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ABSTRACT

Most existing version servers are based on a common set of mechanisms and differ
only in update semantics and terminology. Rather than introduce yet another version
model, this paper shows how production rules in a database system can be used as the
implementation mechanism for constructing version servers while retaining comparable
performance to conventional version systems. This paper details the implementation of
common version mechanisms using rules. By making the version server a high-level sys-
tem, users have a logical and intuitive framework to implement their favorite version
semantics. Thus, using rules rather than special purpose code is shown to be general
enough to subsume existing version systems and is flexible enough to accommodate
future extensions or new semantics.

1.0 INTRODUCTION

As pointed out in [KATZ88], despite the large number of proposals for version
management systems, most of them are really only minor variations on a small number
of themes. The main drawback of version systems is that the semantics have tradition-
ally been hard-coded and thus these systems are difficult to extend when new semantics
are desired. Furthermore, no single system has been general enough to subsume all of
the proposals. Hence there is no single all-encompassing implementation. The purpose
of this paper is not to introduce another model for version systems, but to show that pro-
duction rules in a database system provide a framework for version modeling that can be
used to implement the needs of any versioning environment.

Although this rule-based framework is presented in the context of the Postgres
[STON 86] database system, the method is applicable to any database system that has
production rules. As summarized in [KATZ 88], the major version concepts are:

(1) Versions using forward deltas
(2) Versions using backward deltas
(3) Version histories and graphs
(4) Equivalences

1 This research was sponsored by the Army Research Organization Grant DAAI.03-870683 and by the Defense Advanced
Research Projects Agency through NASA Grant NAG2-530.



(5) Constraint propagation

(6) Change notification

(7) Change propagation

(8) Private, Group and Archive workspaces
(9 Dynamic and static configurations

In this paper, we will detail the implementation of each of these concepts using rules.

2.0 REQUIREMENTS

This section describes in greater detail the types of support an underlying database
system should have in order to efficiently support the framework outlined in this paper.
Except for the rules subsystem, absence of the following features does not preclude
implementing the version system as described in this paper; however, having these
features ensures that the implementation is at least reasonably efficient.

2,1 Historical Data.

By historical data, we mean those tuples which have been logically replaced/deleted
over time and are not part of the ‘‘current’’ state of the database, but are instead part of
some ‘‘past’’ database state. To efficiently support versioning, the underlying database
system must be able to support queries on historical data. Simulating historical data
using a conventional relational system is far too expensive. In Postgres [STON86],
tuples are never physically overwritten or deleted. Instead, both the old and new versions
of the tuples are retained, and the old tuple invalidated. Thus in Postgres, it is possible to
query historical data. For example, the following time-range query finds all employees
that earned more than $10000 in the 12th of January 1989:

retrieve (emp[“Jan 12 1989"].all)
where emp.salary > 10000

This query is similar to a regular Postquel retrieve query except that the relation is
qualified by a timestamp.

2.2 Rules.

Since the framework outlined in this paper is based on production rules, the under-
lying database system must be able to support such rules. The Postgres rules system
(PRS2) [STON9Q] follows the production rule paradigm of a rule being an event-action
pair where a typical rule looks like:

ON <event/condition> THEN DO [INSTEAD] <action>
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If the ‘‘INSTEAD’’ keyword is used, the original query which triggered the rule is not
executed, and the action of the rule is executed in its place. If ‘“‘INSTEAD’ is not used,
then both the query that triggers the rule and the action of the rule are executed. In
PRS2, an event can be any one of the usual retrieve, replace, append, or delete queries on
a relation, and an action is any set of Postquel queries which optionally references the
triggering event-relation. Postgres is not the only data manager that has a rules subsys-
tem. For instance, Iris and Starburst both have similar rules subsystems. However, their
triggering events do not include the ‘‘retrieve’” event, and as such, they cannot support
the versioning system we have described. We note, however, that adding ‘‘retrieve’’ to
the set of triggering events complicates the rule evaluation model somewhat.

