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Abstract

Inspired by the organization of the mammalian neuro-muscular system, this
report develops a methodology for description of hierarchical control in a manner
which is faithful to the underlying mechanics, structured enough to be used as
an interpreted language, and sufficiently flexible to allow the description of a
wide variety of systems. We present a consistent set of primitive operations
which form the core of a robot system description and control language. This
language is capable of describing a large class of robot systems under a variety of
single level and distributed control schemes. We review a few pertinent results of
classical mechanics, describe the functionality of our primitive operations, and
present several different hierarchical strategies for the description and control
of a two-fingered hand holding a box. An implementation of the primitives in
the form of a Mathematica package is given in an appendix.
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Chapter 1

Introduction

The complexity of compound, redundant robotic systems, both in specification
and control, continues to present a ohallenge to-engineers .and biologists. Com
plex robot actions require coordinated motion of multiple robot arms or fingers
to manipulate objects and respect physical constraints. As we seek to achieve
more of the capability of biological robots, additional descriptive structures and
control schemes are necessary. A major aim of this work is to propose such a
specification and control scheme. The ultimate goal of our project is to build a
high level task programmingenvironment which is relatively robot independent.

In Chapter 2 we review the dynamics and control of coupled, constrained
rigid robots in a Lagrangian framework. Chapter 3 contains definitions of the
primitives of our robot control environment. Chapter 4 illustrates the appli
cation of our primitives to the description of a two fingered robot hand. We
show that our environment can be used to specify a variety of control schemes
for this hand, including a distributed controller which has a biological analog.
Chapter 5 extends the basic primitives to include specification and control of
constraint forces and redundant motion. In Chapter 6 we discuss future av
enues of research. The remainder of this introduction presents motivation and
background for our work, and an overview of the primitives we have chosen to
use.

1.1 The Musculoskeletal System: Metaphor for
a Robotic System

Motivation for a consistent specification and control scheme may be sought in
our current knowledge of the hierarchical organizationof mammalian motor sys
tems. To some degree of accuracy, we may consider segments of limbs as rigid
bodies connected by rotary joints. Muscles and tendons are actuators with sen
sory feedback which enter into low level feedback control at the spinal level [9].
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Further up the nervous system, the brainstem, cerebellum, thalamus, and basal
ganglia integrate ascending sensory information and produce coordinated motor
commands. At the highest levels, sensory and motor cortex supply conscious
goal-related information, trajectory specification, and monitoring.

The hierarchical structure of neuromuscular control is also evident from dif
ferences in timescale. The low level spinal reflex control runsfaster (loop delays
of about 30 ms) than the high level feedback loops (100-200 ms delays). This
distinction may be exploited by control schemes which hide information details
from high level controllers by virtue of low level control enforcing individualde
tails. These concepts are shown in Figure 1.1where a drawingof neuromuscular
control structures for a finger is juxtaposed with a block diagram to emphasize
the hierarchical nature of the thumb-forefinger system for picking up objects.

Biological control systems commonly operate with constraints and redun
dancy. Kinematic constraints arise not only from joints which restrict the rel
ative motion of adjacent limb segments, but also from contact with objects
which leads to similar restrictions. Many musculo-skeletal subsystems possess
kinematic and actuator redundancy which may be imagined to be resolved by
effort and stability considerations. In any event, the neural controller directs
a specific strategy and so expands a reduced set of control variables into the
larger complete set.

In the sequel we shall see these concepts expressed in a notation which is
faithful to the laws of mechanics and flexible enough to permit concise descrip
tions of robot motion control at various hierarchical levels.

1.2 Background

The robotics andcontrol literature contains a number oftopics which are related
to the specification and control scheme of this paper.

Robot programming languages

Two directions ofemphasis may be used todistinguish robot programming lan
guages: traditional programming languages (perhaps including multitasking),
and dynamical systems based descriptions of systems and control structures.

More traditional task specification languages include VAL II, AML, and
Robot-BASIC [6, 20, 8, 19]. These languages are characterized by C-, BASIC-
, or Lisp-like data structures and syntax, coordinate frame specification and
transformation primitives, sensor feedback conditionally controlling program
flow, and motion between specified locations achieved through via points and
interpolation. In a two stage hierarchy, low level controllers usually control
joint angle trajectories which are specified by high level language statements
and kinematics computations.
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Figure 1.1: Hierarchical controlscheme of a humanfinger. At the highest level,
the brain is represented as sensory and motor cortex (where sensory informa
tion is perceived and conscious motor commands originate ) and brainstem and
cerebellar structures (where motor commands are coordinated and sent down
the spinal cord). A pair of fingers forms a composite system for grasping which
is shown integrated at the level of the spinal cord. The muscles and sensory
organs of each finger form low level spinal reflex loops. These low level loops
respond more quicklyto disturbances than sensory motor pathways whichtravel
to the brain and back. Brain and spinalfeedback controllers are represented by
double lined boxes.
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Brockett's Motion Description Language [3,7] (MDL) is more closelyaligned
with dynamical systems theory. MDL employs sequences of triples (u,k, T) to
convey trajectory information, feedback control information, and time interval
to an extensible Forth/PostScript like interpreter. The scheme described in this
paper was inspired partly by descriptions of MDL. Our work explicitly utilizes
geometric and inertial parameters together with the equations of motion to
describe the organization and control of complex robots. MDL is less explicit
on this matter but is more completely developed in the matter of sequences of
motions.

Distributed control, hierarchical control

The nervous system controls biomechanical robots using both distributed con
trollers and hierarchical organization [9]. For example, spinal reflex centers can
direct portions of gait in cats and the wiping motions of frog limbs without
the brain. One reason for a hierarchical design is that high level feedback loops
may respond too slowly for all of motor control to be localized there. Indeed the**
complexity and time delays inherent in biologicalmotor control led the Russian
psychologist Bernstein to conclude the brain could not achieve motor control by
an internal model of body dynamics [10].

Centralizedcontrol has beendefined as a case in which everysensor's output
influences every actuator. Decentralized control was a popular topic in control
theory in the late 1970*s and led to a number of results concerning weakly cou
pled systems and multi-rate controllers [23]. Graph decomposition techniques,
applied to the graph structures employed in a hierarchical scheme, permitted
the isolation of sets of states, inputs, and outputs which were weakly coupled.
This decomposition facilitated stability analyses and controller design. Robotic
applications of hierarchical control are exemplified by HIC [4] which manages
multiple low level servo loops with a robot programming language from the
"traditional" category above. One emphasis of such control schemes concerns
distributed processing and interprocess communication.

1.3 Overview of Robot Control Primitives

The fundamental objects in our robot specification environment are objects
called robots. In a graph theoretic formalism they are nodes ofa tree structure.
At the lowest level of the tree are leaves which are instantiated by the define
primitive. Robots are dynamical systems which are recursively defined in terms
of the properties of their daughter robot nodes. Inputs to robots consist of
desired positions and conjugate forces. The outputs of a robot consist of actual
positions and forces. Robots also possess attributes such as inertial parameters
and kinematics.

There are two other primitives which act on sets of robots to yield new
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robots, so that the set of robots is closed under these operations. These primi
tives (attach and control) may be considered as linksbetween nodesand result
in composite robot objects. Thus nodes closer to the root may possess fewer
degrees offreedom, indicating a compression ofinformation upon ascending the
tree.

The attach primitive reflects geometrical constraints among variables and
in the process of yielding another robot object, accomplishes coordinate trans
formations. Attach is also responsible for a bidirectional flow of information:
expanding desired positions and forces to the robots below, and combining ac
tual position and force information into an appropriate set for the higher level
robot. In this sense the state of the root robot object is recursively defined in
terms of the states of the daughter robots.

The control primitive seeks to direct a robot object to follow a specified
"desired" position/force trajectory according to some control algorithm. The
controller applies its control law (several different means of control are available
such as PD and computed torque) to the desired and actual states to compute
expected states for the daughter robot to follow. In turn, the daughter robot
passes its actual states through the controller to robot objects further up the
tree.

The block diagram portion of Figure 1.1 may be seen to be an example
of a robot system comprised of these primitives. Starting from the bottom:
two fingers are defined; each finger is controlled by muscle tension/stiffness
and spinal reflexes; the fingers are attached to form a composite hand; the
brainstem and cerebellum help control and coordinate motor commands and
sensory information; and finally at the levelof the cortex, the fingers are thought
of as a pincer which engages in high level tasks such as picking.
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Chapter 2

Review of robot dynamics
and control

In this chapter we selectively review the dynamics and control of robot systems.
The basic result is that even for relatively complicated robot systems, the equa
tions of motion for the system can be written in a standard form. This point
of view has been used by Khatib in his operational space formulation [12] and
in some recent extensions [13]. The results presented in this chapter are direct
extensions of those works, although the approach is different.

The dynamicsfor a robot manipulator withjoint angles 6 € Rn and actuator
torques r £ Rn can be derived using Lagrange's equations and written in the
form

M(6)6 + C(6,6)6 + N(6,6) = r (2.1)

where M(6) is a positive definite inertia matrix and C(9,6)6 is the Coriolis
and centrifugal force vector. The vector iV(0,6) £ Rn contains all friction and
gravity terms and the vector r 6 R" represents generalized forces in the 6
coordinate frame. For systems of this type, it can be shown that M - 2C is a
skew symmetric matrix with proper choice ofC (such as that in [25]).

