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GLOBAL PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR VECTOR FIELDS

PART L SIMPLEST CASE IN »2. f

Robert Lum and Leon O. Chua. ft

Abstract

Among nonlinear vector fields, the simplest of which can be studied are those which

are continuous and piecewise linear. Associated with these types of vector fields are

partitions of the state-space into a finite number of regions. In eachregion the vector

field is linear. On the boundary between regions it is required that the vector field be

continuous from both regions in which it is linear. This presentation is devoted to the

analysis in two dimensions of the simplest possible types of continuous piecewise linear
vector fields, namely linearvector fields possessing only one boundary condition. As a

practical concern, the analysis will attempt to ask and answer questions raised about
the existence of steady-state solutions. Since the local theoryof fixed points in a linear
vector field is sufficient to determinestabilityof fixed points in a piecewise linear vector

field, most of the steady state behaviour to bestudied will be towards limit cycles. The
results will present sufficient conditions for the existence, or nonexistence as the case
may be, for limit cycles. Particular attention will be paid to the domain of attraction
whenever possible.

With theseresults qualitative statements may be made for piecewise linear models
of many physical systems.

t This work issupported in part by the Office ofNaval Research under Grant N00014-89-J-1402.
tt The authors are with the Department ofElectrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The determination of limit cycles is of great practical and theorectical importance. The work
on Hubert's 16th problem (a survey paper being that of Lloyd[3]) has shown that even for two
dimensions and polynomial vector fields as simple as degree two, the maximum number of limit
cycles is not known. This situation is symptomatic ofthe present intractability ofthe determination
of limit cycles in the entire state space »". However, it may be possible in certain cases to give
results on the global determination ofall limit cycles. One such area has arisen from the solution of
problems in electrical engineering.

With the advent ofcomputer aided design and the subsequent increase ofcomputer simulations
ofphysical circuits, device modeling has emerged as an increasingly important area ofresearch. In
the modeling ofelectrical and electronic circuits an exemplary case ofsuch work is the paper Chua[l]
"Canonical piecewise linear modeling.* In that paper a large number of electronic device models
were shown tohave concise representations as piecewise linear functions. The interconnection ofone
or more of such piecewise-linear circuit models with capacitors and inductors in feedback naturally
creates a piecewise-linear dynamical system.

Conversely, nonlinear vector fields which are piecewise linear may be emulated by equivalent
physical circuits. Such emulation requires the use of piecewise linear resistors, capacitors and induc
tors.

Once a piecewise linear representation of a circuit has been created, the computer becomes
a powerful tool with which to study the original circuit. Computer work with such models has
suggested the possibility ofproving qualitative results about certain classes ofpiecewise linear vector
fields arising from such modeling.

This research effort has been devoted to the examination of such qualitative properties of the
simplest types of piecewise linear vector fields. The research being primarily devoted to finding
attractors in the system and estimating the size ofthe basin ofattraction. Section 1 will introduce
the basic definitions and concepts to be used, then sections 2through 9will present the analysis of
continuous piecewise linear vector fields.

To conclude this introductory section, some examples of the variety of behaviour possible in
comparatively simple types of piecewise linear vector fields in £2 will be presented. Atable (Table 1)
of the possible phase portraits suggests that many distinct types of behaviour can exist in piecewise
linear vector fields. Then asummary of the results will end the section. The following four examples
give apreview of some of the results predicted from the theorems proved in this paper,



Example 1. (Figure 1.) Consider the vector field
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This vector field does not have any limit cycles despite the fact that there are infinitely many
concentric nonisolated cycles (see theorem 8.9). The only equilibrium point, (0,0), is a center.

Example 2. (Figure 2.) Consider the vector field
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This vector field does not have any cycles (see theorem 3.19). The only equilibrium point, (0,0), is
an unstable focus.

Example 3. (Figure 3.) Consider the vector field
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The vector field has aunique attracting cycle (see theorem 3.7). The only equilibrium point, (0,0),
in this case is an unstable focus. Observe that the region to the left of the line x = 1 is the same as

in the previous example, equivalence ofvector fields on one linear region does not guarantee simil
dynamics.

Example 4. (Figure 4.) Consider the vector field
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This vector field does not have any cycles. The invariant manifold parallel to the y-axis prevents
cycles from forming (see theorem 9.1). The only equilibrium point, (0,0), isa saddle point.



Summary of main results.

Conjecture 0.1. Acontinuous piecewise-linear vector field with one boundary condition has at
most one limit cycle. The limit cycle, ifit exists, is either attracting or repelling.

Computer experimentation has lend weight to the above conjecture. Under this conjecture the
following theorems are a summary of the results obtained in sections 2through 9.

Theorem 0.2. Let 0<6,0 <a+d,(a +d)2/4 <ad- 6c,0 <ad - 6c +dk - M. Let (x,y) be the
induced virtual fixed point of the vector field t with defining constants a, 6, c, d, fc, /. DeSne

Xi(x,y) = y- -(-vf^a + d) - d(l - x) - a).

IfX^x, y) <0then f has aglobally attracting Hmit cycle. UO <X^x, y) then £does not have any
limit cycles.

Proof. See theorems 3.7, 3.13, 3.19 and 3.2. •

Theorem 0.3. Let 0< 6,0 <a+d, (a +d)2/4 <ad - 6c, ad - 6c +dk - 6/ <0. Let (x, y) be the
induced fixed point of the vector field £with defining constants a, 6, c, a\ Jfe, /. Define

X2(x,y) = y-X2(x-1(x))

where X(y) =(xi(v),Xa(v)) is given in iemma 3.25. If X2(x,y) <0then $does not have any limit
cycles. IfO< X2(x, y) then £has alocally attracting limit cycle.
Proof. See theorems 3.24,3.30 and 3.29. .

Theorem 0.4. Let 0<6,0 <a+d,0 <ad- 6c <(a +d)2/4. The vector field i with defining
constants a, 6, c,a*, kt Idoes not have any limit cycles.

Proof. See propositions 5.1, 5.2 and 6.1. a

Theorem 0.5. Let 0< 6,0 <a+d,ad- 6c <0,ad- bc+dk - 6/ <0. The vector field *with
defining constants a, 6, c, a\ fc, / does not have any limit cycles.

Proof. See proposition 7.1 and 7.2. .

Theorem 0.6. Let 0<6,0 <a+ef, ad - 6c <0,0 <ad - 6c +dk - 6/. If the vector field f with
defining constants a, 6, c, d, A, / does not have any homoclinic orbits then either (i) £has no limit
cycles or, (ii) £ has a repelling limit cycle.

Proof. Sea proposition 7.3, theorems 7.5,7.8 and 7.7. •



Theorem 0.7. Let 0 < 6,0= a+d. The vector field $ with defining constants a, 6, c, d, Jb, / does not
have any limit cycles.

Proof. See proposition 8.1, theorems 8.9, 8.10 and proposition 8.11. |

Theorem 0.8. Let 0= 6. The vector field £ with defining constants a, 6, c, d, *,/ does not have any
limit cycles.

Proof. See proposition 9.1. |

§1. Definitions.

In this section the basic definitions of the nonlinear vector fields to be studied are presented. As all

the work to be presented lies in the plane, it will be taken that all vectors lie in R2.

Definition 1.1. L is a linear f vector field «> there exists constants a,6,c,o\e,f such that

'[:]-[: J] [:]-[;]•
Defimtion 1.2. £ isa continuous piecewise linear vector field «> there exists constants a, 6, c, d, fc, 7
with either k ^ 0 or / ^ 0, and

CI-
c rf11r.I. *<i;

Unless otherwise stated, the term vector field will mean a continuous piecewise linear vector field.

A vector field is linear in each ofthe regions {(x,y): x < 1}, {(x, y): 1< x}. As either k or / is
nonzero, the vector field is nonlinear.

Definition 1.3. For the vector field £ the function <j>{t, (x0, y0)) will denote the solution to

*(M*o,yo))' = £Mt,(x0,yo)))

tf(0, (x0, yo)) = (x0, y0).

Definition 1.4. The point (x0, yo) is called a periodic point if there is a 0 < t0 < oo for which
<?K*o» (*o, yo)) = (x0, yo). The set {</>(t, (x0, y0)): 0 < t < t0} is called a cycle.

Definition 1.5. Let (x0, yo) be a point on acycle. Consider a local transversal £ through (x0, yo)
and Poincare map P : E -* E. If the point (x0, y0) is attracting (respectively repelling) for the
map P then the cycle is said to be attracting (respectively repelling). If it is attracting from one

t A more precise name is affine.



side in positive time and repelling from the other side in positive time then the point issaid tobe
semi-stable.

Definition 1.6. Alimit cycle is a cycle that is either attracting, repelling or semi-stable. Hence, a
cycle is a limit cycle if and only if it is isolated.

Definition1.7. Define anordering on the setofcycles by C\ -< C2 ifthe cycle Ci lies intheinterior

ofthe cycle C2. Let {•••-< C_x -< C0 -< Ct -< •••} be a maximal chain ofcycles bounded below and
above by the cycles Cl^Coo. The pair (Clo^C*,) isanannulus with boundary cycles CootC*.
The annulus will be identified with the closed region between its boundary cycles.

Definition 1.8. Let N be a set and ^ be the solution to avector field, then <f>(t, JV) is the set given
by <f>(t, N) = {<j>(t, (x,y)): (x,y) € N}.

Definition 1.9. An attracting annulus A has a neighbourhood N(A C N), such that for non-
negative times 0<<j<UC Wi.JV) C <Kt0,N),A = n°l0<t>(t, N). A repelling annulus is an
annulus which is attracting in reverse time. Alimit annulus is an annulus that is either attracting
or repelling. If the annulus is attracting from one side inpositive time and repelling from the other
side in positive time then it is said to be semi-stable.

Limit cycles occur often In natural phenomena. By their nature, the presence ofa limit cycle
points towards the presence of steady state oscillatory behaviour in the underlying system. Annuli
are more general than cycles. Attracting annuli canbe considered as invariant sets under the vector

field that are attracting for nearby points. Under conjecture 0.1 a stronger statement can be made
about annuli in vector fields.

Lemma 1.10. Under conjecture 0.1, a vector field may have at most one attracting annulus. The
annulus is an attracting limit cycle.

Proof. An attracting annulus is formed from a pair (<?_«,, (?«>) of limit cycles. By the conjecture
it follows that (?_„ = C^. The annulus is an attracting limit cycle. If there were more than
one attracting annulus then there would be more than one attracting limit cycle, contradicting the
conjecture. Thus, there is at most one attracting annulus, the annulus being an attracting cycle. I

CoroUary 1.11. Under conjecture 0.1, the vector field £ may have at most one repelling annulus.
The annulus is a repelling limitcycle.

Proof. Consider the vector field under reverse time. There exists at most one attracting annulus
which also happens to be an attracting Umit cycle. Under forward time the vector field has at most
one repelling annulus which also happens to be a repelling limit cycle. |



Lemma 1.12. Under conjecture 0.1, the vector field £ does not admit a semi-stable annulus.

Proof. Asemi-stable annulus is formed from a pair (C-oo.Coo) oflimit cycles. By the conjecture
it follows that <?_«„ = Coo. The annulus is asemi-stable limit cycle. This contradicts the conjecture
that the only limit cycles are either attracting or repelling cycles, thus semi-stable annuli do not
exist. •

§2. Simplifying assumptions for vector fields.

As the vector field £ requires six defining constants, it would be desirable to constrain as many of
the constants as possible to reduce the number of cases to consider.

Proposition 2.1. Let ft, ft be vector fields with defining constants a,6,c,d,it,/ and -<i,-6,-c,-d,
-*,-/ respectively. Then the respective solutions fait, (x0, yo)) and #2(i,(x0,yo)) are related by
M*> (*o, yo)) = <h{-t> (*o, yo)).

Proof. Writing ^i(<,(x0,y0)) = (*i(<),yi(f)), and fe(<, (x0, yo)) = (*2(<),y2(<)) then
(t) :For x < 1and using 02(<, (x0, y0))' = 6(fc(*. (x0, y0))),

fx2(<)]' T-a -6][x2(t)l

Thus,

W-t)! '[a dJ[y2(-t)J-
By uniqueness ofsolutions, ^(t, (x0, yo)) = <f>2{-t, (x0, y0)).

(«) :For K x and using <f>2(t, (x0, y0)Y = ft(<£2(t\ (*o, yo))),

[sjr-fcfsns] -[:;]•
Thus,

r*a(-<)i'_r«+* »ir*a(-oi r*i
1%(-<)J ~[c+l dJ[y2H)J""[/J-

By uniqueness of solutions, fa(t, (x0, y0)) = fc(-t, (x0, y0)). |

Proposition 2.2. Let ft, ft be vector fields with defining constants a, 6, c, d, Jb, / and a, -6, -c, d, Jb,
-/ respectiveiy. The respective solutions MU (x0, y0)) = (*i(t), yi(t)), <f>2(t, (x0, y0)) = (x2(t), y2(t))
are related bjr(*i(«). ViM) = (x2(*), -%(<)).

Proof, (i) :For x < 1 and using fc(t, (x0, y0))' = ft(^2(<, (x0, y0))),

Thus,

r*a(*)l'_ [a -*ir*a(<)l
llftCOJ "L-c d\[y2(t)\'

\ x2(t) Y_ [a 6] f x2(<) 1
L-W(«)J "Lc dj l-y2(<)J'



By uniqueness ofsolutions (xi(t),yi(t)) = (x2(t)i-y2(t)).
(it) :For 1< x and using <j>2{t, (x0, y0))' = ft(fo(<, (x0, y0))),

l»(*)J "l-c *][£(*)]-[_/]•
Thus,

l-Mt)\ [c d\[-y2(t)\-[l\-
By uniqueness of solutions (x^*), yi(t)) = (*2(*), -y2(t)). |

Using proposition 2.1, one simplifying assumption that can be taken is that 0 < a+ d. By
proposition 2.2, it allows the extra lattitude of assuming that 0< 6. Proposition 2.2 does not affect
the value of a+ d. With these simplifying results, the constants in the vector fields can be taken to
satisfy the conditions that 0 < a + d and 0 < 6.

Our analysis will proceed by fixing the four constants a, 6, c, dand allowing the constants it, /
to change. This reduces the number ofdegrees offreedom from six to two.

