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GLOBAL PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR VECTOR FIELDS

PART n: SIMPLEST SYMMETRIC CASE IN »2. f

Robert Lum and Leon 0. Chua. ft

Abstract

Among nonlinear vector fields, the simplest of which can be studied are those which

are continuous and piecewise linear. Among these nonlinear vector fields a large and

important subset are those vector fields which are odd symmetric. Associated with

these types of vector fields are partitions of the state-space into a finite number of

regions. In each region the vector field is linear. On the boundary between regions it

is required that the vector field be continuous from both regions in which it is linear.

This presentation is devoted to the analysis in two dimensions of the simplest possible

types of continuous piecewise linear vector fields with odd symmetry, namely those

vector fields possessing a pair of symmetric boundary conditions.

As a practical concern, the analysis will attempt to ask and answer questions raised

about the existence of steady-state solutions. Since the local theory of fixed points in a

linear vector field is sufficient to determine stability of fixed points in a piecewise linear

vector field, most of the steady state behaviour to be studied will be towards limit

cycles. The results will present sufficient conditions for the existence, or nonexistence

as the case may be, for limit cycles. Particular attention will be paid to the domain of

attraction whenever possible.

With these results qualitative statements may be made for piecewise linear models

of physical systems which have odd symmetry.

f This work is supported in paxt by the Office of Naval Research under Grant N00014-89-J-1402.
ft The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The determination of limit cycles is of great practical and theorectical importance. The work

on Hilbert's 16th problem (a survey paper being that of Lloyd[4]) has shown that even for two

dimensions and polynomial vector fields as simple as degree two, it is not evenknown the mavim^TTi

number of limit cycles possible. This situation is symptomatic of the present intractability of the

determination of limit cycles globally, i.e. in the entire plane S2. However, it may be possible in

certain cases to give results on the global determination of limit cycles. One such area has arisen

from the solution of problems in electrical engineering.

With the advent of computer aided design and the subsequent increase of computer simulations

of physical circuits, device modeling has emerged as an increasingly important area of research. In

the modeling of electrical and electronic circuits an exemplary case of such work is the paper Chua

and Deng[l] "Canonical piecewise linear modeling." In that paper a number of electronic circuits

were shown to have concise representations as piecewise linear functions. The connection of one or

more of such circuits in feedback naturally creates a dynamical system. If any of the constituent

elements has a representation as a nonlinear function, the dynamical system is defined by a nonlinear

vector field acting on the state space. For example, dynamic circuits with piecewise linear resistors

give rise to such dynamical systems.

Conversely, in two and three dimensions, nonlinear vector fields which are piecewise linear may

be emulated by equivalent physical circuits. Such emulation requires the use of piecewise linear

resistors, capacitors and inductors.

Once a piecewise linear representation of a circuit has been created, the computer becomes

a powerful tool with which to study the original circuit. Computer work with such models has

suggested the possibility of proving qualitative results about certain classes of piecewise linear vector

fields arising from such modeling.

This paper has been devoted to finding attractors in piecewise linear vector fields which possess

odd symmetry about the origin. Section 1 will introduce the basic definitions and concepts to be

used, then sections 2 through 9 will present the analysis of continuous piecewise linear vector fields

with odd symmetry about the origin.

To conclude this introductory section, some examples of the variety of behaviour possible in a

symmetric piecewise linear vector field will be presented, then a summary of the main results will

end this section.



Example 1. (Figure 1.) Consider the vector field
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The only fixed point is at the origin. The fixed point is an unstable focus. By theorem 0.2 there are

no limit cycles.

Example 2. (Figure 2.) Consider the vector field
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The only fixed point is at the origin. The fixed point is an unstable focus. By theorem 0.2 there

exists a globally attracting limit cycle.

Example 3. (Figure 3.) Consider the vector field
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There is a fixed point at the origin which is an unstable focus. The other fixed points are saddle
points. By theorem 0.3 this is an example ofa vector field without any limit cycles.

Example 4. (Figure 4.) Consider the vector field
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There are three lines of fixed points. Together, these lines form a partition of 82 into twodistinct

regions. By theorem 0.4 there do not exist any limit cycles for this symmetric vector field.



Example 5. (Figure 5.) Consider the vector field
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The only fixed point is at the origin which isa saddle point. By theorem 0.6 there do not exist any
limit cycles for this particular symmetric vector field.

Example 6. (Figure 6.) Consider the vector field
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The fixed point at the origin is a saddle point. The other fixed points are unstable nodes. By

theorem 0.7 this is an example of a vector field without any limit cycles.

Example 7. (Figure 7.) Consider the vector field
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The only fixed point is at the origin which is a saddle point. By theorem 0.8, there do not exist

limit cycles for this symmetric vector field.

Example 8. (Figure 8.) Consider the vector field
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The only fixed point is at the origin which is an unstable node. By theorem 0.9 the symmetric vector

field does not have any limit cycles.



Summary of main results.

The results in sections 2-9 may best be summarised in the following set of theorems that collect

the main points of those sections.

Conjecture 0.1. The symmetric vector Geld ( (see definition 1.2)does not admit semi-stable annulL

If the symmetric vector field £ admits a limit annulus(see deRnition 1.9), then the annulus is either

an attracting limit cycle or a repelling limit cycle.

Note that for the asymmetric piecewise linear vector field in [3] with one boundary condition

which is obtained from £ with the same definingconstants, conjecture 0.1 implies that the associated

vector field does not have any semi-stable annuli and that all limit annuli are either attracting limit

cycles or repelling Umit cycles. Under conjecture 0.1, the following results may be proved to hold

true:

Theorem 0.2. Let 0 < 6,0 < a + d,0 < ad- 6c, 0 < ad- be + dk - bl. Let (x, y) be the primary

induced fixed point of the symmetric vector field with defining constantsa,6,c,d,k, I. Define

*i(*,y) =y-£(-d(l-x)-a)
= I(a +fc +d)(l-x).

Consider the symmetric vector field £ with de&ning constants a,6,c,d,fc,/. IfXx(x,y) < 0 then £
has an attracting limit cycle. If 0 < Xi(x,y) then £ does not have any limit cycles.

Proof. See theorems 3.5, 3.7, 4.2, 4.3, 3.2, 4.1. |

Theorem0.3. Let 0< 6,0 < a+d, 0<ad-6c, ad-bc+dk-bl < 0. Let (x, y) be the primary induced
fixed point ofthe symmetric vector field with defining constants a, 6, c, d, kl. If(a +d)2/4 <ad- be
define

Xi(x,y) = y -XiOcT^x))

where x\y) = (xi(y)»X2(y)) &#Ven in lemma 3.10. If0< ad- be < (a+ d)2/4 define

X2(x,y) = y-X2(xl1(x))

where x(y) = (*i(y),*2(y)) is given in lemma 4.5. IfX2(x,y) < 0 then £ does not have any limit
cycles. IfO < X2(x, y) then £ has an attracting limit cycle..

Proof. See theorems 3.9, 3.15, 4.4, 4.8, 3.10, and 4.9. |

Theorem 0.4. Let 0< 6,0 < a + d, 0= ad - be, dk - bl < (a+ k+ d)2/4. The symmetric vector
field £ with defining constants a, 6, c, d, fc, / does not have any limit cycles.



Proof. See propositions 6.1 and 6.2. •

Theorem 0.5. Let 0< 6,0 < a+ d,0 = ad- 6c,(a + *+ d)2/4 < dk - W. Ifa + k+ d< 0 then the
symmetric vector field $ with defining constants a,6, c, d, kJ has a unique attracting limit cycle. If
0 < a + k+ d then the symmetric vector field £ with defining constants a, 6, c,d,fc, Zdoes not have
any limit cycles.

Proof. See propositions 6.3 and 6.4. |

Theorem 0.6. Let 0 < 6,0 < a + d,ad - 6c< 0,ad- be + dk- bl < 0. The symmetric vector field

£ with defining constantsa, 6,c,d, fc, / does not haveany limit cycles.

Proof. See proposition 7.1 and 7.2. |

Theorem 0.7. Let 0 < 6,0 < a + d, ad - 6c < 0,0 < ad - 6c4-dk- bl. If the symmetric vector field

£ with defining constants a, 6,c,d, fc, / does not have anyhomoclinic orbits then either (i) £ does not

have any limit cycles or, (ii) £ has an attracting limit cycle and a pair ofrepellinglimit cycles.

Proof. See proposition 7.3, theorems 7.5,7.8 and 7.9. |

Theorem 0.8. Let 0 < 6,0 = a+d. The symmetric vector field£ with defining constantsa, 6,c, d, k,I

does not have any limit cycles.

Proof. See proposition 8.1 and theorem 8.2. |

Theorem 0.9. Let 0=6. The symmetric vector field £ with defining constants a,6,c,d,k,I does

not have any limit cycles.

Proof. See proposition 9.1. |



§1. Definitions.

In this section the basic definitions of the nonUnear vector fields to be studied are presented. As all

the work to be presented Ues in the plane, it wiU be taken that aU vectors lie in S2.

Definition 1.1. L is a Unear f vector field <c> there exists constants a, 6, c,d,e, / such that

~[c d\[y\-

Definition 1.2. £ is a symmetric continuous piecewise Unear vector field -c> there exists constants

a, 6,c, d, Ar, / with either k £ 0 or / ^ 0, and

fcl Ti.1 r 1.1
x< -1;

-1 <x< 1;

1 < x.

The usage ofsymmetric vector field will mean a symmetric continuous piecewise Unear vector field.

A symmetric vector field is linear in each ofthe regions {(x,y) : x < -1},{(x,y) : -1 < x <
!}»{(*>y) :1< x}. As either kor / is nonzero, the symmetric vector field is nonUnear. Furthermore,
symmetric vector fields have the property that £(-x) = _£(x) so that as functions, they possess
odd symmetry about the origin.

