
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires priorspecific permission.

ON RULES, PROCEDURES, CACHING

AND VIEWS IN DATA BASE SYSTEMS

by

Michael Stonebraker, Anant Jhingran, Jeffrey Goh,
and Spyros Potamianos

Memorandum No. UCB/ERL M90/36

27 April 1990

\

ON RULES, PROCEDURES, CACHING

AND VIEWS IN DATA BASE SYSTEMS

by

Michael Stonebraker, Anant Jhingran, Jeffrey Goh,
and Spyros Potamianos

Memorandum No. UCB/ERL M90/36

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ON RULES, PROCEDURES, CACHING

AND VIEWS IN DATA BASE SYSTEMS

by

Michael Stonebraker, Anant Jhingran, Jeffrey Goh,
and Spyros Potamianos

Memorandum No. UCB/ERL M90/36

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ON RULES, PROCEDURES, CACHING and VIEWS

IN DATA BASE SYSTEMS

Michael Stonebraker, Anant Jhingran,Jeffrey Goh and Spyros Potamianos
EECSDept.

University of California,Berkeley

Abstract

This paper demonstrates that a simple rule system can be constructed that supports a more powerful
view system than available in currentcommercial systems. Not only can views be specified by using rules
but also special semantics for resolving ambiguous view updates are simply additional rules. Moreover,
procedural data types as proposed in POSTGRES are also efficiently simulated by the same rules system.
Lastly, caching of the action part of certain rules is a possible performance enhancement and can be
appliedto materializeviews as well as to cache procedural dataitems. Hence, we conclude that a rule sys
tem is a fundamental concept in a next generation DBMS, and it subsumes both views and procedures as
special cases.

1. INTRODUCTION

Most commercial relational systems support the concept of relational views [STON75]. Hence, a
virtualrelationcan be defined to the datamanager, e.g:

define view TOYJBMP as
retrieve (EMPjiame, EMP.age, EMRsalary)
where EMP.dept = "toy"

Then, all queries and many updates to TOY_EMP can be mapped to commands on the underlying base
relation, EMP.Unfortunately, thereareabundant examples of views forwhich certain updates areimpossi
ble to successfullymap [CODD74]. Commercial systems simply issueerror messages for suchcommands,
and this shortcoming limits the utility of views. Clearly, the ability to specify update semantics for ambi
guous updates to views would be a desirable enhancement.

Recently, several authors have proposed materializing views for augmented performance. In this
case, the DBMS would keep a physical instantiation of a view such as TOY_EMP. Hence, queries to
TOYJEMP can usually be processed much faster than without a materialization. However, updates to
TOY_EMP will require more expensive processing because each update mustbe bothmapped to underly
ing base relations and processed on the materialization. See [BLAK86, ROUS87] for details on this
approach.

There areseveral extensionsto the view mechanism thatmightbe desirable. First, it wouldbe nice if
a view couldbe specified by multiplequery language commands, e.g:

define view SHOE_EMP as
retrieve (EMRname, EMRsalary, EMP.age) where EMP.dept= "shoe"
retrieve (NEWEMRname, NEWEMP.salary, NEWEMRage) where NEWEMP.dept = "shoe"

Here, SHOEJEMP is defined to be the union of two commands. Although it is possible to express this view
in SQL using the union operator, updates to union views are disallowed in commercial SQL

This research was sponsored by the Army Research Organization Grant DAAL03-87-0083 and by the Defense Advanced
ResearchProjectsAgency through NASA Grant NAG2-S30.

implementations. Also, it is easy to propose collections of commands whose target lists are not union com
patible, and therefore that are not expressible as SQL views. Lastly, it would also be nice if partial views
were supported, Le. a view that is defined by a collection of stored tuples as well as by one or more view
definitionsto materialize the remainder of the tuples.

Some researchers have proposed that procedural data types be supported in a data base system
[STON87]. In this case, a column of a relation would contain data items, each of which is an unrestricted
collection of query language commands. An example of this capability is storing information about hob
bies of employees, e.g:

EMP (name, hobbies)

In the hobbies field we record all information about each hobby that an employee engages in. One way to
model this situation is to construct one relation in the data base for each possible hobby indicating the
names of the employees who practice the hobby and relevantdataabout their passtime. Example relations
might include:

SOFTBALL (name, position, average)
JOGGING (name, miles, best-time)

Then each value in the hobbies field is a procedure consisting of a collection of query language commands
retrieving relevant hobby data. Consequently, the appropriate procedure for an employee Joe who prac
tices both softball and racing might be called foobar and would be:

retrieve (SOFTBALL.all) where SOFTBALL.name = "Joe"
retrieve (JOGGING^ll) where JOGGING.name = "Joe"

Hence, the appropriate insert to EMP would be:

append to EMP (name = "Joe", hobbies = foobar)

A special case of a procedural field is the situation where each tuple contains a procedure of the
form:

retrieve (relation.all)

In this case, the value of the field is the indicated relationand the procedureefficiently simulates a nested
relational data structure [DADA86].

In [STON86], it was also suggested that a DBMS optimize procedural fields by precompiling the
valueof the procedure, rather than waiting for the user to requestevaluation.

Lastly, [ROWE87] proposed a special case of procedural fields, namely that a column of a relation
contain the same procedure in each tuple, differing only in the value of one or more parameters. Forexam
ple, consider the following DEPT relation:

DEPT (dname, floor, composition)

Here, dname and floor are conventional fields while composition is intended to be the collection of EMP
records for employees in the given department In this case, compositioncan be declared to be the follow
ing procedure:

retrieve (EMP.all) where EMRdept=$.dname

Hence, each row of DEPT has the same procedure, namely the above query, differing only in the value of
the parameter, $.dname, which is availablein the dname fieldin each tuple. As can be noted, parameterized
(or special) procedures are an efficient means to support the type "collection of tuples in another relation".

