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AN APPLICATION TO LPCVD REACTORS

Ph.D. Kuang-Kuo Lin EECSDepartment

ABSTRACT

A systematic equipment modeling and characterization methodology has been

developed for automated VLSI manufacturing. This methodology is based on the

development of generic first principle process models. These generic models are subse-

quendy refined and fitted to specific manufacturing equipment, using a multi-stage D-

optimal experimental design. The methodology has been successfully applied to a low

pressure chemical vapor deposition (LPCVD) furnace for undoped polysilicon deposi

tion. A 2-stage D-optimal experiment with 24 runs has yielded statistical fitted models

for the film growth rate and film residual stress. The calibrated models agree well with

the experimental data, and account for the observed process variations.

Achieving consistent and high quality operation for each VLSI manufacturing pro

cess step can be challenging. The task of optimizing the process yield can be simplified

through the application of statistical semi-empirical equipment models for automated

process design and control. In order to accommodate the multipleobjectives of semicon

ductor manufacturing, a numerical optimizer is integrated with a highly interactive inter

face. The combination can assist the process engineer in choosing the best compromise

of equipment settings in terms of product andequipment performance. Currently, the sta

tistical LPCVD models we developed are being used in a computer-aided design system

that synthesizes optimal manufacturing process steps for the LPCVD of undoped polysil

icon. The system will generate recipes that achieve objectives not just related to the

average value of the film properties, but to theiruniformity as well.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In light of today's stiff economical competition and rapid technological advance

ment in the semiconductor industry (Table 1), manufacturing science is recognized for

its leverage on productivity and quality. The design of a Computer-Integrated-

Manufacturing (CIM) system architecture for manipulating critical manufacturing data

sets [1], as well as the development of efficient methodologies for process design and

control, can offer a competitive edge for the industry.

TRENDS IN VLSI WAFER FABRICATION

LSI VLSI ULSI

(1975) (1985) (1990)

Products (DRAM) 16K 256-1M 4M

Throughput, wafer/mo. 10K 30K 50K

Total process steps/lot 100 230-400 550

No. of equipment types 40 100 120

Total equipment count 70 300 400

No. of process conditions 200 800 1,500

Database records/lot

for stable production 100 5,000 10,000

Source: K. Sato, Toshiba
(JTECH/NSF visit to Japan, 1988)

Table 1.1 Trends in VLSI wafer fabrication



Accurate and efficient process/equipment models [2,3], if coupled with the capa

bilities of a well-designed CIM architecture, can be instrumental in supporting many

crucial manufacturing functions. The subject of this dissertation is a systematic and

economical methodology towards building and calibrating equipment-specific process

models for manufacturing applications. We choose to call these models "process

models" because they actually describe the physical and chemical phenomena in the

processing chamber of the equipment The fact that these models must be characterized

through measurements for specific pieces of equipment makes them "equipment-

specific". In comparison to purely physically-based models and to strictly empirical

models, this approach is probably more suitable for process design and control in a

semiconductor manufacturing environment, in terms of its simplicity of computation

and capability of extrapolation.

The methodology has been successfully applied for the modeling of a low pressure

chemical vapor deposition (LPCVD) furnace for undoped polysilicon. A 2-stage D-

Optimal experimental design with 24 runs was used to calibrate and refine physically-

derived LPCVD models for the specific furnace. These models describe the equipment

not only for the nominal processresponses, such as thefilm deposition rate and residual

stress, but also for the associated process uniformities. The models agree well with the

experimental data, and account correctly for the observed process variations.

Currently, the LPCVD models have been integrated in the Berkeley Computer-

Aided-Manufacturing (BCAM) system for various applications, such as process design

[4], control, and diagnosis [5]. One application utilizing the developed models and

described in length herein, is a computer-aided process design system. In order to

accommodate the multiple objectives of semiconductor manufacturing, a numerical

optimizer is integrated with a highly interactive interface. The combination can assist



the process engineer in choosing the best compromise of equipment settings in terms of

product and equipment performance. The computer-aided design system is currently

being used to synthesize optimal manufacturing process steps for the LPCVD of

undoped polysilicon. The system will generate recipes that achieve objectives not just

related to the average values of the film properties, but to their product uniformity and

process stability as well.

1.2. Dissertation Outline

Chapter 2 provides a conceptual overview of the proposed architectures of the

Berkeley Computer-Integrated/Aided-Manufacturing (BCIM/BCAM) systems. The

development of semi-empirical models, for both the nominal process behavior and the

associated process variations, is described in Chapter 3. The design of experiments for

model characterization is introduced in Chapter 4. Chapter 5 depicts the statistical

characterization process using data derived from a designed experiment The evaluation

of statistical semi-empirical models is given in Chapter 6. Chapter 7 is devoted to a

discussion on automating optimal process design using the developed models. Finally,

the dissertation concludes with ideas for future research in Chapter 8.
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CHAPTER 2

THE BERKELEY COMPUTER INTEGRATED

MANUFACTURING FRAMEWORK

2.1. Introduction

The objective of the Berkeley Computer IntegratedManufacturing (BCIM)project

is to improve the productivity and quality of IC manufacturing. This objective is being

achieved by the development of both algorithmic methodologies and software modules

for controlling VLSI processing steps. Crucial to this approach is the design of a flexi

ble architectural model for linking different software modules into a computer

integrated system to support design, manufacturing and testing. This chapter gives a

conceptual introduction to BCIM and its associated modules, where a set of distinct

new approaches to IC manufacturing are proposed.

2.2. The Berkeley CIM Architecture

The success of a CIM system depends on the degree of integration of knowledge

and software across disciplines such as business, engineering, operations research, com

puter science, management information systems (MIS), etc. Unfortunately, many of the

important pieces of knowledge and software in today's manufacturing environment are

"stand-alone" entities. This lack of integration often delays corporate decisions that

depend on the information gathered from various levels and disciplines in the corpora

tion.

A cost-effective model of the system architecture, shown in Fig. 2.1, is proposed

to support IC-CIM applications [1],



|N

factory control
system:

scheduling &
planning

work-in-progress

CIM BUS

equipment
- control_ _

database

SECS

• a

u

corporate level
business system:

marketing, sales
orders, shipments

CIM BUS

data

collection,
database

aSECS

transport

- control^
database

SJ3

SEfS

\ transport
^systems

/processing \
^equipmenLy

/{^analytical
equipment

N

U

design system:

engineering design
product design
process simulation

CIM BUS

test-data
_collectiqn_
database

SECS

C final-test
systems

i

diffusion
implant
etch

lithography

etc.

workcells

Fig. 2.1 The BCIM architecture.

Special features and requirements of employing this architectural model include:

(1) A multi-tasking operating system, such as UNIX.

(2) A high speed local area network (LAN) for linking different computing sys

tems. The LAN makes it possible to link process control applications in different sys

tems directly to each other and to the fabrication equipment.

(3) A physically distributed but logically integrated relational database.

(4) A two-level partition of the system. The lowest level in this architecture, which

is physically closest to the manufacturing floor, includes the embedded controllers that



provide real-time control of the semiconductor analysis and fabrication equipment Per

sonal computers used as equipment controllers or for other tasks are included in this

first level.

The second level comprises a distributed network of multi-tasking computer

workstations, file servers, and computing processors linked by a common distributed

relational Data Base Management System (DBMS). Different computing processors

are linked by a high-speed LAN at this level. Some computer workstations, generally

known as work-cell controllers, will be located in specific fabrication areas for

supervising a given equipment cluster. The functions of the work-cell controllers

include collection of real-time and in-line process data, statistical process analysis

(SPC), and graphical display interfaces to equipment operators. The work-cell controll

ers communicate with the embedded equipment controllers via the SECS (Semiconduc

tor Equipment Communication Standard) or compatible protocols to facilitate vital data

collection. Due to their multi-tasking capability, the work-cell controllers can support

multiple concurrent operations within the work-cell.

Other multi-tasking workstations at the second logical level (but physically further

from the manufacturing floor) may be devoted to general logistic operations, such as

engineering design systems, corporate-level business systems, factory control systems,

etc.

(5) A distributed relational database, coupled with the definition of a common data

interchange format (such as CIMBUS [2]), enables a user to issue the same operating

commands to enter or query data in the database at any location or level in the architec

ture. Similarly, different pieces of software can communicate with each other at any

location or level in the architecture.



This simple architectural model has great flexibility, which enables future exten

sion and adaptation to meet changing requirements, such as the addition of more com

puting resources. The physical location of database files and the specific computer on

which application software is executed can be easily changed as needed.

23. The Berkeley CAM Architecture for a Work-cell Controller

A Berkeley CAM architecture [3], shown in Fig. 2.2, is proposed for a work-cell

controller suitable for supervising the operation of semiconductor manufacturingequip

ment.
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The six data sets, listed below, are identified as being critical to the operation of a

work-cell controller [1]:

(i) production lot history data

(ii) real-time process monitoring data

(iii) in-line physical and electrical measurements

(iv) final electrical test data

(v) equipment maintenance data

(vi) equipment-specific process models

There are several useful work-cell controller capabilities. They include: equip

ment simulation, recipe generation and management, real-time monitoring, fault diag

nosis, statistical process control (SPC), preventive maintenance, real-time control, and

feedback/feed-forward control. These capabilities are implemented using techniques

from statistical experimental design, statistical process control (SPC), numerical optim

ization, artificial intelligence [4], etc. These capabilities are tightly coupled; for exam

ple, SPC can be used in the presence of noise to trigger an on-line diagnostic procedure,

which in turn will use an equipment model to render its diagnosis.

The software structure of BCAM can be described with an object-oriented para

digm [5], shown in Fig. 2.3, to facilitate implementation efficiency, such as inheritance

of generic capabilities (such as the ones described above) for different pieces of equip

ment, and modularity for software maintenance.

A model library [6], containing the necessary equipment models for the work-cell

controller applications, also follows the object-oriented paradigm (Fig. 2.4).
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The implementation platform for the BCAM work-cell controller includes high

resolution bit-mapped display workstations based on X window primitives; high-level

prograrnming languages such as C, C++, Common lisp, CLOS (a Common Lisp Object

System), and the INGRES relational database. Other commercial packages, such as

RS/1 (a statistical analysis environment) and NAG (a numerical analysis library), are

also used within the BCAM work-cell controller system.

2.4. Equipment-Specific Process Models for Manufacturing Applications

Accurate process models are indispensable for supporting the various functions of

a work-cell controller. In order to support a wide range of manufacturing applications,

including real-time computation, the manufacturing-based process models must meet

certain criteria:

(i) The process models should be characterized for each individual piece of equip

ment for accurate representation. Henceforth, we describe them as equipment-

specific process models.

(ii) The models should be simple and analytical for two reasons. First, they must be

easy to use and modify. Second, they must be computationally efficient.

(iii) The models should capture both the nominal process behavior (such as the process

average of a wafer lot) and the process variation (such as the process uniformity of

a wafer lot).

Given these criteria, a semi-empirical approach is chosen to construct the equipment-

specific process model. A semi-empirical model is physically derived from simplified

physical principles, but is statistically characterized for a piece of specific equipment by

a designed experiment. The semi-empirical approach combines the benefits of both the

first-principle models, which allow for extrapolation and prediction, and those of the
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empirical models [7], which are simple and statistically significant.

The remainder of the dissertation is devoted to the construction of semi-empirical

equipment-specificprocess models, with LPCVD of undoped polysilicon as the research

vehicle of the modeling and characterization methodology. A sample application of the

developed models for recipe generation will be demonstrated at the end of the disserta

tion.
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CHAPTER 3

THE LPCVD MODEL DEVELOPMENT

3.1. Introduction

The objective of this investigation is to develop simple, yet precise equipment

models that can be used in a semiconductor manufacturing environment. The LPCVD

of undoped polysilicon has been selected as a test vehicle for this investigation due to

its importance in many IC applications. Although the deposition of undoped polysili

con is better understood than other LPCVD processes, it is still difficult to achieve good

wafer uniformity by this batch-mode deposition process. It is expected that a model

can help improve this situation.

3.2. Process Description

Fig. 3.1 depicts the schematic of the Tylan furnace system for the LPCVD of

undoped polysilicon. This process deposits thin polycrystalline silicon film on the

wafers. Wafers equally spaced are placed inside quartz boats with porous covers to

ensure uniform gas flow into the boats. The boats are supported by an alumina cantil

ever rod extending into the furnace. Pure silane SiH4 (with no other carrier gas) is

injected from the load end (front end) of the furnace, and pumped out at the exhaust end

(rear end). There are three heating elements, each controlled by a thermocouple1.

Together, they provide the required process temperature for the load (front), center, and

exhaust (rear) zones. The desired pressure is attained by a mechanical vacuum pump

controlled by a pressure sensor located at the load zone. A disposable quartz liner is

inserted within the furnace to protect it from undesired accumulation of polysilicon.

A thermocouple is placed close to the external heating elements for optimal response of the fur
nace temperature control. The drawback of this configuration is the existence of a temperature
offset between the wafers and the thermocouple.
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Fig. 3.1 The Tylan LPCVD fumace

There are many process design parameters affecting the performance of this pro

cessing step. They are listedin Tables 3.1 and 3.2 in order of importance [1-14].
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Primary LPCVD Process Design Parameters

(1) The 3-zone furnace temperatures.