2.1 Constrained manipulators

Constrained robot systems can also be represented by dynamics in the same
form as equation (2.1). As our main example, consider the control of a multi-
fingered hand grasping a box (Figure 2.1) where 6 is a vector of all the joint
angles and x is a vector describing the position and orientation of the box. The
grasping constraint may be written as

J(q)9 = GT(q)x (2.2)
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Figure 2.1: Plairai-two-fmgered hand. Gontacts-are assumed to-be maintained
throughout the motion. For this particular system the box position and orien
tation, xt form a generalized set of coordinates for the system.

where q= (6, x) € Rm x Rn, J is the Jacobian of the finger kinematic function
and G is the "grasp map" for the system. We will assume that J is bijective in
some neighborhood and that G is surjective. This form of constraint can also be
used to describe a wide variety ofother systems, including grasping with rolling
contacts, surface following and coordinated lifting. Forthe primitives presented
in the next chapter, we also assume that there exists a forward kinematic func
tion between 6 and a?; that is, the constraint is holonomic. A more complete
derivation ofgrasping kinematics can be found ina recent paper by Murray and
Sastry [18].

To include velocity constraints we again appeal to Lagrange's equations.
Following the approach in Rosenberg [21], the equations of motion for our con
strained system can be written as

where

M

C

N

M,M9

M(q)x + C(q, q)x + N(q, q) = Ft

= M + GJ-TM9J-lGT

= C+GJ-T(c9J-1GT +M0jt(j-1GT)\
= GJ-TN

= GJ~TT

= inertia matrixfor the box and fingers, respectively

(2.3)
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Figure 2.2: Commutative diagram for robot coordinate frames. In this figure, Q
represents the configuration manifold of the robot, X the configuration manifold
of the object. TU is the space in which the velocity constraints live.

C, Ce = Coriolis and centrifugal terms

Thus we have an equation with a similar form to our "simple" robot. In the box
frame of reference, M is the mass of the effective mass of the box, and C is the
effective Coriolis and centrifugal matrix. These matrices include the dynamics
of the fingers, which are being used to actually control the motion of the box.
However the details of the finger kinematics and dynamics are effectively hidden
in the definition of M and C. The skew symmetry of M - 1C is preserved by
this transformation.

A diagram of the relations between the various coordinates frames is show
in Figure 2.2.

2.2 Internal forces

Although the grasp map G was assumedsurjective, it need not be square. From
the equations of motion (2.3), we note that if fingertip force J~tt is in the null
space of G then the net force in the object frame of reference is zero and causes
no net motion of the object. These forces act against the constraint and are
generally termed internal or constraint forces. We can use these internal forces
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to satisfy other conditions, such as keeping the contact forces inside the friction
cone (to avoid slipping) or varying the load distribution ofa set ofmanipulators
rigidly grasping an object.

To include the internal forces in our formulation, we extend the grasp map
by defining an orthonormal matrix H{6) whose rows form a basis for the null
space of G(9). As before we assume that G(6) has constant rank and we break
all forces up into an external and an internal piece, Fe and Fi. Given these
desired forces, the torques that should be applied by the actuators is

2.3 Redundant manipulators

Some manipulators containmore degrees offreedom than are necessary to spec
ify the position of the end effector. Mathematically, these robots can be rep
resented by a change of coordinates / : Rm -f Rn where m > n. In this case
*? := d9 w not square and hence J"1 is not well defined so the derivation of
equation (2.3) does not hold.

It is still possible to write the dynamics of redundant manipulators in a form
consistent with equation (2.3). To do so, we first define a matrix K(6) whose
rows span the nullspace of J(6). As before we assume that J(6) is full row rank
and hence K{6) has constant rankm—n. The rows of K(6) are basis elements
for the space of velocities which cause no motion of the end effector; we can
thus define an internal motion, x< € Rm~n using the equation

By construction, J is full rank (and square) so we can use the previous
derivation to conclude that

M{q) ( *; )+C(q, «)(*;)+ *(«. 9) =F (2.6)
where M and C are obtained from equation (2.3) replacing J with J and having
augmented G with a block diagonal identity matrix to preserve the i,'s. If we
choose K such that its rows are orthonormal then J~l = («7+ KT) where
J+ = JT(JJT)~l is the least-squares inverse ofJ. This approach is related to
the extended Jacobian technique for resolving kinematic redundancy [1].
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2.4 Control

To illustrate the control of robot systems, we look at two controllers which have
appeared in the robotics literature. Westart by considering systems of the form

M(q)x+ C(q,q)x+ N{q, q)= F (2.7)

where M(q) is a positive definite inertia matrix and C(q, q)x is the Coriolis
and centrifugal force vector. The vector N(q, q) € Rn contains all friction and
gravity terms and the vector F € Rn represents generalized forces in the x
coordinate frame.

For the case of more complicated manipulators the dynamics look essentially
the same with appropriate definition of x and F. For redundant manipulators
we define x as (xe, x,) where it is understood that only the derivatives of x< can
actually be used in a control law (since these are well defined). In particular,
when we refer to a vector of position errors, e, it is assumed that the portion of
the error vector corresponding to Xj is taken to be zero. For manipulators which
contain constraints, F is actually Fe and there is an additional force term, F,-,
which causes no net motion of the system. Both internal motions and forces are
specified in terms of the basis vectors for the appropriate null spaces.

Computed torque

Computed torque is an exactly linearizingcontrol law that has been used exten
sively in robotics research. It has been used for joint level control [2], Cartesian
control [16], and most recently, control of multi-fingered hands [15, 5]. Given a
desired trajectory x«j we use the control

F = M(q) (xd + Kve + Kpe) + C(q, q)x + N(q,q) (2.8)

where error e = x<f —x and Kv and Kp are constant gainmatrices. The resulting
dynamicsequations are linear with exponential rate of convergence determined
by Kv and Kp. Since the system is linear, we can use linear control theory to
choose the gains (Kv and Kp) such that they satisfy some set ofdesign criteria.

The disadvantage of this control law is that it is not easy to specify the
interaction with the environment. From the form of the error equation we
might think that wecould use Kp to modelthe stiffness of the system and exert
forces by commanding trajectories which result in fixed errors. Unfortunately
this is not uniformly applicable as can be seen by examining the force due to a
quasi-static displacement Ax:

AF = M(q)KpAx (2.9)

SinceKp must be constant in order to prove stability, the resultant stiffness will
vary with configuration. Additionally, given a desired stiffness matrix it may
not be possible to find a positive definite Kp that achieves that stiffness.
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PD + feedforward control

PD controllers differ from computed torque controllers in that the desired stiff
ness (and potentially damping) of the end effector is specified, rather than its
position tracking characteristics. Typically, control lawsof this form rely on the
skew-symmetric property of robot dynamics, namely aT (m - 2C) a =0for
all a 6 Rn. Consider the control law

F = M(q)xd + C(q, q)xd + N(qf q) + Kve + Kpe (2.10)

where Kv and Kp are symmetric positive definite. Using a Liapunov stability
argument, it can be shown that the actual trajectory of the robot converges to
the desired trajectory asymptotically [14]. Extensions to the control law result
in exponential rate of convergence [24, 22].

This PD control law has the advantage that for a quasi-static change in
position Ax the resulting force is

AF = KpAx (2.11)

and thus we can achieve an arbitrary symmetric stiffness. Experimental results
indicate that the trajectory tracking performance of this control law does not
always compare favorably with the computed torque control law [17]. Addition
ally there is no simple design criteria for choosing Kv and Kp to achieve good
tracking performance. While the stability results give necessary conditions for
stability they do not provide a method for choosing the gains. Nonetheless,
PD control has been used effectively in many robot controllers and has some
computational features which make it an attractive alternative.



Chapter 3

Primitives

In this chapter we describe a set of primitives that gives us the mathematical
structure necessary to build a system and control specification for dynamical
robot systems. We do not require any particular programming environment or
language, borrowing instead freely from languages such as C, Lisp and C++.
As much as possible, we have tried to define the primitives so that they can be
implemented in any of these languages.

As our basic data structure, we will assume the existence of an object with
an associated list of attributes. These attributes can be thought of as a list
of name-value pairs which can be assigned and retrieved by name. A typical
attribute which we will use is the inertia of a robot. The existence of such an
attribute implies the existence of a function which is able to evaluate and return
the inertia matrix of a robot given its configuration.

Attributes willbe assignedvaluesusing the notation attribute := value. Thus
we might define our inertia attribute as

M(6) := mill + m2ll m2/i/2 cos(0i - 62)
ma/ifecos(0i - 62) m2l\ (3.1)

In order to evaluate the inertia attribute, we would call M with a vector 6 € R2.
This returns a 2x 2 matrixas defined above. TheCoriolis/centrifugal attribute,
C, and friction/gravity/nonlinear attribute, N, are defined similarly.