In this paperwe indicate that all the following concepts:

views

special semantics for updating views
materialized views

partial views
procedures
special procedures
caching of procedures

can be subsumed by one general purpose rules system. Hence, we recommend that implementors

concentrate on a single powerful rules system and then simulate all of these concepts using the rules sys
tem. This is exactly what we aredoing in Version 2 of POSTGRES.

Consequently, in Section 2 we present the rules system that we arebuilding for Version 2. Section 3
continues with the two alternate implementations that we are constructing for activating rules. Then, in
Section4 we consider caching the action portion of certain rules. Section 5 indicates how view processing
can be effectively layered on this rules system. Lastly, Section 6 concludes with the implementation of
proceduresand special procedures as particularrules.

2. THE NEW POSTGRES RULES SYSTEM

Although the first version of POSTGRES proposed using a paradigm for rules in which a command
was logically always in execution or never in execution, the second POSTGRES rules system (PRS2)
takes a more traditional production system approach to rules [ESWA76, STON82, DELC88, HANS89,
MCCA89, WID089]. PRS2 has points in common with these other proposals; in fact the syntax is quite
close to that of [HANS89, WID089]. However, the main contribution of this paper is to show how views
and procedurescan be subsumed under a rule paradigm. This section briefly discusses the syntax ofrules in
PRS2.

A rule has the form:

DEFINE RULE rule-name [AS EXCEPTION TO rule-name]
ON event TO object [[FROM clause] WHERE clause]
THEN DO [instead] action

Here, event is one of:

retrieve

replace
delete

append
new (i. e. replace or append)
old (i.e. delete or replace)

Moreover, object is either

a relation name

or

relation.column,...., relation.column

The FROM clause and WHERE clause are normal POSTQUEL clauses with no additions or changes.
Lasdy, the action portion of the DO clause is a collection of POSTQUEL commands with the following
change:

NEW or CURRENT can appearinstead of a tuple variable whenever a tuple
variable is permissible in POSTQUEL.

The semanticsof a PRS2 rule is that at the time an individual tuple is accessed, updated, insertedor
deleted, there is a CURRENT tuple (for retrieves, replaces and deletes) anda NEW tuple (for replaces and
appends). If the event and the condition specified in the ON clause aretrue for the CURRENT tuple, then
the actionpartof the rule is executed. First, however,values from fields in the CURRENT tuple and/orthe
NEW tuple are substituted for

CURRENT.column-name

NEW.column-name

The action part of the rule executes with same command and transaction identifier as the user command
that caused activation.

For example, consider the following rule:

define rule example.l
on replace to EMP.salary where EMP.name = "Joe"
then replace EMP (salary = NEW.salary) where EMRname = "Sam"

At the time Joe receives a salary adjustment, the event will become true and Joe's current tuple and

proposed new tuple are available to the execution routines. Hence, his new salary is substituted into the
action partof the rule which is subsequently executed. This propagates Joe's salaryon to Sam.

There is no requirement that the event and action be the same kind of command. Hence, considera
second rule:

define rule example_2
on retrieve to EMRsalary where EMP.name = "Joe"
then replace EMP (salary = CURRENT.salary) where EMRname = "Bill"

This rule ensures that Bill has a salary equal to Joe's whenever Joe's salary is accessed.

Each rule can have the optional tag "instead". Without this tag the action will be performed in addi
tion to the user command when the event in the condition partof the rule occurs. Alternately, the action
part will be done instead of the user command.

Forexample, if Joe is not allowed to see the salary of employees in the shoe department, then the fol
lowing rule is the appropriate specification:

define rule example_3
on retrieve to EMRsalary where EMP.dept = "shoe" and userO = "Joe"
then do instead retrieve (salary = null)

At the time the event is true, there will be a current tuple for some member of the shoe department. The
action partof the rule specifies that this person's salary is not to be returned; instead a null value should be
insertedbefore the tuple is returned to higher level software for furtherprocessing. Notice, that insertion of
a real value in the action part of the rule would allows POSTGRES to lie to Joe about the salaries of
members of the shoe department by returning an incorrect value.

It is also possible to update the CURRENT tuple or the NEW tuple using a rule. Hence, a somewhat
more obscure way to express the above rule is:

define rule example_4
on retrieve to EMRsalary where EMP.dept = "shoe" and userO = "Joe"
then do replace CURRENT (salary = null)

This rule has the same condition as the previous one; however it specifies that the current tuple is to be
modified by changing the salary field to null. This will return a null value to the requesting user.

Each rule is given a rule-name, which is used to remove the rule by name when it is no longer
needed. Lastly, each rule can be optionally designated to be an exception to another rule. Consider, for
example, the following rule:

define rule example__5 as exception to example_4
on retrieve to EMRsalary where EMRname = "Sam" and userO = "Joe"
then do replace CURRENT (salary = 1000)

Suppose Sam is a member of the shoe department. In this case, example_4 would return null for his salary
while example_5 would return 1000. Clearly, returning both null and 1000 is inappropriate, so the excep
tion clause in example_5 indicates that 1000 should be returned.

Exceptions are supported by converting the parent rule, in this case example_4, to have an event
qualification of

event_qualification and not event_qualification_of_offspring

Then the parent rule is removed and reinstalled, while the offspring rule is inserted in the normal manner.
It is an error for the offspring rule to have a different event-type and event-object from its parent If an
exception hierarchy is present, then the above procedure must be repeated up the hierarchy until no further
exceptions are encountered.

We now indicate three final examples of PRS2. Consider the rule that Sam should be given any raise
that Joe receives as noted in example.l. Suppose further that we want a rule to ensure that example_l is
the only way that Sam's salary should be adjusted. This is specified in example_6.

define rule exampleJS
on replace to EMP.salary where EMP.name = "Sam" and queryO != example_l
then do instead

This rule will disallow any command except the rule example_l from changing the salary of Sam. Exam-
ple_l and example_6 together ensure that Sam has the same salary as Joe.