By definition, the vector field { always has a fixed point at the origin. The linear vector field
associated with the extension of the vector field on the region {(x,y) : 1< x} to the whole plane,
may or may not (if the matrix is singular) have a fixed point. If this linear extension has a fixed
point then it is called an induced fixed nnint. Asubsequent result will show an equivalence between
values of*, /for which ad-6c+d*-6/ ^ 0and induced fixed points (x, y) for which x^ 1. Moreover,
the induced fixed point (x, y) is said to be virtual if and only if x< 1. More explicitly, we have:

Definition 2.3. Let £be a vector field with ad - 6c +dit - 6/ ? 0. The point (x, y) is called the
induced fixed pointof£ if and only if

:J a[:]-[?]
Lemma 2.4. Let a,b,c,d,ad- be ? 0 be given. Let k,l be such that ad- be + dk - 6/ ^ 0,
then for the vector field with defining constants a, 6, c, d, Jb, / there is aunique induced fixed point
(x,y),x^ l.

Proof. As ad - 6c + dk - 6/ ^ 0, there is a unique solution (x, y) given by

LvJ =(a +*)d-6(c+/) l-(c +7) a+ibj[/J'
i.e.,

H ' 1 \ dk-bl ]
[y\ ad-6c +dib-6/ [-cit +a/J *

Furthermore, since ad- be ^ 0,x ^ 1.



Lemma 2.5. Let a,b,c*d,ad- be £ 0 be given. Let (x,y),x ^ 1 be given. Then there exists
k, l,ad-bc +dk-bl^O such that the vector field with defining constants a, 6, c, d, ib, / has (x, y) as
the induced fixed point.

Proof. Assume (x, y) is a solution to the problem

Thus,

From which it follows that

M-[: 51 [:]♦&]•
ffcl 1 \ax +by]
[l\ l-xl^ +rfyj*

The vector field with defining constants a, 6, c,d, it,/ will have (x,y) as the induced fixed point.
Furthermore, ad - 6c + dk - 6/ = (ad - be)/(l - x) ^ 0 as claimed. |

Theorem 2.6. For fixed a, 6, c, d, ad - 6c ^ 0 there exists a homeomorpbism h(k,l) = (x,y) from
the set ofparameter values *, / satisfying ad - 6c + dit - 6/ ^ 0 to the set ofinduced fixed points
(x,y) satisfying x ^ 1.

Proof. By lemma 2.4 and lemma 2.5, the function

with inverse given by

h
/ <

l ' dib-6/ '
—ck + alid-6c+dib-6/

h-1
X

.y.

l

l-x

ax

ex

+ 6y"
+ dy

is the desired homeomorphism.

The vector field £ is linear to the right of the line x= 1. The extension of this linear portion of
the vector field to the whole plane is the linear vector field

[;]-[::? i] [;]-[;]
By equivalence ofmatrices the eigenvalues ofthe matrix defining the linear vector field also deter
mines the dynamics of£ to the right ofthe line x = 1. The eigenvalues ofthematrix will be referred
to as the eigenvalues at the induced fixed point, thus leading to the following definition and the
useful corollary that follows.

Definition 2.7. The eigenvalues at the induced fixed point are the eigenvalues ofthe matrix

[a + Jb 6]
[c+l d\'



Corollary 2.8. Let £ be a vector field with ad- be £ 0,ad- bc+ dk - bl ? 0. The product ofthe
eigenvalues at the induced fixed point is(ad- be)/(l —x).

Proof. The product ofthe eigenvalues at the induced fixed point isgiven bythe determinant ofthe
matrix

Ta+ it 6l
[c+1 d\

which has the value ad-be+dk - bl. Using the values ib =(ax +6y)/(l - x), /=(ex +dy)/(l - x),
the determinant becomes (ad —be)/(l —x). •

The line x = 1as the boundary between two linear regions also has significance for the vectors
that lie along the line. The following proposition outlines this significance.

Proposition 2.9. Let £ be a vector field with 0< 6.. The line defined by x= 1 is transversal to £
at all points except (1, y*) = (1, -a/6). Moreover, the vector field points to the left for points (1, y)
with y<y* and to the right for points (l,y) with y* < y.

Proof. For points (1, y) along the line x = 1 the value of the vector field is given by

c dlly
a + 6y
c + dy

If£ is not transverse at (l,y*) then a+6y» =0, Le. at the point given by(1, -a/6). For values of
y < y" the x-ordinate of the vector at the point (1, y) is a+ 6y < a+ 6y* = 0 and so the vector

points to the left. Similarly for values of y* <y the vector at (1, y) points to the right. |

Because vectors along x = 1above the point (1, -a/6) point to the right and those below point
towards the left, it is then possible to define areturn map for £ along the line x = 1.

Definition 2.10. For v < w, the following notation will be used,

L(v,w) = {y : v < y < w},

L(v,w]= {y.v <y<w],

L[v,w)= {y:v<y<w},

L[v,w] = {y:v<y<w}.

Definition 2.11. For the vector field £and solution <f>(t, (x0, y0)), *"(y) will denote the return map
from x = 1 to itself where

(1. >r(yo)) = «K*o, (1, yo)), to =min{t: 0<t,<j>(t, (1, y0)) n {(x, y) :x = 1} ^ 0},

9



whenever it is defined. Note that the return map is continuous, in particular this implies that line
segments are mapped into line segments if the end-points exists under ir.

As a matter of nomenclature, in the text it will often be spoken of points in one or another of

the sets L. For example, the reference ofa point z in the set L[v, w] will refer to the identification
of z as a value and (1, z) as a point in the plane.

Having defined the return map, it is then possible to give a sufficient condition for the existence
of attracting annuli

Theorem 2.12. (Figure 5.) Let v < w < y*. Ifx2(L[v,w]) C L[v,w] then there exists a locally
attracting annulus attracting for allpoints in L[v, w].

Proof. Let v,- = (v2Y(v),Wi = (Tr2Y(w) for 1 < t be the successive images of v,w under two
iterations of the return map it2. The points t;,- form a monotonically increasing sequence that is
bounded above by to. Let v0 be the limit of »,-. Bycontinuity oftt2,

ir2(vo) = ir2(lim »,)
i-»oo

= lim v2(vi)
t—OO

= V0

Thus, through the point (1, t>0) lies a cycle. Similarly, through iu0, being the limit ofty,-, lies a cycle.
Clearly, t>0 < w0. Consider the annulus Aformed by the cycles through (1, vo) and (1,100).

Let JV be the flow ofthe line segment L[v, w] toL[ir2(v), ic2(w)]. Then AC N. Also, as t ~* 00
the sets <j>(t, N) form a decreasing sequence of sets with AC<f>(tu N) C<f>(t0, N) for 0< *0 < *i. By
construction A= n~ 0<j>(t, N). Thus the annulus A is attracting.

As L[v, w] CN, the annulus is attracting for all points in L[v, w]. |

10



§3. 0<b, 0<a + d, (a+ d)a/4<ad-bc, ad-bc +dk-bl^ 0.

In this sections, since ad- be + dk - 6/ # 0, then by theorem 2.6 the values of it, / and the induced
fixed point can be used as interchangeable concepts.

The first result will be an application ofStoke's theorem to show that limit cycles do not exist
in a certain region.

Lemma 3.1. Let £ be a vector field with 0 < a+it + d then cycles may not intersect the line x = 1.

Proof. If such cycle exists then it must intersect the line x = 1 transversally at some points
(l»yi)»(l»y2) with yi < y* < y2. A cycle will then join the points (l,y2),(l,yi) in a clockwise
orientation. Let C denote the cycle. Then byStoke's theorem,

i**-i*-jLls(SK(*)]**
Breaking up the area integral into two parts, A= int(C) n{(x, y):x< 1} and B= int(C) n{(x, y):
1 < x}, then

°=JA [3x"(a* +̂ +i^(cx+dy)]dx dy+
SB [3x"((a+k)x +*" - k) +a|((c+1)X +dy"')] dx dy'

Thus,

0=J(a+d)dxdy+ j (a +k+d)dx dy.
As 0 < a + d, 0 < a + k+ d the integral on the right is nonzero. By contradiction, such cycles do
not exist. •

Theorem 3.2. Let (x, y), x < 1 be the induced virtual fixed point ofthe vector field £and

£(-d(l -x)-a)<y

then there are no cycles.

Proof. Ifa cycle existed then it must contain a fixed point. The only fixed point is the origin. As
the cycle contains the origin in its interior then the cycle lies wholly in the region {(x, y) : x< 1}
or intersects the line x= 1. As 0< a+dcycles may not he wholly in the region {(x, y) : x < 1}
for which £ is strictly linear. By lemma 3.1 it is sufficient for values of ib corresponding to the point
(x,y) to satisfy 0<a + fc + dto prove that there are no cycles. This becomes the requirement that

ax + 6yTT/ =*>-(a +d).

Thus, and remembering that x < 1,

ax + 6y > ax + dx - (a + d).

11



Or,

^ -d(l - x) - a
** b ' •

Some results will benow shown which determine thetypes ofeigenvalues possible for theinduced

fixed point and conditions for their occurrence. This will give rise to various cases for determining
some regions for which it can be said whether or not attractive cycles mayexist.

Lemma 3.3. Let (x,y), x < 1 be the induced virtual fixed point of the vector field {. Then it has
complex eigenvalues &

^(-2Vl-xVad-bc- d(l - x) - a) <y<i(-2v^l"="xVad- 6c - d(l - x) - a).

Proof. The characteristic equation for the matrix

[a +it 6]
Lc+/ dj'

determines the eigenvalues at the induced fixed point. This equation is given by A2 - (a+ it+ d)A +
[(a+k)d- (c+/)6] = 0. The eigenvalues are complex ifand only ifthe discriminant is negative, or in
other words when (a + k+ d)2 - 4[(a + it)d- (c+/)6] < O.Using the values k= (ax + by)/(l - x), /=
(ex + dy)/(l - x) the equation becomes (a+ 6y + d(l- x))2 < 4(1 - x)(ad - 6c). Thus,

-2V1 -xVad- be < a-f 6y + d(l - x) < 2vT^"xVad- 6c,

or,

^(-2V1 - xVad -be- d(l - x) - a) < y< -(2VT^x"Vad - 6c - d(l - x) - a). |

Ifthe induced fixed point does not have complex eigenvalues, then the eigenvectors correspond
ing to the real eigenvalues induce linear invariant manifolds. If the linear manifolds intersect the

line x = 1, more can be said about the points of intersection.

Lemma 3.4. Let (x, y),x < 1 be the induced virtual fixed point ofthe vector field £. Then

y€{^(-2Vl-xVad-6c- d(l - x) - a), i^vT^xVad- 6c - d(l - x) - a)} =>

there exists apoint (1, t;) for which the line through the state vector at that point passes through
(*»y).

Proof. When y attains these values, the characteristic equation has a single solution for the eigen
values at the induced fixed point. The eigenspace corresponding to the eigenvalue may or may not

12



have dimension two. Nonetheless, in either case there is an eigenvector. The line through the in
duced fixed point, passing through the direction of the eigenvector is an invariant manifold for the
linear vector field. Ifit can be shown that the invariant manifold must intersect the line x= 1then
the point ofintersection is the desired (l,t>).

Assume the invariant manifold does not intersect the line x = 1, then the line has the form
x= K for some constant K. As the line is mvariant for the linear vector field, the x-ordinate ofthe
vectors at points on the line is always 0. Thus 0= (a + Jb)K +6y - kis to hold for all values of y.As
0< 6the equality cannot hold independent of y, thus the invariant manifold must intersect the line
x = 1 at some point (1, v). •

Lemma 3.5. Let (x, y), x< 1be the induced virtual fixed point ofthe vector field £. Then

Vtiv- £(-2Vl-xVad-6c- d(l - x) - a) <y<i(2\ZT^"xVad - 6c - d(l - x) - a)} =>

there exist points (1, t>i), (1, v2) for which the line through the vector at those points pass through
(x,y).

Proof. By lemma 3.3, for these values ofythe characteristic equation has apair ofdistinct solutions.
For each eigenvalue there is also a distinct eigenvector. It can be argued that for each of the
eigenvectors there is aunique point of intersection with the line x= l.As the two invariant manifolds,
one for each corresponding eigenvectors, are not collinear the points (1, vx), (1, t;2) are distinct. I

Proposition 3.6. Let (x, y), x<1be the induced virtual fixed point ofthe vector field £and

y< £(-2v/T^"xVad-6c- d(l - x) - a)

then the points of intersection as given in lemma 3.4 and lemma 3.5 have y-ordinate less than y*
where y* is defined in proposition 2.9.

Proof. By corollary 2.8 the product of the eigenvalues is given by (ad- be)/(I - x). For x<1this
is positive so that the eigenvalues at (x,y) have the same sign. For the given values of y it is also
true that y < (-d(l - x) - a)/6. Thus y is outside of the region 0 < a + Jb + d. Thus the trace
satisfies a+k+d< 0, combined with the note on the product of the eigenvalues, the sign of the
eigenvalues are both negative. Solving

[: i][:]-'[::;]-
for v, it follows that a+bv =A(l - x) <0. Thus, it follows that v<y- for each of the point (1, v)
of intersection in the lemmas. •

With these results, the following theorem shows a sufficient condition for the existence of at
tracting cycles.
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Theorem 3.7. (Figure 6.) Let (x, y), x < 1be the induced virtual fixed point ofthe vector field £
with

V< £(-2Vl-xVad-6c- d(l - x) - a)

then £ has a globally attracting annulus in »2- {(0,0)}. Moreover, assuming conjecture 0.1 holds,
then £ hasa globally attracting limit cycle.

Proof. By lemma 3.4 and lemma 3.5 the induced fixed point (x, y) also induces either one or two
points along the line x= 1for which the vector field passes in the direction ofaline containing (x, y).
If there are two such points (1, t>i), (1, v2) then consider the point (1, v) where t; = max{t*, t;2}. By
proposition 3.6, v < y*.

As (a + d)2 < 4(ad - 6c) the vector field for x < 1 has non-zero rotational speed. Thus let
ymm = T(y). Note also that v :X(-oo, ym] -»I[y", oo) is well-defined.

As the eigenvalues of the induced fixed point are both negative the vector field for 1 < x will

be attractive towards the induced fixed point. Thus, the points ofL(y*,oo) will eventually, under
the vector field , intersect the line X(-oo,y*]. Thus, it:X(y%oo) -♦ L(-oo,y*] is well-defined.

Consider now the line L[v, y*] under two iterations of the return map. Thus,

ir2(L[v,y*]) =*(L[ir(y*),n(v)}) =£[*2(t>),*2(y-)].

Now ir2(y*) = ir(y") < y\ Since 0(t,(l,y*-)) is to re-enter x < 1 the x-ordinate of the vector at

intersection with the line x=1must be less than or equal to zero. Thus ir(y") <y\ Ifir(ymm) =y*
then y* has, as under reverse time, a pre-image under ir. This is not possible as under reverse time
^(*i(l»y*)) has eigenvalues whose real parts are negative, so that the distance form the origin to
any point of^(t,(l,y*)) has length less than one and cannot intersect x = 1. Thus ^(y*) < ym.

