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Abstract

The use of don't cares in synthesis has been recognized to have a pro
found effect on area reduction, testability, and performance improvement.
We address in this paper their use in sequential multi-level logic synthe
sis. Techniques for computing internal don't care setB for combinational
networks are becoming mature. These don't cares can be exploited us
ing well developed multi-level simplification techniques. When sequential
networks are considered, many new possibilities exists. We describe an
approach based on the extraction of sequential don't care conditions that
arise in the context of sequential networks. The key to our approach is
the use of efficient implicit state space enumeration techniques and multi
level combinational simplification procedures. Our contributions in this
paper are: a) Application of BDD-based implicit state space enumeration
proposed by Coudert, Berthet, and Madre for the extraction of sequential
don't care conditions. Only the computation of invalid states is a trivial
extension of Coudert's breadth first traversal algorithms. New novel algo
rithms are required and presented for the efficient computation of other
classes of sequential don't cares, b) Re-computation of incompletely spec
ified don't care conditions from high-level specification, c) Introduction
of a new class of sequential don't care conditions called operation don't
cares that are due to the intended operating nature of the circuit, d) Ex
tensions of combinational multi-level simplification techniques to exploit
sequential don't cares, e) Finally, we remark on the impact of this work on
sequential redundancy removal and testability. Preliminary results using
a subset of the proposed techniques are promising.



1 INTRODUCTION

1 Introduction

This paper is concerned with techniques for don't care minimization of multi
level sequential logic networks. The importance of don't cares has emerged
as a critical one in synthesizing combinational and sequential logic. Don't care
simplificationmay be iterated with globalrestructing techniques for obtaining a
highly optimized solution. In addition to reducing area, and possibly improving
performance, it is well known that an intimate relationship exists between don't
care exploitation and testability [2, 19, 14]. In [14], it was recognized that the
optimal use of don't cares in minimizing a finite state machine will lead to a
100% fully non-scan testable machine.

Over the past few years, the problem computing efficiently and correctly
internal don't care conditions that arise in combinational logic networks has
been studied extensively [2, 24, 18, 25, 11]. Two classes of don't cares have
been identified. The first is the Satisfiability Don't Care (SDC) set, which has
to do with input conditions that can never occur due to the structure of the
network. A much more difficult set to compute efficiently and correctly is the
Observability Don't Care (ODC) set. These don't cares occur because the ob
servability of the internal node at the primary outputs is limited the network
output structure. When optimizing multi-level sequential logic networks com
posing of combinational logic gates and latches, many new possibilities exist.
We are interested in answering the following question. Given an internal node
of a sequential network, what are possible functions that we can use replace
this node? Combinational don't cares are not enough because of the sequential
nature of the circuit.

There are several viable ways of attacking this problem. One is to extend
the don't care set computation algorithms developed for combinational networks
into the sequential domain. This represents a structural approach and was ex
plored by Damiani and De Micheli at Stanford [12]. A potential disadvantage
of this approach is that well-developed combinational techniques cannot be di
rectly reused. It is also unclear whether all the sequential don't care conditions
can be derived this way.

An alternative approach is to first compute the unreachable or invalid
states, and the equivalent states of the machine. If a state is invalid, then
it is not important what the output or next state behavior of the machine is
starting from this state. This represents an important sequential don't care con
dition that can be exploited very often. Consider for example a 1-hot encoded
machine, only a very small subset of the state space is ever reached. In fact,
it is standard practice to use invalid states as don't cares in state assignment.
Equivalent states are also quite important. Given an input condition, the next
state response can in fact be any one of the equivalent states. Both of these
classes of don't care conditions can be directly utilized by combinational don't
care techniques by treating them as external don't cares. For example, pow
erful techniques for computing the ODC can be used to propagate the external
don't care conditions to the internal nodes x. A key advantage of this approach
is that well-developed combinational techniques can be used directly.