Consider the desire to construct a security audit whenever any salary is accessed. This is easily
expressed by the following rule:

define rule example_7
on retrieve to EMRsalary
then do append to AUDIT (accessor= userO,object= CURRENT.name,value = CURRENT.salary)

Lastly, consider the rule in example_8:

define rule example_8
on retrieve to TOY_EMP
then do instead retrieve (EMP-OID = EMP.OID, EMP.name, EMP.age, EMRsalary)
where EMP.dept = "toy"

This specifies that when a user performs a retrieve to TOY_EMP that instead he should be given the result
of the query in the action part of the rule, namely the employeesin the toy department Clearly, example_8
corresponds to a view definition.

3. IMPLEMENTATION

There are two implementations for rules in PRS2. The first is through tuple level processing deep in
the executor. This rules system is called when individual tuples are accessed, deleted, inserted or modified.
The second implementation is through a query rewrite implementation. This module exists between the
parser and the query optimizer and converts a user command to an alternate form prior to optimization.
The tuple level implementation can process all PRS2 rules while the query rewrite implementation is used
to more efficiently process a subset of PRS2. In the rest of this section we discuss each implementation.

3.1. Tuple Level Rule System
This rules system can be invoked for any PRS2 rule, and activation of rules occurs in one of two

ways. First the execution engine may be positioned on a specific tuple and a rule awakened. In this case
NEW and CURRENT take on values from the new and current tuple, and the rule manager executes the
appropriate action. This may include running other POSTQUEL commands and modifying values in NEW
or CURRENT. The second way the rule manager is called is when a relation is opened by the executor.
This will occur in example_8 above when a scan of TOY.EMP is initiated and the rule manager must be
called to materialize specific tuples from another relation. This corresponds to materializing the tuples in a
view one-by-one for any user query on the view. A more efficient scheme will be discussed in the next
subsection.

Moreover, when the executor calls the rule manager to activate a retrieval rule, it knows how many
tuples it wants returned. For example, consider the followingrule:

define rule example_9
on retrieve to EMP.salary where EMP.name = "Joe"
then do instead retrieve (EMRsalary) where EMP.name= "John"

Even if there are multiple John's in the data base, the executor only wants one salary returned. On the
other hand, the executor sometimes wants multiple tuplesreturned as in example_8 above. Hence, the exe
cutor will alert the rule manager which situation exists and coordinate the protocol for a multiple tuple
return.

Execution of an activated rule can occur either before any further tuples are processed from the
user's query plan, or alternatively, information about the activated rule is put in a ride agenda, and rule
execution takes place at the conclusion of the user's query. In the latter case, the rule is run with the same
command identifieras the user's query, and therefore cannot see any changes made by the the user com
mand,apart from the new values of the tuple that triggered the rule. Alternately, it would be possible to run
the rule with a separate command identifierand thereby allow each rule to see all changes of the user com
mand and preceding rules. It would also be reasonable to defer execution of rules until the end of the tran
saction. We are not actively exploring either of these latter options.

When the executor processes a define rule command which will be implemented by the tuple level
implementation, information about the rule must be inserted in the system catalogs and rule locks must be
placed at either the relation level or the tuple level. There are three types of rule locks, namely Event,
Import and Export locks.

Event locks are placed on appropriate fields in at least all tuples of the relation that appears in the
event specification of a rule and satisfy the event qualification.For example consider the rule:

define rule example_10
on retrieve to EMRsalary
where EMRage > 50 and EMP.dept = DEPT.dname and DEPT.floor = 1
then do instead retrieve (salary=10000)

Here,Event locks should be placed on the salary field of all employees who are more than 50 years old and
work in a first floor department Event locks are tagged with the type of event which will activate the
action, in this case a retrieve along with the identifier of the rule. When an appropriate event occurs on a
field marked by an appropriate Event lock, the qualification in the rule is checked and if true, the action is
executed.

Apart from putting Event locks in the right tuples at rule definition time, we must make sure that
these locks remain on the right tuples even when updates change the database state. For instance, in the
case of the rule in example.lO, if a new employee is added, we must check whether it satisfies the rule
qualification, and if yes put the appropriate Event locks in his tuple. Alternately, if a department is
transferred from the second floor to the first one, then we have to add locks to all the employees working
there.

To achieve this effect, we use stub records. These can be either index stub records or relation stub
records. The first ones are inserted at at each end of the scan of any index, and each intervening index
recordbetween these stub records must also be marked with the appropriate lock. If all index records on a
page are locked, then the corresponding rule lock can be escalated to the parent page to save space. Details
of this scheme appear in [KOL089]. Whenever a new tuple is added to the relation, or the value of the
indexed field is updated, a record will be added to the index. By looking at the locks in the index records
adjacent to the one just inserted, the locks that should be put on the new tuple and index record can be
deduced. This mechanism is more fully discussed in [STON88]. The relation stub records are put at the
relationlevel, and every time a new tuple is inserted into a relation, we check all its stub records to deduce
the locks that must be added to the new tuple.

The locks are usually put at each individual tuple. However, in order to save space, if more than a
cutoff number, CUTOFF-1, of locks are set then the lock can be escalated to a whole column of a relation
and placed in the appropriate record of the system catalogs.

Event locks identify the rule that must be awakened when a particular event occurs. However, to
keep the Event locks correct as updates occur, we require two additional kinds of locks. For example, in
example_10 corrective action must be taken if the name of a departmentor its floor changes. To support
such actions, we requireImport and Export locks. In general, lets assume that the rule qualificationhas the
following form:

on event to Rn.y
where

RnJt <op>Rn-i.y and
Rn_i.x <op>Ro-2.y and

R2JC <op> Ri.y and
Ri jc <op> C

where "<op>" is any binary operator, and "C" a constant. If the rule qualificationis more complex, we can
always ignore some of its clauses to construct a qualification of the above form. Of course that means that
we might install more locks than necessary, because more tuples will satisfy the new qualification than the
original one, but we believe that this is a reasonable tradeoff between efficiency and simplicity of imple
mentation.

