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GLOBAL PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR VECTOR FIELDS
PART I: SIMPLEST CASE IN R2.

Robert Lum AND Leon O. Chua. }t

Abstract
Among nonlinear vector fields, the simplest of which can be studied are those which
are continuous and piecewise linear. Associated with these types of vector fields are -
partitions of the state-space into a finite number of regions. In each region the vector
field is linear. On the boundary between regions it is required that the vector field be
continuous from both regions in which it is linear. This presentation is devoted to the
analysis in two dimensions of the simplest possible types of continuous piecewise linear
vector fields, namely linear vector flelds possessing only one boundary condition. As a
practical concern, the analysis will attempt to ask and answer questions raised about
the existence of steady-state solutions. Since the local theory of fixed points in a linear
vector field is sufficient to determine stability of fixed points in a piecewise linear vector
field, most of the steady state behaviour to be studied will be towards limit cycles. The
results will present sufficient conditions for the existence, or nonexistence as the case
may be, for limit cycles. Particular attention will be paid to the domain of attraction

whenever possible.

With these results qualitative statements may be made for piecewise linear models

of many physical systems.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
t1 The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The determination of limit cycles is of great practical and theorectical importance. The work
on Hilbert’s 16th problem (a survey paper being that of Lloyd[3]) has shown that even for two
dimensions and polynomial vector fields as simple as degree two, the maximum number of limit
cycles is not known. This situation is symptomatic of the present intractability of the determination '
of limit cycles in the entire state space ®°. However, it may be possible in certain cases to give
results on the global determination of all limit cycles. One such area has arisen from the solution of
problems in electrical engineering.

With the advent of computer aided design and the subsequent increase of computer simulations
of physical circuits, device modeling has emerged as an increasingly important area of research. In
the modeling of electrical and electronic circuits an exemplary case of such work is the paper Chual[1]
“Canonical piecewise linear modeling.” In that paper a large number of electronic device models
were shown to have concise representations as piecewise linear functions. The interconnection of one
or more of such piecewise-linear circuit models with capacitors and inductors in feedback naturally

creates a piecewise-linear dynamical system.

Conversely, nonlinear vector fields which are piecewise linear may be emulated by equivalent

physical circuits. Such emulation requires the use of piecewise linear resistors, capacitors and induc-

tors.

Once a piecewise linear representation of a circuit has been created, the computer becomes
a powerful tool with which to study the original circuit. Computer work with such models has
suggested the possibility of proving qualitative results about certain classes of piecewise linear vector

fields arising from such modeling,

This research effort has been devoted to the examination of such qualitative properties of the
simplest types of piecewise linear vector fields. The research being primarily devoted to finding
attractors in the system and estimating the size of the basin of attraction. Section 1 will introduce
the basic definitions and concepts to be used, then sections 2 through 9 will present the analysis of

continuous piecewise linear vector fields.

To conclude this introductory section, some examples of the variety of behaviour possible in
comparatively simple types of piecewise linear vector fields in ®2 will be presented. A table (Table 1)
of the possible phase portraits suggests that many distinct types of behaviour can exist in piecewise
linear vector fields. Then a summary of the results will end the section. The following four examples

give a preview of some of the results predicted from the theorems proved in this paper,
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ExampLE 1. (Figure 1.) Consider the vector field
z<1;

R
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This vector field does not have any limit cycles despite the fact that there are infinitely many
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concentric nonisolated cycles (see theorem 8.9). The only equilibrium point, (0, 0), is a center. -

ExampLE 2. (Figure 2.) Consider the vector field

ol e
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This vector field does not have any cycles (see theorem 3.19). The only equilibrium point, (0, 0), is

an unstable focus.

ExaMPLE 3. (Figure 3.) Consider the vector field

2 1=z
8["]- [-1 2] [y] #sh
vy~ -7 1] ]z -9
5 2] ()= [ ] 2ee
The vector field has a ﬁnique attracting cycle (see theorem 3.7). The only equilibrium point, (0, 0),

in this case is an unstable focus. Observe that the region to the left of the line z = 1 is the same as

in the previous example, equivalence of vector fields on one linear region does not guarantee similar
dynamics.
ExAMPLE 4. (Figure 4.) Consider the vector field
4 0 z
6[:]_ 1 =2 [y]’ sl
v~ 5 0]z 1
5 SE1-[A] ies

This vector field does not have any cycles. The invariant manifold parallel to the y-axis prevents

cycles from forming (see theorem 9.1). The only equilibrium point, (0,0), is a saddle point.



Summary of main results.

Conjecture 0.1. A continuous piecewise-linear vector field with one boundary condition has at

most one limit cycle. The limit cycle, if it exists, is either attracting or repelling.

Computer experimentation has lend weight to the above conjecture. Under this conjecture the

following theorems are a summary of the results obtained in sections 2 through 9.

Theorem 0.2. Let 0 < 5,0 < a + d, (a+d)?/4 < ad - be,0 < ad — be + dk — bl. Let (z,y) be the
induced virtual fixed point of the vector field § with defining constants a, b, c,d, k, . Define

Xi(z,y) =y - %(—\/T:-_z(a +d)-d(1 - z) - a).

If X1(z,y) < 0 then € has a globally attracting limit cycle. If 0 < Xy(z,y) then £ does not have any

limit cycles.

PROOF. See theorems 3.7, 3.13, 3.19 and 3.2. | |

Theorem 0.3. Let 0 < b,0 < a+d,(a+ d)?/4 < ad — be,ad — be + dk ~ bl < 0. Let (z,y) be the
induced fixed point of the vector field § with defining constants a,b,c,d, k,l. Define

Xo(z,9) = y = x2(x7(2))

where x(y) = (x1(v), x2(y)) is given in lemma 3.25. If X2(z,y) < 0 then & does not have any limit
cycles. If 0 < Xz(z,y) then £ has a locally attracting limit cycle.

PROOF. See theorems 3.24, 3.30 and 3.29. |

Theorem 0.4. Let 0 < 4,0 < a+d,0 < ad — be < (a + d)?/4. The vector field € with defining

constants a, b, ¢, d, k,l does not have any limit cycles.

PROOF. See propositions 5.1, 5.2 and 6.1. | |

Theorem 0.5. Let 0 < 5,0 < a + d,ad - bc < 0,ad — bc + dk — bl < 0. The vector fleld ¢ with

defining constants a, b, c,d, k, ! does not have any limit cycles.

ProoF. See proposition 7.1 and 7.2. [ |

Theorem 0.6. Let 0 < b; 0<a+d,ad-bc < 0,0 < ad— bc+ dk — bl. If the vector field £ with
defining constants a,b,c,d, k,! does not have any homoclinic orbits then either (i) & has no limit

cycles or, (ii) € has a repelling limit cycle.
PROOF. Sez proposition 7.3, theorems 7.5,7.8 and 7.7. [ ]
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Theorem 0.7. Let 0 < b,0 = a+d. The vector field £ with defining constants a, b, ¢, d, k,! does not
have any limit cycles.

PROOF. See proposition 8.1, theorems 8.9, 8.10 and proposition 8.11. [ |

Theorem 0.8. Let 0 = b. The vector field § with defining constants a, b, ¢, d, k,1 does not have any
limit cycles.

PRoOF. See proposition 9.1. N

§1. Definitions.

In this section the basic definitions of the nonlinear vector fields to be studied are presented. As all
the work to be presented lies in the plane, it will be taken that all vectors lie in R2.

Definition 1.1. L is a linear t vector field « there exists constants a,b,¢,d e, f such that
b{|=z e
JHERHIHEHE
[y c d]ly f

Definition 1.2. £ is a continuous piecewise linear vector field < there exists constants a,b,c,d k1l
with either k # 0 or [ # 0, and

a b||=z
5[3]_ c d y ’ 3$1v

y a+k bl|=z k
s ][ aee
Unless otherwise stated, the term vector field will mean a continuous piecewise linear vector field.
A vector field is linear in each of the regions {(z,y) : < 1},{(z,y) : 1 < z}. As either k or I is
nonzero, the vector field is nonlinear.

Definition 1.3. For the vector field £ the function #(t, (zo, yo)) will denote the solution to

¢(t’ (zOv yO))' = €(¢(tv (170’ 90)))
¢(0’ (30’ yO)) = (30' yO).

Definition 1.4. The point (zo, yo) is called a periodic point if there is a 0 < to < oo for which
#(t0, (0, ¥0)) = (0, Yo). The set {@(t, (zo,¥0)) : 0 < t < to} is called a cycle.

Definition 1.5. Let (z¢, yo) be a point on a cycle. Consider a local transversal £ through (zo, ¥o)
and Poincare map P : £ — I. If the point (z, Yo) is attracting (respectively repelling) for the

map P then the cycle is said to be attracting (respectively repelling). If it is attracting from one

T A more precise name is affine.



side in positive time and repelling from the other side in positive time then the point is said to be
semi-stable.

Definition 1.6. A limit cycle is a cycle that is either attracting, repelling or semi-stable. Hence, a
cycle is a limit cycle if and only if it is isolated.

Definition 1.7. Define an ordering on the set of cycles by C) < Cj if the cycle C; lies in the interior
of the cycle C;. Let {--- < C_1 < Co<Cy < - +-} be a maximal chain of cycles bounded below and
above by the cycles C_o, Coo. The pair (C-co, Cx) is an annulus with boundary cycles C_q, Coo-
The annulus will be identified with the closed region between its boundary cycles.

Definition 1.8. Let N be a set and ¢ be the solution to a vector field, then ¢(t, N) is the set given
by ¢(t9 N) = {¢(t1 (-‘L', y)) : (zv .'/) € N}'

Definition 1.9. An attracting annulus A has a neighbourhood N (A C N), such that for non-
negative times 0 < ?o < 1,4 C ¢(t1, N) C ¢(to, N), A = NRé(2, N). A repelling annulus is an
annulus which is attracting in reverse time. A limit annulus is an annulus that is either attracting
or repelling. If the annulus is attracting from one side in positive time and repelling from the other

side in positive time then it is said to be semi-stable.

Limit cycles occur often in natural phenomena. By their nature, the presence of a limit cycle
points towards the presence of steady state oscillatory behaviour in the underlying system. Annuli
are more general than cycles. Attracting annuli can be considered as invariant sets under the vector
field that are attracting for nearby points. Under conjecture 0.1 a stronger statement can be made

about annuli in vector fields.

Lemma 1.10. Under conjecture 0.1, a vector field may have at most one attracting annulus. The

annulus is an attracting limit cycle.

PROOF. An attracting annulus is formed from a pair (C_o, Coo) of limit cycles. By the conjecture
it follows that C_o = Co. The annulus is an attracting limit cycle. If there were more than
one attractmg annulus then there would be more than one attracting lumt cycle, contradicting the

conjecture. Thus, there is at most one attracting annulus, the annulus being an attracting cycle. §§

Corollary 1.11. Under conjecture 0.1, the vector field £ may have at most one repelling annulus.

The annulus is a repelling limit cycle.

Proor. Consider the vector field under reverse time. There exists at most one attracting annulus
which also happens to be an attracting limit cycle. Under forward time the vector field has at most

one repelling annulus which also happens to be a repelling limit cycle. | |
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Lemma 1.12. Under conjecture 0.1, the vector field ¢ does not admit a semi-stable annulus.

PROOF. A semi-stable annulus is formed from a pair (C-001Coo) of limit cycles. By the conjecture
it follows that C_oo = Cw. The annulus is a semi-stable limit cycle. This contradicts the conjecture
that the only limit cycles are either attracting or repelling cycles, thus semi-stable annuli do not

exist. |

§2. Simplifying assumptions for vector fields.

As the vector field £ requires six defining constants, it would be desirable to constrain as many of

the constants as possible to reduce the number of cases to consider.

Proposition 2.1. Let £;1,&; be vector fields with defining constaats a,bd, c,d, k,! and -a,~b,—¢,~d,
~k, respectively. Then the respective solutions #1(t, (zo) y0)) and @a(t, (zo, yo)) are related by
#1(%, (zo) %0)) = d2(—1, (z0, Y0))-

Proor. Writing ¢1(2, (z0, ¥0)) = (z1(t), y1(t)), and $3(2, (zo, vo)) = (2(t), y2(t)) then
() :For z < 1 and using ¢3(2, (o, y0))’ = &2(b2(t, (2o, ¥0))):

[w8) = [z =1G8)

z2(=t)]" _[a 8] [za(~2)
] =12 ds)-
By uniqueness of solutions, ¢,(, (zo, yo)) = d2(~t, (zo, ¥0))-
(#) :For 1 < z and using ¢a(t, (2o, yo))’ = E2(d2(t, (zor ¥0))),

] = [z 2 [ze]-12)

(o8] = [k S [ 1]

By uniqueness of solutions, ¢,(t, (zo, ¥o)) = ¢2(—t, (z0, o). [ |

[

Thus,

(I~ ]

Thus,

Proposition 2.2. Let £, &> be vector fields with defining constants a,b, ¢, d, k,l and a, -b, —c, d, k,
-l respectively. The respective solutions #1(t, (20, ¥0)) = (z1(2), 11 (2)), #2(t, (zoy ¥0)) = (z2(t), y2(2)
are related by (z1(t), 11(2)) = (z2(t), —y2(1)).

PROOF. (i) :For z < 1 and using ¢2(%, (zo, y0))’ = E2(S2(t, (zo ¥0)))s
z2(?) ! _la =b][za(t)]
[yz(‘)] B [-C d] [yz(t). )

(=0T <[22 [=9).
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By uniqueness of solutions (z1(t), y1(2)) = (z3(2), —y2(t)).
(i) :For 1 < z and using ¢,(2, (o, o))’ = &2(d2(t (20, %0)))s

8] = (2 J1e1- (4]

Thus, ,
[0l =2 d[=0)- [
By uniqueness of solutions (z1(2), y1(2)) = (z2(2), —ya(2)). [ |

Using proposition 2.1, one simplifying assumption that can be taken is that 0 < a + d. By
proposition 2.2, it allows the extra lattitude of assuming that 0 < b. Proposition 2.2 does not affect
the value of a + d. With these simplifying results, the constants in the vector fields can be taken to
satisfy the conditions that 0 < a + d and 0 <b

Our analysis will proceed by ﬁx.in; the four constants a, b, c,d and allowing the constants k, !
to change. This reduces the number of degrees of freedom from six to two.

