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1 Introduction

In today's highly competitive IC marketplace, company survival necessitates product differentiability.

Product differentiability may be engendered in many ways, several of which include: increased perfor

mance (e.g. lower power, faster timing, etc.), lower cost, more features, or faster time to market. Thus,

the motivation for design techniques that enhance chip timing performance are of fundamental importance

to the IC community.

The clock is the essence of a synchronous digital system. Physically, the clock is distributed from an ex

ternal pad to all similarly clocked synchronizing elements through a distribution network that encompasses

combinational logic and interconnects. It serves to unify the physical and temporal design abstractions by

determining the precise instants in time at which the digital machine changes state. Because the clock is

important, optimization of the clock signal can have a significant impact on the chip's cycle time, especially

in high-performance designs. Non-optimal clock behavior is caused by two phenomena: the routing to the

chip's synchronizing elements, and the asymmetric behavior of the clock distribution logic.

Previous work in clock optimization has been contributed by several authors. H-trees have been recog

nized for years as a technique to help reduce the skew in synchronous systems [FK82] [KGE82] [DFW84]

[BWM86]. For regular structures such as systolic arrays the H-tree works well to reduce skew because the

synchronizing elements are distributed in a uniform pattern throughout the chip. However, for general

design styles, nonuniform distributions of clock pins are common and the H-tree becomes ineffective as a

technique for clock routing. The large size of the clock net has led some researchers [DFW84] [Mij87] to

perform buffer optimization within the clock distribution tree. [BWM86] have provided an analysis of the

clocktree that considers the transmission line properties of the interconnects. [BBB+89] have presented an

approach for ASIC clock distribution that integrates buffer optimization into place and route algorithms.

However, in all previous work the routing of the clock net is performed using ordinary global routing tools

based on minimum spanning or approximate minimum Steiner tree net models and with detailed routers

that have little understanding of clock routing problems. This causes non-optimal clock behavior and as

region size or the number of pins in the clock net increases, the detrimental behavior is exacerbated. In

this paper, we focus on routing techniques for optimizing clock signals in VLSI circuits. We demonstrate

the superiority of our algorithm over standard routing techniques for widely varying region size, clock pin
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Figure 1: Synchronous digital system model

distributions, numbers of clock pins and technology feature size.

In section two the preliminaries necessary for understanding the paper are presented. Following this,

in section three the problem is defined. Section four illustrates the algorithm for clock routing and section

five discusses theoretical results. Next, in section six the experimental results are presented, and in section

seven possible avenues for future work and conclusions regarding the approach are discussed.

2 Preliminaries

The majority of digital chips are synchronous in nature. Synchronous designs resemble the finite state

logic model of Figure 1. The topological requirement imposed on such a system is that all closed signal

paths must contain at least one synchronizing element. Satisfaction of this constraint has several valuable

ramifications, two of which are: the assurance of deterministic behavior if the physical aspects of the design

are correct, and it obviates the requirement that the combinational logic be free of transients as long as

next state sampling is performed after the longest path has settled to its final value [MC80]. Forsimplicity,

and without loss of generality, let the synchronizing elements in Figure 1 be edge-triggered. Furthermore,

let CP denote the clock period, 6l the largest path delay through the combinational logic, tsKEW the

clockskew, tsu the set-up time of the edge-triggered synchronizing elements, and tcQ the delay from the

synchronizing element's clock pins to the Q output pins. In order to guarantee that no long-path timing

violations occur in the design, the following equation must be satisfied

CP > 6l + tsKEW + tsu + tcQ (1)
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Figure 2: Relationship between r#, r^,, and CP with 50 % duty cycle

The two timing related clock parameters that one must consider for high-performance design are clock

skew and phase delay. Clock skew may be denned to be the maximum difference in arrival times at any

two similarly clocked clock pins. Clock skew is caused by several phenomena: asymmetric routes to the

clocked elements, differing interconnect line parameters, different delays through the clock distribution

elements, and different device threshold voltages for the clock distribution logic. Equation 1 illustrates the

important relationship between skew and the longest combinational logic path delay. As skew increases

with the clock period held fixed, the efficiency of the digital system is reduced because valuable computation

time is "stolen" from the total cycle time. Frequently in high-performance design environments, skew is

constrained to be less than five percent of the clock period. Thus, in a 100 MHz design, skew would be

constrained to be less than 500 ps. In this paper, routing techniques to help achieve this goal are presented.

