
Copyright© 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

S-TREES: DATABASE INDEXING TECHNIQUES

FOR MULTI-DIMENSIONAL INTERVAL DATA

by

Curtis P. Kolovson and Michael Stonebraker

Memorandum No. UCB/ERL M90/35

27 April 1990

S-TREES: DATABASE INDEXING TECHNIQUES

FOR MULTI-DIMENSIONAL INTERVAL DATA

by

Curtis P. Kolovson and Michael Stonebraker

Memorandum No. UCB/ERL M90/35

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

S-TREES: DATABASE INDEXING TECHNIQUES

FOR MULTI-DIMENSIONAL INTERVAL DATA

by

Curtis P. Kolovson and Michael Stonebraker

Memorandum No. UCB/ERL M90/35

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

S-TREES: DATABASE INDEXING TECHNIQUES
FOR MULTI-DIMENSIONAL INTERVAL DATA

Curtis P. Kolovson and Michael Stonebraker

Computer ScienceDivision
Department ofElectricalEngineering and Computer Science

UniversityofCalifornia
Berkeley. California 94720

Abstract

We propose new techniques for indexing interval data in K dimensions, K >= 1, which are based on a set
of extensions to existingdatabase indexing structures. These extensions may be applied to multi-attribute
spatial data indexing structures such as R-Trees, as well as to one-dimensional indexes such as B-Trees.
We present the extensions, the motivation for these techniques, describe how they would be applied to R-
Trees and B-Trees,and present the results of a performance studywhichdemonstrates the soundnessof our
approach.

1. Introduction

Interval data is widelyusedin spatial and geometric applications, as well as for representing histori

cal (temporal) data. Suchdatamay be characterized bya setof ordered pairs thatspecify lower and upper

bounds in K dimensions, K >= 1. Currently, several proposals have been made fordatastructures thatsup

port efficient searching of large collections of multi-dimensional interval data. We broadly categorize

these proposals into two significant classes:

(1) Mainmemory baseddata structures usedin Computational Geometry [PREP85], and

(2) Disk based indexingstructuresused in DatabaseManagement Systems[SAME89].

The data structures that have been developed in the field of Computational Geometry for indexing

interval data are based on variations of binary search trees. These include the Segment Tree [BENT77],

Interval Tree [EDEL80], Priority Search Tree [MCCR85], and Persistent Search Tree [SARN86]. All of

these data structures are binary tree structures thatweredesigned with theassumption that the entirestruc-

This research was sponsored by the ArmyResearch Organization Grant DAAL03-87-0083 and by the
Defense AdvancedResearch Projects Agency throughNASAGrant NAG2-530

ture is contained in main memory, and none have been extended to n-ary trees for an environment where

the structure is paged onto secondary storage. The method of Interval Hierarchies [WONG77] cannot be

used in multiple dimensions and is also a main memory based data structure mat has not been extended to

work in a paged environment

There are several indexing techniques proposed for database management systems for various forms

of interval and historical data. The Write-Once B-Tree [EAST86, LOME89] is potentially wasteful of

secondary storage space since large portions of the index may contain redundant information that has been

replicated multiple times on disk. The R-Tree [GUTT84] and R+-Tree [SELL87] store all interval data in

the leaf nodes. Neither of these indexing techniques are particularly well-suited to dealing with interval

datawhose length distributionis highly non-uniform. In particular, neither performs well given a high pro

portion of "short" intervals and a low proportion'Of^long^intervals.* There-are likely to be many collec

tions of interval data whose length distributions arenon-uniform. Forexample, Figure 1 illustrates histori

cal datarepresentingemployee salary histories,where the horizontal X-axis represents time and the vertical

Y-axis represents employee salaries. In this figure, a collection of historicaldata is represented by a set of

horizontal line segments in two dimensions which are parallel to the year axis. Such a data collection is

likely to consist of mostly short intervals corresponding to employees who received frequent salary raises,

and a small proportionof very long intervals (employees who seldom received raises).

In this paper, we combine aspects of the data structures from (1) and (2) above to provide efficient

indexing techniques for multi-dimensional intervaldatain a database environment where only a small por

tion of the index may reside in main memory at any given time. We name our indexing structures S-Trees

to reflect their utility in searching collections of line segment (interval) data.

The remainder of this paper proceeds as follows. Section 2 presents our tactics and the motivation

for our research. Section 3 describes two example S-Trees: one based on the R-Tree (SR-Tree), and the

other based on the B-Tree [BAYE72] (SB-Tree). Section 4 discusses the results of experiments that com

pare the performance of the SR-Tree to the R-Tree. Section 5 provides an example of one of the S-Tree

tactics,which we refer to as the Lop-Sidedindex. Section6 presents a summaryand our conclusions.

salary
($)

Bob

Judy

40k Judy :

Wk

Earl

Judy \ Earl

\ Earl j

?0k l j Joe
Judy

| |
j Joe i

Joe !

