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Chapter 1

Introduction

The complexity and size ofintegrated circuit designs has increased dramatically in

recent years. Accordingly, there is a need for design automation tools that can handle ever

larger and more complex routing problems. The problems of interest have evolved from

simple channels to switchboxes to general areas. Currently, there is great interest in solving

general area routing problems because of the rising popularity of new design methodologies

and the emergence ofnew manufacturing technologies. For example, theSea-of-Gates design
style with many layers of high-quality interconnect requires over-the-cell routing to achieve

high circuit densities. The structure of such routing problems on the channelless gate

array is clearly in the domain of general area routers. Similarly, the next generation PC

board technology using silicon-on-silicon modules will also require a general area router.

Because these complex routing problems are amanifestation of an overall increase in design

complexity, routers must not only handle these general area problems but also interactwith

other design tools in a more sophisticated manner. In particular, the feedback between

routing programs and placement programs must become more explicit and any approach

developed for general area problems must take this interaction into consideration.

In this report, hierarchical decomposition is examined as a way to attack the

general area routing problem. This divide-and-conquer method is a useful technique for

managing complexity and in recent years has been applied to various routing problems.

In particular, there are examples of this concept in channel routers [BP82, BP83a, HM85,

HM89], switchbox routers [BP83b], and global routers [MS84, LTW86, MS86, Lau87]. This
work describes a set of experiments that outlines the extension of these applications to
general area routing problems.
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Figure 1.1: Historical progression of routing problems

This work originated as part of a large sea-of-gates project, called Mariner [Lay88,

Chr89]. The ultimate goal of the Mariner project is to combine placement and routing in a

common, hierarchical data structure. In this way, local modifications to both placement and

routing (e.g. rip-up-and-re-route and rip-up-and-re-place) can be performed concurrently
and iteratively.

Since the project began, the utility of the router and its hierarchical paradigm for

other problems, such as the silicon-on-silicon packaging problem [HCBA82], has become

clear. Future work with the router will also be directed to this problem.

1.1 Problem Definition

The routing problem is to find a feasible connection of all the pins of each net in

the routing region such that some cost function is minimized. For more general routing

problems (Figure 1.1(b) and (c) above), netlength, number of vias, and critical signal delay
are typical examples of desired cost function components.

Routing problems may be made harder by changing various constraints. Exam

ples of these constraints include the specification of the routing region, the permissible pin

positions, the number of routing layers, and the priority of a given net. Figure 1.1 shows a

historical progression of routing problems with respect to the complexity of the routing re

gion boundary. The pins to be connected in a given net are indicated with the same number.

The complexity of each of these cases may also be affected by allowing routing obstacles,



by changing the number of available routing layers, by allowing pins within the interior of
the routing region, by removing routing-grid restrictions in the problem specifications, etc.

Figure 1.1(a) shows a classic channel routing problem. It was one of the earliest

and simplest instances ofthe routing problem to be investigated extensively [HS71, Deu76,
RF82, YK82, RSVS85]. In this case, the routing region boundary is defined bytwo parallel
line segments and pins are specified at positions along these segments. Nets may be assigned
to enterorexit from the open sides of the channel, but neither the position nor the relative

order ofthese net crossings are specified. The distance between the segments may be varied
as necessary to accommodate the routing, but the objective is to minimize this distance

and thus minimize the area of the channel.

Figure 1.1(b) shows a classic switchbox routing problem [H084, MS85, Luk85,
Joo85, SSV87]. In this case, the routing region is specified by arectangle. It can be thought
of as a channel routing problem where the distance between the sides of the channel is fixed

and where the pins are specified at fixed positions along the open sides of the channel.
This is a much harder problem than the channel routing problem because the router is not

allowed to increase the amount ofavailable routing area and because the pins are specified
on all four sides of the region. Thus, the primary goal is to find a feasible solution within
the specified area.

Both thechannel routing problem and the switchbox routing problem may bemade
harder by allowing the routing region to take on more irregular shapes. For example, an
irregular channel routing problem could be created bydefining arouting region with roughly
parallel rectilinear path segments [DAK85]. This problem instance would be classified

somewhere inbetween the classic channel routing problem and the classic switchbox problem
with respect to routing region boundary complexity. If a similar change is applied to the
switchbox problem of Figure 1.1(b), then a routing region results that is specified by a
rectilinear polygon as shown in Figure 1.1(c). This leads to the general area problem
[DAK85, SSV87].

The general area routing problem is defined as an instance ofthe routing problem
with the following constraints on feasible solutions. Each available routing location may be
occupied by exactly one net and these legal routing areas are constrained as follows.

• The routing region is represented by different, arbitrary, rectilinear polygons on each
of its multiple routing layers.



• The region may have any number of routing obstacles which are also defined by

arbitrary, rectilinear polygons on a per layer basis.

• All connection paths specified on a particular layer must be contained within that

layer's corresponding boundary polygon and must not intersect that layer's corre

sponding obstacle polygons.

• The definitions of occupy, contain and intersect are specified so as to satisfy design
rule constraints.

• Pins may be positioned anywhere within the region or on its borders.

• The layers of the geometry representing the implementation of each pin specify the

legal routing layers for that pin.

An example of a three-layer general area problem is shown in Figure 1.2. In this figure,

the boundary polygon and the obstacle polygons for each layer have been combined into a

single polygon with holes. The holes in each polygon define the routing obstacles on the

corresponding layer. Also, though the pins are shown as solid abstractions, they actually

have size and associated layers.

1.2 Applications and Motivation

1.2.1 Sea-of-Gates Design Style

The Sea-of-Gates design style [HWD+85, HPE+86, CYK+87, BM87] is an excellent

example of the need for general area routers. In this methodology, the routing mustconnect

cell metalization templates that have been placed on a channeUess gate array. Since a

primary goal of the design style is high transistor utilization, the cell templates are placed

quitedensely andthe usual channel orswitchbox routing areas donot exist. Thus, the router

must make use of all available routing area, including regions that run over or through the

cells. This presents the router with a problem containing an enormous number of arbitrary

blockages and pins that are only specified at positions within the routing region. Also, the

trendin recent systems is towards using technologies with three ormore metallayers and the

router must effectively handle this increase in the number of routing layers. This complex

topology is a general area problem and its efficient solution is critical to the effectiveness of

the design style.



Layer 1 Layer 2 « Layer 3 pin

Figure 1.2: Example of a general area routing problem



1.2.2 Silicon-on-Silicon Modules in PC Boards

The use of silicon chips embedded on silicon substrates which are in turn mounted

onprinted circuit boards is predicted for thenext generation ofboard integration technology.

Wiring between chips on the same chip-carrier substrate will be implemented using the

same style ofmetallization processes as used on the individual chips (though the metal and

insulator will be thicker to maintain good transmission line properties). The individual
chips define arbitrary routing obstacles (on one or more layers, depending on details ofthe
particular implementation strategy) and internal pin locations, resulting in a area routing

problem with characteristics similar to the Sea-of-Gates situation. Thus, the problem of
determining the routing for the interchip connections in silicon-on-silicon modules is also a

general area routing problem.

1.2.3 Routing Unification and Routing Feedback to Placement

Current layout systems break down the layout problem into a series of sequential

phases as shown in Figure 1.3. Each phase addresses a more detailed view of the problem
based on the global decisions of the previous phase. Unfortunately, layout problems are
global optimization problems and in an ideal system, information discovered in the more

detailed phases should be fed back to the more global phases. While this may be simulated

by performing manual iterations of the phases, further advances in the quality of layout

solutions will require more automatic interaction and feedback between the different phases

or equivalently, the different design tools. One goal of the Mariner project is to experiment

with integrated representation and operation ofall ofthe phases oflayout marked in Figure

1.31. In the context of routing, this means that a unified approach to both global and detail
routing should be taken and that the routing process must interact with the placement

process. The hierarchical decomposition approach to routing provides a way to integrate

both global and detail routing. Each succeeding level of the decomposition hierarchy rep

resents routing that is less global and more detailed in nature. Also, the hierarchy provides

a powerful structure in which to pass information between the different levels of routing.

Furthermore, the decomposition approach also provides useful information for router and

placer communication. As described later in this report, the geometric decomposition based

on topological and density metrics rapidly identifies congested or critical areas that need

Channel definition becomes routing area specification in the general problem
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adjustment by the placer. Also, by controlling the extent of the hierarchical decomposi
tion, i.e., limiting the depth ofthe hierarchy, information can be provided to the placement
program at an appropriate level of abstraction with a the minimal amount of effort. In the

model proposed for the Mariner project, theplacer will execute the router as a subprogram
on specific regions of the chip (defined by the hierarchical decomposition) and thus will
be able to specify a decomposition limit commensurate with the current granularity ofthe
placement.

1.2.4 Future Methodologies

The development ofnew design methodologies and new design tools is driven by
the need to handle larger and more complex designs. To squeeze more functionality onto a
chip, less area must be dedicated to routing in the form of channels and switchboxes and

more area must be reclaimed from the unused areas in, around, and over the functional

blocks or transistors. A general area router will be needed to achieve this goal and a
hierarchical approach to the problem will be required to deal with the size complexity of
the next generations ofdesigns. Thus, an understanding ofhierarchical routing ofgeneral
areas will be valuable in adapting to future design methods and problems. In addition,

a hierarchical approach of the form described here should lend itself naturally to a multi
computer implementation for problems of high complexity.

1.3 Previous Work

The work in formally applying hierarchical decomposition to routing was published
by Burstein and Pelavin [BP82, BP83a, BP83b]. Their basic approach reduces the routing
problem to the problem ofrouting on a 2 x n grid [BP82, BP83a] or a 2 x 2 grid [BP83b]
and then consistently applies a divide-and-conquer strategy. The 2xn approach is targeted
for channel routing problems. Since little isgained from dividing a channel into two parallel
subchannels ofthe same height, this is the most natural formulation of the problem. In this

method, nets are routed one at a time on the 2 x n grid, using a dynamic programming
algorithm to find a minimal cost Steiner tree for each net. In the 2 x 2 approach, nets
are classified by the number ofgrid cells which contain pins of the net. Since a 2 X2 grid
has four grid cells, the number ofmajor net classifications is three, corresponding to nets
with 2, 3,or 4 pins in different grid cells. The possible routes that these types ofnets may



take on a2 x 2 grid are enumerated and at each stage in the divide-and-conquer process,
nets are assigned to specific patterns. Finding the number of nets that follow particular

pattern on the 2 x 2 grid is formulated as an integer programming problem. A standard
linear programming solution is invoked, the results are rounded, and then the assignment
of a specific net of a given type to a particular pattern is completed heuristically. When
the 2 x 2 grid abstraction becomes equal to the actual routing grid, the solution to the
current subproblem represents the corresponding portion of the final, total solution. An

advantage of this method is that the size of the integer programming problem is fixed and
is independent of the number of nets. The dynamic programming method may be used
instead ofthe linear programming method or it may be used in conjunction with the linear

programming method to resolve overflows. Both the integer programming formulation and

the dynamic programming method depend on the assumption of the standard two-layer
wiring model. The standard two-layer wiring model requires that horizontal and vertical

wire segments be assigned to different routing layers.

Marek-Sadowska [MS84] described a global router that uses a bottom-up hierar
chical approach rather than a top-down approach to avoid the problems of passing bad
decisions down the hierarchy. A re-router is applied as a second phase after the bottom-up
hierarchical router to resolve overflows.

Hachtel and Morrison [HM85, HM89] provided an extension to Ixmxn grid graphs
where I is the number of layers, m is the number of rows, and n is the number of columns.

They use aIx2xndecomposition and acombination ofconstructive placement and dynamic
programming to perform the routing. First, a fast initial constructive placement of nets is

performed on the / x 2 x n abstraction. Any remaining unrouted nets are processed one
net at a time using a dynamic programming algorithm to solve the Steiner Problem on the

/ x 2x ngrid. Their dynamic programming formulation allows any specifiable set ofwiring
rules and thus removes the necessity for assuming the standard wiring model.

Luk, Tang, and Wong [LTW86] presented a global router for macro-cell layout
that extends the 2 x 2 grid integer programming problem of [BP83b] to a generalized four-
partition. The difference between the two partition models is shown in Figure 1.4. The 2x2
grid of Figure 1.4(a) corresponds to performing a quadrisection while the decompositions
shown in Figure 1.4(b) are examples of possible four-partitions. That is, the four-partition
divides a region into four portions without specifying any relationship between the sizes of
each ofthe portions. Their router requires that the floorplan be a slicing structure [Ott82],
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(a)quadrisection (2x2 grid) (b) four-partitions

Figure 1.4: Quadrisection versus four-partition

since the decomposition hierarchy corresponds directly to a balanced slicing tree of the
design.

More recent global routing variations by Lauther [Lau87] and Marek-Sadowska

[MS86] use atwo-partition model rather than afour-partition model. In these methods, the
routing at higher levels in the hierarchy is performed by assigning pseudo-pins to the parti

tion boundary. Typically, this assignment problem is solved as a classical linear assignment
problem.

In all of the above work, the routing region is decomposed first. This region
decomposition then either explicitly or implicitly causes a decomposition of the nets into

subnets corresponding to the newly created subregions. In some other variations, [PSK85]
and [WM86], only the nets are decomposed hierarchically.

1.4 Current Research

In this work, the application of hierarchical decomposition concepts to general
routing areas is investigated. In particular, an attempt is made to preserve and improve

the top-down flow of information represented by the gradual refinement of the problem
abstractions. Hierarchical decomposition involves partitioning the original problem into
subproblems and then solving each of the subproblems in an optimal order. The goal then
is to determine how best to partition the general area routing problem into subproblems

and how to solve the resultant subproblems. The hierarchical decomposition process results
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in a tree of subproblems or a routing hierarchy. A rip-up and re-route method must be
supported that works at any level within this routing hierarchy since it is unlikely that any
constructive approach will be 100% successful all the time.

The optimal physical partitioning of routing regions is the primary thrust of the
work described in this report. The concept ofan "intelligent" cut path that partitions the
routing region into subproblems which are optimal with respect to reducing problem com
plexity and increasing the ease of routing in subsequent steps is investigated. This differs
from most of the previous work in that an arbitrary rectilinear path is used to divide a
region instead of a straight line and in that "intelligent" topology-based cut path selection
heuristics are used instead of simple bisection- orquadrisection-oriented selection heuristics.

To round out these experiments on partitioning general area routing problems, the subse
quent net partitioning and pin assignment phases are also examined, though additional
work remains in these areas.

In the previous work, hierarchical decomposition was used for either global routing
or detailed routing, but not both at the same time. Here, adivide-and-conquer strategy is
applied that implements global routing, detail routing, and the various levels of refinements

in between the two in a coherent manner. Now, each new (lower) level in the hierarchy
consists of subproblem abstractions that are less like global routing problems and more like

detailed routing problems until, at the leaf nodes ofthe hierarchy, the routing problem be
comes adetailed routing problem. Integrating both global routing and detail routing within
the partitioning process also closely couples the method ofrouting the final subproblems to
the decomposition. In this approach, the partitioning is continued until the subproblems
may be trivially routed by case analysis or by a straight-forward maze routing step.

Also, a rip-up and re-route technique is investigated that may be applied to a
hierarchy ofrouting subproblems, both at the detailed, leaf partitions as well as at higher,
less-precise levels of the hierarchy. That is, the rip-up and re-route strategy uses the hier
archy in a bottom-up fashion.



Chapter 2

Hierarchical Decomposition

Hierarchical decomposition is a recursive divide-and-conquer method [AHU74].

Divide-and-conquer techniques split the original problem into smaller subproblems, solve

the subproblems, and then recombine the partial solutions to form the solution to the

original problem. In hierarchical decomposition, the problem is divided into subproblems

that have the same form as the initial problem. Now, the subproblems are solved by

recursively dividing each of the subproblems using the same process that was used for the

original problem. The recursion is continued until some stopping criteria is met, and then

the final subproblems axe solved and recombined to form the solution to the desired problem.

To apply hierarchical decomposition to general area routing it is necessary to decide how to

partition the initial problem into subproblems, when to stop partitioning, and howto route

the final subproblems, taking into account any interactions among them (i.e., boundary
conditions.)

2.1 Dividing

In general, partitioning a routing problem into subproblems requires partitioning

both the routing region and the nets of the problem. The routing region is partitioned by

splitting the original region intosubregions. Partitioning the nets involves splitting each net

into sets of subnets such that each set is associated withone of the subregions. This requires

determining if a particular net crosses a given subregion boundary and if it does, how many

times it crosses and where it crosses. Thus, the formulation of a subproblem requires the

specification of a corresponding region and set of nets just as in the specification of the

12
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original problem. The concern here is to determine an optimal method for performing this
decomposition in order to find a feasible solution to the original problem in a reasonable
amount of time.

The goal of the partitioning process is to produce feasible subproblems that have

complexity less than or equal to the original problem, since if the method is to be effective,

the time required to partition a problem completely, to solve all its subproblems, and

to recombine all the partial solutions must be less than the time required to solve the

original problem and the collection of partial solutions must provide results that are equal

in quality to a direct solution of the original problem. The definition of routing complexity

in this situation involves both size and topology, and the method selected to perform the
partitioning should account for both aspects.

The size complexity of a routing problem can be measured in many different ways.

Size could refer to the area of the routing region, the number of edges in the geometry

representing the routing region, the number of blockages, the number of nets, the number

of pins, etc. Since part of the decomposition requires splitting up a routing region into

subregions, it seems that reducing the size complexity of the problem as measured by its

area is desirable. Thus,a partitioning method that divides the routing region intosubregions

of equal areas would be optimal in the sense that it decreases the area complexity of the

original problem at a maximum rate and minimizes the height of the tree of hierarchical

subproblems. Unfortunately, creating subproblems based on subregions of equal area does

not necessarily lead to the simplest subproblems. In fact, problems that cover larger areas

are not necessarily more complex than problems that cover smaller areas. Consider a

portion of a routing problem that may be solved by connecting two pins with a single,

straight metal line that spans the length of the chip. In this situation, the corresponding

subproblem should be isolated as soon as possible and solved by specifying a single piece of

metal instead of dicing it up and solving many smaller subproblems. An example of this is

shown in Figure 2.1. Here, a particular net is routed by by a single straight path. In Figure

2.1(a), the region is decomposed so that the net may be routed in a single subproblem. In

Figure 2.1(b), the region is decomposed so that the net is routed in several subproblems.