Assume for simplicity and without loss of generality that the only logic in the clock distribution tree is

the external pad. Phase delay may be defined to be the maximum delay to any synchronizing clock pin.

The same phenomena causing skew contribute to phase delay. It is convenient to consider phase delay

as consisting of two components: an intrinsic rising or falling pad delay t m or tn, contributed by the

externally driven clock pad and the time to charge or discharge the clock net ten or tcL- Expressions for

rising and falling phase delay tpjj and tpL may be defined as

tpH - tm + tcH (2)

tpL = tn + tcL (3)

Phase delay affects chip to chip interfaces by appearing as inter-chip skew and in worst-case scenarios may

not provide adequate time to charge and discharge the clock net. For example, in a 100 MHz chip with a

duty cycle of 50 %, the high and low portions of the clock period th and tl equal 2.5 ns and impose the

following constraints

tcH < rH (4)

tcL < tl (5)
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Figure 2 illustrates the relationship between th, 77,, and CP. These expressions are necessary but not

sufficient conditions to guarantee proper clocking. In worst-case situations, tcH and tcL could conceivably

constrain the clock period so it may be necessary to minimize the phase delay.

In discussions to this point, we have tacitly assumed that only one clock exists. However, in CMOS

design styles it is commonplace to design with more than one clock. The ideas presented in this paper

may easily be extended to the case of multiple clocks by treating the clock nets independently. In the

presence of multiple clocks, skew and phase delay between (inter) and within (intra) the clocks must be

considered. Adopting the policy of routing the clocks independently explicitly solves intra-clock problems.

Inter-clock phase delay is implicitly minimized as desired, but the independent treatment of the problem

does nothing for inter-clock skew. However, this does not present a problem because circuit techniques

that insert delay in the faster clock trees can be used to equalize inter-clock skew should it be a problem.

We have observed that the phase delay produced by our clock routing algorithm is smaller in every case

when compared to simple routing techniques. Thus, in practice the inter-clock skew is also being reduced.

Hereafter, for purposes of simplicity, attention will be restricted to single clock designs.

Prior to delving into the clock routing algorithm, it is necessary to define its role in the context of the

overall design flow. A simplified portion of the traditional design flow is seen in Figure 3(a). In this figure

the flow proceeds from logic design to physical design. Physical design consists of three classical steps:

placement, global routing, and detailed routing. In the proposed design flow (Figure 3(b)), a clock routing

step is interposed between placement and global routing. Clock buffer logic is not introduced during the

logic design step. Instead, its inclusion is dependent on an accurate SPICE [Nag75] analysis performed

after the clock route has been generated. If it is determined that buffers are needed to further reduce skew



or phase delay then they are inserted into the placement after making the necessary local perturbations. In
row-based design styles, the placement modifications can be easily anticipated by accurately predicting the
expected locations of the buffers, and adjusting the desired row lengths in the pre-placement topography
specification. Presently, during the clock routing step, the global and detailed routes of the clock net are

•determined and passed to the global router as blockages. The clock route is constructed so that the clock

signal behavior is optimized. It may be necessary to widen initial portions of the clock net to account for

potential electromigration problems [BBB+89].

To understand the consequences of decisions made during physical design, one must model the in

terconnect parasitics that load the clock driver circuitry. We make the reasonable assumption that in a

high-performance design environment that the interconnects are realized with aluminum due to its excellent

conductor properties. Interconnect resistance Ri„t is determined using the following expression

Rint = WH ^
where p is the resistivity of aluminum (3 /jft cm), L is the interconnect length, W the interconnect width,

and H the interconnect thickness. Interconnect capacitance C,nt is modeled using a simple parallel-plate

model

Cint = Kc(Cox + Cj) (7)

where

Cox — tox"~. (8)
tox

and

Cl = €ox-r- (9)
•"a

In these expressions Kc is a constant that is inserted to account for fringing effects, and can be calculated

using the two-dimensional analysis of [DS80]. It is assumed to be 2.0 in our calculations.L s represents the

line spacing, toar represents the thickness of the field oxide, and €ox is the permitivity of the oxide. All

lengths used to calculate resistance and capacitance are based on Manhattan distances.