Devadas et al [14] made use of the invalid and equivalent don't care set
in their work on synthesizing sequentially irredundant machines. Invalid and
equivalent don't cares were iteratively extracted and used by a two-level Boolean
rninimizer like ESPRESSO [4]. It wasshown that the machine is 100%sequential

1As will be explained later, invalid input conditions may be better handled by simply
incorporating them into the satisfiability don't care set.
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testable if this process is carried out to convergence2. A basic limitation of this
approach is that a state transition graph (STG) must first be extracted. A
STG can easily blow up for sequential logic networks since every state must be
explicitly represented and the combinational logic is represented by two-level
covers. In practice, this approach is not applicable to a large class of sequential
logic networks, especially those containing large number of latches and data
path like components.

This problem can be partially circumvented by extracting an interacting
network of finite state machines rather than just a single lumped machine. Al
gorithms for extracting the finite state machine networks and computing invalid
and equivalent states were proposed in [l]. However, this technique is still lim
ited by the complexity of some combinational components and the state space
complexity of the machine interactions.

We also use the method of extracting invalid and equivalent don't cares, and
then using well-developed combinational don't care simplification techniques to
exploit them as external don't cares. However, we attempt to compute these
sequential don't care sets directly from the sequential network without first
explicitly extracting a state transition graph (STG). A key advantage of this
general approach is that it can take full advantage of existing combinational
methods.

In two recent papers, Coudert, Berthet, and Madre [9, 10] proposed novel
implicit breadth first search traversal algorithms for exploring the state space
using binary decision diagrams (BDDs) [7]. They were the first to develop and
recognize the importance of this idea. The main power of their method is that
a large set of states is traversed at a time and the logic is represented using
BDDs. Their result demonstrate that state space information can be computed
for state machines with large number of latches (millions of states) and data
path like combinationallogic (eg. adders). The use of BDDs to represent state
sets has several additional attractive properties. They make set computations
very efficient. To traverse the state space, two fundamental operations must be
computed efficiently. The first is the range operator which computes the image
ofa set of function given a restricted domain. The second is the inverse operation
ofcomputing the inverse image given a restricted range. Using an efficient BDD
based implementation of these operators, the entire set of reachable states of a
sequential machine can be easily computed.

We make use of these techniques to extract the invalid and equivalent don't
care sets from the sequential network. In practice, it is possible to compute
these don't care sets for circuits with large number of latches and complex com
binational logic. The procedure for extracting invalid states is a straightforward
adaptation of Coudert's breadth first traversal algorithm 3. However, the com
putation of equivalent states is not obvious. A straightforward naive approach
to extracting equivalent states would require 0(2"!) comparisons even when us
ing BDDs. We have developed a new novel procedure for efficiently computing
the equivalent state don't care set.

Another important source of don't care conditions is due to the fact that real
life designs are incompletely specified. This is especially true when the sequen
tial logic network is compiled from a high-level hardware description language
(HDL). The incompletely specified don't care conditions are lost when struc
tural changes (eg. retiming) are applied. Re-computing these don't care sets is

2Note that exact two-level minimization is not required for testability, only that a locally
prime and irredundant solution is obtained at each iteration.

3It is simply the complement of the reachable states
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extremely important for achieving a globally optimal implementation with re
spect to an incompletely specified hardware description. An efficient algorithm
is given for this extraction process.

In addition to the above sequential don't care conditions, we propose a com
pletely new class of don't cares that has to do with the intended operating
nature of the sequential circuit, which we refer to as operation don't cares.
Consider a pipelined circuit. Starting from the initial state, suppose that we
are not interested in the output behavior of circuit for the first a cycles while
the pipeline is being loaded. This corresponds to a don't care condition that
can be exploited in synthesis. We define this class of sequential don't cares as
Latency Don't Cares (LDC). Another source of operation don't cares has to
do with the sampling rate of the circuit. Suppose we have a sequential cir
cuit obtained from high-levelsynthesis after schedulingand allocation [22]. The
functional behavior of the design may be broken down several cycles to compute
such that the primary outputs are only sampled every r cycles. Then, we don't
care about the values at the primary outputs during the in between cycles. We
define this class of don't cares as Multi-cycle Don't Cares (MDC). Other
more complicated operating don't care conditions can be envisioned. We give a
general procedure for computing these classes of don't cares. Like invalid and
equivalent state don't cares, these don't care conditions may be exploited by
combinational techniques in the form of external don't cares. It is worth noting
that these don't cares cannot easily be extracted from state graphs nor can they
be easily computed using a structural approach.