10k Joe i

1984 1985 1986 1987 1988 1989

year

Figure 1: Historical data: Employee salaries as a function of time

2. The S-Tree Approach

When we speak of the S-Tree, we are not describing a specific indexing structure, but rather a

number of tactics that may be applied to a class of tree-structured database indexing methods to improve

their performance whendealing with interval data. Hereafter, we will prepend the letter S to the nameof

anindexing method thatutilizes these tactics, as in SB-Tree. In thissection, we present the tactics utilized

in the various S-Tree indexes, and the motivation for S-Tree structures.

2.1. Tactics

This research investigates three majormodifications to existing database indexing structures to sup

portefficientsearch operations on multi-dimensional interval data:

(1) The index datamay be storedat non-leaf nodes.

(2) The index page size may vary.

(3) Tree structures maybecome Lop-Sided, i.e.,thebalanced-tree criterion maybe relaxed.

2.1.1. Storing Data in Non-Leaf Nodes

The first tactic is that an interval / shall be stored in the highest level node in a tree-structured index

such that / spans all of the nodes that are descendants of one or more of the node's branches. In essence,

we are extending Segment Trees from binary to n-ary trees.

2.12. Varying the Index Page Size

To support the first tactic, it may be desirable to have larger page sizes at successively higher levels

in a tree-structured index. Since external index records (pointers to data records) and internal node

branches (pointers to other index nodes) share space on a non-leaf index node in S-Tree structures, a non-

leaf node with a large number of external index records will have a reduced branching factor. In order to

maintain high fanout in such a tree-structured index, it is desirable -to increase the size of a node at each

successively higher level of the index.

2.1J. Lop-Sided Trees

The motivation for Lop-Sided trees is to support a distribution of queries on interval data that is non

uniform in a particular dimension. For example, suppose that interval data is used to represent historical

data, as in Figure 1. Given such a collection of data, queries involving recent historical data may occur

more frequently than queries on older data. The assumption of a query distribution that is uniform over a

particular attribute domain underlies the decision to maintain balanced tree-structured indexes. Clearly, a

non-uniform query distribution over the time domain dictates a relaxation of the balance criterion of a

tree-structured index. Therefore, our third tactic deals with modifying indexes to allow trees to become

unbalanced based on a tunablebalanceinformation parameter that reflects the expected distribution of his

toricalqueries in the time domain.

2.2. Motivation for S-Trees

There are three motivating goals for this research, as follows:

(1) improve the performance of spatialindexing structures such as R-Trees,

(2) provide an efficient indexing technique for historical data using extended spatial indexing structures

(a special case of (1)), and

(3) efficiently index one-dimensional line segments and point data in B-Trees.

The first motivation, to improve the performance of spatial indexing structures, arises from the obser

vation that all tree-structured spatial indexing techniques store data items in the leaf nodes. We suggest

that for certain input data distributions, such as one in which there is a high proportion of "small" objects

and a low proportionof "large"objects, storing some of the largerobjects in non-leaf nodes would result in

a reduction in the amount of node coverage and/or overlap, thus improving the search performance of the

index.

The second motivation is to provide indexing techniques for historicaldata [STON87], which may be

characterized by an interval in the time dimension and a point in one or more other dimensions. Historical

data values may be represented by a step function, as in Figure 1, where the location of a step corresponds

to the commit-time of a transaction that changed an attribute value of a relation. One of our goals is to find

efficient indexing techniques for such sets of interval data to support queries on historical data.

The third motivation is to efficiently index both line segment and point data in a B-Tree. This need

may arise in database systems that support rules, such as POSTGRES [STON86]. For example, in a data

base that supports rules, suppose there is a currently active rule specifying that everyone who earns

between $10K and $20K must have a wooden desk, and a new employee tuple is inserted into the

Employee relation with a salaryof $15K. In order to determine what sortof desk the new employee should

be given, the appropriaterule must be applied. In general,whenever a new tuple is inserted, all of the rules

which apply to the new tuple must be found and applied. In a geometric sense, the search for all the rules

which apply to a newly inserted tuple corresponds to finding all of the intervals (associated with rules) that

contain a specified point (an attribute value ofa newly inserted tuple).

The next section of this paper presents two S-Trees: one based on the R-Tree and one based on the

B-Tree. The R-Tree based scheme can be used for spatial or historical indexing while the B-Tree scheme

supports intervals and points in the same structure.

