Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990
(Revised 23 May 1991)

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith,
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990
(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith,
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990
(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

The PICASSO Application Framework'

Lawrence A. Rowe, Joe Konstan, Brian Smith, Steve Seitz, and Chung Liu

Computer Science Division-EECS
University of California
Berkeley, CA 94720

Abstract

PICASSO is a graphical user interface development system that includes an interface toolkit and an
application framework. The application framework provides high-level abstractions including
modal dialog boxes and non-modal frames and panels similar to conventional programming lan-
guage procedures and co-routines. These abstractions can be used to define objects that have local

variables and that can be called with parameters.

PICASSO also has a constraint system that is used to bind program variables to widgets, to implement
triggered behaviors, and to implement multiple views of data. The system is implemented in Com-
mon Lisp using the Common Lisp Object System and the CLX interface to the X Window System.

Keywords: Graphical User Interface Development Environment, Application Framework, User

Interface Toolkit, User Interfaces

1. Introduction

PICASSO is a graphical user interface development
system that includes an interface toolkit and an applica-
tion framework. The toolkit contains a library of pre-
defined interface abstractions (e.g., buttons, scrollbars,
menus, forms, etc.), geometry managers, and a constraint
system. The application framework provides high-level
abstractions and other infrastructure to support the devel-
opment of graphical user interface applications.

The P1CASSO framework includes five object types:
applications, forms, frames, dialog boxes, and panels.
An application is composed of a collection of frames, di-
alog boxes, and panels. A form contains fields through
which data can be displayed, entered, or edited by the
user. A frame specifies the primary application interface.
It contains a form and a menu of operations the user can
execute. A dialog box is a modal interface that solicits
additional arguments for an operation or user confirma-
tion before executing a possibly dangerous operation
(e.g., deleting a file). A panel is a nonmodal dialog box
that typically presents an alternative view of data in a
frame or another panel.

This research was supported by the National Science Founda-
tion under grants DCR-85-07256 and MIP-87-15557. The
second author was supported by a NDSEG fellowship adminis-
tered by DARPA.

Figure 1 shows a screen dump of a sample applica-
tion that displays information about employees and de-
partments. The frame, shown on the left, displays
information about an employee. It contains a form with
fields that describe the employee (e.g., name, age, etc.).
Above the form is a menu-bar with pull-down menus that
contain operations the user can execute. The buttons at
the bottom of the frame allow the user to step through the
employees in the database. The panel on the right dis-
plays information about the department to which the em-
ployee belongs. At the top of the panel is a hierarchy
browser that lists departments and the employees in a se-
lected department. Information about the department
that the current employee belongs to is shown below the
browser. The department information includes the man-
ager and a graphics field that shows a floor plan with the
selected employee and his or her manager’s offices high-
lighted. If the user selects a button at the bottom of the
frame to display the previous or next employee and that
employee is in a different department, the department in-
formation in the panel is automatically changed (i.e., the
data displayed through the frame and panel are synchro-
nized).

PICASSO is an object-oriented system implemented
in Common Lisp that runs on the X Window System
[21]. The toolkit, framework, and user applications are
implemented as Common Lisp Object System (CLOS)
objects [7]. A CLOS class is defined for each type of
framework object (e.g., application, frame, form, dialog

() Acasso: Demo Too R £

S8
A &
SR
3 3 3 SRR S
N R X -
= R RS
3
3 Previous Dept Next
5-\ =
R = N \x ¥ S

X Department Panal
] Departnent
Dissartation B flJoa Konstan
entation o Larry Rowe
A Production 1ﬁI
Name: Dooumentation
Floor; s
Manager: Larry Roue

Figure 1: Example Picasso application interface

box, and panel). Instances of these classes are called P1-
CASSO objects (PO’s). Each PO type has a different vi-
sualization and control regime. The toolkit widgets that
implement the visualization and control (e.g., title bars,
buttons and menus) are automatically generated when a
PO is created.

PO’s are similar to procedures and functions in a con-
ventional programming language. They have a name, lo-
cal variables, formal arguments, and a lexical parent. A
PO can be called and arguments passed to it which
causes the PO to allocate space for its local variables and
to create X resources to display the values of selected
variables. The user can examine and edit the data or ex-
ecute code attached to buttons and menu operations.
Code can be arbitrary Lisp expressions that can, for ex-
ample, change the values of variables, call other PO’s, re-
turn to the calling PO, or call a Lisp function.

PO’s are analogous to familiar programming lan-
guage concepts (e.g., procedures, functions, and co-rou-
tines). Frames are similar to procedures. Only one frame
can be active at a time. Calling a frame conceals the cur-
rent frame and displays the new frame. Returning from
the called frame redisplays the calling frame. Dialog
boxes are similar to functions. Calling a dialog box dis-
plays it and the user is forced to respond. A dialog box
returns a value to the caller when it returns (e.g., “OK™).
Panels are similar to co-routines. Calling a panel dis-
plays it in a separate window and the user can interact
with it or any other frame or panel. The location of the
mouse cursor determines which frame or panel receives
user inputs.

Variables can be passed to a PO as parameters in the
call. For example, the current employee in the frame
above is passed to the panel by reference so that the value

can be changed in either the frame or panel and the up-
date will be propagated to the other PO. Traditional
value, value-result, and reference parameter passing are
provided. In addition, two new mechanisms are pro-
vided that implement different kinds of synchronization.
Valuelupdate parameters are similar to value parameters
except that subsequent updates to the actual argument are
propagated to the copy in the called PO. Value-result/up-
date is similar to value/update except the value is copied
back to the calling environment when the PO returns.
These parameter passing mechanisms can be used when
changes to a value displayed through a panel should not
be immediately propagated back to the caller, but
changes to the actual argument should be propagated into
the panel.

PO’s are stored in an external database and loaded
into the application when needed. They are shared by
different applications because the database is shared.
Commonly used PO’s (e.g., a file directory browser and
an error message dialog box) are provided to maintain in-
terface consistency between different applications.