The following is an example of a rule in the PRS2 which moves an employee from
the relation ‘‘emp’’ to the relation ‘‘old_emps’’ when he becomes 50 years old.

define rule same_salary
on replace to emp.age then do instead {

append old_emps ( name = NEW.name, age = NEW.age )
where CURRENT.age < 50
and NEW.age >= 50

delete emp where emp.OID = CURRENT.OID
)

The semantics of PRS2 is that at the time an individual tuple is accessed, updated,
inserted or deleted, there is a CURRENT tuple (for retrieves, replaces and deletes) and a
NEW wple (for replaces and appends). CURRENT is used as a tuple variable that refers
explicitly to the current tuple in the relation that triggers the rule, and NEW refers to the
new value(s) being appended/replaced.

2.3 Procedures

Hierarchical data structures can be supported in various ways. In Jhingran [JHIN
891, such support is partitioned into Value-Based, Object-Identifier-Based and
Procedure-Based representations. Postgres supports the procedural representation where
fields in a relation can contain procedural objects. These fields are called procedural
fields. Procedural objects are executable programming constructs. In Postgres, pro-
cedures are collections of Postquel queries which can access the underlying database.
Procedures lends a high degree of flexibility to the database schema, and allows hierarch-
ical representation of data [STON 87]. Thus, in Postgres, a configuration is simply a
relation where each sub-object is stored as a procedural field. Hence, when each sub-
object is accessed, the respective procedure will be evaluated to produce the sub-object.
We note that without similar support, the hierarchy needs to be flattened, making for an
unnatural and space-inefficient representation.



2.4 Union Queries.

As will be shown in section 3.1, queries on versions implemented using forward
deltas will be transformed by the into union queries. This section describes the semantics
and optimization of union queries as it pertains to version processing.

First, let us denote the relational union operator (i.e., the union is on a per relation
basis) by the vertical bar ’I’. If we have a query of the form:

replace (A) where (AIB).name = "foo"
and B.OID not_in C.DOID
and (AIB).OID = A.OID

then the query will be split into the following two equivalent queries:

replace (A) where A.name = "foo"
and B.OID not_in C.DOID
and A.OID = A.OID 1))
and
replace (A) where B.name = "foo"
and B.OID not_in C.DOID
and B.OID = A.OID (41))

Using the rules of semantic optimization stated in [STON90], the semantic optimizer will
remove all redundant clauses (clauses that have no link back to the target relation) and
optimize query (I) to:

replace (A) where (A).name = "foo"

while query(I) can be dropped altogether. This is possible because of the special pro-
perty of OIDs which ensures that (B.OID = A.OID) = NULL where B != A, Thus, the
last qualification of query(Il) will never be satisfied.

3.0 VERSIONS

While [KATZ88] describes a version as a semantically meaningful snapshot of an
object in time, others have extended versions to include those that are not snapshots; that
is, such versions should be optionally able to ‘‘see’” changes in the base relation. The
user decides at the time he creates a version whether or not the version is a snapshot of
the base relation. In general, versions are maintained via differential files (deltas) [SEVE
76). There are two kinds of deltas: forward and backward. Forward deltas are more suit-
able for implementing those versions which are ‘‘alternates’’ since they can optionally
allow changes to be propagated to the ‘‘base’” relation. Backward deltas, on the other
hand, allow for cheaper access to the latest versions and are thus well suited for imple-
menting versions which are ‘‘derivatives’’ of other versions. In this section, we show
that both these methods can be implemented using rules.



3.1 Forward Deltas

Versions implemented as forward deltas are logical entities made up of 3 relations.

base v_deleted
OID | field] Om | DOID

ecccccscoccecaccvarncnsd

v_added

OID | fieldl

Ferecrcsssssssrcnsrssecccccaqrnnneen

eccccmsrrsmcsvens

Figure 1 : A version is made up of three physical relations.

The base relation is the relation being versioned. The v_added relation stores the net
tuples added (this includes replaces of tuples in the base relation) to the version, while
the v_deleted relation has a single attribute (DOID) which stores the OIDs of tuples from
the base relation which have been *‘deleted’’ or “‘replaced’’ in the version. Together,
the v_added and the v_deleted relations form the delta relation of a version.

Forward deltas as we implement it allow for two alternative update semantics:

(1) Versions which can “‘see’” changes made in the base relation; that is, the changes
are propagated. We will describe in detail the implementation of this case in the
next few sections.