3. Two Example S-Tree Indexes

The basic idea of S-Tree indexes is that data meeting certain criteria may be stored in the higher

level nodes of the index. The manner in which this may be applied to a particular structure depends both

on the base indexing structure and the type of the data being indexed. In this section, we describe the

design of two S-Tree indexes as defined in the previous sectionby describing the required modificationsto

the algorithms for insertion, node-splitting, and search operations. The first such index is based on the R-

Tree for indexing multi-dimensional interval data, and the other is based on the B-Tree for indexing one-

dimensional interval and point data.

3.1. SR-Tree

We define the SR-Tree as the S-Tree adaptation of the R-Tree index. The R-Tree is a K-dimensional

variation of the B-Tree which indexes data consisting of intervals in K dimensions. With no loss of gen

erality we will present a two-dimensional SR-Tree, as extensions to higher dimensions are straightforward.

3.1.1. Insert Algorithm

When a rectangle R is to be inserted, the algorithm descends the index beginning from the root At

each node, the branch B that would require the least expansion to accommodate R is selected, as in the ori

ginal R-Tree algorithm. If the horizontal and/or vertical interval(s) of R span the corresponding

dimension(s) of B, R is inserted onto this node and is added to a linked list of spanning objects associated

with Bt and the insertion algorithm does not descend the index below this node. UR does not span branch

B in either dimension, the algorithm descends the index following branch B and applies the above algo

rithm. Hereafter, we refer to a data item stored on a non-leaf node as a spanning rectangle in the case of a

two-dimensional SR-Tree, or more generally, as a spanning object.

A non-leaf node containing a spanningrectangle in a two-dimensional SR-Tree is illustratedin Fig

ure 2. Li this figure, two nodes are shown, labeled A and B. Node A contains a branch entry, El, that

stores both the spatial coordinates and disk address of node B. Suppose a newly inserted rectangle Rl

spans node B in the horizontal dimension but does not span node A in either dimension. Rl is a spanning

rectangle (it spans node B), and therefore an entry E2 is stored in node A which contains both the spatial

coordinates of/W and the tuple ID for the database recordcorresponding to Rl, and E2 is added to a linked

list anchored at El of rectangles which span node B in one or both dimensions.

As in the original R-Tree, each rectangle inserted onto a leaf node must be enclosed by the region

associated with the leaf node. Hence, if a newly inserted rectangle R is inserted onto a leaf node, it may

entry El for
nodeB

nodeB

(node B's

coordinates stored in

El of node A)

node A
entry E2for

segment SI

segment, "SI",

spanning node B

(segment Si's

coordinates stored in

E2 of node A)

Figure2: A spanning rectangle in an SR-Tree

require expansion. Moreover, each non-leaf node must encloseall its descendants, and therefore each node

along the path from a leafnode to the root node is expanded, if necessary, to minimally enclose the newly

inserted rectangle. Such nodeexpansion may also be required for rectangles inserted on non-leaf nodes.

Since spanning rectangles are stored in the parent of a spanned node (associated with the branch of the

spanned node), if anewly inserted rectangle R is inserted onto anon-leaf node N,although R does notspan

N in anydimension it may not be properly enclosed by theregion associated withN. In thatcase,N andall

its ancestors must be expanded to encloseR.

3.1.2. Node Splitting Algorithm

The SR-Tree leaf node splitting algorithm is thesame as that of the original R-Tree node splitting

algorithm. For splitting non-leaf nodes, theSR-Tree algorithm divides branches intothetwo sibling nodes

as in theoriginal R-Treealgorithm, andthen associates each spanning rectangle with the branch to whichit

corresponds.' Nodes are expanded to minimally enclose the regions covered by the branches within each

node.

The algorithms statedabove for insertion andnode splitting arenot complete,as they require further

mechanisms to deal with the possible promotion (moving to a higher level node)or demotion (moving to a

lower level node) of spanningrectangles. These issuesarise in the followingsituations:

(1) When a node N splits into two nodes Nl and N2, spanning rectangles on node N may require a pro

motion to theirparent node, sinceafterthe split some spanning rectangles may spaneitherNl orN2.

(2) A node whose region has expanded due to the insertion of a new rectangle may break former span

ning relationshipsand thus require spanningrectangledemotions.

Solutions to handle each of the two cases mentioned above as they occur are as follows:

(1) When a node N splits into two new nodes Nl and N2, check if any spanning rectangle on N spans

either Nl or N2. For each one that does, remove it from its present node and insert it onto its parent

node, and link it to the list associated with the branch of the node which it spans.