Also v < ir2(v). As the line through (l,t>) is an invariant manifold for the induced fixed point,
tt2(v) cannot cross this line, thus it follows that it must intersect x= 1at some point above v, Le.
v < x2(v).

Thus, by the two previous paragraphs ^(Lfy, y']) CL[v, y*]. It follows by theorem 2.12 that £
has an attracting annulus Awhich is attracting for all points in L[v,y").

Consider points in L(y*, oo), after one application of the return map ir(L(ym, oo)) CL[v, y*]. So
all points in X(y*, oo) are also attracted to A. Points in X(-oo, v) iterate to L(ir(v), oo) CL(ym, oo),
so that all these points also iterate to A.

Let (x0,yo) be any point in the plane »2 - {(0,0)} for which x ^ 1. If x < 1 then since
the eigenvalues of £ in the region x < 1 both have positive real parts, then under finite time

0< t0,0(<o, (*0i yo)) n {(x, y) :x = 1} ^ 0. If 1< r then since the eigenvalues of the induced fixed
point determines the vector field, and being both negative, there is again some finite time value
for which 0<t0 and <0(io, (x0, y0)) n {(x, y) :x = 1} ^ 0. Thus, the attractive annulus is globally
attracting in »2 - {(0,0)}. By lemma 1.10 the attracting annulus is an attracting limit cycle. I
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The next two lemmas present a qualitative result for induced fixed points which are also foci

Lemma 3.8. The general solution to the differential equation

[y\ =[c+/ d]lyJ~[/j4y((o)] =U0]
when (a+ k+ d)2-4(ad-bc + dk-bl)<0 isgivenby

.y(<)J~

ext \ *o <*><"*) - U(X - (a +k))X0 - 6y0] sin(urf) ] 1 f dJb - 6/ 1
[Yo cos(w<) +i[(c+/)X0 +(A - (a +Jb))y0] sin(urf) J ad - be+dJb - 6/ [-cJb +a/J'

where

\xo] = [*ol 1 [ dib-6/ "
LyoJ L^oJ ad-6c+dit-6/ L-cfc +a/J'

and A= (a + k+ d)/2, u = y/4(ad - 6c + dit - 6/) - (a+ it + d)2/2.

Proof. Consider the following substitution given by

H-f*1| * fd*-6/1
LyJ LyJ ad-6c+dib-6/ L~cAr + a/J *

Using this substitution the above differential equation becomes

\xY\a+k b]\x] TiTol Txol 1 TdJb-6/1
LyJ [c+i dJ[yJ'[y0J-[y0J-arf.6c+{fJb_w[_c/+a/J.

The eigenvalues of the matrix given by
fa +ib 6]
[c+l d\

are A± iu where A= (a + k+ d)/2,w = y/4{ad - be + dl - bl) - (a + Jb + d)2/2. Eigenvectors
corresponding to the eigenvalues are given by

[c+/ d\ [****-(«+*)] =(A=bw)|^A;fc,- (g+fe) I.
Let

[vj =[A+iw-(q+fc) A-,u,-(q+fc) IIy I.
On substitution the problem becomes

[£V- [* +«* 0 ] [A'l rr(o)
LyJ L o a-zwJ LfJ'Lfw

^+ «&[(*-(a+*))*<>-Mo]
.^ - «&[(* - («+*))*b - &y0].

The solution

.xt \¥ cosM) - £[(A - (a +*)).Y0 - 6y0] sinM)+
[fy cos(ut) - ^L[(A - (a +fc))X0 - 6y0] sin(wt)-

i[&- sin(urf) + £[(A - (a + fc)) JT0 - %] cos(urf)]
i[^tsin^t) + £[(A- (a + Ar))X0 - Y0) cos(ut)]
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implies that

Thus,

M

[Y(t)\-e
X0 cos(arf) - 1[(A - (a+ k))X0 - Wo] sin(«t)

%«*>(«<) + l[(c+ l)X0 + (A - (o + k))Y0] sin(ut)

x(t)

X0 cos(wt) - £[(A - (a+ fc))X0 - 6y0] sin(w<)
y0 cos(art) + i[(c + /)X0 + (A - (a+ Jb))y0] sin(urf)

. 1 f dJb - 6/ ]
ad-6c+dJb-6/ L-c* +a/J

Lemma3.9. Let (x,-, yt), xt < 1 be the induced virtual fixed point ofthe vector field £ for which

•g(-2>/l-XiVad-bc- d(l - x.) -a)<Vi< i(2vT^x7Vad- 6c - d(l - xf) - a).

Then the solution <f>(t, (x0, yo)) through the point (x0, yo) satisfies

^(t/w, (*o, yo)) = -e^((x0, yo) - (*,-, yt)) + (x,-, y,)

where

„At

where

A =
_ a + 6y,- + d(l-xt) V4(ad - 6c)(l - xt) - (a + 6y,- + d(l - x,))'

2(1-*) ' 2(1-x.)

Proof. By lemma 3.3 when (^vT^xTVad- 6c - d(l - xt) - a)/6 < y< < (2vT^xTVad - 6c -
d(l - xt) - a)/b the eigenvalues of the the induced fixed point are complex. Then, by the considering
the characteristic equation of the matrix,

[a +Jb 6
Lc+/ d

(a + k+ d)2 - 4(ad - be + dk - bl) < 0 where Jb, / are given by Jb = (ax,- + 6y,)/(l - x<), / =
(cxi -f dy,)/(l - xt). Using lemma 3.8, the solution through the point (x0,yo) is then given by the
function

'*(*)! _
.y(<)J"

X0 cos(ut) - I[(A - (a + k))X0 - bY0) sin(wt)
y0 cos(a;t) + i[(c + l)X0 + (A - (a+ Jb))y0] sin(a;<)

*ol [*q| 1
*bj L^oJ ad-6c+dib-6/

1

ad-bc+dk- bl

dib-6/

—ck -f a/

dib-6/ ]
-cib +a/J'

and A= (a + k+ d)/2,u = y/4{ad -bc+dk-bl) - (a +k+d)2/2. Remembering by theorem 2.6
that

i r ? i i • i r
x,-

y»ad - be + dk - bl
dk-bl

—ck + al
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the above becomes

r«wi
= e

*o cos(wr) - I[(A - (a +k))X0 - 6y0]sin(urf) 1 [x.
y0cos(u;r) +I[(c+/)j:o +(A-(a +ib))yo]sin(urf)J +[vi

Writing <f>(t, (x0, yo)) = (z(t), y(t)) then computing for i = *r/w gives

^(tt/w, (x0, y0)) = -e^((x0, y0) - (x,-, y,)) + (x,-, y,). |

The following results will culminate inanother theorem that will augment the region oftheorem
3.7 for which attracting limit cycles exist.

Lemma3.10. (Figure 7.) Let A± iw be the complex eigenvalues ofthe matrix given by

a 6

c d ]•
There exist v0 < y* and K0 such that for v<v0 the return map * : L(-oo, y*\ -+ L(y*, oo) satisfies

ir(v) K-e&v + Ko.

Proof. Consider the point (l,t>) with v < y\ Now consider the solution ^(*,(l,t;)) and the line
that passes through this point in the direction of the vector at the point. The equation of this line
through (1,v) is givenby

ly(0J =liJ+<Lc+dvJ-
Noticing that the solution through (1, v) is tangent tothe line through that point and lies above the
line, then at the value 0< t0 for which <f>(t, (1, v)) = (^(t, (1, t;)), <j>2(t, (1, *))) first intersects x= 0,
this point ofintersection T lies above the line's point ofintersection with x = 0 at S.The line above

intersects x = 0at the point (0, v- (c + dv)/(a + bv)) while the solution 0 intersects at the point
4(to, (1,i;)) = (0,<f>2(t0, (1,«))). Thus,

c + dv
v —

a + 6v
<Mio,(hv)).

With the origin as the induced fixed point of the vector field, the conditions of lemma 3.9 are
satisfied. Under the elapsing of tt/w units of time then

<t>(to + tt/u>, (1, v)) =-e ^-(0, <f>2(t0, (1, v)))

= (0,-e^2(to,(l,t>)))

This point Vis below the corresponding image Uof the point (0, v-(c +dv)/(a + bv)). Thus,

-e^Mio, (1, t,)) <-e*(v - i±iH).
a-I- bv
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Consider the line tangent to the vector field at the point (0, -e&(v - (c + dv)/(a + bv))). This line
has the equation given by

x(t)
y(t) ,-*(•-8fe>]+* [;]•

This line intersects the line x = 1at the point (1, -e&(v - (c+ dv)/(a +bv) +d/6). This point also
lies above the first intersection ofthe solution through <f>(t, (0, -e&fofa,(1,»)))). Call this point
(1, w). It happens that u; = ir(v). Thus, one has that

t \ ^ is. / c + dv\ dr(v) < -e - (t; -- + -
' \ a + bv) 6

is. it/c+ du\ d

it it (d ad —bc\ d
— —e -v + e* I — — ——-— I 4. —\b b(a + bv)) + b

Let v0 = y* - 1/6. Then for t; < t;0, a+ 6t> < -1. Now (a+d)2/4 < ad- be sothat 0< ad- be. Also

0<6so that the value -(ad - bc)/(b(a + bv)) is bounded above by (ad - bc)/b. Let

ad-

Then for v < v0 one has that

., i» (d ad—bc\ d
Ka=e- U+-r-)+F-

itir(v) < -e - v + K0.

Lemma 3.11. (Figure 8.) Let (x,-, y,), xt- < 1 be the induced virtual fixed point ofthe vector field
£ such that

-(-2Vl-x,Vad-6c- d(l - x{) - a) <y,- <̂ vT^xTVad- 6c - d(l - xt) - a).
To the fixed point corresponds unique values ofk, I. Let A, ± twi be the complex eigenvalues ofthe
matrix given by

fa +Jb 61
.c+/ dj*

There exist y* < Vl and #! such that for Vl<v the return map ir :L(y*, oo) —X(-oo, ym] satisfies
A, w

-e -i v -h JiTi < 7r(w).

Proof. Let (l,t>) be a point for which y* < v. Consider a line through the point in the direction of
the vector at that point. The line is tangent to the solution ^(*,(l,v)) passing through (l,t>). The
portion of the connected component of the solution bounded by the lines x = x,-, x = 1 lies below
the line through (1, v). This line has the equation

UoJ-w -M
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The line intersects x=xt at the point S given by (x,-, v+ (x< - l)(c+ dt;)/(a +bv)). Let t0 <0be
the first time that <j>(t, (1, v)) intersects the line x=x,-, thus <f>(t0, (1, v)) =(x,-, <j>2(t, (1,»))). Let this
point be T. Then one has that

^(<o,(l,t»))<t; +(xi-l)£±^.
a + oti

The considerations of lemma 3.9 concerning fixed points with complex eigenvalues are satisfied.
Under the elapsing of jt/wi units of time

*(*/«!, (««, *+(xi - 1)§±£))=-c*f((«„ t, +(x,. - 1)^±#)- (x,-, y,)) +(*,, y.)
a + 6v

Also,

a + 6t>
»1 W / £ 1 ft.. \=(xi,-e-. ^ +(x..-l)-±^-Kj+w).

*(<0 +»/wi, (1,»)) =-e^f((*(, ^,(*o, (1,»))) - (x,, W)) +(x,-, y,)
= (*!, -e -« (<f>2(t0, (1, t>)) - y.)+ y,).

Using ^2(<o, (1, v)) < v+ (x,- - l)(c+ dt>)/(a + 6v) then

-6 -i ^t, +(x,. - l)-_ - yij +yt. <-e-*-(*2(<o, (1, v)) - yt) +y,-.
Thus the solution through <f>(t0 +ttM, (1, t,)) intersects the line x = x4 at a point V above where
<f>(ir/wi, (x,-, t; +(x< - l)(c +dt>)/(a +6t>))) intersects the same line at the point U. Under the linear
vector field given by

a+ Jb b] \x]
«+' d\[y\-

the line through the vector at the point (x,-, -e^T(v +(x,- - l)(c+dt;)/(a +bv)- yt) +y,) is given
by

\X(t)]=\ * /l*t)l [-e^T (• +(«,-!) (gfc) -yf) +yi
This line intersects the line x=1at the point (1, -e^T(« +(x,- - l)(c +dv)/(a +bv) - y.) +y,- +
(1 - x,)d/6). This point lies below where the solution through (1, t;) intersects x = 1 for the first
positive time. Thus,

—*--*((-«(S£H+-+(i-,of

Let V! =y*+l/6. Then for vj <vitis true that 1<a+6w. Then, since 0<6,0 <(a+d)2/4 < ad-bc,
the value -(ad- bc)/(b(a+bv)) is bounded below by -(ad- bc)/b. Let

*=-* ((., -!)({- ^±)-„) +y, +(1 -,0f

+ t [J]-
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Then for v\ < »,

-c-«t» + A'i< **(»)•

Theorem 3.12. Let (x, y), x <1 be the induced virtual fixed point ofthe vector field f with

£(-2Vl-xVad-6c- d(l - x) - a) <y<i(2vT^xVad- 6c- d(l - x) - a)

and Ax/wi +A/w < O.Then there exists t* < y* such that for t; < ©2 the map ir2 : X(-oo,y*] -*
L(—00, y*] satisfies t; < ir2(»).

Proof. Let vo,vi,K0iKi be the constants that are given by lemma 3.10 and lemma 3.11. Let

v' =min{t>o, v^M). As t>0 <y*, y* <vi then v' < y*. For v<v'<v0 then ir(t;) <-e^w +K0.
Asvi< ir(v) then i^(v) > -e -» ir(t;) +Ai. Combining the two previous results gives,

*r2(t>) >e^T(e^v - K0) +K^
(h.u. i.w x«*

= el-»T-; t»-e-i A'o+ A'i.

If *r2(») > v then it is sufficient that

For Ai/wi + X/u < 0, then

Thus,

e(=H--N - e^TA'o +Kx > v.

*1_J.XAi - e-^TAo >t;(l - e(=i-+-),r)

*J-j.X

[;]•

A'i - e -1 A0
> v.

l«e(^-+^ -

Let v" =(Ai -e=^-K0)/(l-e{^+^x). Finally define v2 =min{v', t/"}. Then for v<v2 it happens
that v < ir2(v). m

Theorem 3.13. (Figure 9.) Let (x, y), x < 1be the induced virtual fixed point ofthe vector field

£(-2Vl-xVad-6c- d(l - x) - a) <y<-(-VT^a +d) - d(l - x) - a)

then there is aglobally attracting annulus in £2 - {(0,0)}. Moreover, assuming conjecture 0.1 holds,
then £ has a globallyattracting limit cycle.