PICASSO provides a collection of widgets (as is pro-
vided by toolkits such as Motif[19] or Open Look[6]) in-
cluding color graphics and tables. PICASSO also provides
capabilities that are similar to other application frame-
works including Garnet [17], InterViews [13], MacApp
[23], NextStep[18], and Smalltalk [5]. PIcasso differs
from these frameworks in that it clearly separates the
framework layer from the toolkit layer. The framework
provides support for defining and accessing local vari-
ables, binding variables to fields in a form, and passing
parameters to other PO’s. These mechanisms encourage
the development of reusable interface components. It is
used to specify bindings between variables and different

views (i.e., dialog boxes, frames, and panels). Parameter
passing is implemented by a constraint system that is
similar to the constraint systems in Grow [1], ThingLab
IT [14], and Garnet. The constraint system is also used to
specify interface abstractions (e.g., scrollbars) as in Gar-
net.

A PICASSO frame is similar to the Smalltalk Model-
View-Controller (MVC) abstraction [11]. A frame con-
tains local variables which correspond to the model. The
form in a frame is the view. And, a frame implicitly de-
fines the controller. Multiple views of the same data can
be created by calling a panel and passing the appropriate
local variable. The way a variable is passed determines
whether or not and when view updates are propagated
back to the frame. The Navigator Framework extension
to MVC developed at ParcPlace Systems provides a sim-
ilar capability.

‘We believe that using conventional programming
language abstractions simplifies the problem of design-
ing and implementing direct manipulation interfaces. In
addition, we believe the PICASSO framework is easier to
learn and use than the Smalltalk MVC and Navigator ab-
stractions because the application developer can use fa-
miliar programming abstractions (e.g., variables and
parameter passing) rather than unfamiliar abstractions
(e.g., active values, message passing, and MVC).

This paper describes the PICASSO framework and
programming model. The programming constructs de-
scribed below are shown as extensions to Lisp. Most us-
ers will not see these textual specifications because a
direct manipulation interface builder is being developed
to create and modify applications. The interface builder
can be used to define any PO. Forms are defined by se-
lecting widgets from a palette and placing them at the de-
sired location in a window with the mouse. Field
attributes (e.g., border, default values, etc.) can be
changed interactively. Similar interfaces are provided to
define other PO types and code. The toolkit and interface
builder are extensible so that developers can add new in-
terface abstractions to the system. The toolkit and inter-
face builder are described elsewhere [10].

The remainder of the paper is organized as follows.
Section 2 describes an example application used to illus-
trate features of the application framework. Section 3
describes the framework model and sections 4 through 6
describe the different types of PO’s. Section 7 describes
the programming constructs used to implement opera-
tions. Section 8 discusses the implementation of PIC-
AsSO and describes applications written with it. Lastly,
section 9 concludes the paper.

2. An Example Application

The personnel browser shown in figure 1 will be used

=

\\\.\
SRS -
SRS

S

Figure 2: Application Window

to illustrate how an application is defined using PICASSO.
Figure 2 shows the initial frame in the application. The
user can scroll through the employees by using the Pre-
vious and Next buttons in the form.

The Search pull-down menu shown in figure 3 con-
tains operations that let the user search for an employee
on any attribute (e.g., age or department). For example,
selecting the By Age... menu operation calls the dialog
box shown in figure 4. The user enters the desired age in
the type-in field and presses the OK button which returns
from the dialog box and changes the display to the em-
ployee closest in age to the value entered. The Previous
and Next buttons now search forwards and backwards by
age. This search order can also be changed by using the
pop-up menu as shown in figure 5.

Department information can be displayed by select-
ing the Department... operation in the Show menu
which calls the department panel shown in figure 1. This
panel contains a hierarchy browser, textual information,
and a floor plan of the department. If the user selects a

Loy tene B
\&% S by Fie ees bl
1 eT T |

i

Figure 3: Search Menu

R '\.::\.

R
R
\\'\\-\Q.\
o

Figure 4: Search Dialog Box

department in the hierarchy browser, the employees in
that department are displayed. The floor plan highlights
the offices of the current employee and his or her man-
ager. The buttons on the right allow the user to change
the current employee either to the selected employee in
the hierarchy browser or the current employee’s manager
or to close the panel. Changing the current employee
causes the data in the frame and the panel to be changed.

3. The PICASSO Programming Model

A PICASSO application, also known as a tool, is com-
posed of a collection of frames, dialog boxes, and panels.
This section describes these PO’s and provides an over-
view of the programming constructs used to implement
the semantics of buttons and menu operations.

A form is an input/output abstraction that corre-
sponds to a paper form. It contains fields through which
data can be displayed and edited by the user. Data can be
displayed in a field using text in different fonts, images,
and drawings. Each form maintains a field visit order

Figure 5: Search Order Menu

and current field and manages the keyboard focus. When
the user moves the mouse into the form, the keyboard is
focused to the current field. The user can change the cur-
rent field by selecting another field with the mouse or by
using keyboard commands to move to the next or previ-
ous field.

Forms also contain display-only labels and decora-
tive trim (e.g., lines and backgrounds). Fields are imple-
mented by widgets and trim is implemented by gadgets
in the toolkit. Widgets are input/output abstractions and
gadgets are output-only abstractions. In addition, a ge-
ometry manager for the form must be specified. The ge-
ometry manager is responsible for repositioning the
fields and labels when a form is resized.

Forms can be used in frames, panels, and dialog
boxes. Alternatively, an implicitly defined form can be
used instead by specifying the widgets and gadgets and a
geometry manager. The widgets and gadgets are called
children. The term widget is used below to refer to a
field, label, or trim in a form.

A frame is a control abstraction that implements a
major application mode or operation. It contains a form
and operations the user can execute. Pull-down menus at
the top of the frame hold the operations which can per-
form computations, change values displayed through the
form, and call dialog boxes, panels, or other frames. An
application may contain many frames, but only one is ac-
tive at any time.