Definition 1.3. For the symmetric vector field £the function <f>(t, (x0, yo)) wiU denote the solution
to <f>(t, (x0, yo))' = S(<f>(t, (x0, y0))), *(0, (x0, y0)) = (x0, y0).

Definition 1.4. The point (x0, yo) is called a periodic point if there is a 0 < t0 < oo for which
<f>(io, (*o, yo)) = (x0, y0). The set {<f>(t, (x0, yo)) : 0< t < t0} is caUed a cycle.

Definition 1.5. Let (x0, y0) be apoint on acycle. Consider a local transversal Ethrough (x0, y0)
and Poincare map P : E-» E. If the point (x0,y0) is attracting (respectively repeUing) for the
map P then the cycle is said to be attracting (respectively repelling). If it is attracting from one
side in positive time and repeUing from the other side in positive time then the point is said to be
semi-stable.

' 'a + k 6' X Y

X

.y.
= <

mc + l
a 6'
c d

"a -+- fc

d

X

.y.
6"

[y.
>

X

+

'k'
k

c + / d .y. I

Definition 1.6. Alimit cycle is a cycle that is either attracting, repeUing or semi-stable. Hence, a
cycle is a limit cycle if and only if it is isolated.

t An equivalent name is affine.



Definition 1.7. Define an ordering on the set of cycles by Ct x C2 if the cycle d lies in the
interior of the cycle C2 and there are no fixed points in the region bounded by Ci and C2. Let
{•••-< C_! -< Co -< C\ -<•••} be a maximal chain of cycles bounded below and above by the cycles
C-oo, Coo. The pair (C_oo, Coo) is an annulus with boundary cycles C_oo, Cqo- The annulus wUl be
identified with the closed region between its boundary cycles.

Definition 1.8. Let JV be a set and ^ be the solution to a symmetric vector field, then <f>(t, N) is
the set given by <j>(t, N) = {<f>(t, (x,y)): (x,y) 6 N}.

Definition 1.9. An attracting annulus A has a neighbourhood N(A C iV), such that for non-

negative times 0 < t0 < tuA C <Kh,N) C <f>(t0,N),A = n£0#(t,iV). A repeUing annulus is an

annulus which is attracting in reverse time. If the annulus is attracting from one side in positive

time and repeUing from the other side in positive time then it is said to be semi-stable. A limit

annulus is an annulus that is either attracting or repeUing.

§2. Simplifying assumptions for symmetric vector fields.

The foUowing two propositions wUl aUow some mild restrictions to be put on the defining constants

for a symmetric vector field. This wiU aUow the analysis of representative examples of symmetric

vector fields.

Proposition 2.1. Let £i, & he symmetric vectorfields with definingconstants a, 6,c, d, it, / and -a-

6,-c,-d,-fc,-/ respectively. Then the respective solutions <f>\(t, (xo,yo)) and <f>2(t, (xo,yo)) are reiated

by

<l>i(t> (x0, yo)) = <fo(-<, (xoy yo))-

Proof. Let M<,(x0,yo)) = (*i(<)»yi(<))i^2(<,(a?o,yo)) = (x2(t),y2(t)).

(i) :For x < -1 and using <f>2(t, (x0, yo)); = &(&(*» (zo,yo))),

Thus,

Thus,

x2(t)
y2(t)l

-a-Jb -6] fx2(t)
-c-l -d\[ +

x2(-t)
[y2(-t)l

By uniqueness of solutions, <f>i(t, (xo, yo)) = toi-t, («o, yo)).

(ii) :For -1 < x < 1 and using <j>2(i, (x0, yo))' = hiM^ (xo, yo))),

x2(t)

x2(-t)
M-t)

y2(*)J

a+ k 6] [x2(-t)
c+ ' dj [y2(-0 +

-a -b

-c -d

a 6"
c d

x2(<)
y2(*)

x2(-t)

M-t)

-k

-i



By uniqueness of solutions, <f>i(t, (xo, yo)) = <h(-t, (*o, yo))«

(Hi) :For 1< x and using <f>2(t, (x0,yo))' = &(<fo(t, (x0,yo))),

Thus,

x2(t)
VaW

*2(-<)
VaH)J

—a — k —6

-c-/ -d

x2(t)

VaW
-Jb"
-/

1
Y

/

a+ fc 6] fx2(-t)
,c+ / dj ly2(-t)

By uniqueness of solutions, <j>i(t, (x0,yo)) = 4>i(-t,(x0,yo)).

Proposition 2.2. Let £i,£2 be a symmetric vector fields with defining constants a,6,c,d,fc,/ and

a,-6,-c,d,*,-/ respectiveiy. With the respective solutions being <j>i(t, (x0, yo)) = (xi(t),yi(t)) and

^2(t,(x0,yo)) = (x2(<),y2(t)), then (*i(t), W(<)) = (x2(t), -y2(<)).

Proof, (i) :For x < -1 and using fe(<, (x0, yo))' = &(^2(t, (*o, yo))),

-6'

Thus,

Thus,

x2(<)]/ _ f a
¥4(0 J ~ L-<

x2(<)

¥4(«)

-yaW

By uniqueness ofsolutions (*i(t),yi(t)) = {x2(t),-y2(t)).

(«) :For x < 1and using <j>2(t, (x0, yo))' = &(fo(t, (*o, yo))),

a 6

c d
*a(«)

+

x2(i)

*2(0
-va(0

a -6

-c d

a 6

c d

*2(<)
Va(t)

*a(*)
-Va«

By uniqueness ofsolutions (x^t), yi(<)) = (x2(t), -y2(t)).

(«0 :For 1< x and using <j>2(t, (x0, y0))' = h(<t>2(t, (x0, y0))),

Thus,

*a(*)l'_ [ a
y2(t)J " l-

x2(t)]'_[a
-VaWJ " [c

a -6

c d

x2(t)

x2(t)
-va(<)

ib

-/

By uniqueness ofsolutions (xi(<), yt(t)) = (x2(t), -y2(<)). |

By proposition 2.1 it may be assumed that 0< a + d. Using proposition 2.2 it may further be
taken that 0 < 6. Note that proposition 2.2 leaves the value ofa + d unaffected.

The dynamics of£ to the right ofx = 1 isdetermined by the Unear vector field

Jfc 6'
d

fx] _ \a+ k

8



Similarly, the dynamics of£ to the left ofx = -1 isdetermined bythe Unear vector field

L2 :J s] [;]♦[}]•
The fixed points of Li, L2 have special names.

Definition 2.3. Let £be a symmetric vector field with ad-bc + dk-bl^ 0. The point (xp, yp) is
called the primary induced fixed point of £ if

0'
0

=

a + k 6*
c + l d

xP'
.yp.

-

'k'
I

The point (x,, y,) is called the secondary induced fixed point of f if

a + k 6l \x,
c+l d\ [y, +

It is clear that if (xp, yp) is the primary induced fixed pointof£ then (—xp, -yp) is the secondary

induced fixed point of £ and conversely. The use of primary and secondary fixed points is not to

imply a preference for primary fixed points over secondary fixed points.

The relationship of the primary induced fixed point of the symmetric 2-boundary vector field £,

and the induced fixedpoint of the 1-boundarypiecewise linear vector field (as introduced in [3]) with

the same defining constants is immediate. The relationship of the secondary induced fixed point of

the symmetric vector field and the induced fixed point of the corresponding piecewise linear vector

field is not as immediate.

Lemma 2.4. There is a homeomorphism m(x, y) = (x, y) between the primary induced fixed point

of the symmetric vector field £ and the induced fixed point of the piecewise linear vector field with

the same defining constants a, 6, c, d, k, I.

Proof. The primary induced fixed point and the induced fixed point, when they exist, are both

given by the same formula

X i dk-bl

y. ad - be + dk - bl —ck + al

This aUows the foUowing corollary to be stated.

Corollary 2.5. For fixed a,d}c,b,ad— be ^ 0 there exists a homeomorphism h(k,l) = (x,y) from

the set of parameter values k, I satisfying ad —bc+ dk —bl ^ 0 to the set of primary induced fixed

points (x,y) with x £ 1.

Proof. Let h(k,l) = m_1(h(Ar,/)) where h is the function defined in theorem 2.6 of [3] and m is the

function defined in lemma 2.4. I



The dynamics of the symmetric vector field to the left of x = —1 and to the right of x = 1 are

determined by the eigenvalues of the defining matrices in the Unear vector fields Iq, L2.

Definition 2.6. The eigenvalues at the primary induced fixed point (respectively the secondary

induced fixed point) are the eigenvalues of the matrix

a + fc 6
c + / d

Lemma 2.7. Let£ be asymmetric vector field with ad-be ^ 0,ad-bc+dk —bl^ 0. Theproduct of

the eigenvalues at the primary induced fixed point (respectively the secondary induced fixed point)
is (ad —6c)/(l —xp).

Proof. Lemma 2.4 and coroUary 2.8 of [3]. |

The lines x = —1 and x = 1 are the dividing boundaries of the linear regions and also have

significance in symmetric vector fields.

Proposition 2.8. Let £ be a symmetric vector field with 0 < 6. The line x = 1 is transversal to

£ at all points except (l,y*) = (l,-a/6). For points (l,y) with ym < y the vectors point to the

right, for points (l,y) with y < y* the vectors point to the left. Similarly, the line x = -1 is also

transversal to the symmetric vector Geld everywhere except at the point (-1, -jf) = (-l,a/6). For
points (-1, y) with -y* < y the vectors point to the right and for points (-1, y) with y < -y* the
vectors point to the left.