Proof. Consider the vector field given by
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for k, Icorresponding to the the induced fixed point (x, y). The eigenvalues Adb tw, Ax ± iuu being
the complex eigenvalues ofthe origin and at the induced fixed point respectively, are given by

. a + Jb + d

Al =~2—
_ y/4(ad- bc + dk - bl) - (a + JbTd)2

Wl 2
x_ a + d
A-~

_ V4(ad-6c)-(a + d)2
u, - .

With k= (ax +6y)/(l - x),/ = (ex +dy)/(l - x) the equations for Ai, ux reduce to

. _ a + 6y+ d(l - x)
X~ 2(l-x) •

_ V4(<"*- 6c)(l - x) - (a+ 6y+ d(l - x))2
1 2(1-x)

Then

*i _ a+6y +d(l-x) A_ a+d
Wl V^d- 6c)(l - x) - (a +6y +d(l - x))2' w~ y/4(ad- be) - (a +d)2'

As y<(-Vl-x(a +d) - d(l - x) - a)/6 then a+6y +d(l - x) <-vT^"x"(a +d) <0. Then the
implications hold,

(a +d)2(l - x) < (a +6y +d(l - x))2
1.1

Thus,

(a+ 6y + d(l - x))2 (a+ d)2(l - x)
4(ad-6c)(l-x) 4(ad-6c)

(a +6y +d(l-x))2 < (a +d)2 '

4(ad- 6c)(l - x) - (a +6y +d(l - x))2 4(ad- be) - (a + d)2
(a +6y +d(l-x))2 < (oTd)2

=» (a +<*)2 (a +6y +d(l-x))2
4(ad- 6c) - (a +d)2 4(ad-6c)(l - x)- (a +6y +d(l - x))2

=* a+ d ' -(« + *>y + d(i-x))2
y/4(ad-bc)-(a+ d)2 y/4(ad - be) - (a +6y +d(l - x))2

^ — + - < 0.

By theorem 3.12 it is possible to choose v0 such that for v < v0,v < w2(v). Consider the line
segment L[v0, y']. Then w2(L[v0, y']) = L[t2(v0), *2(y-)] c L[v0, y']. Thus, bytheorem 2.12 there is
an attracting annulus Aattracting for all points in in I[v0, y*]. Say t; < v0, again consider the line
segment L[t,,y']. Then again *2(L[v,y-]) = L[*2(v),v2(y*)] C L[v,y*}, and by theorem 2.12 there
is an attracting annulus A' attracting for points in L[v, y*]. The annulus Amay be characterised by
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its boundary cycles Ci, C2. The boundary cycles intersect the line x=1at the points (1, vi), (1, v2)
where t;2 <vi < y*. By construction in theorem 2.12 the point (l,y») approaches the point (1,^)
and the point (l,v) approaches the point (1,»2), both limits under iteration of jt2. Similarly, the
annulus A' may also be characterised by its boundary cycles, the boundary cycles intersecting the
line x= 1at the points (l,t>J),(l,t;2) where t>2 <v[ < y\ As before, the point (l,v[) is the limit
for the point (l,y*), as is the point (l,t>2) the limit for the point (1, v).

The point (l,y*) can have only one limit under restriction to the line x = 1. Thus (l,»i) =
(1, t>£), from which it follows that vx =©J. If the point (1, v'2) is to lie on acycle then v2 e L(v0, y*].
But now the point (1, v0) has both (1, w2) and (1, v2) as limits. Thus v3 = t>2. Thus means that the
annulus A* is formed by the same boundary cycles as the annulus A, the twoannuli are identical.

Thus, the annulus Ais attracting for all points along I(-oo, y*]. As ir(L(y*, oo)) CL(-oo, y*]f the
annulus is attracting for x = 1.

Let (x0,y0) € *2 - {(0,0)}. Then there is some 0< t0 < oo for which <f>(t0, (x0,yo)) intersects
the line x=1. Thus, the point <f>(t0, (x0, yo)) iterates to the annulus A, as so does the original point
(*o. yo). By lemma 1.10 the attracting annulus Ais an attracting cycle. Thus, there exists aglobally
attracting limit cycle in £2 - {(0,0)}. •

The following four results end in a theorem claiming aregion inwhich cycles do not exist. The
first four lemmas are approximation results for the return map. With these results, the subsequent
theorems prove the nonexistence of cycles.

Lemma 3.14. Let <f>(t, (x0, y0)) be the solution through (x0, y0) for the differential equation

[y\ [c d\[y\>[y(0)\-[yo\-

Let the eigenvalues of the origin be A±tu>. For 0<<the point <f>(t, (x0, yo)) lies outside of the eWpse
given by

'*(<) j=T*o cos(wt) - L[(\ - a)x0 - by0] sin(wt)
.y(*) J [yo cos(w<) +£[<*o +(A - a)y0] sin(wt)(:

Proof. The solution throught the point (x0, yo) is given by

<t>(i, (*o, yo)) = ext x0cos(wt) - I[(A - a)x0 - 6y0] sin(wt)
yo cos(wt) + l[cx0+ (A - a)y0] sin(wt)

As A=(a +d)/2 >0, then for 0<t the vector <f>(t, (x0, y0)) has alonger length while still being in
the same direction as the vector

x0 cos(wt) - 1[(A - a)x0 - 6y0] sin(wt)
yo cos(wt) + i[cx0 + (A - a)y0] sin(wt)
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Thus, for 0< t the point <b(t, (x0, yo)) lies outside ofthe ellipse given by

M<)1=[*o cos(wt) - i[(A - a)x0 - 6y0] sin(urf)

Lemma 3.15. Let A± iw be the complex eigenvalues ofthe matrix given by

[: 3-
There exists t;0 < y* and AT0 such that for v< v0 the return map w:X(-oo, y*] -* L(y*, oo) satisfies

it
-e - t;+ A0 < v(v).

Proof. Let t; < y* and consider the point (l,t>). By lemma 3.14 the solution ^(t,(l,t>)) for 0< i
lies outside of the ellipse given by the equations

Thus,

[*W 1_ f cos(w0 - &lx "«- H*&(«>*)
Iy(*) J vcos(ut) + i[c+ (A - a)t;l sin(<5M)+ £[c+ (A - a)t>]sin(u;t)

Let 0 < t0 be the first time for which <f>(t0, (1, v)) intersects x = 0. Thus the point of intersection
lies below where the ellipse intersects x= 0. The ellipse intersects the line x= 0at 0< tx for which

0 = cosfc^) [A - a - 6v] sin(urfi).
(jj

y(ti) =vI-[A - a- 6v| sin^)] +L[c+ (A - a)v]sin(a;t1)
= —[c+ 2(A - d)v - bv2] sin(wti).

As tan(wt1) = w/(A - a - bv) then sin(wti) = w/v/w* + (A - a- 6v)2 and substituting into the
above gives,

(t \ = c+2(A-q)t?-6v2
~ y/u2 + (\-a-bvy'

As A= (a + d)/2,w = ,/4(ad-6c) - (a+d)2/2, in substitution and simplification into the fraction
for y(ti) gives

1) =-]/v2- ^v~vy(t

Let v' = min{-a/6, (-a2/6- c)/(2A)}. For v< v' the following inequaUties hold,
-a2/6-c

2A
> v

-a2/6-c 2A
—6— *T°
-a2 c *>(<>a j.d~a\

v2-
d-a

/ „ d-a c ^ a
• -r- - is -• - b•
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Thus,

y(<i)=-^*Td-a c ^ a

6 —!*•+*•
Thus ^(t0, (1, v)) = (0, ^2(t0, (1, v))) where ^(t0, (1, v)) < v + (a/6). After r/u units of time, then
by lemma 3.9,

<f>(t0 +*M (1,«)) =(0, -e^2(t0, (1, t/)))

where

"e^ (W +F) <-€^2(*°'(M)).
Let F= -e-v-(v +a/6). Note that 0<F. Consider the eUipse that passes through (0,F). This eUipse
intersects the line x = 1 at a point below where the <f>(t, (1, t;)) intersects the same Une. Thus, a
lower bound for 7r(t>) has been obtained. The eUipse that passes through (0,F) has the equation
given by

x(t) 6sr£t>sin(wt)
Fcos(wt) + i(A - a)vsin(wt)

At0<t2 for which the eUipse intersects the line x= 1, then u/b =sin(urf2). Computing y(t2) gives

y(t2)=v/?Tf+i(A-a^
88 V1-& A-a

Let v" = max{l/2,1/4+w2/62}, then for F> v" the foUowing inequaUties hold,

Thus

^4 +F
11/1 u>2\

f*fU+*7
w"

sr2L2 — ="*" 1^v 4F2
1 1_
F 4F5

U)*

F 6 ™~ 57 /1—2

1 F262 - *" 2F^"iSr

y(<2)

V 2+ 6 '

A-a

FinaUy, let.»0 = min{v/, -a/6- e'^v"}. Then for v < v0 < y" one has that

^»-.*(.+«).j+i-
it it a 1 A — a

= -e^v + A0
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where

A0--e----+_.

Lemma 3.16. Let (x,-, yt), xt < 1 be the induced fixed point ofthe vector field £ for which

^(-2Vl-x,Vad-6c- d(l - xt) -a)<yt< i(-d(l - x<) - a).

Consider the linear vector field given by

where *= (ax,- + 6yi)/(l - x<), / = (cxt + dy,)/(l - x,). Let \i ± »Wl be the complex eigenvalues
of the matrix defining the vector field. Let ^(t,(x0,y0)) be the solution through the point (x0,y0),
then &r t < 0 the point <f>(t, (x0, y0)) lies outside ofthe ellipse given by

f*(*)l _
U')J"

Proof. The solution through the point (x0, yo) is given by

(x0 - xt) cos(Wl<) - i[(A!- (a + *))(x0 - x.) - 6(y0 - y,)] sin^t)
.(yo - yt) cosfot) + i[(c + /)(x0 - xi) + (Ai - (a + Jb))(y0 - y,)] sin(Wl<)

4>(t, (x0, yo)) =

(x0 - xt) cosfat) - jJ-KAj - (a + k))(x0 - x<) - 6(y0 - y,)] sin(wit)

+ bl

exlt W - ^ cosWj - jju^Ai - (a + *))(x0 - x<) - 6(y0 - y,)J sin(Wl*) rx. 1
[(yo - jh) co»(Wl<) +i[(c+/)(x0 - x.) +(Ai - (a +Jb))(y0 - y,)] sin(Wlt)J+[WJ'

As y,- <(-d(l-x,)-a)/6 then Aj =(a-f*+d)/2 <0. Thus for t<0the vector «>(*, (x0, yo))-[x,- y,f
has a longer length while stiU being in the same direction as the vector

(x0 - xt) eos(Mi«) - i[(A! - (a + *))(x0 - x.) - 6(y0 - y.)] sin^t)
.(yo - Vi) cos(Wlt) + j±-[(c +/)(x0 - Xi) + (At - (a + Jb))(y0 - y,)] sin(Wl<)

Thus, for t < 0 the point <f>(t, (x0, y0)) lies outside of the eUipse

\x(t)1 I" (x0 - x,) «»(<*«) - ^[(Ax - (a +*))(*„ - x.) - 6(y0 - y,)] ainfot) 1 fx<1
L*')J [(lid - y.) cos^t) +J-[(c +/)(x0 - Xi) +(A! - (a +Jb))(y0 - y,)] sin(Wlt) J+[y! J*•

Lemma 3.17. Let (x,-, y,), x,- < 1be the induced fixed point ofthe vector field £such that

£(-2Vl-x,Vad-&c- d(l - x.) - a) <y< <I(-d(l - x.) - a).

To the fixed point corresponds unique values ofk, Iwhere k= (ax,+6yl)/(l-xl), /= (cx,+dy,)/(l-
Xi). Let Ai ± iui be the complex eigenvalues of the matrix

Ta + Jb 6
c+/ d
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Then there exists y* < t>i, Ai such that for vt < v the return map v : JD(y*,oo) -♦ I(-oo,y*J
satisfies

jt(v) < -e«i w+ Ai.

Proof. Let (1, v) be a point with y* <v. As y(- <(-d(l - x.) - a)/6 then Ai = (a + Jb +d)/2 <0.
Let <f>(t,(ltv)) be the solution that passes through the point (l,t»). By lemma 3.16 under reverse
time the solution <f>(t, (1, v)) Ues outside of the eUipse given by theequation

*(<) 1 _ (1" *0 cos^jt) - ^.[(Ai - (a +k))(l - xt) - b(v - yi)) sin(wit)
y(i) J" [(» " ») «*(«i*) +jl.[(c+/)(1 - xi) +(Ax - (a +Jb))(t> - y,)] sin^t)

Let t0 < 0 be the first negative time for which ^(t,(l,v)) intersects the Une x = xt-. This point
of intersection Ues above the corresponding point where the eUipse intersects the Une x s x,-. The
eUipse intersects the Une x = Xi at some time *i < 0 for which

b\-

xt = x(h) = (1 - xt) cos(a>1t1) - —[(A! - (a +k))(l - xt) - 6(t; - y,)] sin^ti) +Xi.

Thus,

y(t

As

then

Thus,

l) =̂ [(C+/)(1 ~Xi) +2<Al ~<a +fc))(v "») -6(i_^f] »in(«i*i) +Ift.

tan(witi) =

sin(o;iti) =

U>i(l - Xi)

(Ai-(a + fc))(l-xt)-6(t;-yi)

wi(l - *.)
Vwf (1 - x,)2 + l(Ax - (a + Jb))(l - xi) - b(v - y,)]2'

y(tl) =(g+ 0(1 - *.)2 +2(Ax - (a +*))(, - yt-)(l - gj) - b(v - y,)2
Vwjf(1 - Xi)2 +l(Ax - (a +Jb))(l - xt) - 6(o - y,)]2 +W'

Using Aj = (a + Ar +d)/2,Wl = y/4(ad - bc+dk-bl) - (a +k +d)2/2, the formula for y^) sim-
pUfies to the foUowing form,

* »>=\A» - y.)2 - <£ziz±*mz^v- y0 _(£±SEZoi+ y,
Lett>' = max{-(a +*)(l-Xi)/6 + yi,(-(a+*^
then, and remembering Xi = (a+ Jb + d)/2 < 0,

-(a +*)2(1 - Xj)/b - (c + /)(! - Xi) ^
2X{ ^v-*

* J(l+ ^T "^ - (* +0(1 - -if >2Ai(l - x,)(. - Vi)
(a+ k)2(l-xj)2 (c+ l)(l-xj)2 ^ („a + k . d-(a + k)\ ,. ..

