

Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THIRD-GENERATION DATA BASE SYSTEM

MANIFESTO

by

The Committee for Advanced DBMS Function

Memorandum No. UCB/ERL M90/28

9 April 1990

THIRD-GENERATION DATA BASE SYSTEM

MANIFESTO

by

The Committee for Advanced DBMS Function

Memorandum No. UCB/ERL M90/28

9 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THIRD-GENERATION DATA BASE SYSTEM

MANIFESTO

by

The Committee for Advanced DBMS Function

Memorandum No. UCB/ERL M90/28

9 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THIRD-GENERATION DATA BASE SYSTEM MANIFESTO

The Committeefor Advanced DBMS Function1

Abstract

We call the older hierarchical and network systems first generation database systemsand refer to

the current collection of relational systems as the second generation. In this paper we consider the charac

teristics that must be satisfied by the next generation of data managers, which we call third generation

database systems.

Our requirements are collected into three basis tenets along with 13 more detailed propositions.

1. INTRODUCTION

The networkand hierarchical database systems that were prevalent in the 1970's are aptly classified

as first generation database systems because they were the first systems to offer substantial DBMS func

tion in a unified system with a data definition anddata manipulation language for collections of records.2

CODASYL systems [CODA71] andIMS [DATE86] typify such first generation systems.

In the 1980's firstgeneration systems were largely supplanted by the currentcollection of relational

DBMSs which we termsecond generation database systems. Theseare widely believed to be a substan

tial step forward for many applications over first generation systems because of their use of a non

procedural data manipulation language and their provision of a substantial degree of data independence.

'The committee is composed of Michael Stonebnker of the University of California, Berkeley, Lawrence A. Rowe of the
University of California, Berkeley, Brace Lindsay of IBMResearch, James Gray ofTandem Computers, Michael Carey of theUniver
sityof Wisconsin, Michael Brodie of GTELaboratories, Philip Bernstein of Digital Equipment Corporation, and David Beech of Ora
cle Corporation.

To discuss relational and other systems without confusion, we will use neutral terms inthis paper. Therefore, wedefine adata
elementas anatomic dau value thatis stored in the database. Every dau element hasa data type (ortype for short), anddau ele
ments can be assembled into a record which is a set of one or morenamed dau elements. Lastly,a collection is a namedset of
records, eachwith the samenumberandtype of dau elements.

Second generation systems aretypified byDB2, INGRES, NON-STOP SQL, ORACLE and Rdb/VMS.3

However, second generation systems were focused on business data processing applications, and

many researchers have pointed out that they are inadequate fora broader class of applications. Computer

aided design (CAD), computer aided software engineering (CASE) and hypertext applications are often

singled out as examples thatcould effectively utilize a different kind of DBMS with specialized capabili

ties. Consider, for example, a publishing application in which a client wishes to arrange the layout of a

newspaper and then print it This application requires storing text segments, graphics, icons, and the

myriad of other kinds of data elements found in most hypertextenvironments. Supporting such data ele

ments is usually difficult in second generation systems.

However, critics of the relational model fail to realize a crucial fact Second generation systems do

not support most business data processing applications all that well. For example, consider an insurance

application that processes claims. This application requires traditional dataelements suchas the nameand

coverage of each person insured. However, it is desirable to storeimages of photographs of the event to

which a claimis relatedas wellas a facsimile of theoriginal hand-written claimform. Suchdataelements

are also difficult to store insecond generation DBMSs. Moreover, allinformation related toa specific claim

is aggregated into a folder which contains traditional data, images and perhaps procedural data as well. A

folder is often very complex andmakes thedataelements andaggregates of CAD andCASE systems seem

fairly routine by comparison.

Thus, almost everybody requires a better DBMS, and there have been several efforts to construct

prototypes with advanced function. Moreover, most current DBMS vendors are working on major func

tional enhancements of their second generation DBMSs. There is a surprising degree of consensus on the

desired capabilities of these next-generation systems, which we term third generation database systems.

In this paper, we present the three basic tenets thatshould guide thedevelopment of third generation sys

tems. In addition, we indicate 13 propositions which discuss more detailed requirements for such systems.

Our paper should becontrasted with those of [ATKI89, KIM90, ZDON90] which suggest different sets of

tenets.

3DB2, INGRES. NON-STOP SQL, ORACLE and Rdb/VMS are trademarks respectively of IBM, INGRES Corporation. Tan
dem, ORACLE Corporation, and DigitalEquipmentCorporation.

2. THE TENETS OF THIRD-GENERATION DBMSs

The first tenet deals with the definition of third generation DBMSs.

TENET 1: Besides traditional data management services, third generation DBMSs will

provide support for richer object structures and rules.

Data management characterizes the things that current relational systems do well, such as processing 100

transactions per second from 1000 on-line terminalsand efficientlyexecuting six way joins. Richer object

structures characterize the capabilities required to store and manipulatenon-traditionaldata elements such

as text and spatial data. In addition, an application designer should be given the capability of specifying a

setof rulesabout data elements, records and collections.4 Referential integrity ina relational context isone

simpleexampleof such a rule; however, thereare manymorecomplex ones.

We now consider two simpleexamplesthat illustrate this tenet Return to the newspaperapplication

described earlier. It contains many non-traditional data elements such as text, icons, maps, and advertise

ment copy; hence richer object structures are clearly required. Furthermore, consider the classified adver

tisements for the paper. Besides the textfor theadvertisement, there are a collection of business datapro

cessingdata elements, such as the rate, the number of days the advertisement will run, the classification,

the billing address, etc. Any automatic newspaper layout program requires access to this data to decide

whether to placeany particular advertisement in thecurrent newspaper. Moreover, sellingclassified adver

tisements in a large newspaper is a standard transaction processing application which requires traditional

data management services. In addition, there are many rules that control the layout of a newspaper. For

example, one cannotputan advertisement forMacy'son thesamepageas an advertisement for Nordstrom.

The move toward semi-automatic or automatic layout requires capturing andthen enforcing such rules. As

a resultthere is needfor rule management in ourexample application as well.

Consider next our insurance example. As noted earlier, there is the requirement for storing non-

traditional dataelements suchas photographs andclaims. Moreover, making changes to the insurance cov

erage for customers is a standard transaction processing application. In addition, an insuranceapplication

4See the previous footnote fordefinitions of theseterms.

requires a large collection ofrules such as

Cancel thecoverage of anycustomer whohas had aclaim of typeY overvalue X.
Escalate any claimthatis morethan N daysold.