(2) The furnace pressure.

(3) The front-end injectedsilane (SiHLj) flow rate.

(4) The deposition time.

(5) The furnace geometry.

(6) The wafer spacing (or the furnace load factor).

(7) The history of the furnace (amount of accumulated polysilicon).

(8) The history of the wafer (existing films and underlying structures)

(9) The wafer cleaning procedure.

Table 3.1 Process design parameters for LPCVD of undoped polysilicon

LPCVD Process Responses

(1) The deposition rate (or thickness for a fixed deposition time).

(2) The built-in residual polysilicon film stress.

(3) The etch properties of the deposited film.

(4) The film smoothness.

(5) The film grain size.

(6) The film texture (crystalline orientation).

(7) The step coverage properties of the film deposited on complex features.

(8) The refractive index of the film.

Table 3.2 Process responses of LPCVD undoped polysilicon



17

33. Practical Limitations on Process Parameter Settings

Not all the parameters listed in Table 3.1 are controllable or easily adjustable. The

only easily controllable parameters are: temperature, pressure, injected silaneflow rate,

and deposition time. The settings of these primary parameters are traditionally dictated

by the practical considerations listed below [1-14]:

Parameter settings

process objectives temperature pressure silane time

high throughput high high high

surface-reaction-limited2 low low

wafer-to-wafer uniformity low high

within-wafer uniformity low high

smooth film low low

small grain-size low high low low

Table 3.3 Practical settings of the primary process parameters.

As the name implies, a surface-reaction-limited process is controlled by the rate at which the
reactants can react at the wafer surface. A surface-reaction-limited process generally produces
more uniform results.
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The ranges for some of these parameters aredictated by mechanical limitations.

Other parameters, such as furnace geometry, arenot easily adjustable. Engineering

judgement and experience must be exercised in finding the optimal settings of these

secondary parameters. A reasonable design space, basedon the above requirements for

the primary parameters is shown in Fig. 3.2 (the boundaries depicted in Fig. 3.2 are set

for the particularreactor that was used for the experimental part of this dissertation).

319
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P

Fig. 3.2 The LPCVD design space
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For the output responses, only the deposition rate and stress are easily measurable.

Other responses can only be qualitatively evaluated and related to the primary process

parameters.

3.4. The Development of a Quantitative Model

We intended to model both deposition rate and stress from first principles. How

ever, the only well-understood response of the LPCVD undoped polysilicon process is

the deposition rate [2]. Most of the deposition rate models in the literature are numeri

cally complex and cannot be easily adapted to represent a specific item of manufactur

ing equipment [12,14]. Here, our goal is to develop a closed-form equipment-specific

process model, in order to facilitate process characterization, design, and control. We

will start with a model that relates the primary parameters to the deposition rate.

3.4.1. Model Assumptions

Given the chosen design space, the following assumptions are used to simplify the

derivation of the deposition rate model [1-14]:

(i) The deposition is a surface-reaction-limited process such that any limitation due to

diffusion tranport of the reactant can be neglected.

(ii) The temperature is constant and uniform3 inthe volume ofthe fumace.

(iii) Silane is transported by laminar flow along the furnace.

3
The assumption of uniform temperature is very important since some polysilicon properties,

such as the stress and film quality, are known to be greatly affected by non-uniform temperature
profiles [1]. Although this assumption is needed for model simplicity, it can be relaxed for non
uniform temperature profiles [21].
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3.4.2. The Initial Deposition Rate Model

Based on the above assumptions, a first order physically-based analytical model

for the deposition rate kinetics has been developed [1,5,12]. This model yields the

deposition rate in A/min at a given furnace position z in cm from the pure silane SiH4

inlet.

R(z) =Aexp(^) PSiH4(z) (3.1)

where Ais the Arrhenius frequency factor4 in k/min-mtorr, AE is the activation energy

in kcallmole, k is the universal gas constant given as 1.98719 cal/mole-K, T is the tem

perature in K, and Psih/2) is the partial silane pressure in mtorr. Eq. (3.1) can be

expressed in terms of the total system pressure P:

R(z) =Aexp(^-)C(z)P (3.2)

where C(z) is the mole fraction of silane at position z, and P is the total fumace pressure

in mtorr. We now define a new term rj(z) to represent the mole fraction of silane

already consumed at position z. The following integral represents the ratio of reacted

versus injected silane SiH4 between the first position zero and z.

TIM =J0Z '(Z)QR(Z) Cgsdz; TtfO) =0atz=0 (3.3)

where s (z) is the effective deposition area per unit length in cm (which includes the

wafer surfaces, boat surfaces and the fumace wall), Q is the total front-end injected

silane flow in seem, and Cgs is the "gas to solid" conversion factor for silicon

(1.85xl0~5 cm/A) . We can simplify Eq. (3.3) given an effective deposition surface

For a discussion on the Arrhenius frequency factor refer to Appendix 3 of [1].
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area5 of S cm2 and a fumace length ofL cm, between position zero and z.

The surface reaction of polysilicon deposition can be summarized by the pyrolysis of

silane [1,2].

SiH4->Si + 2H2 (3.5)

From this we see that every T|(z) mole of consumed SiH4 will release 2tj(z) moles of

H2. Hence, C(z) is related to rt(z) by:

Mole fraction of remaining SiH4 at z
C(Z) = -

(Mole fraction of remaining SiH4 at z) + (mole fraction of released H2)

or, equivalently

C(2) l^S> 1Z3@. (3.6)
[i-n(i)]+2Tito i+n(z)

Substituting this relationship back into the deposition rate model of Eq. (3.2), we

obtain:

3.4.3. Translation of the Coordinate System

The equations derived so far are based on the assumption that the furnace is

operating at full capacity, with the first wafer deposition starting at ^=0' (the very front

end of the furnace). However, our fumace is operating at half capacity, with the first

In general, the effective deposition surface area is a function of temperature (T). S is approxi
mated with a constant value within the experimental temperature range of 605 to 650 °C.
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wafer positioned somewhere near the center of the furnace (Fig. 3.3). To accommodate

this arrangement, we introduce a new coordinate system " z ". The new coordinate sys

tem is related to the old by a simple translation by zq.*

z = z - zq (3.8)

where zq is the distance of the first wafer from the front end of the fumace.

To account for the small amount of silane T|o depleted up to zq, we also have:

n'=*!-%, T|o =ri(zo) (3.9)

where t| is the additional silane depletion downstream from zq.

ooooooooooooo

"l n

load zone \ I center zone exhaust zone
*-—\ I—l I ipoooooooooooo I r=

Silane depletion

* wafer position

Fig. 3.3 Translation of the furnace coordinate system.



Substituting the above relationships back Eq. (3.7), we have:

R(z) = Aexp(—)P —
1-TlO

1 +
T1(Z)

1+TlO

Defining Rq as the deposition rate at position zq, we have:

D . ,-AE^i-no
Ro= Aexp(—)P —

R(z) = Ro

1-
T1(Z)

1-Tlo

1+JL«_
1+Tlo
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(3.10)

(3.11)

t r

The portion in Eq. (3.11) involving T| can now be expressed in terms of z and the

process parameters P, Q, and T. Recall that:

n(z)=t
scgs

0 QL
R(z)dz

Substituting the formal definition of R(z) (Eq. (3.7)) into the integral gives:

l-Tl(z)* SCgs 4 « ,-AE
Tl(Z) =/o-QlfAPeXP^) 1+T1(Z)

dz

(3.12)

Denoting all terms outside the large bracket in the expression above as "£", and separat

ing the variables:

T1(Z)

t
1+T1(Z)

1-T1(Z)
dri=JzCdz, Tio =Tl(z<)) (3.13)
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Using Eqs. (3.8) and (3.9) to change variables, we get:

Jo

(l+r|0) + r|

(i-no)-n
dV =JLZCdz', T]'(0) =0 (3.14)

After algebraic manipulation of the integral in Eq. (3.14), we have:

-Tt -2 In 1-
Tl

l-'Ho
= Cz (3.15)

We keep only the first term from the expansion of the natural-logarithm, by assuming

that rj is small.

1-Tlo
(3.16)

The approximation error introduced from Eq. (3.15) to (3.16) is about 0.5% when

rj' =0.1, and up to 2% when r\ =0.2. For most cases (including our furnace), rj can be

assumed to be less than 0.2. Under these conditions, Eq. (3.16) can now be manipu-

lated to yield rj as a linear function of z.

d+Tlo)
tKz) = £z

The above equation can be further expressed in term of Rq, which in turn can be

expressed in terms of the process parameters:

, , SC.
n(z) =

'gs

QL
Roz (3.17)



3.4.4. The Final Deposition Rate Model

The final closed-form, first order depositionrate model is shown below:

x__n(z)

R(z) = Ro
1-Tlo

1+J^L
1+%

sc
T1(Z) = —¥-RnZ

QL

(assuming s (z) = S/L for Zq < z <L, and T| (L) < 0.2)

A„ ,-AEN i-^o
Ro= APexp(——)-
^ r kT 1+T|0

Tlo=n(zo) =J0Z°-^iiQR(z)dz =±
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(3.18)

(3.19)

(3.20)

(3.21)

(assuming s (z)= So/Ln» R(z) = R(0) for0 < z < Zq and Xis someconstant)

The models in Eqs. (3.18) to (3.21) are to be used as the physical basis for the

creation of the semi-empirical equipment-specific process model (see Ch. 3 and 4).

At this point, unlike the deposition rate, the physical mechanism responsible for

the built-in residual stress of the polysilicon film is not as well understood. Hence, we

built an empirical polynomial stress model from the experiments (see Ch. 4).
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3.5. The Development of Qualitative Models for LPCVD Operations

Extensive study on some critical process responses, based on the development of

either first-principle or empirical models, is frequently limited by the lack of physical

understanding and measurement data. To optimize these critical responses, process

heuristics based on past experience are often used in the absence of precise quantitative

models.

The heuristics, acquired from local experts or from published reports [2,6-11], are

summarized in Table 3.4. Here we describe the qualitative dependency offilm rough

ness, grain size, refractive index and texture on some of the primary process parame

ters. It is important to be able to reason about the process even though these process

heuristics are in general approximate, ambiguous, and incomplete. To this end, we are

now investigating a strategy that usesfuzzy principles to represent the acquired heuris

tics [15-20].



T

(C)

(mtorr)

Q

(seem)

t

(min)

Surface

Roughness (a)

580 600 620 650

T(C)

atP=?Q=?t=?

P is high =>

a is rough

P increases =>

a increases

and vice versa

no information

no information

Grain

Size®

-800

-450

580 600

atP=?Q=?t=?

P(mtorr)

580

625

700

100 1000

600 390A

1160 920 A

1360 1050 A

at Q=? t=?

Q is high=> ~
S is large

Q incrcasei=>
S increases

and vice versa

t is long => _
Sis large

t increases_=>
S increases

and vice versa

Refractive

Index (n)

no information

no information

no information

Film

Texture

T(C)

<600

= 620

>650

Texture

<311>

<110>

<100>

atP=?Q=?t=?
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P(mtorr>-^
600<T<625

P>500

10<P<100

P<0.2

<110>

<100>

random

iS&J ™>
P=1000

50<P<100

<311>

<100>

or<110>

at Q=? t=?

no information

no information

Table 3.4 Process heuristics for some process responses.
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3.5.1. Knowledge Representation

The heuristics in Table 3.4 are first generalized as fuzzy rules in a computer sys

tem. For example, "surface roughness" can be qualitatively modeled as:

(T = low) => (surface = smooth) (3.22)
(T = medium) => (surface = acceptable)
(T = high ) => (surface = rough)
(P = low) => (surface = smooth)
(P = medium) => (surface = acceptable)
(P = high) => (surface = rough)

The premises and consequences of the rules are described by fuzzy concepts such

as "T = low" and "Surface = smooth". A fuzzy concept can be described by a fuzzy set

F with its ordered-pairs defined as follows:

FH (u,uF(u)) I ueU (3.23)

Here, U is a set of objects in the universe of discourse, denoted generically by u.

jip(u) is the membership function or degree of truth of u in F. The function maps U to

the membership space M, whose normalized range is usually from 0 to 1. As an exam

ple, U can be the pressure (P), u can be a value of P such as 300 mtorr, and F can be the

fuzzy set to represent "P = low". The membership function will be used to calculate the

degree of truth of the statement "a pressure of 300 mtorr is low". Other membership

functions, such asf for "T = low" and S for "surface = rough", are shown in Table. 3.5

and 3.6. For the convenience of illustration, we use the tabulated format of the member

ship function.



T(C) Mf

560

600

640

680

0.9

0.7

0.4

0.2

(a)

Tfor"T = low"

(b)

Table 3.5 Membership function for the fuzzy set "T = low".

o(A) ^s

10

40

70

100

1.0

0.6

0.4

0.1

(a)

S for "Surface = smooth"

Table 3.6 Membership function for the fuzzy set "Surface = smooth".

