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GLOBAL PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR VECTOR FIELDS
PART II: SIMPLEST SYMMETRIC CASE IN %2. {

Robert Lum AND Leon O. Chua. t1

Abstract

Among nonlinear vector fields, the simplest of which can be studied are those which
are continuous and piecewise linear. Among these nonlinear vector fields a large and
important subset are those vector fields which are odd symmetric. Associated with
these types of vector fields are partitions of the state-space into a finite number of
regions. In each region the vector field is linear. On the boundary between regions it
is required that the vector field be continuous from both regions in which it is linear.
This presentation is devoted to the analysis in two dimensions of the simplest possible
types of continuous piecewise linear vector fields with odd symmetry, namely those
vector fields possessing a pair of symmetric boundary conditions.

As a practical concern, the analysis will attempt to ask and answer questions raised
about the existence of steady-state solutions. Since the local theory of fixed points in a
linear vector field is sufficient to determine stability of fixed points in a piecewise linear
vector field, most of the steady state behaviour to be studied will be towards limit
cycles. The results will present sufficient conditions for the existence, or nonexistence
as the case may be, for limit cycles. Particular attention will be paid to the domain of
attraction whenever possible.

With these results qualitative statements may be made for piecewise linear models

of physical systems which have odd symmetry.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
tt The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The determination of limit cycles is of great practical and theorectical importance. The work
on Hilbert’s 16th problem (a survey paper being that of Lloyd[4]) has shown that even for two
dimensions and polynomial vector fields as simple as degree two, it is not even known the maximum
number of limit cycles possible. This situation is symptomatic of the present intractability of the
determination of limit cycles globally, i.e. in the entire plane R2. However, it may be possible in
certain cases to give results on the global determination of limit cycles. One such area has arisen

from the solution of problems in electrical engineering,

With the advent of computer aided design and the subsequent increase of computer simulations
of physical circuits, device modeling has emerged as an increasingly important area of research. In
the modeling of electrical and electronic circuits an exemplary case of such work is the paper Chua
and Deng[1] “Canonical piecewise linear modeling.” In that paper a number of electronic circuits
were shown to have concise representations as piecewise linear functions. The connection of one or
more of such circuits in feedback naturally creates a dynamical system. If any of the constituent
elements has a representation as a nonlinear function, the dynamical system is defined by a nonlinear
vector field acting on the state space. For example, dynamic circuits with piecewise linear resistors

give rise to such dynamical systems.

Conversely, in two and three dimensions, nonlinear vector fields which are piecewise linear may
be emulated by equivalent physical circuits. Such emulation requires the use of piecewise linear

resistors, capacitors and inductors.

Once a piecewise linear representation of a circuit has been created, the computer becomes
a powerful tool with which to study the original circuit. Computer work with such models has
suggested the possibility of proving qualitative results about certain classes of piecewise linear vector

fields arising from such modeling.

This paper has been devoted to finding attractors in piecewise linear vector fields which possess
odd symmetry about the origin. Section 1 will introduce the basic definitions and concepts to be
used, then sections 2 through 9 will present the analysis of continuous piecewise linear vector fields

with odd symmetry about the origin.

To conclude this introductory section, some examples of the variety of behaviour possible in a
symmetric piecewise linear vector field will be presented, then a summary of the main results will

end this section.



ExaMmpLE 1. (Figure 1.) Consider the vector field
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The only fixed point is at the origin. The fixed point is an unstable focus. By theorem 0.2 there are

no limit cycles.

ExampLE 2. (Figure 2.) Consider the vector field
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The only fixed point is at the origin. The fixed point is an unstable focus. By theorem 0.2 there
exists a globally attracting limit cycle.

ExampLE 3. (Figure 3.) Consider the vector field
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There is a fixed point at the origin which is an unstable focus. The other fixed points are saddle

points. By theorem 0.3 this is an example of a vector field without any limit cycles.

ExaMPLE 4. (Figure 4.) Consider the vector field
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There are three lines of fixed points. Together, these lines form a partition of ®? into two distinct

regions. By theorem 0.4 there do not exist any limit cycles for this symmetric vector field.
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ExampLE 5. (Figure 5.) Consider the vector field
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The only fixed point is at the origin which is a saddle point. By theorem 0.6 there do not exist any

limit cycles for this particular symmetric vector field.

ExaMPLE 6. (Figure 6.) Consider the vector field
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The fixed point at the origin is a saddle point. The other fixed points are unstable nodes. By

theorem 0.7 this is an example of a vector field without any limit cycles.

ExaMpLE 7. (Figure 7.) Consider the vector field
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The only fixed point is at the origin which is a saddle point. By theorem 0.8, there do not exist

limit cycles for this symmetric vector field.

ExampLE 8. (Figure 8.) Consider the vector field

JHE

r W v ]
RN L= Y

NO NDNO NVNO
. n " N

YT

y 1<z,

The only fixed point is at the origin which is an unstable node. By theorem 0.9 the symmetric vector

field does not have any limit cycles.



Summary of main results.

The results in sections 2-9 may best be summarised in the following set of theorems that collect

the main points of those sections.

Conjecture 0.1. The symmetric vector field £ (see definition 1.2) does not admit semi-stable annuli
If the symmetric vector field £ admits a limit annulus (see definition 1.9), then the annulus is either

an attracting limit cycle or a repelling limit cycle.

Note that for the asymmetric piecewise linear vector field in (3] with one boundary condition
which is obtained from § with the same defining constants, conjecture 0.1 implies that the associated
vector field does not have any semi-stable annuli and that all limit annuli are either attracting limit
cycles or repelling limit cycles. Under conjecture 0.1, the following results may be proved to hold

true:

Theorem 0.2, Let 0 < b,0 < a+d,0 < ad — be,0 < ad — be + dk — bl. Let (z,y) be the primary
induced fixed point of the symmetric vector field with defining constants a, b, ¢, d, k, l. Define
1
Xi(z,9) =y - p(~d(1 - 2) - a)
1
= E(G +k+d)(1-z).

Consider the symmetric vector fleld £ with defining constants a,b,c,d, k,l. If X1(z,y) < O then £
has an attracting limit cycle. If 0 < Xy(z,y) then £ does not have any limit cycles.

PROOF. See theorems 3.5, 3.7, 4.2, 4.3, 3.2, 4.1. |

Theorem 0.3. Let 0 < b,0 < a+d,0 < ad—bc, ad—be+dk—bl < 0. Let (z,y) be the primary induced
fixed point of the symmetric vector field with defining constants a, b, c,d, kl. If (a + d)?/4 < ad — bc
define

Xa2(z,9) = y - Xa(X7 1 (2))

where X(y) = (X1(y), X2(y)) is given in lemma 3.10. If0 < ad — bc < (a + d)2/4 define
Xa2(2,y) =y - (X7 '(2))

where %(y) = (X1(v), X2(v)) is given in lemma 4.5. If X2(z,y) < 0 then ¢ does not have any limit
cycles. If 0 < X3(z,y) then £ has an attracting limit cycle..

PROOF. See theorems 3.9, 3.15, 4.4, 4.8, 3.10, and 4.9. [ |

Theorem 0.4. Let 0 < 5,0 < a+d,0 = ad— be,dk — bl < (a+ k + d)2/4. The symmetric vector

field £ with defining constants a, b, ¢, d, k,! does not have any limit cycles.
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PROOF. See propositions 6.1 and 6.2. | |

Theorem 0.5. Let 0< b,0 < a+d,0 =ad—be,(a+k +d)2/4 <dk —bl. fa+k +d < 0 then the
symmetric vector field § with defining constants a,b,c,d, k,1 has a unique attracting limit cycle. If
0 < a+ k+d then the symmetric vector field § with defining constants a, b, c, d, k,l does not have

any limit cycles.

PROOF. See propositions 6.3 and 6.4. [ |

Theorem 0.6. Let 0 < b,0 < a +d,ad — bc < 0,ad ~ bc + dk — bl < 0. The symmetric vector field

& with defining constants a,b, c,d, k,l does not have any limit cycles.

PROOF. See proposition 7.1 and 7.2. |

Theorem 0.7. Let 0 < b,0 < a+d,ad — bc < 0,0 < ad — bc + dk — bl. If the symmetric vector field
& with defining constants a, b, c,d, k,! does not have any homoclinic orbits then either (i) £ does not

have any limit cycles or, (ii) £ has an attracting limit cycle and a pair of repelling limit cycles.

PROOF. See proposition 7.3, theorems 7.5,7.8 and 7.9. [ |

Theorem 0.8. Let 0 < b,0 = a+d. The symmetric vector field § with defining constantsa, b, c,d, k, 1

does not have any limit cycles.

PROOF. See proposition 8.1 and theorem 8.2. [ ]

Theorem 0.9. Let 0 = b. The symmetric vector field £ with defining constants a,b,c,d, k,l does

not have any limit cycles.

PROOF. See proposition 9.1. [ ]



§1. Definitions.

In this section the basic definitions of the nonlinear vector fields to be studied are presented. As all
the work to be presented lies in the plane, it will be taken that all vectors lie in ®3.

Definition 1.1. L is a linear { vector field <> there exists constants a, b, ¢, d, e, f such that
z| _|a bflz]| [e
L[y] - [c d] [y] [f]

Definition 1.2. £ is a symmetric continuous piecewise linear vector field <> there exists constants
a,b,c,d,k,l with either k # 0 or [ # 0, and

- 51 (2] e
ii? al |yt il <5
Gl e
=a+k b [=] k
_c+l d_ _y___l_’ 1<z

The usage of symmetric vector field will mean a symmetric continuous piecewise linear vector field.