On every relation Ri (i = 1,2, ...n) we must place an Import lock on the "x" field and an Export lock
on the "y" field of all tuples that satisfy the qualification:

Qi: RiJt <op> Ri-i-y and... and Ri .x = C

and ensure that these locks will be placed on all modified or inserted tuples that satisfy Qi This can be done
in the same ways as for the Event locks by using stub records.

Specifically, when a tuple is inserted in Ri, or we modify the "x" field of a tuple so that qualification
Qi is now satisfied, we must add an Import lock to the "x" field and an Export lock to the "y" field of this
tuple. Moreover, if Y is the value of the "y" fieldof the tuple, then it is necessary to add Import and Export
locks to all the tuples of relation Ri+i which satisfy the qualification: Ri+i.x = Y. This process will be con
tinued iteratively on Ri+2 ...

When a tuple is deleted from Ri which had a lock on it or the "x" field is modified so that the value
no longer satisfies Qi, then it is necessary to delete the Import and Export locks from the tuple. Moreover,
if there exists no other tuple in Ri which satisfies the qualification: Ri.y = Y and Qiq. we must propagate
the lock deletion to all the tuples of Ri+i where Ri+i.x= Y, and iteratively on Ri+2,...

Finally if we modify the "y" field of a locked tuple of Ri, we have to delete locks using the old value
of "y" and then add locks using the new value of "y".

3.2. Query Rewrite Implementation
The tuple level implementation will be extremely efficient when there are a large number of rules,

each of whose events covers a small number of tuples. On the other hand, consider example_8

define rule example_8
on retrieve toT0Y3MP
then do instead retrieve (EMP-OID = EMP.OID, EMRname, EMRage, EMRsalary)
where EMP.dept = "toy"

and an incoming query:

retrieve (TOY_EMP.salary) where TOY_EMP.name = "Sam"

Clearly, utilizing the tuple-level rules system will entail materializing all the tuples in TOY_EMP in order
to find Sam's salary. It would be much more efficient to rewrite the query to:

retrieve (EMP.salary)where EMRname = "Sam" and EMP.dept = "toy"

This section presentsa generalpurposerewritealgorithm for PRS2.

This second implementation is a module between the parser and the query optimizer and processes
an incoming POSTGRES command, Q to which a rule,R applies by converting Q into an alternate form,
Q' prior to optimizationand execution. This implementation can process any PRS2 rule which has a single
command as its action, and we sketch the algorithmthat is performed in this section. First we present the
algorithm for rules which have no event qualification andperform a concurrent example. Then we general
ize the algorithm to rules with event qualifications.

Consider the rule:

define rule example_l 1
on replace to TOY_EMP.salary
then do insteadreplaceEMP (salary = NEW.salary)
where EMRname = CURRENT.name

and the incoming command:

replace TOY_EMP(salary = 1000) where TOY_EMRname = "Joe"

Intuitively, we must remove any references to CURRENT.attribute and NEW.attribute in order to imple
ment rales at a higher level than at individual tuple access. The first two steps of the algorithm remove
theseconstructs. The third step deals with the semantics of POSTQUELqualifications, while the final step
perform semantic simplification if possible. The four stepsto the algorithm now follow.

The first step is to note thatCURRENT in the ruledefinition is really a tuple variable which ranges
over the qualification in the user command. Hence, in R we must replace any reference to
CURRENT.attribute with t-variable.attribute found as follows. If Q is a retrieve command, then t-
variable.attribute is found in the target list. On the otherhand, if Q is a replace or delete, then t-variable is
the tuple variable being updated or deleted. In addition, the entire qualification from the user command

must be added to the action part of the rule.

For the current example CURRENT will range oven

TOY.EMP where TOY_EMP.name = "Joe"

Hence, the rule can be converted in step 1 to:

on replace to TOY_EMP.salary
then do instead replace EMP (salary = NEW.salary)
where EMRname = TOY_EMP.name and TOY_EMP.name = "Joe"

In step 2 of the algorithm we replace any reference to NEW.field-name with the right hand side of
the target-list entry for the appropriate field name in the user's append or replace command.

In our example, we note that NEW.salary can be replaced by the constant "1000" and the rule is
thereby further rewritten to:

on replace to TOY_EMP.salary
then do instead replace EMP (salary= 1000)
where EMP.name = TOY_EMP.name and TOY_EMPjiame = "Joe"

The resulting action part of the rule now contains one or more tuple variables, in the above example
TOY_EMP and EMP. Any update in POSTQUEL is actually a retrieve to isolate the tuples to be added,
changed or deleted followed by lower level processing. Retrieves, of course, only perform a retrieval. As
a result step 3 of the algorithm must be executed for a tuple variable, t-variable if there exists a rule of the
form:

on retrieve to t-variable.atrribute

then do instead retrieve (attribute = expression) where QUAL

In this case, replace all occurrences of t-variable.attribute in R with expression and then add QUAL to the
action part of the rule.

Such a rule exists as example_8, i.e:

define rule example_8
on retrieve to TOY_EMP
then do instead retrieve (EMP-OID = EMP.OID, EMP.name, EMRage, EMRsalary)
where EMP.dept = "toy"

Applying the rule in example_8 to further rewrite R we get:

on replace to TOY__EMRsalary
then do instead replace EMP (salary = 1000) from El in EMP
where EMP.name = El.name and El.name = "Joe" and El.dept = "toy"

In the above example, we were required to rename the tuple variable to avoid a name conflict

The last step of the algorithm is to notice that a semantic simplification can be performed to simplify
the above rule to:

on replace to TOYJEMRsalary
then do instead replace EMP (salary = 1000)
where EMP.name = "Joe" and EMP.dept = "toy"

The resulting rule is now executed, i.e. the action part of the rule is passed to the query optimizer and exe
cutor. First however, the query rewrite module must ensure that no new rules apply to the query which is
about to be run. If so, steps 1-4 must be repeated for the new rule.