Armed with estimates for Rint and C,n4, simple and accurate interconnect delay estimates may be

determined based on the first-order moment of the impulse response which has also been called Elmore's

delay [RPH83] [Elm48]. The interconnects are treated as distributed RC trees and are modeled usingtheir
equivalent T-networks.

3 Problem Definition

Given the IC's placement, the locations of blockages on the routing layers, the positions of all clock pins

on the clock net, and the location of the clock pad along the periphery of the chip, the problem may be

defined as follows: construct a clock tree consisting only of Manhattan segments that optimizes the clock

skew, wirelength and phase delay subject to the blockages on the routing layers. In general, one seeks

to minimize clock skew and wirelength, subject to constraints on phase delay and the routing. Formally,

clock optimization could be formulated as follows



min f(tskew,WL)

subject to tcH < th

tcL < tl

NR = 0

where WL equals the total wirelength and NR equals the number of no routes.

4 The Algorithm

4.1 The Basic Algorithm

The algorithm which we call the Method of Means and Medians (MMM) is conceptually simple, elegant

and yields some theoretical results which are intuitively pleasing. Let S = {$i,S2>« •-isn} be the set of

points in the plane which represent the clock pins. Each Si is a tuple (*,-, m).
Define

Ic(S) =£k^i (io)
n

yc(S) =S^i (u)
n

(ic(5),yc(5)) represents the center of mass of the set of points 5. We shall use the notation SX(S) or
simply Sx to denote the ordered set of points obtained by ordering the set S by increasing x coordinate,

i.e. Xi < Xj if SitSj G SX(S) and i < j. Similarly, Sy(S) or simply 5y represents the ordered set of points
obtained by ordering the set S by increasing y coordinate. Define

SL(S)={sieSx\i<\n/2]} (12)

Sr(S) = {*,- 6 Sx | fn/21 <i<n} (13)

5fl(5)={*,-6 5y|t<rn/2l} (14)

ST{S) = {si GSy | fa/21 < i < n} (15)

The sets Sl and Sr represent the division of 5 into two sets about the median x coordinate of the set of

points. These sets partition the original region in the x dimension into two regions with approximately

equal number of elements in each sub-region. In fact, | \Sl\ —\Sr\ \ < 1. Similarly, Sb and St represent

the division of 5 into two sets about the median y coordinate of the set of points. Given 5, the basic

algorithmfirst splits S into two sets (arbitrarily in the x direction or y direction). Assume that a split of
5 into Sl and Sr is made. Then, the algorithm routes from the center of mass of 5 to each of the centers

of mass of Sl and Sr respectively. The regions Sl and Sr are then recursivelysplit in the y direction (the

directionopposite to the previous one). Thus, splits alternating betweenx and y are introduced upon the

set of points recursively until there is only one point in each sub-region. The pseudo-code for the algorithm

is given in Figure. 4.



procedure basic_MMM(S)
begin

if \S\ < 1 return;
xQ = xc(S); y0 = yc(S);
Xleft = Xc(SL(S))i yuft = Vc(Sl(S));
bright = XC(SR(S)); Xright = yc(SR(S))\
route from (x0,y0) to {xicft,yuft) and {xright,yright)\
xbot-uft = xc(Sb(Sl(S))); ybot-uft = yc(SB(Sl(S)))\
xtop-Uft = xc(ST(SL(S))); ytop-uft = 2/c(St(Sl(S)));
Xbot-right = Xc(Sb(Sr(S))}; ybot-right = Vc(Sb(Sr(S)))\
Xtop-right = Xc(St(Sr(S)))] ytop-right = Vc(St(Sr(S)))]
route from (x/e/*, y/e/«) to (xbot-ieft, ybot-left) and (xt0p-lefu ytop-left)',
route from (xrighuyright) tO (Xhot-right, Vbot-right) and (Xtop-right, ytop-right)',
basic31MM(5B(5L(5)));
basic_MMM(5r(5L(5)));
basicJVEMM(5B(5/j(5)));
basicJVEMM(5T(5ii(5)));

end;

Figure 4: Pseudo-code for the basic algorithm

4.2 Improvements

The simple algorithm described above yields good results, but there is room for further improvement. In

the following discussion we define a cut in the x direction to mean a split resulting in a left region and a

right region. A cut in the y direction implies a split resulting in a top and a bottom region.