A symmetric vector field is linear in each of the regions {(z,y) : z < -1}, {(z,y):-1<z<
1},{(2,¥) : 1 < z}. As either k or ! is nonzero, the symmetric vector field is nonlinear. Furthermore,

symmetric vector fields have the property that & (=x) = —£(x) so that as functions, they possess

odd symmetry about the origin.

Definition 1.3. For the symmetric vector field § the function ¢(t, (2o, o)) will denote the solution
to ¢(t’ (IOa yO))' = E(¢(ty (301 yO)))y ¢(01 (307 yO)) = (xO, yO)'

Definition 1.4. The point (z¢,yo) is called a periodic point if there is a 0 < ¢g < oo for which
(o, (z0, ¥0)) = (0, ¥o). The set {¢(t, (z0,%0)) : 0 < t < ¢o} is called a cycle.

Definition 1.5. Let (zo,yo) be a point on a cycle. Consider a local transversal ¥ through (zo, yo)
and Poincare map P : £ — I. If the point (z0,v0) is attracting (respectively repelling) for the
map P then the cycle is said to be attracting (respectively repelling). If it is attracting from one

side in positive time and repelling from the other side in positive time then the point is said to be

semi-stable.

Definition 1.6. A limit cycle is a cycle that is either attracting, repelling or semi-stable. Hence, a

cycle is a limit cycle if and only if it is isolated.

t An equivalent name is affine.



Definition 1.7. Define an ordering on the set of cycles by C; < C; if the cycle C; lies in the
interior of the cycle C; and there are no fixed points in the region bounded by C) and C,. Let
{+<C_1<Co<Cy <-- -} be a maximal chain of cycles bounded below and above by the cycles
C—c0s Coo- The pair (C_o, Coo) is an annulus with boundary cycles C_ o, Coo. The annulus will be

identified with the closed region between its boundary cycles.

Definition 1.8. Let N be a set and ¢ be the solution to a symmetric vector field, then ¢(t, N) is
the set given by ¢(t, N) = {4(2,(z,¥)) : (z,y) € N}.

Definition 1.9. An attracting annulus 4 has a neighbourhood N(A C N), such that for non-
negative times 0 < #o < t1,4 C ¢(t1, N) C ¢(to, N), 4 = N2,4(t, N). A repelling annulus is an
annulus which is attracting in reverse time. If the annulus is attracting from one side in positive
time and repelling from the other side in positive time then it is said to be semi-stable. A limit

annulus is an annulus that is either attracting or repelling.

§2. Simplifying assumptions for symmetric vector fields.

The following two propositions will allow some mild restrictions to be put on the defining constants
for a symmetric vector field. This will allow the analysis of representative examples of symmetric

vector fields.

Proposition 2.1. Let £;,§2 be symmetric vector fields with defining constants a, b, ¢,d, k,l and —a,—

b,—c,~d,~k,~ respectively. Then the respective solutions ¢,(t, (zo, yo)) and ¢2(t, (zo, yo)) are related
by
#1(2, (zo, Y0)) = d2(—1, (zo, %0))-

PROOF. Let ¢1(2, (20, ¥0)) = (Z1(2), y1(2)), 62(2, (20, ¥0)) = (z2(2), y2(2)).
(%) :For z < —1 and using ¢2(t, (zo, %))’ = &2(P2(2, (z0, ¥0))),

e I bl | ] R e
(e8] = [axt S [a]+ (3]

By uniqueness of solutions, ¢1(¢, (zo, y0)) = ¢2(—t, (zo, ¥0))-
(#1) :For ~1 < z < 1 and using ¢2(2, (zo, %))’ = £2(d2(2, (0, ¥0))),

] =2 2]

] = [ 4] ().
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By uniqueness of solutions, ¢1(, (2o, %)) = é2(—t, (20, %))
(#i4) :For 1 < z and using é2(t, (zo, 30))’ = &2(2(t, (2o, ¥0)))s

] I g

v e o B

By uniqueness of solutions, ¢1(2, (20, y0)) = ¢2(—t, (20, ¥0))- i

Thus,

Proposition 2.2. Let §;,£; be a symmetric vector fields with defining constants a,b, c,d, k,! and
a,~b,~, d, k,~ respectively. With the respective solutions being ¢1(t, (o, ¥0)) = (z1(t), ¥1(t)) and
¢2(t, (20, %0)) = (22(2), 2(2)), then (z1(t), 11(2)) = (22(2), —pa(2))-

PROOF. (i) :For z < —1 and using ¢2(t, (o, 30))’ = &2(¢2(t, (20, 30))),

o] I o | e A A

22t) 1" _ [a ][ za(t) k
[l = [ &[]+ [
By uniqueness of solutions (z1(t), y1(t)) = (z2(t), —y2(2)).
(i7) :For z < 1 and using ¢;(t, (o, %0))’ = &2(d2(t, (o, %0))),

] =12 2E8)-
] =[2 i [z0)].

By uniqueness of solutions (z1(t), y1(2)) = (z2(t), —y2(t)).
(i43) :For 1 < z and using ¢3(t, (zo, %))’ = E2($2(2, (o, ¥0))),

Gl == 218)- 14
] = (e S [z

By uniqueness of solutions (z1(t), y1(2)) = (22(t), —y(¢)). [ |

Thus,

Thus,

Thus,

By proposition 2.1 it may be assumed that 0 < a +d. Using proposition 2.2 it may further be
taken that 0 < b. Note that proposition 2.2 leaves the value of a + d unaffected.

The dynamics of £ to the right of z = 1 is determined by the linear vector field

LIH-[‘:::? I GI-[]



Similarly, the dynamics of £ to the left of z = —1 is determined by the linear vector field

AR ROHIHEHE

The fixed points of Ly, L, have special names.

Definition 2.3. Let £ be a symmetric vector field with ad — be + dk — bl # 0. The point (2, y,) is
called the primary induced fixed point of £ if

o] = [0 ][5 ]- ]

The point (z,,y,) is called the secondary induced fixed point of £ if
0| _|a+k b
0] " | e+l

It is clear that if (zp, yp) is the primary induced fixed point of £ then (—z,, —yp) is the secondary
induced fixed point of £ and conversely. The use of primary and secondary fixed points is not to
imply a preference for primary fixed points over secondary fixed points.

The relationship of the primary induced fixed point of the symmetric 2-boundary vector field ¢,
and the induced fixed point of the 1-boundary piecewise linear vector field (as introduced in [3]) with
the same defining constants is immediate. The relationship qf the secondary induced fixed point of
the symmetric vector field and the induced fixed point of the corresponding piecewise linear vector

field is not as immediate.

Lemma 2.4. There is a homeomorphism m(z,y) = (z,y) between the primary induced fixed point
of the symmetric vector field £ and the induced fixed point of the piecewise linear vector field with

the same defining constants a,b, c,d, k, 1.

ProoF. The primary induced fixed point and the induced fixed point, when they exist, are both

given by the same formula

z| _ 1 dk — bl 2
v] ad—bc+dk—bl |—ck+al]’
This allows the following corollary to be stated.

Corollary 2.5. For fixed a,d,c,b,ad — bc # 0 there exists a homeomorphism h(k,1) = (z,y) from
the set of parameter values k,l satisfying ad — bc + dk — bl # 0 to the set of primary induced fixed
points (z,y) with z # 1.

ProoF. Let h(k,1) = m=1(h(k,1)) where h is the function defined in theorem 2.6 of [3] and m is the

function defined in lemma 2.4. |



The dynamics of the symmetric vector field to the left of z = —1 and to the right of z = 1 are

determined by the eigenvalues of the defining matrices in the linear vector fields L, L,.

Definition 2.6. The eigenvalues at the primary induced fixed point (respectively the secondary

induced fixed point) are the eigenvalues of the matrix
a+k b
c+!l d|’

Lemma 2.7. Let ¢ be a symmetric vector field with ad—bc # 0,ad — bc+dk —bl # 0. The product of
the eigenvalues at the primary induced fixed point (respectively the secondary induced fixed point)
is (ad — be) /(1 — zp).

PROOF. Lemma 2.4 and corollary 2.8 of [3]. |

The lines z = —1 and z = 1 are the dividing boundaries of the linear regions and also have

significance in symmetric vector fields.

Proposition 2.8. Let £ be a symmetric vector field with 0 < b. The line z = 1 is transversal to
§ at all points except (1,y*) = (1,—a/b). For points (1,y) with y* < y the vectors point to the
right, for points (1,y) with y < y* the vectors point to the left. Similarly, the line ¢ = -1 is also
transversal to the symmetric vector field everywhere except at the point (—1, -¢) = (-1,a/b). For
points (—1,y) with —y* < y the vectors point to the right and for points (-1,y) withy < —y* the
vectors point to the left.

