
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TRANSACTION SUPPORT IN READ OPTIMIZED

AND WRITE OPTIMIZED FILE SYSTEMS

by

Margo Seltzer and Michael Stonebraker

Memorandum No. UCB/ERL M90/37

27 April 1990

TRANSACTION SUPPORT IN READ OPTIMIZED

AND WRITE OPTIMIZED FILE SYSTEMS

by

Margo Seltzer and Michael Stonebraker

Memorandum No. UCB/ERL M90/37

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TRANSACTION SUPPORT IN READ OPTIMIZED

AND WRITE OPTIMIZED FILE SYSTEMS

by

Margo Seltzer and Michael Stonebraker

Memorandum No. UCB/ERL M90/37

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Transaction Support in Read Optimized and Write Optimized File Systemst

Margo Seltzer
Michael Stonebraker

Computer ScienceDivision
DepartmentofElectricalEngineering and ComputerScience

University ofCalifornia
Berkeley, CA 94720

Abstract

This paper provides a comparative analysis of five implementations of transaction sup
port The first of the methodsis the traditional approachof implementing transactionpro
cessing within a data manager on top of a read optimizedfile system. The second also
assumes a traditional file system but embeds transaction support inside the file system.
The third modelconsidersa traditional data manager on topof a write optimizedfilesys
tem. The last two models both embed transaction support inside a write optimized file
system, each using a different logging mechanism.

Our resultsshow that in a transaction processing environment, a writeoptimizedfile sys
tem often yields better performance than one optimized for reads. In addition, we show
that file system embedded transaction managers can perform as well as data managers
when transactionthroughputis limitedby I/O bandwidth. Finally,even when the CPU is
the critical resource, the difference in performance between a data manager and an
embedded system is much smaller than previous work has shown.

1. Introduction

During the past decadeseveralattempts havebeenmadeto provide transaction supportas part of the

operating system. Embedded support provides concurrency control and crash recovery to all applications

rather than just to theclients of the data manager, and there is a single paradigm forapplication recovery

and a single implementation of this paradigm. Such systems are described in [WALK83], [MUEL83],

[PU86], and [MTTC82]. All of these systems assume a traditional, or read optimized, file system and have

met with much skepticism. The shortcomings inherent to these systems are discussed in [STON81],

[TRAI82], and [STON85].

Camelot's distributed transaction processing system [SPE88A] provides a set of Mach processes

which provide support for nested transaction management, locking, recoverable storage allocation, and sys

tem configuration. Atomic transactions may be implemented by means of the recoverable storage, but

requests to read and write such storage are not locked automatically. Thus a data server must make

t This research was sponsored by the National ScienceFoundation undercontract MIP S71S23S.

requests of the disk manager to lock these regions[SFE88B]. In this way, we seethat transaction support

under Camelot may be viewedas a hybrid between a data manager andan embedded operating system

transaction manager. It is similar to a data manager in thata userprocess (data server) is required to coor

dinate locking. On the other hand, it is also similarto an embedded transaction manager in that generic

locking and transaction capabilities are provided

Kumar, [KUM87], shows that an operating system embedded transaction manager provides substan

tially worse performance than the traditional data manager. He cites the lack of semantic information, the

system call locking overhead, and the size of the log as primary causes for a 30% difference in perfor

mance between the two systems. In [KUM89], by introducing hardware assisted locking and better locking

protocols, he finds that the difference in performance may be reduced to 7-10%.

By changing Kumar's simulation model in two fundamental ways, the locking granularity and the

buffer management, we find that even without special hardware support, embedded transaction managers

can equal the performance of data manager transaction support Specifically, in disk bound configurations,

performance is dominated by the cost of reading random data blocks. Since both the data manager and

embedded systems perform the same number of data reads, performance is virtually the same in both

models. In CPU bound configurations, the performance difference between operating system embedded

support and a data manager may be expressed simply as a function of the system call overhead and in our

simulations is less than 20%, even without the locking techniques found in [KUMAR89]. Under high con

tention, using subpage locking or variable page sizes, the embedded models can come within 5% of the

data manager models. By using special locking techniques, the embedded systems can actually provide

better performance than the data manager. Finally, under either model (data manager or embedded), a

write optimized file system outperforms a read optimized one.

In the next section, our simulation model is presented. This is followed by a description of a write

optimized file system and the other models being examined. Then the simulation results of our study are

presented.

-2

2. The Simulation Model

We useda stochastically generated workload tocompare the different models of transaction support

The database was definedto consistof a singledata filewitha variable numberof indicesstoredas B-trees.

Its size and fill factor (the fraction of each page containing valid data) may be varied through simulation

parameters.

A transaction is defined to be a sequence of retrieve, update, insert and delete operations. Each

retrieve and update operation affects a single data page and a search path through a single index. A search

path consists of an access to one page in each level of the B-tree, culminating with a leaf page. An insert

or delete operation affects a single data page and a search path through each index, since it is presumed that

a key must be inserted/deleted into/out of each index.