62 6 \2T~ + 6 ) (1" *')(v " y,)
Jd-(a +k))(l-xi)iv _yi) _(c +0(l-x,)2 ^g(« +x)(l-x,)(u _^} +(« +fc)2(l - x,)2
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Adding (t; - y^2 toboth sides and taking the square roots results in,

y/i. -»). - (£zii±Mizfi)(v_m) _(2+mnE> (. _yi)+(°+t)(i-J..)
Thus ^(«0, (1, e)) = (*i, fefo, (1,»))) satisfies

^o,(l,»))>«>+(a +t)<1-Ji).
0

By lemma 3.9, after tt/ui units of timeit happens that

4>(to +tM, (1, v)) =(xi, -e^r(<f,2(t0, (1, t>)) - y.) +y.)

where

-e^T(02(to, (1, v)) - yt) +yi <-e^T [(* -w) +(«+*)(l-«*)| +y..
Let F= -e -i [(v - y.) + (a + *)(1 - Xi)/6] + y<. Note that F- y,- < 0. Now look at the eUipse
that passes through the point (x,-,F). This eUipse intersects the Une x s 1at a point above where
^(*» (1»v)) intersects the same line in reverse time. This enables an upper bound to be put on the
value ofn(v). The eUipse through (*,-, F) is given by the formula

[*(<)] =[ ±(v-yi)sm(Ult) 1 rxi
LvWJ L(7-w)cos(Wlt) +Jr(A1-(a+Jb))(F-yi)sin(a;1t)J +UJ'

At the point of intersection with the line x = 1at timet2 < 0 then

-£-(1 - x.) =(F- yt) sm(uit2).

Thus,

»(<i) =-]/(v -Vi)2 - ^(1 - Xi)2 +i(Ax - (« +Jb))(l - xi)

={w~ W1" *?-*)'+ l{Xl -(a+*))(1" *>•
Let v" = min{-l/2 + yiy -1/4- w2(l - x,)2/62 + y,}. Then for F< v" the foUowing inequaUties
hold,

^ 1 w?(l-x,)2

=» _I_<__J / i "?(i-*,)2\
«-y.- - (F-y,)2 V 4 62 J

=> * | * - "i2(l"«*)a
«-y,- 4(F-yi)2- 62(F-y,)2

* H-L+ 1 <i,^izfi)l
F-W 4(F-y,)2- 62(F-yt)

1 / a,?(l-x,)2
2(F- yi)-V 62(l-xi)2'
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Thus,

V(h) <(F- Vi) (l +5(^y)+j(Ai -(a +*))(1 - Xi)
=v- Vi +j+i(A! - (a +fc))(l - xt).

FinaUy, let vx =max{i;', -(a+*)(1 - x.)/6 - e'^r(v» _yf) +y., _a/6+ 1/6}, then for vx <vone
has that

= —e "i t; + Ai

where

Theorem 3.18. Let (x, y), x < 1 be the induced virtual fixed point ofthe vector field £ with

£(-2Vl-xVad-6c- d(l - x) - a) <y<i^yT^xVad- 6c - d(l - x) - a)

and 0< Ai/ui -f A/w. Then there exists t* < y* such that for t; <t^ the map *2 : X(-co,y*] -+
L(—oo, y*] satisfies ir2(v) < v. t

Proof. Let i*),t>i, A0, Ai be the constants in lemma 3.15 and lemma 3.17 respectively. Let v' =
min{t;o, Vl(vi)}. As w0 < y* then v'<y\ For t; < t>' <v0 then -e^u + A0 < ir(v). As v, < ic(v)
then ir2(t>) < -e «i v(v) + Ai. Combining these two results give

tt2(v) < e^T(e^v - A0) +Kx

=ei^+^)*v - e^TA0 +Al

If ?r2(v) < v then it is sufficient that

Thus,

Or,

eVw> "' t; - e -i A0 + A'i < v.

v(e(^+£> - l) <e^TAo - Kx.

X1 ir

e -i A'o - Ai
v<

— /*J_J.A

Let t>" =(e -. A0-A1)/(e(=^+->'-l). FinaUy, define v2 =min{t;', v"). Then for t; <v2 it happens
that x2(v) < v. a
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Theorem 3.19. Let (x, y), x <1be the induced virtual fixed point ofthe vector field £. If

-(-y/1-z(a+d) - d(l - x) - a) <y< I(-d(l - x) - a)

then there are no cycles.

Proof. For these values of(x, y) one has that 0<Xi/ux +A/w (c.f. theorem 3.13) where A±iu are
the eigenvalues ofthe origin and Ai ±tw are the eigenvalues ofthe induced fixed point. By theorem
3.18 there exists v2 < y* for which t; < t>2 implies x2(v) < v.

Say aUmit annulus exists. As the origin in repeUing the annulus is attracting. To the annulus
are two boundary cycles Cu C2 which intersect the line x = 1at the points (1, r), (1, s) with v2 <
6<r<y*.

Consider the Une segment X[t>2,s]. Under two reverse iterations of the map *r one has that
ir~2(L[v2, s]) =L[ir'2(v2), s] CL[v2, s]. Now jr~2 has the unique fixed point s in L[w2, y]. If another
fixed point existed, then maximaUty ofthe annulus would be violated. Thus s is attracting for ir~2.
But a is also repeUing for jt2. The point s cannot be both attracting for forward and reverse time.
By contradiction, the limit annulus does not exist.

By the same argument as the previous two paragraphs, if an annulus whose boundary cycles
both intersected the Une x = 1existed, then it would be semi-stable. By lemma 1.12 semi-stable
annuU do not exist. If annuli exist, then at least one of the two boundary cycles do not intersect
the line x=1. This means that one of the two regions {(x,y): x <1} or {(x,y) :1< x} admits a
cycle. The trace ofthe vector field in both regions is nonzero. Neither ofthe two regions mentioned
admit cycles. Thus, annuU do not exist, cycles do not exist. |

Having considered the case for which the induced fixed point lies in the region {(x,y): x<1},
the next region to be considered for the induced fixed point wiU be the region {(x,y) :1< x}.

The first four results wiU estabhsh acorrespondence between fixed points {(x, y): 1< x} and
ordered pairs {(v, w) :t>< y* <w} as the points of intersection of the invariant manifolds through
(x, y) and the Une x = 1.

Lemma 3.20. Let (x, y), 1< x be the induced fixed point ofthe vector field £. Then there exists
v<y*<w such that the line through (1, v), (1, w) in the direction of the vector field passes through
{x,y).

Proof. By coroUary 2.8 the product of the eigenvalues is (ad- bc)/(l - x) < 0, there are two
eigenvalues of opposite sign Xx <0<A2. Assume that the linear invariant manifold passing through
the direction ofone ofthe eigenvectors corresponding to an eigenvalue does not intersect x = 1. The
linear invariant manifold then has the form x=A. Let (A, y) be apoint on this Une. Being on the
invariant manifold the x-ordinate ofthe vector at (A, y) is 0, thus (a +Jb)K +6y =0. As 0<6this
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equaUty cannot hold independent of the value ofy. Thus, the Unear invariant manifolds intersect
x=l.

Thus solve for

[: !]GI-«fc::i-
for A - Ai, K2t Ki < 0 < K2 and t>, w where v, w are the intersection of the invariant manifolds
with the linexs 1. As a+ bv = Ai(x - 1) < 0,a+ 6u; = A2(x - 1) > 0 it then foUows that
v < y* < w. m

Lemma 3.21. Let v < y* < w, then there is the induced fixed point (x,y),l < x for which the
invariant manifolds pass through (1, v), (1, w).

Proof. The Une through (1, v) in the direction of the vector at that point is given by

[-(c+dv) a+6w]rj=[-(c+dt;) +(a +6t;)t;].

Similarly, the Une through (1, w) in the direction of the vector field is given by

[-(c+dw) g+hI*] =[-(c+du») +(a +6u;)ti;].
The intersection of the two lines is then given bythe solution to

"-(c+dt>) a+6v] [x] _ [ -(c +dv) +(a +6t;)t; 1
-(c+dw) a+bw\ LyJ [-(c + dw) + (a +bw)w\ '

Or,

H =- — 1 [a +6u» -(a +6v)] [ -(c+dv) +(a +bv)v
LyJ (a + 6v)(c +du;)-(a+ 6u;)(c + dt;) [c+dw -(c + dt>)J [-(c+dw) + (a + bw)w\'

i.e.,

[^l = * \(w - v)(ad- be) - (w-v)(a +bv)(a +bw)]
LyJ (ad-bc)(w - v) L (v - w)(ac + bc(v + w) + dbwv) J*

As v< y* < w, the value ofthe determinant (ad-6c)(u>- v) is non-zero and the inversion has been
vaUdated. Finally, after division by w- v,

LyJ ad-6c
ad - be - (a + bv)(a + bw) ]
-(ac +6c(v +w) +dbwv) J*

Nowx = l-(a+ 6t;)(a+6u0/(ad-6c). As i; < y- < wthen a+ bv < 0< a+ 6u; and it foUows that
1 < x.It remains to show that (1, v), (1, w) are the points ofintersection ofthe invariant manifolds
through (x; y) with x = 1.

Say the points of intersection are (1, v<), (1, u;*), v* < y* < «;• as given by the lemma 3.20 for
induced fixed points with x-ordinates larger than 1. Assume that either v? v* or w? w*.

liv^v" then using the calculation above to find the intersection of two lines, one through
(1, v) and (1, v*) respectively, the x-ordinate of the point of intersection is given by 1- (a +bv)(a +
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bv*)/(ad- be). As (x,y) Ues on both lines, and the lines have different slopes, (x,y) is the unique
point ofintersection. Thus it foUows that x= 1- (a + bv)(a + bv*)/(ad - be). Since ym < v, t;* then
0 < a+ bv, a + bv* and x < 1. But 1< x, thus by contradiction t; = t;*.

Similarly, by the same argument w= w*. Thus indeed (x,y) has (l,v),(l,w) as its points of
intersection with the line x = 1. Note that the points (1, ©), (1, w) are on the unstable and stable
manifolds respectively passing through (x, y). •

Lemma 3.22. Let (x,y), 1 < x be the induced fixed point of the vector field £. Then the linear
invariant manifolds through (x, y) intersect x= 1at points (1, v), (1, id) with v <y* < w.

Proof. The eigenvalues at the induced fixed point are the eigenvalues ofthe matrix

a+Jb 6]
c+l d\

for k= (ax + 6y)/(l - x), / =(ex +dy)/(l- x). The eigenvalues ofthe matrix may be written as

A _ a+ by + d(l - x) + y/(a + by + d( 1- x))* - 4(1 - x)(ad - be)
1 2(1-*)

A _ a+ by + d(l - x) - y/[a + by + d(l - x))* - 4(1 - x)(ad- be)
~ 2(13^) •

As 0< 4(1 - x)(ad - be) the two eigenvalues have opposite signs. Note that Ai <0< A2.

First, it wiU be shown that the Unear invariant manifolds at (x, y) must intersect the Une x = 1.
Assume that x s A is an invariant manifold. For points (A, y) the x-ordinate of the vector at the
point must satisfy (a + k)K +by = 0. Since 0<6, this equality cannot hold independent ofy. Thus,
the manifolds must intersect x = 1.

Ifthe point (1, w) Ues on the invariant manifold through (x, y) for the eigenvector corresponding
to the eigenvalue Ax then

"l-xc d] [u.-yJ-Al w-y

Thus,

(a+ k)(l -x) + b(w - y) = A2(l - x),

or,

..._ (At -(a +k))(l -x) + by
6

_ a a+by + d(l-x) + y/(a+ by + d(l-x))2-4(l-x)(ad-bc)
b ~~ " 26
a l-x

" 6+Al"6~'
Similarly, if the point (1, v) lies on the invariant manifold through (x, y) for the eigenvector that
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corresponds to the eigenvalue A2 then (a + Jb)(l - x)+ b(v - y) = A2(l - x) from which

_(A2-(q + fe))(l-x)-h6y
6

a t a+6y +d(l-x)-V(a +6y +d(l-x))3-4(l-x)(ad-6c)
26~= "6 +

-"6 +A2-6"

Clearly v < y* < w. For points along an invariant manifold, the vector at those points have a
direction paraUel to the manifold. Thus, the vectors through (1, v), (1, w) induce Unes passing
through (x, y). j

Theorem 3.23. There isaC°° diffeomorphism g(x,y) = (v,w) from the set {(x,y) : 1 < x} of
induced fixed points to the set {(v% w):v < y* < w).

Proof. By lemma 3.21 and lemma 3.22 the function g is given by

with inverse

[:]-
a • a+*g+<t(l-*)-V(<H-&y+<*(l-g))a-4(l--gMad-6c)

**
a . a+M-<*(l-g)+V(a+fry+rf(l-g))a-4(l-«Kad-6c)

"S"1" 35

r.H =_L_
[w] ad-6c

ad - be - (a + bv)(a + bw) ]
—(ac + bc(v + w) +dbvw) J

It is now possible to consider under what circumstances cycles may not exist when the induced
fixed point lies in the region {(x,y) : 1 < x}. The next theorem shows that if the Unear invariant

manifolds at (x, y) satisfy a somewhat mUd condition on their intersection with x = 1 then there
are no cycles.

Theorem 3.24. (Figure 10.) Let (x,y), 1< x be the induced fixed point ofthe vector field £. If

where y*m = ir(y*), then there are no cycles.

Proof. Let g(x,y) = (v,w). It will be shown that w< y". Assume that y" < w, then the point
(x, y) Ues on the line, -(c + dw)x + (a + bw)y = -(c + dw) + (a + bw)w.

Thus,

As y*m < w,

(c + dw),
(a + bw) '

(c + dw).
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As (ad- bc)w > (ad- bc)y**, then it follows that

c6y** + adw > cbw + adymm.

Thus,

Or,

Finally,

ca + cbym* + adw + dwdy** >ca + cbw + adymm + dwdymm.

(c+ dw)(a + by") >(c + dy")(a + bw).

c + dw c + dy*m
a + bw a + by** '

The impUcationfor y is that

'>(3£)<-i>+*-.
contradicting the hypothesis ofthe theorem. Thus w <y*m.

Clearly the points on L(w, oo) cannot be on any cycle, being constrained by the invariant
linear manifold passing through (1, w). The point (1, w) cannot be on any cycle, being on the stable
manifold of (x, y). Points in £(-oo, y•] iterate to L[y**, oo) CL[w, oo) so cannot be on any cycles.
Finally the points on L(y*, w) iterate to L(-oo, y*] so that these points do not Ue on cycles.

If a cycle existed then it must contain fixed points whose indexes sum to 1. Any cycle must
then contain the origin, in its interior. The cycle lies either wholly in the region {(x,y) :x< 1} or
intersects the line x= 1. As 0<a+d, cycles cannot lie wholly in the region {(x, y): x< 1}.

