

Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990

(Revised 23 May 1991)

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith,
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990

(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE PICASSO APPLICATION FRAMEWORK

by

Lawrence A. Rowe, Joe Konstan, Brian Smith,
Steve Seitz, and Chung Liu

Memorandum No. UCB/ERL M90/18

14 March 1990

(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The PICASSO Application Framework^

Lawrence A. Rowe, Joe Konstan, Brian Smith, Steve Seitz, and Chung Liu

Computer Science Division-EECS
University of California

Berkeley, CA 94720

Abstract

Picasso is a graphical user interface development system that includes an interface toolkit and an
application framework. The application framework provides high-level abstractions including
modal dialog boxes and non-modal frames and panels similar to conventional programming lan
guage proceduresand co-routines. These abstractions can be used to define objects that have local
variables and that can be called with parameters.
Picasso alsohasa constraintsystem thatis used to bind program variables to widgets, to implement
triggered behaviors,and to implement multipleviews of data. The system is implemented in Com
mon Lisp using the Common Lisp Object System and the CLX interfaceto the X Window System.

Keywords: GraphicalUser Interface Development Environment, Application Framework, User
Interface Toolkit, User Interfaces

1. Introduction

Picasso is a graphical user interface development
system that includes an interface toolkit and an applica
tion framework. The toolkit contains a library of pre
defined interface abstractions (e.g., buttons, scrollbars,
menus, forms, etc.), geometry managers,anda constraint
system. The application framework provideshigh-level
abstractions andotherinfrastructure to supportthedevel
opment of graphical user interfaceapplications.

The Picasso framework includes five object types:
applications, forms, frames, dialog boxes, and panels.
An applicationis composed ofa collection of frames,di
alogboxes, and panels. A form contains fields through
which data can be displayed, entered, or edited by the
user. Aframe specifies the primaryapplication interface.
It containsa form and a menu of operationsthe user can
execute. A dialog box is a modal interface that solicits
additionalarguments for an operation or user confirma
tion before executing a possibly dangerous operation
(e.g., deletinga file). A panel is a nonmodal dialog box
that typically presents an alternative view of data in a
frame or another panel.

+This research was supported bythe National Science Founda
tion under grants DCR-85-07256 and MIP-87-15557. The
second author wassupported by aNDSEG fellowship adminis
tered by DARPA.

Figure 1 shows a screen dump of a sample applica
tion that displays information about employees and de
partments. The frame, shown on the left, displays
information about an employee. It contains a form with
fields that describe the employee (e.g., name, age, etc.).
Above the form is a menu-bar with pull-down menus that
contain operations the user can execute. The buttons at
thebottom of the frameallow the user to step throughthe
employees in the database. The panel on the right dis
plays information about the department to which the em
ployee belongs. At the top of the panel is a hierarchy
browser that lists departments and the employees in a se
lected department. Information about the department
that the currentemployee belongs to is shown below the
browser. The department information includes the man
agerand a graphics field that shows a floorplan with the
selectedemployee and his or her manager's offices high
lighted. If the user selects a button at the bottom of the
frame to display the previous or next employee and that
employee is in a different department, the departmentin
formation in the panel is automatically changed (i.e., the
data displayed through the frameand panelare synchro
nized).

Picasso is an object-oriented system implemented
in Common Lisp that runs on the X Window System
[21]. The toolkit, framework, and user applications are
implemented as Common Lisp Object System (CLOS)
objects [7]. A CLOS class is defined for each type of
framework object (e.g., application, frame, form, dialog

wmmtmmm

Figure 1: Example Picasso application interface

box, and panel). Instances of these classes are called Pi
casso objects (PO's). Each PO type has a different vi
sualization and control regime. The toolkit widgets that
implement the visualization and control (e.g., title bars,
buttons and menus) are automatically generated when a
PO is created.

PO's are similar to procedures and functions in a con
ventional programming language. They have a name, lo
cal variables, formal arguments, and a lexical parent. A
PO can be called and arguments passed to it which
causes the PO to allocate space for its local variables and
to create X resources to display the values of selected
variables. The user can examine and edit the data or ex

ecute code attached to buttons and menu operations.
Code can be arbitrary Lisp expressions that can, for ex
ample, change the values of variables, call other PO's, re
turn to the calling PO, or call a Lisp function.

PO's are analogous to familiar programming lan
guage concepts (e.g., procedures, functions, and co-rou
tines). Frames are similar to procedures. Only one frame
can be active at a time. Calling a frame conceals the cur
rent frame and displays the new frame. Returning from
the called frame redisplays the calling frame. Dialog
boxes are similar to functions. Calling a dialog box dis
plays it and the user is forced to respond. A dialog box
returns a value to the caller when it returns (e.g., "OK").
Panels are similar to co-routines. Calling a panel dis
plays it in a separate window and the user can interact
with it or any other frame or panel. The location of the
mouse cursor determines which frame or panel receives
user inputs.

Variables can be passed to a PO as parameters in the
call. For example, the current employee in the frame
above is passed to the panel by reference so that the value

can be changed in either the frame or panel and the up
date will be propagated to the other PO. Traditional
value, value-result, and reference parameter passing are
provided. In addition, two new mechanisms are pro
vided that implement different kinds of synchronization.
Value/update parameters are similar to value parameters
except that subsequent updates to the actual argument are
propagated to the copy in the called PO. Value-result/up
date is similar to value/update except the value is copied
back to the calling environment when the PO returns.
These parameter passing mechanisms can be used when
changes to a value displayed through a panel should not
be immediately propagated back to the caller, but
changes to the actual argument should be propagated into
the panel.

PO's are stored in an external database and loaded

into the application when needed. They are shared by
different applications because the database is shared.
Commonly used PO's (e.g., a file directory browser and
an error message dialog box) are provided to maintain in
terface consistency between different applications.