Finally, we remark on the impact of this work on the problem of sequential
redundancy removal and testability.

2 Definitions and Notation

2.1 Basic definitions

A variable represents a simple coordinate ofthe Booleanspace (eg. a); a literal
is a variable in its true (eg. a) or negated (eg. a) form; a cube is a set C of
literals such that x € C implies x&C (eg. abc is a cube, and aa is not a cube);
a cover or a function / is a set of cubes representing a Boolean expression. It
can be written in the sum of product form. The cover / is said to be contain
by g, written / •< g, if x G f implies x € g. If the output value for every point
in the domain is defined, then the function is said to be completely specified;
otherwise, it is said to be incompletely specified. The Hamming distance
A(cj,cj), between two cubes q and Cj, is equal to the number of bit positions
where the corresponding entry of one cube is a 1 the other is a 0. Two cubes q
and Cj are said to intersect if A(ci,Cj) = 0; otherwise, they are disjoint.

2.2 FSM and sequential network model

A finite state machine (FSM) is defined as a 6-tuple Af = (J, 0,E,6, A, <p)
where I = IP represents the primary input space, O — Bm represents the
primary output space, E = Ba represents the state space, 6 : JxE—*E is the
next state function, A : JxE—*0 is the output function, and <p : JxE—>ExO
is the incomplete specification don't care function. A set of legal reset states
jCSof the machine is assumed to be initially given. The machine M is said
to be incompletely specified if <p ^ 0.
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A finite state machine can be implemented in the form a sequential logic
network, which is a multi-level representation of synchronous sequential be
havior. It is specified by a directed graph G = (V,E), where each Vk 6 V is
associated with a cover /& or a synchronous latch Ik- It is associated with a
unique reference variable y*. There is a directed edge ey from v» to Vj if there
is a direct connection from node i to node j. The variable t/j is said to be a
fanin of /,- (Z;), and the Function (latch) fj (lj) is said to be a fanout of y».
The support of fk {Ik) is the set of variables that /* (Ik) explicitly depends
on. A special set of nodes are classified as the primary inputs and primary
outputs of the network. They must be associated with an identity function.
A external don't care network <p} which in itself is a multi-level combinational
network, is also associated with the specification of the sequential machine.

2.3 Binary decision diagram

Bryant's binary decision diagrams (BDD) are an extremely important contri
bution to the synthesis and verification community [7]. Recently, Brace et al
[6] implemented an efficient BDD package using a strong canonical form and
caching schemes. It has been shown that this implementation may be an order
of magnitude faster than the original implementation.

A BDD is a directed acyclic graph (DAG) representation of logic. It is a
binary decision graph where each node is associated with a variable and two
fanouts. One fanout corresponds to when the variable is set to 0, and the other
corresponds to when the variable is set to 1. At the leaves of the graph are
two constant nodes representing the constants 0 and 1. A variable ordering is
imposed such that all transitive fanouts of node must have a higher ordering
index, except for the constant nodes. Also, a variable may not be repeated in a
single directed path. The BDD is said to be reduced if there are no isomorphic
subgraphs. The interested reader is referred to [7] for more details.

2.4 Set computation and BDD operators

We now give the basic working definitions necessary to understand the algo
rithms developed in this paper. 4

Definition 2.1 Let F : Bn -* Bm. LettCB" be a subset of the input space.
Then the image of f, written F(£), is the set of elements y 6 Bm such that
3x € £ where y = F(x).