Ifcycles existed, then they must intersect the line x= 1. By the above paragraph, since none
of the points on the line x= 1can be on any cycles, then cycles do not exist. |

It would be useful to know when it is true that (x, y) satisfies ir(v) =wwhere g(x, y) = (v, w). In
the following lemmas agraph Xwill be determined that wiU separate the points for which tt(i>) <w
and w<n(v). Then points for which tt(v) <wwUl be exactly those points that Ue above the graph
X- It will be shown that the graph Xis continuously differentiable and extends infinitely to the right.

Lemma 3.25. Define X: (-oo,y*) - {(x,y) :1<x} by the formula X(y) =g'HHv)^)' Then X
is a continuous curve with Urn^y x(y) = (l,y**).

Proof. Note that by theorem 3.23 g^^w) = (x,y) is given by the equation

M _ 1 [ad-6c-(a +6r;)(a +6u;)]
LyJ ad - be [-(ac +bc(v +w) +dbwv) \ '

Continuity of Xon the interval (-oo, y') follows from continuity of jt and g~l(v, w).
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Let 0 < €and consider the baU B((l,y**),€) = {(x,y) : y/(x - 1)2 + (y - y)2 < f} about
(1, y"). Consider the set given by VxW= <,(£((!, y), 6) n{(x, y): 1< x}). As a is a diffeomor
phism by theorem 3.23 the setVx^ is open, thus V, Ware open subsets of x= 1. Then V, Ware
sets of the form (s, y*), (y**,t) respectively. Let X = ir^(W) D7 = (u,y*).

Say u< y< y*, then *r(y) € W, y6 Vand thus X(y) - r\*(y\ y) €B((l,y"),e). |

Lemma 3.26. Let X(y) =(xi(y), X2(y)) where Xis the function defined in lemma 3.25. Then Xi(y)
is a decreasing function ofy.

Proof. Note that the function xi(y) is given by the formula

ad —be

As £is aC° vector field, then ic is a C1 function. In particular xi is a C1 function on (-co, y*),
being formed from the composition of two such functions: g~l, u\ Taking the derivative of xi,

xi(y) _ H<> +b*(y)) +bir'(y)(a +by)
ad —be

As y< y* then a+ by < 0. Since y* < ir(y) then 0<a+ bir(y). Also, ir'(y) < 0for all y< y*. Then
Xi(y) < 0, this impUes that as ydecreases the x-ordinate of the function x monotonically increases.

As Umy_y. Xi(y) = 1, it follows that 1< xi(y) for all y< y\ By monotonicity, the inverse of
Xi(y) exists. Thus, it is possible to write X2(y) =X2(xrl(Xi(y)))- In other words, x2(y) =F(Xi(y))
for F(y) =X2(xT\y)). R

Lemma 3.27. Let y< y*. Then x(y) - x(y') = DxMJiT where r? G(y,y").

Proof. Write x(y) = (xi(y),X2(y)) = (xi(y)>F(Xi(y))) as in the end of lemma 3.26. By the mean
value theorem,

X2(y) - X2(ym) = F'(rj*)(Xl(y) - xi(ym)),

where 77* <= (xi(y),Xi(y)). By monotonicity of xi, then rj* =xi(r?) for some 77 6 (y,y*). Thus,

x(y) - x(y*) =

And since x'i(v) 7* 0,

x(y)-x(y*) =

v(Xl(^)J(xi(y)-xi(y*)).

xifa)
nxi(r)))x\(v)

xi(y)-xi(ym)
xifa) '

i-e-, x(y) -X(y') = Dx(t7)/t where JT = (xi(y) ~Xi(y'))/x'i(v) and 77 € (y,y').

Lemma 3.28. The function Xis C1 on the interval (-00, y*). If*'(y*) exists then

lim X2(y)-lf' = *'(y-)(c+dy*)+c+dir
»-»' Xi(y)-1 a + 6y"
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Proof. As x is the composition of two C1 functions defined on the interval (-00, y*) it too is also
C1 on (-oo,y*).

Now Dx(y) = D(<rV(y),y))D(7r(y),y), so that

Dx(y) =—— Ha +W* -(«" +b*(y))b] |V(y) I*W ad - be [-(c +dy)b -(c +d*(y))bJ [ 1 J•
Thus Dx(y) is a vector with the following slope,

**(y)(c + dy)b + (c+ d«(y))b
"'(yXa + byW + ^ + b^yW

which reduces to,
*'(y)(c + dy)+c + d7r(y)
*'(y)(a + by) + a + bir(yy

By lemma 3.27 which state that x(y) - x(y*) = t>x(v)K for some q€ (y,y*), then

ffir-]"*'*_a:2

Hence,

lim *2(y)-y*m = lim ^(T7)(c +d77)+C-t-d^77)
W Xi(y) - 1 v-y n'(v)(a + br))+a + 6^(77)*

Or,

lim X2^-y*' _ ^(y*)(c+dy*) + c+dn(y*)
»-»• Xi(y)-1 T,(y)(a+ 6y-) + a + 6^(y)'

As y* = -a/6 the denominator reduces to a+ by** > 0and finally,

lim *2(y) ~ &* _ ^(ym)(c + dy*) + c+ dy**
»-»• Xi(y)-1 a+ 6y" '

The final theorems in this section wiU prove regions where cycles do and do not exist.

Theorem 3.29. (Figure 11.) Let (x,y), 1< xbe the induced fixed point of the vector field {. If

X2(xll(x)) < y.

then there exists a locally attracting annulus. Moreover, assuming conjecture 0.1 holds, there exists
a locally attracting limit cycle.

Proof. Consider L[v,y'). Under one application of t the result is *(L[vty*]) = £[*(?•),*(»)] =
L[y~,*(v)]. Now tt(v) <wso that „<»»(*). Also *2(y*) <y. Thus the image of L[v,y'\ under
two iteration of * results in *2(L[v,y*)) CX[v,y']. By theorem 2.12 there is a locally attracting
annulus for points in in L[v,y*}. Note that the annulus is also attracting for points in L(y* ,w).

Since the point (\,w) is on the invariant manifold through (x,y), the annulus is not globally
attracting.

35



Notice that points in L(-co, it'^w)] iterate to I[u>, oo). There are no cycles through these
points. However, aU points in L(v1(w), v) iterate to L(tt(v), w) and again to L(v, y*) and eventuaUy
attracted to the annulus. By lemma 1.10 the attracting annulus is an attracting limit cycle. |

Theorem 3.30. Let (x, y), 1< x be the induced fixed point ofthe vector field $. If

then there are no cycles.

Proof. Assume a Umit annulus exists. Since the origin is a repelUng fixed point which the annulus
must encircle, the annulus is attracting.

Let y(x,y) = (v,w). The annulus can be characterised by two boundary cycles Ci,C2 which
intersect the Une x = 1 at the points (1, r), (1, s) with y* < r < s < w.

Consider the Une segment L[s,w] under two reverse iterations of ir. As y < x2(Xi l(x)) then
w< ir(v), equivalents this means v< ^(w) and ir~2(w) < w. Then t~2(L[s, w]) = L[s, x'2(w)] Q
L[s, w]. Now a-2 has only the point (l,s) as fixed point in L[s,w]. Ifanother fixed point existed in
this interval then maximaUty of the annulus would be violated. Thus the point (1, s) is attracting
for jt~2.

The point (l,s) is also attracting for tt2, it cannot be attracting for both forward and reverse
time. By contradiction, the Umit annuli does not exist. By the same argument, ifan annulus whose
boundary cycles both intersected the line x= 1existed, then itwould be semi-stable. By lemma 1.12
semi-stable annuli do not exist. Ifannuli exist, then at least one ofthe two boundary cycles do not
intersect the Une x= 1. This means that one of the two regions {(x,y) :x < 1} or {(x, y) : 1< x}
admits a cycle. The trace of the vector field in both regions is nonzero. Neither of the two regions
mentioned admit cycles. Thus, annuli do not exist, cycles do not exist. |

§4. 0<b, 0<a + d, (a + d)2/4<ad-bc, ad - bc + dk- bl = 0.

The only result obtained in this case has been the following coroUary.

Corollary 4.1. IfO<a + k+ d then there are no limit cycles.

Proof. If a limit cycle existed then it must intersect the line x= 1. By lemma 3.1 cycles may not
intersect the line x= 1, thus limit cycles do not exist. |
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§5. 0 < b, 0 < a + d, 0 < ad- be < (a+ d)a/4.

Under these conditions cycles do not exist for the vector field £. This wiU be proved inthe next two
propositions.

Proposition 5.1. If ad- 6c + dk - bl = 0 then there are no cycles.

Proof. Consider the Unear vector field given by

fcWu? 5] [;]-[{]
as the extension of the vector field { to the right of x = 1to the whole plane. As the determinant
of the matrix is zero, the number of fixed points is either zero or infinite. There are two cases to
consider.

(i) :If / ^ (d/b)k there are no induced fixed points. In particular there are no fixed points in the
region {(x, y) :1<x}. Any cycle must then contain the origin. As both eigenvalues at the origin
are real, there isat least one invariant Unear manifold through the origin. A cycle cannot enclose a
Unear manifold, so cycles do not exist.

(ii) :ttI= (d/b)k then ad - be =s 0. This case cannot occur. |

Proposition 5.2. Ifad- be + dk - bl ^ 0 then there are no cycles.

Proof. Consider the induced fixed point (x,y) that the constants Jb,/ induce. There are two cases
to analyse.

(i):The induced fixed point (x, y) satisfies x < 1. Note that the vector field has only one fixed
point, namely at the origin (0,0). As 4(ad-6c) <(a+d)2 the eigenvalues at the origin are both real.
Take the eigenvector that corresponds to one ofthese eigenvalues, through this eigenvector Ues an
invariant manifold of£. Any cycle must encompass the origin, being the only fixed point. However,
Unes cannot be encompassed byclosed curves. By contradiction, cycles do not exist.

(u):The induced fixed point (x, y) satisfies 1<x. The vector field has two fixed points, namely
one at the origin and one at the point (x, y). By coroUary 2.8 the fixed point at (x, y) has eigenvalues
whose product is equal to (ad - 6c)/(l - x) <0. Thus (x, y) is a fixed point of index -1. Any cycle
must enclose fixed points whose index sum to 1. Thus, any cycle must enclose the origin. But, as
in the previous case, this is not possible, cycles do not exist. |
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§6. 0<b, 0<a + d, ad-bc = 0.

In the situation that these conditions hold true, there are no cycles.

Proposition 6.1. There are no cycles.

Proof. As ad-bc=0 the rank of the matrix

a 6

c d

is either 0 or 1. Because 0 < 6, the rank is 1. The line ax+ 6y = 0 is a line of fixed points for the

linear vector field in the region {(x,y),x < l}.Thus the Une y = -(a/b)x is a Une of fixed points
passing through the point (1, -a/6).

If ad- be+ dk - bl = 0 then dk - bl = 0 and the linear vector field

[;]•['«:: i]fc]-[t]
has a Une of fixed points y = (-ax + k(l - x))/6 which joins with the Une y = -(a/b)x. The two
Unes form a partition ofthe plane in which neither region ofthe partition has any fixed points. Thus
cycles do not exist.

If ad -bc+dk- 6/^0 then there isa unique solution (x,y) to the problem

::«a [d-d
at the fixed point (1, -a/6). However, this fixed point is on the line of fixed points given by y =
(-ax + k(l - x))/b. This line of fixed points prevents cycles from forming. Thus, it follows that
cycles do not exist. •
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§7. 0< b, 0<a + d, ad-bc<0.

This rather short section assumes the origin to be a saddle point.

Proposition 7.1. Ifad- 6c + dk - bl = 0 then there are no cycles.

Proof. Consider the Unear vector field given by

[:]-.[:«ilfcl-M
as the extension of£ to the right ofx = 1 to the whole plane. As the determinant ofthe matrix is

zero, the number offixed points is either zero or infinite. There are twocases to consider.

(t) :If / ^ (d/b)k there are no induced fixed points. Thus, there are no fixed points to the right
of x= 1. Any cycle must then contain the origin. The origin is a saddle point with index -1, thus
cycles cannot exist.

(it) :If J= (d/b)k then ad - be = 0. This case cannot occur. |

For the remainder of the section it wiU be taken that ad-bc+dk-bl^ 0. The foUowing results
wiU give sufficient conditions for the nonexistence ofcycles.

Proposition 7.2. Let (x,y),x < 1be the induced fixed point ofthe vector field £. Then $has no
cycles.

Proof. Any cycle must include a fixed point, { has only one fixed point, the origin which must
therefore be included in the interior of the cycle. By index theory, the index of the origin is 1. But
ad - be < 0so that the origin is asaddle point with index -1. Thus cycles do not exist. |

Proposition 7.3. Let (x, y), 1< x be the induced fixed point ofthe vector field £. If

y<i(-d(l-x)-a)

then there are no limit cycles. Ifstrict inequality holds then there are no cycles.

Proof. If a Umit cycle existed then the cycle must intersect the line xs 1. By using lemma 3.1, it
is sufficient that 0<a+k+dfor there to be no Umit cycles. Thus 0<a+(ax +6y)/(l -x) +d
which reduces to y < (-d(l - x) - a)/6.

Consider the case of strict inequaUty. Any cycle must enclose fixed points whose indexes sum
to l. The cycle must contain the induced fixed point. The cycle Ues either wholly in the region
{(x,y) : 1< x} or intersects the line x = 1. By the lemma 3.1 the cycle cannot intersect the line
x= 1. But if y< (-d(l - x) - a)/6 then 0< a+ k+ d. The region {(x,y) : 1< x} will not admit
cycles. Thus, cycles do not exist. •
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Lemma 7.4. Let (x,y), 1 < x be the induced fixed point of the vector field £. Then (x,y) has
complex eigenvalues &

^(-2Vx - W-(od- be) - d(l - x) - a) <y<^(2Vx^Ty/-(ad-bc)- d(l - x) - a).

Proof. The eigenvalues are determined by the characteristic equation of the matrix

k b

d

\a + k
[c+l

which isX2 + (a+k+d)X +ad- bc+ dk - bl = 0. By using the values Jb = (ax + 6y)/(l - x),l =
(ex + dy)/(l —x) the abovereduces to

,2_/q +d-qx+6y\ j qd-6^
\ l-x ) l-x

The eigenvalues are complex if and only if

/a + d-dx + 6y\2 A(ad-bc\
\——*—) <4W^rJ-

Thus,

^(-2Vx-ly/-(ad-bc)- d(l - x) - a) <y<i(2Vx~=ly/-(ad - be) - d(l - x) - a). I

Theorem 7.5. Let (x, y), 1< x be the induced fixed point ofthe vector field £. Ifthe point satisfies

j;(2>/x~=Ty/-(ad-bc)- d(l -x)-a)<y

then there are no cycles.