Intuitively, the user command has been substituted into the rule to accomplish the rewriting task in
the four steps above. If the tag "instead" is present in R, then PRS will simply do the action part of the
rewritten rule in place of Q. On the other hand, if "instead" is absent then the action will be executed in
addition to Q.

The above algorithm works if R has no event qualification. On the other hand, suppose R contains a
qualification, QUAL. In this case before the above query modification phase we must transform the user
command Q with qualification USER-QUAL into two user commands with the following qualifications:

8

USER-QUAL and not QUAL

USER-QUAL and QUAL

The first command is processed normally with no modifications while the second part has the algorithm
above performed for it Hence, two commands will be actuallybe run.

For example, consider the following rule:

define rule example_12
on retrieve to TOYJEMP where TOY_EMP.age <40
then do instead retrieve (EMP-OID= EMP.OID,EMP.name,EMP.age,EMRsalary)
where EMRdept = "toy"

and the user query

retrieve (TOY_EMP.salary) where TOY_EMP.name = "Joe"

In this case, the following two queries will be run:

retrieve (TOY_EMP.salary) where TOY_EMP.name "Joe" and not TOY_EMP.age <40

retrieve(TOYJEMRsalary) whereTOYJEMRname = "Joe" andTOY_EMP.age <40

The first queryis runnormally while the secondis converted by the algorithm to:

retrieve (EMRsalary) whereEMRname ="Joe" andEMP.dept ="Toy" andEMRage <40

As will be seen in Section 5, this corresponds to a relation that is partly materialized and partlyspecifiedas
a view definition.

Rules for the query rewrite system must be supported by Event locks which are set at the relation
level in the system catalogs. Locks set at the tuple level are not seen until until the command is in execu
tion, and therefore the query rewrite module cannot use them.

4. CACHING AND CHOICE OF IMPLEMENTATION

For each rule, PRS2 must decide whether to use the query rewrite or tuple level implementation.
Intuitively, if the event covers most of a relation, then the rewrite implementation will probably be more
efficient while if only a smallnumberof tupleare involved, then the tuple level system may be preferred.
Specifically, if there is no where clause in the rule event then query rewrite will always be the preferred
option. The single rewritten query will be more efficient than the original users query with one or more
separately evaluated action statements. On the otherhand, if a whereclause is present then query rewrite
will construct two queries as notedin the previous section. If a small number of tuples are covered by the
event where clause, then these two queries will generally be less efficient than the single original query
plus a separately activated action.

Hence, the choice of implementation should be based on the expected number of tuples that are
covered by theevent where clause. If thisnumber, readily available from the query optimizer, is less than a
cutoffvalue, CUTOFF-2, then the tuple level implementation should be chosen; otherwise therewrite sys
tem should be used. Notice that CUTOFF-2 mustbe greater than orequal to CUTOFF-1 noted in the pre
vious section. Further investigation may determine that the two numbersare the same.

However, the above discussion must be modifiedwhen caching of rules is considered, and we now
turn to this subject Forany rule of the form:

on retrieve to object...
then do instead retrieve...

the action statements) can be evaluated in advance of ruleactivation by some useras long as the retrieve
command(s) in the action partof the rule do not contain a function (such as user or time) which cannot be
evaluated before activation. We call this advance activation caching the rule and there are 3 cases of
interest

1) The object noted in the rule event is a relation name and there is no where clause in the event

In this case, the rule defines a complete relation and the query rewrite implementation would normally

process the rule. If the rule is cached, then the query rewrite system should not convert the form of the
query;rather it should simply execute the originaluser's command on the cached data.

2) The object is of the form relation-name.field and there is no where clause in the event

In this case, the rule defines a complete column of a relation. There is no query processing advantage to
caching the complete column as a separate relation because the executor will have to perform a join
between the relation of interest and the cached values to assemble the complete relation.

Rather, caching should be done on a tuple-by-tuple basis. Hence, the value of the action portion of
the rule should be constructed for each tuple in the relation individually. This value can either be stored
directly in the tuple or it can be stored in a convenient separate place. If it is stored in the tuple, then the
same value may be materialized several times for various tuples. On the other hand, if it is stored
separately, then the executor must maintaina pointer from the tuple to the cached value and pay a disk seek
to obtain the value. The tradeoffs between these two implementationshave been studied in [JHIN88], and
we expect to implement both tactics.

If the rule is cached on a tuple-by-tuple basis, then query rewrite must not be performed. Rather,
execution should proceed in the normal fashion,and the executor will simply access the cache to obtain the
value needed. On the other hand, if a particular value is not cached for some reason, the executor must
evaluate the rule for the tuple of interest to get the needed value.

Consequently, if a rule which defines a whole column is cached, then the query rewrite implementa
tion, which would normally process the rule, should do nothing and let the executor fetch values from the
cache assistedby the tuple level implementation if needed values arenot present in the cache.

3) There is a where qualification.

In this case, the action part applies to (perhaps) many tuples, and we must cache the action part for each
tuple to which it applies. This cache can be either in the tuple itself or in some separate place. Hence, it
behaves exactly like case 2) above.

Whenever the action part of the rule is cached, "invalidation" locks must be set on each accessed
field in each tuple. If any other user command updates a field on which there is an invalidation lock, then
the cached value must be invalidated before proceeding; however, invalidation locks are left in place.
Thus, any object thathasbeencachedonce hasits locks in place permanently.