(2) Versions which are snapshots of a base relation at a point in time; In this case, any
changes to the base relation after that point in time will not be reflected in the ver-
sion. This is implemented with rules similar to the rules used to implement the case
above, except that the base relation is qualified by a time range (i.e. base["Jan 12
1990"] instead of just base).

The update semantics of both types of versions are such that the base relation is
never modified by updates, deletes, or appends to the version.

3.1.1 Implementing Forward Deltas with Rules
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Suppose that we have a relation called ‘‘base’’, and we want to create a version of it
called ‘‘version’’. When we create a version, what is really created are the
version_added and version_deleted relations. The rule for this is:

define rule v_create
on define version then do instead

{
retrieve into version_added ( base.all) where FALSE
/* This query creates an empty relation with the same attributes as base */
create version_deleted (DOID)

}

As in Object Oriented Databases, we have a unique Object Identifier (OID) bound to
each object/tuple in the database. Therefore, tuples in version_added and base which
would otherwise be identical can be distinguished by their OIDs. The following four
rules specify the semantics of versions :

APPEND :
define rule v_append
on append to version then do instead
append version_added (f1 = NEW fl, ...)

/* NEW refers to the tuple-values being added to the version relation */

DELETE :

define rule v_delete
on delete to version then do instead
{
delete version_added
where CURRENT.OID = version_added.OID

append version_deleted (DOID = base.OID)
where CURRENT.OID = base.OID
)

/* CURRENT refers to the tuples being deleted from version */

RETRIEVE ;
define rule v_retrieve
on retrieve to version then do instead
retrieve (version_added | base).all
where base.OID not_in version_deleted. DOID



REPLACE:

define rule v_replace
on replace to version then do instead
{
replace version_added (f1 = NEW.f1,...)
where CURRENT.OID = version_added.OID

append version_deleted (DOID = base.OID)
where CURRENT.OID = base.OID

/* The next rule is needed to append the
* the base tuple to the version_added relation
* if this is the first time the base tuple is
* updated in the version.
*/

append version_added (f1 = NEW 1, ...)
where CURRENT.OID not_in version_added.OID
and CURRENT.OID = base.OID
)

These four rules enforce the semantics of a version as:
version = (base - net_deleted_from_base) + net_added

which looks semantically similar to [STON 80, STON 81]:
version = (base U total_added) - total _deleted

It however does not have the deficiency of being unable to insert tuples that are identical
to those previously deleted. This is because Postgres, being a relational/object-oriented
system [STON 90] provides a unique object identifier (OID) for each tuple/object in the
database. In addition, the ‘‘+’’ operator describes a concatenation instead of a relational
union, because the intersection of version_added and version_deleted is empty. Thus, a
retrieve on a version results in a scan on the version_added relation, and a two-way join
on the base and version_deleted relations.
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3.1.2 Query Processing for Forward Deltas

Given the set of rules shown in section 3.1, and the data shown in figure 2, we shall
now illustrate how queries on versions get processed.

Now suppose we want to rename everybody named John to Joe. The query will be:

- i o
' O |ficld1field2] : : [T
! 975 [John [32 ! 3 975
: 978 |Mary| 33 [_—" P ' 978
: 97 [Jobn {34 |V deleted 979
1534975 |: 1533975
E Vl_&d E E Vl_w 1533979
5 OID | ficld1] feld? : OD | fieldl .. |
! 1314| Mike | 31 : 5 D W31
: 1320} Jobn | 32 g ! :gg? Joe 3:‘27
: 1321 Mary | 47 b : Mary
! Pl : 1322[Joc 34
Vecnnsnnsaneecannes - : .
BEFORE ——- AFTER
.
.
vl 1
v
O 5l | field? ] O | ficld1 | field2
1314 Mike | 31 ' !
1320 Johe, | 32 ! 1314| Mike [ 31
1321| Mary | 47 5 1320[Joc |32
979 |John | 34 ! 1321\ Mary | 47
978 13 : 3l jze |34
Mary ! 978 |Mary| 33
:

Figure 2: v1 is a version of base.

replace v1 (name = "joe")
where vl.name = "john"

In PRS2, two things happens when the above query is executed:
(1) Since v1 is a version and has a set of rules defined on it as described in the previous

2

section, the above query, when executed, will trigger the replace rule for v1.