The solutions to each of the subproblems are little, straight pieces of metal that must be

recombined into one single path. When possible, the more efficient decomposition of Figure

2.1(a) should be used. Clearly, area complexity isonly one factor that affects the complexity

of the routing problem. Other kinds of size metrics such as number of nets and number of
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(a) isolated net (b) partitioned net

decomposition lines

net

Figure 2.1: Isolating a simple subproblem
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obstacles also need to be considered.

The complexity ofarouting problem also depends on its topology. Here, topology
means the location (in all three dimensions) ofthe pins, the blockages, and the boundaries.
Clearly, different topologies will admit adifferent number of feasible solutions. Assuming
that having more possible solutions is less complex, different topologies have different com
plexities. Unfortunately, it is impossible to rank these different complexities exactly with
out actually solving the problems and finding all the possible solutions. Thus, heuristics

mustbe used to determine the relative complexity of different problems and these heuristics
should consider both size and topological characteristics.

In order to determine how to simplify the routing complexity of the subproblems,
the complexity characteristics of the original problem need to be considered. All non-trivial

routing problems have at least one critical area where the number of permutations of routes

that will result in a feasible solution for the whole problem is very small relative to other

areas. If the net connections through these areas are not specified properly, then there is
little hope of producing a complete routing of the entire problem.

Two views are proposed on how to handle these difficult regions in routing prob
lems. One method is to choose a partition of the routing region that cuts through these
critical areas on the basis that solving thehard sections first results in subproblems that are

easier. The "solution" is provided by the pin assignment algorithm which determines the

location ofroutes through these areas byassigning pseudo-pins to positions along the parti
tion boundary1. Since the areas along this critical partition represent the most constrained

portions of the routing problem, the resulting subproblems are less constrained and a pin

assignment that satisfies the constraints on nets crossing this critical cut path is anecessary

condition for the existence of feasible solutions to each of the subproblems. Moreover, since

the hard parts of the original routing problem have been "solved", the subproblems should
be easier to solve.

The opposing view is that a partition should be chosen that cuts through the

non-critical areas of the routing region on the basis that such partitions minimally disturb

the resulting subproblems. Each subproblem is no harder than the original problem with
respect to critical areas. On the other hand, if a partition is made through a critical area

lThis process is also hierarchical. The assignment at higher levels is to segments ofthe cut, rather than
to specific locations. As the partitioning proceeds, the assignment becomes increasingly specific, until a fixed
location is assigned.
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and a poor solution is obtained from the pin assignment, then it will be hard to find a

feasible solution for each of the subproblems. Since the critical areas have a small number

of solutions that result in feasible solutions for the entire problem, it is very likely that a

solution obtained for a critical cut path will be poor with respect to the original problem.

This view assumes that critical areas are easier to solve in smaller problems. The argument

for this assumption is that the smaller problems will have relatively smaller solution spaces

in which to search for the solutions to these critical areas. Both approaches are investigated
in this work.

In most of the previous work, straight lines were used to partition the routing

region. These lines were either derived from some arbitrary routing grid [BP83b, MS84,
HM85, Lau87] or based on the slicing structure of the floorplan [LTW86]. Often, the
locations of the cut lines were chosen to bisect or quadrisect the region. Marek-Sadowska
[MS86] uses tile planes to represent the routing region and allows cut lines that "zig-zag".
Lauther [Lau87] reports that using a density- and capacity-based cut-line selection heuristic

produces better results than choosing bisecting cut-lines. He defines the criticality ofa cut
line as D- C where D is the density of the cut and is equal to the number of nets that must

cross the cut and C is the total capacity of the cut. This definition of criticality corresponds
to the philosophy ofcutting through themost critical areas ofthe routing region. The trend
towards more intelligent partitioning is continued in this work. Chapter 3 describes two

methods ofgenerating rectilinear cut paths. The first uses a graph theoretic algorithm and
the second uses a scan-line-based technique. The chapter also contains a comparison of
several different cut path selection heuristics.

To better understand the significance of rectilinear cut paths and "intelligent"
selection heuristics, consider the situation of two offset blockages. This is shown in Figure
2.2. If cut paths are restricted to straight line segments and the canonical bisection heuristic

is applied, then line segment ~BE will be chosen. If some capacity heuristics are also applied,
then either segment AD or CF will be chosen. Unfortunately, these cut lines do not

accurately capture the capacity of the partition that they represent. There exists a bottle

neck between the two obstacles that is not represented by either cut line. This area is the

circled region in the figure. It will be very hard if not impossible to connect pins assigned
to the segments GD, WE, ~BI> or C7 because of the close proximity ofone of the obstacles.
Actually, a rectilinear cut path as shown in Figure 2.3 is desired. The rectilinear cut path
is a much closer representation of the actual partition capacity and captures the topology
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Figure 2.2: Possible straight cut paths near two blockages

111111

Figure 2.3: A possible rectilinear cut path
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of the routing region more accurately.

Since a general area problem allows the specification of the routing boundary and

obstacles to differ on each layer, the topology of each layer may be different. Accordingly,

there may exist a different optimal cut path with respect to each layer. In some sense, one

may consider partitioning each layer with its respective optimal cut path as the best way

to partition the whole region, since each layer is optimallypartitioned. Unfortunately, this

does not guarantee simpler subproblems. On each layer, both the routing region and the

routing blockages are arbitrary rectilinear polygons. Partitioning this geometry with an

arbitrary rectilinear cut path results in an unpredictable number ofsubregions. Performing

this partitioning on each individual layer may result in arbitrarily different subregions on

each layer for which there is no combination of subregions that form a useful subproblem.

Consider the pathological two-layer example shown in Figure 2.4(a). The cutpaths selected
for the individual layers are approximately orthogonal to each other. Partitioning each
layer separately and attempting to recombine the subregions of the different layers into

subproblems results in the subproblems shown in Figure 2.4(b). There aretwo possible ways

of recombining the subregions into subproblems. It is ambiguous as to which combination

to choose and in either case the subproblems are more irregular and more complex than

the original problem. Even if this may be construed to be the optimal partitioning of the
whole problem, it is not clear how to exploit it. In this work, cut paths are selected with

respect to the topology of all the layers and the same cut path is used to partition all the

layers of a particular problem. Applying this approach to the example might result in the
subproblems shown in Figure 2.4(c).

Once the region is partitioned, the nets must be partitioned and pseudo-pins must
be assigned to subregion boundaries. Methods for determining these net crossings include
linear programming [BP83b, LTW86], dynamic programming [BP83b, HM85], and linear
assignment [MS86, Lau87]. Note that the linear programming and dynamic programming
methods only provide the mapping from net type (e.g. 2-, 3-, or 4-terminal) to net route
configuration (e.g. straight segment, L-shaped, or U-shaped). Heuristics are still needed to
assign a particular net of a given type to a particular pattern and to specify the relative

order and actual positions ofthe nets oneach boundary. The linear assignment method has

been used in routers that perform a two-partitioning of the routing region. Experiments
based on a two-partition decomposition model and comparisons oflinear assignment cost
functions are described in Chapter 4.
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(a) two layer problem and the cut paths found for each layer

l J

(b) two possible ways of forming subproblems given the per layer cut paths in (a)

p i

LbJ3 a

(c) subproblems formed using the same cut path for all layers

Figure 2.4: Partitioning per layer versus partitioning all layers
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Another issue that arises in performing net partitioning is the number of times

that a net is allowed or directed to cross a boundary. In [BP83b], a restriction is preferred

that disallows net route configurations that cross a particular boundary multiple times

because the higher levels of the hierarchy are routed under the assumption that this would

not subsequently occur. In routers using two-partitioning, no such assumption is made and

improvements have been reported when multiple crossings are selectively allowed. Lauther

[Lau87] uses the crossing edges ofthe minimum spanning tree and Marek-Sadowska [MS86]
uses a pin clustering methodto determine the number ofnet crossings of agiven net. Results

for a minimum spanning tree method are given in Chapter 4.

2.2 Conquering

At some point the subdivision of the problem must stop and the solution of the

subproblems must begin. The decision on when to stop partitioning is intimately related

to the method that will be used to solve the subproblems.

In divide-and-conquer methods, it is often the case that the solutions to the sub-

problems are trivialand readily fall out of the partitioning process. This is the case for the

hierarchical routers that use grid graphs. At the final level of the hierarchy, the grid graphs
correspond to the actual routing grid and the solutions at this level are the solutions to the

final subproblems. For detail routers, the routing grid represents the actual path positions.

However, by definition and regardless of the use of grid graphs, hierarchical global routers

stop at a higher level of abstraction than actual path positions. The particular level of

abstraction may correspond to a channel assignment or arouting based on a gate-array cell
grid. A detail router must then be used to complete the routing of the design.

Subproblem independence is another issue related to finding all the partial solu

tions. If the positions of the pseudo-pins on the partition boundaries are fixed and their

layer assignments are determined then all the subproblems are independent. This is a nice

property because it makes the solution of the whole problem independent of the order in

which the final subproblems are solved. However, in this work, the pseudo-pins are allowed

to float along their assigned partition boundaries and the assignment of specific layers to

each of the pseudo-pins is delayed until the end. This is consistent with the concept of

gradually refining the routing solution. Allowing these extra degrees of freedom makes all

the subproblems dependent on their neighbors and an optimal ordering of the subproblems
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must be determined. Experiments on finding a optimal routing region order are presented
in Chapter 5.

In this work, hierarchical decomposition is used as away combine both global and
detail routing. For this method to be the most effective, the sum of the time required to
completely partition asubproblem, solve the final subproblems, and recombine the partial
solutions must be less than the time required to solve the original subproblem directly. In
addition to comparing solution time, the issue of passing bad global decisions down the
subproblem hierarchy must also be considered. If the final subproblems are too small,
the detrimental influence of the previous bad decisions can not be avoided and a feasible

solution will not be found. On the other hand, if the final subproblems are made larger,
then bad decisions may only make them harder to solve instead ofmaking them impossible
to solve and a feasible solution will still exist. In other words, there exists some point of
diminishing returns at which further partitioning is disadvantageous. Experiments using
both a pattern router and a maze router to route the final subproblems are described in

Chapter 5. The pattern router corresponds to complete partitioning as in [BP83b] and the
maze router corresponds to partial partitioning.

2.3 Summary

Hierarchical decomposition can be viewed as a means of gradually refining the
routing solution from a rough approximation to an exact solution. In this sense, each level

of the hierarchy can be seen as a point on a continuum between global and detail routing.
This is seen more clearly if the assignment of pseudo-pins to partitions is interpreted as
effecting a global route. Assigning a pseudo-pin to either a specific position or a range of
positions on a partition provides ameans of transmitting global information and constraints

to the subproblems. The assignment represents a narrowing of the search space of feasible
routing solutions and thus represents a global routing of the nets.

In the following chapters, experiments on the different aspects of hierarchical de

composition axe discussed in more detail.



Chapter 3

Region Decomposition

The first step in dividinga routing problem into subproblems is to divide the rout

ing region into subregions. This requires choosing a line or path along which to partition
theoriginal routing region. Historically, cut lines have been chosen as straight lines thatap

proximately bisect the region. These experiments continue the trend towards more complex

cut path selection heuristics. Two major methods of selecting cut paths have been tried.

The first is based on capturing the topology of the routing region in an acyclic directed

graph and the second is a scan-line-based technique. Within each method, experiments

have been performed with a variety of cost functions. For simplicity, a single cut path is
selected for each subproblem and a two-partitioning of the region is performed. However,

these selection methods can be easily extended to perform a more general four-partition.
In fact, the two-partition can be thought ofas a step in producing a four-partition and thus
the results on cut path selection heuristics should also hold for a four-partition paradigm.

3.1 Graphs

The goal of choosing "intelligent" cut paths is to choose those paths that will par
tition arouting problem into subproblems that are less complex than theoriginal. Thus, the

selection method must be capable ofrepresenting and analyzing the topology of the routing
region. Furthermore, the chosen partition must accurately reflect the routing capacity of
the common subregion boundary that it represents so that it can supply the subsequent
net decomposition with accurate information. The first method investigated captures the
topology ofthe routing region in aconstraint graph. That is, an acyclic directed graph that

22
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represents the routing region is generated such that the edges of the graph correspond to
edges of the routing region, edges of the routing obstacles, and potential bottlenecks in the

region. The constraints of the routing problem are transformed into edge weights and then
the problem offinding acut path is formulated as ashortest path problem. The relationship
between the graph and the routing region is described in more detail below.

The real work in generating the graph representation of a routing region is deter
mining the graph edges that will represent the routing bottlenecks. Generating the other
edges is relatively easy since the edges of the graph, corresponding to edges of the routing
region and edges of the routing obstacles, map one-to-one with segments or subsegments
of the corresponding input geometry. To get the bottleneck edges, rays are extended or

thogonally from vertices of the routing region and the routing blockages into the routing
region until they hit other blockages or boundaries. The resulting line segments become

bottleneck edges. Certain diagonal edges are also introduced, corresponding to bottlenecks

not represented by the other edges. The nodes of the graph correspond to intersections of

certain orthogonal segments. In particular, the intersections of routing region edges and

obstacle edges with other routing region edges, other obstacle edges, and bottleneck edges
transform to nodes in the graph, but intersections between bottleneck edges do not create
nodes. This representation is defined more formally in the following.

Consider the geometry representing the routing region. This geometry consists

of a minimal set of nonoverlapping Manhattan polygons on each layer. The routing area
corresponds to the presence of geometry and routing obstacles, along with the routing

boundaries, correspond to the absence of geometry or to holes in the geometry. Figure
3.1(a) shows an example one-layer routing region and Figure 3.1(b) shows an example two-
layer routing region. Let the coordinates of a point, P, be xp,yp.

P = (xp>yp)

Let Pf and Lf be respectively the set of vertices and the set of edges ofthe geometry on
routing layer i. The superscript Gdenotes that the points and edges come from the original
geometry.

pi = {(x>y) I(x,y) a vertex of the geometry on layer i}

Li = {AB | AB a line segment of the geometry on layer i}

To represent the bottlenecks between different blockages and between blockages and the
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boundary

(a) single layerroutingregion

(b) two-layerroutingregion

Layer 1 Layer 2

Figure 3.1: Example routing region geometry

blockages
represented
as holes
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routing region boundary, create line segments that span these areas and let the line segments
correspond to edges. The first set of such segments consists of horizontal and vertical

segments that span a section of the geometry between a vertex and another vertex or

between a vertex and an edge. The path of each segment can be thought of as starting
at either a boundary corner or obstacle corner and extending into the routing region until
hitting another blockage of the same layer or the border. Here the border is defined as

the bounding Manhattan polygon ofthe whole routing region. Let RG be the edges of the
border ofthe routing region and let Lf be the set ofline segments constructed byextending
rays from the vertices on layer i until they intersect an edge or vertex of the same layer or
of the routing region border. First define

Lf = {AB\A^P^,ABiLf,yA =yB,lim^Lf,RG,\AB\=mhn\xA-xB\}
and

LY = (^\AeP^iA^^Lf,xA =xB,MBNeLf,RG,\'M\=rTt\yA-yB\}

where Lf and V( are the segments constructed by extending aray horizontally or vertically,
respectively. Then,

Lf = L?ULY

where Lf is the set of constructed, orthogonal line segments. Figures 3.2 and 3.3 show
the sets Lf, LY, and Lf for i = 1,2 corresponding to the example of Figure 3.1(b). For
reference, Figures 3.2(a) and 3.3(a) show layers 1 and 2, respectively. Figures 3.2(b) and
3.3(b) show the constructed horizontal segments on the left and the constructed vertical

segments on the right. The constructed segments are shown as solid black lines. Finally,

Figures 3.2c and 3.3c show the union of the constructed horizontal and vertical segment
sets. In parts (b) and (c) ofFigures 3.2 and 3.3, outlines ofbothlayers are shown to indicate
the full extent of the routing region.

The nodes of the graph correspond to the vertices of the original geometry and to

the intersections of constructed segments with original geometry segments independent of
layer. First define the layer independent sets,

ic = Utf.



26

J--I-

i
J-..

T-l-f

izd

horizontal segment
from obstacle vertex
to Layer 1 edge

L

(a) Layer 1

t

H V
(b) L. and L.

(c) L.

ufi

(
vertical segment
from obstacle vertex
to Layer 1 edge

1..

muu

segments from
obstacle vertex

to routing region
boundary

Figure 3.2: Line segment construction for layer 1



i
J

I'T

r—t—
I.... I

horizontal segment
from obstacle vertex
to Layer 2 edge

J..

(a) Layer 2

/

vertical segment
from obstacle vertex
to Layer 2 edge

:..+

H V(b) L^ and L-

i i

IL
1

ILL
segments from
Layer 2 vertex
to routing region
boundary

..Jiitn...
(OL,

Figure 3.3: Line segment construction for layer 2

27



28

and

p° = [j if.
i

These sets are the set of all constructed segments, the set of all original geometry segments,

and the set of all original geometry vertices, respectively. The set of intersections between

constructed segments and original geometry segments is the set of points

Pc = {X\ 3AXB€ LG,3CXDeLc}.

Thus, the complete set of points, V, that corresponds to nodes in the graph is

V = PGUPC.

The set V for the example of Figure 3.1 is shown as solid black dots in Figure 3.4.

The edges of the graph correspond to subsegments of both the constructed and

original geometry segments whose- endpoints correspond to nodes in the graph. If the

universe of segments is denoted by

L = LG U Lc

then the set of segments corresponding to edges in the graph is

LE = (AB | A, B GV, MABN GL}.

Some of the bottlenecks in the routing region can not be represented by a Man

hattan line segment. To capture these features in the graph, certain edges are created

that correspond to line segments that are diagonal with respect to the original geometry.

The segments considered are the set of diagonal segments that span the geometry between

obstacles and between obstacles and the routing region boundary. These segments have

endpoints which are vertices of the original geometry and do not intersect any segments

of the original geometry except at their endpoints. In order to make the resulting graph

acyclic, only the subset of these segments that have positive slope are considered. This set

of candidate segments is given as

D = {AB\xA > xB,yA>yB, AB DLG = {A,B},AB n geometry = AB}.

