

Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A COMPARISON OF TWO REPRESENTATIONS

FOR COMPLEX OBJECTS

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M90/32

27 April 1990

A COMPARISON OF TWO REPRESENTATIONS

FOR COMPLEX OBJECTS

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M90/32

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A COMPARISON OF TWO REPRESENTATIONS

FOR COMPLEX OBJECTS

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M90/32

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Comparison of Two Representations for Complex Objects

AnantJhingran and Michael Stonebraker
Computer Science Division

University ofCalifornia at Berkeley

Abstract

In this paper two complex object representation techniques are compared from a performance per
spective. In procedural representation, the set of sub-objects of an objectis represented intensionally using
database queries. In contrast, OIDrepresentation uses an extensionalapproach. We identify four dimen
sions that illuminate the differences between these approaches: cost of accessing the sub-objects, cluster
ing, caching, and query modification. We study these dimensions using mostly analytical techniques,
though some simulation results are also presented. We demonstrate that an intensionalln particular, it is
shown that clustering the objects and sub-objects together is an effective tool, provided a sub-object is
shared by only a few objects. Both caching and query modification are shown to benefit procedural
representationmore than OID representation.

1. Introduction

With emerging new applications (e.g., CAD [BAT085, LORI85], Office Information Systems and

Logic Programming [ZANI85]), database systems arebeing asked toprovide efficient support for complex

objects. This complexity may arise from IS-PART-OF relationships (as in VLSI cells where "rectangles"

and"paths" are partsof "cells" [LORI85]). In contrast, set-valued aggregation as in [SMIT773, where attri

butes ofobjects are themselves other objects, provides another mechanism for supporting complex entities

ina database. As an example of the latter dimension ofcomplexity, consider a complex object "depart

ment" which has thefollowing schema ina syntax similar toEXTRA [CARE88]:

name = char[16], manager = char[16], location = char[16j, employees = {refemployee)

The last attribute refers to the employees working in the corresponding department, and is a set-valued

aggregation of the entitiesof type "employee".

There have been numerous proposals for representing complex objects [COPE85, BANE87,

KIM87]. However, these studies have concentrated on one or two representations, with few looking at the

trade-offs between many alternatives. For example, the emphasis by agroup atMCC [COPE85, VALD86]

ison a "decomposed storage model" ofcomplex objects. The accompanying performance data isused to

justify their choice. In a series ofpapers (e.g. [BANE85, KIM87]), the ORION group at MCC has dis-

This research was sponsored bythe National Aeronautics and Space Administration under grant NAG 2-530. and bythe Armv
Research Office under contract DAAL03-87-G-0083.

cussed performance implications of representing complex (especially VLSI) objects in an object-oriented

environment. Furthermore, almost all semantic models have mechanisms to represent complex objects, but

the work there concentrates more on data modeling than on performance issues [YA085]. Lastly, in

[SHEK89], a group at Wisconsin has studied some of the performance implications of representing com

plex objects using EXTRA, the data model of EXODUS [CARE88].

In [JHIN90a] our approach has been more general. We have established a framework for modeling

and then comparing the various alternatives for representing the relationships between objects and sub-

objects. Broadly speaking, there are three possibilities here, and they are termed primary representations.

To illustrate the differences, consider complex objects of type "department" discussed above. Table 1

illustrates how the three primary representations differ in representing the members of the "Toy" depart

ment.

Representation Instance

Procedural retrieve (employee.all) where
employee.dept = "Toy"

OID 2314,4562,9874,...

Value-Based

John 23 M

Mary 42 F

Doug 24 M

...

Table 1

In procedural representation, the set of sub-objects associated with an object is identified "intensionally,"

using a database procedure. This procedure is generally a sequence of retrieve statements in the query

language of the database system, which when executed return thevalues of thesub-objects.1 Assuming that

entities of type employees have an attribute "dept" containing the name of the department the employee

works in, a possible procedure for the members of "toy" is shown in Table 1. In this representation, inser

tions (deletions) of sub-objects require no modification to the objects, since the procedures can re-compute

the set of sub-objects on demand. POSTGRES [STON86] is an example of a database system that allows

procedure as a data type.

'The valueof anobjectis simplythe concatenation of thevalues of eachof its attribute.

In contrast, both Object Identifier and Valued Based representations use an extensional approach to

identifying the sub-objects. In the former, a unique location independent identifier [KHOS86] for each

sub-object is stored with the object Since in general an object may have more than one sub-object, this

results in a list of identifiers (OID-list for short) being stored with the object In Table 1, the list represents

the OIDs of the employees working in the Toy department. Most object-oriented database systems (e.g.,

ORION [BANE87], GemStone [COPE84]) use this approach to modeling complex objects.

Finally, in the value-based model, the sub-objects have no identities of their own; their values are

stored with the objects that refer to them. Assuming that the relevant attributes of an employee are name,

age and sex, the value of the members of "Toy" is shown in Table 1. Most non-normalizeddatabases (e.g.,

AIM-II [DADA86]) model complex objects using value-based representation. This model is presented

here only for the sake of completeness; it will not be discussed furtherin thispaper.