By definition, the vector field ¢ always has a fixed point at the origin. The linear vector field
associated with the extension of the vector field on the region {(z,y) : 1 < z} to the whole plane,
may or may not (if the matrix is singular) have a fixed point. If this linear extension has a fixed
point then it is called an induced fixed point. A subsequent result will show an equivalence between
values of k, I for which ad—bc+dk —bl # 0 and induced fixed .points (z, y) for which z # 1. Moreover,
the induced fixed point (z, y) is said to be virtual if and only if z < 1. More explicitly, we have:

Definition 2.3. Let £ be a vector field with ad — bc + dk — bl # 0. The point (z,y) is called the
induced fixed point of ¢ if and only if

HEE I HEHE

Lemma 2.4. Let a,b,¢,d,ad ~ be # 0 be given. Let k,! be such that ad — be + dk - bl # 0,
then for the vector field with deﬁging constants a,b, c,d, k,l there is a unique induced fixed point

(z) y)) z#1.

PROOF. As ad — bc+ dk — bl # 0, there is a unique solution (z, y) given by

[:] - (a+k)d1—b(c+1) [-(cd+ ) albk [’;]

ie.,

z|_ 1 dk — bl
v] ad-bc+dk—bl |~ck+all"
Furthermore, since ad — bc # 0,z # 1. | |



Lemma 2.5. Let a,b,c.d,ad - bc # 0 be given. Let (z,¥),z # 1 be given. Then there exists
k,1,ad~ bc+ dk — bl # 0 such that the vector field with defining constants a, b, ¢, d, k, 1 has (z, y) as
the induced fixed point.

PROOF. Assume (z,y) is a solution to the problem

HE [‘Zi? ”]H-[’i]-

Thus,
k —
1=
From which it follows that
az + by
cz+dy|’
The vector field with defining constants a,b,¢,d, k,{ will have (z,y) as the induced fixed point.
Furthermore, ad — bc + dk — bl = (ad — bc)/(1 - z) # 0 as claimed. |

Theorem 2.6. For fixed a,b,c,d,ad - bc # 0 there exists a homeomorphism h(k,1) = (z,y) from
the set of parameter values k,! satisfying ad — be + dk — bl # 0 to the set of induced fixed points
(z,vy) satisfying = # 1.

PROOF. By lemma 2.4 and lemma 2.5, the function
h k]l _ 1 dk - bl
1] ™ ad=bc+dk—bl |~ck+al

12 = 1 laz+by
y 1—-z|cz+dy

is the desired homeomorphism. |

with inverse given by

The vector field £ is linear to the right of the line z = 1. The extension of this linear portion of

the vector field to the whole plane is the linear vector field

1=t G-

By equivalence of matrices the eigenvalues of the matrix defining the linear vector field also deter-
mines the dynamics of § to the right of the line z = 1. The eigenvalues of the matrix will be referred

to as the eigenvalues at the induced fixed point, thus leading to the following definition and the
useful corollary that follows.

Definition 2.7. The eigenvalues at the induced fixed point are the eigenvalues of the matrix
at+k b
c+l! d}-
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Corollary 2.8. Let & be a vector field with ad — bc # 0, ad — be + dk — bl # 0. The product of the
eigenvalues at the induced fixed point is (ad - be)/(1 — z).

PRroor. The product of the eigenvalues at the induced fixed point is given by the determinant of the

a+k b

c+l d
which has the value ad— bc+ dk — bl. Using the values k = (az+by)/(1 - 2z),l = (cz+dy)/(1 —2),
the determinant becomes (ad — bc)/(1 - z). |

matrix

The line z = 1 as the boundary between two linear regions also has significance for the vectors
that lie along the line. The following proposition outlines this significance.

Proposition 2.9. Let ¢ be a vector field with 0 < b.. The line defined by z =1 is transversal to £
at all points except (1,y*) = (1, —a/b). Moreover, the vector field points to the left for points (1,y)
with y < y* and to the right for points (1,y) with y* < y.

PRrooF. For points (1,y) along the line z = 1 the value of the vector field is given by

< G1-[e3]

If £ is not transverse at (1,y") then a + by* = 0, i.e. at the point given by (1, —a/b). For va.lu&s of
¥ < ¥ the z-ordinate of the vector at the point (Ly)isa+ by < a+by* = 0 and so the vector
points to the left. Similarly for values of y* < y the vector at (1,y) points to the right. [ |

Because vectors along z = 1 above the point (1, —a/b) point to the right and those below point

towards the left, it is then possible to define a return map for ¢ along the line z = 1.

Definition 2.10. For v < w, the following notation will be used,

Liv,w)={y:v<y<w},
Liv,w]={y:v<y< w},
Livw)={y:v<y<w}
Liv,wl={y: v <y < w}.

Definition 2.11. For the vector field £ and solution #(%, (z0, ¥0)), 7(y) will denote the return map

from z = 1 to itself where

(1,m(y0)) = é(to, (1, y0))s to = min{t : 0 < t,¢(%, (1, y0)) N {(z,y) : 2 = 1} # 0},

9



whenever it is defined. Note that the return map is continuous, in particular this implies that line

segments are mapped into line segments if the end-points exists under .

As a matter of nomenclature, in the text it will often be spoken of points in one or another of
the sets L. For example, the reference of a point z in the set L[v, w] will refer to the identification

of z as a value and (1, z) as a point in the plane.

Having defined the return map, it is then possible to give a sufficient condition for the existence -
of attracting annuli.

Theorem 2.12. (Figure 5.) Let v < w < y*. If *(L[v,w]) C L[v, w] then there exists a locally
attracting annulus attracting for all points in L[v, w)].

PROOF. Let % = (#%)i(v),w; = (w?)i(w) for 1 < i be the successive images of v,w under two
iterations of the return map #2. The points v; form a monotonically increasing sequence that is

bounded above by w. Let vg be the limit of v;. By continuity of 72,

1r2(vo) = wz(‘lilglo vi)
-_ 1 2(.,,.
- i P)

= vo.

Thus, through the point (1, vo) lies a cycle. Similarly, through wy, being the limit of w;, lies a cycle.
Clearly, vo < wo. Consider the annulus A formed by the cycles through (1, vp) and (1, wo).

Let N be the flow of the line segment L{v, w] to L[x2(v), 7%(w)]. Then A C N. Also, as t — 0o
the sets ¢(¢, N) form a decreasing sequence of sets with 4 C é(t1, N) C é(to, N) for 0 < o < t;. By
construction 4 = N§2,4(t, N). Thus the annulus 4 is attracting.

As L[v,w] C N, the annulus is attracting for all points in Liv, w]. ]

10



§3. 0<b, 0<a+d, (a+d)?/4< ad-bc, ad - be+dk— bl # 0.
In this sections, since ad — bc + dk — bl # 0, then by theorem 2.6 the values of k, and the induced

fixed point can be used as interchangeable concepts.
The first result will be an application of Stoke’s theorem to show that limit cycles do not exist

in a certain region.

Lemma 3.1. Let £ be a vector field with 0 < a+ k+d then cycles may not intersect the linez = 1.

PRoOF. If such cycle exists then it must intersect the line z = 1 transversally at some points
(1,31),(1,y3) with y3 < y* < y;. A cycle will then join the points (1,y3),(1,%1) in a clockwise
orientation. Let C denote the cycle. Then by Stoke’s theorem,

dz dy , _ d (dz d (dy
c Edy - -‘Fdz B /inz(C) [E (Tif—) + dy (dt )] dz dy.

Breaking up the area integral into two parts, 4 = int(C)N {(z,y) : 2 < 1} and B = int(C)N{(z,y):
1< z}, then

0=/A [%(aa:+by)+ %(c:c+dy)] dz dy+
/B [ad?((a +k)z + by — k) + %((c+ Nz +dy - I)] dz dy.
Thus,

0=/(a+d)dz dy+/(a+k+d)dzdy.
A B

As 0 < a+d,0 < a+k+d the integral on the right is nonzero. By contradiction, such cycles do

not exist. ]

Theorem 3.2. Let (z,y),z < 1 be the induced virtual fixed point of the vector field § and
H-d(1-2)-a) <y

then there are no cycles.

PRrooF. If a cycle existed then it must contain a fixed point. The only fixed point is the origin. As
the cycle contains the origin in its interior then the cycle lies wholly in the region {(z,y) : z <1}
or intersects the line z = 1. As 0 < a + d cycles may not lie wholly in the region {(z,y) : z < 1}
for which £ is strictly linear. By lemma 3.1 it is sufficient for values of k corresponding to the point
(z,y) to satisfy 0 < a + k4 d to prove that there are no cycles. This becomes the requirement that

ar + by
l1-z

=k> —(a + d).
Thus, and remembering that z < 1,

az +by > az + dz - (a + d).

11



yz—d(l—bz)-a. 1

Some results will be now shown which determine the types of eigenvalues possible for the induced
fixed point and conditions for their occurrence. This will give rise to various cases for determining

some regions for which it can be said whether or not attractive cycles may exist.

Lemma 3.3. Let (2,y),z < 1 be the induced virtual fixed point of the vector field £. Then it has
complex eigenvalues <

%-(—2\/1 -zvVad-bc—d(l—-z)-a)<y< %(—2\/1 —zVad—-bc-d(1- z)-a).

PRroOF. The characteristic equation for the matrix

a+k b

c+! d|’
determines the eigenvalues at the induced fixed point. This equation is given by A2 — (a+k+dA+
[(a+k)d—(c+1)b] = 0. The eigenvalues are complex if and only if the discriminant is negative, or in

other words when (a+ k +d)? — 4[(a + k)d — (c+1)b] < 0.Using the values k = (az +by)/(1—z),l =
(cz + dy)/(1 - z) the equé.tion becomes (a + by + d(1 — z))? < 4(1 — z)(ad — bc). Thus,

=2V1-2vad-bec < a+ by +d(1-z) < 21— zvad — be,

or,

%(—2«/1 —zVad-bc—-d(l-z)-a)<y< %(ZVI-zVad—bc—d(l— z) — a). [ |

If the induced fixed point does not have complex eigenvalues, then the eigenvectors correspond-
ing to the real eigenvalues induce linear invariant manifolds. If the linear manifolds intersect the

line z = 1, more can be said about the points of intersection.

Lemma 3.4. Let (z,y),z < 1 be the induced virtual fixed point of the vector field §. Then
y€ {%(—2\/1 —zVad —bc-d(1 - z) —a), %(2\/1 —zvVad—-bc—~d(l1 —-z)—a)} =

there exists a point (1,v) for which the line through the state vector at that point passes through
(z,9).
PRrooF. When y attains these values, the characteristic equation has a single solution for the eigen-

values at the induced fixed point. The eigenspace corresponding to the eigenvalue may or may not

12



have dimension two. Nonetheless, in either case there is an eigenvector. The line through the in-
duced fixed point, passing through the direction of the eigenvector is an invariant manifold for the
linear vector field. If it can be shown that the invariant manifold must intersect the line z = 1 then
the point of intersection is the desired (1, v).

Assume the invariant manifold does not intersect the line z = 1, then the line has the form
z = K for some constant K. As the line is invariant for the linear vector field, the z-ordinate of the
vectors at points on the line is always 0. Thus 0 = (a+ k)K + by — k is to hold for all values of y..As :
0 < b the equality cannot hold independent of ¥, thus the invariant manifold must intersect the line

z =1 at some point (1, v). |
Lemma 3.5. Let (z,y),z < 1 be the induced virtual fixed point of the vector field €. Then
yé {y: %(-2\/_1 ==Vad—Fe—d(1-2)-a) <y < z2VI=aVad—bo- d(1 - z) - a)}

there exist points (1,v;),(1,v2) for which the line through the vector at those points pass through
(z,9)-

PROOF. By lemma 3.3, for these values of y the characteristic equation has a pair of distinct solutions.
For each eigenvalue there is also a distinct eigenvector. It can be argued that for each of the
eigenvectors there is a unique point of intersection with the line z = 1.As the two invariant manifolds,

one for each corresponding eigenvectors, are not collinear the points (1,v1), (1,v2) are distinct. @i

Proposition 3.6. Let (z,y),z < 1 be the induced virtual fixed point of the vector field £ and
y< %(—2\/1 —zVad - bc—d(1-z) - a)

then the points of intersection as given in lemma 3.4 and lemma 3.5 have y-ordinate less than y*

where y* is defined in proposition 2.9.

PRroor. By corollary 2.8 the product of the eigenvalues is given by (ad — bc)/(1 — z). For z < 1 this
is positive so that the eigenvalues at (z,y) have the same sign. For the given values of y it is also
true that y < (~d(1 - z) — a)/b. Thus y is outside of the region 0 < a + k + d. Thus the trace
satisfies a + k + d < 0, combined with the note on the product of the eigenvalues, the sign of the

eigenvalues are both negative. Solving

a blf1]_ y|1-¢=
c dj|v] Tlv-y]|’
for v, it follows that @ + bv = A(1 — z) < 0. Thus, it follows that v < y* for each of the point (1,v)
of intersection in the lemmas. |
With these results, the following theorem shows a sufficient condition for the existence of at-

tracting cycles.
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Theorem 3.7. (Figure 6.) Let (z,y),z < 1 be the induced virtual fixed point of the vector field &
with

v < H-2VT=svad—bo- d(1 - 2) - a)

then § has a globally attracting annulus in ®2 — {(0,0)}. Moreover, assuming conjecture 0.1 holds,
then £ has a globally attracting limit cycle.

PrRooF. By lemma 3.4 and lemma 3.5 the induced fixed point (z, y) also induces either one or two
points along the line z = 1 for which the vector field passes in the direction of a line containing (z, y). .
If there are two such points (1, v;),(1, v3) then consider the point (1,v) where v = max{v;, v3}. By
proposition 3.6, v < y*.

As (a + d)? < 4(ad - bc) the vector field for z < 1 has non-zero rotational speed. Thus let
y** = 7(y). Note also that 7 : L(—o0,y*] — L[y**, ) is well-defined.

As the eigenvalues of the induced fixed point are both negative the vector field for 1 < z will
be attractive towards the induced fixed point. Thus, the points of L(y*, 00) will eventually, under
the vector field , intersect the line L(~00,3*). Thus, 7 : L(y*, c0) — L(—o00,y°] is well-defined.

Consider now the line L[v, y*] under two iterations of the return map. Thus,
7*(Llv,y°]) = #(L{x(y"), 7(v)]) = L[r*(v), x*(5")).

Now x%(y*) = #(y**) < y*. Since ¢(¢,(1,¥**)) is to re-enter = < 1 the z-ordinate of the vector at
intersection with the line z = 1 must be less than or equai to zero. Thus 7(y"*) < y*. If n(y**) = y*
then y* has, as under reverse time, a pre-image under 7. This is not possible as under reverse time
#(¢,(1,v*)) has eigenv;alues whose real parts are negative, so that the distance form the origin to
any point of ¢(¢, (1, y*)) has length less than one and cannot intersect z = 1. Thus ~=(y*) < y*.