POSTGRES will decide what rules to cache, and expects to use the following algorithm. The gen
eral idea is to keep the "most worthy" objects in the cache, i.e. those which benefit the most from a cached
representation. The benefit computationuses the following parameters for the ith object

S^ the size of the cached object
M^ the cost to materialize the object
A{: the cost to access the object if cached
Di: the cost to invalidate the object if cached
ai: the frequency of accesses to this object
ui: the frequency of updates(invalidations) to this object

In this case, the expected cost per unit time, Q, forobject i is:

_a aiAi +UiDi if i iscached
^ ~ aiMi if i is notcached

Usingan indicator variable Ii to indicate whetheri is cached, the abovecanbe expressed as:

Q = aiMi - [ai(Mi- AD - UiDJIi

Thus, the total expected cost per unit time is minimized when

F=£[ai(Mi-Ai)-UiDi]Ii

is maximized. The constraints on this optimizationproblem are:

10

XSiIi<S

where S is the size of the cache. It can be shownthatthe solution of the above0-1 Knapsack problemcan
be approximated by the following algorithm if Max(Sj) < S:

Define the benefit function fi as

f,_ aj(Mi-Ai)-UiDi
li SI

Intuitively, the benefit function is the benefit per unit size of cachingthe ith object Now sort the objects in
thedescending order of theirbenefitfunctions. Let thej* entry in thisorder be theobjecttcj. Now define:

Bnjm^f^ where IjS^S and ^}s^>S
Then,

fl iffiSBnun
li-]0 otherwise

Thus at any stage we keep only those objects in cache whose benefit function exceeds the current B^,-,,.

The only issues that remain are to choose B^ and to efficiently estimate ai and m. We describe
below a unique approachto each of these problems.

Consider the access pattern for an object i. Let L, be the expected length of the interval Ia defined to
be the time between the firstaccess following an updateto i and the first update to the object following this

access. It can be shown that L, = —. Thus, if we measure the average length of all the Ia intervals seen, we
Ui

havea good statistical estimate for Ui. It can be seen that the average lengthof a similarintervaldetermines

These average length statistics are very cheap to maintain for cached objects because POSTGRES
must invalidatethe cached object on update and then rebuildthe cacheon the firstsubsequent access. Both
actions require writing the cached object Hence, if the statistics arekept with the cached object there is
no extra I/O cost to maintain them.

Foreach object whose currentbenefit exceeds B^ we maintain these statistics. Periodically, a cach
ing demon recomputes the current benefitof all objects whose statistics arebeing maintained and deletes
thoseobjects from the cache(andstopsmaintaining theirstatistics) whosebenefitis below the current Bmin-

In betweenrunsof the daemon, a cached objectis marked "invalid" on each update. On an access,an
object is materialized and cached if

1) Its statisticsare being maintainedand it is currently"invalid", or

2) Its statistics are not being maintained, but its expected benefit exceeds B^. In this case, we also
startkeeping its statistics. The expected benefit of an object i is defined to be:

7_a~(Mi-Ai)-uDi
fi 51

where a is the average frequency of access to theobjects in thedatabase, andu is theaverage update
frequency in the database. Ideally we would like to keep only those objects whose actual benefit
exceedsB^. Since the pastaccess patterns of theseobjects are not beingkept, the best we cando is
to make the decision on the basis of expected benefit

When the cachedemonruns, it checks for the space utilization. If the cachespaceis not entirelyutil
ized, it increases the valueof Bm^. It thus deletes fewer objects, andalsopermits the caching of morenew
objects in between runs. On the other hand, if the cache space is used up in between runs, then the next
time the daemon runs, it will use a lower valueof B^. This feedback mechanism ensures that B^ will
converge to the correct value, provided the database access patterns are fairly stable. Furthermore, if
access patternschange dramatically, this feedback mechanism will ensure a reconvergence to a new Bmi,.

11

5. SUPPORT FOR VIEWS

5.1. Normal Views

In POSTGRES named procedures can be defined to the system as follows:

define [updated] procedure proc-name (type-1,..., type-n) as postquel-commands

If the procedure has no parameters, then it is a view definition, and a syntactic alternative to the above
definition would be:

define [updated] view view-name as postquel-commands

For example, consider the following view definition:

define view SHOE_EMP as
retrieve (EMP.all) where EMP.dept= "shoe"

This definition would be turned automatically by POSTGRES into the following rule:

define rule SHOEJEMPjret
on retrieve to SHOE_EMP
then instead do retrieve (EMP-OID = EMP.OID, EMP.all) where EMP.dept = "shoe"

This rule will be processed by the query rewrite implementation and will perform the correct query
modification to any user query that appears.

On the other hand, consider the following view definition:

define updated view TOYJEMP as
retrieve (EMPjiame, EMP.age, EMRsalary) where EMRdept = "toy"

In this case, the user wishes standard view update semantics to be applied to user updates to TOYJEMP.
Hence the system would automatically construct the retrieve rule in example_8 in addition to the following
update rules:

define rule TOYJEMP_d
on delete to TOY_EMP
then do instead delete EMP where EMP.OID = CURRENT.EMP-OID

define rule TOY_EMP_a
on append to TOY_EMP
then do instead append to EMP (name = NEW.name,

age = NEW.age,
salary = NEW.salary,
dept="toy")

define rule TOYJEMPjr
on replace to TOY_EMP
then do instead replace EMP (name = NEW.name,age = NEW.age, salary = NEW.salary)

where EMP.OID = CURRENT.EMP-OID

A view will automatically have an OID field for each tuple variable in its definition. When multiple
identifiers are present the name of each identifier is tvar-OID, where tvar is the tuple variable involved.
This identifier keeps the OID of a tuple in the relation tvar which was used to construct this particular tuple
in the view.

If a view is not specified as updated, then it is the responsibilityof the user to specify his own update
rules as discussed in the next subsection.