4.2.1 Delay equalization look-ahead

Consider the example shown in Figure 5, where 5 is the clock source. If we make a cut in the x direction

and then recursively split the left and right regions in the y direction, we get the result shown in Figure 5(a).

Clearly, there is skew between points Plt and Prt- However, if we reverse the cut directions, i.e, split in

the y direction first followed by a split in the x direction, we get the result shown in Figure 5(b), which

has no skew between the endpoints.

This example illustrates the need for making a good choice of cut direction at each level of the recursion

tree. We, make the choice by a one level look-ahead technique. Given a region to be split, the algorithm

makes an x direction cut followed by a y direction cut on the resulting left and right regions. It also makes

a y direction cut followed by an x direction cut. The skews for each of the configurations is compared and

the cut direction that minimizes skew between its current endpoints is chosen. The method of estimating

the skew between the endpoints is described in the following section.

4.2.2 Delay Calculation
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Figure 5: Clock tree (a) without look-ahead, (b) with look-ahead

Figure 6: Clock tree representation used for delay calculations



We use the Penfield-Rubinstein [RPH83] algorithm for calculating delays to the endpoints in the grown

clock tree. The resistance and capacitance of the tree segments are modeled by a T-network model.

Consider the tree shown in Figure 6. Because of a property of the center of mass (see next section), the
lengths of tree segments from the center of mass of a region to each of its two sub-regions will always be

equal and symmetric. The delay from s to the endpoint s7 is calculated as

6a.a7 = jR/(0.5C/(rff + d\ + d27) + Cg{4dx + 2dz + d7) + 2Cl(d1d3 + dxd6 + dxd7 + dzd7)) (16)

where Cg is the gate capacitance at the clock pin (assumed equal for all clock pins), C\ is the capacitance
per unit length and Rt is the resistance per unit length. Note that the delay to any endpoint depends on
the lengths of other segments connecting different endpoints, so it is important to use delay estimates to

drive the look-ahead rather than length calculations. The complexity of the algorithm with look-ahead is

0(n logn) where n is the number of clock pins. We prove this in the theoretical results section. We shall

refer to the algorithm as the Method of Means and Medians (MMM) in the following text.

5 Theoretical results

In this section we derive some key results that motivate the Method of Means and Medians. First, we prove

that after splitting a region into two sub-regions, the lengths of segments from the center of mass of the

region to each of its sub-regions is equal and symmetric. Next, we establish a bound on the total wirelength

for a gridded distribution of points and compare it with the wirelength for a minimum rectilinear Steiner

tree spanning those points. We also present an interesting result that claims that increasing the number of

points within a region reduces the skew. Finally, we prove that the algorithm with one level of look-ahead

runs in time 0(n logn) where n is the number of clock pins. All our theoretical results corroborate our

experimental results (Section 6).

Theorem 5.1

Given a set of points 5 = {$i, 82,..., $„}, where n is a even integer,

I xc(S) - xc(SL(S)) I+ I yc(S) - yc(SL(S)) \ =\ xc(S) - xc(SR(S)) | + | yc{S) - yc{SR(S)) \

Proof

Assume without loss of generality that the points in 5 are ordered by increasing x coordinate value.

Ic(s) =£k£i,
n

yc{s) = —-—,
n

T"/2x-*c(St(S))=^LA
T?/2v



Similarly,
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Figure 7: Illustration for total wirelength calculation

xc(Sr(S)) = 2^t=n/2+1 Xi

n/2

»o(Sfi(5)) ^72
mi/2 *n/2

««(S) - xe(5a(5)) =— — - -(—-^ j^-)
n

yc(5) - yc(5L(5)) - -(—^ j^),

XC(S) - Xc(Sr(S) = -(—^ r7^ ),
2V n/2

i tW2

2V n/2

n/2

=n/2H

n/2
*(5) - yc(SR(S)) =i(2^i _S^y*)

A similar result holds between 5, Sb(S) and St(S). The significance of the above result is that at

every split in the algorithm, the lengths to each of the sub-regions is always equal. Note that as we move

deeper into the clock tree, the segments become smaller in length. Thus, at the topmost level of the clock

tree when the segments are longest, we ensure exact balance and no skew.

