The One Flag (which indicates that only one

piece of data is left in the FIFO) is used instead of the usual Empty Flag to eliminate some

time critical circuits. After a write operation, the message is dispatched onto the internal

dynamic precharged bus by the built-in bus drivers of the FIFO. More discussion on the

logic and circuit designs of the FIFO will be given in Section 7.3.

Bus Switch

The Switch Block implements the switches and the precharge logic of the con

figurable bus. The opening and closing of the switches are controlled by the switchSatel
configuration register. Section 5.2 will address the circuit design issues of the configurable
bus.

Slave Control

The Slave Control Unit (SCU) controls access to the slave-port of the DPRAM

and message bypassing. The SCU constantly monitors traffic on the switchable bus and

compares the pid of the incoming message with the local pid. The result of the comparison

and the controlbits in the control section of the message determine the action to be taken.

If the pid's match or the broadcast enable bit in the message is set, a read/write

operation to the DPRAM is performed depending on the rwN bit. If the destination pid is

larger than the local pid, and the switch is open (i.e., the switchSatel configuration register
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is set low), and bypass operation is enabled (i.e., the bypassEn configuration register is set
high), a bypass operation is enabled by loading the message into the bypass FIFO.

The circular bypass enable bit enables circular bypass operation. Normally, only

messages whose destination pid is larger than the pid of the processor will be bypassed

through an open switch. The circular bypass enable bit forces an bypass operation regardless
of the destination pid. The circular enable bit is disabled by hardwiring when themessages
is bypassed from the last processing unit (pid 111111) to the first processing unit (pid
000000) so that the message will not keep circulating around the array.

The broadcast operation is enabled by setting the be bit high. When enabled,

the message will be broadcasted to groups of processors up to the group which contains
the processor whose pid matches the destination pid in the message. The grouping of the
processors is determined by the bus configuration. In the example in Figure 5.2, processors

Pi to P7in Group 1, 2 and 3 all receive the broadcasted message.

The reader isreferred toAppendix B for amore detailed description ofthemessage
format.

Similar to the MCU, the SCU responds to the status flag generated by the bypass

FIFO. If the FIFO isnot empty, arequest is issued tothe arbiter logic for bus usage. Unlike
the master FIFO, the slave FIFO provides only the One Flag but not the Full Flag because
it is guaranteed that the FIFO will never overflow. This is true because the bypass operation
is only enabled if the switch is open, i.e., the processor is the leftmost processor of a bus

group which always enjoys the highest priority of all in bus arbitration. The worst case

scenario is that the processor with non-empty bypass FIFO makes a request for bus usage
when a read request is just granted to another processor. Because of its high priority, the
request of the processor is guaranteed to be granted after the read request is serviced which

takes three bus cycles. Therefore, a depth of3 for the FIFO is enough to avoid overflow.

As in the case of the MCU, companion operations must be performed in SAC to

take care of the data. SCU accomplishes that by generating control signals to SAC.

One of the architectural features of SMARTis the ability of the processor to access

the processor-port of the shared memory independent of the activities on the configurable
bus. Hardware support for this feature is evident from the fact that the SCU can operate
concurrently and independently with the MCU.
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Figure 5.2: Example showing Broadcast Operation.
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Bypass FIFO
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The Bypass FIFO is very much like the master FIFO except that it only has a

depth of3 and there is no Full Flag being generated. Its function is to provide an alternate
path for messages to go through an open switch.

Arbiter

Bus arbitration is necessary when there are more than one processor wanting to
use the bus. This important task is performed by the Arbiter Block in MAC. Figure 5.3

shows a conceptual logic diagram of the arbiter. The output arbReqR is asserted to dis

able arbitration of the right-hand-side processors (which have lower priority) when there
is request coming in from the left (higher priority), or the master FIFO and/or the slave
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FIFO are/is not empty. Arbitration is granted (arbGrant asserted) when processors on the

left do not request for the bus (arbReqLl not asserted) and there is(are) pending internal

request(s) signalled by the assertationof masterFifoReq and/or bypassFifoReq. The switch-

Statel configuration register is there to block the influence of the processors in a different

processor group. The switchState2 configuration register and the input arbReqL2 provide

the possibility of connecting two MAC's to one but they are not used in the prototype

system. A fine detail not shown in Figure 5.3 is that the arbitration process is halted for

two bus cycles whenever a read request is granted because unlike a write request, a read

request requires 3 bus cycles instead of 1 to finish.

Careful logic and circuit designs axe done to minimize the levels of logic and the

propagation delay from input of the chip to the output of the chip through the arbiter logic

because just like the propagation delay of the switchable bus, this propagation delay also

imposes a limit on the number of processors sitting on a shared bus.

Semaphore

Controlled access to a shared resource canbe implementedeasily usingsemaphores.

In SMART a pair of instructions (semP and semV) are provided to manipulate the

semaphore. The semP instruction is used to acquire the semaphore and the semV in

struction releases it.

The semaphore logic is shown in Figure 5.4. The MCU lets the Semaphore Block

know that a semP instruction has been issued by asserting the semP signal. The semAck
signal is enabled to signal to the MCU the successful acquisition of the semaphore when

no processors with higher priority want to obtain the semaphore and the semaphore is not

locked by any processors. After obtaining the semaphore the semaphore is automatically

locked by setting an RS Flip-Flop with the semAck signal. The semaphore is not released

until it is unlocked by executing a semV instruction (resetting the RS Flip-Flop).

As in the arbiter logic, the switchStatel configuration register is used to isolate the

semaphore of one processor group from another. Again the propagation delay is minimized

to allow more processors to share the same semaphore.



CHAPTER 5. MASTER ACCESS CONTROLLER: MAC

phi4

switchStatel

semReqL

semLockL —CJ—

semP semAck

S R

Q QB

ijnrir

:=D

semV

S R

Q QB

:^>
<£

semReqR

semLockR

Figure 5.4: Conceptual Logic Diagram of the Semaphore Logic.

35



CHAPTER 5. MASTER ACCESS CONTROLLER: MAC 36

SET1 SET 2

> f > f • • • •

syncSwitch[i] -

PO

-o o-

P1

-o-o-

P2

-O-O-

P3

-O-O-

P4

-O O-

P5

-o-o-

P6

-o-o-

P7

-O O-

syncDisablep] GD QD m 0 0 "o" 0 "o"

Figure 5.5: Example of an Synchronization Pattern.

Synchronization

The Synchronization Block is custom-designed to support the barrier synchroniza

tion mechanism in SMART. To synchronize a set of processors at a certain point of the

program, for example, after finishing the computation on the current sample of data, every

processor in the set is required to execute a synchronization instruction at that point of the

program. The acknowledge for the completion of the synchronization instruction will not be

issued until all processors in the set issue the instruction. A processor which arrives at that

point in the program earlier than the other processors must wait. A set of processors are

said to be synchronized when every processor ofsethas issued a synchronization instruction.

The processor setis defined by the syncSwitch and syncDisable configuration reg
isters. An example to illustrate setdivision is given in Figure 5.5. First, adjacent processors
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are divided into groups by opening or closing the syncSwitch. (PO to P3 and P4 to P6
the example.) Next, individual processors within the group (P2) can be disabled by setting
the corresponding syncDisable configuration registers. In the example PO, Pi and P3 axe
in one set while P4, P5 and P6 are in another set. Thus the programming of the sync-
Switch and syncDisable configuration registers defines a synchronization pattern. In each
MAC, 5 syncSwitch and 6 syncDisable configuration registers axe available to support 5
fully programmable and 1partially programmable synchronization patterns. The partially
programmable synchronization pattern is called the Global Synchronization Pattern. Con

ceptually we can think of the syncSwitch of this pattern as being closed all the time. By
setting the appropriate bits in the synchronization instruction the processor can activate

any one or more of the synchronization patterns in one instruction. An acknowledge is not

granted untilevery setof processors corresponding to the activated patterns is synchronized.