At any time during a simulation there are at most M active transactions where M defines the degree

of multiprogramming. At initialization, M transactions are created, and each time a transaction commits or

aborts, a new transaction is created. A number of operations, 0, uniformly distributed over (/ - .25/, / +

251)* where / is the average transaction length, is generated. A second parameter, F determines what per

cent of the O operations modify the database (as opposed to performing only reads). Finally, a third

parameter / identifies what percentage of the modify operations are inserts or deletes (as opposed to

updates). Thus, a transaction may be defined as:

0 total operations composed of:

(l-F)O retrieves
fFO inserts/deletes
(l-f)FO updates

Eachoperation of a transaction is processed in thefollowing manner. A datapageis selected froma

distribution described by twoparameters d and a. Theparameter d indicates whatpercentof the database

getsa percent of theaccesses. For example, d=20 anda=80means that80%of theaccesses go to 20%of

the database. Once a data page is selected, it is locked, read from disk or the buffer pool, and left locked

until transaction committime. To simulate index traversal, using the samedistribution as was used for the

data file, one page is selected from each level of the B-tree. These pages are locked, read, and unlocked

eitherat completion of the operation (for data manager models) or at transaction committime (for embed-

ded models). As soonas one operation completes, the nextoperation begins. When all the operations have

completed,a synchronous write forces the log to disk.

Processor speed may be varied by simulation parameters, but the number of instructions required to

perform each operation is fixed. These numbers are summarized in table 1. The instruction count for lock

ing includes both the lock and unlock actions. In the embedded models, we assume that a system call is

required to obtain a lock, so the actual cost of a lock is a function of the number of instructions for both a

system call and a lock (we assume that all unlocking may be performed by a single system call at transac

tion commit time). Periodically, the deadlock detector runs aborting transactions which have exceeded the

parametrized timeout interval Another parameterdefines how frequently a checkpoint is taken. At check

point time, all dirty pages are forced to disk and creation of new transactions is inhibited until all active

transactions have committed.

The total database size is derived from the dbsize, pagesize, and fillfactor parameters respectively.

Dbsize defines the size (in megabytes) of the data file. Using the fillfactor parameter, which defines how

much data is on each page, we determine the number of records in the database. Then, using the number of

records, the fillfactor, the pagesize, and the size of a key (16 bytes), we determine how many index pages

are required, using the formulas below.

r_R * K QnH r _LM*KL=p * p and Li= p*p
where

L is the number of leaf pages
Li is the number of B-tree pages at level i
R is the number of records in the data file

K is the key size
F is the fillfactor

P is the pagesize

operation number of instructions

lock 1000

syscall 500

retrieve 7000

update 12000

insert/delete 18000

Table 1: CPU cost of each operation.

Once the size of each index has been calculated by summing the Lt above, we multiply by the number of

indices and add the data file size to yield the total database size. Finally, we define the buffer pool size to

be 10% of this total database size. The buffer pool uses an LRU replacement algorithm and flushes dirty

blocks to disk asynchronously. In both [KUMAR87] and [KUMAR89], the buffer pool is sized in terms of

a number of pages. This penalizes simulations with a smaller page size by providing them less main

memory. By keeping the amount of main memory constant, we find that reducing the page size can

improveperformance by more than 25% in high contentionenvironments. Table 2 summarizes the simula

tion parameters available and their default values.

3. Transaction Processing Models

This analysis considers five models of transaction processing. The first is a traditional data manager

on a read optimized file system. The second puts the same data manager on a write optimized file system.

The third supports embedded transactions in a read optimized file system. The fourth embeds transactions

Statistical Parameters

parameter description default value

runlen

nruns

Number of transactions to constitute a run
Number of runs to generate a single data point

10000

5

Workload Characteristics

parameter description default value

1

F

f

d/a
I

dbsize

bufsize

fillfactor

Average operations per transaction
Percentage of operations which are updates
Percentage of updates which are insert/delete
Distribution ofrequests to the database
Number of indices

Size of the data file (in Mbytes)
Size of the buffer pool
Fraction of each page containing valid data

16

.25

.50

50/50 (uniform)
5

1024 (1G)
10% of data base

.70

System Parameters

parameter description default value

cpu_speed
disks

users

pagesize
spagesize
deadlock

chkpt

Speed of processor (in MIPS)
Number of disks
Degree of multiprogramming
Size (in bytes) ofa page
Size of a subpage (locking granularity)
Interval between runs of deadlock detector
Checkpoint interval

10

10

20

4096
128 bytes
5sec

5min

Table 2: Simulation Parameters

in a write optimized file system, and the last also embeds transactions in a write optimized file system, but

takes advantage of the file system's('no-overwrite" policy to reduce the size of the log.