Picasso provides a collection of widgets (as is pro
vided by toolkits such as Motif[19] or Open Look[6]) in
cluding color graphics and tables. Picasso also provides
capabilities that are similar to other application frame
works including Garnet [17], Interviews [13], MacApp
[23], NextStep[18], and Smalltalk [5]. Picasso differs
from these frameworks in that it clearly separates the
framework layer from the toolkit layer. The framework
provides support for defining and accessing local vari
ables, binding variables to fields in a form, and passing
parameters to other PO's. These mechanisms encourage
the development of reusable interface components. It is
used to specify bindings between variables and different

views (i.e., dialog boxes, frames, and panels). Parameter
passing is implemented by a constraint system that is
similar to the constraint systems in Grow [1], ThingLab
II [14], and Garnet. The constraint system is also used to
specify interface abstractions (e.g., scrollbars) as in Gar
net.

A Picasso frame is similar to the Smalltalk Model-

View-Controller (MVC) abstraction [11]. A frame con
tains local variables which correspond to the model. The
form in a frame is the view. And, a frame implicitly de
fines the controller. Multiple views of the same data can
be created by calling a panel and passing the appropriate
local variable. The way a variable is passed determines
whether or not and when view updates are propagated
back to the frame. The Navigator Framework extension
to MVC developed at ParcPlace Systems provides a sim
ilar capability.

We believe that using conventional programming
language abstractions simplifies the problem of design
ing and implementing direct manipulation interfaces. In
addition, we believe the Picasso framework is easier to

learn and use than the Smalltalk MVC and Navigator ab
stractions because the application developer can use fa
miliar programming abstractions (e.g., variables and
parameter passing) rather than unfamiliar abstractions
(e.g., active values, message passing, and MVC).

This paper describes the Picasso framework and
programming model. The programming constructs de
scribed below are shown as extensions to Lisp. Most us
ers will not see these textual specifications because a
direct manipulation interface builder is being developed
to create and modify applications. The interface builder
can be used to define any PO. Forms are defined by se
lecting widgets from a palette and placing them at the de
sired location in a window with the mouse. Field

attributes (e.g., border, default values, etc.) can be
changed interactively. Similar interfaces are provided to
define other PO types and code. The toolkit and interface
builder are extensible so that developers can add new in
terface abstractions to the system. The toolkit and inter
face builder are described elsewhere [10].

The remainder of the paper is organized as follows.
Section 2 describes an example application used to illus
trate features of the application framework. Section 3
describes the framework model and sections 4 through6
describe the different types of PO's. Section 7 describes
the programming constructs used to implement opera
tions. Section 8 discusses the implementation of Pic
asso and describes applications written with it Lastly,
section 9 concludes the paper.

2. An Example Application

The personnel browser shown in figure 1 will be used

Hcasao: Damo Tod

•Shaw: ;8i&i&8

WMi>itiA ^^

:•$&*£;

|Namep$S

Figure 2: Application Window

to illustrate how an application is defined using Picasso.
Figure 2 shows the initial frame in the application. The
user can scroll through the employees by using the Pre
vious and Next buttons in the form.

The Search pull-down menu shown in figure 3 con
tains operations that let the user search for an employee
on any attribute (e.g., age or department). For example,
selecting the By Age... menu operation calls the dialog
box shown in figure 4. The user enters the desired age in
the type-in field and presses the OK button which returns
from the dialog box and changes the display to the em
ployee closest in age to the value entered. The Previous
and Next buttons now search forwards and backwards by
age. This search order can also be changed by using the
pop-up menu as shown in figure 5.

Department information can be displayed by select
ing the Department... operation in the Show menu
which calls the department panel shown in figure 1. This
panel contains a hierarchy browser, textual information,
and a floor plan of the department. If the user selects a

ll|i;|;:«icajiso-; •'• '• :j:;•;::;:;::-$t^ll§§| ^*r*

£^:<ji^f:^|
= h Name

by Department . T
x•'^^X^^s^t^^^^^^aSW£3pSS^ii

iiim(0R*3f ^y^'ylj"

iiij^^^^^^^Ktf^^^^^^^^^^cSsP^

^^^^^^^^H||5y|| f.-<>vi^:sp-^^^pNanie^^^ III Next 111
I111f° **^.**j*?"^ •:;:;:;:;,::::::;:;:;;:::.v._;::::x:::::

Figure 3: Search Menu

Figure 4: Search Dialog Box

department in the hierarchy browser, the employees in
that department are displayed. The floor plan highlights
the offices of the current employee and his or her man
ager. The buttons on the right allow the user to change
the current employee either to the selected employee in
thehierarchybrowseror thecurrentemployee's manager
or to close the panel. Changing the current employee
causes the data in the frame and the panel to be changed.

3. The PICASSO Programming Model

A Picasso application, also known as a tool, is com
posed of a collection of frames, dialog boxes, and panels.
This section describes these PO's and provides an over
view of the programming constructs used to implement
the semanticsof buttons and menu operations.

A form is an input/output abstraction that corre
sponds to a paper form. It contains fields throughwhich
data can be displayed and edited by the user. Data can be
displayed in a field using text in different fonts, images,
and drawings. Each form maintains a field visit order

FY»ao: D«ra Too4

i
Figure 5: Search Order Menu

and current field and manages the keyboard focus. When
the user moves the mouse into the form, the keyboard is
focused to the current field. The user can change the cur
rent field by selecting another field with the mouse or by
using keyboard commands to move to the next or previ
ous field.

Forms also contain display-only labels and decora
tive trim (e.g., lines and backgrounds). Fields are imple
mented by widgets and trim is implemented by gadgets
in the toolkit. Widgets are input/output abstractions and
gadgets are output-only abstractions. In addition, a ge
ometry manager for the form must be specified. The ge
ometry manager is responsible for repositioning the
fields and labels when a form is resized.