(2) On each node that has been expanded, determine whether there exist any displaced spanning rectan

gles (i.e., formerly spanning rectangles which no longer span any branch on the node). For each

such rectangle, remove it from the node and reinsertit into the index.

In order to better handle randomly orderedinput, we define a hybrid SR-Tree insertion algorithmas

one which inserts rectangles whose maximum length in any dimension is less than or equal to a parameter

Z (such rectangles are hereafter referred to as "small'") according to the standard R-Tree algorithm, and

applies the SR-Tree insertion algorithm otherwise. The motivation for this insertion scheme is that when

rectangles are inserted in random order, it is desirable to insert the "small" rectangles in the leaf nodes as

much as possible. Otherwise, if the SR-Tree insertion algorithm were applied to all rectangles then it is

possible that some "small" rectangles may be placed in higher-level (non-leaf) nodes and also that some

"large" rectangles may be stored in leaf nodes. Although suchnon-optimal placement of rectangles would

be partially remedied by subsequent rectangle promotions anddemotions as the index grows, promotable

rectangles in leaf nodesthathavenotbeen recently splitmaynot get promoted. By always placing "small"

rectangles in the leaf nodes, it is more likely that the index will evolve in a nearly optimal configuration,

even in the case of randomly ordered input

8

As a further optimization, after all insertions are performed, the entire index may be postprocessed

by first removing all of the rectangles whose maximum length in any dimension is greater than Z from the

leaf nodes, and then reinserting those rectangles into the index. This postprocessing step ensures that all

rectangles are storedat the proper level in the index regardless of theiroriginal insertionorder. However,

since it is a form of global reorganization, we did not perform this postprocessing algorithm in our perfor

mance experiments.

3.13, Search Algorithm

The SR-Tree search algorithm is similar to that of the original R-Tree. It descends the index depth-

first, descending only those branches that intersect the given search rectangle S until the qualifying data

records are found in a set of leaf nodes. In addition, at each node encountered during the search of the

index, all spanning rectangles are examined to determine if they have a non-zero intersection with 5. Since

spanning rectanglescontained by a node N are wholly contained by N, all spanning rectangles in the index

that have a non-zero intersection with S are guaranteed to be found by the searchalgorithm.

3.2. SB-Tree

The S-Tree adaptation of the B-Tree that we shall present in this section is based on the B+-Tree

[COME79] which stores both point and interval data in one dimension, and is hereafter referred to as the

SB+-Tree. The idea of the SB+-Tree is that it stores interval data in both the leaf and non-leaf nodes, and

point data in the leaf nodes. Alternatively, one may base a S-Tree on the original B-Tree proposal

[BAYE72], hereafter referred to as the SB-Tree, in which point datarecords are stored in both the leaf and

non-leaf nodes, and interval data is stored in the non-leaf nodes. In the originalB-Tree proposal,point data

records in the non-leaf nodes act as separators between branches to other lower-level nodes, whereas the

B+-Tree stores separator values and branch pointers in the non-leaf nodes and data records in the leaf

nodes. In both the SB+-Tree and SB-Tree, intervals are stored at the highest level in the index such that the

interval spans at least one sub-tree rooted at the node.

Comparing our insertion algorithm for the SR-Tree to that of the SB+-Tree, we have illustrated a

minor difference in the manner that spanning objects may be inserted on non-leaf nodes. In the SR-Tree, a

spanning object is attached to a linked list that is associated with a single spanned branch, whereas in a

SB+-Tree a spanningobject is linked to all of its spanned branches. This distinction was made to illustrate

the time/space tradeoff between these two approaches. In particular, we reduce space overhead in SR-

Trees caused by spanningobjects at a slight increase in computational overhead. If an interval spans more

than one branch in an SR-Tree, its searchalgorithm checks all spanning objects presenton a node for inter

section with the specified search argument A. On the other hand, in a SB+-Tree, the search algorithm

checks only those spanning objects for intersection with A which are linked to branches that have non-zero

intersection with A. Since our metric for search performance was the number of page accesses per search

in our performance experiments (discussed in Section 4), the difference in computational cost between

these two approaches is not significant In any S-Tree index, whethera spanningobject is linked to one or

more than one spanned branches on a node is strictly a time/space tradeoff, as either approachis viable.

3.2.1. Insertion Algorithm

When inserting point data, the SB+-Tree algorithm is the same as that of the original B+-Tree.