A dialog box is a control abstraction that requires an
immediate response from the user. It requests additional
information needed to complete an operation, or it noti-
fies the user about an error that has occurred or might oc-
cur. The dialog box is displayed in a separate window
that is positioned on top of the PO that called it. More-
over, the user is forced to enter data into it. A dialog box
contains a form and a list of operations that are displayed
in a column of buttons down the right side of the dialog
box.

A panel is a non-modal control abstraction that is
used to view or edit data. It contains a form and a list of
operations that can be displayed either in a menu-bar at
the top of the panel like a frame or in a column of buttons
down the right side like a dialog box. The data displayed
through the form is typically displayed in a different way
in the frame or another panel. For example, the depart-
ment information displayed in the panel in the sample
application also displays information about the current
employee. Many panels may be active at once. The lo-
cation of the mouse cursor determines whether one of the
panels or the frame receives input. Several copies of the
same panel can be active at the same time. For example,
a word processor might use a panel to allow the user to
edit style properties of a block of text (e.g., font, type-
face, etc.). The same panel can be called with different

text blocks so that the user can edit style properties of the
blocks at the same time.

Static and dynamic variables can be declared in any
PO. These variables hold data displayed to the user
through a form as well as other internal data used by the
application. Static variables persist between calls to a
PO. They are allocated when the PO is created. Dy-
.namic variables are allocated each time a PO is called
and deallocated when it returns.! Named constants can
also be declared.

PICASSO uses lexical scoping. The lexical parent of
a PO is the object in which it is declared. A variable ref-
erence that cannot be resolved locally is searched for in
the parent. For example, if a variable is referenced in a
form, but not defined there, the parent is searched for the
variable, followed by the parent’s parent and so forth un-
til the application-wide level is reached. If the variable
is not found in that level, an error is signaled.

Variables can be used in left- or right-value contexts
by using the Lisp function value. For example, given
PICASSO variables x and y, the following code assigns y
tox:

(setf (value x) (value y))

Since variables are lexically scoped, common operation
take variable names and use the appropriate value as ei-
ther a left- or right-value. A Lisp reader macro #! is pro-
vided to simplify the code. This rmacro takes a variable
name, finds the variable, and provides a left- or right-
value reference to that variable.The previous example is
normally specified by

(setf #Ix-name #ly-name)

Another reader macro (#?) is provided that returns the
address of a PICASSO variable. This macro is needed so
that PICASSO variables can be passed by reference. The
use of reference variables is described below. Other uses
of these reader macros are described in section 7.2.
Parameter passing is used to pass values to other
PO’s when they are called. A dynamic variable is created
for each formal parameter. The parameter passing mech-
anisms provided include: value, value/update, value-re-
sult, value-result/update, and reference. Value/update
and value-result/update parameters are useful when dis-
playing different views of a data structure through a
panel, frame, or dialog box. A PO that implements an
editable view is passed the data by reference so that
changes are immediately propagated to the caller. A PO

! Actually, dynamic variables are not deallocated when a PO re-
turns because it takes a long time to re-establish bindings
defined on them. It is more efficient to reuse the same variable
on subsequent calls after re-initializing it.

that implements a non-editable view is passed the data by
value or value/update depending on whether changes
made to the data through other views should be propa-
gated to this view. Updates to data passed by value-result
or value-result/update are deferred until the user exe-
cutes an operation that returns from the PO.

The design of PICASSO encourages the development
of reusable interface abstractions. We expect that gen-
eral-purpose panels and dialog boxes (e.g., table brows-
ers and prompters) will be developed and reused in many
applications. Similarly, forms can be reused in different
panels, dialog boxes, and frames. They can also be re-
used in other forms. For example, a standard name and
address block for a person can be reused in any form that
displays information about a person. To encourage re-
use, each PO has a unique external name. This name is
composed of three parts each of which is a Lisp string:

(package name . suffix)

A package is a collection of related PO’s. The op-
tional suffix is used to identify the type of the PO. Exter-
nal names can be used to specify a PO stored in the
database or already loaded into main memory.

MostPO’s are referenced by name in the definition of
their lexical parent which automatically loads it when the
parent is called. A shorter internal name can be specified
for the PO to simplify the code. In addition, internal
names facilitate changing to a different PO since only the
internal name binding has to be changed. A function is
provided that allows an application to load a PO at run-
time.

Procedural code is used to specify the semantics of
button presses, menu operations, or setup, initialization,
or termination of a PO. In the current implementation,
this code is specified in Lisp. It can reference PICASSO
or Lisp variables and call PO’s or Lisp functions or mac-
ros.

4. Applications

An application window is the outermost object in an
application. This window is managed by a window man-
ager. Iconifying this window causes all children to be
concealed.

Each application maintains a list of packages that are
searched when locking for partially-specified PO’s. For
example, the package search list in the example applica-
tion contains “paper” and “picasso”. The “paper”
package contains the PO’s that define the application.
The “picasso” package is automatically included in
all search lists by the system. It contains built-in PO’s
such as dialog boxes to prompt for a file name and to con-
firm a destructive operation used by all PICASSO applica-
tions.

(deftool (“paper” "demo” . “tool”)
“Employee-department application”
(title “Demo Tool")
(frames (main-frame (“demo” . “frame”)))
(init-code (cpen-database))
(exit-code (close-database)))

Figure 6: Application Definition

The sample application was defined by the deftool
call shown in figure 6. The first line specifies the external
name and formal arguments for the application. The sec-
ond line is a documentation string. The remaining lines
specify the title, frames, and initialization and exit code.
The title is displayed in the application window’s title
bar. The £frames clause specifies the frames used in this
application. This application has only one frame, named
(“demo” . “£rame™), that is bound to the internal name
main-frame. The frame can be found in the “paper”
package so the external name does not need to be fully
qualified. The init-code and exit-code clauses
specify the code to be executed when the application is
run and when it is exited. In this case, these clauses open
and close the database.