The three representations are not totally equivalent —they have some semantic differences. In both

the extensional models, any insertionof sub-objects requires modifications to the objects that will reference

these new sub-objects. Similarly, deleting a sub-object results in updates to the OID-list or values stored

with all the objects that referenced it Also, in order for two objects to share a sub-object, its identity or

value hasto bereplicated in both places. This is incontrast toprocedural representation where sharing will

be implicitly achieved through the procedures storedwiththe twoobjects.

Very often, queries on complex objects have tobeprocessed bytraversing each complex object top-

down. This involves efficiently determining the "values" of the component sub-objects, and is termed

materialization (and we use the terms "materialized result" and "value" of an OID-list or a procedure

interchangeably). In procedural representation, materialization requires the execution ofthe corresponding

procedure. InOID representation, we have todereference each OID inthe corresponding OID-list togetto

the location (and hence the value) of the sub-objects. Both these operations may prove tobe quite expen

sive. There are three ways that these materializationcosts can be minimized.

(1) Sub-objects can be clustered with the objects that reference them. This involves assigning objects

and sub-objects to buckets such that most objects have their sub-objects in the same bucket as

them.

(2) Thematerialized result can be computed once and stored separately on thedisk. This "materialize

and cache" strategy is shown to be effective for both procedural and OID representations in

[JHIN88,JHIN90a].

(3) Whencomplex objects are modeled usingspecial parameterized procedures ([ROWE87, JHIN88]),

it is oftenpossible to rewrite the user-submitted queries suchthat top-down processing is no longer

a pre-requisite, and hence materializationcosts do not enter the picture.

The background for this study has been laid in [JHIN88] where we analyzed the performance impli

cations of procedural representation, and in [JHIN90a] where we did a similar analysis for OID representa

tion. Each of these studies explored the various possibilities on one representation only; no attempt was

made to contrast the two primary representations. In this paper, however, we compare procedural and OID

representations on four dimensions which elucidate the differences between them.

The rest of the paper is organized as follows. Section 2 discusses the first axis for comparison,

namely the I/O cost of materialization. The next three sections discuss the performance of the three stra

tegies (namely, clustering, caching and query modification) used to reduce the materialization costs.

Finally the paper ends with some conclusions in Section 6.

2. I/O Cost of Materialization

We first look at the materialization costs in OID representation. When an OID-list contains s OID's,

this involves dereferencing s pointers to get to the physical location of the objects. If the physical location

of an object is computable from its OID (either directly, or through a hashing function), then materializa

tion involves at most s data page accesses. However, it is often desired that objects can be moved indepen

dent of their OID's [KHOS86]. This in turn implies that OID's are location independent surrogates, and

hence an auxiliary structure is required to dereference them. We next calculate the materialization costs in

OID representation, assuming that the auxiliary structure is an OID-index in the form of a B+-tree. Given

an OID, this index will give the physical location of the corresponding object

Consider the following parameters of the database:

H: Height of the OID index (levels numbered [0..H]).
B: Branching factor of the index
M: The number of sub-objects in each data page

N: Number of sub-objects in the database
s: Number of entries in the OID-list

In general, the s OID's in an OID-list are drawn randomly from the set of N possibilities. To see why this

is the case, consider the following schema:

PERSON (name, profession, city)
PROFESSION (name, members)
CITY (name, RESIDENTS)

The attribute PROFESSION.members is a set-valued aggregation of the persons belonging to that profes

sion. Similarly, the attribute CITY.residents is a set-valued aggregation of the persons living in that city.

In that case, the OID's of personscan be in theircity order,or theirprofession order,but not both. Conse

quently, if a sub-object class participates in more than one typeof relationship, thenat most one of these

relationships will have a clustered traversal of the OID-index - for all others, the OID's of the sub-

objects will be drawn at random.

In thatcase, theexpected number of index pages touched at a level i,0<i<His given by:

Costlndex(i) = yao(N, B\ s)

where yao(n ,m Jc) represents the expected number ofpages touched when k records are drawn randomly

from n records spread uniformly over m pages [YA077]. Here B1 is the number of pages at the i* level.

The numberof data pages touchedis givenby:

CostData =yao(N, -£-, s)

The totalcost of materialization usingan OID indexis:

Cost =Tyao(N, B\ s) +yao(N, ^, s)
It can be shown that if s <. N, then Cost is a linear function of S.

In contrast to OID representation, the materialization costs in procedural representation depend on

the structure of the procedures. For example, procedures can be used to simulate OID-lists, albeit with a

somewhat extra space usage. Thus, the procedure for the Toy department members might well be:

retrieve (employee.all) where
employee.OID = 2314 oremployee.OID =4562 oremployee.OID = 9879 ...

In fact, if these procedures are special cased (as in parameterized procedures in POSTGRES), itispossible

to factor out the extraspaceand thusattain a space usage which is no worse than that in OID representa

tion. The materialization costsof theseprocedures are similarto thoseof thecorresponding OID-lists.

In general, however, procedures may be totally "intensional" (where no sub-object identity is expli

citly stated), totally "extensional" (as above), or anywhere in between. Thus one might choose to have the

following procedure for the Toy department

retrieve (employee.all) where
(employee.OID = 2314 or employee.OID = 9879 or....) or
(employee.dept = "Toy" and employee.age < 40)

where the first disjunction is an extensional representation of a sub-set of employees, and the second is an

intensional representation of the rest It is clear that if the two sub-sets are disjoint, then the cost of materi

alizing this procedure is simply the sum of the costs of its two parts. The cost of the intensional component

depends on many factors like joins, indices etc. and is, in general, difficult to model.