Also v < 7%(v). As the line through (1,v) is an invariant manifold for the induced fixed point,
72(v) cannot cross this line, thus it follows that it must intersect z = 1 at some point above v, i.e.
v < 72(v).

Thus, by the two previous paragraphs #?(L[v,y°]) C L{v,y*]. It follows by theorem 2.12 that £
has an attracting annulus A which is attracting for all points in Liv,y*].

Counsider points in L(y*, 00), after one application of the return map 7(L(y*,00)) C L[v,y*]). So
all points in L(y*, 00) are also attracted to A. Points in L(—oo, v) iterate to L(n(v),00) C L(y*, ),
so that all these points also iterate to A.

Let (zo0,y0) be any point in the plane ®2 — {(0,0)} for which z # 1. If z < 1 then since
the cigenvalues of £ in the region z < 1 both have positive real parts, then urder finite tirae
0 < to, é(to, (20, %0)) N {(z,y) : 2 =1} # 0. If 1 < z then since the eigenvalues of the induced fixed
point determines the vector field, and being both negative, there is again some finite time value
for which 0 < 2o and ¢(to, (2o, y0)) N {(z, y) : = = 1} # 0. Thus, the attractive annulus is globally
attracting in 2 — {(0,0)}. By lemma 1.10 the atttéct.ing annulus is an attracting limit cycle. B
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The next two lemmas present a qualitative result for induced fixed points which are also foci.

Lemma 3.8. The general solution to the differential equation

Gl =[x AG]-01 o) =[]

when (a + k + d)? — 4(ad — bc + dk - bl) < 0 is given by

[z(t)

y(t)

a | Xocos(wt) — L[(A - (a+ k)Xo — bYp]sin(wt) 1 [ dk — bl }
Yo cos(wt) + L{(c+ )Xo + (A = (a+ k))Yo]sin(wt) | * ad—be+ dk— bl | —ck+al ]’

where

Xo]_ zo] _ 1 [dk—bl
Yo| lw)] ad=bc+dk—bl | —ck+all’

and A = (a+ k+ d)/2,w = \/4(ad = dc+ dk — bl) — (a + & + d)2/2.

PROOF. Consider the following substitution given by

H [ ] AT [jfk:ubiz]-

Using this substitution the above differential equation becomes

[x]'_ a+k b x [xo _ zo]_ 1 [dk-bl]
Y| 7 e+l Yo ™ |lwo ad-bc+dk—bl |—cl+all’

The eigenvalues of the matrix given by
' at+k b
e+l d

are A + iw where A = (a+ k + d)/2,w = \/4(ad - bc + A ~bl)— (a+k+ d)?/2. Eigenvectors

corresponding to the eigenvalues are given by

[a+k b] [.\:i:’ 1( k]=(’\ii“’)[.\:l:' lg k]
c+1 d fw—{a+k) fw~(a+k)

X 1 1 X
Y = A+iw-b(a+k) A—t'w-;(a-l-k) Y-

On substitution the problem becomes

[F1 =05 S [F) ) - [£r ooy,

Let

Y

The solutior

() %o cos(wt) — A[(A = (a + £))Xo ~ bYp] sin(wt)—

i[ X2 sin(wt) + r[(z\ — (a+ k))Xo — Yo) cos(wt)]
i[4e sin(wt) + 551(A — (a+ k)Xo — Yo] cos(wt))

[ X (t)] [%"‘COS(W*) - 55[(A — (a + k))Xo — bYo) sin(wt)+
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implies that

X (t)] = M [ Xo cos(wt) — L[(A — (a+ k))Xo — bYo] sin(wt)

Y]~ [Yocos(wt) + Ll(c+ )Xo + (A = (a+ k))Y) sin(wt) | ©
Thus,
[z(t) =
O)
Y Xo cos(wt) = L[(A - (a + k)Xo — bYp) sin(wt) 1 [ b ] . )
Yocos(wt) + L{(c+ )Xo + (A = (a + k))Yp)sin(wt) | ad—bc+dk—bl | —ck+al]"

Lemma 3.9. Let (z;,y:), zi < 1 be the induced virtual fixed point of the vector field £ for which
%(-2\/1 —ziVad = be - d(1 - z;) - a) <y < -'1;(2\/1 —z;Vad—bc—d(1 - z;) - a).
Then the solution ¢(t, (o, yo)) through the point (o, Yo) satisfies

¢(/w, (20, 40)) = =€ ((z0r yo) — (2i %)) + (s> i)

where

A= a + by + d(1 - z;)
- 2(1-z;)

_ V4ad—bc)(1 = z;) - (a+by; + d(1 — z;))?
= 2(1 - z;) )

Proor. By lemma 3.3 when (—-2vT=z;vad - bc — d(1 - z;) — a)/b <y < (2vVI=z;vad=bc -
d(1—z;)~a)/b the eigenvalues of the the induced fixed point are complex. Then, by the considering

y &

the characteristic equation of the matrix,

a+k b

c+! d}’
(a+k+d)? - 4(ad — bc + dk ~ bl) < 0 where k,! are given by k = (az; + byi)/(1 - z;),1 =
(czi + dyi)/(1 — z;). Using lemma 3.8, the solution through the point (zo, yo) is then given by the

function
[r(t) -
y(t) ]~
e | Xocos(wt) = L[(A ~ (a+ k)Xo — bYo] sin(wt) 1 [ dk — bl ]
Yo cos(wt) + L[(c+ )Xo + (A = (a + k))Yo)sin(wt) | * ad—bc+ dk - b1 | —ck +al |’

where

Xo] - [-‘co _ 1 dk — bl

Yo Yo| ad-bc+dk—bdl [—ck+al]’

and A = (a+k + d)/2,w = /4(ad = bc + dk — bl) — (a + k +d)?/2. Remembering by theorem 2.6
that

1 dk-b | _ |z
ad—=bc+dk—-bl [—ck+al] ™ |y
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the above becomes

[z(t) =it | Xocos(wt) — Z{(A - (a+ k)Xo — bYo] sin(wt) [z.-]
()|~ [ Yocos(wt) + E[(c+ )Xo+ (A — (a + k))Yo) sin(wt) Y

Writing ¢(2, (0, %0)) = (2(t), y(t)) then computing for t = x/w gives
8(r/wy (20, %0)) = ~e ¥ (201 Y0) = (i, 1)) + (2ir 35)- il
The following results will culminate in another theorem that will augment the region of theorem
3.7 for which attracting limit cycles exist.
Lemma 3.10. (Figure 7.) Let A & iw be the complex eigenvalues of the matrix given by
a b
c d|’
There exist vo < y* and Ko such that for v < vg the return map = : L(—o00,y*] = L(y", o0) satisfies
7(v) < —e¥v+ K.

PROOF. Consider the point (1,v) with v < y*. Now consider the solution #(¢,(1,v)) and the line
that passes through this point in the direction of the vector at the point. The equation of this line

z(t)| _ |1 a+bv
[8]= L]
Noticing that the solution through (1, v) is tangent to the line through that point and lies above the

line, then at the value 0 < to for which ¢(¢, (1, v)) = (41(t, (1,v)), 62(2, (1, v))) first intersects z = 0,

this point of intersection T lies above the line’s point of intersection with z = 0 at S. The line above

through (1, v) is given by

intersects z = 0 at the point (0, — (c + dv)/(a + bv)) while the solution ¢ intersects at the point
#(to, (1,v)) = (o, é2(to, (1, v))). Thus,

c+dv
v—
a+ by

< ¢2(to, (1,v)).

With the origin as the induced fixed point of the vector field, the conditions of lemma 3.9 are
satisfied. Under the elapsing of 7 /w units of time then

$(to+ 7/w, (1,v)) = —e¥(0, 4a(t0, (1, v)))
= (0, —e ¥ ¢a(to, (1, v)))
This point V is below the corresponding image U of the point (0,v — (¢ + dv)/(a + bv)). Thus,

c+dv

Ax Ar
—e 7 ¢2(to, (1,0)) < —e“ (v — e

)-
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Consider the line tangent to the vector field at the point (0, —e**(v — (c+ dv)/(a + bv))). This line
has the equation given by

[36]- o[a]

u(t) [—e ¥(o - e*-ﬁ.%)] *

This line intersects the line z = 1 at the point (1, -e¥*(v— (c+ dv)/(a+ bv) + d/b). This point also
lies above the first intersection of the solution through ¢(t, (0, =€ 45 (to, (1, v)))). Call this pomt
(1,w). It happens that w = x(v). Thus, one has that

Ax c+dv d
1r(v)<-e (v-—_'_Tv-)+..

A= c+dv d
=—cevotew (+bv)+b

_ A= ae {d ad-bc d
=—evv+te (g—m)'l'b.

Let vo = y* — 1/b. Then for v < vo,a+ bv < —1. Now (a+ d)2/4 < ad— be so that 0 < ad— be. Also
0 < b so that the value ~(ad — bc)/(b(a + bv)) is bounded above by (ad — bc)/b. Let

az fd  ad-be d

Ko=e® (3"‘T)+3'

Then for v < v one has that

m(v) < —eXv + Ko. |

Lemma 3.11. ( Figuré 8.) Let (zi,y:)yzi < 1 be the induced virtual fixed point of the vector field
§ such that

%(—2\/1——::.-\/ad- be~d(l-z;)-a)<y < %(ZMM— d(1 - z;) — a).

To the fixed point corresponds unique values of k, I. Let A1 £ iw; be the complex eigenvalues of the

matrix given by

a+k b
e+l d|°

There exist y* < vy and K, such that for vy < v the return map 7 : L(y*, 00) — L(—00, y*] satisfies
Ay w
—eT o+ K; < m(v).

PRooF. Let (1,v) be a point for which y* < v. Consider a line through the point in the direction of
the vector at that point. The line is tangent to the solution #(t, (1, v)) passing through (1,v). The
portion of the connected component of the solution bounded by the lines z = z;,z = 1 lies below
the line through (1, v). This line has the equation

8]=[a]+[erie].
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The line intersects z = z; at the point S given by (z;,v + (zi = 1)(c+ dv)/(a + bv)). Let to < 0 be
the first time that ¢(t, (1, v)) intersects the line z = z;, thus é(to, (1,v)) = (i, $2(¢, (1, v))). Let this
point be T. Then one has that

c+dv
a+ by’

The considerations of lemma 3.9 concerning fixed points with complex eigenvalues are satisfied.
Under the elapsing of 7/w; units of time

c+dv
a+bv

$2(to, (1,0)) < v+ (2i - 1)

)= =5 (@i + (20 = DT — (21030) + (20 w0)

) Ay x d
= (zi,—€ 1 (v + (2 — 1)21 b: - ys') + ¥i)-

¢(m/w1, (ziy 0 + (zi — 1)

Also, Aye
$(to + m/w1, (1, ) = —e i ((z:, $a(to, (1,9))) = (ziy 1)) + (zi i)
= (z;, —eﬁ“ll;(tﬁz(to, (1,9)) = %) + w).
Using ¢2(to, (1,v)) < v+ (z; — 1)(c+ dv)/(a + bv) then

Ay w

—e (v +(zi - 1) + bv - y.) +y < —eﬁ“'u(tﬁz(to, (1,9)) = %) + vi.

Thus the solution through ¢(¢o + 7/wy, (1, v)) intersects the line z = z; at a point V above where
é(m /w1, (zi,v + (i = 1)(c + dv)/(a+ bv))) intersects the same line at the point U. Under the linear

vector field given by
a+k b _ |k
c+l! l

the line through the vector at the point (z;, —e 3 (v + (zi = 1)(c + dv)/(a + bv) — yi) + y;) is given
by

2 R A #[3]

y(t) —evr (v +(z;-1) (ﬁ-‘z—:-) - + i

This line intersects the line z = 1 at the point (1, —e%xi(v +(zi—1)(c+dv)/(a+bv) — ) + v +
(1 = z;)d/b). This point lies below where the solution through (1, v) intefsects z = 1 for the first
positive time. Thus,

() > —e 3 (,,+ (zi — 1) (Z:::) - y.') +y; +(1 -ze)g'

Ay e Ay +d: d
=—e'“:Lv—e_'}T' ((:c.-— 1) (Z+bv) —y.') +y.'+(1—-2-')3

A M ad - be d
=—e“1v—ge+ ((J:. )( —Tt,))—yi)+yi+(1"zi);'

Let v1 = y*+1/b. Then for v; < v it is true that 1 < a+bv. Then, since 0 < b,0 < (a+d)?/4 < ad-bc,
the value —(ad — bc)/(b(a + bv)) is bounded below by —(ad — bc)/b. Let

d-b d
Kl——evn ((a:.-—l)( 2 3 c)—y.-)+y.-+(1—z.~)z.

19




Then for v; < v,

M r
—eT v+ K < x(v). |

Theorem 3.12. Let (z,y),z < 1 be the induced virtual fixed point of the vector field § with
%(—2\/1 —-2vad-bc-d(l-z)—-a)<y< %(2\/1 —zVad - bc—~d(1 - z) —q)
and A1 /wy + M/w < 0.Then there exists v, < y* such that for v < vy the map x? : L(~o0,y*] —

L(—o00, y*] satisfies v < 73(v).

Proor. Let v, vy, Ko, K; be the constants that are given by lemma 3.10 and lemma 3.11. Let
v' = min{vo, 771(v1)}. As vo < y*,y* < vy then o' < y*. For v < v’ < vo then 7(v) < —e¥ v + K.
A v
As v; < m(v) then 73(v) > -e'"lt-w(v) + K. Combining the two previous results gives,
Ay
72(v) > e %1 (e ¥ v — Ko) + K,
A

= e+, _ eﬁ""l;Ko + K.
If 72(v) > v then it is sufficient that
el _ eé"-'xx;Ko +K; >0
For A1 /w; + A/w < 0, then
K, - ei“‘t;Ko >v(l- e(éi'*é)').

Thus,
Ay w
Ky - ™K,
— oo 2
1- e( s+
Ay
Let v = (K, —e"'xx-Ko)/(l—e( é{“"'é)”). Finally define v; = min{v’, v"'}. Then for v < v, it happens

that v < 72(v). | |

Theorem 3.13. (Figure 9.) Let (z,y),z < 1 be the induced virtual fixed point of the vector field
£ If

%(-m/m\/ad —bc-d(l-z)—a)<y< %(-\/l_——x(a +d)-d(1-z)-a)

then there is a globally attracting annulus in R? — { (0,0)}. Moreover, assuming conjecture 0.1 holds,

then £ has a globally attracting limit cycle.