When inserting an interval /, the SB+-Tree algorithm proceeds by first descending the index depth-first,

starting from the root node. If/ spans one or more branches on the current node, / is installed on the node

and is linked to each branch that it spans. The insertion algorithm does not descend any of the spanned

branches. Each remaining branch (not spanned by 7) is descended, and at each node so encountered, the

above algorithm is applied.

3.2.2. Node Splitting Algorithm

When a SB+-Tree node N is split if N does not contain any interval data, the algorithm is the same

as that of the original B+-Tree. Otherwise, the algorithm divides JV's branches between N and its new

sibling node as in the original algorithm, and then distributes each interval onto the appropriate node(s)

according to which node contains the branch(es) that the interval spans. After this step, if there are any

intervals that span either of the split siblings, those intervals are promoted to the parent node and are asso

ciated with their corresponding spanned branch.

10

323. Search Algorithm

Given a searchargument consisting of a point value, the search algorithm proceeds exacdy as in the

corresponding B+-Tree search algorithm. If the search argument is an interval /, the search algorithm

proceeds by descending the index depth-first At each non-leaf node, the intervals that intersect / are

returned as qualifying records. At each leaf node, both the pointsand intervalsthat intersect/ arereturned.

4. Performance Experiments

We implemented SR-Trees that use the hybrid insertion scheme presented earlier, and that do not use

the postprocessing optimization. We performed a series of experiments to compare the performance of the

SR-Tree against that of the R-Tree. The input to our experiments were sets of data objects consisting of

intervals in two dimensions, i.e., rectangles. For each trial, the input consisted of a high-proportionof rela

tively "small" rectangles, and a low proportion of "big" rectangles. The small rectangles had widths and

heights that were uniformly distributed in the range of [100,1000], while the big rectangles had dimension

lengths uniformly distributed over [40000,60000]. The entire data domain U consisted of a space bounded

by [0,100000] in two dimensions. Center-points for the rectangledatawere uniformly distributed over U.

There were five sets of experiments. The first four experiments compared the search performance of

an SR-Tree to that of an R-Tree for each of the following types of input data:

(1) randomly ordered input (unsorted both in terms of size and spatial location),

(2) input spatially sorted by the upper horizontal ordinate, i.e., by increasing X2 values given that we

specified rectangles by two points: (XI, Yl, X2, Y2),

(3) input partitioned by size (the small rectangles were inserted before the big rectangles in two

batches), where within each batch the input was inserted in a random order, and

(4) input partitionedby size (the small rectangles were insertedbefore the big rectangles), where within

each batch the input was spatially sorted as in (2).

In the first four experiments, both the SR-Tree and R-Tree used a level zero (leaf) node size of 1 Kb,

and both doubled the node size at each successive level of the index, i.e., level one nodes had a size of 2

Kb, level two nodes were 4 Kb, etc. The fifth experiment compared an SR-Tree that doubled its node size

at each successive level (as in the first four experiments) to an SR-Tree that used a fixed node size of 1 Kb

11

throughout, when processingspatiallysorted,singlebatchinput

The hybrid SR-Tree insertion algorithm was implemented because it is a simple optimization to

employ for input that is unsortedby size, as in experiments one and two. Forthe parameter Z we used the

value of 1000, so that all of the small rectangles would be inserted in the leaf nodes. The hybrid insertion

scheme had virtually no effect on SR-Tree performance in the two-batch input cases (experiments three

and four), and provided a moderate improvement for SR-Tree performancein experiments one and two.

Within each of the 5 experiments, 16 sets of input were processed. In each set we varied the number

of records indexed and the ratio of big to small rectangles. The number of small and big rectangles in each

of the 16 sets of input are described in Table 1. Hereafter, when we refer to a database by a single capital

letter, we refer collectively to the four databases that share the same number of small rectangles. For

example, "database A" refers collectively to databases Al, A2, A3, and A4.

The first phase of each experiment consisted of inserting the data into the respective indexes being

compared. After the insertion phase, 100 random searches were performed on each index, where each

Database

Name

Big/Small
Ratio

Small

Rectaneles

#Big
Rectangles

Al 02% 45 K 100

A2 22% 45 K 1000

A3 11.1% 45 K 5000

A4 22.2% 45 K 10000

Bl 0.2% 60K 133

B2 2.2% 60K 1333

B3 11.1% 60K 6667

B4 22.2% 60K 13333

CI 0.2% 75 K 167

C2 2.2% 75 K 1667

C3 11.1% 75 K 8333

C4 22.2% 75 K 16667

Dl 0.2% 90K 200

D2 2.2% 90K 2000

D3 11.1% 90 K 10000

D4 22.2% 90K 20000

Table 1: Characteristics of databases

used as input to experiments

12

search argument consisted of a square with edge length of 1000 whose center-point was uniformly distri

buted over [0, 100000]. The same sequence of random searches was repeated for all experiments. The

measurements taken included the average number of index page accesses per search. From those results,

we calculated the percentage of improvement in search performance of the SR-Tree with respect to the R-

Tree for the first four experiments. For the fifth experiment, we measured the same statistic to compare the

search performance improvement provided by the doubling node size SR-Tree with respect to the fixed

node size SR-Tree.