3.1. The Data Manager Model

In the data manager model we assume detailed knowledge of the structure of the database. For exam

ple, logging may be performed at a logical, rather than a physical level, allowing the logging of only the

record being modified instead of an entire page. In this model, all records are assumed to be self contained,

that is, their index values are stored in the records themselves, and index changes need not be logged

explicitly. Using special concurrency control protocols facilitating high degrees of parallelism

[BAYER77], the data manager needs only hold index locks during the physical manipulation of the index

page (on the order of a few thousand instructions), providing superior performance in environments with

high lock contention.

The sequence of events for accessing a random record in the database is as follows. First, a keyed

lookup is performed. This requires traversing the non-leaf pages of a B-tree by obtaining a read lock on

each page, finding the next page to access, and releasing the read lock. When a leaf page is reached, the

data page is locked and accessed. In the case of an update (an update is defined to change both the record

and one index) a write-lock is obtained on the leaf page of the B-tree. The index page and data page are

modified and the update is logged. The change is logged by recording both a before and after image of the

record, and the index locks are released.

A transaction may be decomposed into operationswhose cost may be expressed as a combination of

logging, I/O, and locking costs. In the datamanagermodels, the logging cost is proportional to the record

size. On the readoptimized file system, the I/O costs areproportional to the random read time of the disks.

Althoughthe file system is readoptimized, thereis no benefitderived from this optimization, since the files

are not accessed sequentially, On a write optimized file system, the readsare also performed randomly, but

the writes are all performed sequentially (section 3.3 provides a detailed description of how this is

achieved). Finally, as it is assumed thatthe data manager maintains itsown lock manager, the locking cost

is stricdya function of the numberof locks andindependent ofany system calloverhead.

-6

3-2. The Operating System Model

As the operating system knows nothing about the internal structure of files, it cannot distinguish

between data and index updates. In order to guarantee serializability it must perform strict two phase lock

ing [GRAY76] on all accessed and modified subpages. Assuming that there are S subpages per page, in

traversing the B-tree, log2$ subpages, selected uniformly from the filled subpages within the page, are

selected for locking to model the search for a key within the page.1 To modify a leaf page, one of the

selected subpages is write-locked, and all subpages after it on the page are also write-locked, to allow the

shuffling of keys within the page. This requires the operating system to obtain multiple write locks (on

average half the number of filled subpages per page) for each B-tree page modified as compared to the data

manager's one lock. Furthermore, since we are assuming that all the transaction support is provided in

the operating system, each lock request requires a system call. Although we add the cost of a system call to

each lock request in all the embedded models, this is an artificially high penalty since the data manager will

also incur a system call each time a page, which is not resident in the buffer pool, is requested.

The final difference between the data manager and the operating system embedded model is the

amount of logging information. Since the operating system may not perform logical logging, we resort to

physical logging and save both before and after images of each subpage that is modified. In the case of

inserts and deletes, this number may become quite large since multiple subpages per index page are

modified.

We decompose the transaction costs into logging, I/O, and locking. This time, the logging cost is

proportional to the size of a subpage, the I/O costs are proportional to the random disk access time, and the

locking cost is a function of the number of locks, the number of subpages per page, and the system call

overhead.

3.3. The Log Structured File System Model

A log-structured file system (LPS) uses the disk system as a continuously wrapping log. Rather than

modifying files in place, newly writtendata pages and their describing meta data are written sequentiallyto

the disk log. A large number of dirty data pages, their describing meta-data, and a summary block,

1The log2assumes abinary search isused tolocate thecorrect subpage.

-7-

idenafying the file and logical block number of each dirty page, are written sequentially in a single unit

referred to as a segment. Figure 1 shows the allocation of three files in a log-structured file system.

Traditional logs usually provide only sequential access for reading, but a log-structured file system

builds its meta data into the log itself, so that random retrieval is also possible. Its structure is very similar

to a UNIX file system [MCKU84]. In a UNIX file system, the location of the blocks of a file are stored in

index structures which reside on fixed places on disk. These index structures are the meta data written to

the log in LFS. In an LFS, the location of this meta data is not fixed. All the meta data is stored in a single

file, called the map file. There is one special index structure, called the super block, which describes where

the blocks of the map file reside in the LFS. The super block may be cached in main memory and

appended to the log at checkpoint time.

filel file2

(a)

(b)

Free Block Data Block Meta Data Super Block

Figure 1: A Log Structured File System. In figure (a), two files have been written, filel and file2. Each
has an index structure in the meta data block which is allocated after it on disk. These meta data blocks are
referenced via the superblock which is also appended to the log. In figure (b), the middle block of file2 has
been modified. A new version of it is added to the log, as well as a new version of its meta data. Then
file3 is created, causing its blocks and meta data to be appended to the log. Next, filel has two more blocks
appended to it. These two blocks and a new version of filel's meta data are appended to the log. Finally,
another copy of the super block is appended to the log.

-8-

This structure makes all writes sequential while retaining the ability to perform random retrieval. To

locate a block of a file, the super block (which is cached in main memory) is accessed to find the location

of the file's index structure. This index structure is then read to determine where the blocks of that file

reside. Each time a file is written, both the newly written data and a new version of its index structure are

written, and the superblock is updated to reflect the new location of the file's index structure.