Lemma 5.2

Given a distributionof n points on a uniform grid, where n = 4fc,fc an integer > 1, within a region of side
1.0 unit, the total wirelength of the tree produced by the basic algorithm grows as |\/n.

10
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Figure 8: Minimum rectilinear Steiner tree on uniformly spaced points
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Proof

The center of mass of the entire set of points lies at (0.5,0.5). The cut direction does not matter in this

case. As shown in Figure 7, at the first level, the lengths of the segments toeach of the sub-regions is 4-^jy.
1 •v/nAt the next level, we have 4 segments oflength j/fc_^ • These six segments make up an "H" shape. The

total lengthof the "H" shape seen at the topmost level is -fcy. At the next level, we will have four such
"H" patterns of half this length and then sixteen "H" shapes of one-fourth the dimensions of the topmost

"H". If we denote the total wirelength to be X(n), we obtain the following expression:

L(n) = 3 x
Wn

+ 4 X (3 x
(>/n-l) ' *"V""(V""-1)

There are log4(n) terms in the series. Thus,

) + 16 X (3 X

J(»)=!-#t£2'2V»-1 J=o

log4(n)

, /- . J + ... + 7 x (3 x -.
(Vn-iy 4 (Vn-1) ) (17)

(18)

This expression can be easily shown equal to ^y/n. u
Theorem 5.3

The wirelength for a minimum rectilinear Steiner tree spanning a set of n uniformly spaced points on a

grid, where n = 4fc, k an integer > 1, within a region of side 1.0 unit, grows as y/n+ 1. This is also the
largest possible wirelength for a rectilinear Steiner tree for a distribution of n points in a unit square. Any

other distribution of n points within the unit grid will yield a smaller total wirelength.

Proof

According to a result by Hanan [Han66], the Steiner points for the minimum rectilinear Steiner tree must

lie on the intersections of the horizontal and vertical lines drawn through the points in the region. For

the case of uniformly spaced points, the Steiner points coincide with the points themselves. Therefore, we

can connect each column of points by a single segment. A total of y/n segments of length 1 unit each are

required to connect up the points in the columns. Exactly one additional segment of length one unit is

11
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Figure 9: Conjectured worst case configuration

required to connect together the column segments. The total wirelength for this configuration is y/n + 1.

This is illustrated in Figure 8. Interestingly, according to a result by Hwang and Chung [CH79] the largest

minimal rectilinear Steiner tree on n points in a square of side 1 unit is also y/n + 1. •

These results indicate that the wirelength of the clock tree is worse only by a constant factor of § in
comparison to a minimum rectilinear Steiner tree for the particular distribution of points.

We conjecture that the worst case wirelength for the clock tree occurs for the configuration of clock

pins shown in Figure 9. The wirelength for this configuration can be shown to be \y/n —f. Thus even in
this case, the total wirelength is still a constant times the wirelength for the largest minimum rectilinear

Steiner tree.

We define the sparsity p of a distribution of points in a region to be the total number of points in the

region divided by the area of the region. It is a measure of the average number of points per unit area.

The next result concerns the variation of skew with sparsity.

Theorem 5.4

For a uniformly randomly distributed set of points inside a box of side n units with sparsity p, the expected

maximum difference in length from the center to any endpoint for the basic algorithm is proportional to
l

Proof

There are pn2 points in the region. We assume that since the points are uniformly distributed over the

region, each split will divide the points evenly into two sets of equal size. Every split divides the region

into two sub-regions each of which has one dimension reduced by a factor of 2 because we always partition

about the center point. A total of [log2(iw2)] splits will be made by the algorithm. Half of the splits will

occur in the x dimension and the other half in the y dimension. Thus, the size of one side of the smallest

region produced by the algorithm will be 1/alow( $x = 4j»- Since we assumed a uniform distribution of
points, the differences in lengths of segments if any will occur at the last level. The maximum difference

12



in length that can occur in the last level is one side of the smallest region which is 4». •
This result indicates that as the number of points within the region is increased, the skew between the

endpoints reduces! Our experimental results support this claim.

Theorem 5.5

The algorithm with one level look-ahead runs in time O(nlogn), where n is the number of points in the

region.