Definition 2.2 Let F : Bn -• Bm. Let ij> C Bm be a subset of the output
space. Then the inverse-image of if>, written F~1('0), is the set of elements
x€Bn such that 3y G^ where y = F(x).

Definition 2.3 Let F : Bn —♦ Bm. Let xi,...,x„ be the input variables and
j/i,...,ym be the output variables. The characteristic or consistency func
tion of F, written xf w defined as follows:

m

XF = J[yi = fi(xlt...,xn). (l)
t=i

It is also referred to as the transition relation. By definition:

Xf CBnxBm.

*In some mathematical text, the terminologies domain and co-domain, and range and
co-range are often used. Also, inverse-image is sometimes referred to as reverse-image.
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Definition 2.4 Letf : Bn -• B, and x = {a$i,..., xk} be a subset of the input
variables. The smoothing of F with respect to x is defined as follows:

$xif = fxi + fxTt
s.f = SXl(SX3(...(SSh)))

where fXi is the cofactor operation defined by [7] with respect to the literalX{.
It is also called the existential operator.

Definition 2.5 Let f : Bn —* B, and x —{xi,..., Xk} be a subset of the input
variables. The consensus of F with respect to x is defined as follows

CJ = Cm(<W...(C.J))

It is also called the universal operator.

The terminologies smoothing and consensuswere introduced by [23] in his tim
ing work. The terminologies existential and universal operators are common
terminologies used in first order predicate logic and were also used by [10, 8] in
their verification work.

Definition 2.6 Let f : Bn —• B, and x = {asi,..., Xk} be a subset of the input
variables. The Boolean difference of f with respect to x is defined as follows

The cofactor operation with respect to a cube was previously well defined [7].
However, the solution is not unique when cofactoring with respect to another
function. Coudert et al [9] defined an operator called the constrained op
erator which is essentially a cofactor operation with respect to functions. A
definition of the (generalized) cofactor operator is given here 5.

Definition 2.7 Let F : Bn -* Bm and*: Bn-*B. F cofactor with respect to
ic, written FVI is defined as follows:

F(x) */*(*) = 1 ()
e Bm where 3v GBn : ir(v) = lAy= F(v) KJ<•>-{;

Given a fixed variable ordering, Coudert's implementation of the operator is
deterministic. All of the above operators can be implemented efficiently in
BDDs.

3 Sequential Don't Care Computation

Algorithms for computing sequential don't care sets are presented in this sec
tion. They make heavy use of BDD-based implicit symbolic computation tech
niques for computing the image of a function given a restricted domain, and the
inverse-image given a restricted range. We shall defer to Section 6 to describe
efficient implementations of these techniques. For the moment, we will assume
the operations IMAGE (/, £) and INVERSE-IMAGE (/, V*) exist.

'The notion of a generalized cofactor was introduced by Brayton and his students.
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Algorithm extract jnvalid jstates (6, a):
1. begin
2. current = <r; valid = 0;
3. while (current •£ valid) do
4. valid = valid V current]
5. current = BETWEEN (current, va/i<2);
6. new = IMAGE (5, current);
7. current= convert (new);
8. endwhile

9. return (valid);
10. end.

Figure 1: Extraction of invalid states.

3.1 Invalid state don't cares

The extraction of invalid states, states that cannot be reached from the ini
tial state, is relatively straightforward using Coudert's breadth first traversal
algorithm. Since BDDs are used to represent the reachable set of states, the
set of invalid states is simply the complement. Let the sequential machine be
defined by M = (7,0, £,6, A,<p)t where S : I x S is the next state function.
Let a C S be the set of legal reset states. The procedure for computing the
invalid states is outlined in Figure 1. At each iteration, the set of states reach
able from the current set is computed (Line 6). The image is represented in
terms of the next state variables 6. The routine convert at Line 7 simply
translates the state set in terms of next state variables to present state vari
ables. The routine BETWEEN(current, va/ti) at Line 5 returns a set y such that
current •< 7 •< valid. This technique was described in [9, 8] and was referred
to as frontier set simplification. A straightforward approach would compute 7
= current - valid. However, during the breadth first traversal loop, a carefully
chosen 7 can significantly improve the efficiency as observed in [9, 8].