It is however easy to determine a lower bound on the cost of materialization for procedures not

involving joins. The ideal form of such a procedure is:

retrieve (reLall) where
lowval <= rel.attr <= highval

with a proviso that an index exists on rel.attr. Note that this is possible even when a sub-object class parti

cipates in more than one relationship. In the example above, this requires an index on PERSON.city and

PERSON.profession. On the other hand, since there is only one OID order possible, clustered index traver

sal cannot be achieved along both dimensions in ODD representation. From this we can deduce that in gen

eral, the probability of clustered index traversal in the procedural representation is higher than in

the OID representation because of the higher degrees of freedom.

Under these assumptions, the cost of this procedure is given by the following components:

Costlndex(i) =
0<i<H

jBh/n| uh

CostData = yao(N, -~, s)

(This assumes that the leaf pages of the index are chained together. CostData is identical for OID and pro

cedural representations.)

10001

100:

10

10

s

100

Figure 1: Cost of Materialization asa function of thenumber of sub-objects

Figure 1 compares the cost of materializations in the two representations. The cost difference

reflects the fact that the path from theroot to the leaf levelof the index has to be traversed several timesin

OID representation, butonly once inprocedural representation.

In general, ifa procedure on a single relation can be expressed as a disjunction containing less than s

disjoint clauses, then its cost ofmaterialization will be less than that ofthe corresponding OID-list If this

is not the case, then the query processor should cache in an object the OID's ofthe sub-objects returned by

materialization of the procedure(s) in that object Subsequent requests for materialization could use this

equivalent OID-based representation. For example, if the procedure for computing the employees of the

Toy department is more expensive than the corresponding OID-list, then caching the latter will help:

name manager location employees
Toy John Denver retrieve (employee.all) where

employee.dept = "Toy"

2314,4562,9874,...

It is shown in [JHIN90b] that the overhead for maintaining these cached OID's is minimal under most cir

cumstances, and that the performance benefit from these rival the basic OID-based representation. Conse

quently, we see that under only modest space requirements, materialization in procedures costs no more

than in the OID-based representation.

However, irrespective of the choice of primary representation, in the absence of physical clustering

of sub-objects,a a major componentof the total cost will still be CostData= s. Both clustering and caching

alleviate this problem by reducing this component to the minimum possible, or less.

3. Clustering

If sub-objects are physically clustered with the objects that reference them, then the cost of materiali

zation can be reduced to a minimum [BANE86]. Typically, this clusteringcan be achieved irrespective of

the primary representation used. However, many consider it to be one of the major advantages of object-

oriented database systems over traditional relational systems [BANE87], In this section we will argue that

the advantages of clustering are limited. Consequently, the claimed ease of clustering in object-oriented

database systems (and hence, in OID representation) is of limited use. In [JHIN90a] we arrived at similar

results using simulation techniques, but here we employ an analytic approach.

In this paper we only consider two-level hierarchies; the analysis of multiple-level hierarchies is

more complicated. In a two-level hierarchy, the relationshipbetweenobjects and sub-objectscan be shown

as a bi-partite graph with two sets of nodes, {objects} and {sub-objects}. Figure 2 gives an example of

such a "relationship" (or "assignment" graph). We use the following notation:

Oi: the i* object
soj: thej* sub-object

The set of the sub-objects of an object Oi is formally defined as:

SOi= {sojlsoj-»Oi}

OBJECTS

SUB-OBJECTS

soi so2 s°3 s°4

Figure 2: An Assignment Graph

where i-*j refers to an edge from i to j in the graph. Similarly, the set of objects that reference a given

subobjectsoj is formally defined to be:

Oj= {Oi ISOj-K)i}

We consider the following parameters:

O: Number of objects in the graph.
S: Number of sub-objects in the graph.
OF: OverlapFactor, i.e. theaverage number of objects sharing a sub-object
p: Size of an object
b: Size of a bucket

We assume that thesize of a sub-object isoneunit From the above parameters, it is easy to derive thefol

lowing:

s: the average size ofan OID-list = SxOF

This is derived from the fact that the number ofedges leaving {sub-objects} equals the number ofedges

entering {objects}.

Aclustering assignment ofa graph G isbasically an assignment of sub-objects and objects tobuckets

(numbered 1through T) with the constraint that the total weight ofthe objects and sub-objects assigned to

any bucket does not exceed b.

The following is a generic formulation of the "goodness" of clustering, irrespective of the graph

structure describing the relationships. Let BSk and BOk be the set ofsub-objects and objects, respectively,

assigned to the kth bucket Without loss ofgenerality, the sub-objects are in the first t (t<T)buckets. We

define two sets for each bucket k. The first is the set ofobjects that reference the sub-objects assigned to a

bucket Formally,

Since BfcBjJ, we have

This is expressed as

Bi! = uOj
soeBS.0/6J

The second set contains thoseobjectsassignedto k thatalso have at least one of their sub-objects assigned

tok. Formally,

B| = Bk1piBOk

The cost of accessing the sub-objects of an object Oi is precisely the number of buckets (excluding the

bucket containing oO that contain at least one subobject of Oi. Assuming that all objects are accessed with

the same frequency2 and all accesses require the entire complex object, then the following formulation

exists for the the cost of a clustering assignment

O^IBd-B*!