29

T(C)
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3.5.2. Approximate Reasoning

The rules outlined in Eq. (3.22)can also be modeled by fuzzy relations to facilitate

useful inference about the process responses, given the values of the input process

parameters. For example, let T and S be the fuzzy sets representing the concepts "T =

low" and "Surface = smooth" as appear in the first rule of Eq. (3.22). The fuzzy relation

R that relates f and S is represented as a matrix in Table 3.7. The elements of the

matrix for Rcan be computed by the fuzzy operator Cartesian product5 (x) on f and S:

f^ =^(TxS^>a) =min* jXj.ec), u§(a) (3.24)

Here x and a are specific values of temperature and surface roughness. With the

definition of the fuzzy relation R for the first rule, we are able to compute the fuzzy set

C for its conclusion that "surface = smooth" at a particular temperature T. The fuzzy

operator, composition (o), is used for the computation:

composition: C= f o R (3.25)

\Lt(G) = max(min(M1.(T), ufe(t,a)))
t

A simplified illustration of approximate reasoning is summarized below:

Step 1: Given a particular temperature T= 600°C, compute jij. (600°C) = 0.7 from

Table 3.5.

Step 2: The grade of membership for f of 600°C is then compared with the

column of u^ (Table 3.7) at 600°C. The minimum of the comparison yields the

membership function for the fuzzy conclusion C. The membership function ji£ of

In this case, the Cartesian product has the same definition as the and (C\) operator, i.e.

MtnS = M-(TxS)-
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C is shown in Table 3.8.

Step 3: The fuzzy set C on surface quality resembles that of S, so the proposition

"Surface = smooth" can be asserted.

T°C

560 600 640 680

10 0.9 0.7 0.4 0.2

a(A) 40 0.6 0.6 0.4 0.2

70 0.4 0.4 0.4 0.2

100 0.1 0.1 0.1 0.1

Table 3.7 Fuzzy relation \i% for f and S.

a(A) ^c

10

40

70

100

0.7

0.6

0.4

0.1

(a)

C for "Conclusion = Surface is smooth"

Table 3.8 Fuzzy set C for the conclusion at 600°C.
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3.5.3. Knowledge Integration

If we follow the approach described in the previous sections, many fuzzy sets

representing conclusions of the rules (e.g. Eq. (3.22)) in the knowledge base will be

generated. These fuzzy sets must be aggregated to provide a final and consistent solu

tion. Fuzzy operators, such as the weighted or unweighted arithmetic or geometric

means, can be used to integrate these fuzzy sets [18,19].

3.5.4. Summary for Qualitative Models

Methodologies employing fuzzy set andjuzzy logic are suitable for the qualitative

modeling of certain process responses. The methodology makes it possible to incor

porate approximate, ambiguous and incomplete process heuristics into a computer sys

tem.
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CHAPTER 4

AN EXPERIMENTAL DESIGN FOR

LPCVD CHARACTERIZATION

4.1. Introduction

A generic physical model, such as the deposition rate model discussed in Ch. 3,

must be characterized in order to represent a specific piece of manufacturing equip

ment. A statistically designed experiment, with a small number of strategically-chosen

experimental runs, can help characterize the model with minimal uncertainty and little

computational effort.

Among the many statistical experimental design techniques,- the D-optimal design

technique was chosen for this application because it is best suited for the confirmation

of known models. Other experimental design techniques (e.g. factorials, orthogonal

arrays, etc.) are geared towards exploring the design space in order to discover impor

tant input parameters or unknown parameter interactions [1-3]. Next, we will briefly

describe the theory behind the D-optimal designs, and its application on designing a

minimal number of LPCVD experiments towards establishing accurate LPCVD

models.

4.2. Background on D-optimal Design

The family of optimal experimental designs is used to select from a predetermined

design space a number of runs that optimize a certain statistical criterion. For D-

optimal designs, in particular, the criterion is the minimization of the variances of the

estimated model coefficients. This way we obtain a model with minimal variances and
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correlations for the estimated coefficients, and a low1 maximum variance of prediction

[3-6].

4.2.1. The Theory of D-optimal Design

To illustrate the D-optimal design we will explore a simple linear statistical

model2:

y=xp+e (4.1)

where3:

y is a n x 1 vector consisting of the observed experimental responses.

X is a n x k matrix of the modeling terms at the selected experimental points.

P is a k x 1 vector of the modeling coefficients to be estimated.

e is a n x 1 vector of residuals distributed around zero with variance a2.

In general, we need at least k experimental points in order to obtain an estimate of

p. For example, consider a quadratic model, y= px + P2 x+ p3 x2, and 5 experiments.

In this case y, X, e and p are as follows:

y =

p -. 1 Xl x? - -

yi

v2
1 X2 X2

Pi
£i

v3 ,x= 1 x3 x32 p= P2 ,e = £3

v4 1 X4 X4 P3 £4

v5 <j £5
1 x5 x52

(4.2)

G-optimal design explicitly minimizes the maximum variance of prediction [2,3].
2

"Linear" in the model coefficients to be estimated. The theory for nonlinear D-optimaldesign is more
complex and out of the scope of our investigation [7,8].
3

In this report we use lower-case bold-face letters (i.e. y) to represent column vectors, and upper-case
bold-face letters (i.e. X) to represent matrices.
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We now return to Eq. (4.1). The least-square estimation [9] of p is given by:

^(X'xr^X'y (4.3)

and the variance-covariance matrix [9] offt, defined as VC(|J) is:

VC$) = (X'xrVl = (X'X^o2 (4.4)

Here X"1 is the inverse ofX, (X"1)' is the transpose ofX"1 , VC(y) = o21 , a2 is the

variance of e, and I is the kxk identity matrix.

The D-optimal criterion minimizes the determinant of VC(p) in Eq. (4.4). This

determinant is an overall measure of the size of its individual elements [4-6,8].

Equivalentiy, the D-optimal criterion can be satisfied through the maximization of the

determinant IXXI as indicated in Eq. (4.5).

maxIX'XI (4.5)
x

The DETMAX algorithm [4-6] is an iterative search algorithm that selects the

experimental points to maximize IXXI. This search algorithm will randomly select an

initial subset of experimental points from a superset of candidates, and then iteratively

add or discard points until the D-optimal criterion, as defined in Eq. (4.5), is met The

RS/1 statistical software4 supports the DETMAX D-optimal algorithm and was used for

this work.

RS/1 is a product of the BBN Corporation.
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4.2.2. Unique Features of D-optimal Design

As a confirmatory experimental design technique, the D-optimal algorithm has the

following advantages:

(1) It can be used to find either the rninimal number of runs to achieve a certain vari

ance in the coefficients of the user-supplied model. Alternatively, it can be used to

minimize the variance of the model coefficients if the number of runs is given.

(2) A D-optimal design can handle an arbitrary design space (Fig 3.2).

(3) A D-optimal design allows for a flexible number of experiments, depending on the

experimental budget.

(4) A D-optimal design permits experimentation in stages. This means that we can

perform experiments in several stages in order to refine the models after each

stage, and use the refined models to generate the next set of experiments. This

multi-stage sequential feature effectively gives to this approach an exploratory as

well as a confirmatory character.

4.3. The LPCVD D-optimal Experimental Strategy

Given a total experimental budget of 24 runs, we divided the experiments into 2

stages. The first stage included 12 runs and it was designed to suit the simplified nomi

nal deposition rate model derived in Ch. 3.

Since no physical model was available for the residual stress [10,11], the stress

model was not included in the design of the first experimental stage. The second stage

consisted of 12 additional runs and was designed to suit both the calibrated deposition

rate model and the empirical residual stress model. The empirical stress model for

designing the second stagewas derived afterthe first experimental stage.
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4.3.1. Designing the First Stage of the Experiment

In order to generate a D-optimalexperimental design, we used the nominaldeposi

tion rate model described in Ch. 3, repeated below:

Ro =APexp(-^p-) f- (4.6)

The model expresses the deposition rate of the first wafer in terms of the temperature

(T), pressure (P) and silane flow (Q).

To simplify the D-optimal design, the model was linearized by employing a

Taylor's expansion of the natural logarithm in Eq. (4.6). The resulting 6-term linear

additive model has 6 coefficients to be identified. Higher order terms in the linearized

model were discarded as numerically insignificant

lnRo =c1 +c2lnP +c3T"1 +C4Q"1 +c5Q"2 +c6Q"3 (4.7)

The theoretical values of these coefficients are:

At? 0

cx =In A, C2 = 1(ideally), c3 = , c4 =-2 X, c5 =-X2, and c6 = — X3 .

The D-optimal criterion was used to choose the runs from a set of 890 possible

experimental points. These 890 points were set to provide a fairly uniform coverage of

the design space (Fig. 3.2), taking into account the degree of control for every one of

the primary parameters. For example, since the fumace can only control the tempera

ture to within 1 °C, the temperature was set at 5 °C increments. Since the deposition

time (t) was expected to affect the built-in residual stress, the process engineers selected

its values after the worksheet for temperature (T), pressure (P) and silane flow (Q) was

generated.
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The worksheet with the first 12 runs is shown in the upper half of Table 4.1. The

sequence of the actual runs was randomized to avoid bias errors [1,2]. Before complet

ing the first 12 runs, RS/1 [3] was used to evaluate the design as having an average

Relative error ofprediction5 of 0.706, and aG-efficiency6 of 0.825, over the 12 runs.

Generally, we would prefer a low Relative error of prediction and a high G-efficiency.

Since our experiments included very little replication, the Relative error of prediction

and G-efficiency were not considered as very accurate measures of the effectiveness of

the models.

Fig. 4.1 shows how the 12 runs were scattered in the design space. Since these

points had been selected according to the D-optimality criterion, they do not follow any

obvious geometrical pattern.

The Relative error of prediction is an overall measurement of the relative variance of the fitted model.
This value ranges from 0 to 1, and a good model tends to minimize it.

The G-efficiency is an overall figure of merit for an experimental design. It is inversely proportional to
the number of experiments and the variance of the fitted model.
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First Stage Design

Run# Pressure(mtorr) TemperatureCC) SiH4(sccm) Dep-time(min)

1 340 605 125 120

2 320 650 100 60

3 550 605 125 90

4 550 620 250 70

5 430 605 175 110

6 550 610 250 80

7 540 605 100 100

8 370 650 125 60

9 520 650 175 60

10 300 605 100 150

11 550 650 100 60

12 550 650 125 60

Table 4.1 A 2-stage D-optimal experimental design (First stage shown).
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Second Stage Design

Run# Pressure(mtorr) TemperatureCC) SiH4(sccm) Dep-time(min)

13 550 605 100 60

14 300 605 100 150

15 540 650 225 100

16 550 650 100 110

17 320 650 100 150

18 550 605 250 60

19 300 605 100 110

20 550 605 100 60

21 470 625 200 130

22 550 630 100 60

23 470 625 200 120

24 550 630 100 60

Table 4.1 (cont.) A 2-stage D-optimal experimental design (Second stage shown).
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4.3.2. Designing the Second Stage of the Experiment

After analyzing the data from the first stage (the analysis will be discussed in

detail in Ch. 5) we derived two models for designing the second stage D-optimal exper

iment. First, we simplified the linearized physically-based deposition rate model to

only 4 terms:

lnR0 =c1 +c2lnP +c3'r1 +C4Q""1 (4.8)

The coefficients ct to c4are defined as in Eq. (4.7), and were fitted with specific values.

The last two terms in Eq. (4.7) were excluded, since in our data we found no evidence

to support the hypothesis that they were different from zero.

Subsequently, we fitted the empirical residual stress7 model shown below:

Stress =a1 +a2T +a3t +a4Tt+a5t2 +a6T2 (4.9)

T is the temperature, and t is the deposition time. Pressure P and silane flow Q were not

found to have any significant effect on the residual stress, neither were any higher order

effects of time (t) and temperature (T).

Since the D-optimal design can only deal with one model at a time, the challenge

was to design the second stage to satisfy the models discussed above. In order to optim

ize the accuracy of both the deposition rate and stress models, we divided the second

stage design into two sub-stages. In the first sub-stage we optimized the linearized

deposition rate model of Eq. (4.8), and set the experimental values for temperature (T),

pressure (P) and silane flow (Q). To set the values for time (t) we applied the D-

optimal criterion on the residual stress model of Eq. (4.9). In the second sub-stage we
__

The film residual stress has been traditionally associated with the film thickness. The objective
of this work is to build a stress model that relates to the independent process parameters.
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optimized the residual stressmodel, from which we set the experimentalvalues for tem

perature (T) and time (t). The remaining values for pressure (P) and silane flow (Q)

were finally set from the linearized deposition rate model.

The design space for the second stageincluded a total of about 1000 possible runs.

Note that in the second stage, the parameter time (t) was represented in the residual

stressmodel, so a step size of 10 minutes was assigned to generate the time (t) settings.