Proof. That the Une x = 1is transversal to £except (1, y*) = (1, -a/6) follows from the solution of

"a 6'
c d

Y

.y.
=

a + 6y'
c-\-dy

As 0 < 6, for y < y* the x-ordinate of the vector is a + 6y < 0 pointing to the left, and for
y* < y the x-ordinate of the vector is given by 0< a+ 6y pointing to the right. By symmetry of
£(*) = -£(-*0 the Une x= -1 is also transversal to the symmetric vector field £but at the point
("Y ~y*) = (-1'a/h)- For Points (-1,y) with -y* < ythe vector points right, being the rotation of
* radians of the vector at (1,-y) with -y<y*. For points (-l,y) with y< -y* the vector points
left, being the rotation of ir radians of the vector at (1, -y) with y* < -y. |

Definition 2.9. For v < w, the following notation will be used,

L(v,w) = {y:v<y < w],

L(v,w] = {y.v <y<w},

10



L[v,w)= {y :v<y < u>},

T[v,w] = {y:v <y<w}.

Definition 2.10. The following functions

Tn : £(y*,oo) -4 £(-oo,y*],

tti2 :1(-oo,y*] ->X(-oo,-y*),

tt22 :X(-oo, -y*) -♦ T[-y*, oo),

*2i: X[-y*, oo) -♦ L(ym, oo),

are given by

(1, Tii(yo)) = <f>(to, (1, yo)), to = min{< :0 < t, ^(t, (1, y0)) n {(x, y) : x = 1} ^ 0},

(-1, Ti2(yo)) = 4>(to, (1, y0)), to = min{t :0 < t, </>(t, (1, y0)) n {(x, y) :x = -1} ^ 0},

(-1, ^22(yo)) = 4>(t0, (-1, y0)), to = min{t: 0 < t, <f>(t, (-1, y0)) D{(x, y) : x = -1} ^ 0},

(1, *2i(yo)) = <f>(t0, (-1, yo)), t0 = min{t: 0 < t, <f>(t, (-1, y0)) H{(x, y) : x = 1} ^ 0},

whenever they are defined.

The subscript 1 refers to the first Une x = l.The subscript 2 refers to the second Une x = -1.

Thus, the function ir\2 maps from the first Une x = 1, to the second line x = —1. Likewise for the

functions 7r22, jt2i, 7Th. The function ir2} where tt is the return map of definition 2.11 of [3] when

appUed to L(—oo, y*] has the decomposition ?r2 = th o tt2i o 7r22 o ir\2.

11



§3. 0<b, 0<a + d, (a+d)3/4 < ad-be, ad- bc + dk-bl ^ 0.

Many of the results in this section have close similarities with results in section 3 of [3]. However,

the existence of subtle differences prevents a direct application of the results in that section.

Lemma 3.1. Let £ be a symmetric vector Geld with 0 < a + k + d then there there are no cycles.

Proof. The only fixed point is at the origin. Any cycle must therefore pass through the region

{(x,y) : —1 < x < 1}. The cycle cannot lie wholly in this region as 0 < a 4- d and Unear vector fields

with non-zero trace do not admit cycles. Thus, the cycle intersects either the line x=lorx = —1

or both of these Unes.

If it only intersects the line x = 1 then lemma3.1 of [3] wouldbe contradicted for the piecewise

linear vector field with the same defining constants. If the cycle only intersected the line x = —1

then by symmetry there also exists a cycle intersecting only the line x = 1. Again, this would be a

contradiction of lemma 3.1 of [3]. Any cycle must intersect both the Unes x = 1 and x = -1.

By Stoke's theorem,

i Ttd* -dldx=L(C) £(!)+£(I)d* **•
Breaking up the area integral into the three regions, A= int(C) n {(x, y) : x < -1}, B = int(C) n
{(x, y) : -1 < x < 1}, and D - int(C) n {(x, y): 1< x}, then

°=jA dx"((° +Q* +by- *) +̂ -((c+l)x-rdy-l)dx dy+

JB dx"(a* +6y) +dy't™ +dy)dx dy +JD a^((° +*)Z +by-k) +7"((c+0* +<*y"t)*x dy.
Thus,

0= J(a-rk-rd)dxdy+ f (a +d)dxdy+ f (a +Jb +d)dx dy.
JA JB JD

The integral on the right in nonzero. By contradicton, limit cycles do not exist. |

Theorem 3.2. If(x,y),x < 1, is the primary induced Gxed point ofthe symmetric vector Geld £
with

£(-d(l-x)-a)<y

then there are no cycles.

Proof. Note by corollary 2.5 that fc = (ax + 6y)/(l - x). Using lemma 3.1 it is sufficient that
0< a + k+ dfor there to be no cycles. This inequality simplifies to (-d(l - x) - a)/6 < y.

The foUowing lemmas wiU delimit under which conditions the eigenvalues at the primary induced
fixed pointare real. This wUl allow the proof of the subsequent theorem.
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Lemma 3.3. Let (x, y), x < 1, be the primary induced Gxed point of the symmetric vector Geld £.
Then it has complexeigenvalues O

^(-2^1 - xVad -be- d(l - x) - a) <y< ~(2VT^~xVad - 6c - d(l - x) - a).

Proof. Lemma 2.4 and lemma 3.3 of [3].

Lemma 3.4. Under ir22 o iri2 then point (—1, —y*) has no pre-image.

Proof. The point (—1, —y*) has no preimage under the map ir22, thus it cannot have a pre-image

under the composition map ir22 o iri2. |

Theorem 3.5. If(x,y),x< 1, is the primary induced Gxed point for the symmetric vector Geld £

with

y < -r(-2y/T^xVad - be - d(l - x) - a)

then there is a globally attracting annulus for ft2 —{(0,0)}. Furthermore, assuming conjecture 0.1

holds, the attracting annulus is an attracting limit cycle.

Proof. As the primary induced fixed point corresponds to an induced fixed point with real eigen

values, there are either one or two induced points (1, vi), (1, v2) such that the Une through those

points, in the direction of the respective vectors, pass through (x, y). If there are two such points,

then let t; = max{vi, v2}. By lemma 2.4 and proposition 3.6 of [3] it may be assumed that v < y*.

At the origin0 < a+d, (a+d)2 < 4(ad—6c), so that the solutionshavenon-zero rotational speed.

As the real part of the complex eigenvalues axe non-negative, the values of ||^(t, (xj, yo)) —(0,0)||,

being the radial distance from the origin, is bounded below by y/1 + y^. If <j>(t, (xo, yo)) does not

intersect the Une x = —1 then for some 0 < to ^(to, (*o, yo)) = (*o»0) with —1 < zo < 0. Then,

||(*o» 0)—(0,0)|| = |zo| < 1* But, as y/1 + y$ < \z\ this means that y/1 + y$ < 1 which is impossible.

Thus 7Ti2 is well-defined on L(—oo, y*]. By symmetry w2\ is well-defined on L[—y*,oo).

The primary induced fixed point satisfies y < (—2-^1 —xy/ad —be—d(l —x) —a)/6 < (—d(l —

x) —a)/6, or ax + 6y < (—a —d)(l —x) from which it foUows that a + k + d < 0. Thus the

primary induced fixed point is attracting, implying that 7Tn is well-defined. By symmetry 7r22 is

also weU-defined.

Consider the function ir22 o iri2 : L(—oo,y*] —* L[—y*,oo) and the image of the set L[v,y*]

under this map. Under one application of 7r22 o 7Ti2,

tt22 o 7Ti2(£[v, y*]) = L[w22 o ?ri2(y*), 7r22 o 7r12(t>)].

The invariant manifold of the secondary induced fixed point constraints 7r22 o 7ri2(v) < —v. As

7r22 o 7Ti2(y") € L[—y*,oo) and as —y* has no pre-image then —y* < ir22 o 7Ti2(y*). Thus 7r22 o

13



fl"i2(£[t;, y*]) C L[—y*, —v]. By symmetry it is also true that v\\ o ir2i(L[—y*, —v]) C L[v, y*]. Thus

7T2 = itu o ir2i o ir22 o t\2 satisfies ir2(L[v, ym]) C L[v, y*].

By theorem 2.12 of [3] there exists a locally attracting annulus A. It is clear that A is attracting

for all points in L[v,y*]. Points in L(—oo, v) iterate under 7r22 o it12 to L[—y*, —v] and eventually to

A. Points on L(y*, oo) iterate to L[v,ym] and thus also to A. Thus, aU points along x = 1 iterate

to A. Points on the line x = —1 wUl meet the Une x = 1 under either the function ir2i o w22 or the

function ir2\. Thus aU points along x = —1 wUl also iterate towards A. Let (xo,yo) ^ (0,0), then

there is some 0 < to for which <f>(to, (xo,yo)) intersects either x = 1 or x = -1. Then, also (xo, yo)

wiU converge to the point z. The annulus A is globaUy attracting for all points in 3fc2 - {(0,0)}.

Assuming conjecture 0.1 holds, it is an immediate consequence that the attracting annulus is an

attracting limit cycle. |

The following lemma and subsequent theorem will expand the region on which an attracting

annulus is known to exist.

Lemma 3.6. Let (x,-, y,), xt- < 1, be the primary induced Gxed point of the symmetric vector Geld

i.If

-(-2v/l-x,Vad-6c- d(l - xt) - a) < y,- < -(2x/Trx7v/ad - 6c - d(l - x.) - a)

then there exists vo < y*,K0 such that for v < v0 the map ir22 o tt12 : L(-oo,ym] -* ~L[-y*,oo)
satisGes

ir22 o ir\2(v) < —e^ + Ko

where A± fa> are the complex eigenvalues of thematrix

a + k 6

c + l d

for k= (axi + 6y,)/(l - x,), / = (cxf- + dy,)/(l - x,).