C^IBkH-JjIBi2! (3)

C = B1-B2 (4)

where B1 and B2 refer to the firstand the second terms, respectively, in (3).

In general, a good clustering assignment will try to maximize the second term. This in turn means

that the objects are packed as "densely" as possible, i.e. in the sense that there is no space in the t buckets to

accommodate any more object (provided there are some objects that are assigned to buckets numbered t+1

or more)3. In that case, let f be theaverage fraction of the bucket space (for buckets numbered t or less)

that is occupied by the sub-objects. Then the number of objects that can be accommodated in the buckets

numbered t or less is given by

t b(l-f)
I P

Under the dense packing condition, the actual number of objects accommodated in the first t buckets is

either this quantity, or O if this is greater than O. Thus,

*Ifthere isan80-20 rule, thenwejustpartition thedatabase intotwoand apply theanalysts to each part separately.

'This dense packing is possible if certain conditions formatching onbi-partite graphs are satisfied.

B2= min{0,t ba-f) (5)

Of course,

t=
S

"bT

We study the cost of the optimal clustering for an assignment graph G as a function of f. In that

case, we rewrite (4) as

C(G,f) = Bi(G,f)-B2(G,f) (6)

Consider two graphsGi and G2whichhave identical valuesof p, O and S. Furthermore, let b be the same

for the optimal clustering assignments of both. In that case,

B2(G1^) = B2(G2,f) = B2(f)

In Figure 3, we have plotted B^Gi,!), B1(G2,f) and B2(f). Figure 4 plots C(Gi,f) and C(G2,f). While

C(Gi,f) has a minima at.f = 0.3, C(G2,f) is a monotonically decreasing function and hence has a minima at

f = 1. It is clear thatfora graph, if the slope of B^f) component of the costof a clustering assignment is

1200001

80000-

40000-

0.0 0.2 0.4 0.6 0.8 1.0
f

Figure 3: Clusteringcost components for two
graphs

1200001

80000-

40000-

I-» I » I I I I 1 I l<

0.0 0.2 0.4 0.6 0.8 1.0
f

Figure 4: Total clustering costs for the two
graphs

stricdy less than (i.e. more negative, and consequendy steeper than) thatof its B^f) component then the

minima is going to occur at f = 1. Otherwise, there exists a value of f where C(f) is at its minimum. A

value of f < 1 implies some objects are clustered with theirsub-objects. When f = 1, the objects and sub-

objects are clustered separately (as perhaps separate relations). Thus from Figure 4, clustering makes sense

for the first graph, but not for the second graph.

Before studying clustering performance of general assignment graphs, we first study the properties of

perfectly regular graphs. These graphs have a simple description for their optimal clustering assignments.

3.1. Optimal Clustering for Perfectly Regular Graphs

For a given set of parameters, O, S and OF, a perfectly regular graph Gp is defined to be the graph

with the following edges:

for all i, Oi <- S0j, io.£ j ^ (i|i + s - 1) mod S

where \i= -dp- is the largest size of ablock of sub-objects that belong to the same set of objects. In Figure

5 we show the adjacency matrix for our perfect graphs. The rectangles represent l's and the rest of the

matrixcontains O's. A 1 in the position (i, j) impliesthat the sub-object sOj is assigned to the object Oi. For

SUB-OBJECTS

A

+ -»

«— s —*

0

•
•

OBJECTS

Figure 5: The adjacency matrix for a perfectly regular graph with shown parameters

a given value of f, it can be shown that in (one) optimal clustering, the sub-object soj is assigned to the

bucket X. For the k* bucket it can be shown that IBi I (the number of objects that reference one or

more of the sub-objects assigned to k) is:

Bi = (kbf+bf-1) (kbf-s+1)
+ 1

and hence B1 is easy to compute. Consequendy, we can plot C(f) and hence determine f = fmin where C(f)

is minimum.

In Figure 6 we have plotted A/fJ? ^ a function of OF. If this ratio is less than one, then

fmin < 1. and consequently, clustering is beneficial. In one of the graphs (Vary_s) we have kept O and S

constant (both at 10000); consequendy s (the size of an OID-list) increases with OF (recall that

Oxs = SxOF). For the other two graphs, O was increased with increasing OF in such a way that s remained

l.Oi

Figure 6: Clustering Performance for PerfecdyRegularGraphs

constant. In one graph, s was fixed at 8, and in the other, at 20. The size of the bucket was fixed at 10 units

and that of an object at 2 units.

We see from all the curves that when OF= 1, clustering is ideal. This is to be expected because if

sub-objects are not shared, they are best clustered with the only object that references them. However, by

doing so, we will in effect have simulated a value-based representation. Consequently, when OF = 1 and

sub-objects are to be clustered with the objects, OID representation does not make much sense.

When a sub-object is shared by two to seven objects, clustering is likely to help. However, the cost

of an optimal clustering assignment fast approaches that of no clustering, indicating that the benefits of

clustering are only marginal in this region. When eight or more objects share a sub-object, clustering is

counter-productive, and it is best to keep the objects and sub-objects separately.