These candidate segments can be found using a scan-line procedure that maintains a history

list of possible diagonal segment endpoints. The subset of D that will have corresponding
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edges in the final graph axe those segments that would create an edge for which a path

corresponding to Manhattan segments does not already exist. If a path corresponding to

Manhattan segmentsalready exists, then the corresponding diagonal edge is redundant and

unnecessary. Though these redundant edges do not make any difference to the shortest path

algorithm, diagonal edges must be treated specially by the graph building and maintenance

routines, and since the ability to ignore these redundant diagonal edges comes for free in the

graph buildingalgorithm, the redundant edges are not included in the graph representation.

Here, D has been defined as a superset for clarity and ease of specification. The chosen

subset of D can be described more accurately in terms of anintermediate graph construction

explained later. Figure 3.5 shows the subset of D that would be chosen for the two-layer

example. In this particular case, it is a single line segment near the middle of the routing
region.

Now, the graph representation of the routingregion may be formulated by defining

the mapping from points and line segments to nodes and directed edges. For the sets of

points and segments defined above, this mapping is one-to-one. The direction of edges is

chosen so that if the corresponding line segments are considered, vertical line segments are

directed down, horizontal line segments are directed left, and diagonal line segments are

directed down and left. This mapping may be defined as

P *-*• node p

if xA = xB and yB < yA

(a,b) or yA = yB and xB < xA

or xB < xA and yB < yA

(b,a) otherwise

An initial graph of edges corresponding to Manhattan edges only is G' = (N,A')
where

N = {p\3P£Vs.t.P>-+p}

A' = {(i, j) | 3AS 6 LEs.t. AB w (i, j)}

To this initial graph, edges, corresponding to diagonal segments, are added only if the

addition of the edges create new paths in the graph. This set of edges is

& = {(hj) | SAB e Ds.t.lB h-> (i, j), fl a directed path in G' from %to j}.

AB
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Layer 1 Layer2
<. 1

Figure 3.6: Graph corresponding to two-layer example

Now let

A = A' UD',

then the basic graph used to represent the topology of the routing region is

G = (N,A).

Figure 3.6 gives the graph corresponding to the example two-layer routing region.

The problem of finding a cut path for a routing region can be formulated as a

shortest path problem on the graph representing the routing region. Weights are assigned

to the edges of the graph depending on the length and capacity of their corresponding line
segments. Note that the capacity along the length of each segment is homogeneous. The
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shortest path with respect to these weights is found and transformed back to its corre

sponding line segments. These segments form the rectilinear path that is used to partition
the routing region. Since the path is required to be Manhattan, diagonal line segments are
arbitrarily converted into two Manhattan line segments such that the resulting corner is
concave up.

To solve the shortest path problem on this graph, thegraph first must be massaged
into a canonical form. The desired form is that of a polar acyclic digraph. Let a border
edge be defined as an edge of G that corresponds to a line segment that is coincident with

the routing region boundary and similarly, let a border node be defined as a node of G

that corresponds to a point that is coincident with the routing region boundary. Here, the
routing region boundary is defined by the bounding Manhattan polygon of all the input

geometry. Note that with respect to partitioning the routing region, a path, A, that contains

border edges isequivalent to the path, B, that results from removing all border edges from
path A. Thus, the border edges need not be considered when looking for the shortest path.
In the following, it is assumed that all border edges have been deleted from G and that

any nodes that have zero degree as a result of this operation are also deleted. To get the
graph into the desired form, dummy source and sink nodes are added and then connected

to selected border nodes. Border nodes withonly fan-out edges are connected to the source

node by edges directed from the source. Border nodes with only fan-in edges are connected

to the sink node by edges directed to the sink. Border nodes with both a fan-in and fan-

out edge are connected to either the source or the sink depending on the desired cut path
orientation. This orientation may be either horizontal or vertical and alternates at each

level of partitioning. Of the border nodes with both a fan-in edge and a fan-out edge, the
nodes with fan-in edges corresponding to segments with the same orientation as the desired

cut path orientation are attached to the sink by edges directed to the sink. The remaining
border nodes with both a fan-in edge and a fan-out edge are attached tothe source byedges
directed from the source. The canonical graph for the two-layer example is shown in Figure
3.7. The border nodes are connected to the source and sink so as to favor horizontal cut

paths. Nodes enclosed in a solid box are connected to the source by a directed edge from
the source and nodes enclosed by a dot-dash box are connected to the sink by a directed
edge to the sink.

After the above modifications, the shortest path in the graph can be found using
standard algorithms. If the nodes of the graph are sorted topological!^ the shortest path
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[•1 node connected to source >•{ node connected to sink

Figure 3.7: Graph for solving the shortest path problem
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may be found in 0(m) time where m equals the number of edges. The topological sort of
the graph also takes 0{m) time. Therefore, the shortest path and equivalently a cut path
can be found in 0(m) time. For a complete graph, m = n2 where n equals the number of

the nodes. Fortunately, the graph representation defined above is very sparse. Excluding
diagonal edges and edges connecting to the source and sink, the maximum number of fan-in

edges (or equivalently, fan-out edges) per node is two. So, in practice, m is very close to 2n
and the time complexity of this shortest path algorithm is close to 0(n).

Different variations of this graph were tried in attempts to reduce graph building

overhead at each level of the hierarchy and to improve the correspondence between the

shortest path and the desired cut path. Changes to the graphs include making the graph
planar so that the graph of a subproblem corresponds to a subgraph of the graph of the
original problem and removing nodes and/or edges to reduce both the size of the problem
and the number of possible "bad" paths that can be found.

As described above, the basic graph is not planar. This means that after parti

tioning, the graph ofa subregion may not correspond to any subgraph of the original graph

and a new graph must be constructed for each subproblem. Unfortunately, this duplicates

much of the previous computation, since a large percentage of the new graph will be the
same as a portion of the original graph. Differences will occur where an edge in the original

graph crossed the cut path. Having a planar graph representation wouldeliminatethis extra

work since the original graph could be partitioned along with the routing region to produce
the appropriate subgraphs for the subregions. This would also allow the use of data on

the graph to transmit global information through out the hierarchical decomposition. The

simplest way to transform the basic graph into a planar graph is to flatten it into the plane.

That is, add to the graph the nodes corresponding to the intersections of the Hne segments

in L and divide the old edges into new edges corresponding to the set of non-overlapping

subsegments induced by the new node set. While this produces the desired planar graph,
it has the problem of greatly increasing the size of the graph and admitting more paths in

the graph that do not correspond well with potential desired cut paths. Table 3.1 shows

some data comparing the size of the basic graph with the size of a "flattened", planar basic
graph. To see how flattening the basic graph admits more "bad" paths, consider the portion

of a routing region and its corresponding planar graph as shown in Figure 3.8. The nodes

marked by X's are induced by the surrounding blockages, but do not represent directly
any useful topological information. Most of the extra paths admitted by these nodes are
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Examples
Nonplanar Graph Planar Graph
Nodes Edges Nodes Edges

adder2 859 1780 1335 2732

adder4 1762 3636 3620 7349

adder32 13047 26463 35146 70655

Table 3.1: Number of nodes and edges in planar versus nonplanar graphs

X extraneous nodes

graph edges

cut path

Figure 3.8: A bad path in a planar graph
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(a) monotonic non-decreasing path (b) non-monotonic path

Figure 3.9: The need for non-monotonic cut paths

undesirable, and pathological cases can arise easily that will allow these "bad" paths to be
selected. An example of one such path is shown in the figure.

Another way to produce a planar graph representation ofthe routing region is to
start with the basic graph and selectively remove edges to make the graph planar. Edges
can be ranked to favor the removal oflong edges that intersect many shorter edges. This
heuristic isintended to remove any potentially undesirable paths from thegraph first. While
this alleviates thesize problem of planar graphs, it now allows the possibility ofremoving the
optimal cut path from the graph in the process of making the graph planar. The resultant

graph also suffers from some generic problems that are described next.

Given the basic graph representation, all paths are monotonic non-decreasing from
left to right. This means that given a situation like the one in Figure 3.9, the best cut path
that is represented in the graph is shown in Figure 3.9(a). Unfortunately, the path shown
in Figure 3.9(b) is preferable. On the examples, the graph algorithm generated cut paths
that looked like stair cases and tended to slice slivers off the region. These kind of paths
do little to simplify the resulting subproblems from the perspective of size and geometric
complexity. In fact, these paths often result in subregions that are more complex than the
original problem.

Thefundamental problem with this approach is its formulation as a shortest path

problem. Consider the heuristic to find cut paths that "hug" blockages and cross between

blockages at the narrowest sections. These paths should represent potential critical bot-
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tlenecks in the problem. The corresponding objective function is to find the path with
minimum capacity relative to total length or more formally

minimize

where c^ is the capacity of edge (i,j) and a^ is the length ofedge (i,j). This is clearly a
rational objective function. Other possible heuristics also correspond to rational objective

functions. These heuristics include maximizing net density relative to total length and max
imizing net density relative to total capacity. Also, heuristics to force the graph algorithm
to find a cut path near the middle of the routing region require global rather than local
information. That is, determining whether a path approximately bisects a region requires
examining the entire path, and a bisecting path can not be constructed incrementally from

local information. Thus, the problem of finding a cut path on the graphs described above

has become a minimum ratio cycle problem and no longer a shortest path problem. Unfor
tunately, solving this problem is impractical because its time complexity is too high for the

size of problems that will be encountered. The naive implementation is 0(m2n2) and the
best known result is 0(mn2log(n)) using Megiddo's method [Meg79].

3.2 Scan-Lines

In general, partitioning a general area routing problem results in subproblems

that are also general area problems. However, the experiments with constraint-graph cut-
path selection methods showed that the general area subproblems could easily become

more complex than the original problem. Thus, while arbitrary rectilinear cut paths are

allowed, "straighter" cut paths will make life easier. That is, the following approach should

be considered. Choose a partition from the perspective of starting with a straight cut
line and then make a minimal number of perturbations to create a cut path with the
desired topological characteristics. In the following, ascan-line method with sticky segment
heuristics is introduced that implements this perspective.

The standard scan-line method begins by sorting either the vertices or the edges
of the geometry in question. If the case of sweeping a vertical line horizontally across the
region is considered, then the vertices will be sorted first by x-coordinate and then by y-

coordinate. Each group of vertices with the same x-coordinate represents a different scan

line. As the list of vertices is processed, a new scan line is formed as each new group of
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vertices with common x-coordinate is encountered. In the proposed variation, portions ofa
scan line are allowed to stick to blockage edges as the scan line passes through the routing
region. When a grouping of vertices triggers a new scan line, instead of automatically
updating all sections of a scan Une to reflect the new common coordinate, heuristics are
applied to determine which scan hne segments will move to the new coordinate position and
which segments will stick to previous positions. At each coordinate level, the cost of the
cut path corresponding to the current scan Hne is calculated and a record of the minimum

cost path is maintained. To partition the original problem, scan line passes are made both

vertically and horizontally and the best path over both orientations is selected. After that,
subsequent levels in the hierarchy alternate orientations. Exceptions to this pattern occur
if a path with the specified orientation does not exist. In these cases, a bisection of the
region is attempted and if this is not possible, a path of the other orientation is used.

Figures 3.10(a) to 3.10(d) show the desired sequence of horizontal scan lines that

will capture the potential critical areas of the three-obstacle case discussed earlier. After

skipping over the routing region border, the first scan line is triggered by the beginning
of the lower obstacle. The scan line is a straight Hne consisting of three segments. The
middle segment has lower capacity than the other two segments because it corresponds to
an edge of an obstacle. The next scan hne is emitted due to the top of the lower obstacle.

All segments of the scan line move to the new position since the corresponding capacity
of the new segments are the same and a straight cut line is preferred to a cut path if it is
equivalent. The next scan Une is emitted when the upper two obstacles are encountered. In

this case, the middle segment of the previous scan Une sticks to the lower blockage because
its corresponding new segment has a higher capacity. The final scan Une is created in

response to the top ofthe upper blockages. The jog in the previous scan Une has snapped
back to align with its neighboring segments because the capacity of the jog segments would
exceed the capacity of the corresponding new straight segment.

The heuristics that are used to generate an appropriate sequence of scan Unes are

discussed in the following. For each set of vertex events that represent a new possible scan
line position, it must be decided for each segment of the current cut path whether or not
to move it to the new position. Here and in the following discussion, segment refers only
to those segments of the cut path that are parallel to the scan line. With respect to the
capacity of the corresponding new segment, there are three possible relationships. The
new segment has capacity less than, equal to, or greater than the old segment. If the new
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Figure 3.10: Scan-line sequence
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segment will have capacity less than the capacity of the current segment, then the current
segment is always moved. Changing to segments oflower capacity represents trying tohug
the blockages. It also helps break the scan Une away from cut paths ofminimum local cost
by forcing the cut path to advance across the routing region. For all other segments, the
cost of the cut path resulting from changing to the new segment is compared to the cost of
the unchanged cut path. If the cost does not increase, then the current segment is moved.
This is consistent with the goal ofminimizing the necessary deviations from a straight cut
path. For any given state of the scan Une, it may be possible that the optimal cut path
can only be formed by first moving segments that increase the cost ofthe cut path. Thus,
the generated cut paths are dependent on the order ofsegment comparisons. The following
order heuristics are appUed. Let Set 1 be the set of all segments that have corresponding
new segments of lower capacity, Set 2 be the set of segments that have corresponding new
segments ofequal capacity, and Set 3 be the set of segments that have corresponding new
segments ofhigher capacity. First, all segments Set 1are moved. Next, the effect ofchanging
each segment in Set 2 is analyzed. Any segment that will not increase the cost of the cut

path is moved. Then, each segment in Set 3 is tested. Again, any segment that will not
increase the cost of the cut path is moved. Finally, among the segments that have not been
moved, the segments that are sets of contiguous, colinear segments from both Sets 2 and 3

are checked. These "mixed" segments are also moved if they will not increase the cost of

the cut path. After all these cost comparisons, one more heuristic is appUed tohelp prevent
wildly irregular cut paths. All segments in the scan Une that are not at the level of the

new segments are checked. If such a segment forms a U-shaped bend with its neighboring

segments, then the aspect ratio ofthe bend is checked. If the distance toits closest neighbor
(in the direction orthogonal to the scan line) is greater than its length, then the segment
is advanced to the level of the closest neighbor. That is, whenever the aspect ratio of a
peak of a bend becomes greater than unity, the peak is flattened. This heuristic is applied
repeatedly to the scan Une until no segment meets the specified conditions.

This method improves on many of the problems of the constraint graph method.
The cut paths are not constrained to have monotonic changes in direction, and the worst
stair-case topologies are prevented because the method inherently connects opposite sides
of the routing region. The cost function evaluates an entire path at a time and thus allows

comparisons of rational objective functions. Also, the cost function can be easily modified
to allow acost component or factor that favors paths that approximately bisects the routing
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region. This prevents paths that sUce off sUvers of the region and results in better balanced

subproblem trees.

3.3 Cost Functions

The inteUigence in either of the cut path selection methods discussed above Ues

in the cost functions. These heuristics provide a way of ranking cut paths as to their

"criticalness". In these experiments, different definitions of "critical" have been compared

and the difference between choosing the "most" critical paths versus choosing the "least"

critical paths has been investigated.

Let P be a cut path consisting of edges or segments and let each edge, (i,j), have
associated values a^- and c+j where

a{j = the length of (i,j)

Cij = the capacity of (i j)

and both are measured in number of routing tracks with respect to the standard two-layer
wiring model.

Let the total length, L, of a cut path, P, equal the sum of the lengths of all of its

segments,

L= X) a*i
hjeP

and let the total capacity, C, of a cut path, P, equal the sum of the the capacities of all its
segments,

ij€P

Let

D = the net density of the cut path,P.

Here the net density of a cut path is defined as the number of nets that cross the path. A

net is assumed to cross a path if the bounding box of its pins intersects the path.

The following cost functions have been tried. In each case the cut pathof minimum

cost is chosen. Cost functions (2) through (6) correspond to choosing "critical" cut paths

and cost functions (7) through (11) correspond to choosing "non-critical" cut paths.



43

(1) Bisection

This is a control case and not actually a cost function. A straight cut path that most

nearly bisects the routing region is chosen.

(2) Minimum Capacity

cost = C

The minimum cost cut path corresponds to the minimum capacity cut path.

(3) Maximum Density

cost = —D

The minimum cost cut path corresponds to the cut path of maximum density.

(4) Critical

cost -C - D

The minimum cost cut path corresponds to the most "critical" cut path as defined by
[Lau87].

(5) Maximum Bottleneck
, C

cost — —
L

The minimum cost cut path corresponds to the cut path of lowest capacity per unit
length.

(6) Maximum Ratio
DxL

cost = —

The minimum cost cut path corresponds to the cut path of highest density per unit
capacity per unit length.

(7) Maximum Capacity

cost = —C

The minimum cost cut path corresponds to the maximum capacity cut path.

(8) Minimum Density

cost = D

The minimum cost cut path corresponds to the cut path of minimum density.



44

(9) Non-critical

cost = D-C

The minimum cost cut path corresponds to the least "critical" cut pathas defined by
[Lau87].

(10) Minimum Bottleneck
, C

cost = -
L

The minimum cost cut path corresponds to the cut path of highest capacity per unit
length.

(11) Minimum Ratio
, DxL

cost = —

The minimum cost cut path corresponds to the cut path of lowest density per unit
capacity per unit length.