Proof. Let t; < y*. The vector at the point (1, v) has slope given by (c + dv)/(a + bv). The line
through (1, v) with this slope intersects the Une x= -1 atapoint below where the solution <f>(t, (1, v))
intersects the Une x= -1. The Une through (1, v) with slope (c + dv)/(a + bv) has the equation

c + dv
y =

a + bv
(x - 1) + v

and intersects the Une x = -1 at the point (-l,u - 2(c + dv)/(a + bv)) = (-l,i/). Consider the
point (-1,v'). The slope at this point is (-c +dv')/(-a + bv'). The line through (-1,v') intersects
the Une x = -x,- at a point below where <f>(t0, (1, v)) intersects the line x = -x,- under the Unear
vector field

X

.y.
=

'a + k b
c + l d

X

y.
+

Y

14



The line through (-1, v') withslope (-c + dv')/(-a + bv') is given by

-c + dv'. ,, ,
y = T-T-7(* + 1) + »—a + bv'

and intersects the Une x = -xj at the point (-x,-, t>' + (-x,- + l)(-c + dv')/(-a + bv')) = (-x,-, v").
Under ir/u units of time the point (-x,-,v") iterates to the point (-x,-,-e^(u" + y,) - y,) =

(-x,-,t>'"). Consider the point (-x,-, v'"). Under the linear vector field

X

.y.
=

'a + Jfc 6"
c+/ d

X

.y.
+

Y

the point (-x.-.v'") induces a vector with slope d/6. The Une through (-x,-,v'") with slope d/6 is

given by

y--(x + Xi) + v'".

This Une intersects the line x = -1 at the point (-1, v"' + (d/6)(xf - 1)). This gives an upper bound

for 7T22 O7Ti2(v),

^\-c + d(v-2£±&)
(1 - xt) - 2——- + y,-7T22 O7Ti2(v) < —e

a + bv - Vi + j(*< - 1)

ii , iiL/d ad-bc\ (d ad-be \, . 1 d,
=-<!"t'+e- [2U-^THj-il+6(-a +6(B-2|±fe))J(1-I')-S"j-S"+6^-1)-
Let vq = min{-l/6-a/6, -l/b + a/b + 2d/b}. Then for v < v0 one has that a + 6v < -1 from which

-(ad - 6c)/(6(a + bv)) is bounded above by -(ad - 6c)/6. Furthermore, since a + bv < -1 then

Thus,

from which it follows that

Thus,

c + dv _ d ad—be d
a + bv 6 6(a + 6v) 6

1 a c + dv

~ 6 6 a + bv

,( nc + vd\_a + 6U-2-V <-l.
V a + 6v/

/X^ At , At L/d ad-6c\ /d ad-6c\,.?r22 ott12(v) <-e «v+e<- 12 ( ^—J - (- +—-—J (1 - Xi) - y,-

Hence ir22 o7ri2(v) < —e^v + Ko where

- y," + j(xi - 1).

v At L /d ad-6c\ /dad-6c\/1 . - yi + -^(xi -1).

Theorem 3.7. Let (x, y), x < l, be the primary induced Gxed point of the symmetric vector Geld

S.if

-(-2v/l-xv/ad-6c - d(l - x) - a) <y<^(-d(l - x) - a)
15



then there is an attracting annulus in £2 - {(0,0)}. Furthermore, assuming conjecture 0.1 holds, the

attracting annulus is an attracting limit cycle.

Proof. There exist vq <y*,Ko such that for v < vo,

7r22 o ir\2(v) < —e - v + Ko.

Similarly, for -y* < -vo < v, by symmetry one has that

ttii o7r2i(v) > —e~2~v —Ko.

Let v\ —min{vo, (?r22 o Tt\2)~\—vo)}. Then for v < vi,

1T2(v) = 7Tn O7T2i O7T22 O7Ti2(v)

> -e"^(ir22 o 7Ti2(v)) - Ko
At/ *w »» \ -»> -etr(-e—v + Ko) - K0

= e «- v —Ao(e - + 1).

If ir2(v) > v it is sufficient that

e « u —A0(c « + 1) > v.

Remembering that if y < (-d(l - x) - a)/6 then X= (a + k + d)/2 < 0, it is enough that

-K0(e& +1)4-11
> V.

1 —e2^

Thus, let v2 = minfu!, -K0(e^ + 1)/(1 - e*$r)}. Then for v < v2, tt2(v) > v.
Consider the line segment L[v2, y*]. Under ?r2 one has that

T2(£h,y*]) = L[*2(vU2(y*)] c £[t;2,y*].

Bytheorem 2.12 of[3] there isa locaUy attracting annulus A for the points in L[v2, y*]. Let Ci, C2 be

the boundary cycles oftheannulus. The boundary cycles intersect theline at points (1, r), (1, s),^ <

s < r < y\ The point (1, r) is a Umit for the point (l,y*) under iteration of tt2. The point (1, s) is

a Umit for the point (l,v2) under iteration of tt2. Let v < v2. As before it can be shown that there

is an attracting annulus A' for points in the interval L[v, y*]. Let C{, C'2 be the boundary cycles of

the annulus A'. These boundary cycles intersect the line x = 1 at the points (1, rJ), (1, s'),v < s' <

r' < y*. The point (l,r') is a Umit for (l,y*) under tt2. The point (1,*') is a Umit for the point

(l,v2) under tt2. The point (l,y*) can have only one limit, thus (1, r) = (l,r'). Note that v2 < s'
so that the point (1,*') is also a limit for the point (l,u2). The point (l,u2) has only one Umit,

thus (1,«) = (1,*')* The annulus A' is formed from the same boundary cycles as the annulus A.

It foUows that the annulus A is attracting for aU points along L(—oo,y*]. As points in £(y*,oo)
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iterate to I(-oo,y*], it foUows that the annulus is attracting for all points along x= 1. Let (x,y)
be any point in »2 - {(0,0)}. Under finite time the solution through (x, y), <f>(t, (x, y)) wiU intersect
the Une x = 1 and iterate towards the annulus. The annulus is globally attracting for aU points in
&2 —{(0»°)}« Assuming conjecture 0.1 holds, it is an immediate consequence that the attracting
annulus is an attracting Umit cycle. •

For the remainder of this section it wiU be taken that the primary induced fixed point lies to

the right of the line x = 1. The lemma and theorem that foUows wiU outline a region in which there

are no limit cycles. The subsequent theorem wiU give a region in which there are locally attracting
annuU.

Lemma 3.8. There is a C°° diffeomorphism g(x,y) = (v, to) from the set {(x,y) : 1 < x} ofprimary
induced Gxed points to the set {(v,w) : v < y* < w).

Proof. The function g~ is the composition of the diffeomorphism m (lemma 2.4) between primary

induced fixed pointsand induced fixed points, and the diffeomorphism g (theorem3.23 of[3]) between

induced fixed points and the set {(v, w): v < y* < w}. |

Theorem 3.9. Let (x, y), 1 < x, be the primaryinduced Gxed point of the symmetric vector Geld

£. Let y"* = ir21(-ym). Then, if

'*(3£) <-»+*-
there are no limit cycles.

Proof. Let <f(x, y) = (v, w). As in the proof in the case 0 < 6,0 < a + d, (a + d)2/4 < ad - 6c with

the induced fixed point satisfying

»*(££)<-d*"-
it can be proved that w < y*mm.

Any limit cycle must intersect the Une x = 1. Points on L(w,oo) cannot form cycles, being so

prevented by the invariant manifold passing through (1, w). The point (1, w) cannot form any cycles,

being attracted to the primary induced fixed point (x, y).

As w < y*mm then L[ymmm, oo) C L[w} oo).Under symmetryone has i(-oo, -ymmm] C i(-oo, -w].

By symmetry the points in L(—oo, —w] cannot form cycles.

As y*mm = ir2i(—y*), then by symmetry it is also true that 7Ti2(y*) = —y*mm. Then one has

that ir12(L(-oo, y*]) C I(-oo,?ri2(y*)) = X(-oo, -y***) C X(-oo, -w]. Thus neither can points

in I(-oo,y*] form cycles. FinaUy, points in L(y* ,w) map to £(-oo,y*], so neither can they form

cycles. In consequence, points along x = 1 cannot form cycles, it follows that Umit cycles do not

exist. |
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It wouldbe useful to knowwhen it is true that (x, y) satisfies ir(v) = w where o(x, y) = (v, w). In

the following lemmas a graph x wiU be determined that wiU separate the points for which ir(v) < w

and w < n(v). Then points for which ir(v) < w wUl be exactly those points that Ue above the graph

X~. It wUl be shown that the graph x Iscontinuously differentiate and extends infinitelyto the right.

Lemma 3.10. DeGne x : (-00, y*) -• {(x,y) : 1< x} by theformula x(y) = ITH^ii-v), y). Then

X is a continuous curve with Umy_y. x(y) = (l,y***).

Proof. Continuity of x on the interval (—00, y*) is immediate.

Let 0 < eand consider the baU J5((l,y***), e) = {(x,y): y/(x - l)2 + (y - y*)2 < e}. Consider

the set given by V x W = g(B((l,y**m),e) n {(x,y) : 1 < x}). Because g is a homeomorphism the

set V x W is open. As open subsets of x = 1 then V = (s,y*),W = (y***,<). Consider the set

-atfCW)* this set is open and has the form (v,y*). Let X = -ir2i(W) (1V= («,y*), this set is
open. It wiU be shown that x(y) C B((l,y**m)).