PRrooF. Consider the vector field given by

IME [z 3”:] z<
1 [E 3 .
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for k, I corresponding to the the induced fixed point (z,y). The eigenvalues A £ iw, Ay + fwy, being
the complex eigenvalues of the origin and at the induced fixed point respectively, are given by

A= “"";"'d
o V4ad—bc+dk —bl) - (a + k + d)?
l=
2
a+d
A= 2

v4(ad - bc) - (a + d)?
w= > .

With k = (az + by)/(1 - z),1 = (cz + dy)/(1 ~ z) the equations for A;,w; reduce to

A = 3Hoy+dQ1-z)
1T T 1=
_ \/4(cui--bc)(1-..~.)—(a-i-by+¢‘l(1-z))2
“1= 2(1-2) )
Then
A a+by+d(1-z) A a+d

Wi Vaad-tl-0) - @t A= @ VA=) =TT
Asy < (=v1-z(a+d)-d(l —z)—a)/b then a+by+d(1-z)<—v/1T=2z(a+ d) <0. Then the
implications hold,

(a+d)?(1-z)< (a+by+ d(1-1z))?
1 1

= @+t +di-2) * a+aPi-2)
- 4(ad — be)(1 - z) 4(ad - bc)
(a+bdy+d(1-2z))? ~ (a+d)? ~
Thus,
4(ad - be)(1 - z) — (a + by + d(1 - z))? < 4(ad - bc) - (a + d)?
(a+dy + d(1 - z))2 (a+d)?
- (a+d)’ < (a +by +d(1 — z))
4(ad—bc) - (a+d)? ~ 4(ad—bc)(1 = z) — (a + by + d(1 - z))?
= a+d < —(a+ by + d(1 — z))?
V#ad—bc) —(a +d)? ~ \/H{ad— be) - (a+ by + d(1 = 2))°
A
> Ayl co.
w1 w

By theorem 3.12 it is possible to choose vo such that for v < vg,v < 72(v). Consider the line
segment L[vo, y*]. Then Wé(L[vo, v*]) = L{x?(vo), 2(y*)] C L{vo, ¥*). Thus, by theorem 2.12 there is
an attracting annulus 4 attracting for all points in in L[vo, y*]. Say v < v, again consider the line
segment L[v,y"]. Then again #2(L[v, y*]) = L[2(v), 73(y*)] C L[v,y"), and by theorem 2.12 there

is an attracting annulus A’ attracting for points in Llv, y*]. The annulus A may be characterised by
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its boundary cycles Cy, C;. The boundary cycles intersect the line z = 1 at the points (1, n), (1, v3)
where v2 < v; < y*. By construction in theorem 2.12 the point (1,y*) approaches the point (1,v;)
and the point (1, v) approaches the point (1,v2), both limits under iteration of 72. Similarly, the
annulus A’ may also be characterised by its boundary cycles, the boundary cycles intersecting the
line z = 1 at the points (1,v}), (1, v}) where v} < v} < y*. As before, the point (1, v]) is the limit
for the point (1,y"), as is the point (1,v4) the limit for the point (1,v).

The point (1,y*) can have only one limit under restriction to the line z = 1. Thus 1,v) =.
(1,v}), from which it follows that vy = v{. If the point (1,v3) is to lie on a cycle then v} € L(vo,y°].
But now the point (1, vo) has both (1, v;) and (1,v}) as limits. Thus v; = v5. Thus means that the
annulus 4’ is formed by the same boundary cycles as the annulus A, the two annuli are identical.
Thus, the annulus 4 is attracting for all points along L(—00, y*]. As 7(L(y*,00)) C L(—o00,y*], the
annulus is attracting for z = 1.

Let (zo, o) € R? — {(0,0)}. Then there is some 0 < ?o < oo for which #(to, (z0, ¥o)) intersects
the line z = 1. Thus, the point #(o, (2o, yo)) iterates to the annulus A4, as so does the original point
(zo, yo)- By lemma 1.10 the attracting annulus 4 is an attracting cycle. Thus, there exists a globally
attracting limit cycle in ®2 — {(0,0)}. |

The following four results end in a theorem claiming a region in which cycles do not exist. The
first four lemmas are approximation results for the return map. With these results, the subsequent

theorems prove the nonexistence of cycles.

Lemma 3.14. Let ¢(%,(zo, o)) be the solution through (zo, yo) for the differential equation

GI=12 3B B8)-[x]
y c df{y]’ [y0) v’
Let the eigenvalues of the origin be A+ iw. For0 < t the point ¢(t, (zo, yo)) lies outside of the ellipse

given by

[z(t)] _ | zocos(wt) = L[(A — a)zg — byo) sin(w?)
Y1) ] | yocos(wt) + Lezo + (A — a)yo] sin(wt) | *

PROOF. The solution throught the point (zo, Yo) is given by

_ zgcos(wt) — L[(A - a)zo — byo] sin(wt)
¢(t’ (301 yO)) = e [yo cos(wt) + %[czo + (,\ _ a)yO] sin(wt)] .

As A = (a+d)/2 > 0, then for 0 < ¢ the vector #(t, (z0s o)) has a longer length while still being in

the same direction as the vector

zo cos(wt) — L[(A - a)z¢ — byo) sin(wt)
Yo cos(wt) + Slezo + (A — a)yo] sin(wt) | °
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Thus, for 0 < ¢t the point (%, (zo, yo)) lies outside of the ellipse given by

[z(t)] _ | zocos(wt) = L{(A - a)zo — byo) sin(wt)
¥ ]~ | yocos(wt) + L[ezo + (A — a)yo) sin(wt) | °

Lemma 3.15. Let A % iw be the complex eigenvalues of the matrix given by
a b
c d|’ .
There exists vo < y* and Ko such that for v < v the return map r : L(—o0,y*] = L(y*, oc) satisfies
—e¥o+ Ko < 7(v).

PRrooF. Let v < y* and consider the point (1,v). By lemma 3.14 the solution #(¢, (1,v)) for 0 < ¢
lies outside of the ellipse given by the equations

[z(t)] _ | cos(wt) = L[A - a — bu]sin(wt)
¥(®) ] ™ | veos(wt) + L[c+ (A — a)v]sin(wt) |

Let 0 < #o be the first time for which ¢(to, (1,v)) intersects z = 0. Thus the point of intersection
lies below where the ellipse intersects z = 0. The ellipse intersects the line z = 0 at 0 < #, for which

0 = cos(wt;) — %[z\ ~ a — by} sin(wt, ).

Thus,
yit)=v [%[,\ -a- bv] sin(wty)] + £[c+ (A = a)v]sin(wt,)

.= %[c+ 2(A - a)v - bv?]sin(wt,).

As tan(wt;) = w/(A = @ — bv) then sin(wt)) = w/ Vw? + (A = a - bv)? and substituting into the

above gives,
c+2(A - a)v — bv?

)= ——————
uh) Vw2 + (X —a-bv)?
As A = (a+d)/2,w = \/4(ad - bc) — (a + d)?/2, in substitution and simplification into the fraction
for y(t,) gives

y(t1) = —\/vz- d-a,_¢,

b b
Let v/ = min{—a/b, (—a%/b - c)/(2))}. For v < v’ the following inequalities hold,
-atfb-c
2A
—a?fb—c _ 2)
>z
= b =" v
a® ¢ a d—-a
= "7 52 % T) v
d-a ¢ a a?
2 _ 852,08 .8
= v 7Y 3 v +2bv+ 7
d-a ¢ a
2 _—e > ey — =
=> \/v 3 v 3 2 -v 3

[
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Thus,

d-a ¢ a
= —4/p2 = - -
y(t1) = Jv 70 b$v+b.

Thus ¢(te, (1,v)) = (0, $a(to, (1,v))) where ¢(to,(1,v)) < v + (a/b). After #/w units of time, then
by lemma 3.9,

$(to + 7/w, (1,)) = (0, —e ¥ ¢5(t0, (1, v)))
where

—e%" (v + %) < -ea“;¢2(t0’ (lv v))'

Let 7= —e¥(v+a/ b). Note that 0 < 7. Consider the ellipse that passes through (0, 7). This ellipse
intersects the line z = 1 at a point below where the ¢(¢,(1,v)) intersects the same line. Thus, a
lower bound for #(v) has been obtained. The ellipse that passes through (0,%) has the equation

given by
[z(t) = Ssin(wt)
¥(®)] T [Tcos(wt) + L(A - a)Tsin(wt) |

At 0 < t; for which the ellipse intersects the line z = 1, then w/b = sin(wt;). Computing y(t,) gives

N PN )
W) =7 - 5+ 20~ 0}
=5/1— w? +A—a
I A R

Let v" = max{1/2,1/4+ w?/b?}, then for 7> v” the following inequalities hold,

vz%#;—z
2
- L3 (02)
2
= T;”bzz-%-'-‘l_;j
2
= 1-%21-21?
Thus
y(t2)>F(1—;—F)+A;a
=v—%+’\;“.

b 2 b
= —etyoed Ll A
- b 2 b

= —e%y + Ky
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where

Lemma 3.16. Let (z;,y:), 2; < 1 be the induced fixed point of the vector field £ for which
%-(-Zs/l —ziVed=bc-d(l-z;)—a) <y < %-(—d(l - ;) — a).

Consider the linear vector field given by

Lzl =|atk b||z]_[k
y] le+l d]ly l
where k = (az; + byi)/(1 — 2:),! = (czi + dyi)/(1 = z;). Let Ay % iwy be the complex eigenvalues

of the matrix defining the vector field. Let ¢(t, (z0) y0)) be the solution through the point (zo, o),
then for t < 0 the point ¢(t,(zo, yo)) lies outside of the ellipse given by

[z(t) _ [ (z0 = zi) cos(wnt) — (M1 = (@ + E))(zo — 2:) — b(yo ~ y:)] sin(ws?) ] [,,.]
Y1 [ (vo - ws) cos(wrt) + (e + 1)(zo — 2:) + (M = (a+ k))(yo — y)] sin(wy t) |

ProoF. The solution through the point (zo, Yo) is given by

¢(t9 (30’ yO)) =

ot [ (20 = z) cos(wit) ~ Z{(M = (a + k))(2o — 24) = b(yo — )] sin(wy?) ] [ ]
(vo — 3:) cos(wit) + Zl(c +1)(zo ~ 2:) + (M ~ (@ + F))(yo — %)] sin(wst)

As yi < (—d(1-z;)~a)/b then A, = (a+k+d)/2 < 0. Thus for ¢ < 0 the vector #(t, (zo0s ¥0))—[z: wi]*

has a longer length while still being in the same direction as the vector

[ (z0 — ) cos(wrt) = E{(A1 ~ (@ + k))(zo — 2:) — b(yo — wi)] sin(ws?) ]
(vo = ys) cos(wrt) + Z-[(c + 1)(zo - zi) + (M — (a + k))(vo — )] sin(wrt) |

Thus, for ¢ < 0 the point ¢(2, (zo, yo)) lies outside of the ellipse

[z(t)] _ [ (Zo = ) cos(wit) = Z-[(A1 =~ (a + k)) (20 — 2i) = b(yo — )] sin(w; ) [ zj.-] 5
yt) (v0 = wi) cos(wi) + Z-[(c + (20 = 2:) + (A1 = (a + ))(v0 — )] sin(wi?) '

Lemma 3.17. Let (z;, ¥i)yzi < 1 be the induced fixed point of the vector field ¢ such that
%(—2\/1 —ziVad—-bc—-d(l-z;)-a) < y; < -Il;-(—d(l - z;) —a).

To the fixed point corresponds unique values of k, ! where k = (azi+bdyi)/(1~z:),1 = (czi+dy;)/(1-

z;). Let Ay £ iw; be the complex eigenvalues of the matrix
a+k b
c+! d|°
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Then there exists y* < vy, K) such that for vy < v the return map = : L(y*,00) — L(—00,y*]
satisfies

Ay w
7(v) < —e%iy + K;.

PRroOF. Let (1,v) be a point with y* < v. As y; < (—=d(1 — 2;) — a)/b then A; = (a+k+d)/2<0.
Let ¢(t,(1,v)) be the solution that passes through the point (1,v). By lemma 3.16 under reverse
time the solution ¢(t, (1, v)) lies outside of the ellipse given by the equation ,
[z(t)] — | @==2)cos(wrt) = Z[(M = (a+ k)(1 ~ 2:) — b(v — )] sin(ws t) + [z.-]
y(t) (v = wi) cos(wyt) + ,}—‘[(c+ (1 - 2i) + (A1 = (a + k) (v — 3)] sin(w; t) Y

Let o < 0 be the first negative time for which ¢(¢,(1,v)) intersects the line z = z;. This point
of intersection lies above the corresponding point where the ellipse intersects the line z = %;. The

ellipse intersects the line z = z; at some time ¢; < 0 for which

zi = z(t1) = (1 - z;) cos(wyty) - 5;[(& —(a+ E))(1 - z;) — b(v — ;)] sin(wr ty) + =;.

Thus,
y(t) = & [(c+ D= zi) +2(M — (a+ k))(v - ¥i)— 9%-)-:] sin(wy?y) + ¥i.
As
_ wi(l = z;)
) = TR A=) =W
then
sin(wyt;) = Wil — z:) .
Vail-zip ¥ - (a+ k)1 = zi) = b(v - ui)]?
Thus,

= e DA -2z +20 - (a+ kv —g)(1—z) =blv—w)? |
S Y 7 e (P PR € e By T R
Using Ay = (a+ k+ d)/2,w; = /4(ad = bc+ dk — b]) — (a + k + d)?/2, the formula for y(t,) sim-
plifies to the following form,

y(t) = \/(v I (°+’;))(1 =20y - i) = (f+1)2g1 -z

Let v’ = max{—(a+ k)(1 = 2)/b + yi, (—(a+ k)2(1 — ;) /b— (c + D(1=2;))/(2\1) +yi}. For v’ < v
then, and remembering A, = (a + k + d)/2 < 0,

—(a+ k)*(1 —z;)/b~ (c+1)(1 - z;)

.

o Sv-u
- _(a+ k)2§1 =2 (e 1)1 = 22 2 21 2:)(0 — )
. ML (40 - 2i) (z“‘;" + "‘(‘;‘“")) (1 - 23)(v — )
_(d=(a+ :))(1 k) PR CL 1)(; —=) | et Ic)l(,l =2, _ gy 4 OF k)";(zl =)’
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Adding (v — y;)? to both sides and taking the square roots results in,

\/(,, e Gl CL :))(1 L) I ) - &t l)(; —=) (0 -+ &F k)£1 —z)

Thus ¢(to, (1, v)) = (2ir $2(tos (1, v))) satisfies
#2(toy (1,2)) > v+ _(£+_k)§L—ﬂ.