The worksheet for the last 12 runs of the second stage, consisting of 8 runs for the

first sub-stage and 4 runs for the second sub-stage, is shown in the second half of Table

4.1. The first 8 runs (# 13-20) showed that the experimental settings of P, Q and T were

clustered at the extreme ends of the design space, which according to the D-optimal

algorithm, led to a more accurate linearized deposition rate model. The last 4 runs (#

21-24) used T and t values not explored in the first stage.

Before completing the second stage, RS/1 was used to evaluate the second stage

design using the G-efficiency and the Relative error of prediction. The G-efficiency

and the Relative error of prediction are tabulated against the number of designed runs

for both models in Table 4.2. For the linearized deposition rate model, the G-efficiency

peaks at around run # 20, and the Relative error of prediction shows only a gradual

decline after run # 20. This implies that for the linearized deposition rate model alone,

any more runs beyond run # 20 offer only a marginal decrease of the Relative error of

prediction with a drop in the G-efficiency. This is an indication that additional runs

would not improve the quality of the model.

For the residual stress model however, the G-efficiency increases with the number

of designed runs, and the Relative error of prediction decreases gradually with the

number of designed runs. This implies that runs beyond our original experimental

budget could be used to improve the residual stress model. In the next chapter we will



describe the model characterization procedure in detail.

linearized deposition rate model

Run# G-efficiency Rel. Error ofPrediction

12 0.825 0.706

20 0.835 0.446

24 0.743 0.406

Residual stress model

Run# G-efficiency Rel. Error ofPrediction

20 0.304 0.521

24 0.509 0.488

Table 4.2 "G-efficiency" and "Relative error of prediction"

versus number of experimental runs.

47
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CHAPTER 5

THE CHARACTERIZATION OF THE LPCVD MODELS

5.1. Introduction

The generic physical models developed in the previous chapters were character

ized with data collected from the statistically designed experiments (Ch. 4). The models

are:

• the semi-empirical deposition rate depletion model.

• the empirical "within-wafer" deposition rate uniformity model.

• the empirical residual stress model.

• the empirical residual stress uniformity model.

These models are fitted and refined for our deposition furnace by standard least-

square regression analysis [1], with data obtained from the 2-stage D-optimal experi

mental design. "Homoscedasity1" is assumed during the regression analysis of the

above models. This assumption is justified by the observation that the equipment noise

is random, and is independent of processing conditions for the range covered by our

applications.

5.2. Experiment and Data Collection

(1) Wafer selection: <111>2 sample wafers covered with 1000 A ofoxide were used.

Constancy of datavarianceacrossthe experimentalspace.
<111> wafers have a constant Poisson's ratio Vs (= lateral-strain/axial-strain) [2] of the sub

strate,which will later simplify the residual stresscomputation.
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(2) Deposition setup: Eight <111> sample wafers were mixed evenly with 18 dummy

wafers for the deposition, as prescribed in the worksheet of Table 4.1. The sample

wafers were located at positions 4, 7, 8, 9, 12, 17, 21 and 25 of the 26-slot boats.

Polysilicon was deposited on both sides of the wafers.

(3) Thickness (deposition rate) measurement: Five points (center, upper and lower

comen) were measured on each wafer. The thickness of the deposited polysilicon was

first checked by the Nanometrics NanoSpec AFT thickness measurement system. Since

the refractive index of the material was not known exacdy, the measurement was cali

brated using the more accurate AlphaStep 200 automatic step profiler. The deposition

rate of the polysilicon was obtained by dividing the thickness by the processing time.

(4) Residual stress measurement: The following formula was used to compute the

polysilicon residual film stress [3,4]:

i2 r

Residual stress =
3(l-vs) r

fi-f2

ts: substrate thickness
r: radius of curvature

fi: substrate deflection with 2 side poly-si
f2: substrate deflection with 1 side poly-si
tf: polysilicon film thickness
Es: Young's modulus of the substrate
vs: Poisson's ratio of the substrate

Given that:

in dyne/cm2

l-ve
12= 2.29x10" dyne/cm

<in>

(5.1)

(5.2)

wafer flatness (flt f^ was measured at the same 5 locations by the Tencor flatgage, both

before and after etching away the front side polysilicon using a Lamplasma etcher. The

substrate thickness (ts) was measured by the Tencor sonogage, and the film thickness
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(tf) was measured by the NanoSpec interferometer.

In all, about 40K bytes worthof data werecollected and analyzed by the statistical

software package RS/1.

5.3. Characterization of the First Stage Models

5.3.1. Characterization of the First Stage Deposition Rate Model

To characterize the entire deposition rate depletion model described in Eqs. (3.18)

to (3.21), it is sufficient to characterize the deposition rate of the first wafer, i.e. R0 in

Eq. (4.6) of Ch. 4. Rq was obtained by interpolating the deposition rates of the sample

wafers, and then fitted to the linearized expression "In Rq" in Eq. (4.7). The data of "R0H

and the corresponding "In Rq" are shown in the experimental worksheet of Table 5.1.

Eqs. (4.6) and (4.7) are repeated below:

l-±
Ro=:APexp(-^-) £- (4.6)

1 + 7T
Q

lnR0 =c1 +c2lnP +c3T'1 +C4Q"1 +C5Q"2 +c6Q"3 (4.7)

The ANOVA table for the linearized deposition rate model regression analysis is

shown in Table 5.2. The F-test revealed that this model and all its coefficients are sta

tistically significant at the 5% level of significance. The two higher-order terms for

silane flow rate (Q) were found to be statistically insignificant at the 5% level of

significance, and were omitted from this table. This simplifies the linearized deposition

rate model "In Rq" to 4 terms. Without replicates, the associated random error cannot

be estimated. However, if the model is accurate to the extent that the lack offit of the

model can be assumed to be statistically insignificant, then the residual is
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approximately equal to the random error. With this assumption, the model will predict

the mean response of the equipment with a one sigma prediction error* of ± 0.027

InA/min (about 3% of the average deposition rate in our range of operation). The

actual response of the equipment will vary around the mean value with a one sigma

replication error4 of±0.055 InA/min (around 6% ofthe average deposition rate).

The fitted first stage linearized deposition rate model is shown below:

lnR0 = 21.51+ 0.22 (In P) - 15414.13 (T"1) - 61.92 (Q-1) in InA/min (5.3)

(0.92) (0.08) (632.83) (8.34)

with P is expressed in mtorr, T in K, Q in seem, and Rq in A/min. The standard errors

of the corresponding estimated coefficients are shown underneath the model in

parenthesis. Detailsof model evaluation are presented in Ch. 6.

Theprediction error of the model can becomputed approximately by the formula: p v/n, where p is
the number of parameters used in the model, CT is the variance, and n is the number of data.

The replication error measures the variation in equipment response when a run is repeated several
times. This error is a characteristic of the equipmentqualityandit cannotbe improved with an increased
number of experiments.
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Run# Pressure Temperature SiH4 Time Rate(Rq) InRo Rate-Unif Stress Stress-Unif

(mtorr) (K) (seem) (min) (4-)
nun

an -4-)
mm

(%) ao'4h£>
enr

aogio%)

1 339 882 125 120 113.7 4.696 0.73 5.83 1.139

2 318 926 100 60 2575 5553 0.80 -3.78 0.957

3 549 881 125 90 127.6 4.796 0.96 6.72 1.071

4 548 897 250 70 220.9 5321 5.28 -1.46 2517

5 427 882 175 110 149.0 4919 1.12 6.44 1.155

6 548 888 250 80 184.2 5.157 3.41 5.81 1.389

7 538 882 100 100 115.0 4.727 056 5.27 1.422

8 366 926 125 60 275.0 5.617 0.77 -423 1.101

9 517 927 175 60 321.0 5.751 1.43 -4.47 1271

10 296 882 100 150 91.0 4560 0.89 -1.64 2.388

11 547 927 100 60 270.0 5568 053 -423 1.106

12 547 927 125 60 292.0 5.693 0.66 -3.63 0.958

13 548 879 100 60 122.7 4.810 0.73 521 1.370

14 295 883 100 150 975 4576 1.32 -0.68 2.481

15 537 927 225 100 354.2 5.872 0.97 -136 1.744

16 548 927 100 no 275.9 5.620 1.96 -230 1.445

17 316 927 100 150 262.4 5573 050 -1.61 1.483

18 552 883 250 60 186.8 5234 2.34 5.08 1.496

19 294 881 100 no 95.6 4564 1.06 2.17 2.066

20 546 881 100 60 1203 4.794 053 5.38 1.056

21 466 900 200 130 2085 5336 2.24 -0.76 2.018

22 546 907 100 60 190.6 5.247 1.84 -5.11 1.485

23 465 897 207 120 190.6 5247 1.15 0.12 3.403

24 545 904 100 60 183.1 5209 0.76 -535 1540

(+) stress values imply tensile stress

(-) stress values imply compressive stress

Table 5.1. The experimental worksheet
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Source
Total
Regression
Residual

Lack of Fit
Random Error

DF Sum of Squares Mean Square F-Ratio Significance
11

3
8
8
0

2.104
2.079
0.025
0.025

0.191
0.693
0.003
0.003

221.600 0.000

Term Coefficient Standard Error T-Value Significance

1 21.51 0.92 23.27 0.0001
1/T -15414.13 632.83 24.36 0.0001

log(P) 0.22 0.08 2.87 0.0207
I/O -61.92 8.34 7.43 0.0001

6.8e9

6.7e9

6.6e9

6.5e9

6.4e9

6.3e9

6.2c9

6.1e9

6.0e9

5.9e9

5.8e9

5.7e9

5.6e9

5.5e9

5.4e9

5.3e9

5.2e9

5.1e9

5.0e9

4.9e9

Table 5.2 ANOVA table of the first-stage deposition rate model

(P=340mtorr, T=605C, SiH4=125sccm, t=120min)
1 i 1 1 1 1 1 1 1 1 1 H

run#l stress
(0.5) Smoothed nin#l stress

8 10 12 14 16 18 20 22

wafer-position (cm)

Fig. 5.1 Stress vs. position

24 26 28 30
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5.3.2. Characterization of the First Stage Residual Stress Model

A plot of stressversus waferposition from a typical run is shown in Fig. 5.1. Like

all other runs, it revealed no significant dependency of stress on the wafer position.

Hence, the measured stress was averaged for each run over all wafers of the two boats.

The data of the average stressof each run are also shown in the experimental worksheet

in Table 5.1.

The ANOVA table for the stress model is shown in Appendix 1. This analysis

suggested that the model is statistically significant at the 5% level of significance, with

a 6-term second-orderpolynomial equation of T and t. The random error of the model

is not calculated, but it would be equal to the residual assuming that the model shows

no significant lack of fit This model will predict the mean response for the residual

stress with aone sigma prediction error of±0.33 x 109 dyne/cm2. The one sigma repli

cation error of the equipment around the average value of the residual stress is ±

0.78 x 109 dyne/cm2.

The estimated coefficients and the corresponding standard errors are below:

Stress = 164.60 + 191.19 T' - 182.021 + 192.29 ft' + 31.65 (T')2 - 17.17 (t)2 in 109dyne/cm2 (5.4)

(36.67) (41.22) (40.83) (40.48) (5.01) (3.35)

T' T-900.5 / t-120
Where:T =^l5-* t =~60-'

and T is expressed in K, t in min.

The deposition rate and residual stress models inferred from the first experimental

stage were used to design the experiments of the second stage.
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5.4. Characterization of the Second Stage Models

We performed three calibrationruns prior to the second stage experiment to ascer

tain the performance of the deposition furnace. The calibration runs confirmed that no

systematic differences existed in the furnace between the two experimental stages. We

finalized the characterization of the models in the second stage.

5.4.1. Characterization of the Second Stage Deposition Rate Model

The final data points of "In Rq" shown in Table 5.1 were fitted to the linearized

"In Rq" model in Eq. (4.8), which was derived after the first stage experiments. Eq.

(4.8) is repeated below:

In Rq =cx +C2 In P+c3 T"1 +c4 Q"1 (4.8)

The ANOVA table for the final linearized deposition rate model is shown in

Appendix 1. The model and all its coefficients are statistically significant at the 5%

level. With no replicates and assuming the lack of fit of the model is statistically

insignificant, the random error is estimated by the residual. Based on the above assump

tion, the one sigma prediction error of the linearized deposition rate model on the mean

response ofthe equipment is approximately ±0.019 InA/min (about 2% ofthe average

deposition rate). The one sigma replication error of the equipment around this mean

value is ± 0.055 InA/min (about 6% of the average deposition rate). The replication

error is a characteristic of the equipment, and as expected, it did not improve during the

second stage. Also as expected, the prediction error of the model decreased. The final

linearized deposition rate model is shown below:
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InRo = 20.65+ 0.29 (In P)- 15189.21 (TT1) - 47.97 (Q"1) in In A/min (5.5)

(0.73) (0.06) (515.92) (5.24)

where Pis expressed in mtorr, T in K, Qin seem, and Rq in A/min. The standard errors

of the estimated coefficients for the linearized model are shown in parenthesis. The

linearized model can either be used as is, or the estimated coefficients in the linearized

model can be used to deduce the coefficients in the original non-linear deposition rate

model shown below:

R(T,P,Q,z)= Ro(P,Q,T)
l-n(P,Q,T,z)

l+T|(P,Q,T,z)

-AE

aa kTR0(P,Q,T)= APae 4
"i

mole fraction of depleted Si4= ri(P, Q, T, z) =

in A/mimm

SC
gs

LQ
Rr

z = wafer position in cm. Wafers are 1.2 cm apart.
A=the Arrhenius frequencey factor =9.29xl08 A/min-mtorra
a = 0.29 (differs from the ideal value of 1)

AE =the activation energy = 30.18 kcal/mol
X= 23.98 seem"1
k = the universal gas constant = 1.98719 cal/mol-K

Cgs =the gas solid conversion factor =1.85xl0~5 cm/A
S: Effective deposition area, 4777.8 cm2 (for T =605 to650 °C)
L: Length of the boats, 30.0 cm

(5.6)

5.4.2. Characterization of the Second Stage Residual Stress Model

The final 24 run-average stress data are also shown in Table 5.1 of the experimen

tal worksheet. The stress data was used to fit a 6-term second-order polynomial. This

polynomial was slightly different from the first stage stress model. Pressure P was
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found to interact with temperature T and time t, which no longer interact with each

other. We observed that the residual stress changes drastically at 898 K and 120

minutes. Hence, these threshold parameter values were taken to be the center points in

the "normalized" polynomial model.