Recovering a log-structured file system is similar to standard database recovery [HAER83]. The file

system is read backwards until the last copy of the superblock is found. Then, the summary block for each

segment is read, and the super block is updated to reflect the new blocks written since the last checkpoint

At some point, the disk system fills, requiring the log to wrap. At this time some blocks in the log

will be "dead", that is, they will have been superceded by new versions of the block or the file will have

been deleted. A cleaning process reclaims regions of contiguous space from the log by reading the tail of

the log, discarding "dead" blocks, appending "live" blocks back into the log, and updating the meta-data

appropriately. Space is continually reclaimed from the tail of the log and allocated to the head of the log

[ROSE89]. The cost of log wrapping has not been taken into account in our simulations.

There are two characteristics of a log-structured file system that make it desirable for transaction pro

cessing. First, a large number of dirty pages are written to a single, large (several megabytes), contiguous

region of the disk. Since only a single seek is performed to write out a large number of dirty blocks, the

"per write" overhead is much closer to that of a sequential disk access rather than that of a random disk

access. Secondly, since data is written using a "no overwrite" policy, before images of updated pages

exist elsewhere in the file system.

In the LOG model, we take advantage of the sequential nature of writes, but not the "no-overwrite"

policy of the log-structured file system. The logging and locking information is identical to that for the

operatingsystem model. However, the I/O component of the transaction cost is proportional to the random

disk access time for reading, and the sequential disk access time for writing.

In LOG2, we take advantage of both the sequential nature of writes and the "no-overwrite" policy

of the log-structured file system. Instead of logging before and after images of the subpages being

modified, all dirty pages are forced to disk at commit time. However, since a single page may contain sub-

pages modified by more than one transaction, subpages for uncommitted transaction may get written to

-9-

disk. In order to guarantee the ability to abort any uncommitted transactions, we require a log which

records the location of the previous and current versions of all dirty subpages. This logging information

must be forced to disk before the dirty pages themselves. The difference between the LOG and LOG2

models is that in LOG2, log records are very small (16 bytes) and the total logging overhead is proportional

only to the number of subpages modified rather than to the size of the subpages.

3.4. Model Summary

In the discussion that follows, DM refers to the data manager on a read optimized file system, DML

refers to the data manager on a log-structured file system, OS refers to transaction support embedded in a

read optimized file system, LOG refers to embedded support in a log-structured file system using a full, and

LOG2 refers to embedded support in a log-structured file system, using the file system in place of a tradi

tional log. For each component of transaction cost, logging, I/O, and locking, table 3 indicates the parame

ters on which this component of the cost is dependent for each model.

logging I/O (read) I/O (write) locking

DM number of updates
record size

random disk time random disk time number of locks

DML number of updates
record size

random disk time sequential disk time number of locks

system call overhead
OS number of updates

subpage size
random disk time random disk time number of locks

system call overhead
subpages per page

LOG number of updates
subpage size

random disk time sequential disk time number of locks

system call overhead
subpages per page

LOG2 number of updates random disk time sequential disk time number of locks

system call overhead
subpages per page

Table 3: A Comparison of Five Transaction Processing Models.

4. Simulation Results

The three potential performance bottlenecks are the CPU, the disk system, and lock contention. The

purpose of the simulation was to isolate each of these resources and stress all five systems in each dimen

sion, enabling a characterization of the performance of each model across a wide range of configurations.

The simulation configuration consisted of a 1G data file (implying a total database size, with indices, of

-10-

2.2G) and 10 disks. By varying the CPU speed and the locality of accesses, CPU bound, disk bound, and

lock contentionbound configurationswere analyzed.

4.1. CPU and Disk Boundedness

With a large data file (1G), 10 disks, and uniform distribution of accesses, a CPU bound environ

ment was created by setting theCPUspeed to 1 MIPS2. Since theaccess pattern is uniform, there is little

contention on either indices or the data file (the probability of conflict between any two transactions is

approximately 5%), and there is no need to set the locking granularity (or subpage size) any smaller than

the page size for the embedded models. This differs from [KUMAR87] in that he always assumes that the

embedded models must perform subpage locking, and subpages are 128 bytes. Figure 2 shows the results

of varying the degree of multiprogramming until the CPU becomes saturated. In this configuration the two

data manager models provide better performance than any of the embedded systems. Whereas Kumar

foundthis difference to be 30% or more in a CPU boundconfiguration, we see that at a degree of multipror

gramming of 20, the difference between the DM and the OS results is approximately 17% (Dp~ os),

and the difference between DML and either LOG or LOG2 is 20% (?DM^~PwG \ This difference is

explained by the fact that we require only 1 lock per level of the B-tree while Kumar required 4. There

fore, we find that the difference in performance is due only to the system calls required by the file system

based models.