5. Forms

Forms are used in frames, panels, or dialog boxes. A
form that can be reused in more than one PO, called a
pluggable form, is defined using the defform con-
struct. Pluggable forms typically have local variables
and parameters and like any PO, they may have initial-
ization and termination clauses that specify code to be
executed when the PO that holds the form is called and
exited, respectively.

The form used to browse employee information in

the sample application was written as a pluggable form.
The definition is shown in figure 7. The form name is
(“paper” “employee” . “form”). Theclauses
in the form definition specify the children, geometry
manager, and setup code. The children clause speci-
fies the fields and labels in the form. Each “make-" call
instantiates a widget which can be a predefined widget or
gadget in the PICASSO toolkit or a new widget or gadget
defined by the user. A field or label specification is pre-
ceded by a symbol in some cases to declare a variable
bound to that widget. For example, dept-£field is
bound to the text gadget that displays the name of the em-
ployee’s department. A gadget is used rather than a wid-
get because the application does not allow the user to
change the department.

The buttons at the bottom of the form (e.g., Previous,

(defform (“paper” “employee™ . *form"”) ()
“This form displays an employee record”
(gm ‘packed-gm)
(children

(make-gadget :value *Employee”

:geom-spec '(:top 50)

:font “gallant.r.19%)
(make-null-gadget :geom-spec ‘(:top 20))
(make-collection-gadget

:gm ‘rubber-sheet-gm
:geom-spec ‘(:top 100)
:children
*((picture-gadget
(make-image-gadget
:geom-spec ‘(.55 0 .45 .99)))
(name-field (make-text-gadget :label “Name:"
:geom-spec ‘(.15 0 .35 .33)))
(age-field (make-text-gadget label “Age:"
:geom-spec ‘(.15 .33 .35 .34)))
(dept-field (make-text-gadget :label “Dept:"
:geom-spec ‘(.15 .67 .35 .33)))
(make-collection-gadget
:geom-spec fill :gm ‘rubber-sheet-gm
:children
‘((pb (make-button :value *Previous”
release-func ‘(get-emp :dir :prev)
:geom-spec ‘(0 0 .5 .47 :center)))

(kb (make-pop-button :label “Search Key"
‘label-type :botton
iitems ‘(*Name” *Age” *Dept”)"
:geom-spec ‘(.4 0 .2 1 :center)))

(nb (make-button :value "Next"
‘release-func ‘(get-emp :dir :next)
:geom-spec ‘(0 .52 .5 .47 :center)))

(setup-code
(progn (bind (value #!name-field) (name #lemployee))

(bind (value #!age-field) (age #lemployee))
(bind (value #lpicture-gadget) #!picture)
(bind (value #!dept-field) #!dname)
(blet (dimmed #!pb)
wvar ((e #lemployee) (k #lkey))
(not (prev-exists e k)))
(blet (dimmed #Inb)
wvar ((e #lemployee) (k #lkey))
(not (next-exists e k)))
(blet (value #lkb) :var ((k #lkey))
(symbeol-name k))
(blet #lkey :var ((kbv (value #!kb)))
(make-keyword kbv)))))

Figure 7: Form Definition

Name, and Next) are also specified. They are combined
into a collection gadget so they will be arranged horizon-
tally.

The gm clause specifies the geometry manager which
lays out the widgets in the form. Many geometry man-
agers are provided by the PICASSO toolkit. Each takes a
set of widgets and optional layout parameters, called ge-
ometry specifications, and calculates an xy-offset for
each widget within its parent.

The setup-code clause specifies code that is to be
executed when the PO is created. In this case, the code
establishes bindings between the variables that hold the
data and fields in the form through which it is displayed.
Bindings are also established for the buttons at the bot-
tom of the form that will dim Previous and Next if
records do not exist and that reset the variable # ! key to
hold the search attribute. Note that the variable #!key
is declared in the frame, and it is accessed through lexical
scoping. The functions used to define the bindings are
described in section 7.3.

Sometimes forms are only used in a single frame,
panel, or dialog box. It complicates the application spec-
ification if the developer has to create a separately named
form so the developer can specify the children and other
form clauses directly in the frame, panel or dialog box
specification. These forms are called implicit forms and
they cannot have local variables or parameters. They
can, however, access variables and parameters in their
lexical parent. Examples of implicit forms are presented
below.

6. Frames, Dialog Boxes, and Panels

Frames, dialog boxes, and panels are callable PO’s,
They are typically called in response to a user action
(e.g., a menu selection or button press) as follows:

(call PO :arg-1 value :arg-2 value ...)

The PO is specified by an expression that evaluates to a
pointer that references the appropriate PICASSO object.
The expression is usually the internal PO name. Param-
eters are passed using Lisp keyword-value pairs.
The semantics of calling a PO are:
(1) Fetch the PO from the database, if it is not
already in memory.
(2) Bind the actual arguments to the formal ar-
guments.
(3) Allocate and initialize local variables.
(4) Fetch the lexical children of the PO (e.g.,
forms, frames, etc.), if they are not already
in memory.
(5) Execute the init-code for the PO.
(6) Display the object on the screen.
(7) Enter an event loop.
PO’s are cached in main memory to avoid the delays in-
herent in accessing the database. Lexical children are
fetched when the PO is called to improve the perfor-
mance of subsequent calls. Recall that dynamic vari-
ables are allocated on each call and static variables are
allocated when the PO is created. The event loop dis-
patches all events (e.g., mouse, keyboard, redraw, etc.) to
the appropriate event handlers.

The following code returns from a PO:
(ret PO optional-return-value)

This code is executed in response to a user action (e.g., a
menu selection or button press) or because a lexical par-
ent is cleaning up its children before exiting. The seman-
tics of returning from a PO are:
(1) Force active lexical children to execute a
return.
(2) Execute the exit-code.
(3) Conceal the PO which erases it from the
screen.
(4) Copy result arguments back to the actual
arguments. '
(5) Re-enter the event loop of the calling PO.
The remainder of this section, describes how callable
PO’s are defined.