The semantics for the PRS2 rules is such that if a relation with rules defined on it
appear in the qualification of a query, the retrieve rule for that relation is triggered.
In the example, since v1 also appears in the qualification, the retrieve rule for vlis
triggered. Hence the query will be rewritten as :

replace vl_added (name = "joe")
where {v1_added | base}.name = "john"
and base.OID not_in v1_deleted. DOID
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- and {v1_added | base}.OID = v1_added.OID

append v1_deleted(DOID = base.OID)
where {v1_added | base}.name = "john"
and base.OID not_in v1_deletd. DOID
and {v1_added | base}.OID = base.OID

append added(name = "goh", salary = {v1_added | base } sa.lary, 2
where {v1_added | base}.name = "john"
and {v1_added | base}.OID not_in vl_added.OID
and ~zse... - not ‘nvl_deleted. DOID
and {vl_a.".ed | L-se}.OID = base.OID

After undergoing semantic optimization which removes redundant clauses, the
query becomes:

replace vl_added (name = "joe")
where v1_added.name = "john"

append v1_deleted(DOID = base.OID)
where base.name = "john"
and base.OID not_in v1_deleted. DOID

append v1_added(name = "joe", salary = base.salary, ... )
where base.name = "john"
and v1_added.OID not_in v1_added.OID
and base.OID not_in v1_deleted. DOID

Thus three things happens on an update to a version:
1  All qualifying tuples that are in the v1_added relation are updated

2 Qualifying tuples in the base relation which are not in the v1_deleted relation are
"invalidated” by appending them to the v1_deleted relation.

3 If this is the first time a base tuple is updated in the version, it will be appended to
the v1_added relation.

The net effect of these three queries will be to replace all qualifying tuples in the version.
Given that subsequent retrieves on the version will retrieve tuples from

(added + (base - deleted)),

the replace query is correctly processed.
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3.1.3 Cascaded Versions.

We can also create versions of versions using the rules stated in section 3.1.1 When
we create a version of vl named v2, v2 looks like :

.........

P v2

33 vl § §
E . ¢ Sssseecescaseccsctcannttecttacctccecrecancencctanas ) E
: : [bee [o_setered P
; 5 | O (field] .. opTpop ] |
- 5
: : OD [ fieldl] - ;
: E

‘

tsssovcrevevnsonana

O | field)| .. : OID | DOID

Frosvecmsccvonconsros

bencsoncroccsca

Figure 3: a version *‘‘v2" of a version *‘v1”’,
Now suppose we do a retrieve on version2 using the following query:

retrieve (v2.name) where v2.salary < 5000
This query will trigger the retrieve rule for v2 and be transformed to :

retrieve ({ v2_added | vl1}.name) where
{v2_added | v1).salary < 5000
and v1.0ID not_in v2_del. DOID

Since v1 is itself a version, the retrieve rule for v1 will be triggered, and the query gets
rewritten to :

retrieve ({v2_added | vl_added | base}.name) where
{v2_added | vl_added | base).salary < 5000

and {v1_added | base}.OID not_in v2_del.DOID
and base.OID not_in v1_del. DOID

This union query will be translated into retrieves on the individual relations v2_added,
v1_added, and base. The net result of evaluating these 3 queries will be to a retrieval of
all tuples in v2 which satisfy the user qualification. Thus, we have achieved the desired
retrieval semantics for cascaded versions.
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3.1.4 Comparing Efficiency

In this section we will compare the efficiency of our approach with that of [WOOD
83] since it is representative of relational systems that have added ‘‘special versioning
enhancements’’. The algorithm for [WOOD83] is

(base U total_added ) - total_deleted
while we use the algebraically equivalent

(base - net_deleted_from_base) + net_adr+d
NOTE: ‘“+”’ is the concatenation operator

that is, deleting tuples added since the version was created results in actually deleting the
tuples from the added relation (this leads to no loss in generality since Postgres doesn’t
do deletions or replaces in place because of support for temporal queries).