By lemma 3.9, after 7/w; units of time it happens that

¢(to + 7 /w1, (1, v)) = (=4, _e%‘(qs,(to, (1,9)) = w) + w)
where

~eH a0 o) - )+ s < e [0 - )+ R e R0

Let 7 = —eéﬁ[(v = ¥i) + (a + k)(1 - 2;)/b] + ;. Note that ¥ — y; < 0. Now look at the ellipse
that passes through the point (z;, 7). This ellipse intersects the line z = 1 at a point above where
#(t, (1, v)) intersects the same line in reverse time. This enables an upper bound to be put on the

value of 7(v). The ellipse through (z;,7) is given by the formula
[z(t)] _ o(7 = i) sin(wy2) + [z.]
y(t) (7 - i) cos(wt) ¥ or(M = (a + B))(F - vs) sin(wr?) '
At the point of intersection with the line z = 1 at time t3 < 0 then

“;—‘(1 - zi) = (¥ — yi) sin(wy £2).

Thus,

w? 1
y(t1) = -\/(F— ¥i)? - b—,‘(l -z + (= (a+ k)1 - )

wi(l - z;
=(T—yi)y/1- b;((;——:,)): + %(/\1 - (a+ k)1 - z;).

Let v" = min{-1/2 + y;, —1/4 — w}(1 - 2;)2/b2 + y;}. Then for 7 < v the following inequalities
hold,

F—yis—%-‘ﬂ%z—i)z
1 1 1 wi(1l-2z)?
= U=y ~ < (T-u)? (--— wl(b*zz’))
-2
“ vt T S e
2(1 — 2.)2
= 1+F_1yi+4(ﬁ_1y‘),_1-%%
- s fi- st
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Thus,
1 1
y(t1) < (T-w) (1 + 'A’_(%-T)) + 3= (a+ BN - )
=Tyt 5+ 10— (a+B)(1 - 2,).
Finally, let v; = max{v’, —(a+k)(1 - 2;)/b - e'%:;(v” = %) + ¥i, —a/b+ 1/b}, then for v; < v one
has that

(a+ k)(l

7(v) < e [(v -w)+ z‘)] + =+ -(,\, ~(a+E))(1-z;)

llv
=-evt v+ K,

where
K=y, (et k)l(’l —z) %.;. %(,\1 —(a+E)(1-z). 1

Theorem 3.18. Let (z,y),z < 1 be the induced virtual fixed point of the vector field £ with
%(-2\/'—1 —Vad—be-d(l-z)—a)< y < %(z\/'_1 —Vad=te - d(1 - z) - a)
and 0 < A\1/wy + A/w. Then there exists v» < y* such that for v < vz the map 72 : L(~oo0,y*] —

L(—o0, y*] satisfies 73(v) < v.

ProoF. Let v, vy, Ko, K, be the constants in lemma 3.15 and lemma 3.17 respectively. Let v/ =
min{vo, 7r“1(vl)} As vo < y* then v/ < y*. For v < v’ < vp then —eX v + Ko < 7(v). As v; < 7(v)

then 7%(v) < —e 3 1r(v) + K. Combining these two results give

Ay w
7 (v) < e™i (v - Ko) + K,

LIW Y EILA
= e('x""')"v- e“r Ko+ K;.

If 72(v) < v then it is sufficient that

A Ay ®
e(sf""é')'v - e'éf'Ko + K; <v.
Thus,
. A Ay
v (e"*“"é)" - 1) < e T Ko~ K.
Or,

.3 LA

e“r Kg— K,
S

e(#“':)"_l

A w‘ A
Let v = (e'-'TKo—Kl)/(e(*"'é)"—l). Finally, define v; = min{v’, v"'}. Then for v < v, it happens
that 72(v) < v. | |
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Theorem 3.19. Let (2,y),z < 1 be the induced virtual fixed point of the vector field & If
%(—\/_—l—z(a+d)—d(1-c)—a) <y< %(-d(l—z)—a)

then there are no cycles.

ProoF. For these values of (z, y) one has that 0 < X /w; + A/w (c.f. theorem 3.13) where A = iw are
the eigenvalues of the origin and A; = iw are the eigenvalues of the induced fixed point. By theorem _
3.18 there exists v; < y* for which v < v; implies 72(v) < v.

Say a limit annulus exists. As the origin in repelling the annulus is attracting. To the annulus
are two boundary cycles €y, C; which intersect the line z = 1 at the points (1,7),(1,5) with v; <
sSrly.

Consider the line segment L[v,, s]. Under two reverse iterations of the map 7 one has that
7=2(L[v, s]) = L[r~2(v,), 5] C L[va, s). Now 72 has the unique fixed point s in L{vs, y]. If another
fixed point existed, then maximality of the annulus would be violated. Thus s is attracting for #—2.
But s is also repelling for 72. The point s cannot be both attracting for forward and reverse time.
By contradiction, the limit annulus does not exist.

By the same argument as the previous two paragraphs, if an annulus whose boundary cycles
both intersected the line z = 1 existed, then it would be semi-stable. By lemma 1.12 semi-stable
annuli do not exist. If annuli exist, then at least one of the two boundary cycles do not intersect
the line z = 1. This means that one of the two regions {(z, y):z <1} or {(z,y):1 < z} admits a
cycle. The trace of the vector field in both regions is nonzero. Neither of the two regions mentioned

admit cycles. Thus, annuli do not exist, cycles do not exist. | |

Having considered the case for which the induced fixed point lies in the region {(z,y) : z < 1},
the next region to be considered for the induced fixed point will be the region {(z,y):1 < z}.

The first four results will establish a correspondence between fixed points {(z,y) : 1 < z} and
ordered pairs {(v,w) : v < y* < w} as the points of intersection of the invariant manifolds through
(z,y) and the line z = 1.

Lemma 3.20. Let (z,y),1 < z be the induced fixed point of the vector field §. Then there exists
v < y* < w such that the line through (1, v), (1, w) in the direction of the vector field Dasses through
(z,9).

Proor. By corollary 2.8 the product of the eigenvalues is (ad — be)/(1 — z) < 0, there are two
eigenvalues of opposite sign A; < 0 < A;. Assume that the linear invariant manifold passing through
the direction of one of the eigenvectors corresponding to an eigenvalue does not intersect z = 1. The
linear invariant manifold then has the form z = K. Let (K,y) be a point on this line. Being on the
invariant manifold the z-ordinate of the vector at (K, y) is 0, thus (a+ k) K + by = 0. As 0 < b this
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equality cannot hold independent of the value of y. Thus, the linear invariant manifolds intersect

a blf1]_ z-1
e ==
for K = K, K3,K; < 0 < K3 and v, w where v,w are the intersection of the invariant manifolds

with the linez = 1. As a+ by = Ki(z-1) < 0a+bw = Ka(z — 1) > 0 it then follows that
v< Yy <w. |

z=1.

Thus solve for

Lemma 3.21. Let v < y* < w, then there is the induced fixed point (2,y),1 < z for which the
invariant manifolds pass through (1,v), (1, w).

PRoOF. The line through (1, v) in the direction of the vector at that point is given by
[=(c+dv) a+bv) [:] =[=(c+ dv) + (a+ bv)v].

Similarly, the line through (1, w) in the direction of the vector field is given by

[2]

[=(c+dw) a+bw] v

= [=(c+ dw) + (a + bw)w].

The intersection of the two lines is then given by the solution to

—(c+dv) a+ bv] [z ] - [ ~(c+ dv) + (a +bv)v ]

—(c+dw) a+bw]||y] —~(c+ dw) + (a + bw)w
Or,
[z] _ 1 [a+bw —(a +bv) [ —(c+dv) + (a + bv)v ]
¥yl (a+bv)(c+dw) = (a+bw)(c+dv) [c+dw —(c+ dv) | | =(c+ dw)+ (a + bw)w | "
e,
[z] - 1 [(w-v)(ad-—bc)— (w—v)(a+bv)(a+bw)]
y (ad - be)(w - v) (v = w)(ac+ be(v + w) + dbww) ’

As v <y* < w, the value of the determinant (ad - bc)(w— v) is non-zero and the inversion has been
validated. Finally, after division by w — v,
[z] -1 [ad— be - (a+ bv)(a + bw)]
y ad ~ be | —(ac + be(v + w) + dbwv) | °

Nowz =1-(a+bv)(a+dw)/(ad-bc). As v < y* < w then a+bv < 0 < a+ bw and it follows that
1 < z.It remains to show that (1,v), (1, w) are the points of intersection of the invariant manifolds
through (z, y) with z = 1.

Say the points of intersection are (1,v*), (1, w*),v* < y* < w* as given by the lemma 3.20 for
induced fixed points with z-ordinates larger than 1. Assume that either v # v* or w # w',

If v # v* then using the calculation above to find the intersection of two lines, one through

(1,v) and (1, v*) respectively, the z-ordinate of the point of intersection is given by 1 — (a + bv)(a +
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bv*)/(ad - bc). As (z,y) lies on both lines, and the lines have different slopes, (z,y) is the unique
point of intersection. Thus it follows that z = 1~ (a + bv)(a + bv*)/(ad — be). Since y* < v, v* then
0<a+bv,a+bv* and z < 1. But 1 < =, thus by contradiction v = v*.

Similarly, by the same argument w = w*. Thus indeed (z,y) has (1,v), (1,w) as its points of
intersection with the line z = 1. Note that the points (1,v),(1,w) are on the unstable and stable
manifolds respectively passing through (z, y). |

Lemma 3.22. Let (2,y),1 < z be the induced fixed point of the vector field §. Then the linear
invariant manifolds through (z,y) intersect z = 1 at points (1, v), (1,w) withv < y* < w.

PROOF. The eigenvalues at the induced fixed point are the eigenvalues of the matrix
a+k b
c+! d

for k = (az + by)/(1 - z),1 = (cz + dy)/(1 - z). The eigenvalues of the matrix may be written as

A= a+bdy+d(l-z)++(a+by+d(l1-1z))?—4(1 - z)(ad— bc)
- 2(1-1z)

Ay = a+by+d(1-.1:)-\/(a+by+dfl—z))2—4(1—z)(ad-b?j

2= 2(1-1z) :

As 0 < 4(1 - z)(ad — bc) the two eigenvalues have opposite signs. Note that A\; < 0 < A,.

First, it will be shqwn that the linear invariant manifolds at (z, y) must intersect the line z = 1.
Assume that z = K is an invariant manifold. For points (K,y) the z-ordinate of the vector at the
point must satisfy (a + k) K + by = 0. Since 0 < b, this equality cannot hold independent of y. Thus,

the manifolds must intersect z = 1.

If the point (1, w) lies on the invariant manifold through (z, y) for the eigenvector corresponding

] o R e

to the eigenvalue )A; then

Thus,
(e+k)(1-2)+d(w—-y) = A(1-2z2),
or,
w = (AMr=(e+E)(1-z)+by
- [
a a+by+d(l-=z)++(a+by+d(l-2))2—4(1 - z)(ad - bc)
=-37 2b
a l-=z
=gt

Similarly, if the point (1,v) lies on the invariant manifold through (z,y) for the eigenvector that
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corresponds to the eigenvalue ); then (a + k)(1 — z) + b(v — ) = A3(1 — z) from which

o= (Az=(a+Ek)(1—-2z)+ by
- b

a a+by+dQl-z)—+/(a+by+d(1-=z))?—4(1—z)(ad- be)
=-3* 25

a 1-2

Clearly v < y* < w. For points along an invariant manifold, the vector at those points have a
direction parallel to the manifold. Thus, the vectors through (1,v),(1, w) induce lines passing
through (z,y). [ |

Theorem 3.23. There is 2 C* diffeomorphism g(z,y) = (v, w) from the set {(z,y) : 1 < z} of
induced fixed points to the set {(v,w):v < y* < w}.

PRrOOF. By lemma 3.21 and lemma 3.22 the function g is given by

a  o+dy+d(1-z)=+/(a+by+d(1-7))3—4(1~z)(ad-bc)
-+ T5

z
g [y] = a c+by+d(l-z)+\/(a+by+d(l—z))’-4(1—3)(ad—bc)
-5+ ¥1]

with inverse

- 1 d - be — (a + bv)(a + bw
g‘[ ] ad — bc[?-(ac-:bcg+wv)$dbvw)] - B

It is now possible to consider under what circumstances cycles may not exist when the induced
fixed point lies in the region {(z,y) : 1 < z}. The next theorem shows that if the linear invariant

manifolds at (z,y) satisfy a somewhat mild condition on their intersection with z = 1 then there

are no cycles.

Theorem 3.24. (Figure 10.) Let (z,y),1 < z be the induced fixed point of the vector field €. If

< (%b:_—) (z-1)+y~

where y** = n(y*), then there are no cycles.

PROOF. Let g(z, y) = (v,w). It will be shown that w < y**. Assume that ¥"* < w, then the point
(z,y) lies on the line, —(c + dw)z + (a + bw)y = —(c + dw) + (a + dbw)w.

Thus,
S T
As ¥yt < w,
v> (c+dw)(z— 1)+y™.

(a+ dw)
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As (ad - be)w > (ad — be)y**, then it follows that

cby** + adw > cbw + ady**.

Thus,
ca + cby™ + adw + dwdy™ > ca + chw + ady** + dwdy"".
Or,
(c+dw)(a+by*) > (c+ dy**)(a + bw).
Finally,

c+dw _ c+dy**
a+bdbw ~ a+ by’

The implication for y is that

c+dy™ -
y> (W) z-1)+y ’

contradicting the hypothesis of the theorem. Thus w <y

Clearly the points on L(w,c0) cannot be on any cycle, being constrained by the invariant
linear manifold passing through (1, w). The point (1, w) cannot be on any cycle, being on the stable
manifold of (z, y). Points in L(—o0,y"] iterate to L[y**, ) C L[w,c0) so cannot be on any cycles.
Finally the points on L(y*, w) iterate to L(—00,y"] so that these points do not lie on cycles.

If a cycle existed then it must contain fixed points whose indexes sum to 1. Any cycle must
then contain the origin.in its interior. The cycle lies either wholly in the region {(z,y) :z < 1} or
intersects the line z = 1. As 0 < a +d, cycles cannot lie wholly in the region {(z,y):z < 1}.