3.2 Equivalent state don't cares

The extraction ofequivalent states is much more complicated. Before proceeding
further, we restate several basic definitions.

Definition 3.1 Two states, <r» and aj, of machine M are said to be compat
ible, written <r» ~ aj, if and only */Vi GJ, A(i,<r<) = A(i,aj).

Definition 3.2 Two states, am and ant of machine M are said to be implied
by the compatible pair (a^aj), written (a^aj) =>• (am)an), if3i € J : am =
6(i,ai) and an = 6(i,aj).

Definition 3.3 Two states, &i and aj, of machine M are said to be equiva
lent, written o~{ = aj, if and only if they are compatible and all their implied
states pairs are also equivalent.

6Using the recursive range computation method, described later, this conversion step is
done already. This is inserted in the pseudo code for completeness.
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Figure 2: Pictorial view of the computed product machine.

The basic idea of the algorithm is as follows. First, determine states that are
compatible. This is the initial set of potentially equivalent sates. Then, com
pute the pairs of states that are implied by these potential equivalent pairs. If
an implied pair is not potentially equivalent, then remove the corresponding
compatible pair from consideration. Repeat this process til convergence. These
computations are done using sets. Thus, the compatibility and implied condi
tions can be determined at once for a large portion of the state space. This
is quite different from the classical equivalence identification procedure which
requires the construction of merger graphs where each state must be explicitly
represented [21].

To do this, we construct a product machine, as illustrated in Figure 2. The
product machine is constructed by duplicating the network, connecting the same
primary inputs to both networks, and connecting the primary outputs of the
two networks to a set of bit-wise equivalence gates. The function

A(AiX A2):Jx£2—E2 (3)

represents the next state behavior of the product machine. The function

A:7x22-B (4)

represents the tautologous checking condition for the primary inputs. It is true
under conditions that will cause both submachines to produce identical primary
outputs.

Algorithm extract_EQUIVALENT_states given Figure 3 can be used to
compute equivalent states. At Line 2, the set of compatible states is computed,
which is also the initial set of potentially equivalent states. At Line 4, the
stopping criterion is when all the implied states are also potentially equivalent.
At Lines 5 and 6, the implied state pairs are computed implicitly for each pair of
potentially equivalent states. The set satJmplied represents the subset of implied
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Algorithm extractjbquivalent_states (A, A):
1. begin
2. compatible = C<A; equiv = compatible;
3. implied = 1;
4. while (implied •£ equiv) do
5. implied = CONVERT (IMAGE (A, equiv))]
6. satJmplied = convert (tmp/tei A equiv);
7. new.egutv = 5» (equiv A INVERSE-IMAGE (A, *at_imp/»e<J));
8. equiv = new.egutv;

9. endwhile

10. return equiv;
11. end.

Figure 3: Extraction of equivalent states.

that are still potentially equivalent. We next eliminate those state pairs from
the set of potentially equivalent states who has non-satisfiable implied pairs.
This is done using the INVERSE-IMAGE operator to compute the subdomain
corresponding to a restricted range. This process is repeated to convergence.

We next show the correctness of the above procedure.

Lemma 3.1 Let A : I x E2 —» B be the tautologous checkfunction constructed
according to Figure 2. Then CiAC E2 represents the complete set of compatible
states, where V(o"j, aj) GCfA C E2, o^ ~ aj.