To encourage intuition, we will first describe the actions of the primitives for
the case of non-redundant robots. Additionally, we ignore the internal forces
that are present in constrained systems. Extensions to these cases are presented
in Chapter 5.
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3.1 The robot object

The fundamental object used by all primitives is a robot. Associated with a
robot are a set of attributes which are used to define its behavior:

M inertia of the robot

C Coriolis/centrifugal vector
N friction and gravity vector
rd return position and force information about the robot
wr send position and information to the robot

The rd function returns the current position, velocity, and acceleration of
the robot, and the forces measured by the robot. Each of these will be a vector
quantity of dimension equal to the number of degrees of freedom of the robot.
Typically a robot may only have access to its joint positions and velocities, in
which case x and F will be nil.

The wr function is used to specify an expected position and force trajectory
that therobot is to follow. In the simplest case, a robot would ignore everything
but F and try to apply this force/torque at its actuators. As we shall see later,
other robots may use this information in a more intelligent fashion. We will
often refer to the arguments passed to write by using the subscript c. Thus xe
is the expected or desired position passed to the wr function.

The task ofdescribing a primitive isessentially the sameas describing how it
generates the attributes of the new robot. The following sections describe how
each of the primitives generates these attributes. The new attributes created
by a primitive are distinguished by a tilde over the name of the attribute.
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Figure3.1: Example of the define primitive. The robotshown here corresponds
to a robot with torque driven motors and only position and velocity sensing.

3.2 DEFINE primitive

Synopsis:

DEFINECM, C, N, rd, wr)

The define primitive is used to create a simple robot object. It defines the
minimal set of attributes necessary for a robot. These attributes are passed
as arguments to the define primitive and a new robot object possessing those
attributes is created:

M{6) = M(6)
C(8,6) = C($t$)
N(6,6) = N(6t6)

rdQ = rdQ
wr(0eidet6e,Te) = wr(6e,6e,de,Te)

Severaldifferent types of robots can be defined using this basic primitive. For
example, a DC motor actuated robot would be implemented with a wr function
which converts the desired torque to a motor current and generates this current
bycommunicating with some piece ofhardware (such as a D/A converter). This
type of robot system is shown in Figure3.1. On the other hand, a stepper motor
actuated robot might use a wr function which ignores the torque argument and
uses the position argument to move the actuator. Both robots would use a rd
function which returns the current position, velocity, acceleration and actuator
torque. If any of these pieces of information is missing, it is up to the user to
insure that they are not needed at a higher level. We may also define a payload

15
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as a degenerate robot by setting the wr argument to the nil function. Thus
commanding a motion and/or force on a payload produces no effect.
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3.3 ATTACH primitive

Synopsis:
ATTACHQ, G, h, payload, robot-list)

Attach is used to describe constrained motion involving a payload and one
or more robots. Attach must create a new robot object from the attributes of
the payload and of the robots being attached to it. The specification of the new
robot requires a velocity relationship between coordinate systems (J6 = GTx),
an invertible kinematic function relating robot positions to payload position
(x = h(6)), a payloadobject, and a list of robot objects involved in the contact.

The only difference between the operation of the attach primitive and the
equations derived for constrained motion of a robot manipulator is that we now
havea listof robots eachof which is constrained to contact a payload. However,
if we define 9r to be the combined joint angles of the robots in robot-list
and similarly define Mr and Cr as block diagonal matrices composed of the
individual inertia and Coriolis-matrices of the robots, we have a system which
is identical to that presented previously. Namely, we have a "robot" with joint
angles 6r and inertia matrix Mr connected to an object with a constraint of
the form

J9R = GTx (3.2)

where once again J is a block diagonal matrix composed of the Jacobians of the
individual robots. To simplify notation, we will define A := J~1GT so that

Or = Ax (3.3)

The attributes of the new robot can thus be defined as:

M = Mp + ATMRA (3.4)
C = Cp + AtCrA-tAtMrA (3.5)
N = Np + ATNR (3.6)

r~d() = Wr), A+6r, A+6r + A+6r, Attr) (3.7)
wr(xe,xe)xe,Fe) = wrR^ixe), Axe, Axe + Axe, A+TFe) (3.8)

where Mp,Cp)Np are attributes of the payload, Mr and Cr are as described
above and Nr is a stacked vector offriction and gravityforces. This construction
is illustrated in Figure 3.2.

The rd attribute for an attached robot is a function which queries the state
ofall the robots in robot-list. Thus 6r in equation (3.7) is constructed by
calling the individual rd functions for all of the robots in the list. The 6 values
for each of these robots are then combined to form 8r and this is passed to the
forward kinematic function. A similar computation occurs for Or, Or and tr.
Together, these four pieces of data form the return value for the rd attribute.
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Figure 3.2: Data flow in a two robot attach. In this example we illustrate the
structure generated by a call to attach with 2 robots and a payload (e.g. a
system like Figure 2.1). The two large interior boxes represent the two robots,
with their input and output functions and their inertia properties. The outer
box (which has the samestructure as the inner boxes) represents the new robot
generated by the call to attach. In this example the robots do not have accel
eration or force sensors, so these outputs are set to nil.

In a dual manner, the wr attribute is defined as a function which takes
a desired trajectory (position and force), converts it to the proper coordinate
frame and sends each robot the correct portion of the resultant trajectory. A
special case of the attach primitive is its use with a nil payload object and
G = I. In this case, Mp, Cp, and Np are all zero and the equations above
reduce to a simple change of coordinates.
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Tewr
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*d,Fd
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wr rd
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X rd
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Figure 3.3: Data flow in a typical controlled robot. Information written to
the robot is stored in an internal buffer where it can be accessed by the con
troller. The controller uses this information and the current state of the robot
to generate forces which cause it to follow the desired trajectory.

3.4 CONTROL primitive

Synopsis:

CONTROL(robot, controller)

The control primitive is responsible for assigning a controller to a robot.
It is also responsible for creating a new robot with attributes that properly rep
resent the controlled robot. The attributes of the created robot are completely
determined by the individual controller. However, the rd and wr attributes
willoften be the same for different controllers. Typically the rd attribute for a
controlled robot will be the same as the rd attribute for the underlying robot.
That is, the current state of the controlled robot is equivalent to the current
state of the uncontrolled robot. A common wr attribute for a controlled robot
would be a function which saved the desired position, velocity, acceleration and
force in a local buffer accessible to our controller. This configuration is shown
in Figure 3.3.

The dynamic attributes M, C and N are determined by the controller. At
one extreme, a controller which compensates for the inertia of the robot would
set the dynamic attributes of the controlled robot to zero. This does not imply
that the robot is no longer a dynamic object, but rather that controllers at
higher levels canignore thedynamic properties oftherobot, since they arebeing
compensated for at a lower level. At the other end of the spectrum, a controller
may make no attempt to compensate for the inertia of a robot, in which case
it should pass the dynamic attributes on to the next higher level. Controllers
which lie in the middleof this range may partially decouple the dynamicsof the
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manipulator without actually completely compensating for them. To illustrate
these concepts we next consider one possible controller class, computed torque.
However, many control laws originally formulated in joint space may also be
employed since the structure of equation (2.3) has been preserved.

Computed torque controller

As we mentioned in Chapter 2, the computed torque controller is an exactly
linearizing controller which inverts the nonlinearities of a robot to construct a
linear system. This linear system has a transfer function equal to the identity
map and asa result has no uncompensated dynamics. The proper representation
for such a system sets the dynamical attributes Mt C, and N to zero and uses
the rd and wr attributes as described above. We introduce xd to refer to the
buffered desired trajectory.

The control process portion ofthe controller is responsible for generating in
put robotforces which cause the robot to follow the desired trajectory (available
in xd}. ^dditionallyr^the^controUer-jnustuietermijie -theJ'expected" ±rajectory
to be sent to lower level robots. For the computed torque controller we use the
resolved acceleration [16] to generate this path. This allows computed torque
controllers running at lower levels to properly compensate for nonlinearities and
results in a linear error response. The methodology is similar to that used in
determining that the dynamic attributes of the output robot should be zero.
The control algorithm is implemented by the following equations:

(x,x,-,-) = rdQ
xe = xd + Kv{xd - x) + Kp(xd - x)
** = !l*t

r* •
xe = Jo x«
Fe = M(q)xe+C{q,q)x + N(qtq) + Fd
wr(xe,xeixe,Fe)

where rdand wr are attributes of the robot which is being controlled.
Note the existence of the Fd term in the calculation of Fe. This is placed

here to allow higher level controllers to specify not only a trajectory but also an
force term to compensate for higher level payloads. In essence, a robot which is
being controlled in this manner can be viewed asan ideal force generator which
is capable of following an arbitrary path.

The computed torque controller defines two new attributes, Kp and Kv,
which determine the gains (and hence the convergence properties) of the con
troller. A variation of the computed torque controller is the feedforward con
troller, which is obtained by setting Kp = Kv = 0. This controller can be used
to distribute nonlinear calculations in a hierarchical controller, as we shall see
in Chapter 4.