Forms can be used in frames, panels, and dialog
boxes. Alternatively, an implicitly defined form can be
used instead by specifying the widgets and gadgets and a
geometry manager. The widgets and gadgets are called
children. The term widget is used below to refer to a
field, label, or trim in a form.

A frame is a control abstraction that implements a
major application mode or operation. It contains a form
and operations the user can execute. Pull-down menus at
the top of the frame hold the operations which can per
form computations, change values displayed through the
form, and call dialog boxes, panels, or other frames. An
application may contain many frames, but only one is ac
tive at any time.

A dialog box is a control abstraction that requires an
immediate response from the user. It requests additional
information needed to complete an operation, or it noti
fies the user about an error that has occurred or might oc
cur. The dialog box is displayed in a separate window
that is positioned on top of the PO that called it. More
over, the user is forced to enter data into it A dialog box
containsa form and a list of operations that are displayed
in a column of buttons down the right side of the dialog
box.

A panel is a non-modal control abstraction that is
used to view or edit data. It contains a form and a list of

operations that can be displayed either in a menu-bar at
the top of the panel like a frame or in a column of buttons
down the right side like a dialog box. The data displayed
through the form is typically displayedin a differentway
in the frame or another panel. For example, the depart
ment information displayed in the panel in the sample
application also displays information about the current
employee. Many panels may be active at once. The lo
cation of the mouse cursor determines whether one of the

panels or the frame receives input Several copies of the
same panel can be active at the same time. For example,
a word processor might use a panel to allow the user to
edit style properties of a block of text (e.g., font, type
face, etc.). The same panel can be called with different

text blocks so that the user can edit style propertiesof the
blocks at the same time.

Static and dynamic variablescan be declaredin any
PO. These variables hold data displayed to the user
througha form as well as other internaldataused by the
application. Static variables persist between calls to a
PO. They are allocated when the PO is created. Dy
namic variables are allocated each time a PO is called

and deallocated when it returns.1 Named constantscan
also be declared.

Picasso uses lexical scoping. The lexical parentof
a PO is the object in which it is declared. A variable ref
erence that cannot be resolved locally is searched for in
the parent. For example, if a variable is referenced in a
form,but not defined there, the parentis searchedfor the
variable, followed by the parent's parentand so forth un
til the application-wide level is reached. If the variable
is not found in that level, an erroris signaled.

Variables can be used in left- or right-valuecontexts
by using the Lisp function value. For example, given
Picasso variables x and y, the following code assignsy
tor

(sett (value x) (value y))

Sincevariables arelexically scoped,common operation
take variablenames and use the appropriate value as ei
theraleft- orright-value. A Lisp reader macro #! is pro
vided to simplify the code. This rmacro takes a variable
name, finds the variable, and provides a left- or right-
value reference to that variable.Theprevious example is
normally specified by

(sett #!x-name #!y-name)

Another reader macro (#?) is provided that returns the
address of a Picasso variable. This macro is needed so
thatPicasso variables canbe passedby reference. The
use ofreference variables is described below. Other uses
of these reader macros are described in section 7.2.

Parameter passing is used to pass values to other
PO'swhen they arecalled. A dynamicvariable is created
for each formal parameter. The parameter passing mech
anisms provided include: value, value/update, value-re
sult, value-result/update, and reference. Value/update
and value-result/updateparametersare useful when dis
playing different views of a data structure through a
panel, frame, or dialogbox. A PO that implements an
editable view is passed the data by reference so that
changes areimmediately propagated to the caller. A PO

1Actually, dynamic variables are notdeallocated when aPO re
turns because it takes a long time to re-establish bindings
defined on them. It is more efficient to reuse the same variable

on subsequentcalls afterre-initializing it

thatimplements a non-editable view is passed the databy
value or value/update depending on whether changes
made to the data through other views should be propa
gated to this view. Updates to data passed by value-result
or value-result/update are deferred until the user exe
cutes an operation that returns from the PO.

The design of Picasso encourages the development
of reusable interface abstractions. We expect that gen
eral-purposepanels and dialog boxes (e.g., table brows
ers and prompters) will be developed and reused in many
applications. Similarly, forms can be reused in different
panels, dialog boxes, and frames. They can also be re
used in other forms. For example, a standardname and
addressblock for a person can be reused in any form that
displays information about a person. To encourage re
use, each PO has a unique external name. This name is
composed of three partseach of which is a Lisp string:

{package name. suffix)

A package is a collection of related PO's. The op
tional suffix is used to identify the type of the PO. Exter
nal names can be used to specify a PO stored in the
database or already loaded into main memory.

Most PO's arereferenced by name in the definition of
their lexical parent which automatically loads it when the
parent is called. A shorterinternal name canbe specified
for the PO to simplify the code. In addition, internal
namesfacilitate changingto a differentPO sinceonly the
internal name binding has to be changed. A function is
provided that allows an application to load a PO at run
time.

Procedural code is used to specify the semantics of
button presses,menu operations,or setup, initialization,
or termination of a PO. In the current implementation,
this code is specified in lisp. It can reference Picasso
orLisp variables andcall PO's or Lisp functions or mac
ros.

4. Applications

An application window is the outermost object in an
application. This window is managed by a window man
ager. Iconifying this window causes all children to be
concealed.

Eachapplication maintainsa list of packages thatare
searched when looking for partially-specified PO's. For
example, the packagesearchlist in the example applica
tion contains"paper" and"picasso". The "paper"
package contains the PO's that define the application.
The "picasso" package is automatically included in
all search lists by the system. It contains built-in PO's
suchasdialog boxes to prompt for a file name and to con
firm adestructive operation usedby allPicasso applica
tions.