We havebriefly considered two applications and demonstrated that a DBMS must have data, object

andrules services to successfully solveeach problem. Although it is certainly possible thatniche markets

will be available to systems with lessercapabilities, the successfulDBMSs of the 90's will have services in

all three areas.

We now turn to our second fundamental tenet

TENET 2: Third generation DBMSs must subsume second generation DBMSs.

Put differently, second generation systems made a major contribution in two areas:

non-procedural access
data independence

and these advances must not be compromised by third generationsystems.

Some argue that there are applications which never wish to run queries because of the simplicity of

their DBMS accesses. CAD is often suggested as an example with this characteristic [CHAN89]. There

fore, some suggest that future systems will not require a query language and consequendy do not need to

subsume second generation systems. Several of the authors of this paperhave talked to numerous CAD

application designers with an interest in databases, and all have specified a query language as a necessity.

For example, consider a mechanical CAD system which stores the partswhich compose a product such as

an automobile. Along with the spatial geometry of each part, a CAD system must store a collection of

attribute data, such as the cost of the part,the colorof the part, the mean time to failure, the supplierof the

part, etc. CAD applications require a query language to specify ad-hoc queries on the attributedata such

as:

How much does the cost of my automobile increase if supplierX raiseshis pricesby Y percent?

Consequendy, we are led to a query languageas an absoluterequirement

The second advance of second generation systems was the notion of data independence. In the area

of physical data independence, second generation systems automatically maintain the consistency of all

access paths to data,and a query optimizer automatically chooses the bestway to execute any given user

command. In addition, second generation systems provide views whereby a user can be insulated from

changes to the underlying set of collections stored in thedatabase. These characteristics havedramatically

lowered the amountof program maintenance that mustbe done by applications and should not be aban

doned.

Tenet 3 discusses the final philosophicalpremise which must guide third generation DBMSs.

TENET 3: Third generation DBMSs must be open to other subsystems.

Stated in different terms, any DBMS which expects broad applicability must have a fourth generation

language (4GL), various decision support tools, friendly access from many programming languages,

friendly access to popularsubsystems such as LOTUS 1-2-3, interfaces to business graphics packages, the

ability to run the application on a different machine from the database, and a distributed DBMS. All tools

and theDBMS mustrun effectively on a widevariety of hardware platforms and operating systems.

This fact has two implications. First any successful third generation system must support most of

the tools described above. Second, a thirdgeneration DBMS mustbe open, i.e. it must allow access from

additional toolsrunning in a varietyof environments. Moreover, each third generationsystem mustbe wil

lingto participate withotherthirdgeneration DBMSs in future distributed database systems.

These three tenets leadto a variety of more detailed propositions on which we nowfocus.

3. THE THIRTEEN PROPOSITIONS

There are three groups of detailed propositions which we feel mustbe followed by the successful

third generation database systems of the 1990s. The first group discusses propositions which result from

Tenet 1 andrefine the requirements of object and rule management Thesecond group contains a collec

tion ofpropositions which follow from the requirement that third generation DBMSs subsume second gen

eration ones. Finally, we treat propositions which result from therequirement thata third generation sys

tem be open.

3.1. Propositions Concerning Object and Rule Management

DBMSs cannot possibly anticipate all the kinds of data elements that an application might want

Most people think, for example, thattime is measured in seconds anddays. However, all months have 30

days in bond trading applications, thedayends at 15:30 for mostbanks, and "yesterday" skipsoverweek

ends and holidays for stock market applications. Hence, it is imperative that a third generation DBMS

manage a diversity of objects and we have 4 propositions that deal with object management and consider

type constructors,inheritance, functions and unique identifiers.

PROPOSITION 1.1: A third generation DBMS must have a rich type system.

All of the following are desirable:

1) an abstract data type system to construct new base types
2) an array type constructor
3) a sequence type constructor
4) a record type constructor
5) a set type constructor
6) functions as a type
7) a union type constructor
8) recursive composition of the above constructors

The first mechanism allows one to construct new base types in addition to the standard integers, floats and

character strings available in most systems. These include bit strings, points, lines, complex numbers, etc.

The second mechanism allows one to have arrays of dataelements, such as found in many scientific appli

cations. Arrays normally have the property that a new element cannot be inserted into the middle of the

array and cause all the subsequent members to have their position incremented. In some applications such

as the lines of text in a document one requires this insertion property, and the third type constructorsup

ports such sequences. The fourth mechanism allows one to group dataelements into records. Using this

type constructorone could form, for example, a record of data items for a person who is one of the "old

guard" of a particular university. The fifth mechanism is required to form unordered collections of data

elements or records. For example, the set type constructor is required to form the set of all the old guard.

We discuss the sixth mechanism, functions (methods) in Proposition 1.3; hence, it is desirable to have a

DBMS which naturallystores such constructs. The next mechanism allows one to construct a dataelement

which can take a value from one of several types. Examplesof the utility of this constructare presentedin

[COPE84]. The last mechanism allows type constructors to be recursively composed to support complex

objects which have internal structure such as documents, spatial geometries, etc. Moreover, there is no

requirement thatthe lasttype constructor applied be theonewhich forms sets, asis true for second genera

tion systems.

Besides implementing these type constructors, a DBMS must also extend the underlying query

language with appropriate constructs. Consider, for example, the SALESPERSON collection, in which

each salesperson has a name and a quota which is an arrayof 12 integers. In this case, one would like to be

able to request the names of salespersons with April quotasover $5000 as follows:

select name

from SALESPERSON
where quota[4] > 5000

Consequendy, the querylanguage mustbe extended with syntax foraddressing intoarrays. Prototype syn

tax for a variety of type constructors is contained in [CARE88].

The utility of these type constructors is well understood by DBMS clients who have data to store

with a richer structure. Moreover, such type constructors will also make it easier to implement the per

sistent programming languages discussed in Proposition 3.2. Furthermore, as time unfolds it is certainly

possible that additional type constructors may become desirable. For example, transaction processing sys

temsmanage queues of messages [BERN90]. Hence, it maybedesirable to havea type constructor which

forms queues.