The other factor affecting clustering performance is s. If the set of sub-objects of an object is large,

clustering may not help fit all the sub-objects into one bucket Simultaneously, this will also decrease the

space available to accommodate other objects that reference these sub-objects. Consequendy, clustering is

likely to fail for large s, and this is exacdy what is observed. The curve for s = 20 rises much more sharply

than for s = 8. There is a specific reason why larger values of s are interesting. Clustering in multiple-

level hierarchies can often be viewed as recursive two-level clustering, starting bottom-up. In these cases,

by the time we reach the second or the third level from the bottom, the net value of s would be quite large.

Thus we feel that clustering multiple-level hierarchies is not likely to be very beneficial.

In conclusion, clustering is viable for perfectly regular assignment graphs provided the size of the

OID-lists (s) and/or the number of objects sharing a sub-object (OF) is small (generally less than 6 or 7).

3.2. Optimal Clustering for Random Graphs

Optimal clustering assignment for random graphs is a very hard problem [KERN70]. However, as

we show, it is possible to study the properties of optimal clustering without giving a solution for the same.

It is clear that the assignment of sub-objects to buckets is uniquely identified by a permutation k of

the sub-objects such that the sub-object itj isassigned to the bucket -cV (assuming each bucket contains the

same number of sub-objects). For a permutation tc, we define a "covering" to be the set of rectangles of the

form Rj where a is the maximalset of contiguous (modulo S) sub-objects that are referenced by an object

Oi. In a perfecdy regular graph, there existsonlyone rectangle for each object, whereas in general, this is

not the case. For example, the covering for the permutation {S02,so3,soi,so4} for the assignment graph in

Figure 2 is given in Figure 7. For such a covering, we define |i to be the average distance between two

contiguous starting points of the constituent rectangles. For example, in the above figure, \i = 0.8. The

number ofrectangles in the covering then is NR = -g-. By the definition ofthe covering, NR >O. For the

perfectly regular graph there exists the obvious permutation where NR = 0.

Assuming that the number of buckets is large enough, the probability of existence of two rectangles

of the type Rj and Rg where some sub-object from a falls into the same bucketas a sub-object from b is

extremely low. It can then be shown that

B1(GR^) =i;NRk =txNR

where NRkis the number of rectangleswith sub-objectsin the bucket k.

The closed-form for NR is quite complicated. If the number of buckets is large enough, then a sta

tistical estimate for this canbe obtained experimentally. In Figure 8 wehave plotted Bx(pJ) where a gen

eric graph is identified by its |x value. For the perfect graph, p,= -Jp-. The applicable parameters are:

O = 10000, S = 10000 and OF = 3

When f= -g-, all the curves have identical values. This is because if only one sub-object is to be

stored ina bucket, then NRk = OFand consequently, B1 = txOF =SxOF (which is independent of n). The

curvesstart deviating with increasing f, and the smallerthen, the larger the deviation from the curve of the

SO2 SO3 SOi SO4

Figure 7: Covering fora Permutation for theGraph in Figure 2

320001

¥

12000
0.1

Random(|i=0.6)

Random(^=0.8)

♦Perfect

Figure 8: Clustering cost components for
graphs with varying ji

240001

6000

Random(|i=0.6)

Random(n=0.8)

Perfect

1.0

Figure 9: Total clustering costs for graphs
with varying (i

perfectiy regular graph. In spite of these deviations, the three graphs have identical values of fmin (Figure

9).

From a broad range of experiments, it was observed that the minima of C(f) for a graph was a func

tion of O, S and OF, and in general, independent of \i. Consequently, the behavior of a random graph can

be characterized by that of a perfectly regular graph having the same set of parameters, and hence is helped

by clustering only when the size of its OED-lists and the OverlapFactor are small.

There are a couple of other reasons why clustering is not that attractive. The first is the obvious

difficulty in achieving a good clustering; it is computationally intensive and does not work when the objects

and sub-objects are being dynamically added and deleted. In [JHIN90a] we have established another factor

which prevents clustering from being the optimal choice. To facilitate merge based join processing of

large queries, it is sometimes important to have the entities in the database sorted in OID order. When

clustering is employed, it is difficult to ensure this ordering because then OID's become location depen

dent.

We end this section with a brief discussion on another aspect of sharing. In procedural representa

tion, for example, sharing is possible if 1) Two procedures return some common tuples, or 2) Two objects

have identical procedures. Similarly,in OID representation, two objectsmight have intersectingOID-lists,

or identicalones. Till now we have been discussing only the first modelof sharing. To accommodate the

second, we need to introduce an intermediate layer between the objects and sub-objects in Figure 2. This

layer (of procedures or OID-lists) receives edges from {sub-objects} and has edges into {objects}. The

average number of edges leaving a node at this level is termed ShareFactor, or SF for short If SF = 1, then

in effect we have the firstmodelof sharing.

4. Separate Caching

In the absence of clustering, accessing the sub-objects of an object typically involves multipledata

page I/O's (as is evident from the cost model we havedeveloped in Section 2). Caching the materialized

resultcan reduce thiscost appreciably. Thiscaching can be in twoplaces. In inside caching, the material

ized result is stored with the object that contains the appropriate procedure (or OID-list). In contrast, in

separate caching, all cached results are stored in one place, separate from the objects. It is shown in.