Proof. By construction, A effectively represents the set of input conditions,
(i}ai,aj) where the primary outputs of the original machine are the same. By
Definition 3.1, two states are compatible if and only if identical output re
sponse is produce under all primary input conditions. This condition, Vi €
I,A(i,aitaj) = 1, can be efficiently computed using the consensus operation
CiA. •

Lemma 3.2 Algorithm BXTRACT-EQUIVALENTJSTATES terminates.

Proof. (Sketch) The sets implied and equiv can only get successively smaller
after each succeeding iteration. Since the domain and range of the state space
is successively restricted, no new state pairs can be introduced in implied and
equiv. D

Theorem 3.3 AIgorithm extract_equivalent_states returns the set equiv C
E2 that represents the entire set of equivalent state pairs.

Proof. (Sketch) The correctness of the initial set of potentially equivalent states
was proved in Lemma 3.1. The "if" part is done. Now we must show the "only
if part, which entails showing that the implied pairs are equivalent. Lines 5-8
successively removes state pairs from consideration that are known to have non-
equivalent implied pairs. Thus, we are guaranteed that no equivalent pairs are
removed consideration, but it must still be shown that all non-equivalent state
pairs are eventually excluded. Suppose there is a non-equivalent state pair not
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removed from the procedure. This implies that it must either be non-compatible
or has a non-equivalent implied pair. The first part is a contradiction due to
Lemma 3.1. The second part implies that there exists a required implied state
pair not in the set of potentially equivalent pairs, which is also a contradiction.
•

Equivalence is transitive. Thus, the computation of equivalent state pairs is
sufficient to determine all equivalence conditions.

An interesting by-product of the above procedure for extracting equivalent
states is that we can perform state minimization directly on the sequential
circuit structure without state graph extraction using BDDs. We will report
more on this finding in the final paper.

3.3 Incomplete specification don't cares

Most real life designs are incompletely specified. There be may be input condi
tions in which the next state or some primary outputs may be left unspecified.
This is especially true when the sequential circuit being optimized was compiled
from a HDL. Let M = (I, O, E, 6, A, <p) be the definition of sequential behavior
where ^:JxS-+ExO represents the incompletely specified (external) don't
care network. We shall give a procedure in this section for the re-computation
of this don't care network after structural transformations.

To do this, we need to describe a few basic machinary. Let 6vi, 6V2t •• •>6va
be the next state function components of y>, and let A^i, Ava,...,Xvm be the
primary output components of <p. The goal is to compute a new don't care
network ^ : J x E —>ExO where 64,1,64,2, ...,6$, are the next state function
components of 0, and A^i, A^a,..., A^n are the primary output components of
<f>. We define 0 and 1 to be the all 0 and all 1 vector, respectively.

Let A : I x E2 —• E2 be the next state behavior of the product machine as
defined before (Cf. Figure 2). However, we nowconstruct the product machine
with the original specification network and the current network. Let da be the
set of legal initial state pairs of the product machine.

The main idea of the recomputation procedure is as follows. First, we es
tablished the state correspondence between the states in the original machine
and the new machine. It is important to note that, through structural trans
formations like retiming or re-encoding, the states in the original machine may
be splitted or combined. Thus, there need not be a one-to-one state correspon
dence between the original machine and the new machine. Then, the incomplete
specification don't cares for the new machine can be recomputed by identifying
the corresponding input conditions that would cause the don't care.

The overall algorithm, RECOMPUTE-INCOMPLETEJSPECIFICATIONJDC, is out
lined in Figure 4. Lines 2-8 establishes the state pair correspondence between
the new machine and the original machine. This portion of the procedure is
similar to the procedure for computing the set of reachable states. The main
difference is that the set reachable states is being computed for the product
machine. At Lines 9-12, the corresponding incomplete specification don't cares
for the primary outputs are computed. Essentially, Av» is the set of primary
input and present state conditions where the primary output Aj is left unspec
ified. Then, the corresponding primary input and present state condition for
the new machine is determined. As noted earlier, splitting and merging may
occur through structural transformations. The problem arises when multiple
states are merged into one. For example, suppose the states am and an of the
original machine were combined to one state ap in the new machine. Suppose
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Algorithm recomputejncompletb_specfication_dc (A, (p, da):
1. begin
2. current — da; valid = 0;
3. while (current •£ valid) do
4. valid = valid V current;
5. current= between (current, va/id);
6. neu; = IMAGE (£, current);
7. current = convert (netw);
8. endwhile