In all five experiments, to normalize the results for comparative purposes, both indexes used the

same page layout Therefore, in all of the trials, the utilized sizes of the SR-Tree indexes were within 1%

of their corresponding R-Tree counterparts, since both used the same page layout and indexed identical

data.

4.1. Results of Performance Experiments

The first experiment processed randomly ordered (unsorted) input and the results of that experiment

are shown in Graphs 1 and 2. In Graph 1, the percentage of improvement in search performance provided

by the SR-Tree index with respect to the R-Tree is plottedas a function of the ratio of big/small rectangles,

for each of the four databases(A, B, C, and D). In Graph2, the same statistic is plotted as a function of the

database size, for each of the four big/small rectangle ratios. Graph 1 shows that the greatest performance

improvement occurred at the big/small ratio of 0.2%, and then decreased as the ratio increased. The per

formance improvement was in the range of 0.2%-40%. In Graph 2, it is clear that the databases with

big/small ratios of 0.2% and 2.2% experienced much larger performance improvements that those with

ratios of 11.1% and 222%. The results in both of these graphs show that the performance improvement

increases with the size of the database. Since the input consisted of mosdy small rectangles that were

inserted in random order over a large space ([0,100000]), the sizes of nodes tended to be rather large. This

resulted in most of the big rectangles being stored in the leaf nodes, and only a few were stored in the non-

leaf nodes since a small number of them spanned any node(s). The more big objects stored in the non-leaf

nodes, the greater the potential for performance improvement with respect to an R-Tree which stores all

objects, both big and small, in its leaf nodes. Since a few big objects were stored in the non-leaf nodes and

the rest of the big objects were stored in the leaf nodes, there was a modest performance improvement

13

when the big/small ratio was very low, and this improvement diminished as the big/small ratio increased.

The results of the second experiment involving sorted input are presented in Graphs 3 and 4, which

plot the relative search performance improvement in an analogous fashion to Graphs 1 and 2. These graphs

show that the relative improvement ranged between l%-80%. As in the first experiment the performance

improvement was inversely related to the big/small ratio, and directly related to the database size. The

significantdifference between the results of the first two experiments is that the performance improvement

is approximately doubled in the case of the spatially sortedinput This is because the spatially sorted input

caused the average node size to be relatively small, thereby allowing more big objects to be stored in the

non-leaf nodes. In the first experiment since the input was inserted in a random order the non-leaf nodes

tended to be quite large in area. The largearea of these nodes prevented spanningobjects from occupying

higher levels of the index, which would enhance the relative benefit of SR-Trees over R-Trees.

In the third and fourth experiments, the input was inserted in two batches, i.e., first the small rectan

gles and then the big rectangles. In the third experiment, each batch was unsorted. The relative perfor

mance improvement in this experiment rangedbetween 2%-13%. The fourth experiment was similar to the

third, except that each batch was sorted. The relative improvement in this experiment ranged between

4%-72%. Graphsof the resultsof experiments threeand four arenot shown for the sake of brevity, as their

results were similarin form to Graphs 1 through 4, anddiffered only in magnitude.

The fifth experiment compared the performance of the variable node size SR-Tree that doubles its

node size at each successive level of the index (leaf nodes are 1 Kb) to a variation of the SR-Tree that used

a fixed node size of 1 Kb at all levels of the index. The input consisted of the spatially sorted input that

was also used in the second experiment The results of this experiment are presented in Graphs 5 and6,

which show that the performance improvement ranged between 8%-45%. These results indicate that dou

bling the node size at successively higherlevels in the index (as is done in the "standard" SR-Tree) pro

vided a considerable performance improvement over the fixed node size SR-Tree. This effect is due to the

greater node fanout that was present in the higher-level nodes of the index.

Reviewing the results of the first four experiments, it is clear thatthe SR-Trees hada greater perfor

mance advantageover R-Trees in the spatiallysortedinput cases as opposed to the spatiallyunsorted input

cases. Spatially sorted input is advantageous for SR-Trees because the big rectangles are more likely to be

14

inserted in higher-level nodes, since the average non-leaf node size would be smaller than that in an SR-

Tree that processed the same data collection inserted in a random order.