(deftool ("paper" "demo". "tool")
"Employee-department application"
(title "Demo Tool")
(frames (main-frame ("demo". "frame")))
(init-code (open-database))
(exit-code (close-database)))

Figure 6: Application Definition

The sample application was defined by the deftool
call shown in figure6. The firstline specifies the external
name and formal arguments for the application. The sec
ond line is a documentation string. The remaining lines
specify the tide, frames, and initialization and exit code.
The title is displayed in the application window's title
bar. The frames clause specifies the frames used in this
application. This application has only one frame, named
("demo". "framed, that isbound to theinternal name
main-frame. The frame can be found in the "paper"
package so the external name does not need to be fully
qualified. The init-code and exit-code clauses
specify the code to be executed when the application is
runandwhen it is exited. In thiscase,theseclauses open
and close the database.

5. Forms

Forms areused in frames, panels,or dialogboxes. A
form that can be reused in more than one PO, called a
pluggable form, is defined using the def form con
struct Pluggable forms typically have local variables
and parameters and like any PO, they may have initial
ization and termination clauses that specify code to be
executed when the PO that holds the form is called and
exited, respectively.

The form used to browse employee information in
the sample application was written as a pluggable form.
The definition is shown in figure 7. The form name is
("pape r " *employee" . * form"). The clauses
in the form definition specify the children, geometry
manager, andsetupcode. The children clausespeci
fies the fields and labels in the form. Each "make-" call
instantiates a widgetwhichcanbe a predefined widgetor
gadget in the Picasso toolkit or a new widget or gadget
defined by the user. A field or label specification is pre
ceded by a symbol in some cases to declare a variable
bound to that widget For example, dept-f ield is
boundto thetext gadgetthatdisplays thenameoftheem
ployee's department A gadgetis used rather thana wid
get because the application does not allow the user to
change the department

The buttonsat thebottom of the form (e.g.,Previous,

(defform ("paper" "employee". "form") ()
"This form displays an employee record"
(gm 'packed-gm)
(children

(make-gadget :value "Employee"
:geom-spec '(:top 50)
:font"gallantr.19")

(make-null-gadget :geom-spec '(.top 20))
(make-collection-gadget

:gm 'rubber-sheet-gm
:geom-spec '(:top 100)
:children

'((picture-gadget
(make-image-gadget

:geom-spec '(.55 0 .45 .99)))
(name-field (make-text-gadget :label"Name:"

:geom-spec '(.15 0 .35.33)))
(age-field (make-text-gadget :label "Age:"

:geom-spec '(.15.33.35.34)))
(dept-field (make-text-gadget :label "Dept:"

:geom-spec '(.15.67.35.33)))
(make-collection-gadget
:geom-spec rfill :gm 'rubber-sheet-gm
:children

'((pb (make-button :value "Previous"
:release-func '(get-emp :dir :prev)
:geom-spec '(0 0.5 .47 :center)))

(kb (make-pop-button :label"Search Key"
:label-type :botton
:items '("Name" "Age" "Dept")"
:geom-spec '(.4 0 .2 1 :center)))

(nb (make-button :value "Next"
:release-func '(get-emp :dir:next)
:geom-spec '(0.52.5.47 :center)))

(setup-code
(progn (bind (value #!name-fteld) (name #!emp!oyee))

(bind (value #!age-field) (age #!employee))
(bind (value #!picture-gadget) #!picture)
(bind (value #!dept-fteld) #!dname)
(blet (dimmed #!pb)

:var ((e #!empioyee) (k #!key))
(not (prev-exists e k)))

(blet (dimmed #!nb)
:var ((e #lemployee) (k #!key))
(not (next-exists e k)))

(blet (value #lkb) :var ((k #!key))
(symbol-name k))

(blet #!key :var ((kbv (value #!kb)))
(make-keyword kbv)))))

Figure 7: Form Definition

Name, and Next) are also specified. They are combined
into acollection gadget so they will be arranged horizon
tally.

The gm clause specifies the geometry manager which
lays out the widgets in the form. Many geometry man
agers are provided by the Picasso toolkit Each takes a
setof widgetsandoptional layout parameters, calledge
ometry specifications, and calculates an xy-offset for
each widget within its parent

The setup-code clause specifies code that is to be
executed when the PO is created. In this case, the code
establishes bindings between the variables that hold the
data and fields in the form through which it is displayed.
Bindings are also established for the buttons at the bot
tom of the form that will dim Previous and Next if

records do not exist and that reset the variable #! key to
hold the search attribute. Note that the variable #!key
is declaredin the frame, and it is accessed through lexical
scoping. The functions used to define the bindings are
described in section 7.3.

Sometimes forms are only used in a single frame,
panel,or dialogbox. It complicates the applicationspec
ificationif the developer has to createa separatelynamed
form so the developer can specify the children and other
form clauses directly in the frame, panel or dialogbox
specification. These forms are called implicitforms and
they cannot have local variables or parameters. They
can, however, access variables and parameters in their
lexical parent Examples of implicit forms arepresented
below.

6. Frames, Dialog Boxes, and Panels

Frames, dialog boxes, and panels are callable PO's.
They are typically called in response to a user action
(e.g., a menu selection or button press) as follows:

(call PO :arg-1 value :arg-2 value...)

The PO is specified by an expression that evaluates to a
pointer that references the appropriate Picasso object
The expression is usually the internal PO name. Param
eters are passed using Lisp keyword-value pairs.

The semantics of calling a PO are:
(1) Fetch the PO from the database, if it is not

already in memory.
(2) Bind the actualarguments to the formalar

guments.

(3) Allocate and initialize local variables.
(4) Fetch the lexical children of the PO (e.g.,

forms, frames, etc.), if they arenot already
in memory.

(5) Execute the init-code for the PO.
(6) Display the object on the screen.
(7) Enter an event loop.