Various modifications to the cut path search algorithm were made to favor cut

paths that approximately bisect the routing region. The motivation for these modifications

comes from the observation that the cut paths found bythe graph theoretic method tended

to sUce sUvers off routing regions rather than partitioning them into roughly equal portions.
While partitioning into equal portions may not be necessarily optimal, allowing highly
unbalanced partitioning does Uttle to reduce the size complexity of the routing problem.
The idea behind the modifications is to exclude the extreme, sliver-producing cut paths
by restricting the search for cut paths to a certain window centered around the middle of

the routing region. In initial experiments, the cut path search was restricted to a user-

specified window centered around the middle of the routing region. If no path was found

within the window, then the region was bisected. The amount of partitioning required
to produce simple, obstacle-free switchbox problems was compared for different window

sizes and it was found that smaller windows did not always produce smaUer amounts of

partitioning. This can be attributed to the following trade-off. Bisecting a region will
maximaUy decrease the size of the routing problems, but does not necessarily help reduce
the current general area problem to the simple, target switchbox problem. On the other

hand, picking a cut path based on cost functions described above wiU help produce simple
switchbox problems, butwon't necessarily help reduce the size ofthe routing problems much.
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Thus, the bisection produces small general area problems quickly and the cost functions
produce simple switchboxes slowly. A trade-off exists because small general area problems
are harder than a large simple switchbox problems. At least, less is known about how to

solve the general area problem than the switchbox problem. Thus, the foUowing strategy
has been implemented. Based on the cost function, search for the best cut path within
a specified window around the center of the routing region. If no cut path exists within
the window, then select the best cut path from outside of the window and only perform a
bisection if no cut path exists. As will be seen in the next section, the choice of window
size has negUgible effect on solution quality, and subsequent experiments arbitrarily use the
smallest sizes tested.

3.4 Results

The primary objective of the first experiments was to compare cut path selection
heuristics. In an attempt to restrict data to the effects of the cut path selection heuristics
only, the hierarchical decomposition was performed until the cut path selection heuristics

could no longer be appUed and then the number of overflows that occurred up to that
point were measured. Here, an overflow is defined as a missing wire section or connection

due to congestion in the routing region. This means that because of insufficient capacity
in some area of the routing region, a portion of a net could not be implemented without

shorting some other net. The stopping criteria corresponds to stopping at leaf ceUs that
define routing problems that are simple switchboxes. The leaf ceUs are switchbox problems
that have homogeneous routing capacity and do not contain any routing obstacles. Thus, no
detailed routing was performed and the overflow values may be considered global or partition
overflows. These overflows correspond to wire sections that were not assigned global routes
because of insufficient capacity across a partition boundary. These values represent the
actual number of missing wire sections and do not necessarily correlate with the number

of nets that have missing portions. AU combinations of eleven cut path cost functions,
the three pin assignment cost functions, and three window sizes were tested. The cut

path cost functions are bisection, minimum capacity, maximum density, critical, maximum
bottleneck, maximum ratio, maximum capacity, minimum density, non-critical, minimum
bottleneck and minimum ratio and are described in Section 3.3. The pin assignment cost
functions are net length, net projection, and net proximity and are described in Chapter
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Figure 3.11: Sample routing region

4. The three window sizes are 50%, 75%, and 100%. These combinations were tried using
both straight partitions and irregular partitions. All results reported are for the scan-Une
algorithm.

All the examples were generated by the Mariner sea-of-gates system. The router
was run on the whole chip of each design. That is, the pads and the power and ground
rings were included in the specification of the routing region. A sample routing region is
shown in Figure 3.11. Here the routing region is shown using the geometric representation
of Section 3.1. The layer denoted by cross-hatched regions is metal 1and the layer denoted
by diagonally-hatched regions is metal 2. Note that the geometry of the problem is quite
complex and that the problem contains large numbers of metal 1 obstacles in small local

clusters. For a hierarchical approach, this is a pathological characteristic, since the routes
made at higher levels in the hierarchy assume that the capacity in the subproblems is
similar to the capacity seen along the partitions. Thus, these examples are good tests of
the "intelligence" of the cut paths. For these experiments, the examples consist of several
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different sizes of ripple-carry adders. One adder, adder2x8, also includes latches on its
inputs and outputs.

Figures 3.12 and 3.13 show the cost of using the different combinations of cut

path cost function, window size, and pin assignment cost function for straight and irregular
partitions, respectively. The cost values shown have been calculated to factor out example

size while maintaining relative order. The overflow value for each combination ofexample,
cut path cost function, pin assignment cost function, window size, and partition type was
divided by the average overflow value for the corresponding example taken over all combi

nations ofotherfactors. Here, partition typeis either straight or irregular. The cost values

shown in the figures are the average of these ratios taken over allexamples. More formally,

let each overflow value be specified by the quintuple (e,c,p,w,h) where e, c, p, w, and h
are indices for example, cut path cost function, pin assignment cost function, window size,

and partition type, respectively. Let E, C, P, W, and H be the total number of examples,

cut path cost functions, pin assignment cost functions, window sizes, and partition types,
respectively. Then,

y»£» (e,c,p,w,h)
cost{c,p,w,h) = e==1 OT,g(g)

E

where the average overflow value for a given example, e, is

ava(e) =^=1 ^*=1 ^"=1 ^"=i(e>c>P>w>h)
K} CxPxWxH

In the figures, a set of three curves is given for each cut path cost function. Within each set,

a separate curve is given for each pin assignment cost function. Each curve contains three

data points. From left to right, these data points correspond to window sizes of 50%, 75%,

and 100%, respectively. The abscissa is labeled with mnemonics for each of the cut path

cost functions as foUows: bisc (Bisection), minC (Minimum Capacity), maxD (Maximum

Density), crit (Critical), maxB (Maximum Bottleneck), maxR (Maximum Ratio), maxC
(Maximum Capacity), minD (Minimum Density), none (Non-critical), minB (Minimum
Bottleneck), minR (Minimum Ratio). The raw data for thefigures are shown at the end of

this chapter in Tables 3.2 to 3.4 and Tables 3.5 to 3.7 for straight and irregular partitions,
respectively.

First, consider the results for straight partitions as shown in Figure 3.12. The

first apparent trend is that the "critical" partitions (minC, maxD, crit, maxB, and

maxR) perform better than the "non-critical" partitions (maxC, minD, none, minB,
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Cost x 10r3

Partition Overflow Cost of Straight Partitions

bisc minC maxD crit maxB maxR maxC minD
Heuristics

none minB minR

Figure 3.12: Partition overflow cost of straight partitions vs. heuristics
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and minR). In fact, the "non-critical" partitions always perform worse than the bisection

heuristic. Among the "critical" partition heuristics, the cost functions based on maximum

density outperform the cost functions based on minimum capacity. The best combinations

overall are combinations of the pinassignment cost function, net projection, andthe cut path

cost functions, maximum density, critical, and maximum ratio. Though the nominal data

indicate trends for windowsize for each of the best combinations, the differences within the

indicated trends are small, it can be concluded that the choice of window size is relatively

unimportant for this set of heuristics. These results agree in general with [Lau87].

Now, consider the results for irregular partitions shown in Figure 3.13. Unfor

tunately, none of the combinations of heuristics perform better than the bisection control

case. Afterthe bisection heuristic, thenextbest cut path cost function is minimum density.
This result is antithesis of the result from the straight partition case where it was found

that the best cut path cost functions were based on maximum density. These results are

not necessarily unexpected. The sticky segment heuristics inherently cause cut paths to

stick to blockages in the routing region independent of cut path cost function. Thus, the

irregular cut paths are biased towards minimum capacity paths and as seen in the straight

partition results, this strategy under performs the bisection heuristic. Though the capacity

values are more accurate, they are usually smaller and it isnot surprising that the cut paths
with lower net densities have a higher success rate. Also, the irregular cut paths present

harder pin assignment problems than straight partitions. The bends in the paths may rep
resent obstacles to certain nets and are not accounted for in the linear assignment algorithm

that performs the pin assignment. The details of the pin assignment are discussed more

thoroughly in Chapter 4. Though these results argue against irregular cut paths, note that

harder pin assignment problems and higher levels ofpartition overflows are acceptable if the
subsequent detail routing problems are sufficiently easier and the total number of overflows

in the complete routing problem is reduced.

Figures 3.14 and 3.15 show the totaloverflow cost of using the different combina

tions of heuristics for straight and irregular partitions, respectively. The data reduction

and presentation is the same as in Figures 3.12 and 3.13. The difference is that the overflow

values axe the sum of partition and detail overflows. Here, a detail overflow is a missing
wire section due to insufficient capacity in a final subproblem. Thus, the overflow values

correspond to the total numberof missing wire sections in the design. To perform the detail

routing, the simple switchboxes of the previous experiment are hierarchically decomposed
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Figure 3.14: Total overflow cost of straight partitions vs. heuristics
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Cost

Total Overflow Cost of Irregular Partitions
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bisc minC maxD crit maxB maxR maxC minD none minB minR

Figure 3.15: Total overflow cost of irregular partitions vs. heuristics
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until the final subproblems can be routed by case analysis. Since the simple switchboxes do
not contain any obstacles, the sticky segment heuristics can not be applied and thebisecting
cut line that best produces subproblems with unity aspect ratios is used to partition the
region. The pin assignment cost function remains the same throughout the decomposition
process. The raw data for Figures 3.14 and 3.15 is shown also at the end of this chapter in
Tables 3.8 to 3.10 and Tables 3.11 to 3.13, respectively.

First, consider the total overflow cost of straight partitions as shown in Figure
3.14. There are several striking features. When considering only partition overflows, thenet

projection pin assignment cost function wasa memberof the best combinationsof heuristics.

However, when considering the total number ofoverflows, the net projection cost function

always performs worse than the other pin assignment cost functions independent of the
other heuristics. Anotherfeatureof the graphs is that the differences between "critical" and

"non-critical" partitions has disappeared. For the partition overflow case, the "non-critical"

partitions always performed worse than the bisection heuristic, while for the total overflow

case, the minimum density "non-critical" cut path cost function always performs as well

or better than the bisection heuristic. Also, for the "critical" partitions, the performance
of the different cost functions are the opposite oftheir performance when comparing only
partition overflows. That is, the cost functions based on maximum density and minimum

capacity performed the best and the worst, respectively, when considering only partition

overflows, but when considering the total number of overflows, the cost functions based on

maximum density and minimum capacity performed the worst and the best, respectively.
These differences axe a trade-off between ease ofglobal routing and ease ofdetail routing.
That is, the best global routing cost functions, while nominally producing better global
routes, did so at the expense of the complexity of the detail routing problems. Another

way of viewing this is that the global routing success was achieved by ignoring the real

complexity of the entire routing problem. According to the graphs, the best combinations

of heuristics are combinations of the pin assignment cost function, net proximity, and the

cut path cost functions, minimum capacity (minC), maximum bottleneck (maxB), and
minimum density (minD). Also, for these combinations, it appears that a window size of
50% always performs better.

Now, consider the total overflow cost of irregular partitions shown in Figure 3.15.

As with straight partitions, the results are quite different than thepartition overflow exper
iment, and furthermore, the results changed in a manner similar to the straight partitions.
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The net projection cost function always performs worse and the cut path cost functions

based on minimum capacity, minimum capacity (minC) and maximum bottleneck (maxB),
and minimum density, minimum density (minD) and minimum ratio (minR), showed the
most improvement. In fact, the minimum density cut path cost function now always per

forms better than the bisection heuristic. And though the minimum density cost function

on irregular partitions does not perform better than the best straight partition heuristics, it

does perform better on irregular partitions than on straight partitions. This indicates that

heuristics doexist that can exploit the differences between straight and irregular partitions.

Thus, while a priori the irregular cut paths should be better than straight cut

pathsbecause theyprovide more accurate information, this information may not necessarily

simplify the problem and/or the subsequent algorithms are not able to exploit it fully.
Different or more complex heuristics and possibly a different model are needed to handle

the pin assignment problem presented by the irregular cut paths. Also, the irregular cut
paths require more complex geometry operations. The results show that net density is an

important metric in evaluating the problem topology. For a straight cut path, this amounts

to determining the planar relationship between a point and a line. For an irregular cut
path, this becomes determining the intersection of a point and a polygon. Similarly, the

geometry of a general area may be partitioned along a straight line by sorting the edges of

the geometry and partitioning thelists appropriately, while partitioning the same area with
an irregular cut path requires full-blown geometric mask operations. If these differences can

be handled effectively, then the trade-off will most certainly favor irregular partitions.



Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 9 23 63 76 164

projection 9 39 102 84 267
proximity 7 24 80 63 181

min capacity length 5 45 90 95 198

projection 8 39 70 78 208

proximity 10 38 97 90 202

max density length 7 12 66 60 159

projection 4 15 64 64 146

proximity 7 18 57 69 162

critical length 4 25 66 56 165

projection 7 20 48 54 167

proximity 4 13 77 52 150

max bottleneck length 5 45 90 97 195

projection 8 39 70 80 206

proximity 10 38 97 91 199

max ratio length 8 14 58 71 142

projection 5 19 57 51 152

proximity 7 20 59 45 150

max capacity length 9 35 86 93 220

projection 13 27 80 95 206
proximity 11 36 74 89 229

min density length 12 38 93 93 240

projection 10 38 92 97 267

proximity 12 41 89 90 252

non-critical length 9 37 90 124 222

projection 8 39 86 115 232

proximity 10 33 86 101 195

min bottleneck length 9 35 86 93 220

projection 13 27 80 95 206

proximity 11 36 74 89 229

min ratio length 12 36 77 119 219

projection 9 42 89 104 272

proximity 9 34 85 95 237

Table 3.2: Number of partition overflows using straight partitions - 50% window
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Cost Functions Exampl es

Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 9 23 63 76 164

projection 9 39 102 84 267

proximity 7 24 80 63 181

min capacity length 5 40 88 89 211

projection 11 39 72 79 211

proximity 6 30 81 90 192

max density length 6 22 70 85 163

projection 3 23 40 74 177

proximity 3 33 91 74 194

critical length 3 23 70 60 159

projection 5 19 69 45 152

proximity 7 16 56 62 172

max bottleneck length 5 41 88 90 211

projection 11 35 72 86 211

proximity 6 29 81 92 192

max ratio length 6 25 78 64 156

projection 6 19 41 61 188
proximity 7 19 74 49 177

max capacity length 8 34 80 98 247

projection 14 33 63 103 259

proximity 8 44 72 95 251
min density length 11 41 93 103 229

projection 15 48 74 102 244

proximity 11 44 94 93 255

non-critical. length 7 51 79 126 220

projection 10 56 97 117 247
proximity 9 41 98 109 235

min bottleneck length 8 34 80 99 247

projection 14 33 63 104 259

proximity 8 44 72 95 251

min ratio length 10 54 70 107 238

projection 13 57 87 108 293

proximity 15 47 79 100 237

Table 3.3: Number of partition overflows using straight partitions - 75% window



Cost Functions Examp] es

Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adder16

bisection length 9 23 63 76 164

projection 9 39 102 84 267
proximity 7 24 80 63 181

min capacity length 6 39 103 103 189

projection 10 40 72 86 203
proximity 9 38 110 104 212

max density length 11 25 87 97 208
projection 4 22 55 68 169
proximity 5 33 83 71 157

critical length 6 30 67 82 141

projection 3 16 59 62 171

proximity 8 21 68 65 136
max bottleneck length 6 34 102 110 188

projection 10 34 71 81 204
proximity 9 33 109 102 212

max ratio length 8 29 74 68 175

projection 4 24 51 66 159

proximity 6 20 79 67 162

max capacity length 8 45 97 85 187

projection 14 52 83 98 203

proximity 8 45 90 96 181

min density length 9 44 101 122 244

projection 17 51 87 110 229

proximity 12 48 96 108 254

non-critical length 7 45 91 121 232

projection 10 49 95 112 271

proximity 9 44 89 100 246

min bottleneck length 8 45 97 85 186

projection 14 52 83 98 201

proximity 8 45 90 96 180

min ratio length 10 53 106 125 258

projection 16 54 86 105 306

proximity 12 50 84 98 232

Table 3.4: Number of partition overflows using straight partitions - 100% window
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Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adder16

bisection length 9 23 63 76 164

projection 9 39 102 84 267

proximity 7 24 80 63 181

min capacity length 9 60 104 171 343

projection 14 59 88 215 328

proximity 11 54 102 159 330

max density length 19 101 278 201 570

projection 19 85 291 283 621

proximity 23 101 239 230 560

critical length 26 65 136 200 520

projection 27 61 144 256 613

proximity 24 61 157 194 412

max bottleneck length 29 104 233 328 .576
projection 34 102 299 428 661
proximity 20 95 238 303 558

max ratio length 40 147 278 383 683

projection 45 218 346 494 798

proximity 32 149 265 338 638

max capacity length 37 178 350 449 972

projection 51 165 382 449 943
proximity 42 166 357 460 987

min density length 12 38 83 103 249

projection 11 32 100 118 271

proximity 12 32 86 94 257

non-critical length 34 113 239 334 750

projection 33 111 241 316 724

proximity . 36 111 227 341 655

min bottleneck length 25 115 212 267 669

projection 30 118 237 286 729

proximity 25 105 195 250 593

min ratio length 16 65 134 165 406

projection 17 87 187 211 463

proximity 14 60 143 158 389

Table 3.5: Number of partition overflows using irregular partitions - 50% window



Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 9 23 63 76 164

projection 9 39 102 84 267

proximity 7 24 80 63 181

min capacity length 14 71 123 174 364

projection 9 82 127 200 337

proximity 11 66 111 148 344

max density length 18 111 213 208 625

projection 13 119 196 259 670

proximity 15 75 186 211 576

critical length 20 59 120 169 504

projection 22 72 191 224 548

proximity 20 51 145 201 504

max bottleneck length 15 99 287 297 544

projection 16 101 329 427 676

proximity 17 88 238 306 534

max ratio length 51 182 260 382 652

projection 69 180 361 527 805

proximity 53 147 240 342 664

max capacity length 48 215 324 477 872

projection 41 181 348 465 940

proximity 40 197 337 465 844

min density length 9 42 104 87 231

projection 10 43 105 107 262

proximity 12 44 88 87 221

non-critical length 28 131 257 292 689

projection 27 114 239 310 644

proximity 31 123 247 317 701

min bottleneck length 18 106 194 195 642

projection 25 123 220 259 805

proximity 22 96 205 215 608

min ratio length 12 73 130 160 468

projection 12 89 145 155 466

proximity 14 69 134 141 455

Table 3.6: Number of partition overflows using irregular partitions - 75% window
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Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 9 23 63 76 164

projection 9 39 102 84 267

proximity 7 24 80 63 181

min capacity length 8 85 94 173 372

projection 9 98 82 192 352

proximity 10 92 96 161 349

max density length 18 128 259 212 590

projection 18 119 204 272 696

proximity 24 90 203 195 487

critical length 23 111 144 186 502

projection 16 116 284 254 550

proximity 25 107 137 148 521

max bottleneck length 25 103 265 314 593

projection 24 129 318 338 768

proximity 26 104 264 293 584

max ratio length 52 163 302 317 712

projection 54 181 379 497 798

proximity 54 133 262 359 765
max capacity length 48 195 335 476 901

projection 41 181 350 428 950
proximity 41 178 345 455 888

min density length 10 52 89 106 328

projection 11 57 123 101 275

proximity 10 46 103 116 255

non-critical length 30 148 276 303 .743

projection 27 130 228 311 746

proximity 33 142 269 • 356 666

min bottleneck length 20 104 170 206 652

projection 23 124 197 207 813

proximity 17 105 172 183 575

min ratio length 16 66 138 184 385

projection 14 49 183 195 482

proximity 13 56 139 160 428

Table 3.7: Number of partition overflows using irregular partitions - 100% window



Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569

proximity 51 177 592 378 1578
min capacity length 37 210 435 360 1378

projection 76 278 629 716 2582

proximity 35 171 425 326 1471

max density length 54 296 625 528 1815

projection 74 386 863 745 2868
proximity 50 245 595 620 1880

critical length 50 215 548 432 1506

projection 74 319 846 733 2775

proximity 42 216 665 502 1750

max bottleneck length 37 210 435 363 1375

projection 76 278 629 705 2584

proximity 35 171 425 333 1470

max ratio length 43 237 565 420 1787

projection 71 326 1002 637 3032

proximity 42 243 560 417 1913

max capacity length 59 238 598 577 1824

projection 72 304 732 761 2926

proximity 51 232 653 482 1832

min density length 43 221 552 435 1723

projection L_ 73 261 788 726 2864

proximity 41 184 530 381 1831

non-critical length 46 227 558 499 1666

projection 110 312 788 675 2728

proximity 62 206 571 448 1690

min bottleneck length 59 238 598 577 1824

projection 72 304 732 761 2926

proximity 51 232 653 482 1832

min ratio length 50 233 548 459 1775

projection 69 312 802 752 3294

proximity 56 186 566 499 2056

Table 3.8: Number of total overflows using straight partitions - 50% window
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Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569

proximity 51 177 592 378 1578

min capacity length 48 215 463 347 1483

projection 66 288 624 681 2591

proximity 52 229 469 330 1408

max density length 42 251 613 556 1681

projection 69 377 888 767 2893

proximity 43 196 581 642 1802

critical length 55 249 616 447 1559

projection 90 326 826 704 3012

proximity 51 232 629 441 1839
max bottleneck length 48 214 463 338 1483

projection 66 294 624 683 2591
proximity 52 240 469 346 1408

max ratio length 66 268 659 477 1843

projection 83 355 786 710 2955
proximity 39 248 683 494 1785

max capacity length 66 273 621 526 1823

projection 61 263 777 714 2854
proximity 61 242 620 519 1698

min density length 39 172 549 427 1703
projection 71 301 731 646 2905
proximity 43 192 501 390 1661

non-critical length 54 197 589 490 1670

projection 105 275 821 600 2643
proximity 68 205 559 406 1711

min bottleneck length 66 273 621 527 1823
projection 61 263 777 715 2854

proximity 61 242 620 521 1698
min ratio length 68 180 553 495 1743

projection 94 302 758 827 3033
proximity 54 177 574 450 1702

Table 3.9: Number of total overflows using straight partitions - 75% window



Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adder16

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569
proximity 51 177 592 378 1578

min capacity length 37 249 553 330 1204

projection 65 309 838 639 2389

proximity 46 197 562 339 1306

max density length 44 224 679 547 1688

projection 70 310 851 754 2956

proximity 51 223 665 578 1608

critical length 69 249 611 435 1485

projection 103 390 880 726 2802

proximity 39 247 692 455 1471

max bottleneck length 37 257 552 381 1201

projection 65 330 828 672 2385

proximity 46 224 561 340 1296

max ratio length 71 256 709 505 1796

projection 92 329 911 708 2957

proximity 76 212 642 456 1742

max capacity length 66 219 632 521 1619

projection 61 245 851 707 2471

proximity 61 204 637 536 1583

min density length 55 168 595 444 1487

projection 81 275 873 638 3125

proximity 51 183 576 370 1566

non-critical length 54 176 643 418 1601

projection 105 278 805 605 2761

proximity 68 208 607 442 1584

min bottleneck length 66 219 632 521 1619

projection 61 245 851 707 2469

proximity 61 204 637 536 1582

min ratio length 64 173 604 425 1698

projection 69 239 881 703 3258

proximity 58 163 592 394 1666

Table 3.10: Number of total overflows using straight partitions - 100% window
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Cost Functions Examples
Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569

proximity 51 177 592 378 1578

min capacity length 126 185 661 612 1571

projection 128 195 779 813 2248

proximity 150 152 631 512 1482

max density length 57 299 666 702 2387

projection 89 342 1354 1112 3449

proximity 59 306 844 726 2560

critical length 45 145 557 621 1636

projection 55 182 595 1034 2197

proximity 46 121 575 703 1620

max bottleneck length 71 164 433 571 1210

projection 55 187 600 824 1682

proximity 58 165 416 553 1170

max ratio length 83 261 547 556 1210

projection 101 393 677 925 1535

proximity 61 327 490 518 1155

max capacity length 77 321 657 875 2295

projection 87 362 778 981 2902

proximity 79 336 690 826 2444

min density length 38 219 575 422 1483

projection 77 269 943 672 2646

proximity 29 174 566 345 1356

non-critical length 50 238 613 691 2044

projection 73 328 676 797 2879

proximity 53 262 657 682 1916

min bottleneck length 75 288 712 592 1962

projection 100 362 950 854 2878

proximity 53 283 682 580 1845

min ratio length 40 246 550 402 1730

projection 77 281 853 918 2669

proximity 48 228 561 380 1550

Table 3.11: Number of total overflows using irregular partitions - 50% window



Cost Functions Examp]es

Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569
proximity 51 177 592 378 1578

min capacity length 42 158 552 584 1560

projection 77 186 827 882 2088
proximity 49 160 520 486 1466

max density length 65 330 683 607 2268

projection 76 462 804 1030 3335

proximity 73 304 621 675 2219

critical length 81 192 594 550 1013

projection 101 190 574 937 1680
proximity 84 162 529 571 1082

max bottleneck length 62 167 497 579 1022

projection 113 203 1134 866 1441

proximity 65 167 505 592 1011
max ratio length 162 296 454 703 1128

projection 123 395 713 1145 1600
proximity 86 362 356 662 1146

max capacity length 89 314 678 849 2107

projection 93 341 742 1036 2976

proximity 80 302 636 803 2084
min density length 45 188 547 431 1529

projection 80 249 841 665 2572

proximity 38 162 517 410 1432

non-critical length 75 257 568 688 1744

projection 82 287 719 781 2734
proximity 77 222 592 662 1811

min bottleneck length 56 290 601 481 1915

projection 78 346 771 804 2978

proximity 55 269 613 504 1903

min ratio length 57 221 559 433 1473

projection 83 316 939 729 2759
proximity 47 187 547 454 1540

Table 3.12: Number of total overflows using irregular partitions - 75% window
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Cost Functions Examp: es

Cut Path Pin Assgt adder2 adder4 adder8 adder2x8 adderl6

bisection length 45 199 637 410 1459

projection 70 316 772 710 2569
proximity 51 177 592 378 1578

min capacity length 33 167 558 614 1433

projection 97 275 685 849 1997
proximity 60 170 597 474 1420

max density length 65 330 757 662 1900
projection 80 480 693 981 3350
proximity 79 304 623 621 2092

critical length 95 276 452 589 1081
projection 86 286 898 842 1570
proximity 97 222 364 477 1091

max bottleneck length 95 238 560 741 1318

projection 86 311 833 898 1682
proximity 84 229 610 657 1275

max ratio length 163 374 540 476 1225

projection 115 406 610 894 1842

proximity 87 246 514 692 1252
max capacity length 89 308 672 888 2179

projection 92 370 827 892 2871
proximity 83 320 636 788 2117

min density length 46 176 499 481 1709

projection 85 290 895 728 3232

proximity 42 164 578 •390 1642

non-critical length 77 262 551 733 1935
projection 86 330 658 798 2652

proximity 79 245 576 674 1820
min bottleneck length 52 245 619 524 1837

projection 79 372 862 631 2922

proximity 48 233 636 477 1791

min ratio length 43 234 562 449 1671

projection 69 324 893 829 2566

proximity 68 223 559 436 1838

Table 3.13: Number of total overflows using irregular partitions - 100% window



Chapter 4

Net Decomposition

Net partitioning requires determining which netsmustcross which subregion bound

aries and for each net that crosses a partition, determining how many times it crosses and

where it should cross. Consider the example in Figure 4.1a. Here an example routing re

gion is shown with twoof its nets and a proposed partition. The nets are shown by dashed

lines and the partition is shown by a dotted line. Given this partition, it must be decided

which nets belong to which subproblems. In this case, net B is contained fully in the lower

subregion, while net A is contained in both the upper and lower subregions. Thus, net A

will be assigned at least one net crossing position along the partition and net B will not be

assigned any crossing positions. In more complex strategies, net B also could be made to

cross the partition, but for these experiments, this possibility is ignored. Given that net A

must cross the partition, the number times that net A will be allowed to cross the partition

must also be determined. Figure 4.1(a) shows an example of assigning net A one crossing

position and Figure 4.1(b) shows an example of assigning net A two crossing positions.

4.1 Net Partitioning

For the hierarchical decomposition described in this report, determining which

nets cross which boundaries requires few heuristics. Since the subdivision of routing regions

is a two-partition, any net that has at least one pin on both sides of the partition must cross

the partition. If a net has a pin or pins that lie exactly on the partition and the remaining

pins all on one side of the partition, then the net is not partitioned and is added to the

subproblem corresponding to the subregion containingthe non-partition pins. In all other
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cases where a net has pins that lie on the current partition, the net is partitioned and its

partition pins are distributed arbitrarily between the two subproblems. If a routing grid is
employed, then this is not a problem because all cut paths are constrained to fall between

routinggrids. However, in a grid-less paradigm these situations must be considered. In the

current implementation, both gridded and grid-less approaches have been coded, though
only the gridded method has been fully tested. All the examples in this report were run
using an explicit routing grid. Unfortunately, determining the location of a point (or pin
position) relative to an arbitrary rectilinear path is not trivial. In general, the intersection
of the point with each of the corresponding subregions must be calculated. Intersection

with both of the subregions means that the pin lies on the cut path. For the case of

pseudo-pins, intersection calculations can be avoided by storing previously calculated pin-
partition and partition-region topological relationships in the data structures. With this

information, calculating the intersection ofa pseudo-pin with a subregion transforms into
two membership queries.

For each net that crosses the current partition, the number of times that the net

crosses the partition must also be decided. The simplest course of action is to only allow

each net to cross once. However, this may not be optimal. Allowing only one crossing forces
any remaining connections to be made within the subproblems which are smaller and more

likely congested. Allowing multiple crossings would make more effective use ofcapacity at
the higher levels ofthe hierarchy and hopefully would avoid adding to the local congestion
of the subproblems. The minimum spanning tree of a net can be used to determine the

number oftimes that a net will be allowed to cross a partition. In particular, the number of

crossings can be set equal to the number ofedges ofthe minimum spanning tree of the net
that cross the partition. Deletion of these crossing edges represents a partitioning of the net.
The remaining connected components correspond to subnets ofthe original net and can be
assigned to the appropriate subproblems. Some results on the effect ofusing this means of
allowing multiple crossings are shown in Table 4.1. The influence ofmultiple crossings was
checked on the following irregular cut path cost function combinations. The combinations

are the minimum capacity cut path cost function with the net proximity pin assignment
cost function and a window size of 75%, and the minimum density cut path cost function

with the net proximity pin assignment cost function and a window size of 50%. Since,
irregular cut path cost functions based on combinations ofminimum density and minimum

capacity performed the best, this choice of combinations allows examination of the effects
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Examples

Irregular Cut Path Cost Functions
Minimum Capacity Minimum Density
Multiple
Crossings

Single
Crossing

Multiple
Crossings

Single
Crossing

adder2 51 49 34 29

adder4 174 160 175 174

adder8 548 520 569 566

adder2x8 577 486 362 345

Table 4.1: Multiple versus single net crossings on irregular cut paths

of both characteristics. As seen in the table, using multiple crossings always performs worse

than using single net crossings. This is consistent with the result that ttutiitthitti density

irregular cut paths perform better since allowing multiplecrossings increases the net density

of subsequent subproblems.

4.2 Pin Assignment

After partitioning the netsintosubnets anddetermining the numberof pseudo-pins

that willbe placed on the partition, pseudo-pins must be assigned to particular locations on

the partition. In this work, pseudo-pins are allowed to float anywhere along their partition

subject to future partitioning constraints. That is, the pseudo-pins may move anywhere

along the partition as long as such movement does not change their membership in any

subregion of the hierarchy. However, exact locations are assigned to the pseudo-pins be

cause their positions influence the choice of subsequent partitions. This assignment may be

thought of as an initial best guess.

For the case of two-partition hierarchical decomposition, there is a natural formu

lation of the problem of assigning pins to partition positions. This pin assignment problem
is defined as follows.

Given

i the ith pin to be assigned i = 1,2,..., n
j the jth position on the partition j = 1,2,..., m

capj the number of pins which may be assigned to position j
costij the cost of assigning pin i to position j

determine a minimal cost assignment of pins to positions such that all pins are assigned

and no position has its capacity exceeded.
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This a linear assignment problem that is defined by the following linear program.
Let

1 if pin i is assigned to position j

0 otherwise.
X{j —

minimize }j costijxg
*.j

subject to

]Txij < capj Vj
t=i

m

j=i

z.j > 0 Vi,j

A package has been written that solves this problem by formulating it as a mini
mum cost flow problem [Law76]. The time complexity ofthe algorithm is 0(n3m + m2n2)
where n is the number of pins that need assignment to a position and m is the number of
positions.

In the program, this problem is actually solved in two phases. First, pins are

assigned to segments ofthe cut path. These segments are the segments that arise naturally

from the bends in the path and from changes in capacity along the path. That is, each
segment isa straight line segment and ishomogeneous in the specific layers that may be used

to route across it. The second and final phase is to take the pins assigned to a particular

segment and assign them to a particular track on this segment.

Now, to actually perform the pin assignment, heuristics must be applied to de

termine the capacity vector, capj, and the cost matrix, costij. These heuristics are very
important because they embody most of the decision making that occurs at each level of

the hierarchy. The pin assignment constrains the topology of the subsequent problems di
rectly through the selected pin positions and indirectly through its influence on subsequent
partition selection.

There are several ways to calculate the capacity ofa partition. The most straight
forward way is to follow the typical wiring model conventions and assume that certain

routing layers have associated legal orientations. For example, all vertical wire segments

may be required to use metal 1and all horizontal wire segments may be required to use metal
2. Thus, for each segment ofthe cut patha capacity could be calculated with respect to the
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Figure 4.2: Cut path bend capacity

layers associated with the direction perpendicular to the segment. Unfortunately, there are
times when enforcing standard wiring model constraints are too restrictive. Routers such

as [RSVS85] and [SSV87] have shown that it can be advantageous to allow routes to selec
tively break the wiring model andin the ideal case, more efficient routes can be achieved by

relaxing the wiring model entirely. For example, wrong-layer wire segments are needed to

cross the power and ground rings that surround the chip. It is also easy to think of situa

tions where wrong-layer dog-legs or wrong-layer wires over cells will be needed to complete
a route. However, arbitrarily allowing nets to break the wiring model is probably not a

good idea. In particular, it will create a problem when computing the capacity of bends in

a cut path. Consider the example in Figure 4.2. The lines crossing the cut path represent

assigned net crossings. If the wiring model is not followed, then the capacity on the concave

side of the bend is much less than would be calculated by summing the capacities of the

adjacent segments ofthe corner. One alternative is to use a more restrictive approximation
and assume zero capacity for all segments that are perpendicular to the overall orientation

of the cut path. Unfortunately, pathological cases exist where this method will be much too

conservative. For example, consider the case where the perpendicular segment of the bend

in the cut path represents most of the capacity of the bend. Assigning this perpendicular

segment zero capacity will drastically underestimate the capacity of the cut path.

Fortunately, modifying the capacity model is not the only way that deviations

from the wiring model can be influenced. With the pseudo-pin assignment model, the
capacity calculations can be performed, assuming that wires will break the wiring model if



Examples
Constant Penalty Factor Dynamic Penalty Factor

C D C D

adder2 1.20 0.81 1.20 0.81

adder4 1.30 1.27 1.33 1.29

adder8 1.80 1.54 1.88 1.47

adder2x8 1.49 1.11 1.65 1.11

Notes:

C = minimum capacity cost function
D = minimum density cost function
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Table 4.2: Overflow ratios for penalty factors versus the standard wiring model

the standard routing layer is blocked and then entries in the cost matrix can be modified

to penalize wrong-layer wires. In these experiments, two styles ofpenalties have been tried.

The first variation is to simply multiply the cost ofa wrong-layer wire bya constant factor.