Clearly, by using the net updates instead of the total updates, fewer tuples need to be pro-
cessed, and as it turns out, the complexity of the resulting queries will also be less:
Woodfill’s algorithm results in two 2-way joins (base x deleted) and (added x deleted) ,
while ours results in one 2 way join (base x deleted) and a single scan on added) Thus,
the algorithm we have presented in this paper should on average run slightly better than
that presented by Woodfill. After an arbitrary number of versions, the difference grows
even greater.

Let n = version number we are interested in
a = avg # of tuples added per version
d = avg # of tuples deleted per version
b = number of tuples in base relation
k = avg fraction of tuples changed between versions

Woodfill’s algorithm runs in:

(n+1 +$sum fromi=1ton$i)*(a+d)2 +b

and the algorithm presented runs in:

(n-1)*a)+(Psumfromi=lton$i)* (d/k)+b
For versions which are alternates, the dominating factor is k, since in the worst case all
the wples between successive alternates may be different. For versions which are deriva-

tives, the level of nesting, "n", is the dominating factor. In both cases, the second algo-
rithm runs faster in general.
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3.2 Implementing Backward Deltas with Rules

As pointed out in [KATZ82], versions implemented using forward deltas neces-
sarily results in somewhat inefficient access to the most recent version which must be
painstakingly reconstructed from the base and the forward deltas from intervening ver-
sions. This is an especially crippling deficiency if the version system is being used to
manage a design database or a CASE data dictionary where typically, the ‘‘current’’ or
‘“‘working”’ version is often much closer to the most recent version (if not the most recent
version itself). Thus, as suggested in [KATZ82], we can implement ‘‘backward deltas’’
or what Katz calls ‘‘negative” differential files.

In the versioning scheme using backward deltas, charzes to e base are made in-
place and the old values are recorded in the deltas. The old version (base) is defined by
the new version and the differential files in [KATZ 82] as:

base = (new_version U total_deleted) - total_inserted.
Versions via backward deltas can be implemented by the following rules:
VERSION CREATION:

define rule v_create
on define version v1 of base
then do instead

{

rename base v1

retrieve into base (v1.all) where FALSE
/* create the relation with the same
* attributes as v1, but with no tuples
* in it, since rules trigger on access to
* some ‘‘real’’ relation
* / :
}

RETRIEVE:

define rule v_retrieve
on retrieve to base then do instead
retrieve v1["time at which this version is defined"]

The first command renames the current relation to be ‘‘v1’’, on which all updates and
queries on the new version will be performed. The second command creates a relation
(one with attributes and relevant structural information but physically containing no
tuples). This is necessary to preserve the constraint that rules can only be defined on
existing relations. Since Postgres provides support for such temporal queries and
automatic access to archived or non-current tuples, the above renaming and rule
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definition implements the semantics for derivatives. Subsequent versions perform similar
renamings and rule definitions. Like most revision systems (RCS), updates can no longer
be performed on an “‘old”’ version, although older versions may be materialized. Materi-
alizing older versions is easily accomplished by the following query:

retrieve into user_relation (version_we_are_interested_in.all)
/* user_relation contains all tuples/objects
* that would be in the version we wanted to
* “‘check-out”
¥/

which will be appropriately transformed to the desired time-range query.

4.0 VERSION HISTORY AND VERSION GRAPHS

Version history keeps track of the is-derived-from or ancestor/descendent relation-
ship between versions. In the simplest case, a version history is linear, but in general
they are directed graphs. These graphs are easily modeled as relations that are updated
on each creation of a version. To do this, we just add the following command to the set
of commands executed at version creation time,

append (version_history.name = version.name,
version_history.is_derived_from = base.name )

Thus, given the version graph of an object and its corresponding relational representation
shown in figure 4:

history
O ALUO . .
l name is_derived_from
O ALU1 ALUO | *initial*
~  \\ ALU1 | ALUO
ALU2 O O ALU3 ALU2 | ALU!
The Version Graph The Version History relation

Figure 4: The ALU version graph before defining a new version of ALU.