Proof. By lemma 7.4, the point (x, y) has at least one real eigenvalue to which can be associated a
linear invariant manifold. Any cycle must contain either the fixed point at the origin or at the point
(x, y). As both have linear invariant manifolds, which cannot be contained within a cycle, cycles do
not exist. -

To conclude this section, the following results wiU show that attractive Umit cycles are highly
unlikely.

Lemma 7.6. The invariant manifolds through the origin intersect the Une x = 1 at the points
(1,(-a +d- V(a +d)^ - 4(ad- 6c))/(26)),(1, (-a +d+ y/(a +d)* - 4(ad- be))/(2b)).
Proof. The problem is the same as solving

'a b
c d

Y
v

= A
Y

V
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for v when X= (a+d± y/(a + d)2 - 4(ad - bc))/2 are the eigenvalues at the origin. Thus a+6v = A,
from which v= (-a + A)/6. Hence, t> = (-a +d±y/(a + d)2 - 4(ad - 6c))/(26). |

Let the points ofintersection ofthe invariant manifolds with the line x= 1be (1, v), (1, w),v<
y" < w. Then the foUowing two theorems can be proved.

Theorem 7.7. Let (x, y), 1< x be the induced fixed point ofthe vector field £. If

^(-d(l - x) - a) <y<i(2VT=TV-(ad-6c)- d(l - x) - a)

and 7r(tF) <v then there isarepelling annulus. Moreover, assuming conjecture 0.1 holds, then there
is a repelling limit cycle.

Proof. Since (-d(l - x) - a)/6 < y then a+k+ d< 0. Under reverse time the induced fixed point
is repeUing, thus W^y*) is weU-defined.

Consider the Une segment £[F, y*]. Then under two reverse iterations of ?r,

*-2{L[v,y*]) =*-\L[«-i(y%*-\v)])

c*'\i[*-l{if),ti))

= L(*-\wU-2(y*)]

C£[F,y"].

Thus ir'2(L[v, y*]) C L[vt y*]. Applying theorem 2.12 to the function -k~2, there exists a locaUy
attracting annulus for ti-2. Thus, there arepeUing annulus for tt2. By coroUary 1.11 the repeUing
annulus is a repeUing Umit cycle. •

Theorem 7.8. Let (x, y), 1< x be the induced fixed point ofthe vector field £. If

-(-d(l - x) - a) < y < ~(2Vx~^Ty/-(ad - be) - d(l - x) - a)

and v < tt(w) then there are no cycles.

Proof. Say aUmit annulus exists. The annulus may be characterised by its boundary cycles, which
intersect the Une x = 1at the points (1, r),(1, s) with y* < r < s < w.

As (-d(l - x) - a)/6 < y then a+ k+ d < 0. The fixed point which the annulus encircles is
attracting, the annulus is repelUng.

Consider the line segment L[s,w\ under twoiterations of 7r,

*2(L[s, w]) = ir(L[*(w), ir(s)])

Cir(L(v,ir(s)])

= L[*2(s),*(v))

C L[s,tU\.

41



The point (l,s) is the only fixed point of jr2 for the Une segment L[s,W\. If another fixed point
existed then maximaUty of the annulus would be violated. Thus, the point (1, s) is attracting for
points in L[s, w].

The point (l,s) cannot be both repeUing and attracting, thus Umit annuU do not exist. By
the same argument, if an annulus whose boundary cycles both intersected the Une x = 1 existed,
then it would be semi-stable. By lemma 1.12 semi-stable annuU do not exist. If annuU exist, then

at least one of the two boundary cycles do not intersect the linex = 1. This means that one of the

two regions {(x, y) :x < 1} or {(x, y) : 1< x} admits a cycle. The trace of the vector field in both

regions is nonzero. Neither of the two regions mentioned admit cycles. Thus, annuU do not exist,
cycles do not exist. •

§8. 0<b, 0 = a + d.

In contrast withthe earUer sections where the analysis has been divided into the twocases ad-6c+

dk-bl^O and ad- bc+dk - bl = 0, the division inthis section wiU be between Jb ^ 0 and Jb = 0.
If k ^ 0 then there are no Umit cycles.

Proposition 8.1. Ifk^O then there are no limit cycles.

Proof. Note that if a vector field is to contain a limit cycle then the cycle cannot Ue whoUy in
either the regions {(x, y) : x < 1} or {(x,y): 1< x} because Unear vector fields do not admit limit

cycles. Thus, ifasuch cycle exists then it must intersect the line x =1transversaUy at some points
(l»yi),(l,y2) with yi < y* < y2. The cycle wiU then join the points (l,y2),(l,yi) in aclockwise
orientation. Let C denote the cycle. Then by Stoke's theorem,

/c$*-**-tc£(S)+i(*)**
Breaking up the area integral into two parts, A=int(C) n{(x, y) :x<1} and B=int(C) n{(x, y):
1 < x}, then

°=JA^ax +by) +i[y-(c* +dy)dxdy+JB^((a+k)x +by-k)+±((c+l)x+dy-l)dxdy.
Thus,

0= J (a +d)dxdy+ J (a +k+d)dxdy
J a Jb

= / Jbdx dy.
Jb

As fc ^ 0 the integral on the right is nonzero. By contradiction, Umit cycles do not exist. |

Thus the case for which k = 0 wiU be examined. First some notation and results about Unear
vector fields wiU be needed.
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Definition 8.2. X((x0, yo), (*i, yi)) wUl denote the open Une segment where X((x0, y0), (xi, yx)) =
{t(xo, yo) + (1 - <)(*i, yi) : 0 < t < 1}.

Lemma 8.3. Let L be a linear vector field of the form

ie* (x0, yo) t* (0,0). Construct the line segment joining the points (0,2y0), (2x0,0). Consider the
return map ir: L((0,2y0), (x0, yo)) —£((x0, y0), (2x0,0)) where

*(«. y) = (eA'°*, e-A'»y), t0 = min{0 < t: (eA'x, e~xty) € £((x0, yo), (2x0,0))}.

Then tt((x0, y0) + s(-x0, yo)) = (x0, yo) - s(-x0, y0), 0< s < 1.

Proof. The Une tangent to the vector field at the point (xo, yo) is given by the equation y =
-(yo/x0)x +2y0. Thus, £((0,2y0), (2x0,0)) is the portion of the Une bounded by the invariant
manifolds of the Unear vector field.

Let (x, y) = (x0 - sx0, yo+syo), 0< s < 1be any point in the Une segment X((0,2y0), (2x0,0)).
Consider the region R bounded by (0,0), (0,2y0), (2x0,0), whose interior has no fixed points. The
solution through thepoint (x,y) moves into the afore-mentioned region. Ifthe solution did not exit
the region then the point (x, y) is attracted either toa fixed point ora cycle. As the interior ofthe
region does not have any fixed points then the point could not have been attracted toa cycle or fixed
point in the interior of the region R. By choice, the point (v,w) is not on the invariant manifolds
through the origin, so the solution cannot be attracted to a fixed point on the boundary of R. Thus,
the solution through (v,w) exits R in some finite time. Thus ir is weU defined.

Now 0(t,(x,y)) = (extx,e~xty). Letting (x,y) lie on the line I((0,2y0), (2x0,0)) results in the
expression

*(*.(*.»)) =(eA<x,e-A« (-^x+2y0)).
If tf(to, (5", y)) € X((x0, y0), (2x0,0)) then

(eA'°x, e-A'°(-^.x +2y0)) €X((x0, yo), (2x0,0)).

i.e.

X"(-fT+2»0)=-*^>°x +2y„.
\ Xo J Xo

Solving for the values oft0 results in the values 0,ln((2xo - x)/x)/A. As 0< t0 only the second of
the two solutions is admissable, thus t0 = ln((2x0 - x)/x)/A.

Then <t>(i0, (x, y)) = (2x0 - x, (y0/x0)x). Thus tt(x, y) = (2x0 - x, (y0/x0)x), and after simplifi-
caton, flr((x0, y0) + s(-x0, y0)) = (x0, y0) - s(-x0, y0). |
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Lemma 8.4. Let L be a linear vector field of the form

'fc]-[i :][;]••<-
Let (x0, yo) # (0,0) be anypoint. Construct the Une Lthrough (x0, yo) with tangent vector [y0 -x0]'.
Consider the return mapir: L —* L where

*(*» y) = (cos(ut0)x + sin(wt0)y, - sin(wt0)x + cos(wt0)y),

t0 = min{0 < t: (cos(wt)x + sin(wt)y, - sin(wt)x + cos(wt)y) € L).

Then 7r((x0, yo) + s(yo, -x0)) = (x0, yo) - «(yo, -*o).

Proof. Inpolar coordinates the solution through the point (x, y) = (x0 + syo, yo - sx0) is given by,

r(t) =Vl+s2yjx20 +y2,

6(t) =-ut +tan"1 ('*Z**l\.
\xo + syoJ

The equation ofthe Une through (x0, yo) with direction [y0 x0]' is given by

rcos (*- tan-1 (j^)) =yjx2 +y2.
Thus'at points ofintersection ofthe solution ofthe vector field and the Une,

vT?7V5^«(-+*--» (5=5) -«-» (a)) =V5^*
Solving for solutions gives the foUowing as viable values of t,

t = (2mr ± tan-^s) - tan"1(*))/«.

For s < 0,to = -2tan-1(s)/w. When 0 < s,t0 = (2tt - 2tan-1(s))/u;. Computing the value of
Wo, (r, y)) results in (x0 - sy0, y0 +sx0). Thus »((*„, y0) +s(y0, -x0)) = (x0, yo) - s(y0, -x0). I

Lemma 8.5. A nonsinguiar linear mappings maps lines into lines.

Proof. Consider the image of the point (x,y) = s(x0,y0) + (1 - s)(x1,y1) under the nonsinguiar
transformation A, A(x, y) = sA(x0, yo) + (1 - s)A(xi, yx). |

Lemma 8.6. Let ad-bc< 0, then the invariant manifolds through the origin intersects the Une
x= 1at the points (1, (-a - yj-(ad - 6c))/6), (1, (-a+ ./-(<"*- &c))/6).

Proof. The problem is the same as finding eigenvectors whose x-ordinate is equal to 1,

a 6

c d H:]-*^;]-
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i.e, a+ bv = ±y/-(ad-bc) which reduces tov= (-a ± y/-(ad-bc))/b. |

The purpose of the previous lemmas is to prove the foUowing two lemmas aUowing particularly
simpleexpressions for the return map.

Lemma 8.7. Let ad-be < 0. Then the return map v:L((-a-y/-(ad- bc))/b, y*) -• L(y*, (-a+
y/-(ad-bc))/b, ym) isgiven by ir(y) = y* + (y* - y).

Proof. Note that the point (1, (-a - y/-(ad-bc))/b) is on the stable manifold of the the origin,
so indeed ir goes from the given domain into the given range. By Unear algebra it is possible tofind
a non-singular matrix A such that under the change ofvariables X= A"*x the portion of f to the
left of x = 1 has the form

'[f]-[s -M
Let <j>, <j> be the respective solution to £ to the left ofx = 1 and the solution to the above Unear

vector field L. The solutions 7»4 are related by 0(t,(xo,yo)) = A?(t, A"1(x0ryo)).
By lemma 8.5 the line L((-a- Vad-bc)/b, (~a+ Vad-bc)/b) is mapped by A"1 toa line in

the X plane that is tangent to £ at the point A-^l.y*). Using lemma 8.3 to compute the return
map for a point y € L((-a - y/ad-bc)/b,y*),

Wo, (1, y)) = Wo,(1, y') + (0,y- y'))

= A?(t0, A-^l, y*) + A-^O, y-y*))

= A(A-1(l,y*)-A-1(0,y-y*))

= (l,y*-(y-y-)).

Thus, ?r(y) = y*-(y-y*) = y* + (y*-y). fl

Lemma 8.8. Let 0<ad - be. Then ir: £(-oo, y«) - L(y*, oo) is given by ir(y) = y* + (y* - y).
Proof. Let A be a nonsinguiar matrix such that under the change of variables X = A_1x the
vector field £ to the left ofx = 1 has the form ofthe linear vector field,

LH =[-°«o]H-
Let <j> be the solution to L. Then <f>, the solution of £ to the left of x = 1 and f are related by
W»(*o,yo)) = A0(t,A-^yo)).

By lemma 8.5 the Une x= 1is mapped by A"1 to a Une tangent to A"1^, y*) in the Xplane.
Using lemma 8.4 to compute the return map,

Wo,(l,y)) = Wo,(l,y*) + (0,y-y*))

= A?(to, A-J(l,y*) + A-^O, y- y*))

= A(A-1(l,y*)-A"1(0,y-y*))

= (i,y*-(y-y*)).
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Thus, 7r(y) = y*-(y-y*) = y* + (y* - y). g

Theorem 8.9. Ifad- be # 0, ad- be - bl ^ 0 then there are no Umit cycles.

Proof. Note that a Umit cycle cannot pass through the point (1, y*) because such a cycle would Ue
whoUy in the region {(x, y):x < 1} is which £ is Unear. It is then suincient to show that cycles in
£(-oo, y*) cannot be Umit cycles.

Since ad- be- bl ^ 0, by theorem 2.6, the vector field £has induced fixed points (x,y). There
are several cases to consider.

(t) :0< ad-be, (x, y), x< l.The origin is acenter and by lemma 8.8 the return map defined on
£(-°o, y*) is given by r(y) = y*+(y*-y). By coroUary 2.8 the induced fixed point has eigenvalues
whose product is (ad-be)/(I - x) which is positive. The induced point has imaginary eigenvalues.
By lemma 8.8 the return map defined on L(y*, oo) is given by ir(y) = y* +(y* - y). Thus, computing
a-2 for points along L(-oo, y*) gives v2(y) = y. As 7r2(y) =yitfoUows that there are infinitely many
concentric cycles, the cycles cannot be attracting or repeUing. This is because that arbitrarUy close
to any cycle there exists another cycle, i.e. the cycles are not isolated.

(it) : 0 < ad- 6c,(x,y),l < x.As in case(i) above, the return map defined on £(-oo,y*) is
given by r(y) = y* + (y* - y). The induced fixed point in this case happens to have real distinct
eigenvalues. Consider the Une segment L(y0i yi) ofx= 1that contains (1, y*) and is bounded by the
invariant manifolds of the induced fixed point. Under anonsinguiar Unear transformation the image
of the point (l,y*) bisects the image of the line. The implication is that (l,y*) bisects L(yo,yi).
Thus L(y0,yi) has the form I(y* - m,y* + m) for some 0 < m. By lemma 8.7 it then foUows
that the return map on L(y*,y* + m) is given by *(y) = y* + (y* - y). Thus, on the Une segment
L(ym -m,y*) (and L(y*,y* + m)) the return map satisfies ^(y) = y. As in case(i) above, there
are no attracting or repeUing cycle in L(y* - m, y*). Points on L[y* + m, oo) cannot induced cycles,
being bounded away by the invariant manifold at (l,y- + m) from returning to x= 1. Points on
(-oo,y* - m] iterate to L[y* + m,oo), hence neither can they form cycles.