The default value ofthis factor in the current experiments is two. The second option is to
calculate a factor dynamically. The constant-factor method allows us to break the wiring
model, but does notgive us much control over when this occurs. In particular, it isdesirable
to allow wiring model deviations at the higher levels of the hierarchy where they may be
needed, but not allow them at the lower levels where the subproblems are not large enough
todeal with the wrong-layer segments. The dynamic penalty factor is an attempt to change
the layer preference constraints as the router travels down the hierarchy. The penalty factor
is calculated as

r . _ i i length of original root problem
length of current subproblem problem'

If the cut path orientation is vertical, then length is equal to the height of the problem
and if the the cut path orientation is horizontal, then length is equal to the width of the

problem. Table 4.2 compares enforcing the standard wiring model with the two types of
penalty factors. Each value in the table is the ratio of the number of total overflows that

results from using the given type of penalty factor to the number of total overflows that

results from enforcing the standard wiring model. Data was obtained for both the best

minimum capacity and the best minimum density cost combinations. Only one example,

adderS, was ever improved by using the penalty factors. This confirms that situations

exist where breaking the wiring model is advantageous, Unfortunately, it also shows that,
in general, these particular instances of using penalty factors to allow deviations from the

wiring model are not better than strictly enforcing the wiring model. That is, too many
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wires are allowed to deviate from the wiring model and the increased number of overflows

can be attributed to increased problem complexity caused by the larger number ofwrong-
layer wires. While increasing the value of the penalty factors may improve the results, it
is not clear that any particular value will be best for all examples. It seems that these

metrics oversimplify the problem of deciding when to break the wiring model. Given that

underlying detail routing algorithm generally trys to follow the standard wiring model, the
decision to break the model must be made quite selectively and preferably in situations
where it is known that this disruption will not adversely affect neighboring routes. More
work is required to understand how to model the effect of wrong-layer global wires.

The primary cost of assigning a particular net to cross a particular position of the
partition also must be determined. So far three simple cost functions have been tested.

These cost functions are referred to as net length, net projection, and net proximity in the
tables and figures.

The net length cost function is a simple Manhattan net length metric. Assume
that the decomposition of a given routing region results in the two subregions A and B.
Define Pf and P& as the sets of pins ofnet i that are contained in subregions A and B,
respectively. Let the jth position on the partition be at the point (a;,-,^) and the position
ofa pin, p, be at the point {xpiyp). Then, the cost ofassigning the pseudo-pin for net i to
the jth position on the partition is

X) (l*i-Sp| + \Vj-Vp\).

The net projection cost function is similar tothe cost function suggested by[Lau87].
The cost of assigning the pseudo-pin for net i to the jth position on the partition is thesum
of two components — one for each of Pf and P-8. Thus, an attempt is made to minimize
the cost relative to both subregions. Consider the component corresponding to Pf. Project
the bounding box of the pins in Pf onto the partition. If the jth position falls within this
projection, then the cost(Pf) = 0. If the jth position falls outside this projection then

cost(Pf) = 1000X | m| where mis the slope of the line passing through (xj,yj) and the
nearest corner of the bounding box.

The net proximity cost function is similar to the net length cost function, except
that it only considers the two pins, one from Pf and one from P{B that are closest to (x j,yj).
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Thus, the cost ofassigning the pseudo-pin for net i to the jth position on the partition is

mtn minpep* (| *,- - xp | + | Vj - yp |)+ p€PtB (| Xj _ Xp | + | yj. _ ^ |).

Recall from Chapter 3 that when using straight cut paths and considering only
partition overflows, the net projection cost function is the best. In terms of the total number

ofoverflows, the best combinations of heuristics for both straight and irregular cut paths
used the net proximity pin assignment cost function. This result agrees with the view of
the partitions as accurately representing capacity only in a narrow region surrounding the
cut paths. Given this assumption, a cost function that concentrates on pin assignments
relative to the closest pins is expected to perform better than cost functions that apply
the capacity information to far away pins. This is particularly important for irregular cut
paths where the bends in the path represent "unseen" obstacles to pins far away from the
partition. The net proximity cost function tries to assign pseudo-pins to positions that will

be optimal for the closest pins of the subnets. This assumes that the final route will and

should be between the pin ofeach subnet that is closest to the pseudo-pin position. Under
this model, it is unlikely that a pseudo-pin will be assigned to a position such that one of
these short direct routes will have to cross a bend.

More complex and more intelligent cost functions could be used. For example, the

ease of routing from a net terminal to a particular partition position might be estimated

by estimating the routing capacity and/or the number of obstacles on a Manhattan path
between the terminal and the partition position. Also, the capacity ofa segment might be
reduced, depending onthe number ofobstacles that block a straight approach to it. Unfor

tunately, for general routing areas, all of these cost functions require geometric intersection

calculations. Since these calculations are very complex, experiments with these cost func

tions have been postponed pending a more tailored implementation of the data structures.

More importantly, the cost functions should also account for potential interactions between

nets. That is, the current algorithm minimizes total cost relative to individual net costs

that are calculated with respect to the individual net. A better, though maybe impossible,
method would be to include net interactions more directly in the individual net cost val

ues. Thus, minimizing total cost would correspond more closely to minimizing global cost
instead of individual costs.



Chapter 5

Subproblem Routing

The problem of routing the final subproblems and the problem of determining
when to stop partitioning are closely coupled. In the following, two methods ofperforming
thefinal detail routing and the corresponding choices ofstopping criteria arediscussed. The
two detail routing experiments are pattern routing and maze routing. The related issue of
subproblem routing order will also be discussed in this chapter.

5.1 Pattern Routing

Two-layer pattern routing code has been implemented to perform the final sub-

problem routing, though extending this pattern router to three or more layers is straight
forward. This is a variation on Burstein and Pelavin's [BP83b] approach ofenumerating
all possible routes for a 2 x 2 grid. In this work, stopping criteria were chosen so that a

reasonable case analysis of the final subproblems would be possible. Currently, the pattern

router considers 151 basic cases determined by number of nets and relative pin topology.
Routing layer choices are made within each case. Thus, the most obvious extension to n

routing layers will not increase thenumber ofbasic cases, but will increase thecomplexity of
each case. In such an implementation, a layer assignment algorithm is expected to narrow
the choice of routing layers for each subproblem to a 2- or 3-layer subset of the possible
layers. Thus, the analysis for each case only needs extension to allow for the possibility of
three routing layers. In an ideal system, this layer assignment will be the natural result of

a three-dimensional hierarchical decomposition rather than a separate analysis.

The stopping criteria consist of the following rules.
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1. The routing region must be a simple switchbox.

This means that the routing region is defined by identical rectangles on all routing

layers specified for the subproblem.

2. The routing region is free of obstacles.

This guarantees homogeneous routing capacity across the region.

3. The number of pins on each side of the switchbox is less than or equal to one.

This restricts subproblems to having either zero, one, or two nets.

4. The number of pins internal to the subproblem is less than or equal to one.

This is a manifestation of the partitioning model.

The last constraint is an unfortunate consequence of dealing with internal pins.

Given a problem with internal pins, the partitioning process must not be allowed to cut

across any of these pins, otherwise it will be possible to create a subproblem with a pin

at a corner of its routing region. This situation is impossible to route. To guarantee that

partitions will not cut through an internal pin, a partitioning model must be enforced

that will never produce a cut path segment that intersects an internal pin. For gridded

approaches, this amounts to always partitioning on the dual graph or intergrid lines of the

specified routing grid-graph. For grid-less paradigms, the partitioning must occur on the

dual graph of the virtual routing grid induced by pin positions. Therefore, partitions are

made around the internal pins and internal pins are present in the final subproblems. This

inconsistency in the pin model also greatly increases the amount of case analysis that must

be performed to implement the detailed routing. Much enumeration can be avoided by
using an improved model that will be discussed later.

Alternately, if either of the following conditions is met, the partitioning will stop.

1. The routing region does not contain any nets.

This is the degenerate case.

2. The region is too small to partition.

A switchbox with height and width equal to less than two of the appropriate routing
pitches can not be partitioned.

From these constraints, all the different types of subproblems that may occur can

beenumerated. First consider when a subproblem contains only one net and for the moment,
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assume that thesubproblem does not contain any internal pins. Under these conditions, all
possible 2-, 3-, and 4-pin nets can be enumerated as in Figure 5.1. This class ofsubproblem
can always be routed, even if the subproblem has only one routing layer specified. With
respect to mirroring and rotation operations, the eleven cases in Figure 5.1 can be reduced

to four. The four cases are a two-terminal connection between adjacent sides (L-net), a two-
terminal connection between opposite sides (I-net), any three-terminal connection (T-net),
and any four-terminal connection (X-net). A representative example ofeach of these four
cases is marked in Figure 5.1 by background shading. Also, the abstraction only depends
on the pin-edge assignments and is independent of pin position and switchbox size. Thus, in
general, the pins do not have to align and the routing connections may contain jogs instead
of being straight line segments. Note that this generalization does not change the number
of classifications.

If a single-net problem includes an internal pin then the situation becomes more

complicated. In general, an internal pin may line-up with an edge pin or be to one side
or the other of an edge pin. The possible relationships are shown in Figure 5.2. In this
figure, the four basic single-net connections are illustrated and Xs depict possible internal
pin positions. The internal pin positions are shown after reduction under mirroring and
rotation. Thus, for a subproblem with a single net containing a single internal pin, there
are six L-net cases, two I-net cases, six T-net cases, and three X-net cases. Note that it is

possible for a single net to contain only a single edge pin and a single internal pin. These
cases may be handled as an L-net or I-net ofFigure 5.1 by pretending that the internal pin
is an edge pin. Similarly, some ofthe L-net and I-net cases ofFigure 5.2 may be treated as
T-net cases, and certain T-net cases can be processed as X-net cases. There are four cases

ofsingle nets without internal pins and seventeen cases of single nets with internal pins for
a total of twenty-one single-net cases.

Now, consider a subproblem that contains two nets. If the subproblem does not
contain an internal pin, then the different possible situations may be enumerated as shown

in Figure 5.3 for the two nets, A and B. Note that the three cases shown are actually
only two cases. These two cases are the two two-pin cross connections (2I-net) and the
two two-pin adjacent connections (2L-net). Unlike the single-net case, the ability to route
these cases depends on the number of available routing layers, the size of the switchbox,
the legal range of pin positions, and the legal layers of each pin. Fortunately, after an
analysis of these factors, double-net problems often can be converted into canonical forms
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Figure 5.1: Single-net configurations without internal pins
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Figure 5.2: Single-net configurations with internal pins
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Figure 5.3: Double-net configurations without internal pins

that use combinations of single-net patterns. In general, an attempt is made to formulate

each double-net case as an abstract 2x2 grid problem. If all sides of the switchbox are

greater than or equal to two routing pitches, then this is always possible. Figure 5.4 shows

an example 2x2 grid abstraction for the 2I-net case. In this figure, there are four grid
cells and each grid may correspond to one or more actual routing tracks. The lines delimit

the boundaries of the grid cells and the small black boxes are pseudo-pins. The edge of
a grid cell that is crossed by a net is denoted by each pseudo-pin. The direction of a net

segment may not change on grid cell boundary. All direction changes must be made within

the grid cells. In an actual 2x2 grid problem, if two nets enter the same grid cell, they
must be on separate routing layers. In the general case, this is a conservative restriction

B ." .. B

Figure 5.4: Example 2x2 grid abstraction
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Figure 5.5: 2I-net pin-position configurations without internal pins
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B

since the size ofan abstract grid cell may be larger than one routing pitch. The pseudo-pins
of the two nets define the entry positions of the nets along the edges of the grid cell and
actually, the pseudo-pins oftwo nets that enter the same grid cell must be assigned separate
layers only if they are within a minimum routing distance ofeach other. Here, minimum
routing distance means that both the x-coordinates and the y-coordinates ofthe pins differ
by only one routing pitch. However, if the layer specifications ofthe pins satisfy the layer
constraints of a 2 x 2 grid problem and the pins are not all restricted to the same layer,
then the problem always can be routed. Thus, in practice, the router always trys to form
feasible 2x2 grid abstractions. This may involve judicious choice of pin-to-grid assignments
or movement of floating pseudo-pins. Note, that pins on the same grid do not need to be

physically aligned. If a problem is too small to be formulated as a 2 X2 grid, then under
certain conditions it still may be routed. These special cases include partitioning the nets
into different layers and forming physically disjoint subproblems, and were not included in
the count of basic cases.

First, consider the 2I-net case. Suppose that the problem can be abstracted to a

2x2 grid problem. Then, after reduction under mirroring and rotation, the problem will
have one ofthe four possible pin topologies shown in Figure 5.5. If the the problem can not
be abstracted to a 2 x 2 grid problem because the length of a side of the switchbox is less

than two routing pitches, then the problem still may be routed ifthe pin layer-specifications
allow the partitioning of the two nets onto different layers. In this case, each net will be
routed as a single-net problem confined to a specific routing layer.

Now, consider the 2L-net case. If the problem can be abstracted to a 2 X2 grid
problem, then after reduction under mirroring and rotation, it will have one of the six
possible pin topologies shown in Figure 5.6.
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Figure 5.6: 2L-net pin-position configurations without internal pins
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Figure 5.7: 2L-net case on a 1 x 2 grid

If the 2L-net problem is too small to be abstracted as a 2 x 2 grid problem, then

under the following conditions, the problem still may be routed. If all sides of the switchbox

areless than two routing pitches, i.e., theproblem isanabstract lxl grid, then the problem

may be routed only if the legal pin layers allow partitioning of the two nets onto separate

layers. As in the 2I-net case, each net is then routed as a single-net problem confined to a

particular routing layer. If any one set ofparallel switchbox edges is less than two routing
pitches in length, i.e, the problem is an abstract 1x2 grid, then there are two possible

situations where the problem can be routed. First, if the pins on the long sides of the

switchbox do not impose any vertical constraints on each other, then the problem can be

handled as disjoint single-net problems. This situation corresponds to having a channel

routing problem ofunity density. An example ofthis topology is shown in Figure 5.7. Here,

net Acorresponds to pins Aand Ai andnet B corresponds to pins B and B2. Note that the
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Figure 5.8: Double-net configurations with internal pins

pins A\ and B2 may not have been originally specified at the diagramed grid positions, but

that their range of legal positions may have allowed enough movement to avoid a vertical

constraint. Second, if the first condition does not hold, then again, an attempt can be made

to partition the two nets onto separate layers and then route each of them as a single-net
problem on a specific layer.

Now consider the effect of including an internal pin in the two-net subproblem.

This dramatically increases its complexity. Consider a problem with two nets, A and B.

If one of the nets contains an internal pin, the the problem can be classified as shown in

Figure 5.8. As in the single-net figures, the X's in Figure 5.8 represent possible internal

pin positions relative to the other edge pins of the problem. However, in this figure, all
the possible internal pin positions have been shown, and the possible reductions will be

discussed later. If net A contains the internal pin, then the following classifications result.

1. Net A has a single edge pin and the internal pin.

Net B can be either an I-, L-, or T-net

2. Net A has two edge pins and the internal pin.
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The two edge pins of A considered separately can be either an I-net or an L-net

Thus, net B can be either an I-net or an L-net, respectively.

Note that if net A contains three edge pins then net B must contain the internal pin.

Consider the first classification where net A only contains a single edge pin and a
single internal pin. If net B isan L-net, then the number ofpin topologies can becalculated

as follows. When abstracting to a 2 x 2 grid problem, each of the pins of net B will be
assigned to 1of2 grid rows or columns. Similarly, the edge pin ofnet A will be assigned to
1of2 grid rows, and theinternal pin ofnet A will be in 1of4 grid cells. Thus, the number
oftopologies is 2x 2x 2x 4= 32. If net Bis an I-net then asimilar analysis applies, except
that problem symmetry allows us toignore the choice ofgrid row for the edge pin ofnet A.
Therefore, the number of topologies is 2 x 2 x 4= 16. If net B is an T-net, then all three
pins ofnet B may be assigned to 1of2grid rows or columns, the edge pin ofnet A may be
assigned to 1of 2 grid rows, and the internal pin will be in.l of4 grid cells. However, two
ofthe four permutations ofthe edge pin ofnet A and the edge pin ofnet B on the opposite
side of the switchbox are redundant under symmetry. Thus, the number of topologies for
this case is 2x2x2x2x4^-2 = 32.

If the problem is too small to form a 2 x 2 grid abstraction, then it may still be
routed under the following special cases. If the problem is an abstract lxl grid then
the pin layer-specifications must allow partitioning of the nets onto different layers. If the
problem is an abstract 1x2 grid then the problem may be routed if it can be separated
into independent problems or if the the nets can be partitioned onto separate layers. These
conditions are similar to the special cases for 2L-nets without internal pins. Also, even if
the problem is large enough to form a 2 x 2 grid abstraction, a feasible abstraction may
not exist. In this case, there still may be situations that can be routed by detouring net B

around the internal pin of net A. This is another special case and an example situation is
shown in Figure 5.9. Here, the legal pin layers force net A and net B to be routed on the

same layer. The pins of net B cannot be moved, and thus a straight path segment would
short net B with the internal pin ofnet A. Fortunately, the subproblem is large enough to
allow net B to detour around the internal pin. In this case, the subproblem could actually
be abstracted to a 3 x 3 grid.

Now, consider the classification where net A contains two edge pins and theinternal

pin. If net A is an 2L-net, then the six possible edge pin topologies are the same as shown



Figure 5.9: Detouring around an interna^ pin

Class Count

Single net
without internal pin 4

with internal pin 17

Two nets

without internal pin 10

with internal pin 120

Total 151

Table 5.1: Count of basic routing patterns by classification
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in Figure 5.6. Since, the internal pin will be in 1 of 4 grid cells, the number of cases is

6 x 4 = 24. If net A is an 2I-net, then the four possible edge pin topologies are the same as

shown in Figure 5.5. Again, since the internal pin will be in 1 of 4 grid cells, the number

of cases is 4 x 4 = 16. The special cases for when the problem is too small to form a 2 x 2

grid abstraction or for when a feasible abstraction does not exist are similar to the cases

described earlier. A summary of the total number of basic cases is given in Table 5.1.

The idea of using a pattern router to perform the final detail routing is attractive

because it meshes well with the divide-and-conquer philosophy. An ideal decomposition

method should be able to generate subproblems that can be trivially routed. Unfortunately,

in practice, the current method produces large numbers of subproblems that can not be

routed by the pattern router. Toprovide more insight on how to improve this process, some

data is presented on the characteristics of these subproblems. Table 5.2 shows statistics on

these subproblems based on examples run using the best minimum density cost function

combination for irregular cut paths. The table shows statistics based on number of layers,

size, number of nets, and number of internal pins. There are two major trends in the

data. The first is the frequency of overflowed subproblems as a function of the number of
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Characteristic
Subproblem Type

Only Metal 1 Only Metal 2 Two Layer

Frequency (%) 0.0 30.1 69.9

Area (A2
Maximum 0.0 759.0 4745.0

Minimum 0.0 56.0 56.0

Mean 0.0 98.2 160.7

Net Count

Maximum 0.0 4.0 4.0

Minimum 0.0 2.0 2.0

Mean 0.0 2.1 2.1

Internal Pin Count

Maximum 0.0 1.0 1.0

Minimum 0.0 0.0 0.0

Mean 0.0 0.0 0.4

Table 5.2: Characteristics of subproblems with overflows

available routing layers and the second is certain characteristics common to all the failed

subproblems.