Second generation systems have few of these type constructors, and theadvocates of Object-oriented

Data Bases (OODB) claim that entirely new DBMSs must come into existence tosupport these features. In

this regard, we wish to take strong exception. There are prototypes that demonstrate how to add many of

the above type constructors torelational systems. For example, [STON83] shows how toadd sequences of

records to a relational system, [ZANI83] and [DADA86] indicate how to construct certain complex

objects, and [OSB086, STON86] show how toinclude an ADT system. We claim that all these type con

structors can be added to relational systems asnatural enhancements and that the technology is relatively

well understood.5 Moreover, commercial relational systems with some of these features have already

*One might argue that arelational system with all these extensions can no longer be considered "relational", box that isnot the
point. Thepoint is that such extensions are possible and quite natural.

started to appear.

Our second object management propositionconcerns inheritance.

PROPOSITION L2: Inheritance is a good idea.

Much hasbeen saidaboutthisconstruct, andwe feel wecanbe very brief. Allowing types to be organized

intoan inheritance hierarchy is a good idea. Moreover, wefeel thatmultiple inheritance is essential, so the

inheritance hierarchy must be a directed graph. If only single inheritance is supported, then wefeel that

there are too many situations that cannot be adequately modeled. For example, consider a collection of

instances of PERSON. There are two specializations of the PERSON type, namely STUDENT and

EMPLOYEE. Lasdy, there isa STUDENT EMPLOYEE, which should inherit from both STUDENT and

EMPLOYEE. Ineach collection, data items appropriate to the collection would bespecified when the col

lection was defined andothers would be inherited from theparent collections. A diagram of thissituation,

which demands multiple inheritance, is indicated in Figure 1. While [ATKI89] advocates inheritance, it

lists multipleinheritanceas an optionalfeature.

ATypical Multiple Inheritance Hierarchy
Figure 1

8

Moreover, it is also desirable to havecollections which specify no additional fields. For example,

TEENAGER might be a collection having thesame data elements as PERSON, buthaving a restriction on

ages. Again, there have beenprototype demonstrations on how toadd these features to relational systems,

and we expect commercial relational systems to move in thisdirection.

Our third propositionconcerns the inclusionof functions in a third generation DBMS.

PROPOSITION 1J: Functions, including database procedures and methods, and encapsu

lation are a good idea.

Secondgeneration systems support functions and encapsulation in restricted ways. For example, the opera

tions available for tables in SQL are implemented by the functions create, alter, and drop. Hence, the

table abstractionis only available by executingone of the above functions.

Obviously, the benefits of encapsulation should be made available to application designers so they

can associate functions with user collections. For example, the functions HIRE(EMPLOYEE),

FIRE(EMPLOYEE) and RAISE-SAL(EMPLOYEE) should be associated with the familiar EMPLOYEE

collection. If users are not allowed directaccess to the EMPLOYEE collection but are given these func

tions instead, then all knowledge of the internal structure of the EMPLOYEE collection is encapsulated

within these functions.

Encapsulation hasadministrative advantages byencouraging modularity andbyregistering functions

along with thedatathey encapsulate. If theEMPLOYEE collection changes in such a way thatitsprevious

contents cannot be defined as a view, then all thecode which must be changed is localized in one place,

and will therefore be easier to change.

Encapsulation often has performance advantages in a protected or distributed system. Forexample,

the function HIRE(EMPLOYEE) may make a number of accesses to the database while executing. If it is

specified as a function to be executed internally by the data manager, then only one round trip message

between theapplication andtheDBMS is executed. Ontheother hand, if thefunction runsin theuserpro

gram then one round trip message will be executed for each access. Moving functions inside the DBMS

hasbeen shown to improve performance on thepopular Debit-Credit benchmark [ANON85].

Lasdy, such functions can be inherited and possibly overridden down the inheritance hierarchy.

Therefore, the function HIRE(EMPLOYEE) can automatically be applied to the STUDENTEMPLOYEE

collection. With overriding,the implementationof the function HIRE can be rewritten for the for the STU

DENT EMPLOYEE collection. In summary, encapsulated functions have performance and structuring

benefits and are highly desirable. However, there are three comments which we must make concerning

functions.

First, we feel that users should write functions in a higher level language (HLL) and obtain DBMS

access through a high-level non-procedural access language. This language may be available through an

embedding via a preprocessor or through direct extension of the HLL itself. Put differendy, functions

shouldrun queriesand not perform their own navigation usingcalls to some lower level DBMS interface.

Proposition 2.1 will discuss the undesirability of constructing user programs with low-level data access

interfaces, and the same discussion applies equally to the construction of functions.

There are occasional requirements for a function to directly access internal interfaces of a DBMS.

This will require violating our admonition above about only accessing the database through the query

language, and an example of such a function is presented in [STON90]. Consequendy, direct access to

system internals should probablybe an allowablebut highly discouraged (!) way to write functions.

Our second comment concerns the notionof opaque types. Some OODB enthusiasts claim that the

only way thata user shouldbe able to access a collection is to executesome function available for the col

lection. For example, the only way to access the EMPLOYEE collection wouldbe to execute a function

suchas HIRE(EMFLOYEE). Such a restriction ignores the needsof the query language whose execution

engine requiresaccess to each dataelement directly. Consider, for example:

select*

from EMPLOYEE
where salary > 10000

To solve this query, the executionenginemust havedirect access to the salary data elementsandany auxi

liary access paths (indexes) available for them. Therefore, we believe that a mechanism is required to

makes types transparent, so that data elements inside them can be accessed through the query language.

It is possible that this can be accomplished through an automatically defined "accessor" function for each

data element or through some other means. An authorization system is obviously required to control

10

access to the database through the query language.

Our last commentconcerns the commercial marketplace. All major vendors of second generation

DBMSs already support functions coded in a HLL (usually the 4GL supported by the vendor) that can

make DBMS calls in SQL. Moreover, such functions can be used to encapsulate accesses to the data they

manage. Hence, functions stored in the database with DBMS calls in the query language are already com

monplace commercially. The work remaining for the commercial relational vendors to support this propo

sition is to allow inheritance of functions. Again there have been several prototypes which show that this is

a relatively straightforward extension to a relational DBMS. Yet again, we see a clear path by which

current relational systems can move towards satisfying this proposition.