PO'sare cachedin main memory to avoid the delaysin
herent in accessing the database. Lexical children are
fetched when the PO is called to improve the perfor
mance of subsequent calls. Recall that dynamic vari
ables are allocated on each call and static variables are
allocated when the PO is created. The event loop dis
patches allevents (e.g., mouse, keyboard,redraw, etc.) to
the appropriateevent handlers.

The following code returns from a PO:

(ret PO optional-return-value)

This code is executed in response to a user action (e.g., a
menu selection or button press) or because a lexical par
ent is cleaning up its children before exiting. The seman
tics of returning from a PO are:

(1) Force active lexical children to execute a
return.

(2) Execute the exit-code.
(3) Conceal the PO which erases it from the

screen.

(4) Copy result arguments back to the actual
arguments.

(5) Re-enter the event loop of the calling PO.
The remainder of this section, describes how callable

PO's are defined.

6.1 Frames

A framecan specify a named form or a set ofchildren
widgets through which data will be displayed to the user.
Variables defined in the frame, called frame variables,
store the data on which the frame operates. Forms, pan
els, and dialog boxes in the frame can access this data by
referencing the frame variables or the frame can pass

(defframe ("paper" "demo". frame") ()
This is the only frame of the Paper Demo amplication"
(static-variables employee department key)
(panels (dept-panel ("department". "panel")))
(dialogs (search-dialog ("search". "dialog")))
(form (emp-form ("employee". "form")))
(menu-bar

("Show" "Show Related Information"
(dept-entry

("Department"
(progn (call #ldept-panel :emp #?employee

:dept #?department)
(setf (me-dimmed #!dept-entry) t)))))

("Search "Search Employee"
("by Name ..."

(setf #!employee
(get-emp :name

(call #lsearch-dialog :entity "name"))))
("by Age..."

(setf #!emp!oyee
(get-emp :age

(call #lsearch-dialog :entity "age"))))
("by Department..."

(setf #!employee
(get-emp department

(call #!search-dia!og :entity "dept")))))))
(setup-code

(progn (setf #!employee (get-first-emp))
(blet #!department :var ((e #!employee))

(department e)))))

Figure 8:Frame Definition

data to them as arguments.
A frame is defined using the def frame construct.

Figure 8 shows the code that defines the frame in the
sample application. Three variables, two menus, a form,
a panel, and a dialog box are defined in this frame. The
variablesemployee and department point to CLOS
objects that represent an employee and his or her depart
ment The variable key holds the current search key
(e.g., age or name).

The menu-bar clause defines two menus: Show and

Search. A menu specification includes: 1) the menu
name (e.g., Search), 2) a long name that will be dis
playedat the top of the menu if it is tornoff (e.g., Search
Employee), and 3) a list of operation specifications. An
operation specification includes: 1) an optional variable
name for the menu entry (e.g., dept-entry in the De
partment operation in the Show menu), 2) an operation
name, 3) the code to execute when the operation is se
lected, and 4) operation options (e.g., dimmed, left or
right string, etc.). The Picasso menu, automatically
supplied by the system, is the leftmost menu in the menu-
bar. It contains operations that are useful everywhere
(e.g., Help, Print Window, Quit, etc.).

The Department operation in the Show menu calls
the department panel and passes the employee and de
partment objects to it They are passed by reference so
thatchanges made in the frame will be propagated to the
panel and vice versa. The operations in the Search menu
change the order in which records are scanned.

6.2 Dialog Boxes

Dialog boxes are defined using the defdialog
construct The code shown in figure 9 defines the search
dialog boxin the sample application. The dialog box has
a singlevalue parameter, namedentity, thatis set to a
Lispkeywordthat indicates thetypeof search being per
formed (e.g., age or name) and a variable, named
prompt-text, that is set to a string that prompts the

(defdialog ("paper" "search". "dialog") (entity)
(dynamic-variables

(prompt-text (string-concat"Desired" #!entity)))
(children

(type-in (make-entry-widget :value ""
:geom-spec :center)))

(buttons
("OK (ret self (if (eql (value #!type-in)"")

nil (value #ltype-in))))
("Cancel" (ret self nil)))

(gm 'rubber-sheet-gm)
(init-code (setf (value #!type-in) nil)) .
(setup-code (bind(label #!type-in) #!prompt-text)))

Figure 9: Dialog Box Definition

user (e.g., "Desired age"). The dialog box has an im
plicit form so it has children and gm clauses. Two
buttons are specified: OK and Cancel. The setup code
binds prompt-text to the type-in field label so an ap
propriate prompt will be displayed. The rest of the def
dialog structure is similar to the other PO definitions.

6.3 Panels

Panels are defined using the defpanel command.
The code shown in figure 10 defines the department
panel in the sample application. The panel takes two ref
erence arguments (i.e., emp and dept) that point to the
current employee and the employee's department.
Changes made to these variables in the panel are propa
gated to the variables in the calling frame. Moreover, if

(defpanel ("paper""department". "panel") (&refemp dept)
(title "Department Panel")
(children

(bw (make-browse-widget :geom-spec '(:top 100)
:col-widths '(1 1.5) :data "all-employees*
:sort-keys'(("Department". ,#'dname)

("Employee". ,#'name))))
(make-collection-widget :gm 'rubber-sheet-gm

:geom-spec *(:bottom 0)
:children

'((99 (make-image-gadget
. :geom-spec '(.55 0.45.99 :center)))

(dname-field (make-text-gadget :label "Name:"
:geom-spec '(.25 0.25.33 :center-y)))

(floor-field (make-text-gadget :Iabel"Floor:"
:geom-spec '(.25.33 .25 .34 :center-y)))

(mgr-field (make-text-gadget :label"Manager:"
:geom-spec '(.25.67.25.33 :center-y))))))

(gm 'packed-gm)
(buttons

(sel-emp
("SelectEmptoyee"

(get-emp :name
(name (car (current-selection #!bw))))))