Figure 5.6 shows the conceptual logic diagram of the Synchronization Block for

one synchronization pattern. Communication between neighboring Synchronization Block

is established by the dynamic precharged synchronization buses, syncR and syncL. More

discussion on the design issues of the dynamic bus will be given in Section 5.2. One impor

tant characteristic of this dynamic design is its ability to implement a configurable wired-and

gate. Referring to Figure 5.5 the portion of the synchronization bus to the right of P4 and

to the left of P7 will be low if any processor in SET 2 pulls down the bus. The fact that

the bus stays high means that all the processors in the set are ready for synchronization,

i.e., each processor has issued a synchronization instruction and no one is pulling the bus

low. If a static design was adopted, two pins instead of one would be needed on each side

since information has to flow in both directions, thus doubling the pinout requirement. In

addition, this design offers high speed and therefore more processors can be grouped into

the same set.

A communication patternis activated by asserting the corresponding syncReqp]bit

which sets a RS Flip-flop. The synchronization bus is sampled at the end of the evaluation

phase of each bus cycle to determine if all processors in the set are synchronized. A high

level on the bus resets the flip-flop and generates the syncAckp] bit. The MCU is not

acknowledged until all the syncAck bits of the activated patterns axe set. Setting the

syncDisable register simply disables the pull-down driver of the synchronization bus and

therefore the processor is always ready. It is worth pointing out that upon receiving a

synchronization instruction, MAC still pull downs the synchronization bus until the FIFO's

in
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Figure 5.6: Conceptual Logic Diagram of the Synchronization Block.
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are empty(fifoEmpty asserted), i.e., there axe no pending messages.
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5.2 Switchable Bus Design

In one bus cycle data axe transferred synchronously from one processor to another

sitting on the same shaxed bus. It is therefore important to keep the delay on the bus

through a closed switch as small as possible since it imposes an upper bound on the number

of processors which can communicate with each other directly through the shaxed bus. In

this section a dynamic design of the configurable bus is first presented which achieves a low

pad-to-pad propagation delay of 6.0ns. The same design is used to realize a configurable

WIRED-AND gate for synchronization ofprocessors withhalfthe number ofpins normally

required using static circuits as discussed in Section 5.1.. The pros and cons of the design
axe then evaluated. Next a more conservative pseudo-dynamic design which attempts to
compromise performance with reliability is introduced.

Dynamic Switchable Bus Design

To optimize speed, both the internal bus and the external bus axe implemented
using dynamic circuit. The circuit diagram of the dynamic bus driver isshown in Figure 5.7
and Figure 5.8. M2 and M3 axe laxge pull-up and pull-down n-channel transistors while
Ml is a small transistor whose function is to safeguard against charge leakage and external
capacitive coupling effects during the evaluation phase. The weak holding transistor Ml
does not consumes static power because it is turned off once the internal bus is pulled low
as a result of the external bus being pulled down. The holding transistor for the external
bus and the charge holding circuit (not shown) for the internal bus keep the buses in ahigh
state against leakage. This is important when testing at low clock frequency is performed.
To reduce current spikes at the onset of bus precharging, both the p-channel prechaxge
transistor for the internal bus and the n-channel prechaxge transistor for the external bus
axe sized as small as possible so that precharging is just accomplished at the end of the
prechaxge phase. Moreover, the driver sizes for the prechaxge transistors are also minimized
so that the rise or fall delays at the gate controls of the prechaxge transistors are long.

Besides its high speed, the bus design also allows data to flow in either direction

without the need of any direction control or tristate control. This greatly simplifies the
design of the Access Controller.

Despite its numerous advantages, the design is risky especially when it is used in
a noisy environment like a high speed printed circuit board. The greatest concern of the
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circuit is its robustness against noises on power supplies and signals, external capacitive

couplings and transmission line effects. Any accidental discharge of the internal or external

dynamic bus beyond some threshold will trigger a positive feedback, and produce faulty

results. Special measures must be taken both on the board level and the chip level to

guarantee the functionality of the design.

On the chip level, the size of the holding transistor Ml can be increased to improve

the immunity of circuit by increasing the highnoise margin (NMH). Since the noisemargin

low (NML) is not important in precharged circuits, the NMH of the driver can be further

enhanced by lowering the trip point of the level-shifting inverter INV1. However, both the

forementioned techniques involves trading off speed with safetymargins. The design goal is

to squeeze out as much safty margin as possible without excessive sacrifice in speed. Also,

the routing of the internal dynamic bus must be carefully examinedto be sure that on-chip

capacitive coupling is not a factor. Wide power buses, preferably in second layer metal,

and numerous power supply pins should be provided to reduce supply noises and resistive

voltage drop.

On the board level, design techniques such as shielding and minimization of

crossovers should be applied to cope with capacitive coupling and crosstalk effects. Wire

lengths of the interprocessor busing should be kept short to avoid serious transmission line

effects. The dynamic design is a good candidate for new packaging techniques such as

Wafer Scale Intergration and Hybrid Wafer Scale Intergration[7] which offer a less noisy
environment.

The design was implemented and fabricated using a 2um CMOS technology

through the MOSIS facilities. The chip was tested and a pad-to-pad delay of 6.0ns was

recorded. (Spice simulation predicts a delay of6.5ns.) A picture of the oscilloscope trace is
shown in Figure 5.9.

Unfortunately the testing also revealed that the design is very susceptible to ca
pacitive coupling effects. The worst case test for coupling effects is when all the bits of

the bus except one axe pulled down during the evaluation phase of the bus cycle. Test

results showed that some of the bits of the bus failed(incorrectly discharged) when subject
to the worst case test. Another test was performed in which all bits except a group of 3

consecutive bits axe set low. Results showed that the middle bit of the group never failed.

This can be explained by hypothesizing that the failure is caused by capacitive coupling.
Since the bonding pads, bonding wires and pins of adjacent bits axe close to each other and
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Figure 5.9: OsdUoscope Trace of the Dynamic Configurable Bus. Top trace is the input
and the bottom trace is the output.
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therefore strongly coupled, the chance offailure due to coupling is reduced if the adjacent
bits are kept high.

Another negative effect is the degradation of the effective noise margins due to

glitches on the power rails of the test board during discharge. The combination of both

effects further jeopardises the functionality of the circuit.

Pseudo-dynamic Switchable Bus Design

Although tight control of the environment may improve the chance for the design

to work, the dedsion was to gofor a more conservative design. Thedynamic design was still
used for the synchronization busbecause ofthe small bus width(less coupling and switching
noise) and the pin-saving the design offers.

To avoid drastic changes to the design and maintain similar speed, a pseudo-

dynamic design is used. The redesigned circuit diagram of the switchable bus is shown

in Figure 5.10. The design is very much the same as the previous design except that the

output driver and the input driver are both tri-state drivers. By enabling only one of the

two drivers, the feedback path canbe cut. Moreover the internal bus and the dynamic bus

are now driven actively all the time and therefore more robust against noises. An unusually

large transistor M5 is used for the inverter so that the delay for pulling down the internal
bus is not too much slower than the dynamic design. The penalty of this design is that the

arbitor block has to determine the direction the data is going to travel.

The new design was fabricated using the same technology and subsequent mea

surement recorded a pad-to-pad delay of 6.8ns. A pictureof the oscilloscope trace is shown
in Figure 5.11.



CHAPTER 5. MASTER ACCESS CONTROLLER: MAC

\
P2*

V 1 4f
WufcPutvp

H>[>hH-. -hf-

SWfTCH —^1>hC
oeB

iefi

hC^3^
T

H

I
T

Chip Boundary

Figure 5.10: Pseudo-dynamic Design of the Configurable Bus.