Chapter 4

Examples

To make the use of the primitives more concrete we present some examples of
a planar hand grasping a box (Figure 2.1) using variouscontrol structures. For
all of the controllers, we will use the following functions

Mb inertia matrix for the box in Cartesian coordinates
Mi,Mr inertia matrix for the left and right fingers

Cb>Cu Cr Coriolis/centrifugal vector for box and fingers
/ finger kinematics function, / : (0j, 0r) *-+ (x/, xr)
g grasp kinematics function, g : (xt, xr) *-* x&
J finger Jacobian, J = |£
G grasp map, consistent with g

rd_left, rd-right read the current joint position and velocity
wr_leit, wr_right generate a desired torque on the joints

where 0/,0r,xj,xr, and xj are defined as in Figure 2.1.

4.1 High level computed torque control

In this example we combine all systems to obtaina description of the dynamic
properties of the overall system in box coordinates. Once this is done we can
move the box by directly specifying the desired trajectory for the box. This
structure is illustrated in Figure 4.1.

In terms of the primitives that we have defined, we build this structure from
the bottom up

leit = DEFINE(Mj, C\, 0, rd_left, wrJ.eft)
right = DEFINE(Afr, Cr, 0, rd_right, wr.right)
lingers = ATTACH(J, I, /, nil, left, right)
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CONTROL

ATTACH

ATTACH

DEFINE

box trajectory

Computed
Torque

Grasping
Constraint

Examples

DEFINE

Figure 4.1: High level computed torque. The primitives listed next to the nodes
in the graph indicate the primitive that was used to created the node. In this
structure all dynamic compensation and error correction occurs at the top of
the graph, using a complex dynamic model for the underlying system.

box = DEFINE(Af&, C4, 0, nil, nil)
hand = ATTACH(I, G, gt box, lingers)

ct.hand = C0NTR0L(hand, computed-torque)

It is useful to consider how the data flows to and from the control law running
at the hand level. In the evaluation of xj and xj, the following sequence occurs
(through calls to the rd attribute):

hand: asks for current state, x& and xj
finger: ask for current state, xj and x/

left: read current state, 0\ and 0\
right: read current state, Qr and 0r

finger: x;, xj <- f(0,, 0r), J{0U 0r)
hand: x&, x& <— </(x/), GTif
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Similarly, when we write a set of hand forces using the wr attribute, it causes
another chain of events to occur: call sequence is generated

box: generate a box force F\,
hand: generate finger force GF\,

finger: generate joint torques JTGFb
left: output torques conjugate to 0\
right: output torques conjugate to 0r

Using the transformations given above it is straightforward to calculate the
torque generated by the control law by expanding the structure of Figure 4.1
using the definition of the primitives.

(:)-
= JTG+Fbid
= JTG+[Mh(xb,d + Kve + Kpe) + ChXb]

= JTG+ (Mb + GJ-TM9J-lGT) (xM + Kve + Kpe) +

(Cb +GJ-TC9J-lGT) xh +GJ-TM9jt (J-1GT) xh

This control lawcorresponds exactly to the generalized computed torque control
algorithm presented by Li, et al. [15], with the omission of internal forces (see
Section 5.1).

4.2 Low level computed torque control

Another common structure for controlling robots is to convert all trajectories
to joint coordinates and perform computed torque at that level. In a crude
implementation onemightassume the dynamic effects ofthe box were negligible
and construct the following structure shown in Figure 4.2. The primitives used
to define this structure are

left = DEFINE(Af,, C/, 0, rd_left, wr.left)
right = DEFINE(Mr, Cr, 0, rd_right, wr.right)
ct_left = C0NTR0L(left, computed-torque)
ct_right = CONTROL(right, computed-torque)

lingers = ATTACH(«7, I, /, nil, ctJLeft, ct.right)
box = DEFINE(Af*. Cb, 0, nil, nil)
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box trajectory
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ATTACH Finger
Kinematics

Box

CONTROL
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Left
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Examples
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Figure 4.2: low level computed torque. Computed torque controllers are used for
the individual fingers to provide trajectory following capability in joint space.
Since no controller is positioned above the box, the dynamics of the box are
ignored even though the path is given in the box's frame of reference.

hand = ATTACH(7, G, g, box, fingers)

This controller is provably exponentially stable when the mass of the box
is zero. However, this controller does not compensate for the mass of the box.
As a result, we expect degraded performance if the mass of the box is large.
Experimental results on a system of this form confirm our intuition [17].

4.3 Multi-level computed torque/stiffness con
trol

As a final example, we consider a control structure obtained by analogy with
biological systems in which controllers to run at several different levels simul
taneously (see Figure 4.3). At the lowest level we use simple PD control laws
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attached directly to the individual fingers. These PD controllers mimic the stiff
ness provided by muscle coactivation in a biological system [11]. Additionally,
controllers at this level might be used to represent spinal reflex actions. At
a somewhat higher level, the fingers are attached and considered as a single
unit with relatively complicated dynamic attributes and Cartesian configura
tion. Here we employ a feedforward controller (computed torque with no error
correction) to simplify these dynamic properties, as viewed by higher levels of
the brain. With respect to these higher levels, the two fingers appear to be two
Cartesian force generators represented as a single composite robot.

Up to this point, the representation and control strategies do not explicitly
involve the box, a payload object. These force generators are next attached to
the box, yielding a robot with the dynamic properties of the box but capable of
motion due to the actuation in the fingers. Finally, we use a computed torque
controller at the very highest level to allow us to command motions of the box
without worrying about the details of muscle actuation. By this controller we
simulate the actions of the cerebellum and brainstem to coordinate motion and
correct for errors.

The structure in Figure 4.3 also has interesting properties from a more tra
ditional control viewpoint. The low level PD controllers can be run at high
servo rates (due to their simplicity) and allow us to tune the response of the
system to reject high frequency disturbances. The Cartesian feedforward con
troller permits a distribution of the calculation of nonlinear compensationterms
at various levels, lending itselfto multiprocessor implementation. Finally, using
a computed torque controller at the highest level gives the flexibility of perform
ing the controller design in the task space and results in a system with linear
error dynamics. Another feature is that if we ignore the additional torques due
to the PD terms, the joint torques generated due to an error in the box posi
tion are the same as those of the high level computed torque scheme presented
earlier.
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box trajectory

CONTROL Computed
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ATTACH Grasping
Constraint
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ATTACH Finger
Kinematics

CONTROL
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Figure 4.3: multi-level computed torque andstiffness (PD). Controllers are used
at each level to provide a distributed control system with biological motivation,
desirable control properties, and computational efficiency.



Chapter 5

Extensions to the basic

primitives

Having presented the primitives for non-redundant robot systems in which we
ignore internal forces, we now describe the modifications necessary to include
both internal motion and internal forces in the primitives. As before, these
extensions are based on the dynamic equations given in Chapter 2 and rely on
the fact that the equations of motion of this class of systems can be expressed
in a unified way.

Internal motion and force can be thought of as manifestations of redun
dancies in the manipulator, and both can be used to improve performance. A
classical useof redundant motionin robotics is to specify a cost functionand use
the redundancy of the manipulator to attempt to minimize this cost function.
If we extend our definition of the wr function so that it takes not only an "ex
ternal" trajectory, but also an internal trajectory (which might be represented
as a cost function or directly as a desired velocity in the internal motion direc
tions) then this internal motion can be propagated down the graph structure.
A similar situation occurs with internal or constraint forces.

Thematrices J(q) andG(q) inequation (2.2) embody thefundamental prop
erties oftheconstrained system. We begin by assuming that J(q) and G(q) are
both full row rank. The null spaceof J(q) corresponds to motionswhich do not
affect the configuration of the object, i.e., internal motions. Likewise, the null
space of G(q) describes internal forces—the set of forces which cause no motion
of the object. A complete trajectory for a robot must specify not only external
motion and force for a robot but also the internal motion and force which lie in
these subspaces.
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5.1 Internal forces

To allow internal forces to be specified and controlled, we must first add them
to the rd and wr attributes. This is done by simply adding an extra value to
the list of values returned by rd and adding an extra argument to wr. Thus the
wr attribute is called as

wr(xetxe,xe,Fe,Fi) (5.1)

where F,- is the desired internal force.
Internal forces are "created" by the attach primitive. The internal force

directionsfor a constraint are represented by an orthonormalmatrix H(0) whose
rows form a basis for the null space of G(0). Since any of the daughter robots
may itself have an internal force component, the internal force vector for a
robot created by attach consists of two pieces: the internal forces created by
this constraint and the combined internal forces for the daughter robots. We
shall refer to these two components as F{ti and Fi>2, respectively. The force
transformations which describe this relationship are

( rR,e \ ( JTG+ JTHT | 0 >^ / *' \

where TRte is the vector of external forces for the daughter robots and tr^ is
the vector of internal forces. This equation is analogous to equation (2.4) in
Section 2.2. Note that trj is identical to Fi)2, thus internal force specifications
required by the daughter robots are appended to the internal force specification
required due to the constraint. Expandingequation (5.2) wesee the appropriate
definition for the new wr attribute generated by attach is

wr(xe,xe,xe,FeiFi) :=wrR(---, JTG+Fe + JTHTFi%l ,Fi>2) (5.3)

The inclusion of internal forces in the rd attribute is similar. The sensed
forces fromthe robots, tr, are simplysplit intoexternal and internal components
and converted to the appropriate internal and external forces for the new robot.
This is equivalent to inverting equation (5.2):

It follows that

GJ-T
F = I FL1 I = I HJ-T

0 f)te)
^():= (...,GJ-Tr*(<s, (HJ'T^R'e))

(5.4)

(5.5)

Internal forces are resolved by the control primitive. In principle, a con
troller can specify any number of the internal forces for a robot. Internal forces



5.2 Internal motions

which are not resolved by a controller are left as internal forces for the newly
defined robot. In practice, controllers will often be placed immediately above
the attached robots since internal forces are best interpreted at this level. Un
like external motions and forces, internal forces are not subject to coordinate
change and so leaving such forces unresolved causes higher level controllers to
use low level coordinates.