The ANOVA table for the final empirical stress model is shown in Appendix 1.

The final stress model and its coefficients are statistically significant at the 5% level of

significance. Given no replicates, the random error is approximated to the residual by

assuming the model is accurate with insignificant lack of fit. The model will predict the

mean stress of the equipment with a one sigma prediction error of ±

0.446 x 109 dyne/cm2. The actual stress of the equipment will vary around the predicted

mean value with aone sigma replication error of±1.261 x 109 dyne/cm2.

The final model is shown below with the standard error of the coefficients in

parenthesis:

Stress = 3.86 f + 3.451 - 2.52 f P' - 1.76 P' t + 3.36 (T')2 - 5.14 (t')2 in 109 dyne/cm2 (5.7)

(0.44) (0.68) (0.48) (0.61) (0.44) (0.72)

where fsmzL t'=m± p=i22±
Where l 22.5 ' ' 45 ' * 150 '

and P is expressed in mtorr, T in K, t in min.

5.4.3. Characterization of the Second Stage Uniformity Models

In addition to characterizing the nominal process responses discussed above, it is

also important to model the process uniformity [5] of the deposition step. Here we are

focusing on the collective data of the two experimental stages, and we model the fol

lowing two process uniformities:
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The "within-wafer" deposition rate uniformity model: We averaged the "within-

wafer" deposition rate uniformity (in %) of all wafers under each experimental run, and

empirically5 modeled the "within-wafer" uniformity in terms of pressure (P), silane

flow (Q), and temperature (T). Column 8 of Table 5.1 shows the data of the "within-

wafer" deposition rate uniformity data. The ANOVA table for the "within-wafer" depo

sition rate uniformity model is shown in Appendix 1. The model shows statistical

significance at the 5% level, with an empirical second-order polynomial consisting of 4

terms. The model has a one sigma predictionerror of ± 0.242%, and a one sigma repli

cation error of ± 0.686%. The final model is:

AR = 1.49+ 0.99 P + 1.06PQ- 0.71 (f)2 in% (5.8)

(0.31) (0.25) (0.23) (0.29)

where.P =^52. Q<= QzIZI f = T'900'5
' 150 ' ^ 75 ' 22.5 '

and P is expressed in mtorr, Q in scan, and T in K.

Note that the "between-wafer" non-uniformity of the deposition rate due to reactant

depletion is a systematic phenomenon, and it is implicidy modeled in the original depo

sition rate model of Eq. (5.6).

The residual stress uniformity model: The uniformity of the residual stress (defined

standard error
as: xl00%) averaged over all the wafers in each run was also modeled.

mean

A logarithmic transformation was first applied to the wide range of the uniformity data,

before entering them into the experimental worksheet of Table 5.1. The ANOVA table

for the log-uniformity model is shown in Appendix 1. The model is statistically

A physical model for "within-wafer" deposition rate uniformity, based on diffusion limitations
in the interwafer region, was presented in [6].
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significant with a 5-term second order polynomial in terms of the process parameters P,

Q, T, and t. The one sigma prediction and replication errors of the model are ±0.148

and ± 0.418 expressed in log %.

log10 (Astress) = 2.31 + 0.44 f + 0.38 TQ' - 0.44 Q't' - 0.88 (f)2 in log % (5.9)

(0.19) (0.17) (0.16) (0.13) (0.22)

. -/ T-900.5 ,.' Q-175 / t-105
where T =^J~, Q= 75~* l =^5~~

and T is expressed in K, Q in seem, t in min.
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6.1. Introduction

Both the first and second stage models agree well with the experimental data.

Moreover, the estimated parameters of the deposition rate model are comparable to

those reported in the literature [1-5]. However, we note that the uniformity models of

Eqs. (5.8) and (5.9) exhibit high prediction and replication errors, although their terms

are statistically significant at the 5% level. The high replication error is possibly due to

the noise inherent in the uniformity measurement. Nevertheless, we believe that the

models can provide us with first-order process trend information.

6.2. The Deposition Rate Model

The scatter plot in Fig. 6.1 compares the actual deposition rates of the first wafer

Ro with the deposition rate model for the 24 calibration runs. Fig. 6.2 and 6.3 show two

experimental deposition rate profiles, under typical processing conditions, which are in

excellent agreement with the deposition rate model. The deposition rate model

accounts for the "wafer-to-wafer" uniformity in terms of the SiH4 depletion along the

tube. Fig. 6.4 shows one of the three deposition rate profiles which are not in agree

ment with the experimental profiles. The discrepancy, however, is still within the three

sigma limits (18%) of the replication error of our experiment.
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The deposition rate model, as shown in Eq. (5.6), has significant implications for

process design and control. A high deposition rate Rq is needed for manufacturing

throughput, which can be achieved through a high temperature T or a higher pressure P

or both. However, in order to improve the "wafer-to-wafer" uniformity in the batch

deposition process, t\ (the mole depletion of SiH^ must be minimized by decreasing

the temperature T or the pressure P or both. A lower temperature T or a lower pressure

P will cause a decrease in the deposition rate R<>, which should therefore be compen

sated by an increase in the silane flow to improve both the throughput and the unifor

mity.

The deposition rate model is further validated by comparing it to experimental

results performed six to twelve months after the 24 characterization runs. The

physically-derived, empirically calibrated model shows a good match with the data

within the replication error of the equipment Two deposition rate profiles, with both

the experimental and model-predicted rates, are shown in Fig. 6.5 and Fig 6.6.



190

185 ••

180 ••

175 ••

145 ••

140 ••

135

210

205 ••

170 «•

165 ••

160 ••

155

CT=883K,Q=250sccm,P=550mtorr,t=80min)
i i 1 1 1 1 1 1 1 i 1-

Expt. rate for run 31
Depletion rate model

67

8 10 12 14 16 18 20

wafer position (cm)

22 24 26 28 30

Fig. 6.5 Deposition rate profile for run #31
(8 months after original characterization)

(T=893K, Q=250sccmJ>=550mtorr,t=70min)
i i i i i

Expt. rate for run # 30
Expt. rate for run # 32

O Expt. rate for run # 34
• Expt. rate for run #36

•hbh Depletion rate model

10

same condition}
same condition]
same condition]
same condition]

15 20 25

Fig. 6.6

wafer position (cm)

Deposition rate profile for run # 30,32,34,36
(8-12 months after original characterization)

30



68

63. The Residual Stress Model

The scatter plot in Fig. 6.7 compares the average stress of the sample wafers in

each run with the average stress model. The agreement between the actual values and

the model values is within the replication error of the equipment

A contour plot of the film stress, as a function of deposition time t and deposition

temperature T (with pressure P and S1H4 flow fixed at typical settings) is shown in Fig.

6.8. This plot reveals that in order to achieve a 'zero' film stress, as required in many

VLSI micromachinery applications [6,7], the temperature T should be in the range of

885 to 905 K, with appropriate matching deposition time t. In the interest of repeatabil

ity, the best temperature T and time t combination is approximately 903 K and 105

minutes, where the stress is least sensitive to parameter variations.

The stress model is also validated by experimental data after the initial characteri

zation runs. The comparison (Table 6.1) shows good match between the model and the

data, given the replication error of the equipment

Run# expt stress

(109 dyne/cm2)

lower 3 a model stress

(109 dyne/cm2)

upper 3 a

31 5.71 4.15 5.19 6.24

32 1.31 0.14 1.03 1.91

36 0.52 0.14 1.03 1.91

Run# 31 was performed 8 months after the initial characterization.
Run# 32 was performed 8 months after the initial characterization.
Run# 36 was performed 12 months after the initial characterization.

Table 6.1 Comparison between model and experimental stress.
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6.4. The "Within-wafer" Deposition Rate Uniformity Model

Fig. 6.9 shows a scatter plot that compares the average experimental "within-

wafer" deposition rate variation (in %) with the model. All the discrepancies are con

sistent with the high replication error of the equipment

Overall, the model has captured the basic process trends and is in agreement with

the results reported in the literature [1-5]. The contour plot in Fig. 6.10 shows that the

"within-wafer" deposition rate variation increases with high pressure and high SiH4

flow, and decreases with lower pressure and lower SiH4 flow. To enhance the "within-

wafer" deposition rate uniformity, it is desirable to work in the low pressure region,

with high silane flow at the upper left comer of the contour plot This is consistent with

the process limitations in Table 3.3.

Experimental data on "within-wafer deposition rate uniformity" were also gath

ered after the initial characterization runs. The match (Table 6.2) between the model

and the later data is within the replication error of the furnace.

Run# expt. unif. (%) lower 3 a model unif. (%) upper 3 a

31 3.82 2.38 3.11 3.85

32 2.64 2.70 3.46 4.23

36 1.83 2.70 3.46 4.23

Run# 31 was performed 8 months after the initial characterization.
Run# 32 was performed 8 months after the initial characterization.
Run# 36 was performed 12 months after the initial characterization.

Table 6.2 Comparison between model and experimental uniformity.
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6£. The Residual Stress Uniformity Mode!

Fig. 6.11 is a scatter plot that compares the average experimental stress variation

(in log10 %) with the model. The agreement between the actual data and the model is

again consistent with the replication error of the film stress in the furnace.

In Fig. 6.12, the stress uniformity model is plotted by varying the temperature T

and the silane flow Q for a deposition time of 105 minutes. The variation of the stress

peaks between 895 and 915 K. In order to minimize the average stress variation of each

run, it is best to operate at the upper left comer of the contour plots (i.e. the process

window) where the temperature is low and the SiH4is high.
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CHAPTER 7

COMPUTER-AIDED RECIPE GENERATION

FOR LPCVD REACTORS

7.1. Introduction

In a multi-product manufacturing environment, equipment utilization tends to be

low due to the time needed to design and fine-tune processrecipes. This task is compli

cated by the fact that recipes must often balance ill-defined process objectives and

equipment limitations that are not clearly understood. For high volume production, a

recipe must also yield results that are insensitive to process and equipment variations

(Fig. 7.1).

SATISFY NOMINAL

PROCESS SPECS

MINIMIZE PROCESS

SENSITIVITIES

MEET EQUIPMENT CONSTRAINTS

Fig. 7.1 Multiple objectives in recipe generation.

In this chapter we describe a formal, systematic methodology that facilitates the

task of recipe design. This is achieved by employing statistical equipment-specific
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models [1,2] in conjunction with interactive response surface exploration [3] and

automatic numerical optimization [4]. A specially designed interface helps the users

deal with quantitative and qualitative objectives and lets them explore the process

design space. If the original objectives cannot be achieved, the recipe generator guides

the user to resolve the conflicts and find settings that offer the best compromise between

process objectives and equipment limitations.

This methodology has been incorporated in the Berkeley Computer Aided

Manufacturing (BCAM) system and it is currently being used to synthesize recipes for

LPCVD of undoped polysilicon. The system generates recipes that meet objectives

related to the average values of film properties and also to their uniformities and

repeatabilities. The generator is implemented on top of a powerful numerical optimizer

[5,6], a flexible contour plot program and a graphic user interface built using PICASSO

[7], a generic graphic toolkit that runs on XI1 window primitives. Experimental use of

the recipe generator has resulted in efficient, robust recipes generated in a fraction of

the time required to create recipes by trial and error. This methodology is now being

extended to plasma etching processes.