5.2. More General Views

Consider a rule defining a conventional join view, e.g:

define rule example_13
on retrieve to E-D
then do instead

12

retrieve (EMP-OID = EMP.OID, EMRname, EMP.salary, EMP.dept,
DEPT-OID = DEPT.OID, DEPT^oor)
where EMP.dept = DEPT.dname

In current commercial systems all deletesand appends fail for the E-D view and some updates fail. How
ever, in PRS2 we can specify the following collection of update rules:

define rule E-D-1

on replace to E-D.name, E-D.salary
then do instead replace EMP (name - NEW.name, salary= NEW.salary)
where EMP.OID = CURRENTJEMP-OID

define rule E-D-2

on replace to E-D.floor
then do instead replace DEPT (floor = NEW.floor)
where DEPT.OID = CURRENT.DEPT-OID

define rule E-D-3

on replace to E-D.dept
then do instead

replace EMP (dept = NEW.dept)
where EMP.OID = CURRENT.EMP-OID

append to DEPT (dname = NEW.dept floor= CURRENTJoor)
where NEW.dept not-in {DEPT.dname}

This will map all updates to underlying base relations. Moreover, when an employee in the E-D view
changes departments, then his new department is created if it doesn't exist All other reasonable rules for
updating EMP and DEPT when updates to E-D occur appearexpressible as PRS2 rules. Hence, a sophisti
cated user can specify any particular mapping rules for updates that he wishes to. In this way, all views
can be made undatable, a big advance over current implementations.

5.3. Materialized, Partial and Composite Views
In this section we discuss three other more generalkinds of views that are possible with PRS2. First,

consider a materialized view, e.g. one whose tuples are maintained automatically by the system. Such
views are discussed in [BLAK86, ROUS89]. In PRS2, all views may be materialized by caching the action
partof the rule that defines the view. This will be done automatically by the caching demon if the view is
"worthy" as noted earlier. The only inefficiency in PRS2 is that materialized views are invalidated if an
update to an underlying base relation occurs. In the future we propose to study how to incorporate algo
rithms to directly update materialized views.

Next consider a partial view, i.e a relation that is partly instantiated with tuples and partly expressed
by a view. Hence, a relationis considered to be the union of a storedrelation and a view. This is naturally
supported by the following retrieve rule:

define rule example_14
on retrieve to PARTIAL

then do retrieve (EMP-OID= EMP.OID,EMP.all) where EMP.dept= "toy"

Here, notice that the keyword "instead" has been omitted; consequently a retrieve to the stored relation
PARTIAL will occur along with query rewrite to access the employees in the toy department. It is easy to
specify updating rules for partial views, and example_15 expresses the appropriate insert rale:

define rule example_15
on append to PARTIAL
then do instead

append to EMP (NEW.all) where NEW.dept = "toy"
append to PARTIAL (NEW.all) where NEW.dept !="toy"

Lastly, consider a view which is a composite of two relations, e.g:

13

define view TOY_EMP as
retrieve (EMRname, EMP.salary, EMP.age) where EMP.dept= "toy"
retrieve (NEWEMPjiame, NEWEMP.status, NEMEMPage)
where NEWEMP.dept = "toy"

This can easily be expressed as:

define rule example_16
on retrieve to TOY_EMP
then do instead

retrieve (EMP-OID = EMP.OID, EMP.name, EMRsalary, EMRage) where EMP.dept = "toy"
retrieve (NEWEMP-OID = NEWEMP.OID, NEWEMP.name, NEWEMP.status, NEMEMP^ge)
where NEWEMP.dept = "toy"

Clearlyvariouscomposite views can be defined, with automatic or userdefined updatingrules.

6. PROCEDURAL FIELDS

There are four ways that procedures exist in the POSTGRES system. Procedures without parameters
are effectively view definitions and were discussed in the previous section. In this section we discuss pro
cedures with parameters,general procedural fields and special procedural fields.

6.1. Procedures with Parameters

Procedures can be defined which contain parameters, e.g:

define procedure TP1 (char16, int4) as
replace ACCOUNT (balance= ACCOUNT.balance - $2) where ACCOUNT.name = $1

This procedure is not a view definition and is simply registered in the system catalogs. In this case, the
only functionality supported by POSTGRES is executing the procedure,e.g:

execute TP1 ("Sam", 100)

6.2. General Procedural Fields

General procedures have been proposed for POSTGRES as a powerful modelling construct In this
section we demonstrate the general procedures are efficiently simulated by PRS2. Consider the standard
example from [STON87]:

EMP (name, hobbies)

Each tuple of EMP contains a procedure in the hobbies field. Since there is a command to define pro
cedures, each row of EMP has a value which is a registered procedure of the form:

proc-name(param-list)

where proc-name is a previously registered procedure. In this case an insert would look like:

append to EMP (name= "Sam", hobbies = foobar(param-l,..., param-n))

The parameter list will be present only if the registeredprocedure has parameters.

This data type can be effectively supported by defining one rule per procedural data element of the
form:

on retrieve to rel-name.column-name where rel-name.OID = value

then do instead execute proc-name(param-list)

Hence, the insertion of Sam can be done as follows:

append to EMP (name = "Sam")

define rule example_17
on retrieve to EMP.hobbies where EMP.OID = value

then do instead execute foobar(param-l,..., param-n)

If the action part of the rule is cached, then this will correspond to the caching of procedures discussed in
[STON87].

14

Moreover, POSTGRES has syntax to update the database througha procedural field. Consider for
example the following update:

replace EMP.hobbies (position = "catcher") where EMRname = "Sam"

There are two situationsof interest First if the procedure corresponding the Sam's hobbies has no param
eters, then it could have been specified as a view definition with automatic update. In this case, the
automatic updaterules can be applied to map the above update. Otherwise, the user is free to add his own
updating rules for Sam's hobby field,e.g:

define rule example.18
on replace to EMPJiobbies where EMP.name = "Sam"
then do instead....