Our last object managementpropositiondeals with the automaticassignmentof unique identifiers.

PROPOSITION 1.4: Unique Identifiers (UIDsj for records should be assigned by the

DBMS only if a user-defined primary key is not available.

Second generation systems supportthe notionof a primary key, whichis a user-assigned unique identifier.

If a primary key exists for a collection thatis known never to change, forexample social security number,

studentregistration number,or employeenumber, thenno additional system-assigned UID is required. An

immutable primary key has an extra advantage over a system-assigned unique identifier because it hasa

natural, human readable meaning. Consequendy, in datainterchange or debugging thismay be an advan

tage.

If no primary key is available for a collection, then it is imperative that a system-assigned UID be

provided. Because SQL supports update through a cursor, second generation systems must be able to

update the lastrecord retrieved, and thisis only possible if it canbe uniquely identified. If no primary key

serves this purpose, the system must include an extra UID. Therefore, several second generation systems

already obey this proposition.

Moreover, as will be noted in Proposition 2.3, some collections, e.g. views, do not necessarily have

system assigned UIDs, so building a system thatrequires them is likely tobe proven undesirable. Weclose

ourdiscussion on Tenet 1 witha final proposition thatdealswiththenotionof rules.

11

PROPOSITION 1.5: Rules (triggers, constraints) will become a major feature in future sys

tems. They should not be associated with a specific function or collection.

OODB researchers havegenerally ignored the importance of rules, in spiteof the pioneering useof active

data values and daemons in some programming languages utilizing object concepts. When questioned

about rules, most OODB enthusiasts either are silent or suggest that rules be implemented by including

code to support them in one or more functions that operate on a collection. For example, if one has a rule

that every employee must earn a smaller salary than his manager, then code appropriate to this constraint

would be inserted into both the HIRE(EMPLOYEE) and the RAISE-SAL(EMPLOYEE) functions.

There are two fundamental problems with associating rules with functions. First, whenever a new

function is added, such as PENSION-CHANGE(EMPLOYEE), then one must ensure that the function in

turn calls RAISE-SAL(EMPLOYEE), or one must include code for the rule in the new function. There is

no way to guarantee that a programmer does either, consequendy, there is no way to guarantee rule

enforcement Moreover, code for the rule must be placed in at least two functions, HIREQSMPLOYEE)

and RAISE-SAL(EMPLOYEE). This requires duplication of effort and will make changing the rule at

some future time more difficult

Next consider the following rule:

Whenever Joe gets a salary adjustment propagate the change to Sam.

Under the OODB scheme, one must add appropriatecode to both the HIRE and the RAISE-SALfunctions.

Now suppose a second rule is added:

Whenever Sam gets a salary adjustment, propagate the change to Fred.

This rule will require inserting additional code into the same functions. Moreover, since the two rules

interact with each other, the writer of the code for the second rule must understand all the rules that appear

in the function he is modifying so he can correctly deal with the interactions. The same problem arises

when a rule is subsequently deleted.

Lasdy, it would be valuable if users could ask queries about the rules currendybeing enforced. If

they are buried in functions, there is no easy way to do this.

12

In our opinion there is only one reasonable solution; rules must be enforced by the DBMS butnot

bound toanyfunction orcollection. This hastwo consequences. First theOODB paradigm of "everything

is expressed as a method" simply does not apply torules. Second, one cannot directly access any internal

interfaces in the DBMS below the rule activation code, which would allow a user to bypass the run time

system that wakes up rules at the correct time.

In closing, there are already productsfromsecondgeneration commercial vendorswhich are faithful

to the above proposition. Hence, the commercial relational marketplace is ahead of OODB thinking con

cerning this particular proposition.

3.2. Propositions Concerning Increasing DBMS Function

We claimed earlier that third generation systemscould not take a step backwards, Le. they must sub

sume all the capabilities of second generation systems. The capabilities of concern are query languages,

the specificationof sets of data elements and data independence. We have four propositions in this section

that deal with these matters.

PROPOSITION 2.1: Essentially all programatk access to a database should be through a

non-procedural, high-level access language.

Much of the OODB literature has underestimated the critical importance of high-level data access

languages withexpressive power equivalent to a relational query language. For example, [ATKI89] pro

poses that the DBMS offer an ad hoc query facility in any convenient form. We make a much stronger

statement* the expressive powerof a query language mustbe present in everyprogrammatic interface and

it should be used for essentially all access to DBMS data. Long term, this service can be provided by

adding query language constructs to themultiple persistent programming languages thatwediscuss further

in Proposition 3.2. Short term, this service can be provided by embedding a query language in conven

tional programming languages.

Second generation systems have demonstrated that dramatically lower program maintenance costs

result from using this approach relative to first generation systems. In our opinion, third generation data

base systems must not compromise this advance. By contrast, many OODB researchers state that the

13

applications for which they are designing their systems wishto navigate to desireddata usinga low-level

procedural interface. Specifically, they want an interface to a DBMS in which they can access a specific

record. One or more data elements in this record would be of type "reference to a record in some other col

lection" typically represented by some sort of pointer to this other record, e.g an object identifier. Then, the

application would dereference one of these pointers to establish a new current record. This process would

be repeated until the application had navigated to the desired records.

This navigational point of view is well articulated in the Turing Award presentation by Charles

Bachman [BACH73]. We feel that the subsequent 17 years of history has demonstrated that this kind of

interface is undesirable and should not be used. Here we summarizeonly two of the more important prob

lems with navigation. First, when the programmer navigates to desireddata in this fashion, he is replacing

the function of the query optimizer by hand-coded lower level calls. It has been clearly demonstrated by

history that a well-written, well-tuned, optimizer can almostalways do better thana programmer can do by

hand. Hence, the programmerwill producea program whichhas inferiorperformance. Moreover, the pro

grammermustbe considerably smarter to code againsta morecomplexlower level interface.

However, the real killer concerns schema evolution. If the number of indexes changes or the data is

reorganized to be differendy clustered, there is no way for the navigation interface to automatically take

advantage of such changes. Hence, if the physical access paths to data change, then a programmer must

modify hisprogram. On the otherhand, a query optimizer simply produces a newplanwhich is optimized

for the new environment Moreover, if there is a change in the collections that are physically stored, then

the support for views prevalent in second generation systems can be used to insulate theapplication from

thechange. Toavoid these problems of schema evolution and required optimization of database access in

eachprogram, a user should specify the set of dataelements in which he is interested as a query in a non

procedural language.