(sel-mgr
("Select Manager"

(get-emp :name (mgr #!emp))))
("Close(progn (setf (me-dimmed #!dept-entry) nil)

(ret self))))
(setup-code

(progn (bind (value #!dname-fie!d) (dname #ldept))
(bind (value #lfloor-field) (floor#!dept))
(bind (value #!mgr-field) (mgr #!dept))
(bind (value #!gg) (floor-plan #!emp))
(blet (dimmed #!sel-emp)

:var ((sel (current-selection #!bw)))
(null sel))

(bind (dimmed #!sel-mgr) (dimmed #!se!-emp))
(blet (current-selection #!bw)

:var ((d #!dept) (e #!emp))
nil))))

Figure 10: Panel Definition

are propagated to the panel.
The remainder of the definition specifies the panel

buttons (e.g., Select Employee, Select Manager and
Close), an implicit form, and bindings between the vari
ables, form widgets, and menu operations.

7. Programming Constructs

This section describes the programming constructs
added to Lisp to simplify the development of Picasso
applications. Topics discussed include: proceduralcode,
variables and constants, and bindings.

7.1 Procedural Code

The environment in which procedural code is exe
cuted is defined by the PO that contains it (e.g., the frame
for menu operations). This environment includes two
implicitly defined Lisp variables: self and event.2
Self is bound to the object that holds the code (e.g., the
button, menu pane, or PO) and event is bound to a de
scription of the event that caused the code to be executed
(e.g., a "button press" event). All Picasso variable
lookups are performed relative to the value of self. For
example, the code in the Department operation in the
Show menu in the frame calls the department panel as
follows:

(call #!dept-panel :emp #?employee
:dept #?department)

This code references three Picasso variables: dept-
panel, employee, and department. The value of
dept-panel is a pointer to the panel object The ad
dresses of employee and department are passed to
the panelbecauseboth arguments to the panel arerefer
ence parameters.3

7.2 Variables and Constants

Variables arecreatedautomaticallywhen a PO is cre
ated or called. All PO definitions can have clauses to de

fine static- or dynamic-variables. Static-variables are
created when the PO is created. Different invocations of

the POreference the samevariables. Dynamic-variables

2These were implented as Lisp variables instead ofPICASSO
variables because they shouldbe visible from alllexicalscopes
andbecause this implementation still allows the use ofPICASSO
variables named "self* and "event."

Mostlanguages donot require theprogram to specifythead
dress of reference parameters at the point of the call. This
nonstandard usage was requiredbecause our implementation
uses the Lisp evaluator to evaluate code.

are created when the PO is called. Different invocations

reference different variables.

Static-variables can be created by the application at
run-time using the add-var function. For example,

(add-var variable-name place)

creates a static-variable named variable-name in the PO

specified by place. The variable is immediately visible
to lexical children of the PO.

Named constants can be specified with the con
stants clause. They behave just like variables, except
the value cannot be changed. Named constants can also
be created implicitly in other clauses of a PO definition.
Forexample, all lexical children ofa PO (i.e., PO's spec
ified in the frames, forms, panels, or dialogs
clauses) are given names that are constants in the parent
PO. For example, emp-form and dept-panel are
constants in the sample frame.

Widgets specified in the children clause of a PO
definition can also be bound to named constants by re
placing the widget definition

(make- widget args)

with a pair

(constant-name {make-widget args))

This construct creates a name that references the widget
when the PO is instantiated. The same technique can be
used with buttons specified in panels and dialog boxes
and with menus specified in frames or panels.

Recall that ariables and constants are referenced by
using the "#!" and "#?" macros. The value of the vari
able is looked up in the current environment As de
scribed above, the current environment depends on
which PO is active and the location of the mouse cursor.
The setup, initialization, and termination code is always
executed in the context of the defining PO.

Once the current environment is established, variable
lookup proceeds in a lexical fashion. The variables in the
PO referenced by self are searched first, followed by
the PO that is the parent of self. Parent links are fol
lowed up to the application window. For ease of use,
#! po always refers to the closest PO. For example, it is
the PO itself if the current lexical environment (i.e.,
self) points to a PO. Otherwise, it is the closest enclos
ing PO. The variable #! po can be used in button or
menu code to locate the enclosing PO since self points
to the button or menu entry.

Sometimes it is necessary to specify where to look
for a variable. For example, a frame's initialization code
might define bindings between frame variables and wid
gets in the enclosed form. The syntax "#! voriable-
nameQplace" evaluates place to find a starting point for
the search for variable-name. More complicated search

paths can also be used to reference variables in different
environments. For example, the expression

#!start-frame@(current-tool)/x

references the variable x in the start-frame in the

current application. Any number of "/"-separated
names may occur. The "@" clause can only be used on
the first variable, since the other names are located based
on the value of the preceding expression. Notice that the
location specifier in the "@" clause can be any Lisp ex
pression, including a call, in this case, to the function
current-tool.

Figure 11 shows a partial list of the variables defined
in the sample applicationand how they canbe referenced
when the current environment is the department panel.

7.3 Bindings

Bindings are used to maintain consistency between
variables and values displayed to the user and to declare
constraints between variablesand values in the applica

tion. Any Picasso variable or CLOS object slot can be
bound to other variables, slots, or functions of variables
and slots. The simplest case merely binds a single vari
able or slot to another, for example the setup code for the
sample panel includes:

(bind (value #!gg) (floor-plan #!emp))

This binding declares that whenever the floor-plan
slot of the CLOS object pointed to by the Picasso vari
able #! emp changes, the value slot of the image gad
get pointed to by #! gg will be updated to the new value.
In this case, whenever the floor-plan slot of the
structure pointed to by #! emp changes, the graphical
viewer is updated to display the new floor plan.