Proof

We maintain two sorted lists of the points, one list by increasing x coordinate value and another by

increasing y coordinate value. The sorting requires 2nlogn time. There are O(logn) recursion levels and

at each level i we have 2' regions. For each region in a level, we perform 4 center of mass calculations,

two for an x direction split and two for a y direction split. The total number of additions required to

compute the center of masses at any given level is thus 4n. Thus, the total work done in computing the

centers of mass is 0(n logn). Within the data structure for every region, we store the delay from the

source up to the center of mass of that region. Therefore a constant amount of work is done per region

in computing the delays from the source to the region's left and right sub-regions and top and bottom

sub-regions corresponding to an x direction split and a y direction split. The total work in computing

delays is thus Y%£o 2* = 0(n). Therefore, the running time of the algorithm is 0(n logn). •
The algorithm is extremely fast and the running time for routing a region with 4096 points on a

DECStation 3100 computer (14 MIPS) was less than a second of CPU time. Therefore, speed is not an

issue of concern in this algorithm.

6 Experimental Results

As a test of the effectiveness of MMM it was run on twenty random examples and the MCNC industrial

benchmarks Primaryl and Primary2. The twenty random examples had pin distributions that were uni

formly distributed in a square region. For the twenty examples, four equal-sized examples with 16, 32, 64,

256 or 512 pins were generated. For comparative purposes, we routed the same pin distributions using a

minimum spanning tree (MST) algorithm because it approximated the routing many global routers would

make if a simplistic approach was taken for clock routing. SPICE [Nag75] files were generated for all

examples based on Manhattan geometries, and the interconnect was driven by a single I/O buffer pad

with equivalent drive of ten times the minimum sized inverter cell in a 2 /xm design style. To model gate

loading, a capacitance was placed at the leaves of the clock distribution tree of value 0.3 pF.

The first experiment was designed to compare clock skew versus chip size. Chip size was varied by

increasing the chip area for each of the randomly distributed examples from 1.56 mm2 to 100 mm2,

effectively scaling the relative locations of the points. The skew values reported represent the average of the

four equal sized pin examples at each chip size. The results are presented in Figure 10 and the superiority

of MMM over MST is clearly apparent. The skew growth is practically insignificant for increasing chip

size, with the best MST result (16 pins) introducing more than five times the amount contributed by the

13
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Chip Size(mm) MST Skew(ns) MMM Skew(ns)
1.25 0.63 0.0033

2.50 0.78 0.0087

5.0 1.86 0.035

10.0 4.81 0.14

Figure 11: Skewcomparison table for 2 micron feature size, 256 clock pins

worst MMM result at 100 mm2 and the 512 pin MST example contributing more than 68 times the skew

at 25 mm2 than MMM.

Figures 12and 13illustrate the relationship between phase delayand chip size for each of the examples
run with MMM and MST. For each example of a fixed pin count, the phase delay is less for MMM on all

chip sizes.

To determine the relationship between skew and the number of pins with chip size fixed at 25 mm2,
MMM and MST were compared to one another with the result appearing in Figure 15. Interestingly, the

skew decreased with increasing number of pins for MMM and grew linearly for MST. Figure 17 illustrates

the inverse relationship between sparsity and the maximum difference in length to the endpoints in the

tree.

Similarly, phase delay versus the number of pins for a chip sizeof 25 mm2 were compared for MST and

MMM. Again, MMM displayed a clear advantage with its growth in phase delay appearing to be sub-linear

and MST approximating linear growth. These results can be seen in Figure 18.

The dramatic improvements in clock skew and phase delay are paid for in terms of total wirelength. To

illustrate this, the average wirelength for all examples was plotted against the number of pins in Figure 20.

The experimental results corroborate the theoretical y/n relationship between wirelength and number of

points n with the difference appearing as a constant factor. Thus, the improvements in clock behavior are

gained with an increase in the clock net's wirelength.

To estimate the effects of future device and interconnect scaling on the problem of clock optimization

through routing, a series of experiments were conducted where interconnect and device feature sizes were

scaled. Interconnect scaling was carried down to an interconnect width of 0.5 /im at which point further

interconnect scaling is unlikely due to the expected presence of four or more layers for interconnect routing

[Ko89]. In the experiments the driving buffer was not scaled for simplicity of implementation. To model

future trends, a scaling factor was applied to both the devices and the interconnect. Device dimensions

were scaled horizontally and vertically by a (gate capacitance reduced by a) while interconnect dimensions

were scaled horizontally by a (interconnect resistance per unit length increased by a while capacitance

per unit length decreased by a). Interconnect dimensions W and La were kept equal while H and tox

were fixed at 1 /zm. Even though industrial processes may differ from the estimated trends, the qualitative

relationship should remain.