Say u < y < y*, then y € -^(W), and ir21(-y) € W. Thus *(y) = F^foiHO.y) €
2?((l,y—),«). I

Lemma 3.11. Letx(y) = (xi(y),X2(y)) ^here*(y) = ff~10r2i(-y),y). Thenxi(y) is a decreasing
function of y.

Proof. The formula for Xi(y) is given by

, W=!_ (« +*l>)(« +ti>l(-l>))j
ad — 6c

As£ is C° continuous, ir21 is differentiable and thus,

^(y) = 6(q +&fl-2i(-y)) - Ki(~y)(q +6y)
ad — be

Now y* < ir21(-y) so that 0 < a+ bir21(-y). Also, 0< 7r21(-y) and since y < y* then a+ by < 0.
ThusXi(y) < 0 and is monotonically decreasing.

As limy-j,. xi(y) = 1, it follows that 1 < xM for all y < y\ By monotonicity, an inverse

of xi(y) exists. It is then possible to write xM = ^(xT^XiCy)))- Thus, *2(y) = F(xx(y)) for
ny) = x2(xT1(y)). I

Lemma 3.12. Let y<y*. Then *(y) - x(y*) = T>x(v)K where r) € (y,y*).

Proof. Writing *(y) = (Xi(y),*Xxi(y))) where J is as given inlemma 3.11, then by the mean value
theorem,

x2(y) -x2(y') =*V)(xi(y) -xi(V)),

where rf 6 (x"i(y*),Xi(y)). As Xi is monotonic then 77* = Ji(v) for some r? G(yyy*). Substituting
in the above formula,

x(y)-x(y*) =
1

f'CxM)
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And since x\(v) ± 0,

x(y)-x(y*) = ^(xM)ti(v)
xi(y)-xi(y*)

Thus, x(y) -Tfyf) = Dx(77)JT where K = fofy) -Xi(y*))/xi(»7) and tj € (y,iT). I

Lemma 3.13. The function J is Cl on the interval (-00, y*). Ifir'2l(-y*) exists then

lim X2(y) - y»" _ (c +dy***) - »'ai(-y')(c + dy*)
»-»• Xi(y) - 1 a + 6y*»*

Proof. As x is the composition of two C1 functions defined on the interval (-00, y*) it is also C1

on (-00, y*).

Because x(y) =g-1(ir2i(-y),y) then D*(y) = D(9-1(7r2i(-y),y))D(7r21(-y),y). Thus,

Hence,

So that,

Dx(y) =
ad — be

Thus Dx(y) is a vector with slope,

*-2i(-y)(c + dy)* ~(c + dv21(-y))b
*3i(-y)(« + fey)& - (« + &T2i(-y))6'

which can be simplified to the form

*2i(-y)(c + dy) - (c + ^2i(-y))
^2i(-y)(a + fty) - (a + ^2i(-y))'

Using lemma 3.12 that x(y) —x(y*) = Dx(r))K for some jj € (y, y*), then

-(a + 6y)6 -(a + 6?r21(-y))6
-(c + dy)6 -(c -I- dn-2i(-y))6

Xi(y) - 1
*2(y)-y*"J

-f2i(-y)
1

lim ^"^ lim

= Vx(l)K.

*2i(-»7)(c + drii) ~ (c + dir21(-r)))
»-»• Xi(y) - 1 ¥-»• Tai(-»?)(a + &*?) - (a + 67r2i(—77))'

lim X2(y)-y"* = 4i(-y*)(c +dy') - (c +dirai(-y*))
»~v Yi(y) -1 T2i(-y)(a + &y*) - (a + &*2i(-y))'

As y* = —a/6 the denominator reduces to a + by*** > 0 and finaUy,

X2(y) - y*" (c + dy***) - w2l(-y*)(c + dy*)
lim - / \ 1

»-*»• xi(y) -1 a + 6y"'

The final results in this section will be regions in which limit cycles do and do not exist.

Theorem 3.14. Let (x, y), 1 < x, be the primaryinducedGxed point of the symmetric vector Geld

S.lf

X2(xil{*)) < y-
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then thereis a locallyattractingannulus. Furthermore, assuming conjecture 0.1holds, the attracting

annulus is an attracting limit cycle.

Proof. Consider the line L[v,y*]. Under the map ir22 o tti2 the set goes to ir22 o wi2(L[v, y*]) =

L[ir22 o icx2(y*), n22 o ir\2(v)]. Now n22 o iri2(y*) 6 L[—y*, oo). As —y* has no pre-image then -y* <

ir22 o?ri2(y*). Observe that x2(xT1(x)) < VhnpUes ir2i(-v) < w. Because ir2i(—v) < w then under
symmetry it happens that —w < fl"i2(v). As —tt; < ir12(u) then under ir22, the point ir22 o irX2(v)

is constrained to Ue below the other invariant manifold of the secondary induced fixed point, thus

ir22 o 7Ti2(v) < —v.

Then tt22ox12(L[v, y*]) C L[—y*, —v]. Bysymmetry it can be shown that ?rii07r2i(£[—y*, —v]) C

L[v,y*]. Then,

ir2(L[v, y*]) = irn o ir21 oir22 o7r12(I[v, y*]) C L[v, y*].

By theorem 2.12 of [3] there is a locaUy attracting annulus for aU points in L[v, y*].

The point (l,t») is on the invariant manifold that passes through (x,y), the annulus is not

globaUy attracting. Points along L[w, oo) cannot induce cycles. Along L(y*, w) thepoints map under

7Tn into L[v, y*], and thus iterate to z. By symmetry, points along T(—oo, —w] cannot induce cycles,

as neither can the points along ^(^(-oo, -w]) = L(-oo, ^(-to)]. Points in Lfa^-w), v) map
under ir12 into L(-w,-y*) and thence under tt22 to L[-y*,-v], so these points iterate to A. The

annulus isunique. Assuming conjecture 0.1 holds, it foUows immediately that theattracting annulus
is an attracting Umit cycle. •

Theorem 3.15. Let (x, y), 1< x, be the primary induced Gxed point of the symmetric vector Geld
Mf

(c + dv*** \
{tt^) (x - x>+ y"m <y <srattr1W)

then there are no limit annuli. Furthermore, assuming conjecture 0.1 holds, then there are no cycles.

Proof. Assume a Umit annulus exists. Let Cu C2 be the boundary cycles of the annulus. Say the
boundary cycles intersect the Une x = 1at the points (1, r),(1, s) where y*** < r < s < w. As the
annulus encircles the origin, which is repeUing, the annulus is attracting.

Let ^(x, y) = (t>, w). As x^xTV)) then w< ir2i(-v). Consider the line segment L[s, w] under
appUcation of ir22 o ir^1, then

*m ° *2~il(£k «4) = ^22(L[^2i(s), *£(w)])

dCnHLfoils),-*))

= H*22(-v)* *22l ° ^nC5)]

C L[-w, -s].
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By symmetry, ir^1 oirrf(L[-w, -a]) C L[a, w]. Thus,

ir"2(I[s, w]) = irrf oir"1 ott-2x ow2^(L[s, w])

CirrfoirrftLl-Wt-s])

C L[s,w].

Note that (l,s) is the only fixed point for ir~2 in the line segment L[s,w]. If another fixed point
existed then maximaUty of the annulus would be violated.

Thus, the point (1, a) is attracting for tt"2. The cycle through the point (1, a) is then repelUng
under forward time. The annulus is repelUng. A limit annulus cannot be both attracting and
repelUng. Limit annuU do not exist.

Assume an annulus exists whose boundary cycles both intersect the Une x = 1. By the same

argument as before, the annulus has to be semi-stable. By conjecture 0.1, semi-stable annuli do not

exist. Thus, if annuli exist then its boundary cycles cannot both intersect the Une x = 1.

If an annulus existed then one of its boundary cycles does not intersect the Une x = 1. Because

of the nature of the vector field in the region {(x,y): -1 < x < 1}, if the boundary cycle intersected

the Une x = -1 then the cycle would also intersect the Une x = 1. Thus the boundary cycle does

not intersect the line x = —1. This boundary cycle must then lie in one of the regions {(x,y): x <

-1}, {(x,y) : -1 < x < 1} or {(x,y) : 1 < x}. However, the trace of the symmetric vector field in

each of these regions is nonzero, preventingcycles from forming. Thus, the annulus does not exist

and it follows that cycles do not exist. |

§4. 0 < b, 0 < a + d, 0 < ad - be < (a + d)3/4, ad - be + dk - bl ^ 0.

The results in this section are virtually identical to those obtained in section 3. The salient point

to note is that the maps ir12 : L(-oo, y*] -> L(-oo, y*), 7r2i : L[y*} oo) -• L(y*, oo) are well defined.

Because of the similarity of proof, only references to the corresponding proofs in section 3 wiU be

given.

Theorem 4.1. If (x,y),x < 1, is the primary induced Gxed point of the symmetric vector Geld £

with

l(-d(l-x)-a)<y

then there are no cycles.

Proof. See theorem 3.2. |

Theorem 4.2. If(x,y),x < 1, is the primary induced Gxed point of the symmetric vector Geld £

with

y < -(-2^1 - xVad- be - d(l - x) - a)
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then there is a globally attracting annulus for R2 —{(0,0)}. Furthermore, assuming conjecture 0.1

holds, the attracting annulus is an attracting limit cycle.

Proof. See theorem 3.5. |

Theorem 4.3. Let (x, y), x < 1, be the primaryinduced Gxed point of the symmetric vector Geld

^(-2-s/l - xVad -be- d(l- x) - a) < y< t(-<*(1 - x) - a)

then there is an attracting annulus in £2 - {(0,0)}. Furthermore, assuming conjecture 0.1 holds, the

attracting annulus is an attracting limit cycle.