[JHIN88, SHEK89] that if SF exceedsa smallconstant, thenseparate cachingis the betteroption. It entails

lesser space usage, and fewer updates, but at the expense of one more I/O to retrieve the cached result

[JHIN88]. Therefore in this paper we only examine separate caching for procedural andOID representa

tion.

Theflip sideof caching is thatupdates to sub-objects entail eitherinvalidating or updating thecached

values. Consequently, cachingis unattractive in presence of high update traffic. In what follows, when we

talkof caching procedures andOID-lists, wemean caching theresults of appropriate materializations.

A cached value needs to be accessed from two directions:

1)Fromthe side of the objects containing the corresponding procedure or OID-list because it is needed to

answer queries on that complex object

2) From the sidesub-objects because we may need to invalidate (or update) a cached value because of an

update to a sub-object

We need to beable toefficiendy do both for separate caching to work. For2) to work, we muststoresome

pointer in (atleast) those sub-objects whose value determines the cached result. This pointer should either

directly or indirecdy be able to give the location of the corresponding cached result. We term these

pointers as I-locks (short for invalidation locks). These locks are held on (at least) the sub-objects that

constitute a cached result An exclusive (write) lock acquired on a sub-object containing an I-lock necessi

tates some write action to the corresponding cached result While we could have sophisticated schemes

that update the cached result to maintain its currency, in this paper we assume a simple scheme which

invalidates the corresponding cached result. We further assume that these I-locks remain in place even

when their cached results are invalidated - consequendy I-locks have to be installed only when a result is

first materialized and cached. Subsequendy, we need to install I-locks only in those sub-objects that are

added to this object since the first materialization. Furthermore, we need to communicate the possible loca

tion of a cached result to all the objects that can share it (i.e. they have the same procedure, or the same

OID-list).

In procedural representation, subsequent addition of sub-objects is handled through one of the many

predicate locking schemes. A simple scheme, called Segmented B-Trees, inserts locks in an appropriate

index at the highest level possible [KOL089]. I-locks inherited by newly added sub-objects are easily

discovered from the corresponding I-locks on the indices. This locking scheme has a modest space over

head, but litde performance penalty. In OID-based representation, predicate level locking is not needed

since references to newly added sub-objects are explicdy added to the existing objects.

Under the reasonable assumption that objects that can share a cached result do not know about each

other, we need a mechanism that lets all these objects independently compute the location of where the

result might be cached. In procedural representation, this means that the location must be a hash function

of the procedure body, and in OID-based representation the location must be a hash function of the OID-

list Consequendy if two objects 01 and 02 share a procedure P (or equivalentiy, an OID-list L), then if

the result is cached during the processing of a query against 01, it can be used for answering queries

against 02.

This scheme causes problems for OID-based representation because the location of a cached result is

no longer guaranteed to be a function of the I-locks. For example, if the result of an OID-list L = {si, s2}

is first cached, I-locks on si and s2 reflect the location which is a function of L. Let us say that subse

quently a sub-object s3 is added to L,. making L' = {si, s2, s3}. In that case, I-locks on si and s2 are

totally incorrect about the location of the cached result which happens to be a function of L'.

There are many possible solutions to this problem, including removing I-locks whenever a cached

result is marked invalid, and setting them every time a result is cached (consequendy, I-locks always reflect

the latest location). This turns out to be fairly expensive. Instead, a simpler solution which involves forc

ing an identity on an OID-list which is independent of its constituent sub-objects is suggested in

[JHIN90b]. In this, the location (identity) of a cached result is determined the first time it is cached. This

location is inviolate for the life of the database and all the objects that can share this result must learn this

location (identity). This in turn involves building an index on the cached values which maps the OID-list

as an object knows it, to its identity. Maintaining this index, and traversing it to determine the identity of a

given OID-list is expensive. Details of this scheme can be found in [JHIN90b].

[SHEK89] suggests a scheme for separate caching in OID representation. However, it makes no

mention of how it handles insertions and deletions of sub-objects. As we have shown, it is these operations

that cause the real problems in an OID based representation.

4.1. Performance Considerations

Even without separate caching, it is clear that OID representation will be outperformed by procedural

representation because in the latter, insertionsor deletionsof sub-objectsdo not cause updates to objects.

If a sub-object is shared on the average by SFxOF objects, then every addition/deletion of sub-object

entails SFxOF writes on the average. If the definition of an OID-list is kept separately, then this write

activity can be reducedto OF, but at the expense of an indirection to fetch the definition.4

In order to quantify the above discussion, we performed a simulation study using Commercial

INGRES [RTI86]. Objects with similar attributes were stored in a relation, and the cached results were

stored in a separate relation. At any time, cache did not contain more than 1000 valid values. The total

number procedures/OID-lists in the database was set at 5000. Modifications to objects and sub-objects

(including insertions and deletions) were done at frequencies depending on certain parameters. Here we

present only one result, the rest of the details can be found in [JHIN90b]. Figure 10 plots the cost of

4In[JHIN90b] weestablish that even if the cost ofmaterialization inprocedural representation ishigher than that inOID based
representation, a sufficiently high activity to thesetof sub-objects constituting a complex object results in procedural representation
outperforming the OID-based representation.

separate caching for procedures and OID's as a function of the frequency at which sub-objects are inserted

into the database. It is clear that caching in both OID and procedures deteriorates with an increased fre

quency of insertions (and deletions)of sub-objects. This is to be expectedsince an increase in the number

of insertions (deletions) of sub-objects results in more invalidations of cached values; and consequentlyin

a higher cost

However, as we see, OID caching 1) performs worse than procedure caching, and 2) deteriorates fas

ter than procedure caching. To explain these phenomena, we separate the cost difference into two com

ponents: from the insertions/deletions of objects, and from insertions/deletionsof sub-objects.