6.1 Frames

A frame can specify a named form or a set of children
widgets through which data will be displayed to the user.
Variables defined in the frame, called frame variables,
store the data on which the frame operates. Forms, pan-
els, and dialog boxes in the frame can access this data by
referencing the frame variables or the frame can pass

(defframe (*paper” “demo” . “frame”) ()
*“This is the only frame of the Paper Demo appplication”
(static-variables employee department key)
(panels (dept-panel (*department” . "panel”)))
(dialogs (search-dialog (“search" . “dialog™)))
(form (emp-form (“employee™ . *form")))
(menu-bar
(*Show" “Show Related Information”
(dept-entry
("Department”
(progn (call #ldept-panel :emp #?employee
:dept #?department)
(setf (me-dimmed #!dept-entry) t)))))
(“Search “Search Employes”
(*by Name ...
(setf #lemployee
(get-emp :name
(call #1search-dialog :entity “name”))))
(by Age ..."
(setf #lemployee
(get-emp :age
(call #1search-dialog :entity "age™))))
(“by Department ..."
(setf #lemployee
(get-emp :department
(call #isearch-dialog :entity “dept™)))))))
(setup-code
(progn (setf #lemployee (get-first-emp))
(blet #!department :var ((e #lemployee))
(department e)})))

Figure 8:Frame Definition

data to them as arguments.

A frame is defined using the defframe construct.
Figure 8 shows the code that defines the frame in the
sample application. Three variables, two menus, a form,
a panel, and a dialog box are defined in this frame. The
variables employee and department point to CLOS
objects that represent an employee and his or her depart-
ment. The variable key holds the current search key
(e.g., age or name).

The menu-bar clause defines two menus: Show and
Search. A menu specification includes: 1) the menu
name (e.g., Search), 2) a long name that will be dis-
played at the top of the menu if it is torn off (e.g., Search
Employee), and 3) a list of operation specifications. An
operation specification includes: 1) an optional variable
name for the menu entry (e.g., dept -ent ry in the De-
partment operation in the Show menu), 2) an operation
name, 3) the code to execute when the operation is se-
lected, and 4) operation options (e.g., dimmed, left or
right string, etc.). The PICASSO menu, automatically
supplied by the system, is the leftmost menu in the menu-
bar. It contains operations that are useful everywhere
(e.g., Help, Print Window, Quit, etc.).

The Department operation in the Show menu calls
the department panel and passes the employee and de-
partment objects to it. They are passed by reference so
that changes made in the frame will be propagated to the
panel and vice versa. The operations in the Search menu
change the order in which records are scanned.

6.2 Dialog Boxes

Dialog boxes are defined using the defdialog
construct. The code shown in figure 9 defines the search
dialog box in the sample application. The dialog box has
a single value parameter, named ent ity, thatis setto a
Lisp keyword that indicates the type of search being per-
formed (e.g., age or name) and a variable, named
prompt-text, that is set to a string that prompts the

(defdialog (“paper” “search” . *dialog") (entity)
(dynamic-variables
(prompt-text (string-concat “Desired * #lentity)))
(children
(type-in (make-entry-widget :value **
:geom-spec :center)))
(buttons
("OK (ret self (if (eql (value #ltype-in) **)
nil (value #ltype-in))))
("Cancel” (ret self nil)))
(9m ‘rubber-sheet-gm)
(init-code (setf (value #itype-in) nil)) .
(setup-code (bind (label #ltype-in) #iprompt-text)))

Figure 9: Dialog Box Definition

user (e.g., “Desired age”). The dialog box has an im-
plicit form so it has children and gm clauses. Two
buttons are specified: OK and Cancel. The setup code
binds prompt -t ext to the type-in field label so an ap-
propriate prompt will be displayed. The rest of the def-
dialog structure is similar to the other PO definitions.

6.3 Panels

Panels are defined using the defpanel command.
The code shown in figure 10 defines the department
panel in the sample application. The panel takes two ref-
erence arguments (i.e., emp and dept) that point to the
current employee and the employee’s department.
Changes made to these variables in the panel are propa-
gated to the variables in the calling frame. Moreover, if

Jhe.panalisactive changasmadetathe frame yagiahles

{defpanel ("paper” “department” . “panel”) (&ref emp dept)
(titte *Department Panel”)
(children
{bw (make-browse-widget :geom-spec ‘(:top 100)
:col-widths ‘(1 1.5) :data *all-employees*
:sort-keys *((“Department” . ,#dname)
(*Employee” . ,#'name))))
(make-collection-widget :gm ‘rubber-sheet-gm
:geom-spec ‘(:bottom 0)
:children
‘((gg (make-image-gadget
. :geom-spec ‘(.55 0 .45 .99 :center)))
(dname-field (make-text-gadget :label "Name:"
:geom-spec ‘(.25 0 .25 .33 :center-y)))
(floor-field (make-text-gadget :label “Floor:”
:geom-spec '(.25 .33 .25 .34 :center-y)))
(mgr-field (make-text-gadget :label “Manager:”
‘geom-spec ‘(.25 .67 .25 .33 :center-y))))))
(gm ‘packed-gm)
(buttons
(sel-emp
(“SelectEmployee”
(get-emp :name
(name (car (current-selection #!bw))))))
(sel-mgr
(“Select Manager”
(get-emp :name (mgr #lemp))))
(“Close (progn (setf (me-dimmed #!dept-entry) nil)

(ret self))))
(setup-code
(progn (bind (value #ldname-field) (dname #Idept))
(bind (value #lfloor-field) (floor #!dept))
(bind (value #lmgr-field) (mgr #!dept))
(bind (value #!gg) (floor-plan #!emp))
(blet (dimmed #!sel-emp)
:var ((sel (current-selection #1bw)))
(null sel))
(bind (dimmed #Isel-mgr) (dimmed #!sel-emp))
(blet (current-selection #!bw)
:var ((d #!dept) (e #lemp))

nil))))
Figure 10: Panel Definition

are propagated to the panel.

The remainder of the definition specifies the panel
buttons (e.g., Select Employee, Select Manager and
Close), an implicit form, and bindings between the vari-
ables, form widgets, and menu operations.