5.2 Internal motions

Internal motions are also created by the attach primitive, this time due to a
non-square Jacobian matrix. As before, we must add arguments to the rd and
wr attributes of robots to handle the extra information necessary for motion
specification. We only assume that the redundant velocities and accelerations
are defined, so we add only those quantities to rd and wr. Since the notation
becomes quite cumbersome, we won't actually define the rd and wr primitives,
but just specify the internal and external motion components.

Given a constraint which contains internal motions, the attach primitive
must again properly split the motionamongthe robots attached to the object.
Define K(0) to be a matrix whose rows span the null space of J(0). Then we
can rewrite our constraint as

I} 0

K
0

\ o J ,

6r,c

6R,i

Defining J and G as the extended Jacobian and grasp matrices,

'-U) <HT0
we see that J is full rankand so we can use it to define A = J~lGT in equations
(3.4-3.8). This then defines the dynamics attributes created by attach. Note
that the dimension of the constrained subspace (where internal forces act) is
unchanged by this extension.

The input and output attributes are described in a manner similar to those
used for internal forces. For wr the external component of the motion is given
by

/ GT 0 0 '

0
/ 0

V o 0 11

'*• = A(%)
= J+GTxe + KTXi

(5.6)

(5.7)

(5.8)

(5.9)

6riC is defined similarly. 0Rtt is only defined if an inverse kinematic function,
h~l, isgiven. Otherwise that information is not passed to the daughter robots.

29
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As before, if the robots themselves have internal motions then these should be
split off and passed unchanged to the lower level robots.

The rdattribute isdefined byprojecting robot motions into an object motion
component and an internal motion component. That is

*e = K0R,e) (5.10)
xe = G+J0R>e (5.11)

* =(tr) en
xe and Xi are obtained by differentiating the expression for xe and i{.

Controllers must also be extended to understand redundant motion. This
is fundamentally no different than control of an ordinary manipulator except
that position information is not available in redundant directions. Thus the
computed torque law would become

F=M(,)( ^l^J''' )+<*,«)( *; )+*(,,«) (5.13)
Motion specification for such a control law would be in terms of a position tra
jectory xe(-) and a velocity trajectory x,(-). If a controller actually resolves the
internal motion (by specifying i,,d() based on a pseudo inverse calculation for
example), then the internal motion will be masked from higher level controllers;
otherwise it is passed on.

Controllaws commonly use the position of the object as part of the feedback
term. This may not always be available for systems with non-integrable con
straints (such as grasping with rolling contacts). If the object position cannot
be calculated from 0 then we must retrieve it from some other source. One
possibility is to use an external sensor which senses x directly, such as a cam
era or tactile array. The function to "read the sensor" could be assigned to
the payload rd function and attach could use this information to return the
payload position when queried. Another possible approach is to integrate the
object velocity (which is well defined) to bookkeep the payload position.

Some care must alsobe taken with the evaluation of dynamic attributes for
robots which do not have well defined inverse kinematic functions. There are
some robot control laws which use feedforward terms that depend on the desired
output trajectory, e.g., M(xd)xd. The advantage of writingsuch control laws is
that this expression can be evaluated offline, increasing controller bandwidth.
Thiscalculation only makes sense ifthedesired configuration, qd, canbewritten
as a function of xd and more generally if q can be written as a function of x.
One solution to this problem is to only evaluate dynamic attributes of a robot
at the current configuration. Assuming each robot in the system can determine
its own position, these attributes are then well defined. For all the control laws
presented in this paper, M, C and N are always evaluated at q, the current
configuration.



Chapter 6

Discussion

Working from a physiological motivation we have developed a set of robot de
scription and control primitives consistent with Lagrangian dynamics. Starting
from a description of the inertia, sensor, and actuator properties of individual
robots, these primitives allow for the construction of a composite constrained
motion system with control distributed at all levels. Robots, as dynamical
systems, are recursively defined in terms of daughter robots. The resulting hi
erarchical system can be represented as a tree structure in a graph theoretic
formalism, with sensory data fusion occurring as information flows from the
leaves of the tree (individual robots and sensors) toward the root, and data ex
pansion as relatively simple motion commands at the root of the tree flow down
through contact constraints and kinematics to the individual robot actuators.

One of the major future goalsof this research is to implementthe primitives
presented here on a real system. This requires that efforts be made toward
implementing primitives in as efficient fashion as possible. The first implemen
tation choice is deciding when computation should occur. It is possible that the
entire set of primitives could be implemented off-line. In this case, a controller-
generator would read the primitives and construct suitable code to control the
system. A more realistic approach is to split the computation burden more
judiciously between on-line and off-line resources. Symbolically calculating the
attributes of the low level robots and storing these as precompiled functions
might enable a large number of systems to be constructed using a library of
daughter robot systems. Although the expressions employed are continuous
time, in practice digital computers will be relied upon for discrete time imple
mentations. This raises the issue of whether lower computation rates may be
practical for higher level robots/controllers.

In addition to implementation issues, there are still several theoretical issues
which we hope to address. We would like to have stability proofs for classes
of control hierarchies, e.g. any hierarchy with a computed torque controller
at the highest level and only feedforward controllers below it can be shown
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to be exponentially stable. There is also no provision in the primitives for
dynamics which can not be written in the form of equation (2.1). Adaptive
identification and control techniques may be useful in cases where unmodeled
dynamics substantially affect system performance.
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Appendix A

Mathematica

implementation

As an example of how the primitives migth be implemented, we present an
offline version of the primitives written as a Mathematica package [26]. The
primitives here do not include the extensions presented in Chapter 5, nor do they
attempt to incorporate the control law calculations of the CONTROL primitive.
The primary purpose of this code is to indicate one way in which the primitives
might be implemented.

The first two examples used in Chapter 4 are constructed in Examples.m.
The syntax is almost identical to that used in the body of the paper, with the
exception of an additional argument to DEFINE and ATTACH which gives the
number of degrees of freedom of the robot. This term was added to eliminate
the need to check the dimensions of the other arguments (which are passed as
functions not matrices). Also, we note that the kinematics functions / and g
have a rule associated with them that gives the inverse kinematics function. This
function is accessed as Robotlnverse [f] and is defined in StyxDefinitions .m.

The primitives are defined in RobotPrimitives.m. A robot is represented
as a list of rules with head Robot. All robots have the basic dynamic and I/O
attributes. Additional attributes are used to store values needed by the differ
ent primitives (such as J, G and h in ATTACH). Note also that when evaluating
attributes, we use intermediate functions which take a robot object as the first
argument. This is redundant for DEFINEd and CONTROLled robots, but is neces
sary for ATTACHed robots where we must decide how to partition data based on
the size of the children.

The other files listed here are definitions and utility functions which are
needed to construct the examples and the primitives. Their definitions are
straightforward.

The code listed in this section can be obtained via anonymous ftp from
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robotics.berkeley.edu in the directory pub/RobotPrimitives.

Examples,m

<*

* Examples.m - use RobotPrimitives to define two-fingered robot hand
*

* Richard H. Hurray
* April 27, 1990
*

* )

«RobotPrimitives.m (* definitions of the primitives *)
«StyxDefinitions.m (* definitions for two-fingered hand *)

<*

* Example tl - High level computed torque
*

* Connect everything together and strap a computed torque controller
* on to the top of the whole thing.
•

* )

left • RobotDefine[2, Hleft, Cleft, {0, 0}ft, RDleft, HRleft];
right • RobotDefine[2, Bright, Cright, {0, 0>A, RDright, WRright];

fingers » RobotAttach[4, J, IdentityHatrix[4] A, f, nil, {left, right}];

box • RobotDefine[3, Hbox, Cbox, Ibox, nil, nil];
hand - RobotAttach[3, IdentityHatrix[4] ft, Q, g, box, {fingers}];

HighCThand • RobotControlChand, ComputedTorque];

(*

* Example #2 - Low level computed torque
*

* Add a computed torque controller just above fingers to simplify
* calculations

*

*)

LowCTfingers » RobotControl[fingers, ComputedTorque];
LowCThand » RobotAttach[3, IdentityHatrix[4] ft, Q, g, box, {LowCTfingers}];

(* Sample computations - run these interactively
RobotHass[left] (* mass matrix at the current position *)
RobotPtassChand] (« this one takes a while (2-3 min) *)
RobotCoriolis[fingers, (* evaluate coriolis at a given point *)
{xl.yl, x2,y2},
{dxl,dyl, dx2, dy2}]

RobotWrite[hand, (* run through the inverse kinematics *)
{x.y.phi}, nil, nil, nil]

RobotRead[hand] (* forward kinematics *)
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RobotMass[HighCThand] (♦ this should be zero *)
RobotNass[LowCThand] (* just the box mass •)
*)

RobotPrimitives.m

RobotPrimitives - Primitives for Robot Control

Richard N. Hurray
Hay, 1990

This package implements the primitives described in:

D.C. Deno, R.H. Hurray, I.S.J. Pister and S.S. Sastry,
"Control Primitives for Robot Systems",
ERL memo #90-???, UC Berkeley, Hay 1990

:Context: RobotPrimitives*

:Package Version: 1.0
:Hathematica Version: 1.1

:History:

Version 1.0 by Richard Hurray (UCB), Hay 1990

:Discussion:

A "robot" is just a list of rules that stores the attributes
associated with a robot (mass, I/O, etc). Send comments and bug
reports to murrayCunited.berkeley.edu.