If we define a new version "ALU4" which is derived from both ALU2 and ALUS3, the
tuples {ALU4,ALU2} and {ALU4,ALU3} would be appended to the history and the
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resulting graph and relational representation would look like:

history
O ALUO name is_derived_from
O ALU1 ALUO | *initial*
\ A:LUl | ALUO
ALU2 O O ALU3 ALU2 | ALUL
ALU3 | ALU1
ALU4 | ALU2
O ALU4 ALU4 | ALU3
The Version Graph The Version History relation

Figure 5: The ALU version graph after definining version 4.

5.0 EQUIVALENCES

"Equivalences” is the term used in [KATZ 88] to describe the multiple facets of a
CAD object. For example, a two-input AND gate has three equivalent objects: func-
tional description ( Q = A * B ), a structural description (the physical layout), and an
extraction (the properties of the gate given the physical layout). There are two ways in
which equivalent objects can be modeled in a relational database system. The first way is
to treat equivalent objects as nothing more than different views of a single physical
object. In this case, equivalences are really just different views of a relation, and ver-
sions of equivalences are just versions of views. Since these views are defined on a single
relation, view updates are easily handled. The second way is to represent each equivalent
object as a separate physical relation. In both cases, the database system needs to main-
tain consistency among equivalent objects. This will be discussed in the following sec-
tion.

6.0 CONSTRAINT PROPAGATION

The different views (equivalences) of a CAD object must satisfy certain equivalence
constraints. For example, a two-input AND gate has a functional description (Q=A"B
) and a structural description (the physical layout), and an extraction (the properties of
the gate given the physical layout). The equivalence constraint is that all three views
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must represent the same object, in this case, a two-input AND gate. While changes to the
physical layout of the AND gate do not affect its functional view, they do affect its
extraction; that is, the properties of the gate (capacitance, resistance, speed, etc) varies
according to its physical layout. Thus changes to the gate’s physical layout must be
automatically propagated to its extraction. This is called constraint propagation. We will
now describe how constraint propagation can be implemented using rules.

If equivalent objects are treated as different view of a single physical relation where
each attribute represents a property of the gate, constraint propagation can be imple-
mented by simply defining rules on the relation. Therefore, some rules that will be
defined in the above example are:

define rule rulel
on replace to AND.wirelen then do
replace CURRENT (resistance = compute_resistance(CURRENT.wirelen))

define rule rule2
on replace to AND.transistor then do
replace CURRENT (speed = compute_speed(CURRENT.transistor))

On the other hand, if equivalent objects are imple:hemed as separate physical rela-
tions, then the rules need only be modified to:

define rule rulel
on replace to phy_layout.wirelen then do
replace extraction (resistance = compute_resistance(CURRENT . wirelen))

define rule rule2
on replace to phy_layout.transistor then do
replace extraction (speed = compute_speed(CURRENT.transistor))

In both cases, consistency is maintained among the different equivalent objects. As
noted in [BATO 85], it is desirable to for new versions to "inherit" constraints of earlier
versions. Thus we create new versions of an object or its equivalent objects, we must
make sure that these constraints are regenerated for the versions. Since constraints in
Postgres are defined using rules, we need only make sure that all rules defined on a base
relation are propagated to its versions.

7.0 CHANGE NOTIFICATION

Instead of having users check if they have the latest changes, we would also like the
version server to tell them whenever someone else has changed an object they are
interested in. This is called change notification. Change notification can either be active
or passive. In general, active change notification systems are message-based, and sends
interested parties an electronic mail message when the object is changed, while passive
systems are flag-based, and only puts a flag with the changed object so that the next time
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the user browses through the list of objects, he can see which objects have been changed.
Either of these systems can be implemented using rules. For example, the active system
might have a rule that looks likg :

on replace to foo )
do execute(email("mike","foo was changed"))

in the above example, ‘‘email”’ is a user-defined Postquel function that sends an elec-
tronic mail message to a specificed user with a specified message. Execute is a Postgres
command that is used to execute Postquel functions. The passive system, on the other
hand, might have a rule that looks like:

on retrieve to list-of-objects
do replace (current.newchange = true )
where current.tmin > "last-time-I-browsed-this-list"

The passive system described in this section is similar to the timestamp mechanism pro-
posed in [BATO 85]. '