However, consider a user who is browsing the database, i.e. navigating from one record to another.

Such a user'wishes to see all the records on any path through the database that he explores. Moreover,

which pathhe examines nextmaydepend on thecomposition of thecurrent record. Such a useris clearly

accessing a singlerecord at a timealgorithmically. Ourposition on such users is straight-forward, namely

they should run a sequence of queries that return a single record, such as:

14

select*
from collection
where collection.key = value

Although there is litde room foroptimization of such queries, one is still insulated from required program

maintenance in the event that the schemachanges. One does not obtain this service if a lower level inter

face is used, such as:

dereference (pointer)

Moreover, we claim that our approach yields comparable performance to that available from a lower

level interface. This perhaps counter-intuitive assertion deserves some explanation. The vast majority of

current OODB enthusiasts suggest that a pointer be soft, i.e. that its value not change even if the data ele

ment that it points to is moved. This characteristic, location independence, is desirable because it allows

data elements to be moved without compromising the structure of the database. Such data element move

ment is often inevitable during database reorganization or during crash recovery. Therefore, OODB

enthusiastsrecommend that location independentunique identifiers be used for pointers. As a result dere

ferencinga pointer requires an access to a hashedor indexedstructureof unique identifiers.

In the SQL representation, the pain

(relation-name, key)

is exacdy a location independent unique identifier which entails the same kind of hashed or indexed

lookup. Anyoverhead associated with theSQLsyntax will presumably be removed at compile time.

Therefore we claim that there is litde, if any,performance benefit to using the lower level interface

when a single data element is returned. On the other hand, if multiple data elements are returned then

replacing a high level query with multiple lower level callsmay degrade performance, because of the cost

of thosemultiple calls from the application to the DBMS.

The last claim that is often asserted by OODB enthusiasts is thatprogrammers, e.g. CADprogram

mers, want to perform their own navigation, and therefore, a system shouldencourage navigation witha

low-level interface. We recognize that certain programmers probably prefernavigation. There were pro

grammers whoresisted the move from assembly language to higher level programming languages andoth

ers who resisted moving to relational systems because they would have a less complex task to do and

15

therefore a less interesting job. Moreover, they thought they could do a better job than compilers and

optimizers. We feel that thearguments against navigation arecompelling and thatsomeprogrammers sim

ply require education.

Therefore, we are led to conclude thatessentially allDBMSaccess should be specified by queriesin

a non-procedural high-level access notation. In Proposition 3.2 we will discuss issues of integrating such

queries with current HLLs. Of course, there are occasional situations with compelling reasons to access

lower levels of the DBMS as noted in Proposition 1.3; however, this practice should be strongly

discouraged.

We now turn to a second topic for which we believe that a step backwards must also be avoided.

Third generation systems will support a variety of type constructors for collections as noted in Proposition

1.1, and our next proposition deals with the specification of such collections, especially collections which

are sets.

PROPOSITION 22: There should be at least two ways to specify collections, one using

enumeration of members and one using the query language to specify membership.

The OODB literature suggests specifying sets by enumerating the members of a set typically by means of

a linked list or array of identifiers for members [DEWI90]. We believe that this specification is generally

an inferior choice. To explore our reasoning, consider the following example.

ALUMNI (name, age, address)
GROUPS (g-name, composition)

Herewe havea collection of alumni for a particular university alongwitha collection of groups of alumni.

Each group has a name, e.g. old guard, young turks, elders, etc. and the composition field indicates the

alumni who are members of each of these groups. It is clearly possible to specify composition as an array

of pointers to qualifying alumni. However, this specification will be quite inefficient because the sets in

this example are likely to be quite large and have substantial overlap. More seriously, when a new person

is added to the ALUMNI collection, it is the responsibility of the application programmerto add the new

person to all the appropriategroups. In other words, the various sets of alumniare specified extensionally

by enumerating their members, and membershipin any set is manually determinedby the application pro-

16

grammer.

On the other hand, it is also possible to represent GROUPS as follows:

GROUPS(g-name, min-age, max-age, composition)

Here, composition is specified intensionally by the following SQL expression:

select*

from ALUMNI
where age > GROUPSjnin-age and age < GROUPS.max-age

In this specification, there is one query for each group, parameterized by the age requirement for the group.

Not only is this a more compact specification for the various sets, but also it has the advantage that set

membership is automatic. Hence, whenever a new alumnus is added to the database, he is automatically

placed in theappropriate sets. Suchsetsare guaranteed tobe semanticalry consistent

Besides assured consistency, there is one further advantage of automatic sets, namely they have a

possible performance advantage overmanual sets. Suppose theuserasksa query suchas:

select g-name
from GROUPS
where composition.name = "Bill"

This query requests thegroups inwhich Bill isa member and uses the "nested dot" notation popularized by

GEM [ZANI83] toaddress into the members ofa set Ifanarray ofpointers specification is used forcom

position, the query optimizer may sequentially scan all records in GROUPS and then dereference each

pointer looking for Bill Alternately, it might look up the identifier for Bill, and then scan all composition

fields looking for the identifier. On the other hand, if the intensional representation is used, then the above

query can be transformedby the query optimizerinto:

select g-name
from GROUPS, ALUMNI
where ALUMNLname = "Bill"
and ALUMNLage > GROUPS.min-age and ALUMNLage < GROUPS.max-age

If there is ah index on GROUPSjnin-age or GROUPS.max-age and on ALUMNIjiame, this query may

substantially outperform either of theprevious query plans.

In summary, there are at least two ways to specify collections such as sets, arrays, sequences, etc.

They can be specified either extensionairy through collections of pointers, or intensionally through

17

expressions. Intensional specification maintains automatic setmembership [CODA71], which isdesirable

in mostapplications. Extensional specifications are desirable only when there is no structural connection

between the set members or whenautomatic membership is notdesired.

Also with an intensional specification, semantic transformations can be performed by the optimizer,

which is then free to use whatever access path is best for a givenquery, rather than being limited in any

way by pointer structures. Hence, physical representation decisions can be delegated to the DBA where

theybelong. He can decide what accesspaths to maintain, suchas linkedlists or pointerarrays [CARE90].