Our observations regarding the effects of spatially sorted versus randomly ordered input led us to

conclude that SR-Trees would benefit from a "packing" algorithm similar to that proposed by Rousso-

poulos and Leifker [ROUS85]. The algorithm of [ROUS85] builds an R-Tree by successively applying a

nearest neighbor relation to group objects in a node after the set of objects has been sorted according to a

spatial criterion. This algorithm is applied level-by-level, starting from the leaf level, and fills each node to

capacity. The drawback to this scheme for our purposes is that it is a static method, whereas the SR-Tree is

designed to be a dynamic index. Although spatially sorting the input was a crude approximation to the

packing algorithm of [ROUS85], it provided a dramatic increase in the performance of SR-Trees.

5. Lop-Sided Trees

In this section, we illustrate the utility of our third tactic: the Lop-Sided index. Suppose there is a

standard index (i.e., balanced, and all data are stored in the leaf nodes) that consists of one root node at

level one and three leaf nodes at level zero, and a Lop-Sided Tree index (unbalanced, and stores data in

nodes at all levels) consistingof one node at level two, one, and zero, respectively, as illustrated in Figure

3. Here, two page reads of the standard index are required to access any one of the leaf nodes. For the

Lop-Sided index, three page reads are required to access the leftmost node, two reads for the middle node,

and one for the rightmostnode. If the query distributions are non-uniform, as for example those shown in

Table 2, a substantialreductionin the numberof pageaccessesmaybe achievedwith the Lop-Sidedindex.

6. Summary and Conclusions

A novel way of storing multi-dimensional interval data by modifying a class of database indexing

structures that are based on paged, balanced, multi-way trees has been described. Performance results

comparing SR-Trees to R-Trees were presented which demonstrate that S-Trees provide a substantial per

formance improvement over conventional indexing techniques when the length of the interval data is

highly non-uniform. SR-Trees were shown to provide an improvement in search performance over R-

Trees when the ratio of big to small objects is small, and the performance improvement was enhanced by

spatially presorting the input data.

15

standard index

/

/
/

f

\

\
data data data

Lop-Sided index

data

data

data

Figure 3: Standard indexvs. Lop-Sided index

% accesses

to leftmost

node

% accesses

to middle

node

% accesses

to rightmost
node

avg. # of
reads/query
(standard)

avg. # of
reads/query
(Loo-Sided)

performance
improvement

(%)

0 0.125 0.875 2.0 1.125 43.7%

0 0.333 0.667 2.0 1.333 33.3 %

0.125 0.25 0.625 2.0 1.5 25.0 %

0.25 0.25 0.5 2.0 1.75 12.5 %

Table 2: Performanceimprovement provided by
Lop-Sided index forvarious non-uniform

query distributions

The plans for our future research are to design and implement other S-Tree index structures and

measure their performance. We plan to implement SB+-Trees as well as SR-Trees that index historical

data. We also plan to implement a Lop-Sided version of the SR-Tree which supports non-uniform query

distributions, and to design and experiment with various adaptive algorithms that tune the degree of "lop-

sidedness" according to statistics gathered from thedistribution of past queries.

References

[BAYE72] Bayer, R., and McCreight, E., "Organization and Maintenance of Large Ordered Indexes",
Acta Informatica, 1, No. 3 (1972), pp. 173-189,Springer-Verlag.

[BENT77] Bendey, J.L., "Algorithms for Klee's Rectangle Problems", Computer Science Department,
Carnegie-Mellon University,Pittsburgh.

[COME79] Comer, D.,"The Ubiquitous B-Tree", ACMComp. Surv. 11, No.2 (June 1979).

16

[EAST86] Easton, M., "Key-Sequences Data Sets on Indelible Storage", IBM Journal of Research and
Development, 30,3, (May 1986).

[EDEL80] Edelsbrunner, H., "Dynamic Rectangle Intersection Searching", Institute for Information Pro
cessing Rept, 47, Technical University of Graz, Graz, Austria.

[GUTT84] Guttman, A., "R-Trees: A Dynamic Index Structure for Spatial Searching", Proceedings of
ACM SIGMOD International Conference on Management of Data, Ed. B. Yormark. Associa
tion for Computing Machinery. Boston, MA: June 1984.

[LOME89] Lomet, D. and Salzberg, B., "Access Methods for Multiversion Data", Proc. 1989 ACM-
SIGMOD Conference on Management of Data, Portland, Ore.,June 1989.

[MCCR85] McCreight, E., "PrioritySearch Trees", SIAM J.Comput. 14,2 (May).