45

CLOAD



CHAPTER 5. MASTER ACCESS CONTROLLER: MAC 46

Figure 5.11: OsdUoscope Trace ofthe Pseudo-dynamic Configurable Bus. Top trace is the
input and the bottom trace is the output.
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5.3 Floorplan and Layout

The layout process can be roughly divided into three phases. In the first phase

individual ceUs of each block are layouted manuaUy if they are not available in the ceU

library in LAGER. The ceUs are then assembled and connected to form blocks. LAGER

provides a number of layout generators for different layout styles. A standard ceU place-

and-route tool set based on Timberwolfeis used for generating layout for control logic blocks

such as the Master Control Unit and the Slave Control Unit. A datapath compiler caUed

dpp generates layouts for the Synchronization and Switch blocks. Layout for macro blocks

such as the FIFO's and the pad groups are compiled by the ceU tiler TimLager in LAGER.

Blocks of various sizes can be created at ease by changing some parameters. The MCU

is actually divided into three smaUer blocks according to the interconnection patterns to

achieve more compact layout because thelayout generator does nothave to deal with alarge
number of ceUs. In addition the sub-blocks can beindividually placed to take advantage of
the communication pattern between blocks.

In the final phase these blocks are placed and routed byan interactive floor-planner
and channel router called Flint[2\. A hierarchical approach is taken such that the blocks

are first routed to form the core block and the clock generator block. The core, the dock
generator and the four pad groups are then routed together to complete the chip layout.

This approach allows more control over the actual placement of the blocks. The blocks

inside the core block are placed in dose proximity of each other since they communicate
very often with each other. The clock generator whose analog component is sensitive to

noises can be placed near the pads so that power suppUes and analog inputs and outputs do

not have to suffer large resistive voltage drops and capadtive coupling effects. Active area
of the chip which has great impact on manufacturing yield is also reduced by dustering
blocks together.

Pin assignment is made foUowing two guidelines. Bonding sites which offer the
least parasitic inductance (shortest connection to the pins) are first reserved for power
supplies to reduce switching noise and voltage spikes on the power lines. Signals are then
assigned to minimize interconnects from the core block to the pad groups with priority given
to time-critical signals.

The complete layout of MAC is shown in Figure 5.12. The chip has 208 pins, a
total of20883 transistors, ofwhich 12037 are n-channel mosfets and 8846 p-channel mosfets.
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Figure 5.12: Layout of Master Access ControUer.
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It is fabricated by the MOSIS facilities using the 2um N-weU technology. It occupies an

areaof 10.3 x 10.3 sq. mm and consumes about 0.8 Watts of power.



Chapter 6

Slave Access Controller: SAC

The Slave Access ControUer is essentially a slave to the Master Access ControUer.

It responds to the control signals from MAC and carries out the requested actions. SAC

performs actions exclusively on data, transfering them between its four 32-bit buses. Since

the chip is very similar to MAC, almost all the circuits used in SAC can be found in MAC.

The functionality and the floorplanning of SAC wiU be discussed in this chapter.

A summary of the pinouts of SAC is given in Appendix C.

6.1 Functional Description

The functionality of SAC wiU be brieflyexplained in this section. Figure 6.1 shows

the functional block diagram of SAC. It includes a master FIFO and a bypass FIFO, a switch

block for the configurable bus and a dock generator.

The master FIFO is a 32 bits wide, 16 words deep first-in-first-out buffer. Its

primary function is to provide a temporary storage for the data section of a write request.

In case of a read request, dummy data is stored. The read or write operations of the FIFO

are controUed respectivdy by the masterWrjo and masterGrantee3 signals generated by

MAC. No flags are generated by the FIFO since aU the status information can be obtained

from the master FIFO in MAC. The slave FIFO is very similar to the master FIFO except

that it only has a depth of 3 and again there is no flags being generated. Its function is

to provide an alternate path for data to go through an open switch. The Switch Block

implements the switches and the precharge logic of the configurable bus. The opening and

dosing of the switches are controUedby the switchSatel input. The discussion on the clock
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generator block wiU be given in Section 7.1. '

6.2 Floorplan and Layout

The layout approach of SAC pretty much foUows that of the MAC. The complete

layout of SAC is shown in Figure 6.2. Notice that the smaU control blocks for the FIFO's

and the switch block are placed dose to the blocks they are controlling. Control signals are

ddayed, gated with docks or buffered to increase driving capabiUty in the control blocks.

The chip has 208 pins, a total of 21671 transistors, of which 12569 are n-channel mosfets

and 9102 p-channel mosfets. It is fabricated by the MOSIS fadUties using the 2um N-weU

technology. It occupies an area of 10.0 x 10.0 sq. mm and consumes about 0.8 Watts of

power.
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Figure 6.2: Layout of Slave Access ControUer.
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Macro Blocks

7.1 Digital Phase Locked Loop

The dock signals used in the Access ControUer chip set have been shown in Fig

ure 4.1. The function of the clock generator block is to generate these nonoverlapping dock
signals, guaranteeing that the skews between the falling edge of the reference dock and the

faUing edges of the clock signals on-chip are always constant, as required by the synchronous

interfadng scheme used between chips. A simple 4-phase dock generator circuit could have

been used but the skews between the reference dock and the internal docks wiU vary from

chips to chips due to process variations and differences in operating temperature. A design
based on digital phase locked loops is adopted because of its abiUty to provide a virtual
zero-delay clock driver.

In order to save design efforts, a proven design used in the Berkeley SPUR

Project[lO] is taken with some modifications to suit our needs. Figure 7.1 shows the block
diagram of the DPLL clock generator.

Since the dock signals are aU derived from the outputs of a ring osdUator, their

phase differences are always constant. It is therefore sufficient to maintain phase differences
between the reference dock and the internal docks by matching the reference dock with

just one of the internal docks. In our implementation, the faUing edge of the signal phi4
is aligned with that of the reference clock. Because the DSP32C requires an input clock

of 40MHz, four times the frequency of the bus cyde, the frequency of the reference dock

must be divided by four before feeding into the Phase Frequency Detector. To keep the
alignment, a dummy delay matching block is inserted to account for the propagation dday
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introduced by the divide-by-four drcuit. The delay matcher is basicaUy a dupUcate of the
divide-by-four block (to simulate the same loading on the signal path) except that the input
signal is divided by one. The propagation dday from the pad through theinputbuffer to the
input of the divide-by-four drcuit is also taken into consideration by routing first routing
phi4 to a dummy pad with identical input driver before feeding it into the dday matcher.

Depending onwhether thereference dock leads or lags phi4, the circuits comprising
the phase frequency detector, the charge pump and the loop filter wiU adjust the delays of
the delay ceUs in the ring osciUator appropriately by raising or lowering the analog input
of the osciUator (vcoln. The simpUfied block diagram of the voltage controUed osciUator

(VCO) is shown in Figure 7.2(a). The VCO uses non-inverting dday ceUs each of which
consists of two invertingdday ceUs used in the original design, to avoid asymmetry due to

difference between the rise delay and the fall delay of the delay ceUs. Figure 7.2(b) depicts

the waveform generation scheme from the outputs of the ring osdUator. Although only four

outputs, ol, o2, o5 and 06*, are needed to generate the desired clock waveforms, dummy

gates are used to ensure the same loadings for each output of the osciUator to improve

symmetry of the waveforms. In order to equalize the propagation ddays of the decoder for

the dock signals as much as possible, the decoder is designed in such a way that each clock

signal has to go through the same number of levels of logic. Furthermore, the final buffer

stage of each dock signal is sized differently according to the loading extracted from the

layout to maintain similar delay for each clock signal.

The osciUoscope traces of the four phase non-overlapping clocks, phil to phi4 are

displayed in Figure 7.3. The frequency of the reference dock was 30MHz.

To provide a way to test the rest of the circuits on the chip in case the dock

generator fails to operate and to aUow direct control of the internal clock signals for easy

generation of test vectors, a multiplexer is included in the dock generator block so that

external test docks can be multiplexed in when the test pin is asserted. The four test

clocks, corresponding to ol, o2, o5 and 06, are brought onto the chip through bidirectional

drivers. When not in the test mode, these drivers are driven by the internal clocks, phil,

phi2, phi3 and phi4 so that they can be observed extemaUy. Performance parameters of

DPLL such as jitters and stabiUty can be measured and the loop filter characteristic can be

adjusted accordingly.
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generation.