Our point of view is that both representations are required, and that intensional representation should

be favored. On the other hand, OODB enthusiasts typically recommend only extensional techniques. It

should be pointed out that there was considerable attention dedicated in the mid 1970's to the advantages

of automatic sets relative to manual sets [CODD74]. In order to avoid a step backwards, third generation

systems must favor automatic sets.

Our third proposition in this section concerns views and their crucial role in database applications.

PROPOSITION 23: Undatable views are essential.

We see very few static databases; rather, most are dynamic and ever changing. In such a scenario, when

ever the set of collections changes, then program maintenance may be required. Clearly, the encapsulation

of database access into functions and the encapsulation of functions with a single collection is a helpful

step. This will allow the functions which must be changed to be easily identified. However, this solution,

by itself, is inadequate. If a change is made to the schema it may take weeks or even months to rewrite the

affected functions. During this intervening time the database cannot simply be "down". Moreover, if

changes occur rapidly, the resources consumed may be unjustifiable.

A clearly better approach is to support virtual collections (views). Second generation systems were

an advance over first generation systems in part because they provided some support in this area. Unfor

tunately, it is often not possible to update relational views. Consequendy, if a user performs a schema

modification and then defines his previous collectionsas views, applicationprograms which previously ran

may or may not continue to do so. Third generation systems will have to do a better job on undatable

views.

18

Thetraditional way to support view updates is to perform command transformations along thelines

of [STON7S]. To disambiguate view updates, additional semantic information mustbe provided by the

definer of the view. One approach is to require thateachcollection be opaque which mightbecome a view

at a later time. In this case there is a group of functions throughwhichall accesses to the collection are fun-

neled [ROWE79], and the view definer must perform program maintenance on each of these functions.

This will entail substantial program maintenance as well as disallow updates through the query language.

Alternately, it has been shown [STON90B] that a suitable rules system can be used to provide the neces

sary semantics. This approach has the advantage that only one (or a small number) of rules need be

specifiedto provide view update semantics. This will be simpler than changing the code in a collection of

functions.

Notice that the members of a virtual collection do not necessarily have a unique identifier because

they do not physically exist Hence, it will be difficult to require that each record in a collection have a

uniqueidentifier,as dictated in many currentOODBprototypes.

Our last point is that data independence cannotbe given up, whichrequires that all physicaldetails

must be hidden from application programmers.

PROPOSITION 2.4: Performance indicators have almost nothing to do with data models

and must not appear in them.

In general, the main determiners of performance using either the SQL or lower level specification

are:

the amountof performance tuning doneon theDBMS
the usageof compilation techniques by theDBMS
thelocation of thebuffer pool (in theclient or DBMS address space)
the kind of indexingavailable
the performance of the client-DBMS interface
and the clustering that is performed.

Such issues have nothing to do with thedata model or with theusage of a higher level language like SQL

versus a lower level navigational interface. For example, the tactic of clustering related objects together

has been highlighted as an important OODB feature. However, this tactic has been used by databasesys

tems for many years, and is a central notion in most IMS access methods. Hence, it is a physical represen-

19

tation issue that has nothing to do with the data model of a DBMS. Similarly, whether or not a system

builds indexes on unique identifiers and buffers database records ona client machine orevenin user space

of an application program are not datamodel issues.

We have also talked to numerous programmers who are doing non traditional problems such as

CAD, and areconvinced that they require a DBMS thatwill support their application which is optimized

for their environment Providing subsecond response time to an engineer adding a line to an engineering

drawingmay requireone or more of the following:

an access method for spatialdata such as R-trees, hb-trees or grid files
a buffer pool on the engineer's workstation as opposedto a central server
a buffer pool in his application program
data buffered in screen format rather than DBMS format

These are all performance issues for a workstation/server environment and have nothing to do with the data

model or with the presence or absence of a navigational interface.

For a given workload and database, one should attempt to provide the best performance possible.

Whether these tactics are a good idea depends on the specific application. Moreover, they are readily

available to any database system.

3.3. Propositions that Result from the Necessity of an Open System

So far we have been discussing the characteristics of third generation DBMSs. We now turn to the

Application Programming Interface (API) through which a user program will communicate with the

DBMS. Our first proposition states the obvious.

PROPOSITION 3.1: Third generation DBMSs must be accessible from multiple HLLs.

Some system designers claim that a DBMS should be tightly connected to a particular programming

language. For example, they suggest that a function should yield the same result if it is executed in user

spaceon transientdataor inside the DBMS on persistent data. The only way this can happenis for the exe

cution model of the DBMS to be identical to that of the specific programming language. We believe that

this approach is wrong.

20

First there is no agreement on a single HLL. Applications will be coded in a variety of HLLs, and

we seenoprogramming language Esperanto onthe horizon. Consequendy, applications will be written in

a varietyof programming languages, and a multi-lingual DBMS results.

However, an open DBMS must be multi-lingual for another reason. It must allow access from a

variety of externally written application subsystems, e.g. Lotus 1-2-3. Such subsystems will be coded in a

variety of programming languages, again requiring multi-lingualDBMS support

As a result a third generation DBMS will be accessed by programs written in a variety of languages.

This leads to the inevitable conclusion that the type system of the HLL will not necessarily match the type

system of the DBMS. Therefore, we are led to our next proposition.

PROPOSITION 3.2: Persistent X for a variety of Xs is a good idea. They will all be sup

ported on top of a single DBMS by compiler extensions and a (more or less) complex run

time system.

Secondgeneration systemswere interfaced to programming languages using a preprocessorpartly because

early DBMS developers did not have the cooperation of compiler developers. Moreover, there are certain

advantages to keeping some independence between the DBMS language and the programming language,

for example the programming language and DBMS can be independendy enhanced and tested. However,

the resulting interfaces were not very friendly and were characterized as early as 1977 as "likeglueing an

appleon a pancake". Also, vendors have tended to concentrate on elegantinterfaces between their4GLs

and database services. Obviously it is possible to provide the same level of elegance for general purpose

programming languages.

First it is crucial to havea closer match between the type systems, which willbe facilitated by Pro

position 1.1. Thisis the main problem with current SQL embeddings, not theaesthetics of theSQLsyntax.