This difference in performance may be expressedby the function:

LN+P
'non-dn ~~

where

N(L+S) + P Pdm OR Pdm.- 1+TJv+F non-dn

N is the number of locks required,
L is the CPU overhead for obtainingor releasinga lock,
P is the CPU overhead per transactionnot associatedwith locking, and
S is the cost of a system call.

For the workload simulated, Pdm is \2PWH-dm or (l+AS)PMn-dm. For a less index intensive environment,

perhapsa database with a single index instead of five, the ratio drops to (l+37S)PMH-dm. In either case, it

2This processor speed is excessively slow since weare ignoring a great deal of software oveihead such as query processing,
communication,and operatingsystem overhead. The goal is to focus on those costs which differ in the models ratherthan those which
are the same.

-11-

Throughput (in txns/second) vs Degree of
Multiprogramming

Si

4«

T
h3

o
u

g
h2
p
u

t

1«

+DML

1LOG2
*LOG

0 5 10 15 20

Degree Multiprogramming

Figure 2: CPU Bounding under Low Con
tention. The degree of multiprogramming is
varied in a low contention configuration. Due
to the system call required per lock in the OS,
LOG, and LOG2 models, the data managers
provide the best performance.

Throughput (in txns/second) vs Cost of
System Calls

0.00 0.25 0.50 0.75

4dml

1LOG2
♦-..^•LOG

tos

1.25 130

Cost of a System Call (in ms)

Figure 3: Effect of the Cost of System
Calls. As system calls become more costly
(in terms of CPU cycles), the difference in
performance between the data manager and
the embedded models widens.

is apparent that the cost of a system call will have a tremendous impact on the performance. Figure 3

graphically depicts this difference in performance as the cost of a system call is varied. In the preceding

simulation a .5 ms overhead for system calls was used, yielding a 17-20% difference in performance

between the data manager and embedded models. At .25 ms (250 instructions), the difference between the

data manager and embedded models drops to 12%.

Although this configuration is CPU bound, the write optimized file system based models provide

better performance than the read optimized file system based models. Comparing the DML performance

with the DM performance, we see a gap of nearly 12% (4.13 tps vs. 3.64 tps), and comparing LOG2 with

OS, we see a gap of 10% (3.29 tps vs. 2.96 tps). In each of these situations, the CPU cost for both

configurations is the same. Since the configuration is not disk bound, the better performance of the log-

structured file system is unexpected. Upon closer inspection, it becomes clear that although the disks are

under utilized, the read optimized file systems arerunning at approximately 50% disk utilizationwhile the

-12-

write optimized models are running at approximately 33% utilization. To understand how this effects

throughput, we need to examine what happens as dirty blocks are flushed to disk. In the read optimized

models, flushing a dirty block keeps the disk busy for the time of a random access (approximately 28.3

ms)3. When dirty data blocks are written, an incoming read request may be delayed for up to 28.3 ms.

Even if these writes are attempted during idle disk cycles, subsequent read requests may still queue up

behind the writes and be delayed. On the other hand, when the log based models flush their dirty blocks,

they write a large number of blocks at sequential speed (1.99 ms). Therefore, the potential delay incurred

per block flushed is much less. Even when the disks are not the bottleneck, the difference in write perfor

mance of the disk systems does impact the resulting throughput.

By increasing the processor speed to 10 MIPS, the configuration becomes disk bound. Once again,

the degree of multiprogramming was varied to determine a saturation point These results are shown in

figure 4, and as expected, the log-structured models provide the best performance, by approximately 24%

(9.41 tps for DML and 7.18 tps for DM). Furthermore, although the configuration is disk bound, the size of

the log does not have a significant impact on performance. Both the data manager and operating system

models exhibit nearly identical performance, even though the operating system maintains a much larger

log. As in the CPU bound case, these results differ dramatically from [KUMAR87]. He found that in disk

bound configurations the data manger out performed the operating system embedded model and attributed

this difference to the size of the log. Although the OS keeps a much largerlog than DM, their performance

is nearly identical as shown by the overlapping lines in figure 4. Similarly, DML, LOG and LOG2 exhibit

nearly identicalperformancealthough these models have different sized logs as well. Since logging occurs

at sequential speed in all the models, it is clear that performance is dominated by the random disk access

times.

Having analyzed the extremes of disk boundedness and CPU boundedness, we now analyze the

region in between. By varying the processor speed, the results shown in figure 5 were obtained. Between

any two models, there are two factors which contribute to the performance differential: the file system or

size of the log and the location of transaction support (data manager or embedded). At 1 MIPS, the CPU

bound configuration, the file system component accounts for 10-12% of the differential (the difference

3All disktimesare based onthe performance specification of theFujitsu Eagle M2361A [FUJI84].

13-

Throughput (in txns/second) vs Degree of
Multiprogramming

T
h
r
o
u

g
h
P
u

t

10l

Degree Multiprogramming

Figure 4: Disk Bounding under Low Con
tention. Since there is sufficient CPU power
to support the more expensive embedded sys
tems, the file system is the determiner of per
formance, and we see the write optimized file
systems providing the best performance.