7. Programming Constructs

This section describes the programming constructs
added to Lisp to simplify the development of PICASSO
applications. Topics discussed include: procedural code,
variables and constants, and bindings.

7.1 Procedural Code

The environment in which procedural code is exe-
cuted is defined by the PO that contains it (e.g., the frame
for menu operations). This environment includes two
implicitly defined Lisp variables: self and event.?
Self is bound to the object that holds the code (e.g., the
button, menu pane, or PO) and event is bound to a de-
scription of the event that caused the code to be executed
(e.g., a “button press” event). All PICASSO. variable
lookups are performed relative to the value of se1£. For
example, the code in the Department operation in the
Show menu in the frame calls the department panel as
follows:

(call #!dept-panel :emp #?employee

:dept #7department)

This code references three PICASSO variables: dept -
panel, employee, and department. The value of
dept-panel is a pointer to the panel object. The ad-
dresses of employee and department are passed to
the panel because both arguments to the panel are refer-
ence parameters.>

7.2 Variables and Constants

Variables are created automatically when a PO is cre-
ated or called. All PO definitions can have clauses to de-
fine static- or dynamic-variables. Static-variables are
created when the PO is created. Different invocations of
the PO reference the same variables. Dynamic-variables

2 These were implented as Lisp variables instead of Picasso
variables because they should be visible from all lexical scopes
and because this implementation still allows the use of PICASSO
variables named “self” and “event.”

3 Most languages do not require the program to specify the ad-
dress of reference parameters at the point of the call. This
nonstandard usage was required because our implementation
uses the Lisp evaluator to evaluate code.

are created when the PO is called. Different invocations
reference different variables.

Static-variables can be created by the application at
run-time using the add-var function. For example,

(add-var variable-name place)

creates a static-variable named variable-name in the PO
specified by place. The variable is immediately visible
to lexical children of the PO.

Named constants can be specified with the con-
stants clause. They behave just like variables, except
the value cannot be changed. Named constants can also
be created implicitly in other clauses of a PO definition.
For example, all lexical children of a PO (i.e., PO’s spec-
ified in the frames, forms, panels, or dialogs
clauses) are given names that are constants in the parent
PO. For example, emp-form and dept -panel are
constants in the sample frame.

Widgets specified in the children clause of a PO
definition can also be bound to named constants by re-
placing the widget definition

(make-widget args)
with a pair
(constant-name (make-widget args))

This construct creates a name that references the widget
when the PO is instantiated. The same technique can be
used with buttons specified in panels and dialog boxes
and with menus specified in frames or panels.

Recall that ariables and constants are referenced by
using the “#!” and “#?” macros. The value of the vari-
able is looked up in the current environment. As de-
scribed above, the current environment depends on
which PO is active and the location of the mouse cursor.
The setup, initialization, and termination code is always
executed in the context of the defining PO.

Once the current environment is established, variable
lookup proceeds in a lexical fashion. The variables in the
PO referenced by self are searched first, followed by
the PO that is the parent of sel£f. Parent links are fol-
lowed up to the application window. For ease of use,
! po always refers to the closest PO. For example, it is
the PO itself if the current lexical environment (i.e.,
self£) points to a PO. Otherwise, it is the closest enclos-
ing PO. The variable # ! po can be used in button or
menu code to locate the enclosing PO since sel£ points
to the button or menu entry.

Sometimes it is necessary to specify where to look
for a variable. For example, a frame’s initialization code
might define bindings between frame variables and wid-
gets in the enclosed form. The syntax “# !variable-
name@place” evaluates place to find a starting point for
the search for variable-name. More complicated search

paths can also be used to reference variables in different
environments. For example, the expression

#lstart-frame@(current-tool)/x

references the variable x in the start-frame in the
current application. Any number of “/”-separated
names may occur. The “@” clause can only be used on
the first variable, since the other names are located based
on the value of the preceding expression. Notice that the
location specifier in the “@” clause can be any Lisp ex-
pression, including a call, in this case, to the function
current-tool.

Figure 11 shows a partial list of the variables defined
in the sample application and how they can be referenced
when the current environment is the department panel.

7.3 Bindings
Bindings are used to maintain consistency between

variables and values displayed to the user and to declare
constraints between variables and values in the applica-

tion. Any PICASSO variable or CLOS object slot can be
bound to other variables, slots, or functions of variables
and slots. The simplest case merely binds a single vari-
able or slot to another, for example the setup code for the
sample panel includes:

(bind (value #!gqg) (floor-plan #lemp))

This binding declares that whenever the £loor-plan
slot of the CLOS object pointed to by the PICASSO vari-
able # ! emp changes, the value slot of the image gad-
get pointed to by # ! gg will be updated to the new value.
In this case, whenever the £f1loor-plan slot of the
structure pointed to by #! emp changes, the graphical
viewer is updated to display the new floor plan.
The general syntax for the bind operation is:

(bind bound-slot-or-var triggering-slot-or-var)

A more flexible constraint declaration is available to
bind a slot or variable to a function of one or more other
slots or variables. The blet operation specifies the slots
or variables to trigger the change, the slot or variable be-

(“paper” “demo” . “tool”)]

main-frame

X

(“demo” . “frame™)

key

employee
department

dept-panel
emp-form

(“employee” . “form™) (“department” . “panel”) (“search” . “dialog™)

picture-gadget emp entity

name-field dept prompt-text

age-field bw type-in

Expression PO Variable

#lemp anel emp
#lkey g’ame key
#lemp-form/name-field form name-field
#!name-field@(find-po-named ‘(“employee” . “form™)) form name-field

Figure 11:Non-local Variable References

10

ing bound, and a function to compute the new value. For
instance, the setup code in the sample form includes:

(blet (dimmed #!pb)
wvar ((e #lemployee) (k #lkey))
(not (prev-exists e k)))

This code indicates that whenever the employee or
key variables change, the dimmed slot of the Previous
button should be set on when no previous employee ex-
ists and off otherwise. In other words, the button is
dimmed whenever there is no previous employee along
the specified search key.