7.2. Defining Process Objectives for LPCVD ofUndoped Polysilicon

In order to generate meaningful recipes, clear and concise objectives should be

stated both at the process and equipment levels. The objectives are then used to either

form a numerical optimization problem, or to simply explore the response surfaces1 of

the process. A good set of objectives should deal not only with the nominal process

specifications, but also with the process uniformity and consistency. The operational

The response surface of a process depicts geometrically the characteristics of the process with
respect to its input variables. Response surfaces in more than three dimensions must be projected
into three-dimensional (3D) or two-dimensional (2D) spaces.
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limitations of the equipment should also be taken into account A set of process and

equipment objectives is defined below for LPCVD of undoped polysilicon:

Satisfy the Quantitative Process Specifications:

(1) Film thickness

- average thickness

- wafer-to-wafer thickness uniformity

- within-wafer thickness uniformity

(2) Film stress

- average stress

- wafer-to-wafer stress uniformity

- within-wafer stress uniformity

(3) Reproducibility of the above

Comply with Equipment Limitations

(1) Minimum deposition pressure attainable by

the mechanical pump at maximum pump speed.
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Satisfy the Qualitative Process Specifications:

(1) film quality

(2) grain size

(3) refractive index

(4) texture

(5) step coverage

7.3. Recipe Generation via Interactive Response Surface Exploration

An optimal recipe can be generated by exploring response surfaces of the process.

In general, the understanding of a process with multiple inputs and outputs can be

greatly enhanced by their response surfaces, and in particular by the use of contour

diagrams. There are two types of contour diagrams: the contour surfaces and contour

lines. The contour surfaces are obtained by projecting the response surfaces into a

three-dimensional (3D) space, while the contour lines are obtained by projecting the

response surfaces into a two-dimensional (2D) space. While a 3D projection is useful,

the 2D contour lines lend themselves better to precise interaction for process optimiza

tion.

The 2D contour lines are extremely useful for process optimization, especially for

process with a few (3 or 4) process parameters. For a process with a single output

response, the 2D contour diagram can quickly provide information for locating the

approximate optimal response by varying two process parameters at a time.

For processes with multiple output responses, the contour diagrams of all the pro

cess models can be superimposed in a common design space [3]. The advantages of
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overlaying the contours are that it: (1) clearly shows whether and how complex require

ments can be met for every response, (2) allows new conditions to be determined if

objectives change, and (3) indicates in what direction process changes should be made

in order to meet the objectives.

The contour diagrams, drawn according to process models fitted by statistical

regression analysis, represent the average process response surfaces of a noisy system.

To better depict the true response surfaces with account of the process/equipment capa

bilities, the prediction intervals around the average response surfaces should be com

puted from the ANOVA tables (Ch.5) [8] and presented together with the contour

diagrams.

For processes with many (more than 3 or 4) process parameters and output

responses, contour diagrams are not as effective for process optimization [3,9]. An

automatic numerical optimization method can be employed to simultaneously satisfy

many desired process objectives, as will be shown later in Section 7.4.

7.3.1. Functionality of the Response Surface System

During the interactive response surface exploration, the user selects any two pro

cess parameters as variables on the x- and y-axis, and fixes the values of the remaining

process parameters. Once the cross-sectional projection of the response surfaces is

defined, a maximum of four contour diagrams will be shown on the screen to represent

four different process objectives: the deposition rate of the firstwafer, the within-wafer

deposition rate uniformity, the averagefilm stress, and the film stressuniformity.

Other quantitative objectives, such as the wafer-to-wafer deposition rate unifor

mity, theprocess sensitivities, the equipment capability, as well as the qualitative objec

tives are more difficult to visualize with contour diagrams. Hence, they are not shown
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on the current version of the recipe generator.

73.2. A Sample Session of Response Surface Exploration

A sample screen of the interactive response surface exploration is shown in Fig.

7.2. In the upper window, the user defines the 2D projection of the process response

surfaces. In this example, "temperature" is selected as a variable on the y-axis with a

range from 605 °C to 650 °C; "pressure" is selected as a variable on the x-axis with a

range from 300 mtorr to 550 mtorr. The rest of the process parameters, "SiH4 flow"

and "deposition time", are fixed at 150seemand 90 minutes respectively.

A set of 4 contour plots, representing the response surfaces of average polysilicon

thickness,, the within-wafer thickness uniformity, the polysilicon stress, and the stress

uniformity, are drawn according to the defined projection. A user can then "navigate"

through the design space simultaneously for all the four contour diagrams using the

panning option at the upper left comer of the "thickness" plot. Once an interesting

region is identified, a user can use the zooming option to exam in detail a particular pro

cess window. A tentative "recipe" is created when the user finds a setting that yields

satisfactory results for all four process objectives.

In a future version of the recipe generator, estimations of the qualitative objective

(Ch. 3.5) and the wafer-to-wafer deposition rate profile will be presented after a tenta

tive recipe is created. A recipe will be final when all the qualitative and quantitative

objectives are either met or selectively relaxed by the operator.
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7.3.3. The Implementation of the Response Surface System

The interactive recipe generator is implemented by integrating the following two

software modules:

(1) PICASSO: PICASSO is an object-oriented toolkit for developing graphical

user interfaces to general application programs.

The toolkit includes a collection ofpredefined generic gadgets and widgets2, such

as simple bit-map and pix-map widgets, complex scrolling text, scrolling table, 2D and

3D plotting widgets. In addition, a variety of other components are provided that allow

users to interact with an application program using buttons, check boxes, and menus

(pull-down, pop-up, etc.). The parameters (e.g. the layout, font-size, and etc.) of these

graphical components can be specified and modified in an object-oriented fashion via

the corresponding property slots [10]. The use of a high-level interface toolkit, such as

PICASSO, accelerated the implementation of the recipe generator. PICASSO is written

using the Common Lisp Object-Oriented System (GLOS), Common Lisp (CL) and the

X Window primitives.

(2) CONTOUR: A C program, refined from the program CONTOUR [11], is used

to generate the Cartesian coordinates of 2D contour diagrams of the projected process

response surfaces. The implementation details of theprogram are outlined in Appendix

2 at the end of this chapter.

(3) The Lisp-C foreign function interface: Four Lisp functions are written to

allow foreign function interactions between the PICASSO user interface, (implemented

in Common Lisp), and the CONTOUR program (implemented in C). The

"5 Widgets and gadgets are user interface abstractions. A gadget is an abstraction for an output
port behavior (e.g. text-gadget). A widget is the abstraction for input port behavior (e.g. menu-
widget) [7].
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implementation details are summarized in Appendix 2.

7.4. Automatic Recipe Generation via Numerical Optimization

The second approach to recipe generation is to cast the process and equipment

objectives into an optimization problem, which in turn can be solved by a numerical

optimizer. This approach offers an effective alternative to process optimization when

there are many process parameters and responses. In automatic recipe synthesis, values

or ranges of the desired process results (objectives) are used to generate the values of

the process parameters. One advantage of the automatic synthesis of recipes is the auto

mation of the search towards meeting a set of multiple and possible conflicting process

objectives. Using this method, a user can quickly decide whether the optimization

problem is feasible. If it is not, the user can iteratively adjust the process specifications

until the problem becomes feasible.

7.4.1. Functionality of the Optimization-based System

During the automatic synthesis of LPCVD recipes, the user defines constraints for

the quantitative objectives such asfilm thickness, stress, and their respective uniformi

ties. These quantitative objectives will be cast as the cost function of the optimization

problem. The user also defines qualitative goals, such as film smoothness, grain size,

refractive index, texture and step coverage. System recommendations, based on the

qualitative models developed in Ch. 3, will be issued in order to help meet the qualita

tive objectives.

The equipment limitations, as well as the acceptable ranges of the process parame

ters, are cast as numerical constraints in the optimization problem. The outcome of the

optimization, i.e. the optimized values of the equipment settings and responses, are
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reportedback to the user. A thickness profile versus the wafer position in the reactor is

then plotted according to the generated recipe. Statistical confidence intervals (at the

90% level) are shown for all output results.

7.4.2. A Sample Session of Automatic Recipe Generation

A sample screen on the automatic recipe synthesis session is shown in Fig. 7.3. In

the upper left window, the user specifies bounds for the quantitative objectives. The

ranges of the objectives are summarized below:

objectives low high

thickness 5000A 7000A

thickness uniformity 0% 5%

stress -109 dyne/cm2 109 dyne/cm2

stress uniformity 0% 5%

In the middle left window, the user specifies the qualitative objectives. The goals offilm

smoothness, grain-size, and step-coverage are set to smooth, small, and good respec

tively. The limits of the process parameters, such as temperature, pressure, SiH4 flow,

and time, are set at the default values shown in the lower left window. After the solu

tion of the numerical optimization problem, the results of the generated recipe are

displayed. The quantitative results, based on the optimization of the statistical models,

are shown by means of a sliding scale pointer between the bounds. The qualitative

results, based on the simulation of the qualitative models, are shown in the "result"
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column of the window. A thickness profile is shown as a function of wafer position in

the upper right window of the system.

A first iteration of the recipe generation indicates that the thickness, thickness uni

formity, and stressobjectives are easily satisfied. The stressuniformity is howeververy

sensitive anddifficult to control with respect to the equipment settings. With this piece

of information regarding the feasibility of the process objectives, the usercan move the

acceptable bounds on the stress uniformity from 0 to 20 %. At the same time, the

acceptable bounds on thickness can be set from 5000 to 6000 A, thickness uniformity

from 0 to 3%, and stress from -0.5 and 0.5 x 109 dyne/cm2. The bounds on the process

parameters remain the same. All the process objectives are satisfied easily in the

second attempt. The stress uniformity has drastically improved from around 15% to

9%. Usually a recipe can be finalized after a few iterations.

The system recommendations regarding the qualitative objectives, as well as the

statistical confidence intervals, will be incorporated in a future version of the recipe

generator.
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7.4.3. The Implementation of the Optimization-based System

The automatic recipe synthesis system consists of the following two software

modules:

(1) PICASSO: Different generic components of the PICASSO toolkit are used to

construct the user interface of automatic recipe generation. The ,,table-matrix,, widgets

are used to place the process objectives and parameters on a scrollable table for effec

tive use of the display screen area. The "meter" widgets are used to implement sliding

scale pointers between the limits of quantitative objectives and parameters. The "qual"

widgets are used to implement pull-down menus for selecting the goals of qualitative

objectives. A "plot" widget is used to display the final thickness profile versus the

wafer position in the furnace.

(2) NAG: In order to solve the minimization problem, we employ the general

numerical optimizer E04UCF from the public-domain NAG (Numerical Algorithm

Group) library [5,6]. E04UCF is a Fortran routine designed to minimize an arbitrary

smooth function subject to constraints, including simple bounds on the variables, linear

constraints and smooth nonlinear constraints. E04UCF may also be used for uncon

strained, bound-constrained and linearly constrained optimization. The user must pro

vide subroutines that define the objective and constraint functions and as many of their

first partial derivatives as possible. Unspecified derivatives are approximated by finite

differences. Since all matrices are treated as dense, E04UCF is not intended for large

sparse problems. E04UCF uses a sequential quadratic programming (SQP) [12] algo

rithm in which the search direction is the solution of a quadratic programming (QP)

problem. The Fortran subroutine, which utilizes E04UCF to solve the minimization

problem with the given boundary conditions, is outlined in Appendix 2.
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The cost function to be minimized in Eq. (7.1) is the weighted sum of the squared

differences between the process objectives and their target values (Fig. 7.4). The limits

of each process objective implicitly reflect the relative importance of the objective in

the cost function [4, 13]. Hence, the difference of the limits is used as an appropriate

weightingfaormalizing factor wj for eachobjective in the cost function.

S\2COST FUNCTION= min £ Wj (Rj(p) - R,)
P i

(7.1)

where p is the process parameter vector, Rj is the i-th process response, Rj is the target

value of the i-th process responses, and wj is the weighting/normalizing factor for the

respective process response.

Cost component for Rj

Objective
Min Target Max

Fig. 7.4 A normalized quadratic cost component for Rj.
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For the automatic recipe generation of LPCVD of undoped polysilicon, the cost

function is defined as follows:

COST FUNCTION =
Thickness of first wafer - Max. thickness

0.5 x (Max. thickness - Min. thickness)

Thickness of last wafer - Min. thickness

0.5 x (Max. thickness - Min. thickness)

Thickness unif. - 0.5 x (Max. thickness unif. + Min. thickness unif.)
0.5 x (Max. thickness unif. - Min. thickness unif.)

1 2
Stress - 0.5 x (Max. stress + Min. stress)

0.5 x (Max. stress - Min. stress)

Stress unif. - 0.5 x (Max. stress unif. + Min. stress unif.)
0.5 x (Max. stress unif- Min. stress unif.)

Due to the depletion effect of the reactant SiH4 gas (Ch.3), the maximum deposi

tion rate is usually observed on the wafer that is closest to the gas inlet Similarly, the

minimum deposition rate is observed on the wafer that is furthest from the gas inlet

Hence, the target value for the thickness of the first wafer is the upper bound of thick

ness; and the target value for the thickness of last wafer is the lower bound of thickness.

The targets for thickness uniformity, stress, and stress uniformity, are the averages of

their specified bounds. The difference of the lower and upper bounds of the process

objectives are used as their corresponding weighting/normalizing factors in the cost

function.

In order to improve the convergence of the optimization problem, the process

objectives are normalized to similar numerical ranges [14]. Forexample, the linearized

thickness model of Eq. (5.5) is used for optimization in place of the full model of Eq.

(5.6).