CHAPTER 7. MACRO BLOCKS 58

Figure 7.3: OsdUoscope Traces of the Four Phase Non-overlapping Clocks at 30MHz Ref
erence Clock.
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7.2 Pads

Since the die size of both MAC and SAC areUmited by the large number of pads,

it is possible to decrease the overaU die size by packing the pads as dose to each other

as possible, i.e., redudng the width of the pad as much as possible. A new pad Ubrary

is designed in which the aspect ratio of each pad is such that the width is minimized to

175um, the minimum pad spadng recommended by the MOSIS facUity at the time of the

design.

Besides the aspect ratio, the new pad Ubrary also distinguishes itself from the

other pad Ubraries in LAGER in that an n-channd device instead of a p-channd device

is used as the puUup of the last pad buffer stage. Even though the new pads suffer from

some degradation in noise margin because the Voh is lowered from 5V to about 3.3V1, it

enjoys many advantages. Lowering the V0H of the driver reduces the power consumed on

the external capacitive loads by more than a half. Performing a first order estimate, the

amount of off-chip loading is about 5 times the on-chip loading and therefore the power

saving can be a significant portion of the total power consumption of the chip.

As far as speed is concerned, a NMOS driver is comparable to a PMOS driver of

the same size. Figure 7.4 shows the current driving capabiUties versus output voltage for
a 200um/2um n-channel puUup and a 200um/2um p-channd puUup. The n-channd device
can source more current thanits p-channel counterpart for output voltage up to about 1.8V.

Therefore it is expected the n-channel device can charge up acapacitive load faster initiaUy
but beyond some point, the p-channd device is going to catch up. This is confirmed in

Figure 7.5 where the transient analysis of the two devices driving a 30pf capacitive load is
shown. However, the PMOS driver is stiU capable of driving more current load than the
NMOS driver at high output voltage.

The fact that only big n-channel devices are used in the pad driver means there
is no p-weU near the large pad driver which generates more substrate current. By keeping
the p-weU far away, the formation of the parasitic bipolor transistor becomes more difficult,
thus improving immunity against CMOS latch-up.

Another consideration in the design of the new pads is the noise injected into the
supply Unes when the outputs of the pad drivers are switching due to parasitic inductances.

To reduce the switching noise, dther the size of the output driver can be decreased or the

^his figure takes into account the Body Effect of the MOS transistor and depends on the current loading.
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Figure 7.5: Output voltages for 200um/2um n-diannd puUup and 200um/2um p-channd
puUup vs time. A static load of 30pf is used.
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strength of the predriver can be reduced so that the large driver transistor is turned on

slowly. However, both techniques increase the propagation dday of the pads. With the

aide of SPICE simulations, the driver sizes are adusted to compromise these conflicting

requirements such that the magnitudes of the switching noise on the power lines are kept

below an arbitrarily chosen levd of 0.5V with as Uttle sacrifice in speed as possible. The

parasitic inductances used in SPICE simulations are modeUed by a 50nH inductor between

the ideal voltage suppUes and the suppUes to the pad driver, assuming one pair of power

supply pads are available for five output pads[6].

A second version of the pad Ubrary is designed to implement boundary scan reg

isters. More discussion on boundary scan testing wiU be given in Section 8.3.

The pad Ubrary indudes input pad, inverted output pad, non-inverted output pad,

bidirectional pad and power pads. The drcuit diagrams of aU the pads except the power

pads are induded in Appendix D. The sizeof each padis 628um x 175um without boundary

scan registers and 750um x 175um with boundary scan registers. Spice simulations show

that the output pad and the bidirectional pad exhibit 6ns delay for a 50pf static load and

the input pad has 2ns delay for a 0.5pf static load using typical process parameters of the

MOSIS 2um N-weU technology.

7.3 FIFO

The FIFO blocks are the key components of the Access ControUer. Since the

interfaces with the processor and the switchable bus are both synchronous, it is sufficient

to design a synchronous FIFO that aUows simultaneous read and write operations. The

decision, however, was to design a more general asynchronous FIFO so that it can be

reused in other appUcations in the future. The design specification of the FIFO is that the

read and write port of the FIFO must be able to operate independently and asynchronously

at 20MHz. This translates to two read operations and/or two write operations in one 100ns

bus cyde. (But only one read operation is performed in our design.) It's capadty is 32 bits

width and 16 words deep.

The organization of the FIFO is shown in Figure 7.6. The FIFO can be divided

into 2 main sections, the data section and the control section. The data section consists of

input data buffer(IBUF), ceU array and output latches(OLAT), the controls of which are

generated in the control section. The control section comprises the read pointer(RPTR),
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the write pointer(WPTR), the drivers for the control signals(R/W DRVTERS), the buffers
for input control signals and output flags and the flag generation logic(FGL). The read or
write pointers are implemented as drcular shift registers. After reset, only one register in
the shift register is initialized to One and the others are aU deared. The word to be read
or written is pointed to by the presetted register. After every read/write operation, the
corresponding shift register or pointer is shifted to point to the location of the next word.

The R/W Driver block and the buffer block serve to provide more driving capabiUties for
signals and generate the inverse of some signals (such as WB in Figure 7.7). The flag
generation logic compares the locations pointed toby the read and write pointers todedde
the status the FIFO. Besides input data and output data, the FIFO takes 3control inputs:
read, write and reset, and generates 2 output flags. More about flag generation wiU be
discussed bdow.

Figure 7.7 shows a simpUfied logic diagram of the FIFO. The data storage ceU
in the array is implemented as simple static latch with tristate output. The write pointer
is anded with the write enable signal to generate the latch enable signal for the cells to
avoid problems with data hold time and overwriting data stored in the next write location.
Figure 7.8 gives amore detailed look at the read/write pointers and the flag-generation logic.
Each edge-triggered flip flop in the shift register is implemented by two complementary
setable/resetable half latches enabled by the read/write signal. Each flag is generated by a
large and-or gate implemented using pseudo-static circuit. A pair of latches, one from the
read pointer and the other from the write pointer, is compared for each word. If the contents
ofany one pair oflatches are both set, the flag is asserted. The size ofthe p-channd device
is kept as small as possible as long as the propagation dday for disasserting the flag is not
a problem. The small size enhances noise margin, reduces static power and propagation
dday when asserting the flag. To speedup flag generation, we can use some current sense
ampUfier scheme. But the design usuaUy requires voltage reference and consumes static
power.

By picking adifferent pair of latches from each pointer for comparison, the timing
of the flag can be modified to suit our needs. Two examples are given in Figure 7.9 to
iUustrate this point. The two columns of l's and O's represent the contents of the half
latches in the two shift registers. As explained before, there wUl be only two l's left in
each column after initial reset. At alow to high transition of the write(read) signal, the
l's in the write(read) column wiU shift down 1notch. The same wiU happen at ahigh to
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low transition. Thus the l's wiU shift down two notches (pointing to the next word) after

the completion of a write(read) operation. The Unes between the columns associate one

latch from each column for comparison. The dotted Une and the soUd Une represent the

fuU flag and the empty flag respectively. The timing diagrams show the flag timing with

respect to the events that trigger the assertion ordisassertion of the flag for the two different

comparison scheme. After reset, both the read and write pointers point to the same word

and there is no way to distinguish a completely empty FIFO from a completely fiUed FIFO

with combinational logic only. To avoid adding extralogic, the fuU flag is actuaUy asserted

when there is stiU one empty slot in the FIFO.