A binding is a one-way constraint. Dimming the but-
ton would have no effect on the variables. Multiple bind-
ings can be defined to implement a two way constraint.
A typical two-way constraint binds a PICASSO variable
to a display widget and vice versa. In this way, the dis-
play is updated if the variable’s value is changed (e.g., in
another panel or dialog) and the variable is updated if the
user types a new value into the widget. Cycles in bind-
ings are implemented by iterating to a fixed point value.
The iteration terminates when the new value assigned to
a variable or slot is the same as the current value.

This binding mechanism is relatively simple, but it
has proven extremely valuable in implementing user in-
terfaces. The implementation of the binding mechanism
is discussed in [8].

8. Discussion

This section describes our experiences implementing
the PICASSO framework, some sample applications that
have been implemented using it, and the current status of
the system.

It has taken approximately ten man-years over a four
year period to design and implement PICASSO. During
that time, we have implemented:

(1) a foreign function interface to X10 (XCL)
[15],
(2) CLOS abstractions for X entities such as
displays, windows, fonts, and colors (XC-
LOS) (16],
(3) alow-level POSTGRES interface (libpq)
[26]’
(4) apersistent CLOS interface to POSTGRES
(SOH) [25],
(5) two INGRES query language interfaces
(CLING/QUEL and CLING/SQL) [4],
(6) two versions of the toolkit,
(7) two versions of the framework, and
(8) an X11 and CLX[22] based version of the
system.
The first version of the toolkit used a heavyweight ab-
straction for a field that was implemented by one or more

11

X windows. For example, a labeled, type-in field used
two X windows: one for the label and one for the field.
A third window was created that contained these two
windows when the form was being edited so the user
could select the field with a mouse and move it to a new
location. Unfortunately, the implementation of this ab-
straction was too inefficient.

The current toolkit provides widget, gadget, and syn-
thetic-gadget abstractions that can be used to implement
fields. Gadgets are used to implement display-only enti-
ties significantly reducing the number of X windows that
have to be created and mapped when calling a PO. Dec-
orative trim is an example of a display-only entity (e.g.,
the floor plan in the department panel). Synthetic-gad-
gets are display-list representations of drawable data that
are used for high-performance output operations (such as
tables and pop-up menus). They are similar to glyphs in
InterViews [3]. Widgets are objects that are associated
with X windows and can therefore directly process input
events as well as display output. This version of the tool-
kit also implemented the geometry management abstrac-
tion and constraint system.

The first version of the application framework treated
fields and variables as separate entities and implemented
a customized propagation system to synchronize them.
And, it used an interpreter to execute procedural code.
The system was too slow. This problem was accentuated
by performance problems that we encountered with early
implementations of PCL which implements CLOS and
the inherent speed of the Sun-3/75s and DEC Microvax-
II’s that we were using at the time.

The current framework treats field names as vari-
ables, directly executes procedural code, and uses a bet-
ter implementation of PICASSO objects. The parameter
passing model was also introduced in this version. Of
course, performance was helped by the improved imple-
mentations of CLOS and the move to faster machines
(e.g., Sparcstations). Run-time space is currently a prob-
lem since Common Lisp has never been particularly
space efficient. The current implementation requires 16
to 32 megabytes of main memory for most applications.
Our goal has always been to focus on functionality,
speed, and rapid developmentrather than space. We be-
lieve the trade-off of space for CPU speed is reasonable
since memory prices are rapidly decreasing. Further-
more, current Lisp systems are now providing tools to
manage space more efficiently (e.g., the code Presto
sharing and dynamic loading facilities of Allegro Com-
mon Lisp).

PICASSO has been used to implement several applica-
tions including:

(1) a facility management tool (CIMTOOL)
[201(24],
(2) arecipe generator for process engineers

Robbie: Editor

on 18-044pAr=nGIA (]

C
Tbloch (Iacemnor in)

(e (nul to-ba
(L]

or)
ack (plckeup bassar)

(block E““ Back)

nnn

B [(dat Ina-tunctlon folloe=trail-cnce (:

(lerl (

st} (la-Besper-vent)))

per-north) |) (la-besper-a

(daf Ina comsand face-north

(while (not-taci

ng=nerth)

(turn=iaft)))

Lesson:

Lesson 7

have functione and kooissas at your dissomal,
about 1o 10iicw Ihe yellow brick road (wail, actu-
Ty 4 path of color ans beepsrs) (o recelve grast revards.
You are o program Rbble 1o follos s sath of bespers,
picking up N8 Re goss aleng. 1t
el by hiving & beeper
[25ch prior beaper (iners wili

I "o
Thl

i
il of hie bespars thars and aay "
[¥ou may 8180 71ng the bell 11 you eish.]

y to develop s I_I- functlona which 'lll halp datarmine

are 10 go nex These can aither ba functions which (Ilke

s, Junctlone I’ leason 8] araly 9
aking actien or fune

ar w which taks action while
thef Ing Ihforaation

DARCZ
bEF [RE-COTLAD
oerixg-ruecTios

Previous Expression...

Figure 12: Robbie-the-Robot

(RGTOO0L) [12],

an educational program to teach Lisp pro-
gramming (Robbie-the-Robot)[9],

a direct manipulation interface builder,

a hypermedia document editor and browser
(HIP) [2], and

an application for previewing and indexing
video data.

A screen dump of Robbie-the-Robot is shown in figure
12. The frame in the upper-left shows Robbie in his two-
dimensional world filled with beepers and walls. The
panel in the lower-left displays the lesson on which the
student is working. The panel on the upper-right displays
a Lisp code browser and editor that highlights code as it
is being executed. The panel on the lower right is a step-
per-tracer that allows the student to control the execution
of the program, to set breakpoints, and to browse the ex-
ecution stack. This application was written in 2500 lines
of code of which over 1000 lines were support code un-
related to the interface (i.e., the Robbie language inter-
preter), 750 lines defined new widgets (i.e., the graphical
display and two widgets related to the editor/code
browser), and 700 lines defined the interface using PIcC-

(€)

)
()

(6)

12

ASSO0. Robbie was written by two students over the
course of a three week period (part-time) as a tool to per-
form experiments in programming education.