PRroOF. That the line z = 1 is transversal to £ except (1,3") = (1, —a/b) follows from the solution of

¢ o [o] =[]

As 0 < b, for y < y* the z-ordinate of the vector is a + by < 0 pointing to the left, and for
¥* < y the z-ordinate of the vector is given by 0 < a + by pointing to the right. By symmetry of
£(x) = —£(—x) the line z = —1 is also transversal to the symmetric vector field £ but at the point
(=1,-y*) = (~1,a/b). For points (-1, y) with —y* < y the vector points right, being the rotation of
7 radians of the vector at (1, ~y) with —y < y*. For points (—1,y) with y < —y* the vector points
left, being the rotation of 7 radians of the vector at (1, —y) with y* < —y. | |

Definition 2.9. For v < w, the following notation will be used,

f(v,w):{y:v<y<w},
L(v,w]={y:v <y < w),

10



Ivw)={y:v<y<w),

Ilv,w)={y:v <y < w}

Definition 2.10. The following functions
m11 2 L(y*, 00) = L(—00,y"],
m12 : L(—00,y*] = L(~o00, —y*),
a2 : L(—00, —y*) — I[-y", 00),
7211 L[~y", 00) — L(y", 0),
are given by
(1,m11(30)) = é(to, (1, 30)), to = min{t : 0 < ¢,4(2, (1,30)) N {(2,9) : = = 1} # 0},

(=1, m12(%0)) = é(to, (1, %0)),to = min{t : 0 < ¢, (¢, (1, ¥0)) N {(zyy):z=-1} £ 0},
(_1$ 7"22(3’0)) = ¢(t03 (_la yO))stO = m{t :0< ta ¢(t’ (—11 '!/0)) n {(22, y) z= _1} # 0}’
(1, 7r21(y0)) = ¢(t0’ (—1:y0))yt0 = mln{t :0<t, ¢(t) ("’11 yO)) n {(:L‘, y) z= 1} # O}a

whenever they are defined.

The subscript 1 refers to the first line z = 1.The subscript 2 refers to the second line z = —1.
Thus, the function 713 maps from the first line z = 1, to the second line z = —1. Likewise for the
functions g3, w21, 711. The function 72, where 7 is the return map of definition 2.11 of [3] when

applied to L(—oo, y*] has the decomposition 72 = m;; o m2; 0 m22 0 m12.

11



§3. 0<b, 0<a+d, (a+d)?/4<ad—-bc, ad—bc+dk—-bl#0.

Many of the results in this section have close similarities with results in section 3 of [3]. However,

the existence of subtle differences prevents a direct application of the results in that section.

Lemma 3.1. Let £ be a symmetric vector field with 0 < a + k + d then there there are no cycles.

Proor. The only fixed point is at the origin. Any cycle must therefore pass through the region
{(z,y) : =1 < z < 1}. The cycle cannot lie wholly in this region as 0 < a + d and linear vector fields
with non-zero trace do not admit cycles. Thus, the cycle intersects either the line z=1o0r z = -1
or both of these lines.

If it only intersects the line z = 1 then lemma 3.1 of [3] would be contradicted for the piecewise
linear vector field with the same defining constants. If the cycle only intersected the line z = —1
then by symmetry there also exists a cycle intersecting only the line z = 1. Again, this would be a
contradiction of lemma 3.1 of [3]. Any cycle must intersect both the lines z=1and z = —1.

By Stoke’s theorem,

dz dy d (dz d [dy
—dy - —dz = — = —({—)d A
> G /m(c,dz(dt)*'dy (dt) z dy
Breaking up the area integral into the three regions, 4 = int(C) N {(z,y) : < —1}, B = int(C) N
{(z,¥): =1 <z <1},and D =int(C) N {(z,y) : 1 < z}, then

d d
0= [ — - —_ -
/A 3z @+ Rz +by— k) + (e + Dz + dy - )do dy+

d d d d
= b Bl = - Bl -
/B dz(a:c +by) + dy(cz + dy)dz dy + ‘/D 72 ((a+k)z +by—k)+ dy((c + )z + dy — l)dz dy.
Thus,
0 =/(a+k+d)d:c dy+/(a+d)d:c dy+/ (e + &k + d)dz dy.
A B D
The integral on the right in nonzero. By contradicton, limit cycles do not exist. [ |
Theorem 3.2. If (z,y),z < 1, is the primary induced fixed point of the symmetric vector field ¢
with
H-di-2)-a) <y

then there are no cycles.
ProoF. Note by corollary 2.5 that k = (az + by)/(1 — z). Using lemma 3.1 it is sufficient that

0 < a+k+d for there to be no cycles. This inequality simplifies to (—d(1—z)-a)/b< y.

The following lemmas will delimit under which conditions the eigenvalues at the primary induced

fixed point are real. This will allow the proof of the subsequent theorem.

12



Lemma 3.3. Let (z,y),z < 1, be the primary induced fixed point of the symmetric vector field €.
Then it has complex eigenvalues <

1
§(-2VT=evad—bo~d(1-2) - a) <y < j@vI—svad—bo—d(1 - ) - a).
PROOF. Lemma 2.4 and lemma 3.3 of [3).

Lemma 3.4. Under 33 0 712 then point (-1, —y*) has no pre-image.

Proor. The point (-1, —y*) has no preimage under the map 73, thus it cannot have a pre-image

under the composition map w33 o my3. [ |

Theorem 3.5. If (z,y),z < 1, is the primary induced fixed point for the symmetric vector field ¢
with

y< %(—2\/1_——:t'\/ad —bc—d(1-z) —a)

then there is a globally attracting annulus for ®2 — {(0,0)}. Furthermore, assuming conjecture 0.1

holds, the attracting annulus is an attracting limit cycle.

PROOF. As the primary induced fixed point corresponds to an induced fixed point with real eigen-
values, there are either one or two induced points (1,v),(1,v2) such that the line through those
points, in the direction of the respective vectors, pass through (z,y). If there are two such points,
then let v = max{v;, v2}. By lemma 2.4 and proposition 3.6 of (3] it may be assumed that v < y*.

At the origin 0 < a+d, (a+d)? < 4(ad—bc), so that the solutions have non-zero rotational speed.
As the real part of the complex eigenvalues are non-negative, the values of ||¢(¢, (), %0)) — (0, 0)||,
being the radial distance from the origin, is bounded below by /1 + 32. If 4(t, (20, %)) does not
intersect the line z = —1 then for some 0 < %y ¢(to, (z0, ¥%0)) = (20,0) with —1 < zo < 0. Then,
[1(20, 0) — (0, 0)|| = |z0| < 1. But, as /1 + 32 < |2| this means that /1 + y2 < 1 which is impossible.
Thus 7y, is well-defined on L(—00, y*]. By symmetry 73, is well-defined on Z[—y*, o0).

The primary induced fixed point satisfies y < (—2y/1 - zvad — bc —d(1 — z) —a)/b < (—d(1 -
z) — a)/b, or az + by < (—a — d)(1 — z) from which it follows that a + k + d < 0. Thus the
primary induced fixed point is attracting, implying that my; is well-defined. By symmetry mo is
also well-defined.

Consider the function 2 0 my2 : L(—00,y*] — L[—y*,o0) and the image of the set L[v,y*]

under this map. Under one application of 722 0 712,
w2 0 T12(L[v, y*]) = Llm2z 0 m12(y"), m22 0 m12(v))].

The invariant manifold of the secondary induced fixed point constraints w33 o m12(v) < —v. As

w22 0 m12(y*) € L[—y*,00) and as —y* has no pre-image then —y* < w22 o T12(y*). Thus 732 0
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m12(Z[v,¥*]) C I[~y*, =v]. By symmetry it is also true that m; o 2, (Z[—y*, —v]) C L[v,y*). Thus
72 = m11 0 W1 © Ty2 0 T3 satisfies 72(L{v, y*]) C Lv,¥*].

By theorem 2.12 of [3] there exists a locally attracting annulus A. It is clear that A is attracting
for all points in L[v,y*). Points in L(—o0,v) iterate under 32 0 712 to L[—y*, —v] and eventually to
A. Points on L(y*,c0) iterate to L[v,y*] and thus also to 4. Thus, all points along z = 1 iterate
to A. Points on the line £ = —1 will meet the line 2 = 1 under either the function m3; o 732 or the
function m;. Thus all points along z = —1 will also iterate towards A. Let (zo,y0) # (0,0), then
there is some 0 < ?o for which #(to, (0, Y0)) intersects either z = 1 or z = —1. Then, also (zo, yo)
will converge to the point z. The annulus 4 is globally attracting for all points in £2 — {(0,0)}.
Assuming conjecture 0.1 holds, it is an immediate consequence that the attracting annulus is an

attracting limit cycle. [ |

The following lemma and subsequent theorem will expand the region on which an attracting

annulus is known to exist.