)

BeginPackage["RobotPriraitives'", "Jac"']

RobotDefine::usage • "RobotDefine[size, H, C, I, rd, wr] - define a new robot."

RobotAttach::usage » "RobotAttach[size, J, 0, h, payload, list] - attach
several robots to a payload via a kinematic constraint."

RobotControl::usage » "RobotControl[robot, controller] - attach a controller
to a robot. Currently the only controller defined is ComputedTorque."

Robotlnfo::usage = "Robotlnfo[robot] - Print the attributes of a robot."

RobotRead::usage • "RobotRead[robot] - print current state of a robot."

RobotHrite::usage » "RobotWrite[robot, x, dx, ddx, f] - write state information
to a robot, x • position, dx = velocity, ddx » acceleration, f • force."

RobotHass::usage » "RobotHaas[robot, x] - return the mass matrix of a robot
at position x. If x is nil or not specified, the current position is used."

RobotCoriolis::usage = "RobotCoriolis[robot, x, v] - return the coriolis
matrix of a robot evaluated at a given position and velocity. If x and
v are not specified, the current values are used."

RobotHonlinear::usage = "Robotlonlinear[robot, x, v] - return the nonlinear
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force vector for a robot. If x and v are not specified, the current values
are used."

RobotSimplify::usage = "RobotSimplify[expr] - apply some basic simplification
rules to expr. Supposedly optimized for robot type expressions."

nil::usage = "The nil function is used by several RobotPrimitives routines to
indicate a lack of data."

Robotlnverse::usage » "RobotInverse[f] is used to define the inverse of f. A
typical application is defining the inverse kinematics associated with f."

ComputedTorque::usage = "ComputedTorque - controller for use with RobotControl"

(* Set the default simplification operation to nothing *>
Options[RobotPrimitives] = {simplify -> RobotSimplify};

Begin["Private"']

(• Redefine the output format to keep listings small *)
(* Use Robotlnfo to get a full listing of attributes *)
Format[robot.Robot] := "-RobotObject-";

(•

* DEFIIE - create a new robot given its basic attributes
*

* Usage: DEFIIE[size, mass, coriolis, nonlinear, rd, wr]

*)

SetAttributes[RobotDefine, HoldAll];
RobotDefine[size., mass_, cori_, nonl_, rd_, wr.] :•

(* Return the attribute list with Robot head •)
Robot 60 {

size$ -> size, type$->"Define",
ReadFcn$ -> defineRead,
WriteFcn$ -> definetfrite,
Has8Fcn$ -> defineHass,
CoriFcn$ -> defineCori,
IonlFcn$ -> definelonl,

H$->mass, C$->cori, I$->nonl,
Rd$->rd, «r$->wr

};

(* Hass matrix evaluation for a defined robot *)
defineHass[robot.Robot, pos_] :=

Block[

{theta},

<* Get the robot position; if nil is specified, then read it •)
If [SameQ[pos, nil], theta » <RobotRead[robot])[[l]], theta = pos];

(* low evaluate the mass matrix at that position *)
(getAttribute[robot, H$])[theta]

];
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(• Coriolis matrix evaluation for a defined robot «)
defineCori[robot.Robot, pos_, vel_] :=

Block[

{theta, dtheta},
(* Get the robot position; if nil is specified, then read it *)
If [SameQ[pos, nil],

{theta, dtheta} » (RobotRead[robot])[[{l,2}]],
{theta, dtheta} = {pos, vel}];

(* low evaluate the mass matrix at that position *)
(getAttribute[robot, C$])[theta, dtheta]

];

(* lonlinear vector evaluation for a defined robot *)
defineIonl[robot.Robot, pos., vel_] :«

Block[

{theta, dtheta},

(* Get the robot position; if nil is specified, then read it *)
If [SaraeQ[pos, nil],

{theta, dtheta} = (RobotRead[robot])[[{1,2}]] ,
{theta, dtheta} = {pos, vel}];

(* low evaluate the mass matrix at that position *)
(getAttribute[robot, •$])[theta, dtheta]

];

(* Read function for a defined robot *)
defineRead[robot_Robot] :• (getAttribute[robot, Rd$])[];

(* Write function for a defined robot *)
defineWrite[robot.Robot, x_, dx_, ddx_, f_] :»
(getAttribute[robot, Wr$])[x, dx, ddx, f];

(*

* ATTACH - attach two or more objects together with a kinematic constraint
*

* Usage: ATTACH[size, J, G, h, payload, robot-list]
*

*)

SetAttributes[RobotAttach, HoldAll];
RobotAttach[size_, J_, G_, h_, payload., robotlist_] :=

Robot M {

size$ -> size,
type$ -> "Attach",
HassFcn$ -> attachHass,
CoriFcn$ -> attachCori,
IonlFcn$ -> attachlonl,
ReadFcn) -> attachRead,
WriteFcn$ -> attachWrite,
G$ -> G, J$ -> J, h$ -> h,
RobotList$ :> robotlist,
Payload$ :> payload}
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(* Hass matrix evaluation for an attached robot *)

attachHass[robot., q_] :•
Block[

{daughter" getAttribute[robot, RobotList$] ,
simple • (simplify/. Options[RobotPrimitives] /. {siraplify->Identity}),
x, theta, thpart, Afn, Hr,Ha, i},

(* Get the position of the robot *)
If[SameQ[q, nil],
(• Figure out the current object location and velocity transformation *)
{Afn, x} = Take[ attachForward[robot], 2 ];

(* Use current location (nil) for mass matrix evaluation *)
thpart = Array[nil ft, Length[daughter]],

(* Else *)

(• Use the inverse kinematics to find the robot location (slow) *)
{Afn, theta} » Take[ attachReverse[robot, q], 2 ];
thpart = partition[theta, getAttribute[daughter, size$]];
x = q;

];

(* Stack the mass matrices on top of each other *)
Hr • blockDiagonal[

Table[ RobotHass[daughter[[i]], thpart[[i]] ], {i, Length[daughter]} ]
J i

(* low transform the mass matrix into object coordinates *)
Ha = simple[ Transpose[Afn] . Hr . Afn ];

(* Add in the payload mass if there is a payload *)
If[Iot[ SameQ[getAttribute[robot, Payload$], nil] ],

Ha +» RobotHass[getAttribute[robot, Payload$], x]];

(* Return the mass matrix •)
Ha

]

(* Coriolis matrix evaluation for an attached robot *)
attachCori[robot., q_, v.] :•

Block[

{daughter = getAttribute[robot, RobotList$],
simple - (simplify/. Options[RobotPrimitives] /. {simplify->Identity}) ,
x, dx, theta, dtheta, thpart, dthpart, Afn, Cr, Co, i},

(• Get the position of the robot *)
If[SameQ[q, nil],

(* Figure out the current object location and velocity transformation *)
{Afn, x, dx} * Take[ attachForward[robot] , 3 ];

(* Use current location (nil) for evaluation *)
dthpart » thpart • Array[nil ft, Length[daughter]],

(* Else *)

(* Use the inverse kinematics to find the robot location (slow) *)
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{Afn, theta, dtheta} * Take[ attachReverse[robot, q, v], 3 ];
thpart a partition[theta, getAttribute[daughter, size$]] ;
dthpart = partition[dtheta, getAttribute[daughter, size$]];
x = q; dx = v;

];

(* Stack the coriolis matrices on top of each other *)
Cr » blockDiagonal[ Table[

RobotCoriolis[daughter[[i]], thpart[[i]], dthpart[[i]] ],
{i, Length[daughter]} ] ];

(• low transform the matrix into object coordinates *)
Co = simple[ Transpose[Afn] . Cr . Afn ];

(• Add in the payload mass if there is a payload *)
If[lot[ Sameq[getAttribute[robot, Payload$], nil] ],

Co +° RobotCoriolis[getAttribute[robot, Payload$], x]];

(* Return the Coriolis matrix *)
Co

]

(* lonlinear vector evaluation for an attached robot *)
attachlonl[robot., q_, v_] :•