Figure 22 plots clock skew versus minimum feature size. As device and interconnect geometries are

reduced, skew as determined by SPICE increases. However, it remains relatively constant for MMM and

grows substantially worse for MST. This trend exists for all examples.
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Phase delay vs Chip size for MMM
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Figure 12: Phase delay for MMM, varying chip size
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Figure 13: Phase delay for MST, varying chip size

Chip Size(mm) MST Phase Delay(ns) MMM Phase Delay(ns)
1.25 1.94 1.25

2.50 2.27 1.5

5.0 3.17 2.0

10.0 6.18 3.4

Figure 14: Phase delay table for 2 micron feature size, 256 points, varying chip size
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Skew vs number ofpins
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Figure 15: Skew comparison for varying no. of points

Number of pins MST Skew(ns) MMM Skew(ns)
16 0.22 0.033

32 0.29 0.047

64 0.68 0.039

256 1.86 0.035

512 3.23 0.027

Figure 16: Skew comparison table for 2 microns, varying number of points

No. of points A

64 0.301

256 0.253

1024 0.174

4096 0.122

Figure 17: A is the maximum difference in length to endpoints
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Phase delay vs pins
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Figure 18: Phase delay comparison for varying no. of points

Chip Sizefmm) | MST Phase Delay(ns) I MMM Phase Delay(ns)
16 1.35 1.25

32 1.48 1.37

64 1.8 1.5

256 3.17 2.0

512 4.9 2.4

Figure 19: Phase delay table for 2 micron feature size, varying no. of points
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Wirelengthvs numberof pins
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Figure 20: Wirelength comparison for varying number of pins

No. of points MST MMM y* *i/*-t
16 3.6 5.5 6.0 9.0

32 5.2 8.5 8.48 12.73

64 7.1 12.5 12.0 18.0

256 12.2 27.3 24.0 36.0

512 18.5 38.5 33.9 50.9

Figure 21: Wirelength comparison table
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Figure 22: Skew variation with feature size
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Figure 23: Phase delay vs feature size for MMM
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Figure 24: Phase delay vs feature size for MST
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Figure 25: Clock tree for example Primaryl

Phase delay is plotted against feature size in Figures 23 and 24. As geometries are reduced, the phase

delay worsens for both MMM and MST. However, for all feature sizes the phase delay generated by MMM

is less than MST in all examples with a comparable number of clock pins.

Figure 25 and 26 show MMM's routing results for the MCNC Primaryl and Primary2 benchmarks

respectively. The skew introduced for each of these examples was 31 ps and 260 ps respectively. Primaryl

had 269 clock pins and Primary2 had 603 clock pins. Both placements were obtained using PROUD

[TKH88]. It is interesting to note that Primary2's placement exhibited an asymmetric clock pin distribution

while Primaryl's remained relatively uniform. However, the asymmetry was not enough to deter MMM

from yielding excellent results. Figures 27 and 28 show the voltage waveforms at the furthest and closest

pins from the clock driver for Primaryl when routed using MST and MMM respectively. The skew

introduced by MST was 4.7 ns, and the routing to the furthest point was so poor (in terms of timing

behavior) that the pin was unable to charge to the supply voltage. As mentioned the skew generated by

MMM is 31 ps and is barely visible in Figure 27.

7 Conclusions and Future Work

We have presented an approach to clock routing that is clearly superior to simple minded clock routing

based on a minimum spanning tree. While high-performance industrial designs are unlikely to have clock

routing performed using such a simple approach as MST, the quality of the results generated by MMM

are exceptional. The approach has all but eliminated clock skew and yielded excellent phase delay results

for widely ranging chip sizes, net sizes (pin count), technologies, and pin distributions on both randomly

created and industrial benchmarks.

Future work will address clock tree buffer optimization and blockage and congestion consideration
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Figure 26: Clock tree for example Primary2
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Figure 27: Clock waveforms for Primaryl(MMM)
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Figure 28: Clock waveforms for example Primaryl routed with MST

during the growth of the clock tree. Additionally, the impact of the approach on wirability and chip area

will be investigated.
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