The PICASSO toolkit and framework contains ap-
proximately 35,000 lines of Lisp code of which only
3,000 lines are required to implement the framework.
The first version of this system was distributed to adven-
turous users at other sites in early 1990.

A second release of the system is planned for later
this year. It will include space optimizations and an im-
proved geometry management and event handling sys-
tem.

9. Conclusion

The PICASSO application framework provides higher
level abstractions for creating user interfaces. Familiar
programming language constructs (e.g., lexically scoped
variables, call/return semantics, and parameter passing)
are used to specify procedural code and control-flow. A
simple constraint system is used to synchronize variables
and the toolkit widgets through which they are displayed
to the user and to trigger other code when appropriate.

Several applications have been developed using the tool-
kit and our experience thus far has been positive.

Acknowledgments

Many people have worked on the design and implemen-
tation of PICASSO. Dave Martin developed the XCL
package and the original CLOS abstractions for the X
Window System. Donald Chinn, Ken Whaley, and Scott
Hauck worked on the early infrastructure and the first
version of the toolkit. Scott Luebking extended the tool-
kit and implemented the first version of the framework.
The current version of the toolkit and framework are ma-
jor revisions of these earlier systems. We also want to
thank our early users, including Beverly Becker, Jeff
Goh, William Hunter, K.K. Lin, Lay-Peng Ong, Steve
Smoot, and Kurt Partridge who have suffered from a
buggy, slow system that never seemed to work as well for
them as it did for us.

References
(11 P S. Barth, “An Object-Oriented Approach to
Graphical Interfaces”, ACM Trans. on Graphics
5,2 (Apr. 1986).
B. S. Becker and L. A. Rowe, “HIP: A Hyperme-
dia Extension of the PICASSO Application Frame-
work”, to appear in Proc. NIST Advanced
Information Interfaces: Making Data Accessible
1991,
P. R. Calder and M. A. Linton, “Glyphs: Fly-
weight Objects for User Interfaces”, Proceedings
of the ACM SIGGRAPH Symposium on User In-
terface Software and Technology, Oct. 1990.
D. Charness and L. Rowe, CLING/SQL - Com-
mon LISP to INGRESISQL Interface, Computer
Science Division - EECS, U.C. Berkeley, Dec.
1989.
A. Goldberg, Smalltalk-80: The Interactive Pro-
gramming Environment, Addison Wesley, Read-
ing, MA, May 1983.
D. Heller, XView Programming Manual: An
OPEN LOOK Toolkit for X11, volume 7 in X Win-
dow System Series, O'Reilly & Associates, Se-
bastopol, CA, 1990.
S. Keene, Object-Oriented Programming in
Common Lisp, Addison-Wesley, 1988.
J. Konstan and L. A. Rowe, “Developing a
GUIDE Using Object-Oriented Programming”,
to appear in Proc. OOPSLA ‘91, Phoenix, AZ,
Oct. 1991.

2

3]

(4]

(5]

(6]

(7]
(8]

13

9

(10]

(11]

(12]
(13]

[14]

[15]

[16]

(17}

(18]
[19]

[20]

[21]

[22]

(23]

[24)

[25]

[26]

J. A. Konstan and B. Smith, Robbie the Robot:
Learning to Program in Lisp, unpublished manu-
script, Dec. 1989.

J. A.Konstan, et. al., PICASSO Reference Manual,
Computer Science Division - EECS, U.C. Berke-
ley, May 1990.

G.E. Krasner and S. T. Pope, A Description of the
Model-View-Controller User Interface Paradigm
in the Smalltalk-80 Systems, ParcPlace Systems,
Aug. 1988,

K. K. Lin, personal communication, Nov. 1989.
M. A. Linton, "Composing User Interfaces with
InterViews", IEEE Computer, Feb. 1989,

J. H. Maloney, et. al., "Constraint Technology for
User-Interface Construction in Thinglab II",
Proc. OOPSLA '89, New Orleans, LA , Oct.
1989.

D. C. Martin, XCL - Common LISP X Interface
(Protocol Version 10), Computer Science Divi-
sion - EECS, U.C. Berkeley, Apr. 1987.

D. C. Martin, X/Common LISP Object System In-
terface, Computer Science Division - EECS, U.C.
Berkeley, June 1988.

B. Myers, et. al., The Garnet Toolkit Reference
Manuals: Support for Highly Interactive, Graph-
ical User Interfaces in Lisp, Technical Report
CMU-CS-89-196, Pittsburgh, PA, Nov. 1989,
Next Corporation.

Open Software Foundation, OSF/Motif Program-
mer’s Guide, Prentice Hall, Englewood Cliffs,
NJ, 1990.

L. A. Rowe and B. Smith, "A Facility Manage-
ment Tool (Video Tape)", DARPA/SRC CIM-IC
Workshop, Ann Arbor, MI, Aug. 1989.

R. W. Scheifler and J. Gettys, "The X Window
System", ACM Trans. on Graphics 5, 2 (Apr.
1986).

R. W. Scheifler and O. LaMott, CLX Program-
mer’s Reference, Texas Instruments, 1989.

K. J. Schmucker, "MacApp: An Application
Framework", Byte, Aug. 1986.

B. Smith and L. A. Rowe, An Application-Spe-
cific Ad Hoc Query Interface, ERL Technical Re-
port M90/106, University of California, Berkeley,
Nov. 1990. submitted to UIST ‘91

Y. Wang, The Picasso Shared Object Hierarchy,
MS Report, Computer Science Division - EECS,
U.C. Berkeley, June 1988.

S. Wensel, POSTGRES Reference Manual, ERL
Technical Report M88/20 (Revised), University
of California, Berkeley, Apr. 1989.

	Copyright notice1990
	ERL-90-18