The general syntax for the bind operation is:

(bind bound-slot-or-var triggering-sht-or-var)

A more flexible constraint declaration is available to

bind a slot or variable to a function of one or more other

slots or variables. The blet operation specifies the slots
or variables to trigger the change, the slot or variable be-

("paper" "demo", "tool")

main-frame

I
("demo", "frame")

employee
department
key
dept-panel
emp-form

("employee". "form") ("department". "panel") ("search". "dialog")

picture-gadget
name-field
age-field

emp
dept
bw

entity
prompt-text
type-in

Expression EG Variable

#!emp panel
#!key frame
#!emp-form/name-field form
#!name-field@(find-po-named '("employee". "form")) form

Figure ll:Non-local Variable References

10

emp
key
name-field
name-field

ing bound, and a function to compute the new value. For
instance, the setup code in the sample form includes:

(blet (dimmed #!pb)
:var ((e #!employee) (k #!key))
(not (prev-exists e k)))

This code indicates that whenever the employee or
key variables change, the dimmed slot of the Previous
button should be set on when no previous employee ex
ists and off otherwise. In other words, the button is
dimmed whenever there is no previous employee along
the specified search key.

A binding is a one-way constraint. Dimming the but
ton would have no effect on the variables.Multiple bind
ings can be defined to implement a two way constraint
A typical two-way constraint binds a PICASSO variable
to a display widget and vice versa. In this way, the dis
play is updatedif the variable'svalue is changed(e.g., in
anotherpanel or dialog) and the variable is updated if the
user types a new value into the widget Cycles in bind
ings areimplemented by iterating to a fixed point value.
The iteration terminates when the new value assignedto
a variable or slot is the same as the current value.

This binding mechanism is relatively simple, but it
has proven extremely valuable in implementing user in
terfaces. The implementation of the binding mechanism
is discussed in [8].

8. Discussion

This sectiondescribes ourexperiencesimplementing
the Picasso framework, some sample applications that
have been implemented using it and the current statusof
the system.

It has taken approximately ten man-years over a four
yearperiodto design and implement Picasso. During
that time, we have implemented:

(1) a foreign function interface to X10 (XCL)
[15],

(2) CLOS abstractions for X entities such as
displays, windows, fonts, and colors (XC-
LOS) [16],

(3) a low-level POSTGRES interface (libpq)
[26],

(4) a persistent CLOS interface to POSTGRES
(SOH) [25],

(5) two INGRES query language interfaces
(CLING/QUEL and CLING/SQL) [4],

(6) two versions of the toolkit
(7) two versions of the framework, and
(8) an Xll and CLX[22] based version of the

system.

The first version of the toolkit used a heavyweightab
straction fora field thatwas implemented by one ormore

X windows. For example, a labeled, type-in field used
two X windows: one for the label and one for the field.

A third window was created that contained these two

windows when the form was being edited so the user
could select the field with a mouse and move it to a new

location. Unfortunately, the implementation of this ab
straction was too inefficient

The current toolkit provides widget gadget and syn
thetic-gadget abstractions that can be used to implement
fields. Gadgets are used to implement display-only enti
ties significantly reducing the number of X windows that
have to be created and mapped when calling a PO. Dec
orative trim is an example of a display-only entity (e.g.,
the floor plan in the department panel). Synthetic-gad
gets aredisplay-list representations ofdrawable data that
areused forhigh-performance output operations(such as
tables and pop-up menus). They are similar to glyphs in
Interviews [3]. Widgets are objects that are associated
with X windows and can therefore direcdy process input
events as well as display output This version of the tool
kit also implemented the geometry management abstrac
tion and constraint system.

The firstversion ofthe application framework treated
fieldsand variablesas separateentities and implemented
a customized propagation system to synchronize them.
And, it used an interpreter to execute procedural code.
The system was too slow. This problem was accentuated
by performanceproblems that we encountered with early
implementations of PCL which implements CLOS and
the inherent speed of the Sun-3/75's and DEC Microvax-
n's that we were using at the time.

The current framework treats field names as vari

ables, direcdy executes procedural code, and uses a bet
ter implementation of Picasso objects. The parameter
passing model was also introduced in this version. Of
course,performancewas helped by the improved imple
mentations of CLOS and the move to faster machines
(e.g., Sparcstations). Run-time space is currently a prob
lem since Common Lisp has never been particularly
spaceefficient The current implementation requires 16
to 32 megabytes of main memory for most applications.
Our goal has always been to focus on functionality,
speed, and rapid developmentrather than space. We be
lieve the trade-off of space for CPU speed is reasonable
since memory prices are rapidly decreasing. Further
more, current Lisp systems are now providing tools to
manage space more efficiently (e.g., the code Presto
sharing and dynamic loading facilities of Allegro Com
mon Lisp).

Picasso hasbeen used to implement severalapplica
tions including:

(1) a facility management tool (CIMTOOL)
[20][24],

(2) a recipe generator for process engineers

11

Figure 12: Robbie- the-R^bot

(RC3TUOL) U2J,
(3) an educational program to teach Lisp pro

gramming (Robbie-the-Robot)[9],
(4) a direct manipulation interface builder,
(5) a hypermedia document editor and browser

(HIP) [2], and
(6) an application for previewing and indexing

video data.

A screen dump of Robbie-the-Robot is shown in figure
12. The frame in the upper-left shows Robbie in his two-
dimensional world filled with beepers and walls. The
panel in the lower-left displays the lesson on which the
student is working. The panel on the upper-rightdisplays
a Lisp code browser and editor that highlights code as it
is being executed. The panel on the lower right is a step
per-tracer that allows the student to control the execution
of the program, to set breakpoints, and to browse the ex
ecution stack. This application was written in 2500 lines
of code of which over 1000 lines were support code un
related to the interface (i.e., the Robbie language inter
preter), 750 lines defined new widgets (i.e., the graphical
display and two widgets related to the editor/code
browser), and 700 lines defined the interfaceusing Pic

asso. Robbie was written by two students over the
course of a three week period (part-time) as a tool to per
form experiments in programming education.