By comparing different pairs of latches, it is possible to program the flags. For

the master FIFO in MAC, a one flag is actuaUy generated which is active when there is

only one word left in the FIFO. Carrying the idea one step further, any arbitrary flag

can be generated if extra shift registers are provided. For instance, a half full flag can be

implemented by having a shift register with halfof its registers presetted.
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Verification and Testing

8.1 Logic Verification with Thor

To assist the task of logic verification, a high levelbehavioralmodel of the SMART

system was created. Components of the system, including processor, memories and the

Access ControUer, are described in ahigh level language called the C Hardware Description
Language (CHDL). These models can then be connected together to form the complete
system using a component-oriented net Ust language caUed CSL. The entire model can

be simulated with a event-driven functional simulator caUed THOR. For our purpose it
is enough to abstract the processor as a component that carries out memory transactions

to/from some specified memory locations at specified time. Despite its simpUcity, the
processor model allows us to write very high level commands, such as broadcast write to

processor n, to exercise the various functional blocks of the Access ControUer.

A cross-reference faciUty is available in THOR so that signal values in the model

canbe usedas stimuU for an event-driven logic-level simulator caUed irsim. Irsim simulates

the actual circuits based on netUst information directly extracted from the physical layout.

The response of the circuits can again be compared with the corresponding signals in the
model to verify functionaUty of the circuits. Using high level commands for the processor
model, simulation patterns can be conveniently generated.
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8.2 Testing Strategy

Since many testing strategy such as scan test or built-in self test, requires special

hardware support on-chip, it is very important to decide on a testing strategy in the early

phase of the design cycle. After close examination of the Access ControUer design, wecame

to the conclusion that the conventional 10 testing approach, driving and observing the

external pins of the chip, is sufficient. Not only is this approach exempted from the usual

hardware overheads and the resulting performance degradation associated with the other

testing methods, the approach is also competitive in terms of testabiUty. The reason for

that is the high controUabiUty and observabiUty of the Access ControUer chip set, ashinted

by the large pin counts of the chips. First of all, the chips haverelatively few internal states,

most of which (such as the configuration registers) can be accessed directly by executing

the appropriate configuration instructions. Moreover the status of these states canbe easily

observed at the pins. In addition, there is nolarge finite state machine type control logic on

chip. Control flow is direct and can be monitored easUy. Therefore, it is beUeved that very

high fault coverage can stiU be achieved with a reasonable number of test patterns using
this approach.

Test vectors were generated painlessly by writing the high level commands for the

processors. Programs were written to automate the process of extracting the test vectors

from the simulation patterns, downloading the vectors to the tester, and uploading and

verifying the acquired results from the tester after the test is performed.

Unfortunately when it comes to the actual testing of the chips with the tester,

the problem Ues not in the quaUty of the test vectors but in the testing setup. Experience

acquired during the testing of the first version of the chips revealed that it is very difficult for

the tester to access so many pins without some adapter board for the package weare using.

It was therefore decided to implement a boundary scan register chain in the pads for the

second version of the design. The boundary scan design aUows controlUng and observing of

aU the pins with access to only a few pins. Inputs to the chips can be scanned into the chips.

The chip is then allowed to run for one cycle by advancing the clocks(external test clocks).

Outputs of the chips can be latched into the chain and observed externally. By stretching

out the test in time, simpler test setup can be used. Furthermore the boundary scan is very

useful for debugging interconnections and on-board testing on the printed circuit board.

More detailed discussion of the boundary scan scheme wiU be given in the next section.
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8.3 Boundary Scan

A complete boundary scan design should provide the following functions:

Controllable Inputs: Inputs to the chips are controUable externally by scanning in the

required patterns.

Observable Outputs: Ouputs from the chips are observable extemaUy by scanning out

the latched chip outputs.

Observable Inputs: Inputs to the chips from other part of the system are observable to

verify interconnections.

Controllable Outputs: Outputs of the chipscan be controUed by scanning in the required

patterns.

The first two functions aUow isolation of a chip on the board from the rest of the

system so that on-board testing can be carried out. The last two capabiUties enable direct

checking of interconnection on the printed circuit board as weU as provide some testing

capabiUty for some chips not equipped with boundary scan. The later is accompUshed by

controlUng the outputs and monitoring the inputs of the chips that interface with the chip

to be tested. No assumptions on the functionaUty of the interfacing chips are necessary.

In our design, the last function was not implemented to simpUfy the design. Instead, our

custom chips wiU be tested before they are put on the board so that outputs of the chips

can be controUed indirectly by applying test vectors that wiU result in the desired output

patterns.

Extra hardware including three simple latches and a multiplexer is required to

implement the boundary scan scheme as shown in the circuit diagram of an input/output

pad with boundary scan registers (Figure 8.1). Latchl and Latch2, enabled by the non-

overlapping clocks mck and sck respectively, formed the master-slave scan register of the

scan chain. The state of the bonding pad can be loaded into the scan register can enabUng

the signal Idpad. Latch3 is responsible for holding the inputs to the chip steady while scan

operation is carried out on the scan chain. Thus inputs to the chips are updated only when

Idln is active. The scanEnB signal decides whether inputs to the chip should come from

outside (bonding pad) or from latch3. The multiplexer introduces less than Ins of extra
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mck

scanln scanOut

scanEnB

outEn

out in

Figure 8.1: Circuit Diagram of an I/O Pad with Boundary Scan Registers.
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propagation delay to the input signal path. The extra scan logic increases the chip sizes by

about lOOum on each side, resulting in a 2% area overhead over the non-scan designs.



Chapter 9

Conclusions

9.1 Summary

The key architectural features of SMART, namely the Configurable Bus, the Dis

tributed Shared Memory, the Write Queues and the Synchronization Mechanism, have dis

cussed in this report. By trading off overall communication bandwidth and latency, the

SMART system can be configured to achieve high throughput by exploiting concurrency

existed in a large variety of algorithms. The system performance is further improved by

overlapping the overhead due to communication latency with the computation time of the

processors.

The design of the SMART prototype system was presented, emphasizing the design

issues of the Access ControUer, a custom VLSI chip set implemented to support the fore-

mentioned architectural features. By defining the design goals andtakinginto considerations

the various design issues discussed in Chapter 4 early on, we were able to look ahead for

potential problems so that measures could be taken to avoid them. Consequently the

design process was very smooth and the design was completed with very few iterations and

modifications. The design of the chip set took about one and a half man-year.

Perhaps the most difficult design decision we had to make was whether to go for

the dynamic switchable bus design. On one hand we were excited about the high speed

and pin-saving advantages of the design. On the other hand we were concerned about the

robustness of the design in a noisy environment. Subsequent testing of the design proved

that the design was unreliable in the presence of noise and we had to switch to a static

design. The final switchable bus design measured a pad-to-pad propagation delay of about
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6.8ns. This translates to the capabiUty of rippUng data through the closed switches of 8

processors in a single bus group in one 10MHz bus cycle.

Another valuable lesson learned in this project is that every precaution must be

taken in the design of the pad drivers to reduce switching noise to an acceptable level,

especiaUy in systems where several wide buses may be switching simultaneously.

The availabiUty of a Ubrary ofCAD tools plays a very important role in speeding

up the design process. The LAGER tool sets aUow generation of layouts of different styles

using a uniform input format. Byusing a bottom-up approach in layout, blocks oflayout can

be generated, simulated and modified veryquickly with the aid of the LAGER tools. The

experience acquired in the process of designing the chips suggest that it is very important

to understand the characteristics and limitations of the CAD tools used because very often

the design may have to be modified to adapt to the tools. For instance, the simulated

anneaUng algorithmused in the standard ceU place-and-route tools is not deterministic and

that means the resulting layout generated may vary somewhat from run to run. Therefore

it is important to verify any critical paths that may be affected by the layout even though
only minor modification is made to the design.

The decision to remove critical paths byredesigning thelogic instead ofredesigning
the circuits proved to be advantageous despite some area overhead. In general there is more
confidence in the functionality ofthe circuits when critical paths are eUminated by reducing
the number oflevels oflogic rather than resizing the transistors. Layout modification with

logic redesign only involves changing information about gate connectivities but resizing
generaUy requires laying out new ceUs. This approach greatly reduces the number ofSPICE

runs for the entire design. SPICE simulations were needed only for the switchable bus, the
FIFO and the pads.