The table shows statistics for subproblems with overflows where the subproblems

have been classified into different types depending on the number ofavailable routing lay
ers. For the current examples, there are three possibilities. Either both layers ofmetal are

available for routing or only metal 2 is available or only metal 1 is available. In these ex

periments, it has been found that the majority ofsubproblems with overflows are two-layer

problems. The next largest group are subproblems confined to metal 2 and the smallest

group are subproblems confined to metal 1. This trend is evident in Table 5.2. Note that

though there were no single-layer, metal-1 subproblems with overflows for these data, in
general, there may be a few. At first, it may seem counter-intuitive that more two-layer

problems have overflows than single-layer problems, but there are at least two explanations
for this result. First, distribution of subproblems with overflows across layer combinations

mirrors the distribution of subproblems in general across layer combinations. Second, the

statistics in the table show that more two-layer problems have internal pins than do single-

layer problems. Since all the subproblems either have one or zero internal pins, 40% of

the two-layer problems have an internal pin, while hardly any of the single-layer metal-2
problems have an internal pin. As seen in the discussion ofpattern enumerations, subprob

lems with internal pins are more complex and have tighter restrictions on feasible routing
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patterns. Thus, it is not surprising that the pattern router fails to route subproblems with

internal pins more frequently. Also, for this set ofexamples, virtually all the blockages are
on metal 1. Thus, there are very few subproblems confined only to metal 1, while there are

many subproblems confined to metal 2. These single-layer metal-2 subproblems correspond
to over-the-cell routing problems.

The number of nets and size in area ofsubproblems are perhaps the most telling
statistics in the table. The final, target subproblem is defined as having at most two nets,

yet all of the overflowed subproblems have at least two nets. Thus, the subproblems are

either beyond the scope of the pattern router or impossible to route. The small size of these

failed subproblems compounds the problem. For reference, in the technology ofthe current
examples, the metal 1pitch is 7A and the metal 2 pitch is 8A. Thus, the smallest lxl grid
abstraction has an area of56A2 and the smallest 2x2 grid abstraction has an areaof224A2.

The data in the table shows that the average size ofa subproblem with overflows is smaller

than a 2x 2 grid. Except for a few special cases, subproblems ofthis size are impossible to
route.

The dataindicate that the hierarchical decomposition process is not doing enough
to solve the routing problem at higher levels in the hierarchy and/or reduce the complexity
of subsequent levels. Instead, the process appears to postpone dealing with the complex
ities of the problem by continually pushing the real problem down into the subproblems.
This ultimately results in subproblems that can not be routed and is shown in the data

by minimum size subproblems with large numbers of nets. While one might expect this
behavior from a minimum density cut path cost function heuristic, there must be a more

basic explanation since this particular cost function combination produced the fewest num

ber oftotal overflows among all irregular cut path heuristics. One interpretation is that the
two-partition model and the pin assignment model do not capture enough of the essence of

the actualrouting problem. For example, using these models it is difficult to construct cost

functions that will handle properly cyclic constraints in a simple channel. The following
improvements are suggested for the hierarchical decomposition process described in this
report. First, use a four-partition model rather than a two-partition model. Net abstrac

tions must deal with at least two dimensions and the four-partition model provides a more
natural structure for analyzing the effects of bends in path segments and the interaction

of nets competing for space across an area. Second, use a more complex pin assignment
model or at least more complex pin assignment cost functions. The current cost functions
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are quite simplistic and optimize basically for net length without considering subsequent
congestion and blocking effects. Also, one could consider stopping the decomposition at

larger subproblems and then using a more sophisticated algorithm than pattern routing to
perform the final detail routing. Unfortunately, this runs counter to thegoal ofa consistent
hierarchical decomposition method that spans the spectrum ofglobal and detail routing.
However, this may be the best solution in terms ofthe engineering trade-offs in the imple
mentation of the method. In the current implementation, run times are dominated by the
partitioning process.

Another improvement to the decomposition model deals with its coupling to the
pattern router. The analysis ofa final subproblem is not really a simple pattern match and

allows for many special cases. The dominant factor in this complexity is the part of the
partitioning model that treats pseudo-pins and internal pins differently. As seen in Table

5.1, internal pins contribute overwhelmingly to the number ofbasic patterns. Since internal

pins can not be avoided in the final subproblems, the treatment of pseudo-pins must be
changed and made consistent with the treatment of internal pins. That is, each current
pseudo-pin should represent two pseudo-pins, one for each side of the partition. In this

model, pseudo-pins lie on the same abstract grid as the internal pins and thus, all the pins
in the problem are treated consistently. With out the distinction between pseudo-pins and
internal pins, the patterns in the enumeration reduce to a set similar to the set of cases

without internal pins. The layer specification of the path segment implicitly connecting
the two pseudo-pins is restricted by the layer constraints of what used to be the single
pseudo-pin and independent layer changes may occur at each of the two pseudo-pins if
necessary. Also, note that the specification of the target final subproblem was derived as a

matter of convenience for the subsequent case enumeration. The relationship between the
characteristics of subproblems and the partitioning process was not fully considered and
the target final subproblem is not often a the natural result of the partitioning process.
This is an aberration to the goal ofa consistent decomposition process. Again, since 2x2
abstractions seem most usable, a switch to a four-partition model should provide more
natural and consistent subproblem formulations.
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5.2 Maze Routing

In early experiments, a maze router was used to perform the final subproblem

routing. For these experiments the partitioning was stopped when a subproblem contained

only two nets and the size of the routing region decreased below some maximum upper

bound. The size constraint was introduced to prevent the program from trying to maze
route subproblems that could berouted faster if theywere partitioned further. In retrospect,

the maze router probably performed better than the pattern router. The switch to the

pattern router occurred on the premise that it would provide a speed advantage over the

maze router. Unfortunately, the extra partitioning required by the pattern router is past

the break-even point for the current implementation of the method and the run time of the

program using the patternrouter is dominated by the partitioning time. More work needs

to be undertaken on when to stop the partitioning process. For the current implementation,

our results indicate that it should be stopped at a higher level than the simple switchboxes

required by the pattern router. The actual stopping criteria will depend on the partitioning

model and its implementation as well as the subproblem routing method.

5.3 Subproblem Routing Order

The subproblems in the method described in this report are not independent of

each other in two ways. First, the pseudo-pins are allowed to float at a fixed position

along their respective switchbox edges until constrained by detail routes. Second, within

the restrictions of the containing partition segment, the pseudo-pin layer assignments also

remain unconstrained until specified during the final subproblem routing. The effect of

these to characteristics is to make adjacent subregions mutually dependent and thus the

order of routing the subproblems affects the final solution.

Some work was done on this subject by Nishizaki [Nis] using an early version of the

program written for this work. Based on related experiments and his results, the following

priority function has been chosen to order the subproblems.

priority = 30(£ - I) + lOn + p

where
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Percent (%)
Reduction

Irregular Cut Path Cost Functions
Minimum Capacity Minimum Density

Maximum 15.9 13.7

Median 11.9 12.6

Mean 11.9 11.3

Minimum 8.0 6.5

Table 5.3: Percent reduction in overflows due to ordering heuristic

L = the maximum number of routing layers in the design
/ = the number of routing layers in the subproblem

n = the number of nets in the subproblem
p = the number of pins in the subproblem

Table 5.3 shows statistics on the percentage reduction in the number of total

overflows that results from using this priority function instead of a depth-first search of the

hierarchy. Values were obtained for boththe best minimum capacity and the best minimum
density cost function combinations. Based on the table, using the priority function heuristic
always performs better than using the depth-first search order.

NishizakPs results arebased on a version of the program that used a mazerouter to

perform the final subproblem routing. In addition to static ordering, he also tried ordering

methods based ondynamic calculation of priorities, adjacency graphs, and bottom-up clus
tering. However, the simple static ordering method performed best. Some other possible

variations include combining a dynamic ordering scheme with rip-up and re-route phases

and applying an ordering method to nets instead of or in addition to subproblems. For

example, groups of nets could be routed in order according to their priorities. The priority

values could be either predefined by the user or calculated dynamically by the program. For
each group of nets, all the subproblems containing a net or nets from the group would be
routed using the chosen subproblem ordering technique. These more detailed experiments
in subproblem routing order are left for future work.



Chapter 6

Rip-up and Re-route

The routing problem has been shown to be NP-complete [Joh83] and as such,
any heuristic constructive approach can not guarantee 100% success on all problems. The

concept ofrip-up and re-route has been used extensively in the past (particularly in gate-
array routing) to resolve overflows by providing a method ofbacking outofthebad decisions

made by the heuristics. Afew recent examples ofthe use ofrip-up and re-route techniques
are [DK82, MS84, SSV87, TS88]. Here, the goal is to implement a rip-up and re-route
algorithm suitable for the hierarchical structure of the decomposition described in this
report.

The idea behind rip-up and re-route techniques is to provide an iterative back

tracking process that will allow the routing program to escape dead ends in the routing
solution space. Typically, there are two kinds of modification performed by rip-up and
re-route techniques. The first kind of modification moves or relocates previously routed

nets or net segments to make room for a blocked net or to allow a shorter path for a net.

This has been called shove-aside [DK82] or weak modification [SSV87]. The second kind of
modification removes previously routed nets or net segments to allow the connection of a

blocked net. Nets that have been ripped-up are put in a list for later re-routing. This has
been called rip-up [DK82] or strong modification [SSV87].

The following describes how rip-up and re-route techniques may be applied to a
tree of hierarchical subproblems.

91
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Figure 6.1: Relationship between subproblem tree and partitioned region

6.1 Hierarchical Rip-up and Re-route

The application of rip-up and re-route techniques to a hierarchy of subproblems

requires considering twosituations. These cases are ripping-up and re-routing nets to relieve

congestion within a subproblem and ripping-up and re-routing nets to relieve congestion

on the boundary between sibling subproblems. To provide background, the relationship

between the tree of hierarchical subproblems and the partitioned routing region will be

reviewed, some terms will be defined, and some general observations about changing routes
in the hierarchy will be discussed.

The hierarchical two-partitioning performed by the partitioning process in this

report produces a binary tree of subproblems. The relationship between this tree and the

partitioning of the routing region is shown in Figure 6.1. The root of the tree corresponds

to the original routing problem. The children nodes of the root node correspond to the two

subproblems (and thus the two subregions) created by the partitioning. The partitioning
process is recursive and thus this relation holds for all nodes and their children. A leaf node

corresponds to a final subproblem. In Figure 6.1, R0 is the root of the routing hierarchy

and corresponds to the original routing problem. This problem was partitioned into Ri and
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R2. The subproblem R2 was partitioned into R3 and £4 and finally thesubproblem R3 was
partitioned into Rs and R6. The leaf nodes ofthe subproblem tree are Ru £4, Rs, and R6
and are the final subproblems of the hierarchical decomposition that must be routed.

Now, consider how overflows may occur with respect to the problem hierarchy.
The term partition overflows is used to refer to overflows caused by insufficient capacity
along a partition and the term subproblem overflows is used to refer to overflows that occur

within a subproblem. Note that a partition overflow between two siblings can be considered
a subproblem overflow of the siblings' parent.

The actual path of a given net is gradually refined throughout the hierarchical
process. At each step more constraints are placed on its route by using pseudo-pins to
mark where it may cross subregion boundaries. A feed-through net is defined as a net of

a subproblem that does not contain any pins of the original routing problem, i.e., it only
contains pseudo-pins.

At each stage in the decomposition, subproblems are partitioned into their con
stituent subproblems. The cut path that physically delineates this partition forms the
common boundary ofthe constituent subproblems and is referred to as the partition ofthe
subproblem it partitions.

To motivate the following discussion, consider how routes may be changed in the
hierarchy. Figure 6.2 shows a routing region, the corresponding routing hierarchy, a global
route of a particular net in that hierarchy, and a modified route of the same net. In the

routingregion, the solid lineshows the original path of the net and the broken line shows the

modified path. Nodes in the routing hierarchy are shaded if the corresponding subregion
contains the net. Two versions of the routing hierarchy are exhibited, corresponding to
the original and modified versions of the net's path. The path of the net may be changed
from passing through both of a pair of sibling subregions to passing through only one of the
subregions or vice versa by changing the pin position assignment on a partition ofone ofthe
siblings' ancestors. In this particular case, the net is changed from traversing both of the
sibling regions R13 and RXA to traversing only R13 by changing the pseudo-pin position on
the partition of R2. Thus, pin reassignment in the hierarchy is an example of the rip-up and
re-route technique known as weak modification. Later, another operation will be discussed
that also performs weak modification.

Notice that the pin reassignment on R2 changes the subproblems corresponding
to R5 and R6. These changes must be propagated throughout the trees rooted at R5 and
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Re. These subtrees must be traversed to determine whether the changes create any other
overflows. I.e., the modification is legal only if the changes don't cause one of the moved

nets to overflow insome other region. Thus, it is desirable to perform the pin reassignment
at the root node of the smallest possible subtree in order to minimize the amount of required
change propagation checking. This criteria is also optimal in the sense that a minimal-size
net segment will be moved to effect the re-route.

6.1.1 Subproblem overflows

Based on the previous discussion about moving nets between sibling subregions,
the problem of rip-up and re-route in a subproblem might be defined as follows. Given a
subproblem that can not be routed because of some particular congested area and given
the subset of nets of the subproblem that cross this congested area, change the routes of
enough of these nets to make routing across the congested area feasible.

From previous observations, a simple way tohandle this situation is tocompletely
remove any feed-throughs that pass through the congested area from the subproblem. In
the following, different feed-through topologies are examined and the effect on the rest of
the hierarchy of re-routing the feed-through nets is discussed.

The simplest situation occurs when one pseudo-pin of the feed-through net is on
the partition of the subproblem's parent and the other pseudo-pin is on the partition of the
subproblem's grandparent. This case is illustrated in Figure 6.3. Here, R13 is congested and
this congestion can be relieved by moving aportion of the net shown. The net segment that
will move appears as afeed-through net in R13. The feed-through net has one pseudo-pin on
the partition of R12, R13's parent region, and one pseudo-pin on the partition of R7, R13's
grandparent region. By performing a pin reassignment on the partition of R7, the route of
the net can be changed to traverse only £14 instead of traversing both R13 and Ru. This
relieves the congestion in subproblem R13 by completing removing one of its nets. In general,
the partition of a subproblem's grandparent does not necessarily form a boundary of the
subproblem, but this is acommon case. Performing a pin reassignment on the grandparent's
partition allows us toremove the net from the subproblem and isolate it in the subproblem's
sibling. Of course, this is dependent on there being sufficient excess capacity along the
grandparent's partition to allow the reassignment. Note that this case corresponds to the
smallest amount of required propagation in the hierarchy since the grandparent's partition
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is the closest partition in the subproblem tree at which a reassignment can occur. Ingeneral,
the feed-through net may have any number ofpseudo-pins as long as they all fall on either
of the two desired partitions. A feed-through net with only two pseudo-pins is shown for
simplicity. In practice, the number of pseudo-pins will probably have been reduced to two

by previous efforts to relieve routing congestion.

The next topology allows the pseudo-pins of a feed-through net to be on the

subproblem's parent partition and on a partition of any ancestor of the subproblem that
intersects both the subproblem's boundary and the subproblem's sibling's boundary. An
example of this situation is shown in Figure 6.4. The sibling regions are Ri3 and Ri4.
The parent region is iJ12 and the ancestor region is R2. As in the simple case, the idea
here is to route the feed-through net completely in the subproblem's sibling by doing a
pin reassignment on an ancestor's partition. Unfortunately, this may not be a very local
modification. If the chosen partition is the partition of the original routing problem, then
the pin position changes potentially must be propagated through the entire design. In this
example, the entire subtree rooted at R6 has been modified by re-route. Luckily, if the
modifications really are local, the propagation ofthe change in thehierarchy can be pruned
easily. For example, suppose that R8 has been decomposed further so that it is the root ofa

subtree ofthe routing hierarchy. Now, apply the example re-route. When the propagation
reaches Rs, it can be determined that the region originally did not contain the net and

that it still does not contain the net. Thus, the propagation does not need to traverse the
subtree rooted at R&.

The feed-through re-route model can be generalized even more by allowing all
the pseudo-pins of the feed-through to be on any two ancestor partitions. As before, each
partition must must intersect the boundaries of both the current subproblem and itssibling.
An example ofthis case is shown in Figure 6.5. The sibling subregions are R13 and Ri4 and
the ancestor regions are R2 and R7. In this situation, the objective is still to isolate the

route of a net in a particular sibling subproblem. The difference is that the feed-through
could have started being completely routed in the other sibling. This is the case shown in

the example. Originally, the net segment is routed only in £13, but after the re-route, it is
routed only in i2i4. Like the parent-ancestor topology, implementing this case may require
a lot of change propagation. Unlike the previous examples, this topology may require pin
reassignments on two partitions rather than on just one. In theexample, pin reassignments
are required the partitions of both R2 and R7.
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As mentioned earlier, it is possible to perform weak modification without restrict

ing there-route tofeed-through nets. Consider the situation inFigure 6.6. The subproblem
R14 is congested and the nets that want to cross the congested area are not feed-throughs
and can not be moved by any ofthe above pin reassignments. However, if pseudo-pins are
added to a boundary of the subproblem, the net can be made to detour outside of the sub-

problem. In the example, the common boundary with regions Rn and RB is chosen. This
requires having a boundary with excess capacity, a priori knowing where the congestion is
so as to pick the proper boundary and pseudo-pin locations to avoid it, and enough capacity
in the adjacent subproblem(s) to route the detour. Except for the special case where the
congestion is due to partition overflows between descendants, there is no easy means of

determining the nature ofthe local congestion and how to pick the appropriate boundary
and pseudo-pins to avoid it. This partition overflow case will be discussed in Section 6.1.2.