Proof. See theorem 3.7. |

Theorem 4.4. Let (x, y),1 < x, be the primary induced Gxed point of the symmetric vector Geld

C Let y*** = 7r21(-y*). Then, if

there are no limit cycles.

Proof. See theorem 3.9.

'*&£)<-'>+*-

The following lemmas wiU consider properties of the curve x that separate point for which

T2i(-«) < w and ir2\(-v) > w. Points in the former set will lie above x while points in the latter
set wUl Ue below x.

Lemma 4.5. DeGne x : (~oo,y*) —{(x,y) : 1< x} by the formulary) = TX{*2i(-y),y). Then
Xis a continuous curve with limy_y. x(y) = (l,y***).

Proof. See lemma 3.10. |

Lemma 4.6. Let x(y) = (xi(y),X2(y)) where x(y) = y^foiC-yJ.y). Then xi(y) is a decreasing
function ofy.

Proof. See lemma 3.11. |

Lemma 4.7. The function x isC1 on the interval (-co, y*). Ifir21(-y*) exists then

lim *2(y) - y"« = (c +dy***) - 7r21(-y*)(c + dy*)
»-»• Xi(y)-1 a + 6y—

Proof. See lemma 3.13. |

Theorem 4.8. Let (x, y), 1 < x, be the primary induced Gxed point of the symmetric vector Geld

X2(xTl(x)) < y.
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then there isalocally attracting annulus. Furthermore, assuming conjecture 0.1 holds, the attracting
annulus is an attracting limit cycle.

Proof. See theorem 3.14.

Theorem 4.9. Let (x,y),1 < x, be the primary induced Gxed point of the symmetric vector Geld

(otS^) {x ~1}+r*K yK*a«rxW)
then there are nolimitannuli. Furthermore, assuming conjecture 0.1 holds, then there are nocycles.

Proof. See theorem 3.15. |

§5. 0 < b, 0 < a + d, 0 < ad - be, ad - be + dk - bl = 0.

The only result so far in this direction has been the foUowing corollary.

Corollary 5.1. XfO<a + fc-f-d then there are no cycles.

Proof. See lemma 3.1. |

§6. 0 < b, 0 < a + d, ad - be = 0.

The analysis is most easily faciUtated by considering the values of dk —6/. The foUowingresults wiU

expand on this study.

Proposition 6.1. Ifdk —6/ < 0 then there are no cycles.

Proof. The symmetric vector field bounded by the lines x = ±1 does not admit cycles. If cycles

existed then they must cross either the lines x = ±1 or lie outside of the region bounded by the lines

x = ±1. Firstly, consider the case that a cycle either intersects the lines x = 1 or Ues to the right of

the Une x = 1. To the right of the Une x = 1 the symmetric vector field has the form of the linear

vector field

L
a + k 61 \x
c+l d\ [y

The stabUity at the primary induced fixed point (1, y*) is given by the determinant of the defining

matrix in the linear vector field L. The value of this determinant is dk — bl.

If dk —6/ < 0 then the primary induced fixed point is a saddle point to which can be identified

two Unear invariant manifolds, at least one of which bisects the region {(x, y) : 1 < x}. This bisection

prevents cycles from forming. If dk —bl = 0 then a line of fixed points given by 0 = (a + k)x + by—k

bisects the region {(x, y) : 1 < x} preventing cycles from forming.

By symmetry, cycles cannot intersect the Une x = —1 nor Ue to the left of the Une x = —1.

Thus cycles do not exist. I

Proposition 6.2. If 0 < dk —6/ < (a + k + d)2/4 then there are no cycles.
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Proof. The symmetric vector field bounded by the lines x = ±1 does not admit cycles. If cycles

existed then they must cross either the lines x = ±1 or lie outside of the region bounded by the lines

x = ±1. Firstly, consider the case that a cycle either intersects the lines x = 1 or Ues to the right

of the line x = 1. As in proposition 6.1, the stabUity at the fixed point (1, y*) is determined by the

value of the determinant of the corresponding linear vector field

a + k 6
c+l d][;]-

If 0 < dk—bl < (a+k+d)2/4 the primaryinduced fixed pointis either an attracting or repelUng fixed

point to which are twoUnear invariant manifolds, oneofwhich wiU bisect the region {(x,y) : 1 < x}.

In this case, cycles do not exist. When dk-bl = (a + k + d)2/4 a linear invariant manifold lies in

the region {(x, y) : 1 < x} preventing cycles from forming.

Since cycles cannot intersect the line x = -1 nor lie to the left of the line x = -1 they do not

exist. g

Proposition 6.3. If (a+ k+ d)2 < dk - bl and 0 < a + k+ d then there are no limit cycles. If
0 < a 4- k + d then there are no cycles.

Proof. The first part of the proposition is an immediate appUcation of lemma 3.1. Cycles do not

exist in the region bounded by the Unes x = ±1. If cycles existed then they must cross either the

line x = 1 or the line x = -1 or Ue outside the region bounded bythese two Unes. Firstly, consider
the case ofa cycle intersecting the Une x = 1or being in the region to the right ofthe line x= 1. By
using Stoke's theorem, thecase ofa cycle intersecting the line x = 1 can beexcluded. As 0 < a+k+d
the primary induced fixed point is repeUing, cycles do not exist in the region right ofthe line x= 1.
Similarly, cycles can neither intersect the line x = -1 nor Ue to the left of the Une x = -1. Thus,
cycles do not exist. •

Proposition 6.4. If(a +k+d)2 < dk-bl and a+k+d< 0 then there is a unique attracting cycle.
Proof. The function 7ru : L(y*,oo) - £(-oo,y'] is given by 7m(t;) = -e^(v - y*) + y* where
A± iu are the eigenvalues of the matrix

\a+ k 6"
[c+l dj'

i.e, A= (a + k+d)/2 < 0, w= y/^dk-bl)-[a +k+d)2/A/2. The function tt22 :X(-oo, -y*) -
L[-y*,oo) is given by ir22(v) = -e^(v +y*)-y\ For the vector field given by

X

.y.
=

a 6"
c d

X

.y.

the solution through the point (x0, yo) is given by

x(t) = ax° +by°c<*+d\t , dx0 - by0
a+d a+d '

v(t\ - dax° + byor<°+<*' adxo-byo
yK) b a+ d 6 a+ d '
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For points in X(-oo, y*] a non-parametric solution through the point (1, v) is given by

d — bvy=r-

where it is remembered that as t -• oo then x -» oo. Thus, the point (l,v) under the solution
meets the Une x = -1 at the point (-1, v- 2d/6). Hence tti2 : L(-oo, y*] -> X(-oo, y*) isgiven by
ir21(v) = v+2d/b. By symmetry, the map x2i :r[-y*,oo) -• L(y*, oo) is given by 7r2i(t;) = v+2d/b.

The function tt2 = itn ot21 o ir22 o tt12 :L(—oo, y*] —• L(—oo, y*] is thus given by

ir'(v) — —e <-

Solving for ir2(v) = v one has that

hs., 2d , „. n „ 2d
-e-(v- — + y*)-2y* + — + y*

v =

1 — e «
y*(l + 2e« +e » )-—-e~(e~ + l)

Notice that the foUowing inequalities hold,

a + d
<0

2y* - — < 0
o

y*2e~(e~ + 1) - —c - (e~ + 1) < 0
6

y*(l + 2e~+e « )- —e « (e~ + 1) < y*(l-e - )
o

v < y*.

Thus, indeed ir2 has a unique fixed point in L(—oo, y*]. As |(7r2)'(t;)| = e2^ < 1 then thefixed point

is attracting. The cycle through the fixed point gives the unique attracting cycle. |
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§7. 0 < b, 0 < a + d, ad - be < 0.

When these conditions hold, the possibiUty of attracting annuli are very remote. This section wiU

depend on results obtained in section 7 of [3].

Proposition 7.1. Ifad —be + dk - bl = 0 then there are no cycles.

Proof. Consider the linear vector field given by

+ k 6] \x]
+1 d\ [y\

As the determinant is zero, the number of fixed points is either zero or infinite. There are two cases

to consider.

(i) :If / jd (d/b)k then there are no induced fixed points. Any cycles must contain the origin.

The origin is a saddle with index -1, thus cycles cannot exist.

(it) :If / = (d/b)k then ad- be = 0, this case cannot occur. |

For the remainder of the section it wUl be taken that ad- be + dk - bl ^ 0. It will be proved

that attracting cycles are not very likely.

Proposition 7.2. Let (x,y),x < 1, be the primary induced Gxed point of the symmetric vector
Geld£. Then £ has no cycles.

Proof. Any cycle must enclose fixed points whose indexes sum to 1. As the only fixed point is at
the origin, with index -1, cycles do not exist. |

Proposition 7.3. Let (x, y), 1 < x, be the primary induced Gxed point of the symmetric vector
Geld f. If

y<i(-d(l-x)-a)
then there are no cycles.

Proof. By lemma 3.1 it is sufficient that 0 < a + k+ d for there to be no cycles. This means
0<a + (ax + by)/(l - x) + d which reduces toy < (-d(l - x) - a)/6. |

Lemma 7.4. Let (x, y), 1< x, be the primary induced Gxed point ofthe symmetric vector Geld £.
Then (x, y) has complex eigenvalues <$

^(-2v/x-lv/-(ad-6c) - d(l - x) - a) <y<^(2y/x~=Ty/-(ad - be) - d(l - x) - a).