Lemma 3.6. Let (zi,¥i),2; < 1, be the primary induced fixed point of the symmetric vector field
£ If

%(-2m¢_ad “he—d(l— ) —a) < % < %(2\/1——7.-\/—_ad e —d(1 - z;) — a)

then there exists w < y*, Ko such that for v < vy the map w3 0 my3 : L(—00,y*] = L[-y*,0)

satisfies
Aw
w20 Mia(v) < —e“ + Ko

where A & iw are the complex eigenvalues of the matrix

a+k b
c+l d
for k = (az; + byi)/(1 - z;),1 = (czi + dwi)/(1 - ;).
PROOF. Let v < y*. The vector at the point (1,v) has slope given by (¢ + dv)/(a + bv). The line

through (1, v) with this slope intersects the line z = —1 at a point below where the solution o(t, (1,v))
intersects the line 2 = —1. The line through (1,v) with slope (c + dv)/(a + bv) has the equation

_c+dv
T a+by

y (z-1)+v

and intersects the line z = —1 at the point (—1,v — 2(c + dv)/(a + bv)) = (-1,v'). Consider the
point (—1,v’). The slope at this point is (—c + dv’)/(—a + bv'). The line through (-1, v') intersects

the line 2 = —z; at a point below where #(t0, (1,v)) intersects the line £ = —z; under the linear

vector field
z| _la+k b||z k
JH e IHEIHE

14



The line through (-1, v") with slope (—c + dv')/(—a + bv’) is given by

—c+dv' ,
= -—_a+bv’(::+1)+v
and intersects the line z = —z; at the point (—z;, v’ + (=i + 1)(—c + dv’)/(—a + b)) = (~z;,v").
Under 7/w units of time the point (—a;,v") iterates to the point (—z;, —e¥* (v + ) — w) =

(—zi,v"). Consider the point (—z;,v"). Under the linear vector field

z| _{a+k b||z k
- [y] - [C+l d] [y] * [l]
the point (—z;,v"”) induces a vector with slope d/b. The line through (—z;,v") with slope d/b is
given by
y= %(z +z;)+ 0"
This line intersects the line z = —1 at the point (-1, v + (d/b)(zi — 1)). This gives an upper bound

for w22 o m12(v),

ae | —c+d(v— 22242 c+dv d
—e¥ l1—2i) = 2——+4| —vi+-(zi -1
7r2207l'12(v)< e —a+b(v—2%€%)( 1') a+bv+y yt+b(1' )

As Az d ad-be d ad — bc d
=—evvtev [2 (3_——b(a+bv)) - (3-!- b(—a+b(v-—2ﬁ—}§-§-))) (I—Zi)—yc'] —w-i-;(z.'—l).

Let vo = min{—1/b—a/b,—1/b+a/b+2d/b}. Then for v < vo one has that a+ bv < —1 from which
—(ad — bc)/(b(a + bv)) is bounded above by —(ad — bc)/b. Furthermore, since a + bv < —1 then

c+dv _d ad-—be >d
a+bv b bla+bv) " b

Thus,
1 a c+dv
R Sl ey
from which it follows that
c+vd
—a+b(v—20+bv) < =1,

Thus,

d ad- d ad-b d
To2 0 12(v) < -yt e [2 (3— %) - <3+¥) (l—a:.-)—y.-] - ¥i +3(z.' -1).

Hence m2 0 my2(v) < —eFv+ K¢ where

Ko=6¥[2(§—ad—zk)—(g'i'ﬁ;—bf)(l—zi)-yi]—yi+§($i—1)- [ |

Theorem 3.7. Let (z,y),z < 1, be the primary induced fixed point of the symmetric vector field
& If
%(-2\/—1 =zvad—bc—d(1- )~ ) < y < 3(~d(1 - 2) —a)
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then there is an attracting annulus in ®2 — {(0,0)}. Furthermore, assuming conjecture 0.1 holds, the

attracting annulus is an attracting limit cycle.

ProoF. There exist vy < y*, Ko such that for v < vy,

T2z 0 T12(v) < -5 + Ko.
Similarly, for —y* < —vo < v, by symmetry one has that

m11 0 T21(v) > —eXy— K.

Let v; = min{vo, (22 © m12)~1(—vg)}. Then for v < vy,
w¥(v) = myomy om0 m12(v)
> —e¥ (10 m12(v)) — Ko
> —e¥(—ev + Ko) — Ko
= %%y — Ko(e¥ +1).

If 72(v) > v it is sufficient that

p2% 4

e v v— Ko(ea«:"' +1)> .
Remembering that if y < (—d(1 — ) — a)/b then A = (a + k + d)/2 < 0, it is enough that

Ax
_____—Ko(e * +1) >

1-e ~

Thus, let v; = min{v,, —Ko(e%r +1)/(1- e%L)}. Then for v < vz, 7%(v) > v.

Consider the line segment L[vz, y*]. Under 72 one has that
7*(L[v2, ")) = L[r*(v), 7*(y")] C Lfv, y").

By theorem 2.12 of 3] there is a locally attracting annulus A for the points in Lfva,y*]. Let Cy,C; be
the boundary cycles of the annulus. The boundary cycles intersect the line at points (1,7), (1, s), v <
8§ S r < y*. The point (1,r) is a limit for the point (1,y*) under iteration of #2. The point (1,8) is
a limit for the point (1, ;) under iteration of 72. Let v < vy. As before it can be shown that there
is an attracting annulus A’ for points in the interval L[v,y*]. Let C{, C} be the boundary cycles of
the annulus A’. These boundary cycles intersect the line z = 1 at the points (1,7),(1,s"),v < &' <
r’ < y*. The point (1,r’) is a limit for (1,y*) under #2. The point (1,s’) is a limit for the point
(1,v2) under 72, The point (1,y*) can have only one limit, thus (1,r) = (1,7'). Note that v, < s’
so that the point (1,s’) is also a limit for the point (1,v2). The point (1,v2) has only one limit,
thus (1,5) = (1,5’). The annulus A4’ is formed from the same boundary cycles as the annulus A.

It follows that the annulus A is attracting for all points along L(—oc0,y*]. As points in L(y*,c0)
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iterate to L(—o0,y"], it follows that the annulus is attracting for all points along z = 1. Let (z,y)
be any point in £2 — {(0,0)}. Under finite time the solution through (z,y), é(¢, (z,y)) will intersect
the line z = 1 and iterate towards the annulus. The annulus is globally attracting for all points in

®? — {(0,0)}. Assuming conjecture 0.1 holds, it is an immediate consequence that the attracting

annulus is an attracting limit cycle. |

For the remainder of this section it will be taken that the primary induced fixed point lies to
the right of the line z = 1. The lemma and theorem that follows will outline a region in which there

are no limit cycles. The subsequent theorem will give a region in which there are locally attracting
annuli.

Lemma 3.8. There is a C* diffeomorphism §(x,y) = (v, w) from the set {(z,y) : 1 < z} of primary
induced fixed points to the set {(v,w):v < y* < w}.

Proor. The function § is the composition of the diffeomorphism m (lemma 2.4) between primary
induced fixed points and induced fixed points, and the diffcomorphism g (theorem 3.23 of [3]) between
induced fixed points and the set {(v,w):v < y* < w}. [ |

Theorem 3.9. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
§. Let y*** = m31(—y*). Then, if

S (c+ dyu:n

i) (D

there are no limit cycles.
PROOF. Let §(z,y) = (v, w). As in the proof in the case 0 < b,0 < a + d, (a + d)?/4 < ad — bc with
the induced fixed point satisfying

< (C+dy"
- a+by-n

) (z-1)+y*"
it can be proved that w < y***.

Any limit cycle must intersect the line z = 1. Points on L(w,00) cannot form cycles, being so
prevented by the invariant manifold passing through (1, w). The point (1, w) cannot form any cycles,
being attracted to the primary induced fixed point (z,y).

As w < y*** then L[y***, 00) C L{w, 00). Under symmetry one has L(—o0, —y***] C I(~o0, —w).
By symmetry the points in Z(~oco0, —w)] cannot form cycles.

As y*** = m21(—y*), then by symmetry it is also true that m2(y*) = —y***. Then one has
that m15(L(—00,y*]) € L(—o0, m12(y*)) = L(—00, ~y***) C L(—00, —w). Thus neither can points
in L(—o0,y*] form cycles. Finally, points in L(y*,w) map to L(—o0,y*], so neither can they form
cycles. In consequence, points along z = 1 cannot form cycles, it follows that limit cycles do not

exist. [ |
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It would be useful to know when it is true that (z, y) satisfies 7(v) = w where g(z,y) = (v, w). In
the following lemmas a graph ¥ will be determined that will separate the points for which 7(v) < w
and w < 7(v). Then points for which 7(v) < w will be exactly those points that lie above the graph
X- It will be shown that the graph x is continuously differentiable and extends infinitely to the right.

Lemma 3.10. Define X : (—00,y*) — {(z,y) : 1 < z} by the formula X(y) = 7 1(721(~v), y). Then
X is a continuous curve with lim,_.,. X(y) = (1,y***).
ProoF. Continuity of ¥ on the interval (—oo, y*) is immediate.

Let 0 < € and consider the ball B((1,y***),¢) = {(z,¥) : /(z — 1) + (y — ¥***)? < €}. Consider
the set given by V x W =G(B((1,y***),¢) N {(z,¥) : 1 < z}). Because § is a homeomorphism the

set V x W is open. As open subsets of z = 1 then V = (s,¢"), W = (y***,t). Consider the set
—w3,'(W), this set is open and has the form (v,y*). Let X = -1 (W)NV = (u,y*), this set is
open. It will be shown that X(y) C B((1,y***)).

Say u < y < y*, then y € —7;}(W), and m31(—y) € W. Thus X)) = 7Y mra(-y),y) €
B((1,4***), e). |

Lemma 3.11. Let X(y) = (%1(y), X2(y)) where X(y) =7 *(721(~y),y). Then X,(y) is a decreasing
function of y.

PROOF. The formula for ¥, (y) is given by

(a + by)(a + bma1(-y))
ad - be :

As ¢ is C? continuous, 2, is differentiable and thus,

() = _b(a + bﬂzl(—yzl)d-—bb":n(-y)(a + by).

Now y* < m21(—y) so that 0 < a + bmyy(~y). Also, 0 < 7},(~y) and since y < y* then a + by < 0.

Thus X3 (y) < 0 and is monotonically decreasing.