Throughput (in txns/second) vs CPU Speed

DML
• LOG2

LOG

12 3 4 5

CPU Speed (in MIPS)

Figure 5: Effect of CPU Speed on Transac
tion Throughput. Increasing CPU speed
moves the configuration from a state of CPU
boundedness to disk boundedness. Even be

fore the systems become completely disk
bound (at 3 MIPS), the major factor contri
buting to the performance differential is the
file system and not the location of transaction
support

between DML and DM or OS and LOG) and the location component 19-20% (the difference between OS

and DM or LOG and DML). By 2 MIPS, that emphasis has shifted so that the file system component is

19-21% and the location component is 15-17% Finally,by the disk bound point, 3 MIPS, the location com

ponent is 0 (the DM and OS lines overlap, as do the DML, LOG, and LOG2) and the file system accounts

for a 22% difference in performance. However, at any point along the curves, the best performance is pro

vided by supporting transactions within the data manager on top of a log-structured file system.

As was observed in the disk bound configuration, the size of the log does not contribute significantly

to the performance of the systems. The difference in I/O costs between DML and LOG is that DML is able

to perform logical logging (proportional to the record size) while LOG performsphysical logging(propor

tional to page size). The logging difference between LOG and LOG2 is that the LOG2 model requires a

-14

log even smallerthan DML (16 bytes per modificationrather than 2 records). Since logging is always per

formed at sequential speeds, the total time required to log a transaction is still a small part of the total I/O

time (under 1%), and the resulting performance is the same for all three systems. Therefore, the primary

benefit of the log-structure file system implementation is its superior write performance, not its no

overwrite policy.

42. Lock Contention

All the preceding tests were run with a uniform access patternover a 1G data file. The next issue we

investigated was the effect of lock contention on these results. To induce contention, the distribution of

accesses to the database was skewed. The multiprogramming level was set to 100, the number of disks to

10, the CPU speed to 10 MIPS, and the distribution was varied from uniform (50/50; 50% of the accesses

to 50% of the database) to extremely contention bound (99/1; 99% of the accesses to 1% of the database).

Throughput (in txns/second) vs Access
Skew

12.0«|~

Access Skew

Figure 6: Effect of Skewed Access Distri
bution on Throughput Contention begins
to impact performance when the skew
reaches greater than 70/30. The embedded
models diverge from their data manager
counterparts at this point

15-

Number of Aborts (logio / 10000 success
ful) vs Access Skew

Access Skew

Figure 7: Effect of Access Skewing on the
Number of Aborted Transactions. The

abort rate begins climbing at a 70/30 skew for
the embedded systems, but at an 80/20 skew
for the data manager.

Figure 6 shows these results.

There are two factors at work here. First since the configurationis initially disk bound, the skewing

of the access patterns results in a higher buffer cache hit ratio and therefore improved performance.

Secondly, the skewing of the access patterns induces hotspots in the database, and the contention for locks

degrades performance. At the 70/30 skew point the DM and OS lines diverge as do the DML and

LOG/LOG2 lines. The data manager based models continue to take advantage of the improved buffer

cache hit ratio and their performance climbs steadily. The OS model also exhibits improved performance,

but not as much as the data managers since it is starting to suffer from contention on the indices (since

index locks are held until transaction commit time in the embedded models). The LOG and LOG2 models

actually suffer performancedegradation as a resultof the increased skewing and resulting contention.

Figure 7, which shows the number of aborts for each of the models as a function of this skewing,

indicates that the embedded models exhibit higher abortratesthan the datamanagermodels from the 70/30

point until the 95/1 point Since many more transactions are aborting, the resulting throughput is lower,

therefore, in a contention bound environment the coarse grain page locking employed by the embedded

models is unsatisfactory.

We investigated three techniques to reduce the effect of lock contention in the embedded models.

First subpage locking, as described in section 3.2, was used. Next the page size was reduced and locking

was performed on full pages. Finally, a modified subpage locking technique similar to that described in

[KUMAR89] was used.

Subpage locking reduces the locking granularity, and as a result the degree of contention, but not as

much as expected. Since updates to a B-tree page require shuffling around the entries on a page, multiple

subpages get locked for each update. In addition, the pages locked always follow the subpage on which the

insert is being made. As a result, the distribution of write locked subpages is skewed towards those at the

end of the page. In addition, the CPU cost per level of the B-tree is higher since multiple subpage locks are

required to find the correct subpage. Therefore, if a high contention environment is CPU bound, changing

the locking granularitywill not improve performance. If the CPU is not the bottleneck, some of the perfor

mance lost to contention may be regained.

16

Throughput (in txns/second) vs Access
Skew (Subpage Locking)

17.0V-

Access Skew

Figure 8: Impact of Access Skewing with
Subpage Locking. By reducing the locking
granularity, the embedded models can regain
some of the performance lost to contention.