Proof. The eigenvalues at the primary induced fixed point are determined by the roots of the
characteristic equation of the matrix

'a + k br
c + l d
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The characteristic equation is A2 + (a + k+ d)A+ ad - be + dk - bl = 0. Substituting the values

k = (ax + 6y)/(l - x), / = (ex + dy)/(l - x) into the characteristic equation the above reduces to

., (a + d— dx+ by\ % ad —6c
x-\——*—)A+73T=°-

The eigenvalues are complex if and onlyif the discriminant is negative,

Thus,

•^(-2Vx - ly/-(ad-bc) - d(l -x)-a)<y< i(2Vx=Ty/-(ad- be) - d(l - x) - a). |

Theorem 7.5. Let (x, y), 1 < x, be the primary induced Gxed point of the symmetric vector Geld

S.If

i(2v/x^=TV-(ad-6c)- d(l -x)-a)<y

then there are no cycles.

Proof. The primary induced fixed point has eigenvalues whose product is (ad - 6c)/(l - x) > 0.

Thus, the primaryinduced fixed point has index 1. Similarly the secondary induced fixed point also

has index 1. Any cycle must contain within its interior points whose indices sum to 1. Thus, either

the primary or secondary induced fixed point are in the interior of the cycle. Since the primary

induced fixed point has at least one real eigenvalue, there can be associated an eigenvector through

which lies a Unear invariant manifold. Similarly, through the secondary induced fixed point Ues a

linear invariant manifold. As Unear invariant manifolds cannot be bounded, it follows that cycles do
not exist. |

Lemma 7.6. Let (x, y), 1 < x, be the primary induced Gxed point of the symmetric vector Geld £
such that

•^(-2Vx - W-(ad - be) - d(l - x) - a) <y<i(2v/x^Tv/-(ad - 6c) - d(l - x) - a).

To the primary induced Gxed point corresponds unique values ofk,l. Let A± iw be the complex

eigenvalues of the matrix given by
'a + k 6"
c+l d

Then there exist -y* < v2,K2 such that for v2 < v the map 7ru o tt21 : r[-y*,oo) —• X[y*,oo)
satisGes

—e~V + K2 < 7Tn o 7T2i(v).
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Proof. The eigenvalues of the origin are the eigenvalues of the matrix

The eigenvalues are given by

a 6

c d

_a + d+ y/(a + d)2 - 4(ad- 6c)
2 ~

a + d- y/(a + d)2 - 4(ad- 6c)
A2 = -

where A2 < 0 < Ai. The vector corresponding to the larger of the two eigenvalues is

-a+d+y/(a+d)*-4(ad-bc)
55

Let —y* < v. The solution through (—1, v) Ues inside of the Une through (—1, v) parallel to the Unear

manifold corresponding to the positive eigenvalue Ai. The line through (—l,ti) in the direction of

the eigenvector corresponding to Ai is

X -1 1
= +t

y V V

This Une intersects x = 1 at the point (1,v + 2v). Thus, ir2i(v) < v + 2v.

By a proof analogous to lemma 3.11 of [3], there exists y* < vi, K\ such that for vi < v,

-e~&v + K\< 7Tn(v).

Let v2 = max{-y*, v\ - 2v}. Then for v2 < v one has that tt2i(v) < v+ 2v where ui < v+2v. Thus,

Tn o^2i(u) > -e"^7r2i + Ki

> -e^(v + 2v) + Ki

= —e » v + K\ — 2ve~*'.

Hence, ttu o ir21(v) > -e&v + K2 where K2 = Kx - 2ve^r. |

Lemma 7.7. Let (x, y),1 < x, be the primary induced Gxed point of the symmetric vector Geld $.
If

^(-d(l - x) - a) <y<i(2v/x"^"V-(ad-&c) - d(l - x) - a)
then there exist 1% < y* such that for v < u3 the return map satisGes v < t*(v).

Proof. By lemma 7.6, there exist -y* <v2,K2 such that for v2 < v,

T11 o t2i(u) > -e - v + K2.
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By symmetry of the symmetric vector field, for t; < —t^,

7r22 o 7Ti2(t;) < —e~v —K2.

Let t/ = min{—u2, (n22 o rri2)_1(v2)}. Then for v < V3, we have

7T2(v) = TTii O7T2i O7T22 O7I"i2(t;)

> -e^(ir22 o iri2(v)) + K2
Ai / Ai r* \ t*> —e - (—e - v —K2) + K2

= e - v + K2(e « + 1).

If t2(v) > v it is sufficient that

e -w v + K2(e « + 1) > v.

As (-d(l - x) - a)/6 < y then a + fc + d < 0 and A < 0. Then it is required that

K2(e^ +1)
— 2X*~ > V.

1 — e w

Let V3 = min{u/, K2(e~^ + 1)/(1 —e2^)}. Then for v < U3 it happens that v < ir2(v). |

Theorem 7.8. Let (x, y), 1 < x, be the primary induced Gxed point of the symmetric vector Geld

S.lf

i(-d(l- x) - a) <y<i(2\/x^ny-(ad - 6c) - d(l - x) - a)
and 7r(u;) < v then there is a pair of repellingannuli, each of which intersects only one of the lines

x = 1 or x = —1, and an attracting annuius which intersects both the lines x = 1 and x = —1.

Assuming conjecture 0.1 holds, the repelling annuli are repelling limit cycles and the attracting

annulus is an attracting limit cycle.

Proof. By theorem 7.7 of [3], there is a pair of repelUng annuU, each annulus intersecting only one

of the lines x = 1 or x = —1. Assuming conjecture 0.1 holds, the repelling annuli are repelUng Umit

cycles.

Consider the line segment i[v3, Trn(w)] where u3 is givenin lemma 7.7. Note that ir2oTru(w) <

irn(w). Thus,
ir2(L[v3, wn(w)]) = L[ir2(v3), v2 o Trn(w)]

CL[v3,irn(w)].

By theorem 2.12 of [3] there is a locaUy attracting annulus for points in L[v3, ttu(w)]. The annulus

intersects both lines x = 1 and x = —1. Assuming conjecture 0.1 holds, the attracting annulus is an

attracting limit cycle. |

Theorem 7.9. Let (x, y), 1< x, be the induced Gxed point of the symmetric vector Geld £. If

I(_d(l _x) _a) <y<i(2v/x"^lV-(ad-6c) - d(l - x) - a)
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and v < 7r(tw) then there are no limit annuli. Furthermore, assuming conjecture 0.1 holds, then

there are no cycles.

Proof. By theorem 7.8 of [3], there are no Umit annuU which intersect only the Unes x = 1 or

x = -l.

Say a limit annulus exists. It must then intersect both Unes x = 1 and x = —1. Let the boundary

cycles of the annulus intersect the Une x = 1 at the points (l,r),(l,s) where V3 < s < r < v.

The value v3 is given in lemma 7.7 and (l,v) is the point of intersection of the stable manifold

through the origin and the line x = 1. Note that as ir2(v) < v the annulus is repelling. However,

ir2(L[v3, a]) = L[ir2(v3), tt2(s)] C L[v3) s]. The point (1, a) is the only fixed point ofthe w2 in the line

segment L[v3, s]. If another fixed point existed then maximalityof the annulus wouldbe contradicted.

The cycle through (I, a) is attracting. The annulus is attracting. A Umit annulus cannot be both

repelUng and attracting. Limit annuU do not exist.

Assume an annulus exists whose boundary cycles both intersect the Unes x = ±1. By the same

argument as before, the annulus has to be semi-stable. By conjecture 0.1, semi-stable annuU do not

exist. Thus, if annuli exist then its boundary cycles cannot both intersect the lines x = ±1.

If an annulus existed then one of its boundary cycles does not intersect both the lines x = ±1.

If this boundary cycle intersected only one of the lines x = ±1 then a contradiction to theorem 7.8

of [3] would arise from the piecewise linear vector field with the same defining constants as £. The

boundary cycle does not intersect either of the lines x = ±1. This boundary cycle must then lie in

one of the regions {(x,y): x < -1}, {(x,y) : -1< x < 1} or {(x,y) : 1 < x}. However, the trace of

the symmetric vector field in each of these regions is nonzero, preventing cycles from forming. Thus,

the annulus does not exist, it then follows that cycles do not exist. |
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§8. 0 < b, 0 = a + d.

For these choices of the defining constants there are no Umit cycles.

Proposition 8.1. Ifk^O then there are no Umit cycles.

Proof. If a Umit cycle existed that only intersected the Une x = 1 then proposition8.1 of [3] would

be violated for the piecewise linear vector field with the same defining constants to the right of

x = —1. If the Umit cycle only intersected the Une x = —1, then under symmetry there would be a

limit cycle that only intersected the line x = 1. This would contradict proposition 8.1 of [3] for the

piecewise linear vector field with the same defining constants, limit cycles that only intersect x = -1

do not exist.

Thus, any Umit cycle'that exist must intersect the lines x = -1 and x = 1. Let C be this limit

cycle, by Stokes theorem,

i d£d» -didx=1(C) i (I)+i (S) **•
Breaking up the area integral into the three regions, A = int(C) n {(x, y):x<-l},B = int(C) n

{(x, y): -1 < x < 1}, and D = int(C) n {(x, y) : 1< x}, then

0=/ ^((a+k)x +by-k) +Ji((c+l)x +dy-l)dx dy+

J d-(ax +by) +lL(cx +dy)dx dy +J jL((a +k)x +by-k)+£-((c+l)x +dy-l)dxdy
= I (a +k+d)dxdy+ f (a +d)dxdy+ f (a +k+d)dxdy

J a Jb Jd

= / kdx dy+ I kdx dy.
Ja Jd

As k ^ 0 the integral on the right is nonzero. By contradiction, Umitcycles do not exist. |

Theorem 8.2. If k = 0 then there are no limit cycles.