If cycles existed, then they must intersect the line z = 1. By the above paragraph, since none

of the points on the line £ = 1 can be on any cycles, then cycles do not exist. |

It would be useful to know when it is true that (z, y) satisfies m(v) = w where g(z,y) = (v,w).In
the following lemmas a graph x will be determined that will separate the points for which 7(v) < w
and w < m(v). Then points for which 7(v) < w will be exactly those points that lie above the graph
x- It will be shown that the graph y is continuously differentiable and extends infinitely to the right.

Lemma 3.25. Define x : (~00,y*) = {(z,3): 1 < z} by the formula x(y) = g=!(=(y), y). Then x

is a continuous curve with limy_y« x(y) = (1,y**).

Proor. Note that by theorem 3.23 9~ (v, w) = (z,y) is given by the equation

HEEE ot asei el

Continuity of x on the interval (~oo, y*) follows from continuity of = and 9= Y (v, w).
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Let 0 < € and consider the ball B((1,y**),¢) = {(z,7) : V(z=1)2+(y —y**)? < €} about
(1,y""). Consider the set givenby V x W = 9(B((L,y*),e)N{(z,y): 1 < z}). As g is a diffeomor-
phism by theorem 3.23 the set V x W is open, thus V, W are open subsets of z = 1. Then V, W are
sets of the form (s, y*), (y**,t) respectively. Let X = =Y (W)NV = (u,5°).

Say u <y <y", then 7(y) € W,y € V and thus x(y) = g~(x(y), ) € B((1,y*"), ¢). |

Lemma 3.26. Let x(y) = (x1(y), x2(y)) where  is the function defined in lemma 3.25. Then x1(y)

is a decreasing function of y.

Proor. Note that the function x1(y) is given by the formula

(a +by)(a + br(y))
ad — be ’

x1(y) =1~
As £ is a C? vector field, then = is a C! function. In particular x; is a C*! function on (—o0, y*),

being formed from the composition of two such functions: g™, . Taking the derivative of x1,

Xi() = -2t b?f(y)zdtb:; (¥)(a +by)

As y < y* then a+ by < 0. Since y* < 7(y) then 0 < a+ br(y). Also, 7'(y) < 0 for all y < y*. Then
x1(¥) < 0, this implies that as y decreases the z-ordinate of the function X monotonically increases.

As limy .y« x1(y) = 1, it follows that 1 < x1(y) for all y < y*. By monotonicity, the inverse of
X1(y) exists. Thus, it is possible to write x(y) = x2(x71(x1(¥))). In other words, x2(¥) = F(xa(v))
for F(y) = x2(x7 ' (y))- ]

Lemma 3.27. Let y < y*. Then x(¥) = x(v*) = Dx(n)K where n € (v,v°).

Proor. Write x(y) = (xa(¥), x2(v)) = (x1(»), F(x1(v))) as in the end of lemma 3.26. By the mean

value theorem,

x2(¥) = x2(3") = F'(n")(x1(%) — x1(v"))s

where 7* € (x1(¥"), x1(v)). By monotonicity of x1, then n* = x,(n) for some 5 € (y,¥*). Thus,

x() - x(v") = [ F’(x11 (n))] (x1(y) = xa(v"))-
And since x}(n) # 0,

e — x1(n) x1(¥) = xa(y™)
x(w) = x(v) = [F'(h(ln))x'l(ﬂ)] am

Le., X(¥) = x{v") = Dx(n)K where K = (x1(y) - x1(v"))/x}(n) and n € (v, y"). |

Lemma 3.28. The function x is C! on the interval (o0, y*). If 7'(y*) exists then

tim X2 =¥ _ 7y )(c + dy*) +c+ dy*
im ~ = .
v=y xi(y) -1 a+ by
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PROOF. As x is the composition of two C?! functions defined on the interval (—o0, y*) it too is also
C! on (=00, y*).
Now Dx(y) = D(g=*(m(y), 4))D(n(y), ), s0 that

__ 1 [~(a+bp)b —(a+ba(y))] [v()
Dx(y)-ad_,,c[-§2+dy§b —(c+d7r(Z))b][ I ]

Thus Dx(y) is a vector with the following slope,

(y)(c + dy)b + (¢ + dr(y))b
™(v)(a +by)b + (a + bn(y))p’

which reduces to,
7 (y)(c +dy) + c + dn(y)
7'(y)(a + by) + a + bx(y)’

By lemma 3.27 which state that y(y) — x(y*) = Dx(n)K for some n € (y, y*), then

[ x1(y) -1 ] = Dx(n)K.

x2(y) - y**
Hence,
lim X2 =9 _ . (n)(c+dn) +c+ dn(n)
v=v* x1(y) =1 y=y w(n)(a +bn) +a+ bn(n)’
Or,

lim X2 =¥ _ m(y)e+dy’) +e+dn(y)
v=v" xi(¥) -1 (¥ )a+by") +a+ba(y)
As y* = —a/b the denominator reduces to a + by** > 0 and finally,

- X2(y) =y _ w(y*)(c+dy*) +c+dyt
lim = . g
y=v* x1(y) -1 a+ by

The final theorems in this section will prove regions where cycles do and do not exist.

Theorem 3.29. (Figure 11.) Let (z,9),1 < = be the induced fixed point of the vector field EIf

x2(x71(z)) < y.

then there exists a locally attracting annulus. Moreover, assuming conjecture 0.1 holds, there exists

a locally attracting limit cycle.

Proor. Consider L[v,y"]. Under one application of 7 the result is 7(Llv,y*]) = L{n(y*), 7(v)] =
L{y™, m(v)]. Now 7(v) < w so that v < 72(v). Also 72(y*) < y*. Thus the image of L{v, y*] under
two iteration of 7 results in 7%(ZL{v,y*]) C L[v, y"]. By theorem 2.12 there is a locally attracting
annulus for points in in L[v,y"). Note that the annulus is also attracting for points in L(y*, w).
Since the point (1,w) is on the invariant manifold through (z,y), the annulus is not globally

attracting.
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Notice that points in L(—o0, 7~(w)] iterate to L[w,c0). There are no cycles through these
points. However, all points in L(7=1(w), v) iterate to L(m(v), w) and again to L(v,y*) and eventually

attracted to the annulus. By lemma 1.10 the attracting annulus is an attracting limit cycle. |

Theorem 3.30. Let (2,y),1 < = be the induced fixed point of the vector field £ If

c + dy'.

- e -1
pEy (z-1)+9" <y < xa(x7(=))

then there are no cycles.

PROOF. Assume a limit annulus exists. Since the origin is a repelling fixed point which the annulus
must encircle, the annulus is attracting.

Let g(z,y) = (v,w). The annulus can be characterised by two boundary cycles Cj,C, which
intersect the line z = 1 at the points (1,r),(1,s) withy* < r < s < w.

Consider the line segment L[s,w) under two reverse iterations of 7. As v < x2(x7(z)) then
w < m(v), equivalently this means v < 7=1(w) and 7-2(w) < w. Then 7~2(L[s, w]) = Ls,7%(w)] C
L[s, w]. Now 72 has only the point (1, s) as fixed point in L[s, w]. If another fixed point existed in
this interval then maximality of the annulus would be violated. Thus the point (1,s) is attracting
for 72,

The point (1, 5) is also attracting for 72, it cannot be attracting for both forward and reverse
time. By contradiction, the limit annuli does not exist. By the same argument, if an annulus whose
boundary cycles both intersected the line z = 1 existed, then it would be semi-stable. By lemma 1.12
semi-stable annuli do not exist. If annuli exist, then at least one of the two boundary cycles do not
intersect the line z = 1. This means that one of the two regions {(z, y):z<1}or {(z,y): 1< z}
admits a cycle. The trace of the vector field in both regions is nonzero. Neither of the two regions

mentioned admit cycles. Thus, annuli do not exist, cycles do not exist. [ |

§4. 0<b, 0<a+d, (a+d)®?/4<ad—bec, ad—bc+dk—bl=0.

The only result obtained in this case has been the following corollary.

Corollary 4.1. If 0 < a + k + d then there are no limit cycles.

Proor. If a limit cycle existed then it must intersect the line z = 1. By lemma 3.1 cycles may not

intersect the line z = 1, thus limit cycles do not exist. [ |
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§5. 0<b, 0<a+d, 0<ad—bec< (a+d)?/4

Under these conditions cycles do not exist for the vector field £. This will be proved in the next two

propositions.

Proposition 5.1. If ad ~ bc+ dk — bl = 0 then there are no cycles.

PRoOF. Consider the linear vector field given by

AR IR

y c+l djly H

as the extension of the vector field £ to the right of z = 1 to the whole plane. As the determinant
of the matrix is zero, the number of fixed points is either zero or infinite. There are two cases to
consider.

(9) :If 1 # (d/b)k there are no induced fixed points. In particular there are no fixed points in the
region {(z,y) : 1 < z}. Any cycle must then contain the origin. As both eigenvalues at the origin
are real, there is at least one invariant linear manifold through the origin. A cycle cannot enclose a
linear manifold, so cycles do not exist.

(#) :If 1 = (d/b)k then ad — bc = 0. This case cannot occur. |

Proposition 5.2. If ad — bc+ dk — bl # 0 then there are no cycles.

PRoOF. Consider the induced fixed point (z,y) that the constants k,! induce. There are two cases
to analyse.

(i):The induced fixed point (z,y) satisfies z < 1. Note that the vector field has only one fixed
point, namely at the origin (0,0). As 4(ad—bc) < (a+d)? the eigenvalues at the origin are both real.
Take the eigenvector that corresponds to one of these eigenvalues, through this eigenvector lies an
invariant manifold of £&. Any cycle must encompass the origin, being the only fixed point. However,
lines cannot be encompassed by closed curves. By contradiction, cycles do not exist.

(ii):The induced fixed point (z,y) satisfies 1 < z. The vector field has two fixed points, namely
one at the origin and one at the point (z,y). By corollary 2.8 the fixed point at (z, y) has eigenvalues
whose product is equal to (ad — bc)/(1 - z) < 0. Thus (z, y) is a fixed point of index —1. Any cycle
must enclose fixed points whose index sum to 1. Thus, any cycle must enclose the origin. But, as

in the previous case, this is not possible, cycles do not exist. |
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In the situation that these conditions hold true, there are no cycles.

Proposition 6.1. There are no cycles.

PROOF. As ad-bc=0 the rank of the matrix

a b

c d
is either 0 or 1. Because 0 < b, the rank is 1. The line az + by = 0 is a line of fixed points for the
linear vector field in the region {(z,y),z < 1}.Thus the line y = —(a/b)z is a line of fixed points

passing through the point (1, —a/b).
If ad — bc + dk — bl = 0 then dk — bl = 0 and the linear vector field

Llz|=at+tk bd|[z]_[k
y]  le+l d||y l
has a line of fixed points y = (—az + k(1 — z))/b which joins with the line y = ~(a/b)z. The two

lines form a partition of the plane in which neither region of the partition has any fixed points. Thus

cycles do not exist.

If ad— be+ dk — bl # 0 then there is a unique solution (2, y) to the problem

0| _la+k b||=z _ 1k
0] " le+l d]|y 1
at the fixed point (1, —a/b). However, this fixed point is on the line of fixed points given by y =

(—az + k(1 — z))/b. This line of fixed points prevents cycles from forming. Thus, it follows that
cycles do not exist. | |
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§7.0<b, 0<a+d, ad-bec< 0.

This rather short section assumes the origin to be a saddle point.

Proposition 7.1. If ad — bc + dk — bl = 0 then there are no cycles.

PRoOF. Consider the linear vector field given by

<= G-

as the extension of £ to the right of z = 1 to the whole plane. As the determinant of the matrix is
zero, the number of fixed points is either zero or infinite. There are two cases to consider.

(?) :If 1 # (d/b)k there are no induced fixed points. Thus, there are no fixed points to the right
of z = 1. Any cycle must then contain the origin. The origin is a saddle point with index -1, thus
cycles cannot exist.

(#) :If I = (d/b)k then ad — bc = 0. This case cannot occur. |

For the remainder of the section it will be taken that ad — bc+ dk — bl # 0. The following results

will give sufficient conditions for the nonexistence of cycles.

Proposition 7.2. Let (z,y),z < 1 be the induced fixed point of the vector field £. Then ¢ has no

cycles.

PROOF. Any cycle must include a fixed point, § has only one fixed point, the origin which must
therefore be included in the interior of the cycle. By index theory, the index of the origin is 1. But
ad — bc < 0 so that the origin is a saddle point with index —1. Thus cycles do not exist. [ |

Proposition 7.3. Let (z,y),1 < z be the induced fixed point of the vector field €. If
1
y< p(=dl-z)-a)

then there are no limit cycles. If strict inequality holds then there are no cycles.

PRroor. If a limit cycle existed then the cycle must intersect the line z = 1. By using lemma 3.1, it
is sufficient that 0 < a + k + d for there to be no limit cycles. Thus 0 <a+(az+by)/(1-z)+d
which reduces to y < (~d(1 - z) — a)/b.

Consider the case of strict inequality. Any cycle must enclose fixed points whose indexes sum
to 1. The cycle must contain the induced fixed point. The cycle lies either wholly in the region
{(z,y) : 1 < z} or intersects the line z = 1. By the lemma 3.1 the cycle cannot intersect the line
£=1. Butif y < (~d(1 —z) - a)/b then 0 < a+ k + d. The region {(z,¥) : 1 < z} will not admit

cycles. Thus, cycles do not exist. [ |
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Lemma 7.4. Let (z,y),1 < z be the induced fixed point of the vector field §. Then (z,y) has

complex eigenvalues &

%(—2\/: —1y/=(ad-bc)-d(l-z)=-a) <y < %-(2\/:1:—- 1v/~(ad - bc) - d(1 — z) - a).

PROOF. The eigenvalues are determined by the characteristic equation of the matrix

at+k b

c+!l d]’
which is A2 + (a + k + d)A + ad - bc + dk — bl = 0. By using the values k = (az + by)/(1 — z),1 =
(cz + dy)/(1 ~ z) the above reduces to

)\ (a+d-dz+by)A+ad—bc_

=0.
-2z l-2

The eigenvalues are complex if and only if

(a+d—dz+by)2<4(ad—bc).

1-z l1—-2

Thus,

H(~2VZ IV (@d =59~ d(1 - 2) —a) < y < SeVET V(@@= -di-2)~a). N

Theorem 7.5. Let (z,y),1 < z be the induced fixed point of the vector field €. If the point satisfies

SVE— Ty (=59 - d(1~z)~a) < y

then there are no cycles.