(7.2)
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In order to improve the repeatability of the process, we must operate in a region

that will be least sensitive to random equipment variations.The cost factor, to be added

to the cost function in Eq. (7.2), is shown below:

COST FACTOR=min j\w{ •R/ (p)l 2 (7.3)
P .1 J

wherew{ andR{ (p) are vectorsdefined as follow:

AT AP AQ At
wi =

0.5x(R{aax-R^m) 0.5x(Rimax-Rimin) 0.5x(Rimax-Rimm) 0.5 x (R^3* - R^)

Ri'(p) =
aRj(p) 9Rj(p) aRj(p) 9Rj(p)

8T * 3P * 3Q * 3t

Here (•) is the inner product operator and p is the vector containing the process param

eters T, P, Q, t. AT, AP, AQ, At are the estimated standard deviations of the equipment

settings. Rimax^.imin are the limits of a process responses. Finally,

dRj/dT, BRj/dP, dRj/BQ, 3R|/at are the partial derivatives of a process response with

respect to the process parameters.

The cost factor in Eq. (7.3) tries to minimize the sensitivity of the process objec

tives with respect to the equipment noise. The weighting/normalizing factor Wj reflects

the significance of each objective in the cost function.

The feasibility of optimization depends strongly on the definition of the numerical

constraints [6,14]. With this in mind, only the necessary boundary conditions of equip

ment settings and equipment performances should be included as numerical constraints.

This consideration will make it more likely that the problem has a feasible solution.
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For the recipe generation ofLPCVD, the numerical constraints are defined as follows:

(1) Process parameter (equipment setting) constraints

T•<T<Txmin^ x ^ *max

Mtiin < * < "max

Qmm<Q<Qmax

(2) Equipment performance constraints (due to pump speed limitations)

P>Pmin(T,Q)

where:

PminCT, 0) = 413.5 - 0.9(T-883)- 1.5(Q-175) - 0.005(T-883)(Q-175) in mtorr.

An initial estimate of the solution is required by the optimization algorithm. The

estimated solution does not have to be feasible. At the beginning of a session, the sys

tem uses the center points of the equipment settings as the first estimate. In subsequent

iterations, the initial guess is the solution of the last feasible problem.

(3) Qualitative Constraints: The system issues recommendations to let the users

manually adjust the boundary conditions of the equipment settings in order to satisfy

the qualitative objectives. The recommendations are based on the qualitative models

discussed in Ch.3. For example, in order to achieve "small" grain-size, "low" values for

the temperature (T), silane flow (Q), time (t) and a "high' value for pressure (P) should

be used. As another example, in order to achieve smoother film quality both the tem

perature and pressure should be kept at "low" settings.

The qualitative models need to be further refined for integration with the numeri

cal optimization problem. Possibilities for future research are discussed in the last

chapter.
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7.5. A Simple Algorithm for Deposition Rate Uniformity

The statistical models, which we developed for use in recipe generation, are valid

under the condition of a uniform deposition temperature, a uniform deposition pressure

and a front-end injected reactant SiH4 gas flow. If the temperature is constant, the

depletion of the reactant SiH4 will result in a decrease in deposition rate along the

length of the furnace tube. A common solution to this "depletion effect" is to use a ris

ing temperature profile from the gas inlet (load zone) to the gas outlet (exhaust zone) by

using several heating elements at different zones of the furnace [15]. The increased

reaction rate resulting from the temperature differential is intended to compensate for

the SiH4 depletion. This temperature ramp, however, should be used with caution as it

will affect other polysilicon film properties (such as the residual stress, grain size and

etc.), which strongly depend on the reaction temperature.

We describe below a simple and general method for improving the wafer-to-wafer

uniformity of the deposition rate. The focus is on specifying the required temperature

ramp at any deposition furnace with a front-end reactant gas inlet, such as those for

undoped polysilicon, phosphorus-doped glass and silicon nitride. The uniformity algo

rithm estimates the required temperature ramp using a simplified physical deposition

rate model, process heuristics, and data from a single calibration experiment The algo

rithm has shown satisfactory experimental results.
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7.5.1. The Simplified Deposition Rate Model

The deposition rates for most LPCVD deposition processes are exponentially

dependent on temperature. These deposition rate models, such as the LPCVD model of

Eq. (3.20), take the form of an Arrheniusequation [15]:

R=C(QJP^)exp(^-) (7.4)

where R is the deposition rate and C(Q,P,z) is tins frequencyfactor that depends on the

SiH4 flow, the deposition pressure and the wafer position. AE is the activation energy

of the process in eV or kcallmole, which can be estimated using experimental data (Ch.

4, 5). Finally, R is the universal gas constant given by 1.98719 callmol-K and T is the

deposition temperature in K, which can be position-dependent.

The temperatures of the heating elements, located along the furnace, are the con

trol parameters in achieving the deposition rate uniformity. All other process parame

ters, such as the deposition pressure and the reactant gas flow, are fixed at the values of

the calibration experiment.

7.5.2. The Calibration Experiment

The calibration experiment should use a uniform deposition temperature. The

wafer-to-wafer deposition rate uniformity of the calibration experiment can be

improved by applying a temperature ramp, with no change in the deposition pressure

and reactant gas flow.
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7.5.3. Estimation of the Temperature Ramp

The following procedure estimates the center-zone temperature (Tc) of a three-

zone deposition furnace. Estimation of the temperatures for the load and exhaust zones,

(TLand Tg), can be carried out in a similar manner.

(1) First the wafer-to-waferdeposition rate of the calibrationexperiment (or any other

run with a uniform temperature profile) is plotted against the wafer position as in

Fig. 7.5. Next, the desired deposition rate with the required wafer-to-waferunifor

mity is plotted against the wafer position as in Fig. 7.6.

Flat Temp. Deposition

Temp L = Temp C = Temp E

wafer position (cm)

Fig. 7.5 Deposition rate profile under flat temperature distribution.

(2) Since the center-zone temperature (Tc) is currently being estimated, the "relative

deposition area" up to the center-zone (zq) of Fig. 7.6 must be evaluated. The

"relative deposition area" is defined as the area under the deposition rate curve

(shaded area of Fig. 7.6). Next, the wafer position (z£) with the same "relative

deposition area" in the calibration experiment of Fig. 7.5 is found.



Temp. Ramp with

Temp L <Temp C < Temp E
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wafer position (cm)

Fig. 7.6 Deposition rate profile under ramped temperature distribution.

Wafer positions with the same "relative deposition area" can be thought as having

approximately "identical reacting environments", i.e. equal frequency factors

C(Q,P,z).

(3) Now we calculate the ratio ofthe deposition rates R(z£) and R(zc) for wafer posi

tions with "identical reacting environments" at locations Zp and zc.

R(zc> QQ.P.Zc) exp(^)
(7.5)
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where:

R(z£) is the deposition rate at z£, which can be estimated from
the calibration experiment

Tc is the uniform temperature of the calibration experiment
R(zc) is the desired uniform depositionrate
Tc is the center-zone temperature to be estimated.
Q is the reactant gas flow, fixed at the value of the calibration experiment
P is the deposition pressure, fixed at the value of the calibration experiment

(4) Since the ratio is taken at two wafer positions with approximately "identical react

ing environments", the C(Q,P,z£) of the numerator iscanceled bythe C(Q,P,zc) of

the denominator in Eq. (7.5). Since the center zone temperature Tc is now the

only unknown variable in Eq. (7.5), it can be estimated. Similar estimation of TL

and TE will specify a rising temperature profile for uniform deposition rates across

the furnace.

7.5.4. Experimental Verification

Two sets of experiments were performed to verify the algorithm. The first experi

ment involving the deposition of polysilicon was done at Advanced Semiconductor

Materials/America, Inc. (ASM). The three-zone furnace consisted of 6 boats with a

total of 150 wafers. A calibration run at a constant temperature of 610 °C with 24 sam

ple test wafers was performed first. The wafer-to-wafer deposition rate of the calibra

tion run was plotted against the wafer position in Fig. 7.7. The temperature ramp (610,

617, 623 °C) calculated from this algorithm agrees well with the actual manufacturing

temperature ramp (610, 616, 620 °C) that the process engineers have empirically found

and used to achieve a ± 5% wafer-to-wafer thickness uniformity. The overall process

conditions for the ASM experiment are listed in Table 7.1.



No. of sample wafers: 24 (4" wafer)

Wafer load: 150 (25/boat, 6 boats)

Time:

Pressure:

SiFU:

Cali. temp:

temp, ramp:

39mins

600 mtorr

300 seem

610°C Goad)

610°C (load)

610°C (center) 610°C (exhaust)

616°C (center) 620°C (exhaust)

Table 7.1 Processing condition at ASM

110

0 200 400 600 800

wafer position in (mm)

1000 1200

Fig. 7.7 Deposition rate profile for the ASM calibration experiment

97
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A second set of experiments involving the deposition of amorphous silicon was

done at our microfabrication laboratory in Berkeley (UCB). The three-zone furnace

consisted of 2 boats with a total of 26 wafers. Again a calibration run at a constant tem

perature of 595 °C with 8 sample test wafers, was performed. The temperature and

deposition rate profiles of the calibration run, plotted against the wafer position, are

shown in Fig. 7.8 and 7.9. The predicted temperature ramp were 595, 597, and 600 °C

across the 2 boats to achieve ± 5% wafer-to-wafer thickness uniformity. An in-situ

twelve-point thermocouple was installed to accurately monitor the temperature profile.

The processing conditions of the UCB experiment are listed in Table 7.2. The desired

temperature profile (Fig. 7.10) was obtained across the 2 boats. A plot of polysilicon

growth rate versus wafer distance (Fig. 7.11) showed that the thickness varied about

5%. The variation of thickness could be as high as 20% without any temperature ramp.

No. of sample wafers: 8 (4" wafer)

Wafer load: 26 (13/boat, 2 boats)

Time: 60mins

Pressure: 300 mtorr

SiH4: 120 seem

Cali. temp: 595°C (load) 595°C (center) 595°C (exhaust)

temp, ramp: 595°C (load) 597°C (center) 600°C (exhaust)

Table 7.2 Processing condition at UCB
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Fig. 7.8 Temperature profile of the UCB calibration experiment
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7.9 Deposition rate profile of the UCB calibration experiment
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Fig. 7.10 Temperature profile of the UCB verification experiment
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7.11 Deposition rate profile for the UCB verification experiment
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7.5.5. Other Uniformity Algorithms

Other algorithms are available to resolve the wafer-to-wafer thickness uniformity

problem. They include:

(1) Using the deposition rate model described in Eqs. (3.18) to (3.21) in a

piecewise-linear fashion [16-18] for simulation under a particular temperature profile.

The desired temperatureramp can be estimatedafter several simulations.

(2) Expressingthe temperature rampT(z) as a function of position,which is subse

quently included in the integral of Eq. (3.12) and (3.13). An analytical deposition rate

model with the temperature ramp function can be computed and used to estimate the

thickness uniformity.

(3) Employing sophisticated mass transport and chemical kinetics [19] to simulate

the reacting environment of the furnace.

(4) Applying systematic statistical experimental design methods to minimize the

process variation [20].

(5) Designing new furnaces to incorporate distributed gas injection, or vertical gas

flow, to eliminate the mass depletion effect [15].

7.5.6. Summary for the Uniformity Algorithm

A simple and effective algorithm is presented to resolve the wafer-to-wafer depo

sition rate uniformity problem of the horizontal front-end injected LPCVD furnace. In

this algorithm, a simplified physical deposition rate model is combined with several

process heuristics and one calibration experiment to estimate the required temperature

ramp. This algorithm works under the mild assumption that depletion of SiH4 is less

than 20% at the outlet of the furnace, which is usually a reasonable assumption for most
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LPCVD systems. The accuracy of the algorithm is limited by the ability of the furnace

to realize the designed temperature profile. Lack of accurate controldue to thermal flow

between zones and the limited numberof independent heating zones can limit the effec

tiveness of this approach.

The uniformity algorithm should be used carefully as the designed temperature

ramp can affect otherpolysilicon film properties (such as the residual film stress, grain

size, film quality, and etc.), which are highly dependent on the deposition temperature

[15]. This algorithm will be incorporated in a future version of the recipe generator.
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CHAPTER8

CONCLUSIONS AND FUTURE RESEARCH

8.1. Conclusions

The subject of this dissertation is a methodology for building equipment-specific

process models. The effectiveness of this methodology is demonstrated through the

application of a physically-derived analytical LPCVD model, in conjunction with a D-

optimal statistical experimental design and standard regression analysis. The required

number of characterization runs is small and it can be scheduled and completed in

stages for the iterative refinement of the model. The final models describe both the

nominal process responses and the associated process uniformities, and show good

predictive capability.

The statistical equipment-specific process models have been incorporated in a sys

tem used for interactive response surface exploration and automatic numerical optimi

zation. A friendly user interface helps generate equipment recipes that meet multiple

process objectives. This methodology has been incorporated in a software module of

the Berkeley Computer Aided Manufacturing (BCAM) system. The system generates

recipes that meet objectives related to the average values of film properties, and also to

their uniformities and repeatabilities. The generator employs a powerful numerical

optimizer, a flexible contour plot C program, and a graphic user interface built in

PICASSO.
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8.2. Future Research

The methodology that we have developed so far can benefit from several improve

ments and extensions. Some of these are described below.