In OID-based representation, newly added objects must traverse an index (as mentioned before) to

determine the identities of their results. Since we are maintaining at a constant the frequency of insertions

170001

15000-

13000-

11000

9000-

7000

5000

3000
0.00 0.10 0.20

Pr(Append)=Pr(Delete)

Figure 10: Separate Caching as a function of AppendFrequency for Sub-Objects

OID

Insertions and Deletions

of Sub-Objects

Insertions of Objects

PROC

0.30

ofobjects, this component of the difference remains at a constant

The second component of the difference reflects the fact that on each insertion/deletion of the sub-

objects, the definition of the corresponding OID-lists (expected OF in number) must be modified, along

with setting the invalid bit for those results that are cached. In procedural representation, the only cost is to

invalidate the cached results. Hence if a fraction f of the possible OID-lists are cached, then for every

1 — finsertion (deletion), OID representation will do j times more work than procedural representation. As

the frequency of insertions (deletions) goes up, this represents larger and larger difference.

In summary, separate caching is not very viable for OID representation. However, the two represen

tations perform similarly on inside caching. Thus caching works for OID representation only if SF is low.

For procedural representation, some form of caching is useful, regardless of SF.

5. Query Modification

In the presence of certain special class of procedures (termed parameterized) procedures, queries on

complex object can often be processed using query modification. For example, consider the following

schema in POSTGRES:

ORG (name, city, activity)
SCIENTIST (name, city, membership)

where SCIENTIST.membership contains procedures of the form:
retrieve (ORG.all) where
ORG.city = $.city and
ORG.type= "Professional"

signifying the fact thata complexobject of type"SCIENTIST" is madeof sub-objects from "ORG" (organ

izations), and that these sub-objects can be evaluated using the procedure above. ($ refers to the

corresponding tuple of "SCIENTIST". The new syntax of procedures in POSTGRES,Version 2 is slighdy

different [STON89].) Consequendy, a query of the form:

retrieve (SCIENTIST.name) where
SCIENTIST.membership.size > 50

(i.e. the scientistswho belong to a largeorganization) can be processed by rewritingto:

retrieve (SCIENTIST.name) where
SCIENTIST.city = ORG.city and
ORG.type = "Professional" and

ORG.size > 50

If the originalquery is evaluatedwithoutre-writing, then it mustbe processed top-down. Under some cir

cumstances, a bottom-up processing (i.e. retricting ORG and then finding the matching tuples of SCIEN

TIST) might be less expensive. In such a bottom-up processing, in procedural representation, either of the

two selections on ORG can be used to restrict it In contrast, in OID representation, only the last clause

will be available for restriction. Consequently, the numberof I/O's required to restrict the sub-objects in

procedures is never more than that in OID's. This is a reflection of the fact that more semantic information

can be encoded in the procedures compared to OID's.

The exact detail on the performance implication of these differences can be found in [JHIN90b].

6. Conclusions

Procedural and OID representation represent two different approaches for modeling the relationships

between objects. The former uses an intensional representation, whereas the latter expUcitiy lists the

identifiersof the sub-objects (in the form of an OID-list) of an object

In this paper we compared the two representations on four major axes. Table 2 shows how the two

representations perform on these dimensions. The first axis is the cost incurred to determine the values of

the sub-objects of an object In procedural representation, this is the cost of evaluating a procedure. In

OID representation, this is the cost of dereferencing the OID's in a list to get to the actual location of its

sub-objects. A formal cost model for materialization in OID representation and in certain special cases of

procedural representation was developed. This cost model was used to show that single relation intensional

procedures will be in general cheaper than OID-lists. Furthermore, a simple scheme of caching the OID's

of expensiveproceduresensures that procedures are no moreexpensive than OID-lists.

Since these materialization costs are the botdeneck in evaluating queries on complex objects, we

next looked at three techniques used to mitigate this effect The first mechanism examined was clustering.

In order to determine the performance benefit from clustering sub-objects with the objects that reference

them, we studied analytically the cost of an optimally clustered "perfectiy regular" assignment graph. It

was shown that clustering on two-level hierarchies is beneficial, provided the sub-objects are not shared by

more than a small number (say 5-7) objects, and that the number of sub-objects of an object is similarly

Dimension
Representation

OID Procedural

Materialization Approximately linear in
number of sub-objects

Relatively inexpensive on
single relations, varying
otherwise. Caching OID's
make it always cheaper
than OID-based

Clustering Wins if OF and s < 5 to 7.

WinsbigifOF = s=l
If tuples from different re
lations can be clustered on

the same bucket, then
same as OID. Else, loses
big when OF = 1, margi
nally loses for s and OF
between 2 and 7, and per
forms similar to OID oth

erwise.