PRrooF. By lemma 7.4, the point (z, y) has at least one real eigenvalue to which can be associated a
linear invariant manifold. Any cycle must contain either the fixed point at the origin or at the point

(z,y). As both have linear invariant manifolds, which cannot be contained within a cycle, cycles do

not exist. - [ ]

To conclude this section, the following results will show that attractive limit cycles are highly
unlikely.

Lemma 7.6. The invariant manifolds through the origin intersect the line z = 1 at the points
(L, (=a+d = /(a + d)? - 4{ad — bc))/(2b)), (1, (—a + d+ /{a + d)? — 4(ad — b))/ (2b)).

ProoF. The problem is the same as solving




for v when A = (a+d++/(a + d)? — 4(ad — bc))/2 are the eigenvalues at the origin. Thus a+bv = ),
from which v = (—~a + A)/b. Hence, v = (—a + d + \/{a + d)? — 4(ad — be))/(2b). |

Let the points of intersection of the invariant manifolds with the line z = 1 be (1,9),(1,@),7<
y" < . Then the following two theorems can be proved.

Theorem 7.7. Let (z,y),1 < z be the induced fixed point of the vector field €. If

%(—d(l -z)—a)<y< %—(2\/:: - 1y/—(ad - bc) — d(1 - z) - a)
and 7(W) < 7 then there is a repelling annulus. Moreover, assuming conjecture 0.1 holds, then there
is a repelling limit cycle.
PRoOF. Since (—d(1 — z) - a)/b < y then a+ k + d < 0. Under reverse time the induced fixed point
is repelling, thus 7=1(y") is well-defined.
Consider the line segment L[7, y*]. Then under two reverse iterations of ,
A LE ) = 2 (2, 7 (D))

C = H(L{r"Y(y"), @)

= L(z~}(@), 7~ *(y")]

C L[5, y").
Thus 7=2(L[7,y"]) C L[7,y"). Applying theorem 2.12 to the function =2, there exists a locally

attracting annulus for 7=2. Thus, there a repelling annulus for 72. By corollary 1.11 the repelling
annulus is a repelling limit cycle. |

Theorem 7.8. Let (z,y),1 < z be the induced fixed point of the vector field ¢. If

H(=d(1=2)—a) < y < F2VE=TV/(ad=b9) - d(1 - 2) — o)

and 7 < n(W) then there are no cycles.

PROOF. Say a limit annulus exists. The annulus may be characterised by its boundary cycles, which
intersect the line z = 1 at the points (1,r),(1,s) with y* < r <s< .

As (—d(1—-z) - a)/b < y then a+ k + d < 0. The fixed point which the annulus encircles is
éttracting, the annulus is repelling.

Consider the line segment L{s, %] under two iterations of ,
7*(L[s, T]) = x(L[x(T), 7(s)])
C n(L(7, n(s)))
= L[x%(s), 7(7))
C Ls,@).
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The point (1,5) is the only fixed point of 72 for the line segment L[s,@). If another fixed point
existed then maximality of the annulus would be violated. Thus, the point (1,8) is attracting for
points in Ls, &].

The point (1,5) cannot be both repelling and attracting, thus limit annuli do not exist. By
the same argument, if an annulus whose boundary cycles both intersected the line z = 1 existed,
then it would be semi-stable. By lemma 1.12 semi-stable annuli do not exist. If annuli exist, then
at least one of the two boundary cycles do not intersect the line z = 1. This means that one of the -
two regions {(z,y) : 2 < 1} or {(z,y) : 1 < z} admits a cycle. The trace of the vector field in both
regions is nonzero. Neither of the two regions mentioned admit cycles. Thus, annuli do not exist,

cycles do not exist. |

§8. 0<b, o=a+d-

In contrast with the earlier sections where the analysis has been divided into the two cases ad —~be+
dk — bl # 0 and ad — be + dk — bl = 0, the division in this section will be between k #0and k= 0.
If k # 0 then there are no limit cycles.

Proposition 8.1. If k # 0 then there are no limit cycles.

Proor. Note that if a vector field is to contain a limit cycle then the cycle cannot lie wholly in
either the regions {(z,y) : £ < 1} or {(z,¥) : 1 < 2} because linear vector fields do not admit limit
cycles. Thus, if a such cycle exists then it must intersect the line z = 1 transversally at some points
(1,31), (1,y2) with y3 < y* < ya. The cycle will then join the points (1,y2),(1,31) in a clockwise

orientation. Let C denote the cycle. Then by Stoke’s theorem,

dz dy _/ d (dz d (dy
o a5 5 (7) 5 (3) e

Breaking up the area integral into two parts, A = int(C)N {(z,y): 2 <1} and B = int(C) N {(z,y):
1 < z}, then

d d d d
0= —_— — -_— - —_— -
/A o (az +by) + dy(a: + dy)dz dy + ./; dz((a +k)z + by — k) + dy((c+ Dz + dy — l)dz dy.

Thus,
' 0=/(a+d)dzdy+/(a+k+d)dzdy
A B
= / kdz dy.
B
As k # 0 the integral on the right is nonzero. By contradiction, limit cycles do not exist. [ |

Thus the case for which k = 0 will be examined. First some notation and results about linear
vector tields will be needed.
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Definition 8.2. L((zo,y0), (z1,%1)) will denote the open line segment where L((zo, ¥o), (z1,%1)) =
{t(zo,yo) + (1 —t)(z1,n): 0< t < 1}.

Lemma 8.3. Let L be a linear vector field of the form

[ 3]s

Let (zo0,yo) # (0,0). Construct the line segment joining the points (0, 2y0), (220,0). Coansider the
return map  : L((0, 2yo), (zo, ¥0)) — L((Z0, yo), (220, 0)) where

w(z,y) = (e‘\‘°z, e""°y), to=min{0 < ¢: (e’“z, e“\‘y) € L((z0, y0), (220, 0))}-

Then ((zo, Yo) + 5(—20, %)) = (%0, Yo) ~ 5(—Z0, %0),0 < 8 < 1.

PRoOF. The line tangent to the vector field at the point (%0, yo) is given by the equation y =
—(yo/z0)z + 2yo. Thus, L((0,2yo),(220¢,0)) is the portion of the line bounded by the invariant
manifolds of the linear vector field.

Let (Z,9) = (20— 520, Yo+ 5%0), 0 < s < 1 be any point in the line segment L((0, 2yo), (20, 0)).
Consider the region R bounded by (0,0), (0, 2y0), (220, 0), whose interior has no fixed points. The
solution through the point (Z, ) moves into the afore-mentioned region. If the solution did not exit
the region then the point (Z, 7) is attracted either to a fixed point or a cycle. As the interior of the
region does not have any fixed points then the point could not have been attracted to a cycle or fixed
point in the inferior of the region R. By choice, the point (7, @) is not on the invariant manifolds
through the origin, so the solution cannot be attracted to a fixed point on the boundary of R. Thus,
the solution through (7, @) exits R in some finite time. Thus = is well defined.

Now ¢(t, (%, 7)) = (eMZ,e~*7). Letting (Z,7) lie on the line L((0, 2yo), (220, 0)) results in the
expression

8t (,7)) = (M5, e (—§—§f+ 2yo))-

If ¢(t0» (5’ y)) € L((“-‘O’ 3/0)’ (2301 0)) then
(Mo, e~ Mo(— i’%m 240)) € L((20, %), (220, 0)).

ie.,
e~ Mo (—y—05+ 2yo) = —go-e'\"":i:‘+ 2y0.
zo Zg
Solving for the values of ¢ results in the values 0, In((2z0 — %)/Z)/A. As 0 < to only the second of
the two solutions is admissable, thus #o = In((2z¢ — 7) /Z)/A.
Then ¢(to, (%, 7)) = (220 — %, (v0/20)Z). Thus #(Z, 7) = (220 — T, (yo/z0)%), and after simplifi-
caton, #((zo, yo) + s(—zo, ¥0)) = (20, ¥0) = s(—z0, Yo). i
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Lemma 8.4. Let L be a linear vector field of the form

z 0 will|=
-2 5] oo
Let (z0, yo) # (0,0) be any point. Construct the line L through (zo, yo) with tangent vector [yo —zo)°.
Consider the return map w: L — L where
m(z,y) = (cos(wto)z + sin(wto)y, — sin(wto)z + cos(wio)y),
to = min{0 < ¢ : (cos(wt)z + sin(wt)y, — sin(wt)z + cos(wt)y) € L}.

Then 7r((""0’ yo) + 3(y0’ "30)) = (30, yO) - s(yO' -30)-
PROOF. In polar coordinates the solution through the point (,9) = (zo + syo, yo — 52z0) is given by,

r(t) = V1+s2\/z3 + 43,

8(2) = —wt + 'l(w).
@) Wi ten Zo+ sYo

The equation of the line through (zo, yo) with direction [yo zo]* is given by

-1 Yo
rcos (0— tan™? (E)) = /23 + 4.

Thus‘at points of intersection of the solution of the vector field and the line,

V1+52y/z3 + y3 cos (—wt + tan~! (M) — tan™?! (y_o)) =23+ 43.

ZTo+ syo o

Solving for solutions gives the following as viable values of t,
t = (2n7 % tan™!(s) — tan~1(s))/w.

For s < 0,0 = —2tan~!(s)/w. When 0 < s,%p = (27 — 2tan~!(s))/w. Computing the value of
é(to, (T, 7)) results in (zo — syo, yo + szo). Thus 7((zo, vo) + 5(30, —20)) = (2o, Yo) — s(y0, —z0). B
Lemma 8.5. A nonsingular linear mappings maps lines into lines.

Proor. Consider the image of the point (z,y) = 8(z0, yo) + (1 — s)(z1,y1) under the nonsingular

transformation A, A(z,y) = sA(zo, yo) + (1 - 5)A(z1, y)- |

Lemma 8.6. Let ad — bc < 0, then the invariant manifolds through the origin intersects the lins
z =1 at the points (1,(—a ~ v/—(ad = be))/b), (1, (~a + v —(ad - bc))/b).

Proor. The problem is the same as finding eigenvectors whose z-ordinate is equal to 1,

¢ o] []-=m=(l]
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ie, a+ bv = £/—(ad — bc) which reduces to v = (~a + v/ —(ad - bc))/b. [ |

The purpose of the previous lemmas is to prove the following two lemmas allowing particularly

simple expressions for the return map.

Lemma 8.7. Let ad—bc < 0. Then the return map r : L((=a—+/=(ad = 5c))/b, y*) = L(y*, (—a+
V—(ad=5c))/b,y*) is given by x(y) = y* + (y" — y). ,

ProoF. Note that the point (1,(~a — v/=(ad = bc))/b) is on the stable manifold of the the origin,
80 indeed 7 goes from the given domain into the given range. By linear algebra it is possible to find

a non-singular matrix A such that under the change of variables X = A~!x the portion of £ to the

left of z = 1 has the form
L X|_Ir o X
Y{T|o =)l|lY]}"

Let ¢, ¢ be the respective solution to § to the left of z = 1 and the solution to the above linear
vector field L. The solutions ¢, ¢ are related by ¢(, (zo, o)) = Ad(t, A~1(zo, ¥0)).

By lemma 8.5 the line L((—a — viad = bc)/b, (—a + v/ad — bc)/b) is mapped by A-1 to a line in
the X plane that is tangent to £ at the point A-Y(1,y"). Using lemma 8.3 to compute the return
map for a point y € L((~a — vad = bc)/b,y*),

¢(to, (1,9)) = (to, (Ly") + (0, y — 3))
= Ag(to, A"} (L,y") + A7} (0,5 - v*))
=AATY(L,y") - A7I(0,y - 3"))
=Ly - (y-v").
Thus, 7)) =" —(y—-¥") = 9" + (v* - v). . ¥

Lemma 8.8. Let 0 < ad — be. Then 7 : L(—o00,y*) — L(y*, 00) is given by n(y) = y* + (v* — v).

PROOF. Let A be a nonsingular matrix such that under the change of variables X = A~1x the

vector field £ to the left of z = 1 has the form of the linear vector field,

<[7]=[2 5] (7]

Y -w 0)lY]"

Let ¢ be the solution to L. Then &, the solution of £ to the left of z = 1 and @ are related by
é(t, (20, y0)) = Ad(t, A~Y(zo, yo)).

‘ By lemma 8.5 the line z = 1 is mapped by A~! to a line tangent to A~1(1,y*) in the X plane.

Using lemma 8.4 to compute the return map,
| B(tor (1,v)) = Bltor (L,y") + (0, — v"))
= Ag(to, A7 (1,y*) + A71(0,y — )
=AAT(LY") - AT 0,y - y))
=Ly -(-v)).
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Thus, 7(y) =" = (y~y*)=y" + (y* - v). u

Theorem 8.9. If ad — bc # 0,ad — bc — bl # 0 then there are no limit cycles.

PRrooF. Note that a limit cycle cannot pass through the point (1,4") because such a cycle would lie
wholly in the region {(z,y) : z < 1} is which £ is linear. It is then sufficient to show that cycles in
L(—00,y") cannot be limit cycles. .

Since ad — be — bl # 0, by theorem 2.6, the vector field £ has induced fixed points (z, y). There '
are several cases to consider.

(?) : 0 < ad—be, (2, y), z < 1.The origin is a center and by lemma 8.8 the return map defined on
L(—o00,y*) is given by 7(y) = y* + (y* — y). By corollary 2.8 the induced fixed point has eigenvalues
whose product is (ad — bc)/(1 — z) which is positive. The induced point has imaginary eigenvalues.
By lemma 8.8 the return map defined on L(y", o) is given by 7(y) = y* +(y* —y). Thus, computing
w2 for points along L(—00, y*) gives 72(y) = y. As 7%(y) = y it follows that there are infinitely many
concentric cycles, the cycles cannot be attracting or repelling. This is because that arbitrarily close
to any cycle there exists another cycle, i.e. the cycles are not isolated.