Throughput (in txns/second) vs Access
Skew (Optimal Page size)

17.01

Access Skew

Figure 9: Impact of Access Skewing with
Variable Page Size. Varying the page size
compensates for some of the penalty from
contention in the embedded systems.

Figure 8 shows the same contention bound environment as figure 6, but uses subpage locking for the

embedded models. In the region between 70/30 and 95/5 the embedded models come much closer to

equaling their data manager counterparts. In the case of the read optimized file systems (DM and OS), the

difference is at most 6% (at the 90/10 point). For the log-structured file system, the largest gap is under

12% (also at 90/10). At the most contention bound point, even the data manager models exhibit extreme

contention due to locking conflicts on the data file. Since the embedded models are able to lock subpages

of the data file, at the 99/1 point the embedded models exhibit better performance.

The next technique to reduce contention was to decrease the page size and lock on full pages. While

decreasing the page size does reduce contention, it may also increase the depth of the B-tree. Increasing

the depthof the B-treeaddsextraI/O to eachoperation as well as adding an additional lock requestto each

traversal. As a result we find that reducingthe pagesize is beneficial only if it does not increase the depth

of the B-tree. In the case of the contention bound simulations,reducing the page size from 4K bytes to 2K

17

bytes does not increase the depth of the B-tree. The results in figure 9 show the same contention bound

environment using page locking and selecting the optimal page size for each model (all the embedded

models used 4096 byte pages for skews of 50,60,70; 128 byte pages for 80, and 512 byte pages for 90,95,

and 99). For the read optimized file system, using page size to reduce contention is less effective than

using subpages, since the largest OS/DM differential is 22% at the 90/10 point On the other hand, the dif

ferential for the write optimized file system has gone from 12% at the 90/10 point in figure 8 to 4% at the

90/10 point in figure 9. Furthermore, the write optimized embedded models actually surpass the write

optimized datamanager at 95/5 rather than 99/1 as before. Depending on the file system, varying either the

subpage size or the page size is an effective mechanism for handling lock contention.

The last approach reverts to subpage locking, but avoids the overhead of multiple locks per level and

the skewing of locked subpages. This is similar to the proposal in [KUM89], but has lower CPU costs. In

Throughput (in txns/second) vs Access
Skew (Modified Subpage Locking)

27.07

60 70 80

Access Skew

Figure 10: Impact of Access Skewing with
Modified Subpage Locking. By reducing
the locking granularity, the embedded sys
tems are able to surpass the data manager in
an environment with extremely high conten
tion.

18

Number of Aborts (logio / 10000 success
ful) vs Access Skew

5.0n

60 70 80 90

Access Skew

i

100

Figure 11: Effect of Modified Subpage
Locking on the Number of Aborted Tran
sactions. The new locking mechanism
reduces the number of aborts by a factor of
10, thus allowing the high throughput rates
observed in figure 10.

both Kumar's and our model, each subpage is treated as an independent bucket of entries. In the normal

case, an operation requires locating the correct subpage and modifying only that subpage. In Kumar's

method, this requires keeping the smallestkeys foreach subpage on the first subpageof the page. To avoid

bottlenecking on this firstpage, we perform a binary search across subpagesto select the correct page.

Another difference in the two algorithmsis that Kumar keeps entries in each bucket chained in a link

list requiring lineartime to search each bucket while we keep entrieswithin a subpagesortedmaintaining

the 0 (log) search time. Therefore, normal operations require no more time using this structure than they

do in the regular full page structure.

In the case of an overflow of a subpageor a change to the smallestkey on a subpage, we lock all the

subpages within a page and reorganize. Since, on average, we expect to move half the entries on a page,

this reorganization costs the same as a normal page orientedkey insert Whereas Kumar assumes that reor

ganization is required every 600 updates, we assume reorganization is required once in every 10 updates

since we requirereorganization or full pagelocking both when buckets fill as well as when the smallest key

on a page is modified.

In the next set of simulations, we used this modified subpage locking. The subpage size was set at

512 bytes (8 subpages per page and approximately 22 keys per page). These results are shown in figure 10.

Since this locking protocol offers the smaller locking granularity of subpage locking without the extra CPU

overhead of multiple locks per update, its performance is even better than the data manager's, and we see

the performance difference between the data manager and embedded models in excess of 45% at the 95/5

point Looking at the number of aborts for the embedded models shown in figure 11, we see that lock con

tention is virtually eliminated until the 90/10 point and beyond that point the number of aborts in the

embedded models is an order of magnitude smaller than for the data managers.

5. Conclusions

Independent of whether transaction support is embedded in the file system or implemented in the

data manager, the log structured file system offers better performance than the traditional read optimized

file system. Its major benefit is its improved write performance, not its no overwrite policy. In fact as we

see from the results in disk bound configurations, the size of the log has very little impact on the resulting

-19

performance. This is explained by the fact that logging always occurs at sequential speeds and is a very

small fraction of the total I/O time.