Xiy) =1-

As limy_y X3(y) = 1, it follows that 1 < ¥,(y) for all y < y*. By monotonicity, an inverse
of X1(y) exists. It is then possible to write X3(y) = %2(X7(X1(¥)))- Thus, X5(y) = F(x,(y)) for
F(y) =%(x17'(v))- |
Lemma 3.12. Let y < y*. Then X(y) — X(y*) = DX(n)K where n € (v, 9*).

PRrooF. Writing X(y) = (X1(v), F(x1(y))) where F is as given in lemma 3.11, then by the mean value
theorem,

%2(¥) - %2(v") = F (") (X1 (v) - %1 (")),

where n* € (X1(y*), X1(¥))- As X is monotonic then 5* = X,(n) for some 7 € (v,y*). Substituting
in the above formula,

X0) X0 = |7 gy | Fi0) %6
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And since ¥1(n) # 0,

vy [ T 1T X
x(®) "‘“‘[f’m(nnya(n) HORE

Thus, X(y) — X(v*) = DX(n)K where K = (X;(y) — X1(¢"))/X1(n) and n € (v,4*). |

Lemma 3.13. The function X is C! on the interval (—oo, y*). If 74, (—y*) exists then

lim X2 — ¥ (c+dy™) — mh(—y*)(c + dy’)
v—y* X1(y) -1 a + by***

PROOF. As X is the composition of two C! functions defined on the interval (—o0,y*) it is also C!
on (—o0,y*).

Because ¥(y) =g~ !(721(~y),¥) then DX(y) = D(g~(m21(—v), ¥))D(m21(~y), ). Thus,

vy = L [—(a+)b  —(a+bmu(—y))b] [—mhi(-
DX = 7% —§c+dygb _§:+d:::g_£§b][ "y y)]'

Thus Dx(y) is a vector with slope,

o1 (—y)(c + dy)b — (c + dmz1(—y))b
Th1(=y)(a + by)b — (a + b1 (—y))b’

which can be simplified to the form

T51(=y)(c +dy) — (¢ + dm(-y))
Th1(=y)(a + by) — (a + bmai(-y))

Using lemma 3.12 that X(y) — X(v*) = Dx(n)K for some n € (y,y"), then

[ Xi(y) -1 ] = Dx(n)K.

X2(y) -y
Hence,
fim X2 =y e mn(=n)(e +dn) — (e + dran(—n))
v—=y* Xa(y) -1 v—=v* 73 (—n)(a + bn) — (a+ bma1(—n))
So that,

L Xal®) =yt _ mh(oy)e+dy?) = (e bdmn(=y)
v=v* (¥ -1 my(-y")(a+by*) — (a + bmaa(-y°))
As y* = —a/b the denominator reduces to a + by*** > 0 and finally,

im X2) =¥ _ (e +dy™) - mh(—y*)(e +dy”)
lim gy = . .
=3 Ta(y) -1 a + by**

The final results in this section will be regions in which limit cycles do and do not exist.

Theorem 3.14. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
& If
X:(X1' (@) <.
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then there is a locally attracting annulus. Furthermore, assuming conjecture 0.1 holds, the attracting

annulus is an attracting limit cycle.

Proor. Consider the line L[v,3*]. Under the map 733 o m12 the set goes to w22 o my3(L[v,¥°]) =
L[r23 0 ®13(y*), 732 © m12(v)]. Now 732 0 m12(y*) € L[—y*,00). As —y* has no pre-image then —y* <
33 0 m12(y*). Observe that X,(X7'(z)) < y implies 72;(—v) < w. Because m2;(—v) < w then under
symmetry it happens that —w < m12(v). As —w < m2(v) then under my2, the point 73 0 m12(v)
is constrained to lie below the other invariant manifold of the secondary induced fixed point, thus
22 0 T12(v) < —v.

Then m230m12(L[v, y*]) C I[-y*, —v]. By symmetry it can be shown that moma(L[—y*, —v]) C
L[v,y*]. Then,

72(L[v,y"]) = 711 0 731 0 23 0 mx(L[v, ¥*]) C Lv, y*].

By theorem 2.12 of [3] there is a locally attracting annulus for all points in L[v, y*].

The point (1,w) is on the invariant manifold that passes through (z,y), the annulus is not
globally attracting. Points along L[w,co) cannot induce cycles. Along L(y*,w) the points map under
w11 into L[v, y*], and thus iterate to z. By symmetry, points along I(—o0, —w)] cannot induce cycles,
as neither can the points along 73! (Z(—o00, —w]) = L(—00, 7;(—w)]. Points in L(r}}(—w), v) map
under 72 into Z(—w, —y*) and thence under =z, to I[-y*,—v], so these points iterate to A. The

annulus is unique. Assuming conjecture 0.1 holds, it follows immediately that the attracting annulus

is an attracting limit cycle. [ |

Theorem 3.15. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
EIf

(c + dy""‘

e n -— 1
) - D4y <y <T(xEE)

then there are no limit annuli. Furthermore, assuming conjecture 0.1 holds, then there are no cycles.

PROOF. Assume a limit annulus exists. Let Cy, C; be the boundary cycles of the annulus. Say the
boundary cycles intersect the line z = 1 at the points (1,7),(1,s) where y*** < r < 8 < w. As the

annulus encircles the origin, which is repelling, the annulus is attracting.
Let g(z,y) = (v, w). As X%,(X7 ' (z)) then w < m3(~v). Consider the line segment L[s, w] under
application of 73! o 75!, then
T o7y (Lls,v]) = 3 (Llr'(s), 737 ()
C 733! (L[m3'(s), —v))
= L(ng (-v), 735 0 731 (s)]
C L{~w, —s].
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By symmetry, 7y;! o 77 (L[-w, —3]) C L[s, w]. Thus,
7=3(L[s,w]) = T om0 732 © 75 (L[s, w])
C 7y o 73! (L[-w, —s])

C L{s, w].

Note that (1,s) is the only fixed point for #=2 in the line segment L(s,w). If another fixed point
existed then maximality of the annulus would be violated.

Thus, the point (1, s) is attracting for 7=2. The cycle through the point (1, s) is then repelling
under forward time. The annulus is repelling. A limit annulus cannot be both attracting and
repelling. Limit annuli do not exist.

Assume an annulus exists whose boundary cycles both intersect the line z = 1. By the same
argument as before, the annulus has to be semi-stable. By conjecture 0.1, semi-stable annuli do not
exist. Thus, if annuli exist then its boundary cycles cannot both intersect the line z = 1.

If an annulus existed then one of its boundary cycles does not intersect the line z = 1. Because
of the nature of the vector field in the region {(z,y) : =1 < z < 1}, if the boundary cycle intersected
the line z = —1 then the cycle would also intersect the line z = 1. Thus the boundary cycle does
not intersect the line z = —1. This boundary cycle must then lie in one of the regions {(z,y): z <
-1}, {(z,y): -1 <z <1} or {(z,y) : 1 < z}. However, the trace of the symmetric vector field in
each of these regions is nonzero, preventing cycles from forming. Thus, the annulus does not exist

and it follows that cycles do not exist. | |

§4. 0<b,0<a+d, 0<ad-bec<(a+d)?/4, ad —bc+dk-bl#0.

The results in this section are virtually identical to those obtained in section 3. The salient point
to note is that the maps w2 : L(—o0,y*] = I(~00, y*), 721 : L[y*, 00) — L(y*, o0) are well defined.
Because of the similarity of proof, only references to the corresponding proofs in section 3 will be

given.

Theorem 4.1. If (z,y),z < 1, is the primary induced fixed point of the symmetric vector field £
with

H(-d1-2)-a)<y
then there are no cycles.

PROOF. See theorem 3.2. [ |

Theorem 4.2. If (z,y),z < 1, is the primary induced fixed point of the symmetric vector field &
with

y< %(—2\/1—3\/ad—bc—d(l—x) —a)
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then there is a globally attracting annulus for ®2 — {(0,0)}. Furthermore, assuming conjecture 0.1

holds, the attracting annulus is an attracting limit cycle.

PROOF. See theorem 3.5. B

Theorem 4.3. Let (z,y),z < 1, be the primary induced fixed point of the symmetric vector field
&I
1
%(—2\/1 —zvad-bc—-d(l-z)—-a)<y< 3(—d(1 —z)—a)
then there is an attracting annulus in ®2 — {(0,0)}. Furthermore, assuming conjecture 0.1 holds, the
attracting annulus is an attracting limit cycle.

ProoF. See theorem 3.7. |

Theorem 4.4. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
§. Let y*** = w21(—y*). Then, if

c+ dy“'
< - L L
v (B e-n+y
there are no limit cycles.
PROOF. See theorem 3.9. | |

The following lemmas will consider properties of the curve § that separate point for which
721(—v) < w and m1(—v) > w. Points in the former set will lie above ¥ while points in the latter

set will lie below ¥.

Lemma 4.5. Define X : (—00,y*) — {(z,¥) : 1 < =} by the formula %(y) = 7Y (721(~y), y). Then
X is a continuous curve with limy_.,« %(y) = (1,y***).

PROOF. See lemma 3.10. |

Lemma 4.6. Let %(y) = (%1(v), X2(v)) where %(y) =7~ *(m21(~y),y). Then %1(y) is a decreasing
function of y.