In retrospect the exclusion of scan registers from the design does not seem to
make it difficult for test vector generation, nor does it degrade the quaUty of the test
vectors because of the high controUabUity and observabiUty of the internal nodes in the

chips. However, implementation of boundary scan registers is beneficial because it reduces
the number ofpins that the testerhas to access for testing. It would have saved a lot oftime

in developing thewire-wrapped test board used for interfacing the chips to thetester. While
designing scan registers is weU supported by the CAD tools, wire wrapping isa manual and
tedious (if not impossible) task.
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9.2 Future Work

A lot of interesting ideas and alternatives can be suggested to improve the perfor
mance of the SMART system.

On implementation issues, it is worthwhUe to look into some advance packaging
techniques such as Wafer Scale Integration (WSI) and Hybrid WS1[7] which can improve
boththeboard density and system performances. These techniques also provide new options

for system partitioning. It is also interesting to explore some high bandwidth asynchronous
bus designs and their impacts on system extensibility.

On architecture, more studies can be done on the communication patterns of DSP

algorithms to derive some interconnection schemes that are more general and flexible. Other

issues include memory hierarchy, heterogeneous processing elements and self-configuration
of buses.
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Appendix A

MAC Instructions

DSP32C issues instructions to MAC by performing external memory accesses.
MAC figures out the instruction by decoding the address bus according to an address map.

In DSP32C, the entire address space is divided into 2 banks: bank 0 and bank 1.
In one instruction, concurrent access to two different memory banks is allowed. In SMART,
the Mode 7 Memory Configuration (ROM-less version) is chosen (Table A.l). Since access
to the on-chip RAM's is internal to the DSP32C, this kind of access does not result in
issuing of instructions to the MAC.

As explained in Section 5.1, instructions of MAC can be broadly categorized into
two groups. Instructions in Group 1 are all mapped to external memory A and instructions
in Group 2 to external memory B. Address mapping for the entire address space is shown
in Table A.2, Table A.3 and Table A.4. Adr[12-0] is the external word address bus and
Msn[3-0] is the byte select of DSP32C. By asserting one or more of the byte select bits,
DSP32C can selectively access one or more bytes of the 32-bit word. AU instructions in
Group 1 are located in Table A.2 and instructions in Group 2 in Table A.3. Table A.4
shows address mapping for memory bank 1. AU accesses to this memory bank are internal
to DSP32C.
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Memory Bank Byte Address Memory Assignment

BANKO 0x000000

0x0007FF

RAMO

0x000800

0x5FFFFF

External

Memory A
0x600000

OxFFDFFF

External

Memory B
BANK1 OxFFEOOO

0xFFE7FF

RAM2

0xFFE800

0xFFF7FF

RESERVED

0xFFF800

OxFFFFFF

RAMI

Table A.l: DSP32C Memory Configuration, Mode 7 (ROM-less version).
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FoUowing is a description of Group 1instructions (Without Acknowledge):

1. External Local Memory Read/Write (lmemRd/lmemWr):
MAC responds by asserting chip enable signals for the local memory (LMEM).
Adr[12-0] and Msn[3-0] specify the address at which the data areto be read orwritten.

2. Synchronization Switch Write (wrSyncSwitch):
The lower order 5 bits of DSP32C address bus are written into the syncSwitch con
figuration registers which controls the switches on the synchronization bus.

3. Synchronization Disable Write (wrSyncDisable):
The lower order 6bits of DSP32C address bus are written into the syncDisable config
uration registers which enable or disable the corresponding synchronization patterns.

4. Semaphore Unlock (semV):
MAC releases the semaphore.

5. Switchl Write (wrSwitch):
Bit11 ofthe DSP32C address bus iswritten into the switchState configuration register
which controls the switches on the configurable bus.

6. Swap State Write (wrSwap):
Bit 11 of the DSP32C address bus iswritten into the swapState configuration register
which controls the bank select of DPRAM access.

7. Swap State Toggle (toggleSwap):
Toggle the swapState configuration register.
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DSP32C Word Address - Byt<a :Select

AAAAAAAAAAAAA AAA A A AAAAMHHH

ddddddddddddddddddddddssss

rrrrrrrrrrrrr r r r r r rrrrnnnn

2211111111119 8 7 6 5 4 3 2 10-3210

109876543210

0x000000 Start 0000000000000 0 0 0 0 0 0 0 0 0-0000

On-chip Ram (2KB)
0x0007FF End 0000000000000 1 1 1 1 1 1111-1111

0x000800 Start 0000000000001 0 0 0 0 0 0 0 0 0-0000

External Local Memory (256KB)
0x0407FF End 0000010000000 1 1 1 1 1 1111-1111

0x040800 Start 0000010000001 0 0 0 0 0 0 0 0 0-0000

Reserved for Future Expansion of Local Memory (254KB)
0x07FFFF End 0000011111111 1 1 1 1 1 1111-1111

0x080000 Start 0000100000000 0 0 0 0 0 0 0 0 0-0000

Special Instructions (I)
wrSyncSwitch OOOOlOOxxxxxx X X X X u u u u u-x XXX

wrSyncDefault OOOOlOlOxxxxx X X X u u u u u u-x XXX

semV OOOOlOllOOxxx X X X X X XXX X-X XXX

wrSwitch 0 0 0 0 1 0 1 10 luzx X X X X X XXX X-X XXX

wrSwap 0000101 llOuzz X X X X X XXX x-x XXX

wrSwapToggle 00 00 1 0 1 1 1 1 zzz X X X X X XXX x-x XXX

wrByPassEn 0000 1 1 OOOOuzz X X X X X XXX X-X XXX

wrSwitch2 0000 1 1000 luzx X X X X X XXX X-X XXX

wrProcNum 0000 1 1 001 Oxzz X X X u u u u u u-x XXX

decode 0 000 1 1 00 1 1 z zz X X X X X XXX x-x XXX

OxOFFFFF End 0000111111111 1 1 1 1 1 1111-1111

0x100000 Start 0001000000000 0 0 0 0 0 0 0 0 0-0000

Front-side Memory Access (Read or Write)
OOOlxxxxxssAA A A A A A A A A A-A A A A

OxlFFFFF End 0001111111111 1 1 1 1 1 1111-1111

0x200000 Start 0010000000000 0 0 0 0 0 0 0 0 0-0000

Bus-side Memory Broadcast (Write Only)
OOlppppppssAA A A A A A A A A A-A A A A

0x3FFFFF End 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111-1111

0x400000 Start 0100000000000 0 0 0 0 0 0 0 0 0-0000

Bus-side Memory Access (Write Only)
OlOppppppssAA A A A A A A A A A-A A A A

0x5FFFFF End 0101111111111 1 1 1 1 1 1111-1111

LEGENDS:

x: Don't Care

u: User Programmed Bits
s: Dual-port Memory Bank Select Bits
A: Byte Address of Dual-port Memory
p: Processor Id of Destination Processor

Table A.2: Address Mapping for Memory Bank 0 (Group 1 Instructions).
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0SP32C Word Address - Byte Select
AAAAAAAAAAAAAAAAAAAAAAMHMH

ddddddddddddddddddddddssss

rrrrrrrrrrrrrrrrrrrrrrnnnn

2211111111119876543210-3 210

109876543210

0x600000 Start 0110000000000 0 0000000 0-0 0 0 0
BusSide Memory on Bus Side with Wait

01 lppppppssAAAAAAAAAAA-AAAA
0x7FFFFF End 0 1 1 1 1 1 1 1 1 1 l l l l 1 1 1 1 1 1 1 i-1 1 1 1
0x800000 Start 100000000000000000000 0-0 0 0 0

Special Instructions (II)
synchronization lOOOxxxOOOOOOOOOuuuuu u-x x x x
semP lOOOxxxlxxxxxxxxxxxxx x-x x x x
0x9FFFFF End 1001111111llllliiiiiii-iiii