Since loggingis not an important factor, we find thatembeddedtransaction supportperformsas well

as the data manager support in disk bound configurations. Whether we use a read optimized or write

optimized file system, we find that the data manager and embedded models offer nearly identical perfor

mance. As a result supporting transactions within the file system is a feasible solution, when the system is

I/O bound.

As Kumar concluded, when the CPU is the bottleneck, there is a penalty in embedding transaction

supportin a file system. However, when lock contention is not a factor, thereis no need to perform subpage

locking,and the differencein performance is directly proportional to the cost of a system calland is usually

under 20%. Therefore, the feasibility of an embedded transaction manageris strictly dependent on the sys

tem call overhead.

Finally, as lock contention becomes a factor in limiting performance, all models experience some

degradation, but the data manager suffers the least due to its use of semantic information for B-tree lock

ing. The embedded models may recoup most of this performance loss through variable subpage and page

size. In some cases, where the CPU is not a critical resource, embedded systems with modified subpage

locking not only recoup this loss, but provide better throughput than the data manager.

Except in the most CPU bound environments, there is virtually no penalty incurred in embedding

transaction support in the operatingsystem. It does, however, requirecareful and defensive design to avoid

index contention as well as operating system flexibility to vary the page and subpage sizes as needed.

There are several areas which warrant further investigation. We have not accounted for the cost of

log wrapping in the log-structured file system. This will reduce the benefit of the log-structured file system,

but it is not clear how great this impact will be. In addition, the use of RAID devices [PATT88] will penal

ize the small writes that occur in a read optimized file system. These issues will be examined in later

research.

20

6. References

[BAYER77] Bayer, R^ Scholnick, M., "Concurrency Operations on B-Trees," Acta Informatica, 1977.

[FUJI84] M2361A Mini-Disk Drive Engineering Specifications, Fujitsu Limited, 198 4.

[GRAY76] Gray, J., Lorie, R., Putzolu,R, and Traiger, L, "Granularity of locks and degrees of consistency
in a large shared data base.", Modelingin Data Base Management Systems, Elsevier North Holland,
New York, pp. 365-394.

[HAER83] Haerder, T. Reuter, A. "Principles of Transaction-Oriented Database Recovery", Computing
Surveys, 15(4), 237-318,1983.

[KUM87] Kumar, A., Stonebraker, M., "Performance Evaluation of an Operating System Transaction
Manager", Proceedings of the 13th International Conference on Very Large Data Bases, Brighton,
England, 1987.

[KUM89] Kumar, A., Stonebraker, M., Terformance Considerations for an Operating System Transaction
Manager",IEEETransactions on Software Engineering,15(6), June 1989.

[MCKU84] Marshall Kirk McKusick, William Joy, Sam Leffler, and R. S. Fabry, "A Fast File System for
UNDC", ACMTransactionson Computer Systems,Vol. 2, No. 3, August 1984, pp. 181-197.

[MTTC82] Mitchell, J., Dion, J., "A Comparison off Two Network-Based File Servers", Communications of
theACM, 25(4), April 1982.

[MUEL83] Mueller, E. etc al., "A Nested Transaction Mechanism for LOCUS", Proceedings 9th Sympo
siumon Operating SystemPrinciples, October 1983.

[OUST88] Ousterhout J., Douglis, F., "Beating the I/O Bottleneck: A Case for Log Structured File Sys
tems", Computer Science Division (EECS), University of California, Berkeley, UCB/CSD 88/467,
October 1988.

[PU86] Pu, C, Noe, J., "Design of Nested Transactions in Eden", Technical Report 85-12-03, Dept of
Computer Science, Univ of Washington, Seattle, WA, 1986.

[PATT88] Patterson, D. et ai, "RAID: Redundant Arrays of Inexpensive Disks," Proc. 1988 ACM-
SIGMOD Conference on Management of Data, Chicago, 111., June 1988.

[ROSE89] Rosenblum, M., "The Design of LFS", Technical Report Computer Science Department
University of California, Berkeley, July, 1989.

[SPE88A] Spector, Rausch, Bruell, "Camelot: A Flexible, Distributed Transaction Processing System",
Proceedings ofSpring COMPCON1988, February 1988.

[SPE88B] Spector, A, Swedlow, K., Guide to the CamelotDistributedTransaction Facility, Computer Sci
ence Department Carnegie-MellonUniversity, Release 1, edition 0.98(51), May 1988.

[STON81] Stonebraker, M., "Operating System Supportof Data Managers", Communications oftheACM,
24(7), July 1981.

[STON85] Stonebraker, M., "Problems in Supporting Data Base Transactions in an Operating System
Transaction Manager", Operating System Review, 19(1), January 1985.

[TRA82] Traiger, I., "Virtual Memory Management for Data Base Systems", Operating System Review,
16(4), October 1982.

21-

[WALK83] Walker, Popek, English, Kline, Thie, "The LOCUS Distributed Operating System", Proceed
ings9th Symposium on Operating System Principles, October 1983,.

22