PROOF. See lemma 3.11. |

Lemma 4.7. The function % is C! on the interval (—00,y*). If 7}, (~y*) exists then

lim X2®) =¥ _ (c+dy™*) — why(=y")(c + dy")

=y x1(y) -1 a+ by***

PROOF. See lemma 3.13. [ |

Theorem 4.8. Let (2,y),1 < z, be the primary induced fixed point of the symmetric vector field
& If

X2(X7'(2)) < .
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then there is a locally attracting annulus. Furthermore, assuming conjecture 0.1 holds, the attracting

annulus is an attracting limit cycle.

PROOF. See theorem 3.14.

Theorem 4.9. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field

e If
(c + dymu
a + bys-t

then there are no limit annuli. Furthermore, assuming conjecture 0.1 holds, then there are no cycles.

)@ 1)+ 4" < y < (%7 N(2))

PROOF. See theorem 3.15. [ |

§5. 0<b,0<a+d,0<ad-bc, ad—bc+dk-bl=0

The only result so far in this direction has been the following corollary.

Corollary 5.1. If 0 < a + k + d then there are no cycles.

PROOF. See lemma 3.1. [ ]

§6. 0<b, 0<a+d, ad—bc=0
The analysis is most easily facilitated by considering the values of dk — bl. The following results will
expand on this study.

Proposition 6.1. If dk — bl < 0 then there are no cycles.

PROOF. The symmetric vector field bounded by the lines z = 41 does not admit cycles. If cycles
existed then they must cross either the lines x = +1 or lie outside of the region bounded by the lines
z = +1. Firstly, consider the case that a cycle either intersects the lines z = 1 or lies to the right of

the line z = 1. To the right of the line = 1 the symmetric vector field has the form of the linear

JHE IR HE

The stability at the primary induced fixed point (1,y*) is given by the determinant of the defining

vector field

matrix in the linear vector field L. The value of this determinant is dk — bl.

If dk — bl < 0 then the primary induced fixed point is a saddle point to which can be identified
two linear invariant manifolds, at least one of which bisects the region {(z,y) : 1 < z}. This bisection
prevents cycles from forming. If dk — bl = 0 then a line of fixed points given by 0 = (a+ k)z +by —k
bisects the region {(z,y) : 1 < z} preventing cycles from forming.

By symmetry, cycles cannot intersect the line £ = —1 nor lie to the left of the line z = —1.

Thus cycles do not exist. [ |

Proposition 6.2. If 0 < dk — bl < (a + k + d)?/4 then there are no cycles.
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Proor. The symmetric: vector field bounded by the lines # = +1 does not admit cycles. If cycles
existed then they must cross either the lines z = +1 or lie outside of the region bounded by the lines
z = +1. Firstly, consider the case that a cycle either intersects the lines z = 1 or lies to the right
of the line z = 1. As in proposition 6.1, the stability at the fixed point (1,y*) is determined by the
value of the determinant of the corresponding linear vector field
w[l=lan A GL-(E)
y c+l d]ly !
If0 < dk—bl < (a+k+d)?/4 the primary induced fixed point is either an attracting or repelling fixed
point to which are two linear invariant manifolds, one of which will bisect the region {(z,y) : 1 < z}.
In this case, cycles do not exist. When dk — bl = (a + k + d)?/4 a linear invariant manifold lies in
the region {(z,y) : 1 < z} preventing cycles from forming,
Since cycles cannot intersect the line z = —1 nor lie to the left of the line z = —1 they do not

exist. ]

Proposition 6.3. If (a+ k + d)? < dk — bl and 0 < a+ k + d then there are no limit cycles. If
0 < a+ k +d then there are no cycles.

PRrooF. The first part of the proposition is an immediate application of lemma 3.1. Cycles do not
exist in the region bounded by the lines z = +1. If cycles existed then they must cross either the
line z = 1 or the line z = —1 or lie outside the region bounded by these two lines. Firstly, consider
the case of a cycle intersecting the line z = 1 or being in the region to the right of the line z = 1. By
using Stoke’s theorem, the case of a cycle intersecting the line z = 1 can be excluded. As 0 < a+k+d
the primary induced fixed point is repelling, cycles do not exist in the region right of the line z = 1.
Similarly, cycles can neither intersect the line £ = —1 nor lie to the left of the line z = —1. Thus,

cycles do not exist. |

Proposition 6.4. If (a+k+d)? < dk—bl and a+k+d < 0 then there is a unique attracting cycle.
Proor. The function my; : L(y*,00) — L(—00,y"] is given by T11(v) = —e¥ (v — y*) + y* where
A = iw are the eigenvalues of the matrix
[ a+k b]
c+l dj’

leyA=(a+k+d)/2<0,w=+/4(dk— bl) - (a+ k + d)?/4/2. The function 72, : I(—oo, -y*) —
L[-y*, 0) is given by Ta2(v) = —e¥ (v + ¥*) — y*. For the vector field given by

c[5]=[2 2 [;]

the solution through the point (zo, yo) is given by

2() = 03: : zyo elardyt | 90 = byo

a+d ’

d azg + byo a dzg — by,

t) = = —— (a+d)t____0.
v =5—3a © b a+d
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For points in L(—o0, y*] a non-parametric solution through the point (1,v) is given by

_;lx d-bv
Y=3*"—3

where it is remembered that as ¢ — co then z — oco. Thus, the point (1,v) under the solution
meets the line z = —1 at the point (~1,v — 2d/b). Hence 3 : L(—o0, y"] = I(—o0,y") is given by
721(v) = v+2d/b. By symmetry, the map w2, : L[—y*,00) — L(y*, 0) is given by 731(v) = v+2d/b.

The function 72 = 713 0 751 0 M2 0 T3 : L(—00, y*] — L(—o0, y*] is thus given by

i (v) = —e¥ [— *‘“‘(v—%+y )-2y" +2:] +y".

Solving for 72(v) = v one has that

1 e 2d ax
v=m[y (1+2ew +ev )——ev(eu +1)]

Notice that the following inequalities hold,
= _a+d<0

b

2d
= Zy ——b-<0

2d =

= v 2e ¥ (¥ +1)-—e"=-(*~'+1)<0
= v (1+ 2% )—— T +1) <y(1 - %)
= v < Y.

Thus, indeed #? has a unique fixed point in L(—00,y*]. As |(72)'(v)| = e%* < 1 then the fixed point
is attracting. The cycle through the fixed point gives the unique attracting cycle. |
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§7. 0<b, 0<a+d, ad—bec<0.
When these conditions hold, the possibility of attracting annuli are very remote. This section will

depend on results obtained in section 7 of [3].

Proposition 7.1. If ad — bc + dk — bl = 0 then there are no cycles.

Proor. Consider the linear vector field given by

[l=[enh A G]-1)

As the determinant is zero, the number of fixed points is either zero or infinite. There are two cases
to consider.

(¢) :If I # (d/b)k then there are no induced fixed points. Any cycles must contain the origin.
The origin is a saddle with index ~1, thus cycles cannot exist.

(#1) :If I = (d/b)k then ad — bc = 0, this case cannot occur. | |

For the remainder of the section it will be taken that ad — bc + dk — bl 3 0. It will be proved

that attracting cycles are not very likely.

Proposition 7.2. Let (z,y),z < 1, be the primary induced fixed point of the symmetric vector
field €. Then € has no cycles.

PROOF. Any cycle must enclose fixed points whose indexes sum to 1. As the only fixed point is at

the origin, with index -1, cycles do not exist. | |

Proposition 7.3. Let (2,y),1 < z, be the primary induced fixed point of the symmetric vector
field €. If

y< 3(=d(1—z) ~a)
then there are no cycles.

PROOF. By lemma 3.1 it is sufficient that 0 < a + k + d for there to be no cycles. This means
0 < a+ (az +by)/(1 — z) + d which reduces to y < (—d(1 — z) — a)/b. |

Lemma 7.4. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field €.
Then (z,y) has complex eigenvalues <

1
H(~2vz—Ty/~(ad—b) ~d(1-2z)~a) <y < %(2\/1: ~Tv/~(@d=be) — d(1 — z) — a).
PROOF. The eigenvalues at the primary induced fixed point are determined by the roots of the

a+k b
c+!l d|”°
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The characteristic equation is A2 + (a + k + d)A + ad — bc + dk — bl = 0. Substituting the values
k = (az + by)/(1 — z),1 = (¢z + dy) /(1 — z) into the characteristic equation the above reduces to

22 (a+d—d:c+by)/\+ ad—bc___o.
l-2 l—-2z

The eigenvalues are complex if and only if the discriminant is negative,

2
(a+d—dz+by) _4(ad—bc)<0.
l1-z l-=z

Thus,

%(—2\/3: —1y/—(ad=bc)—-d(l1-z)—a)<y< %(2\/2 ~1y/—(ad—bc)—d(1—z)—a). B

Theorem 7.5. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
£ If

%(2\/3: —TV/=(ad=b0)—d(1-z)—a) < y
then there are no cycles.