Block[

{daughter » getAttribute[robot, RobotList$],
simple - (simplify/. Options[RobotPrimitives] /. {siraplify->Identity}),
x, dx, theta, dtheta, thpart, dthpart, Afn, Cr, Co, i},

(* Get the position of the robot *)
If[SameQ[q, nil],

(* Figure out the current object location and velocity transformation *)
{Afn, x, dx} • Take[ attachForward[robot], 3 ];

(* Use current location (nil) for evaluation •)
dthpart » thpart = Array[nil ft, Length[daughter]],

(• Else *)

(* Use the inverse kinematics to find the robot location (slow) *)
{Afn, theta, dtheta} » Take[ attachReverse[robot, q, v], 3 ];
thpart = partition[theta, getAttribute[daughter, size$]] ;
dthpart = partition[dtheta, getAttribute[daughter, size$]];
x = q; dx » v;

];

(* Stack the nonlinear matrices on top of each other *)
Ir • stackVector[ Table[

Robotlonlinear[daughter[[i]], thpart[[i]], dthpart[[i]] ],
{i, Length[daughter]} ] ];

(* low transform the nonlinear into object coordinates *)
II » simple[ Transpose[Afn] . Ir ];

(* Add in the payload mass if there is a payload *)
If[lot[ SameQ[getAttribute[robot, Payload$], nil] ],
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II +» Robotlonlinear[getAttribute[robot, Payload$], x, dx]];

(* Return the nonlinear vector *)
II

]

(* Read routine - just solve the forward kinematics *)
attachRead[robot_Robot] := Take[attachForward[robot], -4];

(* Write routine - solve inverse kinematics and split up solution *)
attachWrite[robot.Robot, x_, dx_, ddx., force.] :°

Block[

{daughter = getAttribute[robot, RobotList$],
theta, dtheta, ddtheta, tau,

thpart, dthpart, ddthpart, taupart},

(• Figure out the desired information for the daughter robots *)
{theta, dtheta, ddtheta, tau} =
Take[ attachReverse[robot, x,dx,ddx,force], -4];

(* Partition the data *)

thpart = partition[theta, getAttribute[daughter, size$]] ;
dthpart = partition[dtheta, getAttribute[daughter, size$]];
ddthpart « partition[ddtheta, getAttribute[daughter, size$]];
taupart - partition[tau, getAttribute[daughter, size$]];

(* Write to the daughter robots *)
For[i » 1, i <= Length[daughter], ++i,
RobotWrite[daughter[[i]],
thpart[[i]], dthpart[[i]], ddthpart[[i]], taupart[[i]]]

];
];

(* Forward kinematics for an attached robot •)
attachForward[robot_Robot] :•

Block[

{daughter a getAttribute[robot, RobotList$],
simple a (simplify /. Options[RobotPrimitives] /. {siraplify->Identity})
states, theta, dtheta, ddtheta, tau,
x, dx, ddx, force, Gfn, Jfn, Afn, Apl, Adt},

(* Get the states of the child robots *)

states a Array[(RobotRead[daughter[[fl]]]) ft, Length[daughter]];

(• low extract out the various pieces *)
theta = Flatten[ Array[ (states[[tl.l]]) ft, Length[daughter] ] ];
dtheta a Flatten[ Array[ (states[[f1,2]]) ft, Length[daughter] ] ];
ddtheta a Flatten[ Array[ (states[[fl,3]]) ft, Length[daughter] ] ];
tau = Flatten[ Array[ (states[[#1,4]]) ft, Length[daughter] ] ];

(* Use the forward kinematics to find the object location *)
x a (getAttribute[robot, h$])[theta];

(* Figure out the various transformations needed for the velocity *)
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Ofn a getAttribute[robot, G$];
Jfn a getAttribute[robot, J$];
Afn a siraple[ Inverse[Jfn[theta]] ] . Transpose[Gfn[x]];
Apl a simple[ Transpose[pseudoInverse[Gfn[x]]] ] . Jfn[theta];

(* low calculate the object velocity •)
dx a Apl . dtheta;

(* Object acceleration requires that we differentiate Apl *)
Adt a simple[

directDeriv[ Transpose [pseudolnverse[Gfn[tl] ]]ft, x, dx] . Jfn [theta] +
Transpose[pseudolnverse[Gfn[x]]] . directDeriv[Jfn, theta, dtheta]

];
ddx a Apl . ddtheta + Adt . dtheta;
force a Transpose[Afn] . tau;

{Afn, x, dx, ddx, force}

];

(• Reverse kinematics for an attached robot *)
attachReverse[robot_Robot, x_, dx_:nil, ddx.:nil, force.:nil] :-

Block[

{daughter = getAttribute[robot, RobotList$],
simple a (simplify/. Options[RobotPrimitives] /. {simplify->Identity}) ,
theta, dtheta = nil, ddtheta a nil, tau a nil,
Gfn, Jfn, Afn, Apl},

theta a Robotlnverse[getAttribute[robot, h$]][x];

Gfn > getAttribute[robot, G$];
Jfn a getAttribute[robot, J$];
Afn a 8imple[ Inverse[Jfn[theta]] ] . Transpose[Gfn[x]];

(* Figure out the robot velocity •)
If[!SameQ[dx, nil], dtheta a Afn . dx];

(* Figure out the robot acceleration *)
If[!SameQ[ddx, nil],

(* Object acceleration requires that we differentiate Afn *)
Adt a simple[

directDeriv[ Inverse[Jfn[il]]ft, theta, dtheta] . Tranpose[Gfn[x]] +
Inverse[Jfn[theta]] . directDeriv[ Transpose[Gfn[tl]]ft, x, dx]

ddtheta a Afn . ddx ♦ Adt . dx;
];

(* Figure out the robot torques •)
If[!SameQ[force, nil],

Apl a simple[ Transpose[pseudolnverse[Gfn[x]]] ] . Jfn[theta];
tau a Transpose[Apl] . force];

(* Send pack a list of what we know *)
{Afn, theta, dtheta, ddtheta, tau}

];
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(*

« COITROL

•

* Usage: RobotControl[robot, controller]
*

*)

RobotControl[robot.Robot, controller.Symbol] :a controller[robot];

(* Computed torque control law *)
ComputedTorque[robot.Robot] :°

Robot ee {

size$ -> getAttribute[robot, size$],
type$->"ComputedTorque",
HassFcn$ -> zeroHass,
CoriFcn$ -> zeroCori,

IonlFcn$ -> zerolonl,
ReadFcn$ -> controlRead,
WriteFcn$ -> controlWrite,
desired$ -> {nil, nil, nil, nil},
child$ :> robot

}

(* Dynamic attributes for computed torque controlled robots *)
zeroHass[robot., pos_] :a o IdentityHatrix[getAttribute[robot, size$]];
zeroCori[robot., q_, v.] :a o IdentityHatrix[getAttribute[robot, size$]];
zerolonl[robot., q_, v.] :a o Range[getAttribute[robot, size$]];

(* Read function for controlled robots *)
controlRead[robot_Robot] ;a RobotRead[getAttribute[robot, child$]] ;

(* Write function for controlled robots *)
controlWrite[robot.Robot, x_, dx_, ddx_, force.] ;a
(* lot implemented *)
lull;

(•

* RobotSimplify
*

* This command attempts to use simplification rules which are fine
* tuned to a robot. For now we just built in simplification rules.
*

* TrigExpand is too brittle in version 1.1 to be used * reliably, so
* we are forced to omit it, even though it is the obvious thing to use.
*)

RobotSimplify[expr.] ;a Together[expr]

(*

* Functions for returning various attributes of a robot
•

* RobotHass return the mass matrix of a robot

* RobotCori return the coriolis/centrifugal matrix
* Robotlonl return gravity/friction vector
* RobotRead read the current state of a robot
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* RobotWrite write the desired state of a robot

* Robotlnfo return general information about a robot
*

*)

SetAttributes[getAttribute, Listable]
getAttribute[robot.Robot, attr.Symbol] :" (attr /. (List CC robot))

RobotHass[robot.Robot] := RobotHass[robot, nil];
RobotHass[robot.Robot, x_] ;a getAttribute[robot, HassFcn$][robot, x];

RobotCoriolis[robot.Robot] :a RobotCoriolis[robot, nil, nil];
RobotCoriolis[r.Robot, x_, v.] ;a getAttribute[r, CoriFcn$][r,x,v];

Robotlonlinear[robot.Robot] :a Robotlonlinear[robot, nil, nil];
RobotHonlinear[r.Robot, x., v.] := getAttribute[r, IonlFcn$][r,x,v];

RobotRead[robot_Robot] ;a (getAttribute[robot, ReadFcn$])[robot] ;

RobotWrite[robot.Robot, x_, dx., ddx_, f_] :=
(getAttribute[robot, WriteFcn$])[robot, x, dx, ddx, f] ;

(* List the information contained in a robot *)
(* Replace the head (Robot) with List to bypass formatting *)
RobotInfo[robot.Robot] := List OQ robot;

(*

* Utility functions used by the primitives

*)

(* Partition a list into a bunch of sublists *)
partition[list_List, size.List] :»

Block[

{offset » 0, index, part a {}}t
For[index a if index <a Length[size], ++index,

part a Join[part, {list[[ offset + Range[size[[index]]] ]]} ];
offset +a size[[index]];