Proof. Under the change of variables given by

the symmetric vector field given by

= <

X

Y

1 0

if 1

a+k 6] [x
c+l d\ [y

• ;](;]•
a+ k 6] fx] _
c+l d\[y\
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x < -1;

-1 < x < 1;

Kx,



becomes

Thus,

Thus,

X

Y
= <

dY_
dX

0 6 [X
-(ad-6c)/6+/ 0 \Y

0 6

-(ad-6c)/6 0

0 *1[*1
-(ad-6c)/6 + / Oj [Y\

+

(-S±^£. + l)X + l
6? '

(-2^£)X
bY

(_ad^bc+J)X_l

X<-1;

-1 < X < 1;

1<X.

bY2+(?±lh-l>)x2-2lX+c=0,
bY2+(^h)x2+c+l =0,
bY2+(^±-l)x2+2lX +c=0,

X<-1,

-1<X< 1,

1<X.

Assume that there is a limit cycle. The cycle must be on a level curve in the X,Y plane for

some particular value c. By X-axis symmetry of the defining relations between X and Y, the cycle

intersects the X-axis at some point (Xo, 0). Because of y-axis symmetry the cycle also intersects

the X-axis at the point (—Xo, 0). Say the cycle is attracting, the repelUng case is handled in an

analogous manner. Then the point (Xi,0) close to (Xo,0) wiU, under the symmetric vector field,

approach the Umit cycle. Consider the level curve on which the point (Xi,0) Ues. This level curve

has y-axis symmetry and X-axis symmetry. The path ofthe point (Xi, 0) is continuous and must

intersect the X-axis at some point (X2,0) close to (-Xo,0) if it is to approach the cycle. But, by

y-axis symmetry of the level curve through (Xx,0) it foUows that (X2,0) = (-Xi,0). The path

through (Xi,0) joins up with the point (-Xi,0). Then by X-axis symmetry the level curve wiU

also joinup the points (-Xi, 0), (Xi, 0). Thus, a cycle exists through the point (Xi,0) so that the

point cannot approach the claimed Umit cycle. Thus, Umit cycles do not exist. |
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§9. 0 = b.

There is a short proof as to why cycles cannot exist under the condition that 6 = 0.

Proposition 9.1. There are no cycles.

Proof. The symmetric vector field £ has the following form,

+ k 0] [xl
+ / dj[yj

a 0

6 d

a

c

x < -1;

-1 < x < 1;

1< x.

Assume a cycle exists. Within the cycle lies a fixed point. But through the fixed point Ues a linear

invariant manifold parallel to the y-coordinate axis. Since cycles cannot encircle linear invariant

manifolds they do not exist. |
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Appendix A.

In this appendix, the relationship between continuous piecewise Unear vector fields of [2,3] and the
symmetric vector fields will be discussed. First, the respective definitions will be presented.

Definition A.l. £ is a continuous piecewise Unear vector field in canonical form «*• there exists

an integer 1 < n, matrix B, vectors o,ai,A, 1 < * < n and constants 7,-, 1 < i < n for which

«x) = a+ Bx + £r=i ai| < A,x > -7,|.

The foUowing definition is repeated from the main body of the text:

Definition 1.2. £ is a symmetric vector field «> there exists constants a, 6, c,d, Jb, / witheither Jb ^ 0

or / ^ 0, and
(r«4.jb 6i r**

+
a+ Jb 6] fx
c+l d\[y

a+ Jb 6] [x
c+l d\ [y

, x<-l;

-1 <x< 1;

, Kx.

The foUowing lemma shows how the defining constants in the two types of representation are

related.

Lemma A.2. (*) -.Let £(x) = BX+ |[1 0]x- l|o- |[1 0]x+ l|a with

Then

where

(it) :Let

a =
6n 6i2
62i 622

a 6

c d

o2

a+Jb 6] [x]
c+l d\[y\

c dj[yj'
a+k 61 \x
c+ l d\[y ]-[!

6n —2ot\ &i2
62i —2a2 622

'

a + Jb 6" X
1

'Jb'
c+l dj [y.

+
/

X

.y.
= i

a 6]
c d

'a + k

X

.y.
6' X Jb"

> c + l d .y. /

x < -1;

-1 < x < 1;

Kx

2ai
2a2

x < -1;

-1 < x < 1;

Kx

be a symmetric vector Geld with k, I not both zero. Then £(x) = Bx + |[1 0]x —l|a —|[1 0]x + l|a

with

'a + k 6
a =

\k
, B =

c + l d



Proof. The continuous piecewise linear vector field £ in canonical form has the following decompo

sition,

£(x) = Bx+(l-[10]x)a+([l 0]x+l)a x € {(x,y): x <-1}

= Bx+2a

£(x) = Bx+ (1 - [1 0]x)a- ([1 0]x+ l)a x G{(x,y) : -1 < x < 1}

= Bx - 2a[l 0]x

£(x) = Bx - (1 - [1 0]x)a - ([1 0]x + l)o x € {(x, y): 1 < x}

= Bx - 2a.

Thus matching with the corresponding decomposition for a symmetric vector field,

gives,

(») :Given the values of

x

\.y

x

y

a+ k 61 [x
c+l d\ [y.
a 6

c d

a+ k 6] [x] _
c+l d\[y\

+

Bx + 2a =

(B - 2a[l 0])x =

Bx-2a =

a+ ib 6] |x
c+ l d\ [y
a 6

c d K
a+ k 6] [xl
.c+/ d\[y\

L°21 ©22 J
or =

ct2

then by using the equivalences above,

(it) :Given the values of

a b

c d

6n - 2oti 6i2
62i —2a2 622

a 6

c d

then by using the same set of equivalences,

a + k 6

c + l d

a —
k 6

d>B-[c +l

+

2oci
2a2

x€{(x,y) :x<-l}

x€{(x,y):-l<x<l}

x€{(x,y):Kx}

x€{(x,y) :x<-l}

xG{(x,y):-l<x<l}

x€{(x,y) :Kx}.

The concept ofthe induced fixed point occurs frequently and in many ofthe results proved in
the text. The next two lemmas relate the primary induced fixed point to the defining constants in
the canonical representation of a symmetric vector field.



Lemma A.3. Let the symmetric vector Geld £ begiven as

«*) =[&u 6i2
62i 622

«i

ct2
|[10]x-l|- ai

a2
|[10]x+l|.

If6n622 —62i6i2 ^ 0 then the primary induced Gxed point of£ is given by

where

[;]- 6u622 —62i6i2

Proof. Using lemma A.2 the symmetric vector field in canonical form can be rewritten as

a+ k b] fx] [Jb
c+ l dJ[yJ + [/
a 6" "
c d, fc_

"Jb

Qri622 —ot26i2
-ori621 + Qr26u

a 6

c d

•][:]•
a+ib 6] [x]
c+l d\[y\

x< -1;

-1 <x< 1;

1 < x

&ii-2a! 612] [fcl _ [2ai
62i-2a2 622J'[/J [2a2

The primary induced fixed point is the solution (if it is uniquely defined) to

6n 612
62i 622JW U£r

If 6ii&22 —62i&i2 t£ 0 then a unique solution exists and is given by

x 2 I ai622 —or26i2
yj 6n622 —62i&i2 [—cti62i + a26n

Lemma A.4. Let a, 6,c, d be constants. If the symmetric vector Geld has (x,-, y,), x,- ^ 1 as the

primary induced Gxed point then

*(*) =

for

a+2*d±tL b ax< + 6y,-
+c + cxj+dj^ d 2(1 - xf) L^i + dyi

l —Xi J

Proof. The symmetric vector field

|[10]x-l|-
2(1 - Xi)

= <

a+ k 6] fx]
c+ l d\[y\ +

: ill:]-
a+ Jb 6] [xl_
c+l d\[y\

_ * rax, + 6y<
1-x,- [cxi + dyi

has the point (x,-, y,) as the primary induced fixed point. Using lemma A.2 to convert the represen

x< -1;

-1 < x < 1;

1 < x

tation into canonical form gives

a =

and thus

«*) =
°+^ &
c+£*i±&i. d ' 2(1-x.)

1 —Xi J

+

2(1 - x.)
axt + byt
cxi + dyi

axt + byi
cxi + dyt

,B =
a+2*i±*2£i b

|[10]X-1|-
2(1 - Xi)

axi + byi
cXi + dyi

axi + byt
cxi + dyi

|[10]x+l|.

|[10]x+l|i



Figure captions.

Figure 1. The symmetric vector field is conjugate to a Unear vector field with an unstable focus at

the origin.

Figure 2. The symmetric vector field has an attracting Umit cycle, as indicated in bold type. The

effect of symmetry of the vector field is clearly evident in the symmetry of the limit cycle.

Figure 3. A pair of saddle-node connections is another possibUity for a symmetric vector field as

indicated by this phase portrait. The invariant manifolds of the saddle points are indicated in bold

type.

Figure 4. The three linesoffixed points, indicated in bold type, divides 3ft2 into twodisjoint regions.

In each region there are no attractors.

Figure 5. The symmetric vector field is conjugate to a Unear vector field with a saddle point at the

origin. The invariant manifolds through the origin are indicated in bold type.

Figure 6. At the origin is a saddle point. The invariant manifolds through the origin are indicated

in bold type. Furthermore, there also exists a pair of unstable nodes. The saddle point at the

originand this pair of unstable nodes together aUow the possibiUty ofsaddle-node connections. The

saddle-node connections occur on the stable manifolds through the origin.

Figure 7. The symmetric vector field is conjugate to a Unear vector field with a saddle point at the

origin. The invariant manifolds through the origin are indicated in bold type.

Figure 8. The symmetric vector field is conjugate to a Unear vector field with an unstable node at

the origin. Note that the y-axis is invariant under the vector field, this prevents the formation of
cycles.
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