OxAOOOOO Start 101000000000000000000 0-0 0 0 0
Broadcast with Wait

lOlppppppssAAAAAAAAAAA-AAAA
OxBFFFFF End 1011111llllliiiiiiiiii-iiii

OxCOOOOO Start 1 10000000000000000000 0-0 0 0 0
Circular ByPass with Wait

llOppppppssAAAAAAAAAAA-AAAA
OxDFFFFF End 1 1 0 1 1 1 1 1 i l 1 l l l l l i i i i i n i i i
OxEOOOOO Start 111000000000000000000 0-0 000

Fifo Read/Write with Wait
OxFFDFFF End 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 l-l l l l

LEGENDS:

x: Don't Care

u: User Programmed Bits
s: Dual-port Memory Bank Select Bits
A: Byte Address of Dual-port Memory
p: Processor Id of Destination Processor

Table A.3: Address Mapping for Memory Bank 0 (Group 2 Instructions).
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DSP32C Word Address - Byte Select

AAAAAAAAAAAAAAAAAAAAAAHMHM

ddddddddddddddddddddddssss

rrrrrrrrrrrrrrrrrrrrrrnnnn

2211111111119876543210-3 210

109876543210

OxFFEOOO Start 111111111110000000000 0-0 000
On-chip Ram (2KB)

0xFFE7FF End 1111111111100111111111-1111
0xFFE800 Start 111111111110100000000 0-0 000

Reserved (4KB)
0xFFF7FF End 111111111111011111111 1-1 111
0xFFF800 Start 111111111111100000000 0-0 000

On-chip Ram (2KB)
OxFFFFFF End lllillllllllllllllllii-iiii

Table A.4: Address Mapping for Memory Bank 1 (Internal Access Only).

8. Bypass Enable Write (wrBypassEn):
Bit 11 of the DSP32C address bus is written into the bypassEnconfiguration register
which enables bypass operation.

9. Switch2 Write (wrSwitch2):
Bit 11 of the DSP32C address bus is written into the switchState2 configuration reg
ister.

10. PID Write (wrPID):
Thelower order 6bitsofDSP32C address bus are written into thepidReg configuration
registers which contains the Processor Identification Number of local processor.

11. Interrupt Generate (genlntr):
The single-phase positive pulse is generated at the interrupt output of MAC. This
signal can be used to generate an interrupt to theVME interface,.thus providing the
DSP32C the abiUty to interrupt the VME bus master.

12. Processor-port DPRAM Read/Write (ppmemRd/ppmemWr):
MAC responds by asserting chip enable signals for the processor-port of the dual-
ported RAM (DPRAM).
Adr[12-ll] together with the swapState specify the memory bank to be accessed.
Adr[10-0] and Msn[3-0] specify the address at which the data are to be read or written.

13. Slave-port DPRAM Broadcast Write (spmemBcWr):
A write request is broadcasted to the slave-ports of groups of processors specified by
the pid of the destination processor given in Adr[18-13]. Adr[12-ll] together with the
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swapState specify the memory bank to be accessed. Adr[10-0] and Msn[3-0] specify
the address at which the data are to be read or written.

14. Slave-port DPRAM Write (spmemWr):
A write request is madeto the slave-port of a destination processor whose pid is given
by Adr[18-13]. Adr[12-ll] together with the swapState specify the memory bank to
be accessed. Adr[10-0] and Msn[3-0] specify the address at which the data are to be
read or written.

FoUowing is a description of Group 2 instructions (With Acknowledge):

1. Slave-port DPRAM Slow Read/Write (spmemSWr/spmemSRd):
Same as spmemWr except that MAC generates an acknowledge and both read and
write requests are allowed.

2. Synchronization (syncV):
Any one's in the lower order 6 bits of DSP32C address bus activate the corresponding
synchronization patterns. MAC generates an acknowledge when every member of the
processor set defined by the activated synchronization pattern is synchronized.

3. Semaphore Request (semP):
MAC makes a request to acquire the semaphore. After the semaphore is obtained,
the semaphore is automaticaUy locked and an acknowledge is generated.

4. Slave-port DPRAM Broadcast Slow Write (spmemBcSWr):
Same as spmemBcWr except that MAC generates an acknowledge.

5. Slave-port DPRAM Circular Bypass Slow Write (spmemCBcSWr):
Same as spmemBcSWr except that circular bypass is enabled.

6. External FIFO Read/Write (effRd/effWr):
A read(write) request is made to the external input(output) FIFO. An acknowledge
is generated upon the completion of the access. The empty(full) flag of the FIFO is
checked prior to the access to prevent underflow(overflow) of the FIFO.



Appendix B

MAC Pinout Descriptions

The Master Access ControUer Chip has 208 pins, 38 of which are for power and
ground pins. The remaining pins can be divided into 6 groups:

• System Interface

• Slave Interface

• SAC Interface

• Network Interface

• Test Interface

• Clocking

Table B.l gives a summary of the pinouts of MAC divided according to their
functionaUties.

System Interface

System Interface includes signals needed for interfacing the MAC with DSP32C,
LRAM,DPRAM, Input and Output FIFO's. The assertion of cycleinPby DSP32C indicates
the beginning of a memory transaction. RwnP teUs whether the transaction is a read or
write access. MwnP and mgnP are the Write Strobe and the Read Strobe respectively. Cko
is needed for synchronizing the MAC with the processor. ResetNis the system reset signal.
The macEn signal is provided to allow disabUng of the system interface during reset and
the possibiUty of interfacing serval MAC's to one DSP32C. E.fullN and e.emptyN give the
status of the Output FIFO and Input FIFO respectively. These flags have to be checked
before any accesses to the FIFO's are made. The addrP[0-21] and msnP[3-0] specify the
address of the transaction. Genlntr is an output for generating an interrupt to the VME
bus interface.

When some instructions are issued to MAC, DSP32C wiU wait indefinitely untU
MAC acknowledges the completion of the instruction by asserting srdynP. CeF[7-0] and
CeL[3-0] are the chip enable signals for the processor-port of the DPRAM and the LRAM
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Signal Group Input Output Bidirectional

System Interface mwnP, mgnP, srdynP,
rwnP, cycleinP, ceF[7-0],
cko, resetN, macEn, ceL[3-0],
e_fuUN, e_emptyN, popN, pushN,
addrP[21-0], msnP[3-0] genlntr

Slave Interface oeND[l-0],
weND[l-0],
addrD[10-0],
msnD[3-0]

SAC Interface switchState_c4,
masterWr_v,
byPassEn_c3,
masterGrant«c3,
bypassGrant_c3,
rdReady_cl,
wrVaUd_c3,
rdVaUd_c3

Network Interface arbL, arb2L arbR syncL[4-0],
semReqL, semLockR semLockL, semReqR syncR[4-0],
syncGloballn syncGlobalOut busL[26-0],

busR[26-0]
Test Interface scanEnN, scanln

mck, sck, ldin, ldpad
scanOut

Clocking refClk, vcoln,
gsync, testN |

pump tck[4-l]

Table B.l: MAC Signals divided into Groups.
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respectively. PopN is the read strobe of the Input FIFO and pushNis the write strobe of
the Output FIFO.

Slave Interface

Signals for interfacing with the slave-port of the DPRAM form the Slave Interface.
OeND[l-0] and weND[l-0] are the output enable signals and the write enable signals and
addrD[lO-0] and msnD[3-0] specify the location of the access.

SAC Interface

SAC Interface contains signals generated by MAC to control the operations in
SAC. When switchStatejc4 is high, SAC closes the internal switch on the switchable bus
and vice versa. MAC asserts masterWrjo(byPassEnjc3) signal to initiate a write opera
tion of the master FIFOfbypass FIFO) of SAC. SimUarly, asserting the masterGranLc3
(byPassGranLc3) signal starts a read operation of the master FIFO(bypass FIFO). The
process of reading a piece of data from a remote processing unit takes a couple of bus cy
cles. By asserting rdReady^cl MAC signals to SAC that the data to be read arrives on the
switchable bus. SAC then responds by latching the data on the bus and transfering it to
the processor bus. The wrValid.c3(rdValicLc3) indicates to SAC that the processor ID of
the incoming message on the switchable bus matches the local ID and that a write(read)
access should be performed to the slave-port of the DPRAM.