];
part

]

(* Crufty implementation of block diagonalization *)
blockDiagonal[list.List] :=

Block[

{mat, index, row, rowoff a 0, col, coloff a 0},
mat a Array[0 ft, Plus Cfi Hap[Dimensions, list]];
For[index a i, index <a Length[list], ++index,
For[row a i, row <a Dimensions[list[[index]]][[1]], ++row,
For[col a i, coi <= Dimensions[list[[index]]][[2]], ++col,
mat[[row+rowoff, col+coloff]] = list[[index]][[row, col]]

];
];
{rowoff, coloff} += Dimensions[list[[index]]];

];
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mat

];

(* Stack vectors on top of each other *)
stackVector[list_List] ;a Flatten[list, 1]

(« Quick and dirty Hoore-Penrose inverse (assumes m is full rank) *)
pseudolnverse[ra_] .-a Transpose[m] . Inverse[m . Transpose[m]] ;

(* Take the derectional derivative of a function at x in the v direction *)
directDeriv[f_, x_, v.] ;a

Block[

{args, i},
args a Table[Unique[], {Length[x]}];
Sum[

v[[i]] *

Hap[ D[tl, args[[i]]]ft, f[args], {TensorRank[f[args]]} ]
/. listRule[args, x] ,
{i, Length[x]}

]

];

(* Listable version of Rule *)

SetAttributes[listRule, Listable];
listRule[lhs_, rhs.] :a Rule[lhs, rhs];

End[] (* end of private context *)
EndPackage[] (• end of RobotPrimitives context *)

RobotDynamics.m
(* RobotDynamics.m - functions for generating dynamic eqs for robots *)
(* RHH 2/16/90 *>

BeginPackage["RobotDynamics'", "Jac'"];

(* Calculate the Coriolis matrix from the mass matrix *)
Coriolis[H., Q_, W_] :-

Block[

{m, Dm, Co, x, y},

(• Define a functional form of the mass tensor *)
»[q_, x_, y_] :a x.H.y;

(* Coriolis and centrifugal forces *)
Dm[q_, x_, y_, z_] :a Jac[m[q,x,y], q].z;
Co[q_, x_, y_, z_] := (Dra[q, x.z.y] + Dm[q, y,z,x] - Dra[q, x,y,z]) / 2;

(* Return the coriolis matrix •)
{ {Co[Q, W, {1,0},{1,0}], Co[Q, W, {0,1},{1,0}]},

{Co[Q, W, {1,0},{0,1}], Co[Q, W, {0,1},{0,1}]} }
];

(• Calculate the inertia matrix from the kinetic energy *)
HassFromKinetic[K_, v.] :a Jac[Jac[K, v] , v] ;
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EndPackage[];

StyxDefinitions.m
(*

* StyxParameters.m - parameters for two-fingered hand
*

* Richard H. Hurray
* April 27, 1989
*

* This file defines the dynamic attributes for two fingers and a box.
* The following symbols are used:
*

* Mil, H12, Hrl, Hr2 Finger masses (point mass; end of link)
* Lll, L12, Lrl, Lr2 Finger lengths
* Hb, Jb box mass and inertia

* r box radius

*

* The inverse kinematics for the two link are from Craig's book, with more
* or less arbitrary determination of elbow up/down configurations.
*)

«RobotDynamics.ra (• utilities for robot dynamics •)
«Jac.m (* definitions for Jacobian *)

(* Hass matrix for a 2 link manipulator with point masses at the link tips *)
TwoLinkHass[theta., {ml., m2_}, {11., 12.}] :a
{{ ml 11*2 + m2 12*2, m2 11 12 Cos[theta[[l]] - theta[[2]]] },
{ ra2 11 12 Cos[theta[[l]] - theta[[2]]], m2 12*2}}

TwoLinkKinematics[{thl_, th2_}, {11., 12.}] :a
{11 Cos[thl] + 12 Cos[th2], 11 Sin[thl] + 12 Sin[th2]}

TwoLinkInverseIin[{x_, y_}, {11., 12.}, soln_] ;a
Block[

{c2, s2, phi2},
Print["solving two link inverse kinematics"];

(* First solve for the outer joint angle •)
c2 = (x'2 + y-2 - 11-2 -12*2) / (2 11 12);
s2 = if[soln » Up, Sqrt[i - c2*2], -Sqrt[l - c2*2]];
phi2 a ArcTan[c2, 82];

(* low solve for the inner joint angle *)
phil a ArcTan[x, y] - ArcTan[ll + 12 c2, 12 s2];

(* Return absolute coordinates *)
{phil, phil + phi2}

];

(* Box dynamic attributes *)
Hbox[pos_] :a DiagonalHatrix[{Hb, Hb, Jb}];
Cbox[pos_, vol.] :a DiagonalHatrix[{0, 0, 0}];
Hbox[pos_, vol.] :a {0, 0, 0}
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(* Left finger attributes *)
Fleft[{thl_, th2.}] a TwoLinkKinematics[{thl, th2}, {Lll, L12}];
RobotInverse[Fleft][{x_,y_}] :a TwoLinkInverseKin[{x, y}, {Lll, L12}, Up];
Hleft[{thl_, th2_}] a TwoLinkHass[{thl, th2}, {Hll, H12}, {Lll, L12}];
Cleft[{thl_, th2_}, {dthl_, dth2.}] a

Coriolis[Hleft[{thl, th2}], {thl, th2}, {dthl, dth2}];

(• For read and write, just return some symbols and write to stdout *)
RDleft[] :- {{thl, th2}, {dthl, dth2}, {ddthl, ddth2}, {taul, tau2}};
WRleft[th_, dth., ddth_, tau_] :a

Block[

O,
Print["Left:"];
Print["theta: ", Short[th, 10]];
Print["dtheta: ", Short[dth, 10]];
Print["ddtheta: ", Short[ddth, 10]];
Print["tau: ", Short[tau, 10]];

];

(* Right finger attributes *)
Fright[{thl., th2_}] a TwoLinkKinematics[{thl, th2}, {Lrl, Lr2}];
Robotlnverse[Fright][{x_,y.}] :a TwoLinkInverseKin[{x, y}, {Lll, L12}, Up];
Hright[{thl_, th2_}] = TwoLinkHass[{thl, th2}, {Hrl, Hr2}, {Lrl, Lr2}];
Cright[{thl_, th2_}, {dthl., dth2_}] a
Coriolis[Hright[{thl, th2}], {thl, th2}, {dthl, dth2}];

RDright[] :a {{th3, th4}, {dth3, dth4}, {ddth3, ddth4}, {tau3, tau4}};
WRright[th_, dth., ddth_, tau.] :a

Block[

O.
Print["Right:"];
Print["theta: ", Short[th, 10]];
Print["dtheta: ", Short[dth, 10]];
Print["ddtheta: ", Short[ddth, 10]];
Print["tau: ", Short[tau, 10]];

];

(* Finger kinematics - combines left and right *)
f[{thl.,th2_,th3_,th4_}] a join[ Fleft[{thl, th2}], Fright[{th3, th4}] ];
Robotlnverse[f][{xl_, yl., x2_, y2_}] :a
Join[ Robotlnverse[Fieft][{xl, yl}], Robotlnverse[Fright][{x2, y2}] ];

J[{thl_,th2_,th3.,th4_}] a Jac[f[{thl, th2, th3, th4}], {thl,th2,th3,th4}];

(* Grasp kinematics - for attach box to fingers *)
g[{xl., yl., xr_, yr_}] :a {(xl+xr)/2, (yl+yr)/2, ArcTan[xl-xr, yl-yr]};
Robotlnverse[g][{x., y_, psi.}] :°
{x-r Cos[psi], x-r Sin[psi], x+r Cos[psi], x+r Sin[psi]}

G[{x_, y_, psi.}] :a
{{1,0,1,0}, {0,1,0,1}, {r Sin[psi], -r Cos[psi], -r Sin[psi], r Cos[psi]}};

Jac.m

(*

* Jac.m - jacobians and Lie derivatives
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• John Hauser

* 1989

*

*)

BeginPackage["Jac'"]

Jac::usage a "J&c[f,x] computes the derivative of f with respect to x.";
Lie::usage * "Lie[f,g,x] computes the Lie bracket of f and g wrt x.";
LieD::usage a "LieD[f,h,x] compute the Lie derivitive of h wrt f.";
Adj::usage a "Adj[vl,v2,x,k] calculate the kth bracket of v2 wrt vl.";

Begin["Private'"]

Jac[f_, x_] :=

If[
VectorQ[ f ],
Table[ D[ f[[i]], x[[j]] ], {i, Length[f]} , {j, Length[x]} ]
Table[ D[ f, x[[j]] ], {j, Length[x]} ]

]

Lie[vi_, v2_, x_] :a Jac[v2,x].vl - Jac[vl,x].v2

Adj[vl_, v2_, x_, k_] :a
If[ k~0, v2, Lie[ vl, Adj[ vl, v2, x, k-1 ], x] ]

LieD[f_, h_, x_] := Jac[h,x].f

End[]

EndPackage[]
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