The Picasso toolkit and framework contains ap
proximately 35,000 lines of Lisp code of which only
3,000 lines are required to implement the framework.
The first version of this system was distributed to adven
turous users at other sites in early 1990.

A second release of the system is planned for later
this year. It will include space optimizations and an im
proved geometry management and event handling sys
tem.

9. Conclusion

The Picasso application framework provides higher
level abstractions for creating user interfaces. Familiar
programming language constructs (e.g., lexically scoped
variables, call/return semantics, and parameter passing)
are used to specify procedural code and control-flow. A
simple constraint system is used to synchronize variables
and the toolkit widgets through which they are displayed
to the user and to trigger other code when appropriate.

12

Several applications have been developed using the tool
kit and our experience thus far has been positive.

Acknowledgments

Many people have worked on the design and implemen
tation of Picasso. Dave Martin developed the XCL
package and the original CLOS abstractions for the X
WindowSystem. Donald Chinn, Ken Whaley,and Scott
Hauck worked on the early infrastructure and the first
version of the toolkit Scott Luebking extended the tool
kit and implemented the first version of the framework.
The current version of the toolkit and framework are ma
jor revisions of these earlier systems. We also want to
thank our early users, including Beverly Becker, Jeff
Goh, William Hunter, K.K. Lin, Lay-Peng Ong, Steve
Smoot, and Kurt Partridge who have suffered from a
buggy, slow system that never seemed to work as well for
them as it did for us.

References

[1] P. S. Barth, "An Object-Oriented Approach to
Graphical Interfaces", ACM Trans, on Graphics
5,2 (Apr. 1986).

[2] B. S. Becker and L. A. Rowe, "HEP: A Hyperme
dia Extension of the Picasso ApplicationFrame
work", to appear in Proc. NIST Advanced
Information Interfaces: Making Data Accessible
1991.

[3] P. R. Calder and M. A. Linton, "Glyphs: Fly
weightObjects forUser Interfaces", Proceedings
of the ACM SIGGRAPHSymposiumon User In
terface Software and Technology, Oct. 1990.

[4] D. Charness and L. Rowe, CLING/SQL - Com
mon USP to INGRES/SQL Interface, Computer
Science Division - EECS, U.C. Berkeley, Dec.
1989.

[5] A. Goldberg, Smalltalk-80: The Interactive Pro
gramming Environment, Addison Wesley, Read
ing, MA, May 1983.

[6] D. Heller, XView Programming Manual: An
OPENLOOK ToolkitforXll, volume 7 in X Win
dow System Series, O'Reilly & Associates, Se-
bastopol, CA, 1990.

[7] S. Keene, Object-Oriented Programming in
Common Lisp,Addison-Wesley, 1988.

[8] J. Konstan and L. A. Rowe, "Developing a
GUIDE Using Object-Oriented Programming",
to appear in Proc. OOPSLA '91, Phoenix, AZ,
Oct 1991.

[9] J. A. Konstan and B. Smith, Robbie the Robot:
Learning to Program in Lisp, unpublished manu
script Dec. 1989.

[10] J. A. Konstan, et al„ PICASSO ReferenceManual,
Computer Science Division - EECS, U.C. Berke
ley, May 1990.

[11] G. E. Krasner and S. T. Pope, ADescriptionofthe
Model-View-Controller User Interface Paradigm
in the Smalltalk-80 Systems, ParcPlace Systems,
Aug. 1988.

[12] K. K. Lin, personal communication, Nov. 1989.
[13] M. A. Linton, "Composing User Interfaces with

Interviews", IEEE Computer, Feb. 1989.
[14] J. H. Maloney, et. al., "Constraint Technology for

User-Interface Construction in Thinglab II",
Proc. OOPSLA '89, New Orleans, LA , Oct.
1989.

[15] D. C. Martin, XCL - Common LISP X Interface
(Protocol Version 10), Computer Science Divi
sion - EECS, U.C. Berkeley, Apr. 1987.

[16] D. C. Martin,XlCommon LISPObject SystemIn
terface, Computer Science Division - EECS, U.C.
Berkeley, June 1988.

[17] B. Myers, et al., The Garnet Toolkit Reference
Manuals: Supportfor Highly Interactive, Graph
ical User Interfaces in Lisp, Technical Report
CMU-CS-89-196, Pittsburgh, PA, Nov. 1989.

[18] Next Corporation.
[19] Open SoftwareFoundation, OSF/MotifProgram

mer's Guide, Prentice Hall, Englewood Cliffs,
NJ, 1990.

[20] L. A. Rowe and B. Smith, "A Facility Manage
ment Tool (Video Tape)", DARPAISRC CIM-IC
Workshop, Ann Arbor, MI, Aug. 1989.

[21] R. W. Scheifler and J. Gettys, "The X Wmdow
System", ACM Trans, on Graphics 5, 2 (Apr.
1986).

[22] R. W. Scheifler and O. LaMott CLX Program
mer'sReference, Texas Instruments, 1989.

[23] K. J. Schmucker, "MacApp: An Application
Framework", Byte, Aug. 1986.

[24] B. Smith and L. A. Rowe, AnApplication-Spe
cificAd Hoc Query Interface, ERL Technical Re
portM90/106, University of California, Berkeley,
Nov. 1990. submitted to UIST '91

[25] Y. Wang, The Picasso Shared Object Hierarchy,
MS Report Computer Science Division - EECS,
U.C. Berkeley, June 1988.

[26] S. Wensel, POSTGRES Reference Manual, ERL
Technical Report M88/20 (Revised), University
of California, Berkeley, Apr. 1989.

13

	Copyright notice1990
	ERL-90-18