6.3. Special Procedures
A relation in POSTGRES can have a field of type special procedure. Consider the DEPT relation

from Section 1:

create DEPT (dname = charl6, floor= i4, composition = EMPS)

Here, composition is intended to have a value found by executing the procedure EMPS. This procedure
would be defined as:

define procedure EMPS (charl6) as
retrieve (EMP-OID = EMP.OID, EMRall) where EMP.dept= $.dname

Like TPl, this procedure contains a parameter, $.dname,and therefore is not a view definition. Like TPl it
is merely registered at the time it is defined.

At the time the DEPT relation is created, the following rule can be defined:

on retrieve to DEPT.composition
then do instead retrieve (EMP-OID = EMP.OID, EMRall)
where EMP.dept = CURRENT.dname

This rule defines the column, DEPT.composition, and query rewritingrales will map any query containing
a reference to composition correctly. Moreover, cachingcan be applied to this rule and the tuples for each
given departmentname will be optionally cachedby the algorithms in Section 4.

7. CONCLUSIONS

In this paper we have demonstrated a rule system that will take appropriate actions when specific
events become true. This rules system can have CURRENT.attributeand NEW.attribute in the action part,
and its semanticsare naturally defined when individual tuplesareretrieved or modified. We described the
corresponding tuple level implementation which enforces these semantics. However, we also presentedan
algorithm through which we can remove CURRENT and NEW from a rule and perform query rewrite to
enforcethe rule,and described this secondimplementation of the rulessystem.

Moreover, any rule whose event and action parts are retrievescan be evaluated before it is activated
by a user. We described how this caching takes place and what algorithm should be used to manage the
cache.

Then, we demonstrated that support for relational views is merelyanapplication ofour queryrewrite
implementation on a rale which specifies the view definition. Moreover, non standard update semantics
canbe specifiedas additional updating rales, therebysubstantially enchancing the power of views. Various
more general views can also be readily supported.

We then showed that POSTGRES procedures are merely an additionalapplication of the rules sys
tem. In addition, caching of rules naturallysupportsmaterialized views and cached procedures, thereby no
extramechanisms arerequiredto obtain this functionality.

In the future we are going to explore additional applications of PRS2. These include the possibility
of writing a physical data base design tool and the POSTGRES version system in PRS2. Moreover, we
plan to search foralgorithms which could convertan early implementation of a rule, e.g:

on replace...

15

then do replace...

to an equivalent late rule, e.g:

on retrieve...

then do instead retrieve...

This wouldallow PRS2 to cache the action part of the rule and decideautomatically between early and late
evaluation.

Lastly, we will continue to support our earlier always and never syntax, because it can be easily
compiled into multiplePRS2 commands. We also plan to exploreother higher level interfaces, for which
rule compilers can be constructed.

[BLAK86]

[CODD74]

PADA86]

[DELC88]

[ESWA76]

[HANS89]

[JHIN88]

[KOL089]

[MCCA89]

[ROUS87]

[ROWE87]

[STON75]

[STON82]

[STON86]

[STON87]

REFERENCES

Blakeley, J. et al., "Efficiently Updating Materialized Views," Proc. 1986
ACM-SIGMOD Conference on Management of Data, Washington, D.C., June
1986.

Codd, E., "Recent Investigations in Relational Data Base Systems," IBM
Research, Technical Report RJ1385, San Jose, Ca., April 1974.

Dadam, P et al., "A DBMS Prototype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies," Proc. 1986 ACM-SIGMOD
Conference on Management of Data, Washington, D.C., June 1986.

Delcambre, L. and Etheredge, J., "The Relational Production Language," Proc.
2nd International Conference on Expert Database Systems, Washington, D.C.,
February 1988.

Eswaren, K., "Specification, Implementation and Interactions of a Rule Subsys
tem in an Integrated Database System," IBM Research, San Jose, Ca., Research
Report RJ1820, August 1976.

Hanson, E., "An Initial Report on the Design of Ariel, " ACM SIGMOD Record,
Sept 1989.

Jhingran, A., "A Performance Study of Query Optimization Algorithms on a Data
Base System Supporting Procedural Objects," Proc. 1988 VLDB Conference, Los
Angeles, Ca., Sept 1988.

Kolovson, C. and Stonebraker, M., "Segmented Search Trees and their Applica
tion to Data Bases," (in preparation).

McCarthy, D. and Dayal, U., "The Architecture of an Active Data Base Manage
ment System," Proc 1989 ACM-SIGMOD Conference on Management of Data,
Portland, Ore., June 1989.

Rousoupoulis, N., "The Incremental Access Method of View Cache: Concepts,
Algorithms, and Cost Analysis," Computer Science Technical Report CS-TR-
2193, University of Maryland, February 1989.

Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc. 1987
VLDB Conference, Brighton, England, Sept 1987.

Stonebraker, M., "Implementation of Integrity Constraints and Views by Query
Modification," Proc. 1975 ACM-SIGMOD Conference, San Jose, Ca., May 1975.

Stonebraker, M. et al., "A Rules System for a Relational Data Base Management
System," Proc. 2nd International Conference on Databases," Jerusalem, Israel,
June 1982 (available from Academic press).

Stonebraker, M. and Rowe, L., "The Design of POSTGRES," Proc. 1986 ACM-
SIGMOD Conference, Washington, D.C., June 1986.

Stonebraker, M., et al., "Extending a Data Base System With Procedures," ACM
TODS, September, 1987.

16

[STON88] Stonebraker, M. et al., "The POSTGRES Rules System," IEEE Transactions on
Software Engineering, July 1988.

[WID089] Widom, J. and Finkelstein, S., " A Syntax and Semantics for Set-oriented Produc
tion Rules in Relational Data Bases, IBM Research, San Jose, Ca., June 1989.

17