PRrooF. The primary induced fixed point has eigenvalues whose product is (ad — bc)/(1 — z) > 0.
Thus, the primary induced fixed point has index 1. Similarly the secondary induced fixed point also
has index 1. Any cycle must contain within its interior points whose indices sum to 1. Thus, either
the primary or secondary induced fixed point are in the interior of the cycle. Since the primary
induced fixed point has at least one real eigenvalue, there can be associated an eigenvector through
which lies a linear invariant manifold. Similarly, through the secondary induced fixed point lies a
linear invariant manifold. As linear invariant manifolds cannot be bounded, it follows that cycles do

not exist. |

Lemma 7.6. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field &
such that

H(-2VE =Ty (@ — b0~ d(1-2) — ) < y < HeVE=TV=(@d— b0 - d(1 - ) - a).
To the primary induced fixed point corresponds unique values of k,l. Let A + iw be the complex

a+k b
c+!l d|’

Then there exist —y* < vq, K3 such that for v; < v the map Ty, o Ty : f[—y‘,oo) — Lly*,0)

eigenvalues of the matrix given by

satisfies

—e’:a_'v + Ke <m0 1r21(v).
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Proor. The eigenvalues of the origin are the eigenvalues of the matrix
a b
¢ d|’

_ a+d+ /(a+ d)? - 4(ad - bc)

The eigenvalues are given by

A1 >
A a+d—+/(a+d)? - 4(ad - bc)
2=

2

where A2 < 0 < A;. The vector corresponding to the larger of the two eigenvalues is

1 1
7 = | —a+d4+/(a+d)3—4(ad-bc) | °
13

Let —y* < v. The solution through (-1, v) lies inside of the line through (-1, v) parallel to the linear

manifold corresponding to the positive eigenvalue ;. The line through (—1,v) in the direction of

MR EAE

This line intersects z = 1 at the point (1, v + 27). Thus, 73(v) < v + 27.

the eigenvector corresponding to 1}, is

By a proof analogous to lemma 3.11 of (3], there exists y* < v;, K such that for v; < v,
-eé-*v +K; < 1('11(1}).

Let v, = max{—y*, vy — 27}. Then for v; < v one has that m3;(v) < v+ 27 where v; < v+ 27. Thus,

7110 ma1(v) > —e¥my + K,
> —ex':'(v +29)+ K,

P »
=—eTv+K; — 27e .

Hence, 13 0 w31(v) > —e¥v+ K; where K; = K, — 2ve* . |

Lemma 7.7. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field £.
If

1 1
3(—d(1 —z)—a)<y< 3(2\/1: —1y/—(ad —bc) —d(1 — z) — a)
then there exist v3 < y* such that for v < vs the return map satisfies v < w2 (v).
PRoOF. By lemma 7.6, there exist —y* < v3, K3 such that for v, < v,
11 O 1"21(‘0) > —e‘\'fv + K.
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By symmetry of the symmetric vector field, for v < —uvg,
w22 0 m2(v) < —e¥y— K.
Let v' = min{—vz, (722 0 712)~*(v2)}. Then for v < v3, we have
1r2(v) = 1 0 721 0 W22 0 m12(V)
> —e¥ (22 0 m12(v)) + K2
> —eéf'(—e%‘v -K))+ K,
= ey + Ky(e +1).
If 72(v) > v it is sufficient that
0+ Ky(e™ +1) > v.
As (-d(1—z)—a)/b<ythena+k+d<0and A <0. Then it is required that

Ax
Ka(e© +1) 2.

1-e* ~
Let v3 = min{v’, Ka(e** + 1)/(1 — ¢%*)}. Then for v < v3 it happens that v < 72(v). |

Theorem 7.8. Let (z,y),1 < z, be the primary induced fixed point of the symmetric vector field
& If

H=d(1-2)—a) <y< (2VE=Ty/(@d—be) - d(1-z) - a)

and (W) < 7 then there is a pair of repelling annuli, each of which intersects only one of the lines
z =1 or z = -1, and an attracting annulus which intersects both the lines £ = 1 and = = -1.
Assuming conjecture 0.1 holds, the repelling annuli are repelling limit cycles and the attracting

annulus is an attracting limit cycle.

PRroOF. By theorem 7.7 of [3], there is a pair of repelling annuli, each annulus intersecting only one
of the lines z = 1 or z = —1. Assuming conjecture 0.1 holds, the repelling annuli are repelling limit
cycles.

Consider the line segment L[vs, 713 (w)] where v3 is given in lemma 7.7. Note that 720m;(w) <
711(w). Thus,
w2(L[va, m11(w)]) = L[%(v3), 7% 0 m11(w)]
C L[va, my1(w)).
By theorem 2.12 of [3] there is a locally attracting annulus for points in L[vs, 711(w)]. The annulus
intersects both lines z = 1 and r = —1. Assuming conjecture 0.1 holds, the attracting annulus is an

attracting limit cycle. |

Theorem 7.9. Let (z,y),1 < z, be the induced fixed point of the symmetric vector field €. If

H(~d(1-2)-a) <y < @VE— 1Y/ (ad =19 - d(1 - z) - a)
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and ¥ < w(W) then there are no limit annuli. Furthermore, assuming conjecture 0.1 holds, then

there are no cycles.

PROOF. By theorem 7.8 of (3], there are no limit annuli which intersect only the lines z = 1 or
z=-1.

Say a limit annulus exists. It must then intersect both lines z = 1 and z = —1. Let the boundary
cycles of the annulus intersect the line £ = 1 at the points (1,7),(1,s) where 3 < s < r < v.
The value v3 is given in lemma 7.7 and (1,v) is the point of intersection of the stable manifold
through the origin and the line z = 1. Note that as 72(v) < v the annulus is repelling. However,
72(L[vs, s]) = L[r?(va), 7%(s)] C L[vs, s]. The point (1, s) is the only fixed point of the 72 in the line
segment L{v3, s]. If another fixed point existed then maximality of the annulus would be contradicted.
The cycle through (1, s) is attracting. The annulus is attracting. A limit annulus cannot be both
repelling and attracting. Limit annuli do not exist.

Assume an annulus exists whose boundary cycles both intersect the lines z = +1. By the same
argument as before, the annulus has to be semi-stable. By conjecture 0.1, semi-stable annuli do not
exist. Thus, if annuli exist then its boundary cycles cannot both intersect the lines z = +1.

If an annulus existed then one of its boundary cycles does not intersect both the lines z = +1.
If this boundary cycle intersected only one of the lines z = +1 then a contradiction to theorem 7.8
of (3] would arise from the piecewise linear vector field with the same defining constants as £. The
boundary cycle does not intersect either of the lines z = +1. This boundary cycle must then lie in
one of the regions {(z,y) : 2 < -1}, {(2,y): -1 < z < 1} or {(z,y) : 1 < z}. However, the trace of
the symmetric vector field in each of these regions is nonzero, preventing cycles from forming. Thus,

the annulus does not exist, it then follows that cycles do not exist. | |
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§8. 0<b, 0=a+d.-

For these choices of the defining constants there are no limit cycles.

Proposition 8.1. If k # 0 then there are no limit cycles.

ProoF. If a limit cycle existed that only intersected the line z = 1 then proposition 8.1 of [3] would
be violated for the piecewise linear vector field with the same defining constants to the right of
z = —1. If the limit cycle only intersected the line z = —1, then under symmetry there would be a
limit cycle that only intersected the line z = 1. This would contradict proposition 8.1 of [3] for the
piecewise linear vector field with the same defining constants, limit cycles that only intersect z = —1
do not exist.

Thus, any limit cycle’ that exist must intersect the lines z = —1 and z = 1. Let C be this limit
cycle, by Stokes theorem,

dz dy _/‘ d d:c) d (dy)
lod Edy ﬁdz - int(C) dz (dt + ‘(E dt dz dy.
Breaking up the area integral into the three regions, 4 = int(C) N {(z,y) : z < =1}, B = int(C) N
{(z,y): -1 <2< 1}, and D = int(C) N {(z,y) : 1 < z}, then

d
0= / —((a+ k)z + by — k) + i((c+ )z + dy — l)dz dy+
4 dz dy

d d d d
/B {0z +by) + @(cz + dy)dz dy + /D e+ k)z+by—k)+ @((c + )z + dy — 1)dz dy

=/(a+k+d)dzdy+/(a+d)dxdy+/(a+k+d)dzdy
A B D

=/kda:dy+/ kdz dy.
A D

As k # 0 the integral on the right is nonzero. By contradiction, limit cycles do not exist. 1

Theorem 8.2. If k = 0 then there are no limit cycles.

PRrooF. Under the change of variables given by
[l ] =15 ] [ ]
$ 1) ly)’

(a+k b] [z] | [#]

the symmetric vector field given by

e+ d] .y.+.14’ z<-h
G-EE T e
a+k bl |= _ k 1<z,

"~

e+l df|y) 1]’
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becomes o . 1
0 3l lx 0
| —(ad—be)/o+1 of |y [t [1] X<-b

x]_ 0 b [x )
E[Y =9 [ ~(ad=be)sp o] [y ’ “lsX<y
[ 0 b1 [Xx] [o]
| —(ad—bay/b+1 of [¥] (1] 1<
Thus,
( (—adgbe £ 1) X +1
bY '
d_Y=< (_ad—bc)x
dX 5% !
(-2 )X ~1
\ bY '
Thus,
bY’+(ad;bc—I)X2—2IX+c=0, X<-1,
bY2+(ad;bc)X2+c+l=0, -1£X<1,
bY’+(ad;bc—l)X2+21X+c=0, 1< X.