Caching Wins unless heavy update
(especially insertions and
deletions) traffic to sub-
objects

Wins big, since compara
tively littie effect of inser
tions and deletions to

sub-objects
Query Modification N.A. Wins on parameterized

procedures

Table 2: A Summary of the Performance Comparison

small. Results for random graphs were then extended from those of perfect graphs and similar conclusions

were reached. Hence even if it is assumed that clustering is one of the major advantages that object-

oriented (and hence OID based) systems offer over relational systems, the performance gains from such a

difference are rather limited.

A major difference between the two representations is the way they treat additions and deletions of

sub-objects. Procedural representation outperforms OID-based representation when this update traffic is

heavy. This effect mainfests itself when we studyseparate cachingtoo. It was shown that separatecach

ing in OID's is at an inherent disadvantage because of the lack of an "identity" for the OID-lists that is

invariant with the additions and deletions of sub-objects. A solution to this problem was then presented

and the performance results of mis approach showed that procedural representation may outperform OID

representation by 50% or more.

We also had a brief look at another differentiating yard-stick ~ query modification. Queries on

parameterized procedures can be flattened, and these flattened queries often perform better in procedural

representation.

In summary, the choice of representing complex objects should lean towards procedural representa

tion, provided the following two criteria are satisfied: 1) The procedures should be intensional in nature,

and 2) The number of sub-objects of an object and/or the number of objects that share a sub-object should

be greater than a small constant

References

[BANE86] Banerjee, J. and Kim, W., "Clustering a DAG for CAD Databases," MCC Technical Report
Number: DB-128-85, Microelectronics and ComputerTechnology Corporation, Feb. 1986.

[BANE87] Banerjee, J., et al., "Data Model Issues for Object-Oriented Application," ACM Trans, on
Office Info. Sys. 5(1), Jan. 1987.

[BAT085] Batory, D.S., and Kim, W., "Modeling Concepts for VLSI CAD Objects," ACM Trans, on
Database Systems, 10(3), Sept 1985.

[CARE88] Carey, M. et al., "A Data Model and Query Language for EXODUS," Proc. ACM-SIGMOD
Conf., 1988.

[COPE84] Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. ACM-SIGMOD,
1985.

[COPE85] Copeland, GP. and Khoshafian, S.N., "A Decomposition Storage Model," Proc. ACM-
SIGMOD, 1985.

[DADA86] Dadam, P. et al., "A DBMS Prototype to Support Extended NF2 Relations: An Integrated
View on Flat Tables and Hierarchies," Proc. ACM-SIGMOD, 1986.

[JHIN88] Jhingran, A., "A Performance Study of Query Optimization Algorithms on a Database System
Supporting Procedures," Proc. VLDB, 1988.

[JHIN90a] Jhingran, A., "Alternatives in Complex Object Representation: A Performance Perspective,"
Proceedings, Sixth International Conference on Data Engineering, 1990.

[JHIN90b] Jhingran, A., "On Alternatives in Complex Object Representation: A Performance Perspec
tive," PhD Thesis, in preparation.

[KERN70] Kernighan, B.W. and Lin, S., "An efficient heuristic procedure for partitioning graphs," Bell
Systems Technical Journal 49,1970.

[KHOS86] Khoshafian, S.N. and Copeland, G.P., "Object Identity," Proc. of OOPSLA, 1986.

[KIM87] Kim, W. et al., "Operations and Implementation of Complex Objects," Proc. Conf. on Data
Engr., 1987.

[KOL089] Kolovson, C. and Stonebraker, M., "Segmented Search Trees and their Application to Data
Bases," (in preparation).

[LORI85] Lorie, R. et al., "Supporting Complex Objects in a Relational System for Engineering Data
bases," in Query Processing in Database Systems, eds. Kim, W., Reiner, D. and Batory, D.,
Springer-Verlag, 1985.

[ROWE87] Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc. VLDB, 1987.

[RTI86] Relational Technology Inc. INGRES Release 5.0 Reference Manuals, 1986.

[SHEK89] Shekita, EJ. and Carey, M.J., "Performance Enhancement Through Replication in an Object-
Oriented DBMS," Proc. ACM-SIGMOD, June 1989.

[SMn77] Smith, J.M. and Smith, D.CP, "Database Abstractions: Aggregation and Generalization,"
ACM Trans, on Database Sys., 2(2), June 1977.

[STON86] Stonebraker,M. and Rowe, L., "Design of POSTGRES," Proc. ACM-SIGMOD, 1986.

[STON89] Stonebraker, M. et al., "On Rules, Procedures, Caching and Views in Database Systems,"
Tech. Report UCB/ERL Memo M89/119, University of California, Berkeley, Oct 1989.

[VALD86] Valduriez, P. et al., "Implementation Techniques for Complex Objects," Proc. VLDB 1986.

[YA077] Yao, S.B., "Approximating Block Accesses in Database Organizations," Communication of
the ACM, 20(4), Aug. 1977.

[YA085] Yao, S.B., ed. "Principles of Database Design," Prentice Hall Inc., 1985.

[ZANI85] Zaniolo, C, "The Representation and Deductive Retrieval of Complex Objects," Proc.
VLDB, 1985.

	Copyright notice1990
	ERL-90-32