8.0 CHANGE PROPAGATION

Change Propagation is a new, but relatively simple concept: It is the process where
changes to a sub-component are automatically incorporated into composite objects that
use the sub-component. For example, a register cell may be used in both the register file
and instruction cache of a processor, thus changes to the register cell needs to be pro-
pagated to both the register file and the instruction cache. The rule needed to implement
such a function would be:

define rule propagate-reg-cell
on replace to register-cell then do

{

replace instruction-cache ( cell = NEW.contents )
where cell.name = ‘‘register-cell’’

replace register-file ( cell = NEW.contents )
where cell.name = “‘register-cell’’

/* and anything else that depends on register-cell */
)

The rule given above does not automatically create new versions of the register file
and instruction cache every time the register cell changes. In this case, the user must
explicitly create a version if he wants the changes to be ‘‘frozen’’. Some version systems
([LAND 86}, [KATZ 88], and [BEEC 88]) however, provide change propagation by
automatically creating a new version of an object whenever changes occur in its sub-
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component. This semantic can be supported by our framework with just minor variations
to the update rule defined above. If we want to create a new version of the register file
and instruction cache every time its register cell is changed, we simply modify the above
rule to:

define rule propagate-reg-cell
on replace to register-cell then do
{ .
create version instruction-cachel of instruction-cache
replace instruction-cachel ( cell = NEW.contents )
where cell.name = “‘register-cell”’

create version register-filel of register-file
replace register-filel ( cell = NEW.contents )
where cell.name = ‘‘register-cell’’

/* and anything else that depends on register-cell */

9.0 LIMITING THE SCOPE OF CHANGE PROPAGATION

While we would normally want changes to be propagated for code compilation,
there are times in design databases when we do not necessarily want all objects that use a
component be modified when that component changes. This is especially true if there are
multiple paths in the object hierarchy. For example, although a register cell may be used
in both the register file and instruction cache of a processor, we might want a new version
of the cell that is faster but bigger to be used only in the instruction cache, where the
improved speed is critical. Such semantics can be easily enforced by production rules.
The example can thus be implemented by the adding the following rules:

define rule fast-icache
on replace to instruction-cache

where NEW.speed < CURRENT.speed
then do instead nothing

/* refuse updates if it slows the cache */

define rule small-regfile
on replace to register-file
where NEW.space > CURRENT .space
then do instead nothing
/* refuse updates if it increases the size */

The flexibility of the rules system allows for a finer degree of control by the user than is
afforded by existing systems. If a user changes his mind about the update semantics, he
can simply change the rules. In addition, by limiting the scope of change propagation,
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the user effectively disambiguates the paths. Clearly, the generality of this method sub-
sumes all proposed systems to date.

10.0 WORKSPACES

The idea behind workspaces ([KATZ 87], [CHOU 86]) is to allow users to each
have their own little world. Workspaces are sometimes also called databases [KETA
87], federations [ECKL 87], and environments [SUN 88]. Most version models support
three types of workspaces: private, group/project, and public/archive. Private
workspaces are used exclusively by the user who owns it. Group workspaces may have
several users updating it. Archive workspaces or Release versions contain only those
designs which have been verified. Users can access the archive workspace only through
a well-defined check-in/check-out procedure. Thus, the basic concept of workspaces
reduces to a protection/permission scheme. In our framework, workspaces can be
modeled by having a separate database per user, with a separate database that is owned
by a “‘user’’ called archive. The only operations that are allowed for the archive data-
base are ‘‘check-in’’ and ‘‘check-out’’. The check-in procedure typically contains a
verification process to ensure that only consistent design objects exist in the archival
database. Group sharing of objects amounts to having shared relations, and setting the
permission to allow access to these relations to users belonging to the group. Two issues
need to be resolved in order for us to effectively model workspaces using databases. The
first is migration of data across different databases, while the second is the protection
mechanism that needs to be implemented.

To support the migration of data across different databases, the database system
must be able to support a hierarchical name space. With a hierarchical name space, com-
mands like check-in and check-out can be implemented in the application program as the
following set of queries:

checkin()

{
Begin_transaction();
verification-checks();
define version x of /archivefy
replace x (all = /username/foo.all)

where any fields changed

End_transaction();

}

checkout()
{
Begin_transaction();
retrieve into /username/foo
/archive/foo.all
End_transaction();

}
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In general, both the checkin and checkout command can be precompiled for additional
speed.