[PREP85] Preparata, F.,andShamos, M., "Computational Geometry, An Introduction' \ Springer-Verlag
Publishing Co., 1985.

[ROUS85] Roussopoulos, N., andLeifker,D., "Direct Spatial Search on Pictorial Databases usingPacked
R-Trees", Proc. 1985 ACM-SIGMODConference on Management of Data, Austin, TX, May
1985.

[SAME89] Samet, H., "The Design and Analysisof Spatial Data Structures", Addison-Wesley Publish
ing Co., 1989.

[SARN86] Sarnak, N. and Tarjan, R., "Planar Point Location Using Persistent Search Trees", Comm.
ACM, 29,7 (July).

[SELL87] Sellis, T., Roussopoulos, N., and Faloutsos, C, "The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects", Proc. 1987 VLDB Conference, Brighton, England, Sept. 1987.

[STON86] Stonebraker, M., and Rowe, L., "The Design of POSTGRES", Proc. 1986 ACM-SIGMOD
Conferenceon Management of Data, Washington, D.C., May 1986.

[STON87] Stonebraker, M., "The POSTGRES Storage System", Proc. 1987 VLDB Conference, Brigh
ton, England, Sept. 1987.

[WONG77] Wong, K. andEdelberg, M., "Interval Hierarchies andTheir Application to Predicate Files",
ACM TODS, 2,3 (Sept.).

17

40-r^r

32-

24-

16-

0.00

PERCENTAGE IMPROVEMENT IN SEARCH PERFORMANCE
OF SEGMENT R-TREES OVER R-TREES,

AS A FUNCTION OF THE RATIO OF BIG/SMALL RECTANGLES

X Axis = ratio of "big" to "small" rectangles
Y Axis = percentage of improvement in search performance

0.05

Database A

Database B

Database C

Database D

0.10 0.15 0.20

Graph 1: single batch input, randomly ordered

24-

16-

45056

PERCENTAGE IMPROVEMENT IN SEARCH PERFORMANCE
OF SEGMENT R-TREES OVER R-TREES,

AS A FUNCTION OF THE DATABASE SEE

X Axis = database size (no. of records)
Y Axis = percentage of improvement in search performance

; i j r

| 4 - j (_

8601655296 65536 75776

ratio of big/small rectangles = 0.2%

ratio of big/small rectangles = 2.2 %

ratio of big/small rectangles e 11.1 %

ratio of big/small rectangles = 222 %

96256 106496

Graph 2: single batch input, randomly ordered

0.00

PERCENTAGE IMPROVEMENT IN SEARCH PERFORMANCE
OF SEGMENT R-TREES OVER R-TREES,

AS A FUNCTION OF THE RATIO OF BIG/SMALL RECTANGLES

X Axis = ratioof "big" to "small" rectangles
Y Axis = percentageof improvement in search performance

0.05

Database A

0.10 0.15 020

Database B

Database C

Database D

Graph 3: single batch input, sorted by X2

60-

40-

20-

45056

PERCENTAGEIMPROVEMENTINSEARCHPERFORMANCE
OFSEGMENTR-TREESOVERR-TREES,

ASAFUNCTIONOFTHEDATABASESEE

XAxis=databasesize(no.ofrecords)
YAxis=percentageofimprovementinsearchperformance

552966553675776

ratioofbig/smallrectangles=0.2%

ratioofbig/smallrectangles=2.2%

ratioofbig/smallrectangles=11.1%

ratioofbig/smallrectangles=22.2%

Graph4:singlebatchinput,sortedbyX2

TT
5601696256106496

0.00

PERCENTAGE IMPROVEMENT IN SEARCH PERFORMANCE
OFDOUBLING VS. FIXED PAGE-SEE SEGMENTR-TREES,

AS A FUNCTION OF THE RATIO OF BIG/SMALL RECTANGLES

X Axis =ratio of "big" to "small" rectangles
Y Axis =percentage of improvement in search performance

0.05

Database A

Database B

Database C

Database D

0.10 0.15 0.20

Graph 5: singlebatchinput, sortedby X2

45056

PERCENTAGE IMPROVEMENT IN SEARCH PERFORMANCE
OFDOUBLING VS. FIXED PAGE-SEE SEGMENT R-TREES,

AS A FUNCTION OF THE DATABASE SEE

X Axis =database size (no.of records)
Y Axis = percentage of improvement in search performance

55296 65536 75776

ratio of big/small rectangles= 0.2%

ratio of big/small rectangles= 2.2 %

ratio of big/small rectangles =11.1%

ratio of big/small rectangles= 22.2 %

86016 96256 106496

Graph 6: single batch input, sortedby X2