(i7) : 0 < ad ~ b¢,(2,y),1 < z.As in case(i) above, the return map defined on L(~oo0,y") is
given by 7(y) = y* + (¥* — y). The induced fixed point in this case happens to have real distinct
eigenvalues. Consider the line segment L(yo, 1) of z = 1 that contains (1,y*) and is bounded by the
invariant manifolds of the induced fixed point. Under a nonsingular linear transformation the image
of the point (1,y") bisects the image of the line. The implication is that (1,y*) bisects L(yo,1).
Thus L(yo,y1) has the form L(y* — m,y* + m) for some 0 < m. By lemma 8.7 it then follows
that the return map on L(y*,y* + m) is given by 7(y) = ¥* + (y* — y). Thus, on the line segment
L(y* — m,y*) (and L(y",y" + m)) the return map satisfies 72(y) = y. As in case(i) above, there
are no attracting or repelling cycle in L(y* — m, y*). Points on L[y* + m, o) cannot induced cycles,
being bounded away by the invariant manifold at (1,¥* + m) from returning to z = 1. Points on
(=00, y* — m] iterate to L[y* + m, o), hence-neither can they form cycles.

(#) : ad - be < 0,(z,y), z < 1.There are no cycles as the only fixed point in the plane is at the
origin which has index -1.

(iv) :ad - bc < 0, (z,¥),1 < z.The fixed point at the origin has distinct real eigenvalues, by
lemma 8.7 return map is given by 7(y) = y* + (y* — y) for points on L(y* — m,y"). By corollary
2.8 the induced fixed point has eigenvalues whose product is (ad = bc)/(1 — z) which is positive,
implying that the eigenvalues are imaginary. By considering the induced fixed point as the origin
and applying lemma 8.8 the return map is then given by 7(y) = y* + (y* — y) for points on L(y*, 00).
Thus on L(y* ~ m,y*) the return map satisfies 72(y) = y. There are no cycles in L(y* —m,y") (and
L(y*,y* + m)) which are either attracting or repelling. Points on L(~0c0,y" — m] are bounded by

the invariant manifold through (1,y* — m) from forming cycles. Points on L[y* + m, o) iterate to
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L(—00,y* — m) and neither can they form cycles. | |

Theorem 8.10. If ad — bc # 0,ad — bc — bl = 0 then there are no limit cycles.
PROOF. As ad— be— bl = 0 it follows that ¢+ = ad/b. The linear vector field to the right of z = 1

is then given by
ARCPIREAN
v] T leg dfly ad=bde | *

#(t (1,y0)) = (1+ (a+ buo)t = 5(ad — be)#, yo + (c = ago)t + o5(ad = be)t?).

The solution is

The times for which ¢(%, (1, yo)) intersects the line z = 1 are at the values ¢ = 0,2(a+ by)/(ad~be).
There are two cases to consider.

(1) : 0 < ad—bc. By lemma 8.8 the return map on the left is given by #(y) = y* +(yv" -y)hy<y.
On the right of z = 1 the point (1,y),y* < y iterates under positive time 2(a + byo)/(ad — be) to the
point (1,y" +(y* —y)). The return map to the right of z = 1 is givenby 7(y) = " +(y* —y),v* < v.
Thus the return map satisfies 72(y) = y. There are no cycles which are either attracting or repelling.

(#) : ad — be < 0. The linear vector field L has no fixed points so that £ has no fixed points to
the right of z = 1. There is only one fixed point in the plane, namely at the origin. With index -1,

no cycles can be formed. | |

Proposition 8.11. Ifad — bc = 0 then there are no cycles.
PROOF. There is a line of fixed points az + by = 0 to the left of z = 1. The line y = —(a/b)z is a
line of fixed points passing through the point (1, —a/b).

If ad — be + dk — bl = 0 then dk — bl = 0 and the linear vector field

<l=[x BT[]
y c+! dily l
has a line of fixed points y = (—az + k(1 — é))/b which joins with the line y = —(a/b)z. The two
lines form a partition of the plane in which neither region of the partition has any fixed points. Thus
cycles do not exist.

If ad— bc+ dk — bl # 0 then there are no induced fixed points. In particular, there are no fixed
points in the region {(z,y) : 1 < z}. The line y = —(a/b)z is semi-infinite, and cannot be enclosed

in any cycle. Without invariant sets for which a cycle may enclose, cycles do not exist. | |
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In the event that b = 0 it happens that there are no cycles.

Proposition 9.1. There are no cycles.

PRoOF. Note that along the line z = 1 the vector field is given by

£ oIl el

As along the line z = 1 the z-ordinate of vectors have constant value, cycles cannot cross the line.
If cycles existed then they lie in either of the two regions {(z,y) : z < 1} or {(z,y): 1 < z}.
Cycles cannot lies in the region {(z,) : z < 1}, the only fixed point is the origin to which
passes a linear invariant manifold along the y axis.
In the region {(z,y) : 1 < z} the vector field £ has the form

e[5]= [t ]- [

If a cycle existed then it must enclose a fixed point of §. But through the fixed point lies a linear

invariant manifold parallel to the y axis. No cycles can exist in this region. | |
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Appendix A.

In this appendix the equivalence of the continuous piecewise vector fields of Chua[2] and those used

herein will be examined. First, the respective definitions will be recalled.

Definition A.1. (Chua)¢ is a continuous piecewise linear vector field in canonical form <> there
exists an integer 1 < n, matrix B, vectors a, a;, §;, 1 < i < n and constants v;, 1< i < n for which
§(x) =a+Bx+ L) aif < Biy x> —l. ‘

The following definition is repeated from the main body of the text:

Definition 1.2. £ is a continuous piecewise linear vector field ¢ there exists constants a,b, ¢, d,k,1
with either k¥ #£ 0 or I # 0, and

THE k ] [;] z<1;

ol f el MR R

The following are two lemmas showing the equivalence of the two types of continuous piecewise

linear vector fields and the relationship between the defining constants that allows this equivalence.

Lemma A.2. (i) :Let £(x) = @+ Bx — a|[1 0]x — 1| with

-
_|a 0 _ | b1 b1z
o= _02] # [0]’ B= [621 bzz]
then
(la 3] [z
G-{EA
vl ™ a+k b||= _ |k 1
( le+! d}|y 1[0 *<*®
where
[a b]_ bu+a1 513 k - —201
c d|~ b21+02 bzz ! 11~ —202 :
(#7) :Let

(I
-1 e

be a continuous piecewise linear vector field with k, 1 not both zero. Then £(x) = a+Bx—al(l 0]x-1|

=1 L
o= flk , B= a+21k b )

where



ProoF. The continuous piecewise linear vector field ¢ in canonical form has the following decompo-

sition
€(x) = a+Bx—a(l -[1 0]x) x€{(z,y):z2<1}
= (B + of1 0])x

§(x) = a+Bx— a1 0]x—1) x€{(z,y):1<2}
= (B - afl 0])x + 2. |

The corresponding decomposition for a continuous piecewise linear vector field is

-1
BB 050 retemnen
Matching the two expressons givees,
(B+afl 0)x= [‘: 3] [;] x€{(z,y):z <1}
(B—a[10])x+2a=[‘::i’; 3] [;]-[’;’] x€{(z,y): 1<z}

(7) :Given the values of _
_ | _ |bu b2
*= [012]’ B= | b21 522]

then by the equations above, it follows that
. a b _lbhu+tar b ] k —_|-2a;
c d] 7 |ba+a by 1 T [ —2a2 ]

BRG]

then by the same set of equations above,
-1k a+ ik b
— b3 — 13
a= B= .
[-%—l:l ! [c-}- H d i

The concept of the induced fixed point occurs frequently and in many of the results that have

(%) :Given the values of

have been obtained. Therefore, it would be desirable to find how the induced fixed point of a
continuous piecewise linear vector field is connected with the defining constants in the canonical
representation. The next two lemmas show how the induced fixed point is related to the canonical

representaion.
Lemma A.3. If
_ | by b2 e _
=2+ [ be]x- (2] o
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with bzg(bu - al) - bn(bzl - az) # 0 then the induced fixed point of £ is

[z] 2 bizag — b2y ]
b22(b11 — 1) — b12(bay — @3) | D211 — byj2

PRrOOF. By using lemma A.2 the continuous piecewise linear vector field in canonical form can be

e[’]= [Z 3] [;] z<

S (S [H R A

[ & =[ute ] []-[22]
c df 7 (butar by’ |1]|T |-2e2]"

The induced fixed point is then the solution to

I b | s
0] ~ [baa—az b2 |y —2az "

[x] 2 [ bizan — 522011] 5

y b22(b11 — @1) — b12(ba1 — @3) [ 2101 = br1cxg

rewritten as

where

Thus,

Lemma A.4. Let a,b,c,d be given. If the vector field £ in canonical form has the induced fixed
point at (z;,y:),z; # 1 then

1 az; + by; a+ ;’ii’z y b 1 [Gz‘ +by'.] -
f(x) 2(1_:') [cz.+dy.] + [c-}-;’]‘:: d X+‘2(1_*zi) cz,-+dy.- ”:1 O]X 1'.

PRroOF. The vector field

M2,
-
< 8
—_—
]
™

[+
a
c

,
cl] o ess
k
1

[ 4 ]-1 ee

-k]_ 1 laz;+by;
1] 7 1=z |ezi+dy;

has the point (z;,y;) as its induced fixed point. Using lemma A.2 to convert £ into the canonical

+
+

for

representaion means
a=— 1 [aza"‘bys] - a+%?iT+:'x.T b
2(1 - z;) Lezi +dy; c+ % d
Whence,
. : a+ gFitbu X .
£(x) - [ax.+by.] + [ (i-z;) O x+;[az.+by.] Lox—1. N

2(1 —z) Lezi+dy: c+ Gitdn d 2(1 - z;) | ezi + dy;



Figure captions.

Figure 1. In this vector field there are infinitely many concentric cycles, none of which is a limit

cycle.
Figure 2. This vector field does not admit any limit cycles.
Figure 3. In contrast to the vector field in example 2, this vector field has a unique attracting cycle.

Figure 4. When the defining constant b is zero, there do not exist any cycles. This example is such

a case in point.

Figure 5. If 7*(L[v,u]) C L[v,w] then the points 7(v), 7%(w) form decreasing and increasing
sequences respectively. The limit of these sequences are points through which lie cycles, giving the

existence of an annulus.

Figure 6. Through the induced virtual fixed point (z,y) a linear invariant manifold intersects the
line z = 1 at the point (1, v). The line segment L[v, y*] maps into itself under application of 72. This

is sufficient to prove the existence of an attracting cycle.

Figure 7. The solution through the point (1, v) meets the y-axis at a point T above where the tangent
line through the same point meets the y-axis at S. The images of T,S on the next intersection with
the y-axis are at V,U. The tangent line through U meets the line z = 1 above the solution through
V meeting the same line. Thus 7(v) < —e*¥ v + K.

Figure 8. Consider the solution through (1,v). The solution meets the line z = z; at the point T

below where the line tangent to (1,v) meets z = z; at the point S. The images of T and S under

7/w) units of time are at the points V,U. The line tangent to U meets the line z = 1 below the

solution through V meeting the line z = 1. This enables a lower bound to be placed on the return
-X_l;

map, —e~1 v + K; < w(v).

Figure 9. The point (1, vo) satisfies vg < 72(vo). Under 7?2 the line segment L{vg, y¥*] maps into itself.

The attracting annulus so formed also happens to be an attracting cycle.

Figure 10. The invariant manifolds through the induced fixed point (z,y) intersect the line z =1
at the points (1,v) and (1,w). As w < y**, solutions starting from the line z = 1 below the point
(1,y") intersect the line z = 1 above the point (1, w). The manifold through (1, w) prevents cycles

from forming.

Figure 11. The invariant manifolds through the induced fixed point (z, y) intersect the line z =1 at
the points (1,v) and (1,w). As 7(v) < w it then follows that v < 72(v). The line segment L[v, y*]

maps into itself, a sufficient condition for the existence of an attracting cycle.

Table 1. Computer aided phase portraits of Piecewise-linear vector fields by the INSITE

program.



a. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

3—::4.5—2.5z+y—4.5|z— 1

dy
5_9—102+2y—9|z-1|.

The vector field has an attracting cycle. The light lines are fepraenta.tive orbits that approach the
limit cycle.

b. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz
-‘17_4—23:+y-4|z—1|
dy
dt

The phase portrait given is that of the solution through the point (0.1,0). The origin is a repelling
fixed point and the solution through (0.1, 0) is repelled way from the origin.

=8-9z+2y—-8lz—1]|.

c. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

9 _as5- 1.52 + y — 3.5z — 1
dt

dy
at

This vector does not have any attractors. The origin is in fact a repellor.

=7-82+2y—T|z—1|.

d. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz

E-—-l'l‘zy""lz-ll
dy
= = 05+ 25z +y+ 05z - 1].

This is an example of a vector field globally conjugate to a linear saddle point. The bold lines have

been added as the stable and unstable invariant manifolds of the vector field.

e. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

T
-E——z+2y
dy
d—t—2+y-2lz—1|.

In this interesting case, a continuum of cycles surround a fixed point. The cycles are also bounded
by a homoclinic orbit. The fixed point and homoclinic orbit have been added in bold. Also in bold
are the unstable and stable invariant manifolds through the origin.

f. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz
dy
E_2+y—2|z—1|.
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In this example, a node-saddle connection results in orbits going to infinity. In bold are the unstable
and stable invariant manifolds of the origin highlighting the node-saddle phenomenon of this vector
field.

g- This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

Z—: =2.5-15z+ 3y - 25|z - 1|

dy
dt
This is another example of a node-saddle connection. Unlike the case in (), the node is an attractor.

Again, in bold are the unstable and stable manifolds of the origin. A quadrant of the plane is in the

basin of attraction for the attractor node.

=2—-z+2y-2lz-1|

h. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

d
d_: = —1.5+ 2.5z + 3y + 1.5|z — 1

dy
F =1t +2+ -1

This is a degenerate case where the origin is extremely weakly attracting along the direction of the
stable manifold. In bold is a completion of the stable invariant manifold through the origin.

i. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

Z—: = ~0.5+2.5z + y + 0.5|z — 1|

%:-1+2z+2y+lz—ll.

An example of a vector field conjugate to the node of linear vector fields.

J. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz
S =-l+2+|z-1

Z—f =—-0.5~15z+y+ 0.5|z—1]|.

Despite the fact that the linear vector field to the left of the line z = 1 would normally induce a
center at the origin, the linear vector field right of z = 1 perturbs the overall vector field into that

of a repelling center.

k. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz
E—l—z—lz—ll
dy
E—2—22—2|z—1|.

To the left of the line z = 1 the vector field is very degenerate. The shaded region of the phase
portrait represents a half plane of fixed points for the vector field.
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1. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

dz
I_—-1+2z+y+|z-1|

%:—2+4z+2y+2lz—1|.

In this example a line of fixed points, in bold, divided the plane into two regions. The line of fixed
points is also repelling,
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