Since rules in Postgres are already used to regulate user access to various relations,
it is trivial to extend the rules to provide the protection mechanism needed to support
workspaces. Thus given the rule:

on {retrieve,replace,...} to shared_versionl
where user.usename != "bob"
then do instead

{/* nothing */ }

we can change it to:

on {retrieve,replace ...} to shared_versionl

where user.usename != "bob"

and user.usename != "jhingran" then do instead
{/* nothing */ }

so that arbitrary access lists may be defined on any relation. Since views and versions are
just virtual or partially materialized relations, these security mechanisms work just fine
here too.

11.0 CONFIGURATION

Merging the concepts of version histories and component hierarchies results in
configurations. A configuration is a composite object made up of versions of its sub-
components which themselves might be composite objects. A configuration can either be
flat (value-based representation) or hierarchical (procedural representation). In the
former, the object is simply stored as a flat relation, while in the latter, the sub-objects are
stored elsewhere and some reference (procedure) is kept with the object, thus preserving
the hierarchy. In Postgres, sub-components are stored as procedural fields. To manage
configurations, the system must be able to access the specific versions of the sub-
components that make up the configuration, and maintain compatibility among sub-
components of the configuration. Configuration can either be static or dynamic, and we
will show how both can be implemented using rules.

For static configurations, all references to sub-objects in the configuration we are
versioning must be fixed at the time we create a new version of the configuration. This is
done by defining rules that transform accesses to sub-objects into references to the
current ‘‘working”’ versions of the sub-objects. For example, the design shown in figure
6 is a configuration made up of two sub-components, each of which is itself a
configuration.



-20-

Furthermore, let’s suppose that the design uses version 7 of the ALU and version 5 of the
register file, while the latest versions of the ALU and the register file are version 10 and
version 8 respectively.

'ﬁ_— datapath

subcircuit name | v._number

ALU

ALU 7
5

REGFILE‘J REGFILE

/* the procedure for the subcircuit as defined in rules */

define rule subcircuit

on retrieve to datapath.subcircuit then do instead

execute subcircuit(CURRENT.subcircuit_name,CURRENT.v_number)

Figure 6 : A configuration and its relational representation.

Since the design is a static configuration, the rules that are defined are:

define rule retrieve_alu
on retrieve to ALU then do instead
retrieve ALU[7]

define rule retrieve_regfile
on retrieve to regfile then do instead
retrieve regfile[5]

Thus the configuration (or its version) is "fixed" at the time it is created, and will not be
affected by changes (or versions) to its sub-components.

For dynamic configurations, references to some sub-objects are amended only at the
time the sub-objects are dereferenced. Therefore if the design in figure 6 is a dynamic -
configuration, then whenever the configuration is accessed, the version server would use
the "working" version (not necessarily latest) version of each sub-component. It is up to
the user to define the meaning of "working" versions. We note that the dynamic
configuration is achieved by defining rules similar to those of the static configuration.
Thus, if the design in figure 6 is a dynamic configuration, the rules that would be:
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define rule retrieve_alu
on retrieve to ALU then do instead
retrieve ALU["working_version"]

define rule retrieve_regfile
on retrieve to regfile then do instead
retrieve regfile["working_version"]

This method is similar to the concept of parametrized versions described in [BATO 85].

12.0 CONCLUSION

In this paper, we have shown that production rules in a database system can provide
a framework for version modelling that can be used to implement the needs of any ver-
sioning environment. A version system built from production rules not only provides all
the capabilities of conventional version systems, but also has the advantage of being
optimizable and easily extensible.

A major goal of this paper is not to adopt any particular version model. Thus in our
discussion on the implementation details of various version mechanisms, we have tried to
generalize the implementation of these concepts. As far as possible, we try to show how
different semantics can be implemented with just minor changes to the rules. Throughout
the paper, we have discussed our implementation of versions using names, but it would
be trivial to modify the rules to use version-numbers. Finally, by making the version
server a high-level system, we provide the users with a logical and intuitive framework in
which they can represent and manipulate their favorite version semantics.
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