Second, it would then be niceto allow anyvariable ina user'sprogram to be optionally persistent In this

case,the valueof any persistent variable is remembered evenafter theprogram terminates. Therehasbeen

considerable recent interest in such interfaces [LISK82, BUNE86].

In order to perform well, persistent X must maintain a cache of data elements and records in the

program's address space, and then carefully manage the contents of this cache using some replacement

21

algorithm.Consider a user who declares a persistentdata elementand then increments it 100 times. With a

user space cache, these updates will require small numbers of microseconds. Otherwise, 100 calls across a

protected boundary to the DMS will be required, and each one will require milliseconds. Hence, a user

space cache will result in a performance improvement of 100 - 1000 for programs with high locality of

reference to persistentdata. The run time systemfor persistentX must therefore inspect die cache to see if

any persistent element is present and fetch it into the cache if not Moreover, the run time system must also

simulate any types present in X that are not present in the DBMS.

As we noted earlier, functions should be coded by including calls to the DBMS expressed in the

query language. Hence, persistent X also requires some way to express queries. Such queries can be

expressed in a notation appropriate to the HLL in question, as illustrated for C++ by ODE [AGRA89]. The

run-time system for the HLL must accept and process such queries and deliver the results back to the pro

gram.

Such a run time system will be more (or less) difficult to build depending on the HLL in question,

how much simulation of types is required, and how far the query language available in the HLL deviates

from the one available in the DBMS. A suitable run-time system can interface many HLLs to a DBMS.

One of us has successfully builtpersistentCLOSon top of POSTGRES using this approach[ROWE90].

In summary, there will be a variety of persistent X's designed. Each requires compiler modifications

unique to the language and a run time system particular to the HLL. All of these run time systems will

connect to a common DBMS.The obvious questionis "Howshouldqueries be expressed?" to this common

DBMS. This leads to the next proposition.

PROPOSITION 3J: For better or worse, SQL is intergalactic dataspeak.

SQL is the universal way of expressing queries today. The early commercial OODB's did not recognize

this fact and had to retrofit an SQL query system into their product Unfortunately, some products did not

manage to survive until they completed the job. Although SQL has a variety of well known minor prob

lems [DATE84], it is necessary for commercial viability. Any OODB which desires to make an impact in

the marketplace is likely to find that customers vote with their dollars for SQL. Moreover, SQL is a rea

sonable candidate for the new functions suggested in this paper, and prototype syntax for several of the

22

capabilities has been explored in [BEEC88, ANSI89]. Of course, additional query languages may be

appropriate for specific applications or HLLs.

Our last proposition concerns the architecture which should be followed when the application pro

gram is on one machine interfaced to a DBMS on a second server machine. Since DBMS commands will

be coded in some extended version of SQL, it is certainlypossible to transmit SQL-queries and receive the

resulting records and/or completion messages. Moreover, a consortium of tool and DBMS vendors, the

SQL Access Group, is actively working to define and prototype an SQL remote data access facility. Such a

facility will allow convenient interoperability between SQL tools and SQL DBMSs. Alternately, it is pos

sible to communicate between client and server at some lower level interface.

Our last proposition discusses this matter.

PROPOSITON 3.4: Queries and their resulting answers should be the lowest level of com

munication between a client and a server.

In an environment where a user has a dedicated workstation and is interacting with data at a remote server,

there is a question concerning the protocol between the workstation and the server. OODB enthusiasts are

debating whether requests should be for single records, single pages or some other mechanism. Our view

is very simple: expressions in the query language should be the lowest level unit of communication. Of

course, if a collection of queries can be packagedinto a function, then the user can use a remote procedure

call to cause function execution on the server. This feature is desirable because it will result in less than

one message per query.

If a lower level specification is used, such as page or record transfers, then the protocol is fundamen

tally more difficult to specify because of the increased amount of state, and machine dependencies may

creep in. Moreover, any interface at a lower level than that of SQL will be much less efficient as noted in

[HAGM86,TAND88]. Therefore, remote procedure callsand SQL queriesprovide an appropriate level of

interface technology.

23

4. SUMMARY

There are many points upon which we agree with OODB enthusiasts and with [ATKI89]. They

include the benefits of a rich type system, functions, inheritance and encapsulation. However, there are

many areas where we are in strong disagreement First we see [ATKI89] as too narrowly focused on

object management issues. By contrast we address the much larger issue of providing solutions that sup

port data, rule and object management with a complete toolkit including integration of the DBMS and its

query language into a mult-lingual environment As such, we see the non-SQL, single language systems

proposedby many OODB enthusiasts as appealing to a fairly narrowmarket

Second, we feel that DBMS access shouldonlu occurthrough a query language, and nearly20 years

of history convinces us that this is correct Physical navigation by a user program and within functions

should be avoided. Third, the use of automatic collections whenever possible should be encouraged, as

they offer many advantages over explicitly maintained collections. Fourth, persistence may well be added

to a variety of programming languages. Because there is no programming language Esperanto, this should

be accomplished by changing the compilerand writing a language-specific run-time system to interface to

a singleDBMS. Therefore, persistent programming languages have litde to do with the data model. Fifth,

unique identifiers should be either user-defined or system-defined, in contrast to one of the tenets in

[ATKI89].

However, perhaps the most importantdisagreement we have with much of the OODB community is

that we see a natural evolution from current relational DBMSs to ones with the capabilities discussed in

this paper. Systems from aggressiverelational vendorsare faithful to Tenets 1,2 and 3 and have good sup

port for propositions 1.3,1.4,1.S, 2.1,2.3,2.4,3.1,3.3 and 3.4. To become true third generation systems

they must add inheritance, additional type constructors, andimplement persistent programming languages.

There havebeenprototype systemswhichpointthewayto inclusion of thesecapabilities.