Network Interface

Signals in the Network Interface are used to interface with other access controUers
in the system. They perform functions such as arbitration, synchronization and message
transfer.

ArbL or arb2L is asserted when processor(s) on the left with high priority requests
for bus usage. MAC in turns indicates to the processing units on the right the intentions
of the left processors or itselfto use the bus by asserting the output arbR. Thus arbitration
is performed in a daisy-chain fashion with the processors on the left having the highest
priority. Arb2L is currently unused but is provided to aUow hooking up two MAC's to
one for future extension of the architecture. The arbitration process wiU be described in
Section 5.1.

Acquiring and releasing of semaphore among a processor group is implemented by
the signals semReqR, semReqL, semLockR and semLockL. Very similar to the daisy-chain
implementation ofarbitration, semReqL is asserted when any processors to the left of MAC
want to obtain the semaphore. MAC asserts semReqR when MAC itselfor any processors
on the left make a request for the semaphore. Once a processor gets hold of the semaphore,
semLockL is asserted to signal the processors to the left that the semaphore is not yet
released. Similarly, the input semLockR wiU be asserted if any processor to the right is
holding the semaphore. The logic used to implement semaphore wiU be discussed in details
in Section 5.1.
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Global synchronization ,the synchronization of all processors in the system, is im
plemented by the signals syncGloballn and syncGlobalOut. Local synchronization, the syn
chronization ofprocessors in the same bus group, is provided by syncL[4-0] and syncR[4-0],
with each bit of the bus handling one synchronization pattern.

When the processor issues a global synchronization instruction, MAC wiU puU
syncGlobalOut high which is otherwise keeps low. SyncGloballn is the wired-and of the
syncGlobalOut signals from aU the processors so that global synchronization is not achieved
until aU processors issue a global synchronization instruction. Similarly, the condition for
local synchronization of some patterns is not met if the corresponding bits of the sync bus
are low. More detaUed discussion of the synchronization logic wiU be covered in Section 5.1.

A message or packet travels from one processing unit to another on the switchable
bus. Each message can be separated into three portions: controls, address and data. The
partition is done in such a way that MAC handles the controls and address wlule SAC
takes care of the data. The encoding of the switchable bus, bus[26-0], is given in Table B.2.
Bits 23 to 26 constitute the control section of the message. The validN bit tells whether
a vaUd message is on the switchable bus. Messages with the validN disabled wiU simply
be ignored. The circular enable bit enables circular bypass operation. The rwN indicates
whether a read operation (rwN=0) or write operation (rwN=l) is to be performed at the
destination processing unit. The broadcast operation is enabled by setting the be high.

Bits 0 to 22 specify the location from or to which the data are to be read or
written. Bits 17 to 22 contain the pid ofthe destination processor. Bits 15 and 16 (bsel[l-0]
together with the state of an internal register caUed the swapState determine which bank
of the DPRAM the access is to be made according to the foUowing rule:

bsel=00: Bank 0 is selected.

bsel=01: Bank 1 is selected.

bsel=10: Bank ( swapState xor 0 ) is selected.

bsel=ll: Bank ( swapState xor 1 ) is selected.

Bits 0 to 14 specify the byte location(s) to be accessed.

Test Interface

Test Interface consists of signals used in operating the boundary scan circuits on
the chip. The scan mode is enabled by puUing scanEnN low. Scanln and scanOut are the
input and output data ofthe scan chain respectively. Mck and sck are the two-phase non-
overlapping clocks for the scan latches. The Idpad signal enables the latching ofall signals
at the pads into the corresponding scan latches. In scan mode, inputs to MAC is decoupled
from the bonding pads and is driven from an auxUiary latch associated with each pad. Data
in the scan chain are loaded into these latches when Idin is asserted. More information on
boundary scan wiU be provided in Chapter 8.3.
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Bit# Name Function

26 validN Valid Enable Low

25 cirBypassEnN Circular Bypass Enable Low
24 rwN Read/Write Enable
23 be Broadcast Enable

22 pid[5] Processor ID bit 5

21 pid[4] Processor ID bit 4

20 pid[3] Processor ID bit 3

19 pid[2] Processor ID bit 2

18 pid[l] Processor ID bit 1

17 pid[0] Processor ID bit 0

16 bsel[l] Bank Select bit 1

15 bsel[0] Bank Select bit 0

14 addr[10] Address bit 10

13 addr[9] Address bit 9

12 addr[8] Address bit 8

11 addr[7] Address bit 7

10 addr[6] Address bit 6

9 addr[5] Address bit 5

8 addr[4] Address bit 4

7 addr[3] Address bit 3

6 addr[2] Address bit 2

5 addrfl] Address bit 1

4 addr[0] Address bit 0

3 msN[3] Byte Select bit 3
2 msN[2] Byte Select bit 2
1 msN[l] Byte Select bit 1
0 msN[0] Byte Select bit 0

Table B.2: Bit Encoding of the Switchable Bus in MAC.
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Clocking

Signals in this section are used to generate the four-phase non-overlapping clocks
for MAC. Their roles wiU be presented in more details in Section 7.1. RefClkis the 40MHz
system reference clock. Pump is the analog output of the charge pump and vcoln is the
analog input to the on-chip voltage controUedosciUator. The rising edge of the global gsync
signal is used to ensure the clock generators on different access controUers are in phase.
TestN is an input which is normally pulled high by a weak internal puU-up. When low,
the tck[4-l] bus become inputs and external test clocks can be suppUed to generate aU the
clock signals needed on chip in case the digital phase-locked loop is not functioning. When
high, the tck[4-l] bus become outputs and aredriven by the internal clocks. This alloweasy
observation of the internal clock signals.
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SAC Pinout Descriptions

The Master Access ControUer Chip has 208 pins, 50 of which are for power and
ground pins. The remaining pins can be divided into 6 groups:

• System Interface

• Slave Interface

• MAC Interface

• Network Interface

• Test Interface

• Clocking

Table C.l gives a summary of the pinouts of SAC divided according to their
functionaUties.

System Interface includes signals needed for interfacing the SAC with DSP32C.
MwnP enables the latching of the processor data bus (dataP[31-0]) into a holding register,
the contents of which wiU be written into the master FIFO when MAC asserts the masterjo
signal. The mgnP enables the tristate drivers of dataP during a processor read operation.
ResetN is the system reset signal. The Slave Interface consists of dataD[31-0], the data bus
to the slave-port of the DPRAM. The bus contains data to be written to or read from the
DPRAM. MAC Interface contains signals generated by MAC to control the operations in
SAC. The functions of each control signals have been explained in Appendix B. The two
buses, dataR[31-0] and dataL[31-0] in the Network Interface form the configurable bus for
data. The Test Interface signals and Clocking signals are exactly the same as in the MAC.
Detailed descriptions of the signals can be found again in Appendix B.
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APPENDIX C. SAC PINOUT DESCRIPTIONS

Signal Group Input Output Bidirectional

System Interface mwnP, mgnP,
reset

dataP[31-0]

Slave Interface dataD[31-0]
MAC Interface switchStatejc4,

masterWr.v,
byPassEn_c3,
rdReady.c3,
masterGrantjc3,
bypassGrant_c3,
wrVaU<Lc3,
rdVaUd_c3

Network Interface dataL[31-0],
dataR[31-0]

Test Interface scanEnN, scanln
mck, sck, ldin, ldpad

scanOut

Clocking refClk, vcoln,
gsync, testN

pump tck[4-l]

Table C.l: SAC Signals divided into Groups.
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Appendix D

Circuit Diagrams of Pads
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APPENDIX D. CIRCUIT DIAGRAMS OF PADS 93
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Figure D.l: Input Pad.
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Figure D.2: Non-inverted Output Pad.
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Figure D.3: Inverted Output Pad.
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Figure D.4: Bidirection 10 Pad.
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