Thefeed-through re-route scheme canbe applied hierarchically. If a net cannot be

moved from a subproblem to its sibling, then the process can be applied at the next higher
level to try to move the net from the parent ofthe subproblem to the parent's sibling. An
example of this is shown in Figure 6.7. The original subregion siblings are R13 and Rt4.
Subproblem jR13 is congested and the first re-route attempt fails because the partition of
R7 has insufficient capacity along the border ofAi4 to allow a pin reassignment that would
remove the net segment from Ri3. However, at the next higher level in the hierarchy, the
parent-grandparent topological model is re-applied and a net segment is moved from R12,
£i3's parent, to the sibling region, Rn, by a pin reassignment on the partition of R5. This
ultimately removes a net segment from Ri3 and relieves the congestion. Note that the

hierarchy provides a mechanism for minimizing the impact of the re-route process. The
process starts by trying to change a minimal-size net segment to perform the modification

and then gradually uses larger and larger net segments as it backtracks up the hierarchy.
Thus, with respect to the granularity of the hierarchy, the minimal amount of required
re-route is used to relieve congested areas.

6.1.2 Partition overflows

Now, consider the case of applying rip-up and re-route to resolve partition over

flows. The problem is defined as follows. Given a partition that has insufficient capacity to
accommodate all the nets that must cross it, modify the routes of enough of the crossing



R

R
11 *•

Ri

R,

R
13

R
14

original

*9

R 10

original route

modified route

contains route

f~) doesn't contain route

modified

Figure 6.6: A complex detour modification

101



102

j
R'

R
13

R
11

R 14

R,

original

R,

Ro

1_|

R 10

original route

modified route

contains route

C^j doesn't contain route

modified

Figure 6.7: Hierarchical application of the feed-through re-route modification



103

nets so that they no longer cross the partition and so that the remaining crossing nets can
be routed across the partition. Basically, the same conditions hold as in the subproblem
re-route case and in fact, after the first step, the sub-problem re-route technique may be
used exactly.

For the subproblem re-route case, one possibility is to move a parent-ancestor
feed-through net so that a net that originally traversed two sibling regions only traverses
one of the siblings. In effect, this changes the route ofthe net so that it no longer crosses
the parent's partition. Changing the route of a net so that it no longer crosses a particular
partition is the goal of resolving partition overflows and thus partition overflow re-route

techniques will utilize the same topologies as discussed in the last section.

The difference between partition overflow re-route and subproblem overflow re

route is that both siblings must be considered at once and thus, the subproblem re-route
can not just be applied sequentially to both sides of the partition. To see this consider the

situation in Figure 6.8. Both sibling regions, £13 and Ri4, have feed-through nets which
may be re-routed to relieve congestion across the partition of R12. For subproblem #13,
this is net A, and for subproblem £14, this is net B. To re-route these feed-through nets
requires a pin reassignment on the partition of R7. Now suppose that the portion of the
partition of R7 that intersects the boundaries of R13 and Ru has zero excess capacity.
Trying to re-route this situation by performing the subproblem technique separately on
each sibling fails because the pseudo-pins in each ofthe subproblems can not move with the

other still in place. Asuccessful pin reassignment on the partition of R7 requires swapping
the pseudo-pin positions ofnets A and B. Thus, both Ri3 and R14 must be considered when

performing the pin reassignment on the partition ofR7. Ingeneral, the choice ofpartitions
and feed-throughs is the same as for subproblem re-routes, but the pin reassignment must
account for a potential swap move instead of just a simple relocation.

As in thesubproblem case, if the re-route fails at this level ofthe hierarchy, it can
be re-tried one level higher in the subproblem tree. However, at the level above a partition
overflow, the problem transforms into a subproblem overflow problem and the techniques
of the previous section may be applied directly for the current level and for all higher levels
in the hierarchy. The problem transformation can be seen as follows. The subproblem in
question is the subproblem of the partition that overflowed. The subset of nets that are

candidates for removal are all the nets that cross the overflowed partition. The number of
nets that must be removed is equal to the number ofnets that cross the partition in excess
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of the capacity of the partition.

The problem transformation from partition overflow to subproblem overflow re

veals the special case where enough information exists to apply the subproblem re-route

detour variant described in the previous section. The congestion that must be avoided is

represented by the overflowed partition and the possible locations for new pseudo-pins are

bounded by the boundaries of the sibling subregions. Figure 6.9 illustrates the two possible
choices of detour directions corresponding to detouring around either end of the overflowed

partition. In this example, the overflowed partition is the partition of R12 and in terms of

the description in the previous section, the detour technique is being applied to subprob
lem Ri2. As in the feed-through re-route model, the partition that will be modified must

coincide with a portion of the boundaries of both children regions, Ri3 and Ri4. To detour

to the left, two pseudo-pins must be added to the partition of R7. One of these pseudo-pins

must be placed on the portion of the partition of R7 that intersects the boundary of Ri3

and the other pseudo-pin must be placed on the portion that intersects the border of Ri4.

Subsequently, a new net must be added to Ru to represent the detour portion of the route.

Finally, the changes must be propagated through the subtree rooted at R7. Similarly, to

detour right, two pseudo-pins must be placed on the appropriate sections of the partition

of R2, a new net, representing the detour segment, must be added to R6, and the effects of

the modification must be propagated through the subtree rooted at R2

6.2 Results

In these experiments, re-routing partition overflows has been investigated using

the feed-through re-route model on the parent-grandparent and the parent-ancestor topolo

gies. Subproblem overflows (that do not originate as partition overflows) were not handled

because these overflows only occur within final subproblems and in general, can not be

detected without actually attempting to route the subproblem. Certainly, specific tests can

be applied to check for subproblem overflows. For example, for the pattern router, if a

subproblem has more than two nets, then the subproblem will overflow. Also, heuristics

maybe used to predict subproblem overflows. For example, certain combinations of pin

layer-specifications and subproblem size may produce a high percentage of overflows and

thus a heuristic may be formulated to check for these conditions. These experiments have

been left for future work. Since final subproblem overflows are not processed, it would
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not be surprising if the re-routing of partitionoverflows increases the numberof final sub-

problem overflows, and indeed, this is the case for the current examples. However, since
it is possible to implement re-route for subproblem overflows, the increase in subproblem
overflows under the current implementation can be overlooked. The point of the current
experiments is that rip-up and re-route on the routing hierarchy can resolve a significant
number ofpartition overflows with a reasonable amount ofbacktracking. Since the re-route
ofpartition overflows and subproblem overflows in the routing hierarchy is consistent, this
result should extend to both kinds ofoverflows in a system that handles final subproblem
overflows.

When using rip-up and re-route techniques, some limit must be placed on the
amount ofbacktracking to prevent the method from trying to search all the possible alter
natives and consuming too much time. In the current approach, there are several ways to
limit the search of alternatives. First, for each re-route attempt, the group of nets to be
re-routed areselected only once. Thatis, a group ofcandidate nets are selected heuristically
and if the re-route fails no other group ofnets is tried for the current re-route topology on
the current subproblem. The selection heuristic is to prefer feed-through nets that belong
to nets that do not have any internal pins in the parent region of the current subproblem.

This is based on the belief that it is easier to detour a section of a net that is far away
from a pin ofthe net than it is to detour a section close to a pin. Second, pseudo-pins are
reassigned along partitions subject to the constraint that a pseudo-pin may not be moved to

a partition segment from which it has been moved previously. Note that as a practical con

sideration, this restriction also prevents oscillation between different re-route alternatives.

Finally, the amount ofsearching is also limited by the choice of re-route topology models.
Initially, only the parent-grandparent feed-through topology model was tried. This is the

simplest possible modification and restricts the changes to the smallest possible subtrees.

In fact, since a breadth-first decomposition of the routing problem is used, if a re-route

attempt using this model works on the first try, then the maximum height of the subtrees

to which changes must be propagated is two. However, in general, if the re-route attempt
fails, the router tries to apply the topology re-route model to the next higher level in the
hierarchy to resolve the overflow.

Table 6.1 shows the percentage of partition overflows that could be resolved by

usingjust the parent-grandparent feed-through model. Results are shownfor both minimum

capacity and minimum density cost combinations. The table shows that even this simple
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Cost Function
Examples

adder2 adder4 adder8 adder2x8

Minimum Capacity 46.7 34.1 31.9 27.9

Minimum Density 37.5 28.6 30.7 15.0

Table 6.1: Percentage of partition overflows resolved using the parent-grandparent feed-
through model

Cost Function
Examples

adder2 adder4 adder8 adder2x8

Minimum Capacity
Maximum 8.0 6.0 10.0 13.0

Mean 2.9 2.3 2.2 2.0

Median 2.0 2.0 1.0 1.0

Minimum 1.0 1.0 1.0 1.0

Minimum Density
Maximum 8.0 21.0 10.0 14.0

Mean 3.2 4.0 2.0 2.7

Median 1.0 3.0 1.0 1.0

Minimum 1.0 1.0 1.0 1.0

Table 6.2: Amount ofbacktracking using the parent-grandparent feed-through model

case helps significantly — 15% to 46.7% ofthe partition overflows were resolved using this
method.

Table 6.2 shows some statistics on the amount of backtracking in the hierarchy
that was required to resolve overflows using the parent-grandparent feed-through model.
The values in the table are given as the difference in levels between the region containing
the overflowed partition and the region containing the partition on which apin reassignment
fixed the overflow problem. The root region is assigned level 0and all subsequent regions are
assigned consecutive integer numbers according to their topological order. Thus, a value
of unity indicates that the re-route worked on the first attempt. Again, both minimum
capacity and minimum density cost combination results are shown. The key result from
this table is that of the re-routes that succeeded, most of them succeeded on the first try.
Note that both the median and the mean are low compared to the maximum. In practice, a
limit can be placed to the maximum number ofbacktrack levels to prevent the re-route from
making too many attempts and to limit the range ofthe changes that must be propagated.

Since, the amount ofbacktracking is small for the parent-grandparent feed-through



Cost Function
Examples

adder2 adder4 adder8 adder2x8

Minimum Capacity 85.7 72.5 72.4 73.8

Minimum Density 75.0 78.2 72.8 68.9
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Table 6.3: Percentage of partition overflows resolved using the parent-ancestor feed-through
model

Cost Function
Examples

adder2 adder4 adder8 adder2x8

Minimum Capacity
Maximum 9.0 7.0 25.0 24.0

Mean 3.9 3.1 4.1 4.4

Median 3.0 3.0 3.0 3.0

Minimum 1.0 1.0 1.0 1.0

Minimum Density
Maximum 6.0 12.0 15.0 19.0

Mean 3.1 4.6 4.0 4.8

Median 3.0 4.0 3.0 3.0

Minimum 1.0 1.0 1.0 1.0

Table 6.4: Amount ofbacktracking using the parent-ancestor feed-through model

model, the parent-ancestor feed-through model was also tried to see if its effects would also

be as local. Table 6.3 shows the percentage of partition overflows resolved and Table 6.4

shows the amount of backtracking. Using this model provides more ways of resolving
overflows at each level in the hierarchy, but may involve propagating changes through large
portions ofthe design independent ofwhich level actually resolves the overflow. For example,
when processing the subproblem containing the overflowed partition, the chosen ancestor
partition might be the partition of the root region. Fortunately, Table 6.4 shows that of the

overflows that are resolved, most of them are resolved quite locally. The median number
of levels back in the hierarchy is 3 or 4. Table 6.3 shows that the use of a more general
re-route model also improves the success rate considerably. The percentage of overflows
resolved ranges from 68.9% to 85.7%.

Since these two models have exhibited local backtracking behavior, infuture work,
the more general re-route schemes described earlier will be investigated. In particular, the
detour re-route for partition overflows does not a priori allow for any more propagation
than the parent-ancestor feed-through model and thus may help increase the percentage of
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overflows that may be resolved with out incurring any additional penalty. The ancestor-

ancestor feed-through is also of some interest, but requires two initial pin reassignments

and may require more propagation on average.

Other areas for future work include improving the selection heuristics for choosing

which nets to try to re-route, trying less restrictive rules on pin reassignments to previous

locations, and implementing strong modification within the context of hierarchical decom

position. Since strong modification implies a net-at-a-time process and one of the strengths

of the hierarchical decomposition is its consideration of all nets simultaneously, any strong

modification process most be contained within each level of the hierarchical decomposition.

These experiments showthat a simple re-route technique can be effective on a hi

erarchy of subproblems. The hierarchical application of the rip-up and re-route is consistent

with the view of hierarchical decomposition as a gradual refinement from rough approxi
mation to final solution. The bottom-up rip-up and re-route confines the modifications

to the smallest possible subtree at each level of the hierarchy. Thus, the decomposition
is a gradual refinement and the rip-up and re-route is a gradual backtrack. Another way
of describing the hierarchical rip-up and re-route is that it provides a continuum of weak

modifications. This range of changes may be defined as very weak to almost strong modifi
cations. A very weak modification would be when an overflow is resolved using the simple
parent-grandparent feed-through model and an almost strong modification would be when

an overflow is resolved by a pin reassignment on a partition near the top levels of the hier
archy. This last case is not a strong modification because the net is not removed from the

problem for later re-insertion. However, the modification may require trying to re-route the
whole net immediately and thus merits being called an almost strong modification.



Chapter 7

Conclusion

The use of hierarchical decomposition for general area routing has been investi

gated in this report. In particular, experiments were conducted to identify methods of

handling the related subproblems of region decomposition, net decomposition, subproblem

formulation and ordering, and rip-up and re-route. Though further work is necessary, the

resultsof the current experiments are promising and informative. Foreach related subprob

lem, important characteristics of the corresponding solution method have been identified,

and comparisons of different solution alternatives have been made.

The most detailedexperiments in this report investigated ways ofperforming rout

ing region decomposition. For this problem, it is important to account for both size and

topological aspects of the routing region in order to reduce the complexity of subsequent

subregions effectively. Based on the results of these experiments, a scan-line-based tech

nique is proposed to generate optimal physical partitions of the routing regions. Such a

technique provides a fast and simple method for applying the desired heuristics. The choice

of partition is critical in that it distributes the complexity of the routing problem across

the hierarchy. A priori, the more accurate information provided by irregular cut paths is

advantageous, but the supporting heuristics and algorithms of the current experiments were

not always able to exploit this information. In particular, though the capacity information

of an irregular cut path is more accurate, it is still local in nature. Thus, at higher levels

in the hierarchy, this information should not be used alone, rather it should be used to in

terpret, assign or supplement capacity information derived from more global observations.

Also, the pin assignment heuristics must utilize the extra information represented by the

topology of the cut path. A disadvantage of irregular cut paths is that more complex geo-

111



112

metric operations are required. This is most apparent in calculating net densities across a

partition and in physically partitioning the geometry of a routing region. However, as the

complexity of routing problems increase, the needfor thesecomplex operations will increase

in general, and the cost of using irregular cut paths relative to the total cost or relative to

other techniques will diminish.

The net decomposition problem is a critical aspect of hierarchical decomposition

since the solutions to this problem most directly affect the complexity ofsubsequent routing

subproblems in terms of net congestion. In this work, the pin assignment problem was

formulated as a linear assignment problem. To properly handle irregular cut paths, either

a new model or more complex cost functions will be required. Thekey problem is modeling

the cost of assigning a net to a position relative to all the nets rather than the individual

net. For irregular cut paths, this process is complicated by bends in the cut path that may

represent blockages to some of the nets. Proximity cost functions seem the most effective

for assigning pins to irregular cut paths because they apply the more detailed information

ofthe cut path to net abstractions in a way that maintains the effectiveness and validity of
the information. Another important issue is allowing deviations from the standard wiring
model. Historically, these deviations have been allowed in the context of very detailed
routing information. An important area of future research is to understand how to allow

these deviations in the context of a routing hierarchy. The key issues are determining
what information is necessary and/or sufficient to allow deviations at higher levels in the
hierarchy, and understanding and modeling the effects of the wiring model deviations at
these levels.

The final phase in the basic hierarchical decomposition method is subproblem
solution. As seen in hierarchical routing on grid graphs, a decomposition method that pro
duces trivial final subproblems is attractive. Unfortunately, the pattern routing method
attempted in this work was hampered by inconsistent pin and pseudo-pin models. Allevi

ating this condition will make the method much more tractable. In general, for the pattern
routing technique to work, the subproblems must be trivial routing problems and must

be natural consequences of the decomposition process. The pattern router is useless if the

decomposition produces cases that can not be handled. On the other hand, the implementa
tion of the decomposition process may warrant stopping higher in the hierarchy and using
more sophisticated detail routing algorithms to complete the problem. The amount and

kind ofanalysis required at each level of the hierarchy may be different. Thus, in addition
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to speed considerations, algorithmic considerations may also indicate that larger or more
complex final subproblems are preferable. Subproblem dependence and the related problem
ofsubproblem ordering is also important. More research is required in this area.

A hierarchical rip-up and re-route method has been described in this report. It
works bottom-up through the hierarchy in a manner that is consistent with the original
top-down decomposition. If the decomposition is viewed as gradual refinement, then the
rip-up and re-route can be viewed as gradual backtrack. The re-route is very restrictive
relative toa re-route on a flat design inthatchanges are restricted tochanges between nodes
in the hierarchy, yet even this subset has demonstrated significant decreases in the number

of overflows. Also, some of the more general ways of performing rip-up and re-route on
the hierarchy have not yet been implemented. The current results indicate that the rip-up
and re-route process can be confined to fairly small subtrees in the hierarchy and that it is
probable that this condition will also hold for the more general methods. Thus, the addition

of these more general techniques should increase overall performance.

Hierarchical decomposition is a powerful technique for handling complex routing

problems. The hierarchy provides a uniform and consistent structure for gathering, ana
lyzing, and applying information. In this context, the hierarchy represents a unification of

global and detail routing in that it provides a method that gradually refines an approximate

solution into a final, detailed solution. The results of this report provide insight on how

to manage and exploit the flow of information in this hierarchy for general area routing
problems.
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