On the otherhand, current systemsthatclaim to be object-oriented generally are not faithful to any

of our tenets and support propositions 1.1 (partly), 1.2, 1.3 and 3.2. To become true third generation sys

tems, they must add a query language and query optimizer, a rulessystem, SQL client/server support, sup

port for views, and persistent programming languages. In addition, they must undo any hard coded

requirement for UIDs and discourage navigation. Moreover, they must build 4th generation languages,

24

support distributed databases, and tune their systems to perform efficient data management

Of course, there are significantresearch and development challenges to be overcome in satisfying

these propositions. The design of a persistent programming language for a variety of existing HLLs

presents a unique challenge. The inclusion in such languages of pleasing query language constructs is a

further challenge. Moreover, both logical and physical database design are considered challenging for

current relational systems, and they will get much more difficult for systems with richer type systems and

rules. Database design methodologies and tools will be required to assist users in this area. Optimization

of the execution of rules poses a significant challenge. In addition, tools to allow users to visualize and

debug rule-oriented applications are crucial to the success of this technology. We encourage the research

community to take on these issues.

REFERENCES

[AGRA89]

[ANON85]

[ANSI89]

[ATKI89]

[BACH73]

[BEEC88]

[BERN90]

Agrawal, R. and Gehani, G., "ODE: The Language and the Data Model," Proc.

1989 ACM-SIGMOD Conference on Mangement of Data, Portland, Ore. June

1989.

Anon et al., "A Measure ofTransactionProcessing Power," Datamation, 1985.

ANSI-ISO Committee, "Working Draft, Database Languages SQL2 and SQL3,"

July 1989.

Atkinson, M. et al., "The Object-Oriented Database System Manifesto," ALTAIR

Technical Report No. 30-89, GIP ALTAIR, LeChesnay, France, Sept. 1989, also

in Deductive and Object-oriented Databases, Elsevere Science Publishers,

Amsterdam, Netherlands, 1990.

Bachman, C, "The Programmer as Navigator," CACM, November 1973.

Beech, D., "A Foundation for Evolution from Relational to Object Databases,"

Proc.Conference on Extending Database Technology, Venice, Italy, April 1988.

Bernstein, P. et al., "Implementing Recoverable Requests Using Queues", Proc.

ACM SIGMOD Conference on Management of Data, Atlantic City, NX, May

25

[BUNE86]

[CARE88]

[CARE90]

[CHAN89]

[CODA71]

[CODD74]

[COPE84]

[DADA86]

[DATE84]

[DATE86]

[DEWI90]

1990.

Buneman, P. and Atkinson, M., "Inheritance and Persistence in Programming

Languages," Proc. 1986 ACM-SIGMOD Conference on Management of Data,

Washington, D.C., May 1986.

Carey, M., et al, "A DataModel andQuery Language for EXODUS," Proc. 1988

ACM-SIGMOD Conference on Management of Data,Chicago, HI.,June 1988.

Carey, M., et al, "An Incremental Join Attachment for Starburst" (in preparation).

Chang, E. and Katz, R., "Exploiting Inheritance and Structure Semantics for

Effective Clustering and Buffering in an Object-oriented DBMS," Proc. 1989

ACM-SIGMOD Conference on Management of Data, Portland, Ore., June 1989.

CODASYL DataBaseTask GroupReport, April 1971.

Codd, E. and Date,C, "Interactive Support for Non-Programmers: The Relational

and Network Approaches," Proc. 1974 ACM-SIGMOD Debate, Ann Arbor,

Mich., May 1974.

Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. 1984

ACM-SIGMOD Conference on Management of Data, Boston, Mass., June 1984.

Dadam, P. et al., "A DBMS Prototype to Support Extended NF2 Relations: An

Integrated View of Flat Tables and Hierarchies," Proc. 1986 ACM-SIGMOD

Conference on Management of Data, Washington, DC, 1986.

Date, C, "A Critique of the SQL Database Language," ACM SIGMOD Record

14(3), November 1984.

Date, C, "An Introduction to Database Systems," Addison-Wesley, Reading,

Mass., 1986.

Dewitt, D. et al., "A Study of Three Alternative Workstation-Server Architectures

for Object Oriented Database Systems," ALTAIR Technical Report 42-90, Le

Chesnay, France,January 1990.

26

[HAGM86]

[KIM90]

[LISK82]

[OSB086]

[ROWE79]

[ROWE90]

[STON75]

[STON83]

[STON86]

[STON90]

[STON90B]

Hagmann, R. and Ferrari, D., "Performance Analysis of Several Back-End Data

base Architectures," ACM-TODS, March 1986.

Kim, W., "Research Directions in Object-oriented Databases," MCC Technical

reportACT-OODS-013-90, MCC, Austin, Tx., January 1990.

Liskov, B. and Scheifler, R., "Guardians and Actions: Linguistic Support for

Robust Distributed Programs," Proc. 9th Symposium on the Principles of Pro

gramming Languages, January 1982.

Osborne, S. and Heaven, T., "The Design of a Relational System with Abstract

DataTypes as Domains," ACM TODS, Sept 1986.

Rowe, L. and Shoens, K., "Data Abstraction, Views and Updates in RIGEL,"

Proc. 1979 ACM-SIGMOD Conference on Management of Data, Boston, Mass.,

May 1979.

Rowe, Lawrence, "The Design of PICASSO," (in preparation).

Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification," Proc. 197S ACM-SIGMOD Conference on Management of Data,

San Jose, May 1975.

Stonebraker, M., "Document Processing in a Relational Database System," ACM

TOOIS, April 1983.

Stonebrake;. M., "Inclusion of New Types in Relational Data Base Systems,"

Proc. Second International Conference on Data Base Engineering, Los Angeles,

Ca., Feb. 1986.

Stonebraker, M., et al., "The Implementation of POSTGRES," IEEE Transactions

on Knowledge and DataEngineering, March 1990.

Stonebraker, M. et al., "On Rules, Procedures, Caching and Views in Data Base

Systems," Proc. 1990 ACM-SIGMOD Conference on Management of Data,

Atlantic City, NJ., May 1990.

27

[TAND88] Tandem PerformanceGroup, "A Benchmark of NonStop SQL on the Debit Credit

Transaction," Proc. 1988 ACM-SIGMOD Conference on Management of Data,

Chicago, 111., June 1988.

[ZANI83] Zaniolo,C, "The Database Language GEM," Proc. 1983 ACM-SIGMOD Confer

ence on Management of Data, San Jose, Ca., May 1983.

[ZDON90] Zdonik, S. and Maier, D., "Fundamentals of Object-oriented Databases," in Read

ings in Object-oriented Database Systems, Morgan-Kaufman, San mateo, Ca.,

1990.

28

	Copyright notice1990
	ERL-90-28