8.2.1. Modeling and Characterization

(1) Qualitative models: The use of fuzzy set and fuzzy logic for qualitative

modeling is briefly demonstrated at the end of Ch.3. Given the rules may have different

degrees of uncertainty, the use of evidential reasoning [1] should also be investigated.

(2) Experimental design techniques: Other optimal experimental design tech

niques, such as the G- and I-optimal designs, can be used to characterize a given model

[2,3]. In an I-optimal design, characterization runs are geared to minimize the expected

deviation1 of the fitted model from the actual model. Ina G-optimal design, characteri

zation runs are generated to minimize the prediction error of the fitted model [4].

In our work, non-linear process models (such as the nominal deposition rate

model) are linearized2 in order to simplify the optimal experimental design for the char

acterization runs. An ad hoc sequential experimental design plan, which divided the

second stage experiment into two sub-stages, was used to optimize the statistical accu

racy of both the deposition rate and stress models. Hence, more advanced experimental

techniques for handling situations with non-linear process models, and/or multiple

models (responses) should also be explored [5].

The deviation is expressed as the sum of the squared differences over the experimental points.

Linear to the model coefficients. In general, our models are non-linear to the process parameters.
Please refer to Ch. 4.
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8.2.2. Recipe Generation

(1) Acceptance in the clean room: A prototype version has been released to

potential users in the Berkeley Microfabrication Laboratory for evaluation. The system

is favorably received by the users as a useful process design tool. A list of helpful user

comments has been compiled and will be usedfor the improvement of future versions.

(2) Qualitative constraints: The qualitative models described in Ch.3 are solved

in reverse (backward reasoning) to generate recommendations on meeting the qualita

tive process objectives. The backward reasoning rules for recipe generation are

currently represented separately from the forward reasoning rules for simulation

described in Ch.3. The backward reasoning rules are represented by simple symbolic

matching between the specified process goals and the required qualitative process con

straints. A unifiedrepresentation of the rules for both forward and backward reasonings

is thus desirable. Also, a strategy for translating qualitative process constraints to quan

titative constraints is also of great importance for numerical optimization.

8.2.3. Tool Integration

Fig. 8.1 depicts the important issues for successful tool integration in an

CAD/CAT/CAM environment

(1) Process model library: A model library, serving as a central repository of the

equipment-specific process models for different pieces of equipment, must be used to

support various manufacturing applications (Ch. 2). The library contains both the

models and the generic methods that operate on the models. The library is currently

implemented with the object-oriented C++ language. The model library should interact

with the INGRES relational database in order to support multiple model versions.



'OTHER
APPLICATION!

CONTOUR PLOT
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USER
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PICASSO
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MODEL LIB
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— — _ — _ _j

*BUS: BerkeleyLaboratory Information System

Fig. 8.1 Tool integration for recipe generator.

(2) Process flow language and interchange format: At present, the recipe gen

erator is driven solely by commands from the user interface and is thus isolated from

other applications. In view of the integration with other applications in a CIM environ

ment (Ch. 2), future research should consider driving the recipe generator through a

more general inter-application interface such as the Berkeley Process Flow Language

(BPFL) [6]. BPFL has been designated as a driver for various applications in the BCIM

framework. Other future research should also consider using the PIF (Process Inter

change Format) [7], for specifying the structural requirements and interfacing to other

process CAD tools.
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(3) Process equipment: Due to hardware difficulties, the present recipe generator

cannot down-load recipes directly to the process equipment This functionality should

be included in future implementations.

(4) Programming environment: Three different languages (Lisp, Fortran, C)

have been used for the rapid prototyping of the recipe generator. This has not only

increased the complexity of the implementation, but also affected the performance of

the system. A coherent programming environment with one programming language

(such as C++) should be the target of future implementations.

8.2.4. Other Applications of the Models

The developed equipment-specific process models have been or will be applied to

many different manufacturing applications (Fig. 2 of Ch. 2). Some of these applications

are outlined below:

(1) Process diagnosis: The deviation between the predicted values of process

models and the actual in-line measurements of process results is used as "evidence" for

automated process/equipment diagnosis [8].

(2) Statistical process control (SPC): The statistically derived equipment-specific

process models can be used in SPC analysis. The 3-a prediction bounds of the models,

which can be computed at various recipe settings, can serve as the "lower" and "upper"

control limits (LCL and UCL) for the equipment [9,10]. SPC can be combined with the

knowledge-based system for process/equipment diagnosis [8].

(3) Process monitoring: The significant process parameters, as identified in the

process models, should be collected from the equipment during the real-time process

monitoring [8].
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(4) Link to process CAD tools: Realistic prediction of the process responses from

equipment settings can be accomplished by making the equipment models available to

a Technology CAD tool [10].

(5) Feed-back/forward control: Statistically characterized process models are

incorporated in a supervised workcell controller for photolithography [10]:

(6) Temporal models: The temporal behavior, such as aging, of the process

equipment has been investigated with the LPCVD models [9].
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Source DF Sum of Squares Mean Sauare F-Ratio Significance
Total 11 2.104 0.191
Regression 3 2.079 0.693 221.600 0.000
Residual 8 0.025 0.003
Lack of Fit 8 0.025 0.003
Random Error 0

Term Coefficient Standard Error T-Value Significance
1 21.51 0.92 23.27 0.0001
1/T -15414.13 632.83 24.36 0.0001

log(P) 0.22 0.08 2.87 0.0207
I/O -61.92 8.34 7.43 0.0001

Table A1.1 ANOVA table of the first-stage deposition rate model

Source
Total
Regression
Residual
Lack of Fit
Random Error

DF Sum of Squares Mean Square F-Ratio Significance
11

5
6
6
0

314.637
310.898

3.739
3.739

23.603
62.180

0.623
0.623

99.780 0.000

Term Coefficient Standard Error T-Value Significance
1 164.59 36.67 4.49 0.0042
(T-900.5)/22.5 191.19 41.22 4.64 0.0035
(t-120)/60 182.02 40.83 4.46 0.0043
((T-900.5)/22.5)2 31.65 5.01 6.32 0.0007
((T-900.5)/22.5) x ((t-120)/60) 192.29 40.48 4.75 0.0032
«t-120V60)2 -17.17 3.35 5.13 0.0022

Table A1.2 ANOVA table of the first-stage stress model
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Source DF Sum of Squares Mean Square F-Ratio Significance
Total 22 3.867 0.176
Regression 3 3.803 1.268 380.400 0.000
Residual 19 0.063 0.003

Lack of Fit 19 0.063 0.003
Random Error 0

Term Coefficient Standard Error T-Value Significance
1 20.65 0.73 28.46 0.0001
log(P) 0.29 0.06 5.33 0.0001
i/r -15189.21 515.92 29.44 0.0001
I/O -47.97 5.24 9.15 0.0001

Table A1.3 ANOVA table of the second-stage deposition rate model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 24 422.222 17.593
Regression 6 393.605 65.601 41.260 0.000
Residual 18 28.617 1.590

Lack of Fit 18 28.617 1.590
Random Error 0

Term Coefficient Standard Error T-Value Significance
(898-T)/22.5 3.856 0.443 8.709 0.0001
(120-t)/45 3.445 0.676 5.096 0.0001
((898-T)/22.5) x ((400-P)/150) -2.521 0.478 5.273 0.0001
((400-P)/150) x ((120-0/45) -1.764 0.605 2.915 0.0090
((898-T)/22.5)2 3.376 0.437 7.731 0.0001
«120-tV45}2 -5.140 0.723 7.105 0.0001

Table A1.4 ANOVA table of the second-stage stress model
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Source DF Sum of Squares Mean Square F-Ratio Significance
Total 23 27.659 1.203
Regression 3 18.259 6.086 12.950 0.000
Residual 20 9.400 0.470
Lack of Fit 20 9.400 0.470
Random Error 0

Term Coefficient Standard Error T-Value Significance
1.49
0.99
1.06

•0.71

0.31
0.25
0.23
0.29

4.89
3.97
4.64
2.43

0.0001
0.0007
0.0001
0.0244

(P-400)/150
((P-400)/150) x ((Q-175)/75)
((T-900.5y22.5r

Table A1.5 ANOVA table of the "within-wafer"
deposition rate uniformity model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 23 8.504 0.370
Regression 4 5.180 1.295 7.401 0.001
Residual 19 3.324 0.175

Lack of Fit 19 3.324 0.175
Random Error 0

Term Coefficient Standard Error T-Value Significance
1 2.31 0.19 12.14 0.0001
(T-900.5)/22.5 0.44 0.17 2.57 0.0188
((T-900.5)/22.5) x ((Q-175)/75) 0.38 0.16 2.33 0.0308
((Q-175)/75) x ((t-105)/45)
(nr-900.5y22.5r

-0.44 0.13 3.41 0.0029
-0.88 0.22 4.01 0.0008

Table A1.6 ANOVA table of the second-stage stress uniformity model
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APPENDIX 2

IMPLEMENTATION DETAILS OF

THE RECIPE GENERATOR

1. The Contour Plot Program

The contour plot program, written in C, generates the cartesian coordinates that

define the contour levels of the response surface. The main function "gen_contour" is

given below:

char *gen__contour (xmin, ymin, xl, yl, nx, ny, zls_head, cstep);

int nx, ny;

double xmin, ymin, xl, yl, cstep;

zls_ptr zls_head;

The input arguments to "gen_contour" are defined as follows:

xmin: the lower limit of the x variable.

ymin: the lower limit of the y variable.

xl: the range (length) of the x variable.

yl: the range (length) of the y variable.

zls_head: a C pointer to the head of link-list structures,

that contain the values of the contour levels

(z values) within the defined x-y cartesian space,

cstep: The step size for displaying the contour levels

(z values). The step size decides the number of

contour curves to be plotted.
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The output of "gen_contour" is a character string containing the cartesian coordi

nates of the contour curves. The algorithm of "gen_contour" first generates many rec

tangular grids, according to the ranges and intervals specified for the x and y-axis of the

projected space (shown in Fig. A2.1). Next, the values of the contour levels z =f(x, y)

are computed at the corners of each grid, as well as the center of the grid by interpola

tion. Each grid is further "clipped" into four smaller triangles. A line segment will join

any two points in a triangle, if a desired contour level intersects that triangle. All the

line segments, with the connecting cartesian coordinates, will be re-organized and

stored in linked-list structures. The linked-list structures, representing the contour

curves, are later stored and returned as a character string.

Y

ymax

ymin

Zl Z2 Z3

\ •

\ /

\ •

\ •

N •

\ /

\ •

\ /

9K
/ \

• N

/ \

•26
^

zii

'N •

/ N
• N

\ •
\ •

\ •
\ •

S, •

N /•

\ •

#0
S \

2VL

Z8

Z13

xmin xmax

Fig. A2.1 The contour plot algorithm.
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2. The Lisp-C Foreign Function Interface

Four Lisp functions serve as intermediate agents between the PICASSO user inter

face and the contour plot program "gen_contour". Each lisp function will gather infor

mation from the user interface regarding the names, ranges and intervals of the tree

variables; as well as the names and values of the fixed variables. According to this

information, each Lisp function will call the appropriate model to construct a linked-list

structure containing the contour levels at the corners of each grid. A foreign function

call [1] can finally be issued from each Lisp function to the C program "gen_contour"

using the available foreign function interface routines in Common Lisp. The returned

character strings from the C program will then be transformed to Lisp arrays, which are

suitable as inputs to PICASSO 2D plotting widgets for displaying the contour curves.

3. The Fortran-NAG Interface

A Fortran subroutine "rg" is written to pass the following arguments to the NAG

routine E04UCF for numerical optimization:

subroutine rg(objmin, objmax, conmin, conmax, x, obj, ifail, istate)

double precision objmin(4), objmax(4), conmin(5), conmax(5),
x(4), obj(4)

integer ifail, istate(5)
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The input arguments for "rg" are:

objmin: an input array of lower limits for the process objectives

objmax: an input array of upper limits for the process objectives

conmax: an input array of lower limits for the process constraints

conmin: an input array of upper limits for the process constraints

x: an input/output array of initial/final the process parameters

obj: an output array of the optimized process objectives

ifail: a diagnostic parameter

istate: a diagnostic array

4. The Lisp-Fortran Foreign Function Interface:

A Lisp function is written to serve as an intermediate agent between the PICASSO

user interface and the Fortran routine "rg". The Lisp function gathers information from

the user interface regarding the limits of the quantitative process objectives and param

eters as well as the goals of the qualitative objectives. With this information, the Lisp

function constructs the appropriate numerical Lisp arrays. A foreign function call [1],

with the Lisp arrays as arguments, is issued from lisp to the Fortran "rg" routine, which

in turn calls E04UCF. The optimization results are returned from Fortran to Lisp via the

same set of arrays1. The Lisp function will evaluate the resulting arrays and display

them appropriately on the PICASSO user interface.

Arguments in Fortran are passed by address.
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