Assume that there is a limit cycle. The cycle must be on a level curve in the X,Y plane for
some particular value c¢. By X—-axis symmetry of the defining relations between X and Y, the cycle
intersects the X-axis at some point (Xp,0). Because of Y-axis symmetry the cycle also intersects
the X-axis at the point (—Xo,0). Say the cycle is attracting, the repelling case is handled in an
analogous manner. Then the point (X, 0) close to (Xo,0) will, under the symmetric vector field,
approach the limit cycle. Consider the level curve on which the point (Xj,0) lies. This level curve
has Y'-axis symmetry and X-axis symmetry. The path of the point (X, 0) is continuous and must
intersect the X-axis at some point (X;,0) close to (—Xo,0) if it is to approach the cycle. But, by
Y-axis symmetry of the level curve through (Xj,0) it follows that (X3,0) = (—X;,0). The path
through (X3, 0) joins up with the point (—X1,0). Then by X-axis symmetry the level curve will
also join up the points (—Xj, 0), (X3,0). Thus, a cycle exists through the point (X;,0) so that the

point cannot approach the claimed limit cycle. Thus, limit cycles do not exist. | |
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§9. 0=h.

There is a short proof as to why cycles cannot exist under the condition that b = 0.

Proposition 9.1. There are no cycles.

PRroOF. The symmetric vector field £ has the following form,

[a+k 0] [z] 1
e+l d) [y F[efr =<7h
z| _ a 0]z )
f[y]" | b dHy]’ “lseslh
a+k 0][z] [k]
e+t a]|y] T |1] 1=

Assume a cycle exists. Within the cycle lies a fixed point. But through the fixed point lies a linear
invariant manifold parallel to the y-coordinate axis. Since cycles cannot encircle linear invariant

manifolds they do not exist. |
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Appendix A.

In this appendix, the relationship between continuous piecewise linear vector fields of [2,3] and the
symmetric vector fields will be discussed. First, the respective definitions will be presented.

Definition A.1. £ is a continuous piecewise linear vector field in canonical form < there exists

an integer 1 < n, matrix B, vectors a,ay, 8;, 1 < i < n and constants v, 1 < i < n for which

E(x)=a+Bx+Y ", ol < Bi,x

> =%l

The following definition is repeated from the main body of the text:

Definition 1.2. £ is a symmetric vector field < there exists constants a, b, ¢, d, k, ! with either k # 0

orl #0, and

([3]-

a+k b=z k

e+t d [y] 1)
(a b] [z

¢ d] [y]

(a+k b][z] _ [ k]
¢+l d] |y [ 1)’

T < -1
~-1<z<1;

1<z

The following lemma shows how the defining constants in the two types of representation are

related.

Lemma A.2. (i) :Let {(x) = Bx + |[1 0]x - 1|a — |[1 0]x + 1|« with

_ [ 0 _ |
*= .02];6[0]’3_[521
Then . . r - -
(la+k b2 + k
e+l d]|y] L]’
z] _J[a b][=
Bl=q1e Ll
atk b][2] _ []
(Le+l d] {y] 1)
where i
a b| _[buu—2a biz2] [R] _
[ d_ - 621—2612 522 AR
(i) :Let ) . e - -
(la+k b]||=x + k
e+l d] |y 1]’
z]l _J[a b][=z
f[y]‘< ¢ d][y]’ .
(a+k b [z]_[*
Le+l d]ly] L)

b12
ba2

z< -1
-1<z<1;

1<z

|

2&1
2&2

]

be a symmetric vector field with k,! not both zero. Then é(x) = Bx + |[1 0]x — 1] — |[1 0]x + 1]a

with

;l-k
3l

|

o

1

a+k b
c+l d

k



Proor. The continuous piecewise linear vector field £ in canonical form has the following decompo-
sition, ’
£(x) =Bx+ (1-[10]x)a+ ([1 0]x+ 1) x€ {(z,y): 2z < -1}
= Bx+ 2a
Ex)=Bx+(1-[10x)a—([10)x+1)a x€{(z,y):-1<z<1}
= Bx — 2af1 0]x
&(x) =Bx—(1-[10)x)a— ([1 0]x+ 1)ex x€ {(z,y): 1<z}

= Bx - 2a.

Thus matching with the corresponding decomposition for a symmetric vector field,

I3 -;1 = ii’; Z] [;] + [l;] x€ {(z,y) :z < -1}
6-;-=-Z f;] [:] x€{(zy):-1<2<1)
BB 06 et
gives,
Bx+2a= :i’; Z L:1 + P};T x€{(z,y):z< -1}
(B -2a1 0))x = C: Z] [:] x€{(z,y):-1<z2 <1}
Bx—-2a= Zi’; Z ; - I; x€{(zyy):1<z}.

(7) :Given the values of

_|ea _ |b1n b12
a—[a2]’B_[521 bzz]’

then by using the equivalences above,
a b - bn - 2&1 blz k - 201
¢c d|~ bzl — 29 bgg W 2(!2 )

[ o fext AL 3]

then by using the same set of equivalences,
ik
] _la+ k b
=[] o= e 2] :

The concept of the induced fixed point occurs frequently and in many of the results proved in

(7%) :Given the values of

the text. The next two lemmas relate the primary induced fixed point to the defining constants in

the canonical representation of a symmetric vector field.

2



Lemma A.3. Let the symmetric vector field £ be given as

bir b2 ] [01 ] a

é(x) = [ bay o + g |[10]x— 1] az [[1 0)x+ 1}.

If by1b22 — ba1b12 # O then the primary induced fixed point of £ is given by

[z] - 2 [ a1bag — azby2 ]

bi1bzz — ba1b1a | —1ba1 + a2y | °
Proor. Using lemma A.2 the symmetric vector ﬁeld in canonical form can be rewritten as
([a+k ) [z], [*]
_c+1 _y_+_l_’ z < -1

GIEIEL T e
:a+k b -z- pk-
(Le+! d] _y_—.l_’ 1<z

where

[a b - [bn—Zal blg] [k] _ [201]
c d- - bn—Zag bn "l - 202 )
The primary induced fixed point is the solution (if it is uniquely defined) to
(o)=L 3] 5] 3]
ba1 b2 202"
If b11baa — b21b12 # 0 then a unique solution exists and is given by

[z] - 2 [ a1ba3 — agbys ] ) 1
y bi1baz — baybyg | —a1ba1 + azbny

Lemma A.4. Let a,b,c,d be constants. If the symmetric vector field has (z;,¥;),z; # 1 as the

primary induced fixed point then

a+ a_xlx-"-_sb.&' b 1 az; + by; 1 az; + by;
) = [c+ oty d] M =T b T o e 21 5=z [m + dy.-] 2 O« +1}.

ProoF. The symmetric vector field
fa+k b][z], [k]
c+l d] ly

SBR[

a+k b [z [ &
e+l dj |y

~
-

r
Ll
L
-

for

[k] _ 1 [azi+by
1] 7 1-2 | czi + dy;
has the point (z;, y;) as the primary induced fixed point. Using lemma A.2 to convert the represen-

tation into canonical form gives

2(1 - z;) [cz.' + dy;

a:c,-+by.~] B = [0+‘-’-’{"—_";—b'.ﬂ b]

a= c+ c:;.g+dgi d
p—
and thus
a+ .‘EI:L:h b 1 az; + by; 1 az; + by;
= & — _ - 10
) [c+ estdy 4| T H1-3) [cz,--i-dy.'] It 03 = 1= o=y [cz.~+dy.-] |1 0}x+1/8




Figure captions.
Figure 1. The symmetric vector field is conjugate to a linear vector field with an unstable focus at

the origin.

Figure 2. The symmetric vector field has an attracting limit cycle, as indicated in bold type. The
effect of symmetry of the vector field is clearly evident in the symmetry of the limit cycle.

Figure 3. A pair of saddle-node connections is another possibility for a symmetric vector field as
indicated by this phase portrait. The invariant manifolds of the saddle points are indicated in bold
type.

Figure 4. The three lines of fixed points, indicated in bold type, divides 2 into two disjoint regions.

In each region there are no attractors.

Figure 5. The symmetric vector field is conjugate to a linear vector field with a saddle point at the

origin. The invariant manifolds through the origin are indicated in bold type.

Figure 6. At the origin is a saddle point. The invariant manifolds through the origin are indicated
in bold type. Furthermore, there also exists a pair of unstable nodes. The saddle point at the
origin and this pair of unstable nodes together allow the possibility of saddle-node connections. The

saddle-node connections occur on the stable manifolds through the origin.

Figure 7. The symmetric vector field is conjugate to a linear vector field with a saddle point at the
origin. The invariant manifolds through the origin are indicated in bold type.

Figure 8. The symmetric vector field is conjugate to a linear vector field with an unstable node at

the origin. Note that the y-axis is invariant under the vector field, this prevents the formation of

cycles.



5.000

2.500

0.000

-2,9500

-5.000 | | | |
-5.000 -2.300 0.000 2.900 3.000

FIGURE: 1



20.00

10.00

0.00

-10.00

-20.00

-10.,00

10,00
FIGURE: 2



5.000

2.9500

0,000

5.000
FIGURE: 3



2.000

1.000

0.000

~2.000 _

FIGURE: 4



2.500

1.250

0.000

-1.250

-2.500

-2.300 2.500

FIGURE: 5



5.000

2.500

0.000

-5,000

-5.000 ‘ -2,500 2.500 9.000

FIGURE: 6



5.000

2.500

0.000

-2,500

5.000
FIGURE: 7



2°500 ] ] | j i l 1 1
1.250 ) ] A
B N T
| N\ |
i \ A
0.000 4 )——
Y . T "\\
1 \\ _
-1.250 /3 \ —
-2.500-' ' L1 |
' -2.500 0.000 1.250 2.500
X FIGURE: 8



	Copyright notice1990
	ERL-90-29