(tit) :ad-be < 0, (x, y), x< l.There are no cycles as the only fixed point in the plane is at the
origin whicli has index -1.

(iv) : ad - be < 0, (x, y), 1< x.The fixed point at the origin has distinct real eigenvalues, by
lemma 8.7 return map is given by ir(y) = y* + (y* - y) for points on L(y* - m,y*). By corollary
2.8 the induced fixed point has eigenvalues whose product is (ad - 6c)/(l - x) which is positive,
implying that the eigenvalues are imaginary. By considering the induced fixed point as the origin
and applying lemma 8.8 the return map is then given by w(y) = y* +(y* - y) for points on L(y*, oo).
Thus on L(y* -m,y*) the return map satisfies ^(y) =y. There are no cycles in i(y* -m,y*) (and
L(y%y" + m)) which are either attracting or repeUing. Points on £(-oo,y- - m] are bounded by
the invariant manifold through (l,y* - m) from forming cycles. Points on L[y* + m,oo) iterate to
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L(-oo,y* —m] and neither can they form cycles. •

Theorem 8.10. Ifad- 6c 5* 0,ad- 6c- 6/ = 0 then there are no limit cycles.

Proof. As ad- be- bl =0it foUows that c+1 =ad/6. The Unear vector field to the right of x=1
is then given by

The solution is

W> (1. yo)) =(1 +(a +byo)t - i(ad- 6c)t2, y0 +(c- ay0)t +^(ad- bc)t2).
The times for which <j>(t, (1, y0)) intersects the line x=1are at the values t=0,2(a+byo)/(ad- be).
There are two cases to consider.

(i) :0<ad-6c. By lemma 8.8 the return map on the left is given by ir(y) =y*+(ym-y),y <y*.
On the right ofx=1the point (1,y),y* <yiterates under positive time 2(a +byo)/(ad-bc) to the
point (1, y* +(y* - y)). The return map to the right ofx=1is given by 7r(y) =y*+(y*- y), y* <y.
Thus the return map satisfies ^(y) =y. There are no cycles which are either attracting or repelling.

(it) :ad - be <0. The Unear vector field Lhas no fixed points so that £has no fixed points to
the right of x= 1. There is only one fixed point in the plane, namely at the origin. With index -1,
no cycles can be formed. -

Proposition 8.11. Ifad- be - 0 then there are no cycles.

Proof. There is aUne of fixed points ax +6y =0to the left of x= 1. The line y= -(a/6)x is a
Une of fixed points passing through the point (1, -a/6).

If ad - be + dk - bl = 0 then dk - bl = 0 and the linear vector field

[;]•[::;;][;]-[;
has aUne of fixed points y= (-ax +k(l - x))/b which joins with the Une y= -(a/6)x. The two
lines form apartition of the plane in which neither region of the partition has any fixed points. Thus
cycles do not exist.

Ifad- be + dk - bl ± 0then there are no induced fixed points. In particular, there are no fixed
points in the region {(x,y) :1< x}. The line y= -(a/6)x is semi-infinite, and cannot be enclosed
in any cycle. Without invariant sets for which acycle may enclose, cycles do not exist. |
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§9. 0 = b.

In the event that 6= 0 it happens that there are no cycles.

Proposition 9.1. There are no cycles.

Proof. Note that along the Une x = 1 thevector field isgiven by

[c d\ [y\ - [c+Vi *
As along the line x = 1 the x-ordinate ofvectors have constant value, cycles cannot cross the Une.
Ifcycles existed then they Ue in either of the two regions {(x, y): x < 1} or {(x, y):1< x}.

Cycles cannot Ues in the region {(x,y) : x < 1}, the only fixed point is the origin to which
passes a Unear invariant manifold along the y axis.

In the region {(x,y): 1 < x} the vector field £ has the form

[;H°.:; :][;]-[;]
Ifa cycle existed then it must enclose a fixed point of £. But through the fixed point Ues a Unear
invariant manifold paraUel to the y axis. No cycles can exist in this region. |
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Appendix A.

In this appendix the equivalence ofthe continuous piecewise vector fields ofChua[2] and those used
herein wUl be examined. First, the respective definitions wiU be recaUed.

Definition A.l. (Chua)£ is a continuous piecewise Unear vector field in canonical form <*• there

exists an integer 1< n, matrix B, vectors or, on, ft, 1< i < n and constants 7,-, 1< «< n for which
«x) = a + Bx + £?=!ai\ < A.x > -7.|.

The foUowing definition is repeated from the m^in body of the text:

Definition 1.2. £ is acontinuous piecewise Unear vector field «> there exists constants a, 6, c, d, ik, /
with either k j± 0 or / ^ 0, and

[;]•
a 6

c d ][:]•
a+ k b] [xl [Jfel
c+l dJ[yJ-[/J'

x<l;

1 < x.

The foUowing are two lemmas showing the equivalence ofthe two types ofcontinuous piecewise
linear vector fields and the relationship between the defining constants that aUows this equivalence.

Lemma A.2. (i) -.Let f(x) = a + Bx - a|[l 0]x - 1| with

•-fcMJL-fcs]
then

where

(it) :Let

[;]- : s][:l-
\a+k b] \x] \k]

{[e+l d\[y\-[l\>

x<l;

Kx

\a 6] =Un +GT! 612] [jfe] _ [-2a!
[c d\ [b21 + a2 622J' [/J- [_2a2

a 61 fx
c d\ [y
a

c

]• x< 1;

< x

be acontinuous piecewise Unear vector field with k, Inot both zero. Then £(x) =a+Bx-a|[l 0]x-l|
where

oc =

-\k

L-**j
, B =

a+\k 6
c+ll d



Proof. The continuous piecewise Unear vector field £in canonical form has the foUowing decompo
sition

£(x) = a + Bx-a(l - [1 Ojx) x € {(x,y) : x < 1}

= (B + a[l 0])x

£(x) = a + Bx-a([l 0]x- 1) x e {(x,y): 1< x}

= (B-a[10])x+2a.

The corresponding decomposition for a continuous piecewise Unear vector field is

«[;]-[: mil x6{(..,):.Si>

Matching the two expressons givees,

(B +a[10])*=[° »][»] «€{(«.»):. 51}
(B-«[10])x+2«=[°+* »][;]-[*] x€««„):K,}.

(i) :Given the values of

"~ La2j ' ~ 1*21 b22\
then by the equations above, it foUows that

[a 6] [ftu +oi 612] rib! _ \-2ai]
[c d\ [b21 +a2 622J' [/J" [-2a2J-

(ii) cGiven the values of

then by the same set of equations above,

The concept of the induced fixed point occurs frequently and in many of the results that have
have been obtained. Therefore, it would be desirable to find how the induced fixed point of a
continuous piecewise Unear vector field is connected with the defining constants in the canonical
representation. The next two lemmas show how the induced fixed point is related to the canonical
representaion.

Lemma A.3. If

*2 it10*-1!«»j-fe]+te SM



with b22(bu - on) - &i2(62i - o2) ^ 0 then the induced fixed point off is

[x\ = L \bi2ct2 - b22cti j
yJ 622(6u - ai) - 6i2(62i - a2) [62iari - 6na2 J*

Proof. By using lemma A.2 the continuous piecewise Unear vector field in canonical form can be
rewritten as

\a 61\x I
x< 1;

where

[\a b]\x]
M_J U d\[y\>
LyJ" ]U+k 6][xl \k]

([c+l dJ[yJ-[/J' Kx

fa 6] = r6u +ai &12I fJbl __ f—2a1l
[c d\ [621 +a2 622J' [/J- [-2a2J*

The induced fixed point is then the solution to

Thus,

r°i =r*u-«i *i2ir*i r-2aii
[oj L^i-^ 622J LyJ L—2or2J*

[y\ b22(bn-
pi2<*2 —b22oci 1

<*i) - h2(b2i - ct2) [b2icti - 6na2 J* B

Lemma A.4. Let a, 6, c, d be given. Ifthe vector field £ in canonical form has the induced fixed
point at (xt, y<), xt- 5* 1 then

«x)- 2(i.«o-l«i+^J+lc+f^j djx+2Tr3^U;+dy;jifi°3x-ii-
Proof. The vector field

a 6] [x
]• x< 1;

:«5] [;]-[;].•<
for

[*1 _ 1 ["ag, +6yt]
L/J l-*il«i +dwJ

has the point (x,-, y.) as its induced fixed point. Using lemma A.2 to convert £ into the canonical
representaion means

Whence,

t(x) = -
1

Q._ 1 [axj +byj]
2(1-xt) lcxi + dn\' D-

axi + byt
cxi + dyi

a+W% » x+_
2(1 -x.)

«+%£%> b
c+«38- d

i rax, +6y,-
-x,) [czj+ dy,- l[10]x-l|. I



Figure captions.

Figure 1. In this vector field there are infinitely many concentric cycles, none ofwhich is a Umit
cycle.

Figure 2. This vector field does not admitany Umit cycles.

Figure 3. In contrast to the vector field in example 2, this vector field has a unique attracting cycle.

Figure 4. When the defining constant b is zero, there do not exist any cycles. This example is such
a case in point.

Figure 5. If ir2(L[v, w]) C L[v,w] then the points *r'(t>), ir*(w) form decreasing and increasing
sequences respectively. The Umit ofthese sequences are points through which Ue cycles, giving the
existence of an annulus.

Figure 6. Through the induced virtual fixed point (x,y) a Unear invariant manifold intersects the

line x= 1at the point (1, v). The Une segment L[v> ym] maps into itself under application of ir2. This
is sufficient to prove the existence ofan attracting cycle.

Figure 7. The solution through the point (1, v) meets the y-axis atapoint Tabove where the tangent
line through the same point meets the y-axis at S. The images ofT,S on the next intersection with
the y-axis are at V,U. The tangent Une through Umeets the line x= 1above the solution through
V meeting the same Une. Thus rr(v) < -e&v + K0.

Figure 8. Consider the solution through (l,v). The solution meets the Une x == x< at the point T
below where the Une tangent to (1, t;) meets x = x< at the point S. The images of T and S under
tt/ui units of time are at the points V,U. The Une tangent to U meets the Une x = 1 below the
solution through Vmeeting the line x= 1. This enables a lower bound to be placed on the return

A, tr

map, -e -i v + Kx < tt(v).

Figure 9. The point (1, v0) satisfies v0 < ir2(v0). Under it2 the Une segment L[v0, ym] maps into itself.
The attracting annulus so formed also happens to be an attracting cycle.

Figure 10. The invariant manifolds through the induced fixed point (x,y) intersect the Une x = 1
at the points (1, v) and (l,w). As w< y**, solutions starting from the Une x= 1below the point
(l,y*) intersect the Une x= 1above the point (1, to). The manifold through (l,u>) prevents cycles
from forming.

Figure 11. The invariant manifolds through the induced fixed point (x, y) intersect the Une x= 1at
the points (l,v) and (l,t»). As ic(v) < wit then foUows that v< tt2(v). The line segment L[v,y*]
maps into itself, a sufficient condition for the existence of an attracting cycle.

Table 1. Computer aided phase portraits ofpiecewise-linear vector fields by theINSITE
program.



a. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations

-£ = 4.5 - 2.5x + y- 4.5|x - 1|

-jT = 9-10x + 2y-9|x-l|.

The vector field has an attracting cycle. The Ught Unes are representative orbits that approach the
Umit cycle.

b. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations

~ = 4-2x + y-4|x-l|

^ =8-9x +2y-8|x-l|.
The phase portrait given is that of the solution through the point (0.1,0). The origin is a repeUing
fixed point and the solution through (0.1,0) is repeUed way from the origin.

c. This phase portrait corresponds to the piecewise Unear vector field given by the pair ofequations

-£ =3.5 - 1.5x+y- 3.5|x - 1|
^ =7-8x +2y-7|x-l|.

This vector does not have any attractors. The origin is in fact a repeUor.

d. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations

~ = -l + 2y+|x-l|

-1=-0.5 +2.5x +y+ 0.5|x - 1|.

This is an example of a vector field globaUy conjugate to aUnear saddle point. The bold lines have
been added as the stable and unstable invariant manifolds ofthe vector field.

e. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations
dx

-dt=-* + 2y
f =2+y-2|x-l|.

In this interesting case, a continuum of cycles surround a fixed point. The cycles are also bounded
by a homoclinic orbit. The fixed point and homoclinic orbit have been added in bold. Also in bold
are the unstable and stable invariant manifolds through the origin.

f. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations

^ =-l +2y +|x-l|
| =2+y-2|x-l|.



In this example, a node-saddle connection results inorbits going to infinity. In bold are theunstable
and stable invariant manifolds ofthe origin highUghting the node-saddle phenomenon ofthis vector
field.

g. This phase portrait corresponds to the piecewise Unear vector field given by the pair ofequations

^ =2.5 - 1.5x+3y - 2.5|x - 1|
^f =2-x+2y-2|x-l|.

This is another example ofa node-saddle connection. Unlike the case in (f), the node is an attractor.
Again, in bold are the unstable and stable manifolds of the origin. Aquadrant of the plane isinthe
basin of attraction for the attractor node.

h. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations

-£ =-1.5 +2.5x +Zy +1.5|x - 1|
^ =-l+2x +2y+|x-l|.

This is a degenerate case where the origin is extremely weakly attracting along the direction ofthe
stable manifold. In bold is a completion ofthe stable invariant manifold through the origin.

i. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations

-£ =-0.5 +2.5x +y+0.5|x - 1|
-^ =-l +2x +2y+|x-l|.

An example of a vector field conjugate to the node of Unear vector fields,

j. This phase portrait corresponds to the piecewise linear vector field given by the pair of equations
dx
- = -l + 2y+|x-l|

-^ =-0.5 - 1.5x +y-f 0.5|x - 1|.
Despite the fact that the Unear vector field to the left of the Une x = 1 would normally induce a
center at the origin, the linear vector field right ofx = 1 perturbs the overall vector field into that
of a repelUng center.

k. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations
dx
- = l-x-\x-l\

dy^ =2-2x-2|x-l|.
To the left of the line i s 1 the vector field is very degenerate. The shaded region of the phase
portrait represents a half plane of fixed points for the vector field.



1. This phase portrait corresponds to the piecewise Unear vector field given by the pair of equations
dx
— = -l + 2x + y + |*-l|

dy^ =-2+4x +2y +2|x-l|.

In this example aUne of fixed points, in bold, divided the plane into two regions. The line of fixed
points is also repeUing.
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