9. foreach (i = 1; i < m; i = i 4- 1) do
10. <j = \Vi A vaftd;
11. A# = determine-CONSistent (u);
12. endfor

13. W= DETERMINB_CONSISTBNT (nj=l (°V» A »*JM))j
14. foreach (i = 1; i < s; i = i + l) do
15. £# = u;
16. endfor

17. return <f>;
18. end.

Figure 4: Re-computation of incomplete specification don't cares.

there exists a primary input condition i such that A»(i, am) is unspecified (don't
care), but A»(i, an) is specified. Then Xi(i,ap) of the new machine must remain
specified. The procedure DETERMINEJCONSISTENT is used to resolve this con
sistency. We shall not describe now how the routine DETBRMINEjCONSISTBNT
is being implemented, but the main idea is to resolve conflicts when multiple
states are merged into one.

4 Latency and Multi-Cycle Don't Care Sets

We have thus far focussed on sequential don't care conditions that arise in nor
mal operation of the sequential circuit. However, depending on the intended use
of the sequential circuit, one may not be interested in the output behavior of the
machine after every cycle. This is, for example, the case with pipeline circuits.
Suppose we have a a-stage pipeline. Then it may not be of interests to examine
the output of the pipeline during the first a cycles while it is being loaded.
We refer this class of don't care operating condition as Latency Don't Cares
(LDC). Another source of operation don't cares has to do with the sampling
rate of the circuit. Suppose we have sequential circuit that is only sampled
every r cycles. Here, the primary outputs need only be valid during every r
cycles. This is not uncommon, for example, in signal processing applications.
We refer this class of don't care operating condition as Multi-cycle Don't
Cares (MDC). Other more complicated operating don't care conditions can be
envisioned.

This don't care conditions can be treated in a similar manner as invalid

state don't cares. The argument goes as follows. Suppose the primary output
response from state s is never examined due to latency or the sampling rate.
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Algorithm LATENCY_ANDJdULTICYLEJDC (6, a, a, r):
1. begin
2. current = a;
3. foreach (i = 1; i < a; i = i + 1) do
4. new = image (6, current);
5. current= convert (new);
6. endfor

7. active = 0; c = 0;
8. while (current •£ active) do
9. c = c + 1;
10. if (c = r) do
11. active = active V current,
12. c = 0;
13. endif

14. new = image (6, current);
15. current= convert (new);
16. endwhile

17. return (active);
18. end.

Figure 5: Computation of latency and multi-cycle don't cares.

Then the primary output response from state s can be set to don't care. How
ever, the next state response must be maintained. Thus, this don't care set is
only associated with the primary outputs of the network, and not the next state
lines.

We give a general procedure for efficiently computing these classes of don't
cares. Like invalid and equivalent state don't cares, these don't care conditions
may be exploited by combinational techniques in the form of external don't
cares. It is worth noting that these don't cares cannot easily be extracted from
state graphs nor can they be easily computed using a structural approach.

A general procedure called latbncy_and_multicycle_dc is outlined in
Figure 5. The latency a and the sample value r are provided to the procedure.
A set of inactive states is returned that can used in combinational simplification.
Specifically, the primary outputs from these states can be left unspecified.

5 Extensions to Combinational Logic Simplifi
cation

The sequential don't care sets (eg. invalid and equivalent states) computed
in the previous sections may be exploited by known multi-level combinational
logic simplification techniques in the form of external don't cares. We review
two broad classes of simplification techniques, namely logic minimization based
techniques and ATPG based techniques, and outlined the necessary extensions.
Redundancy removal via ATPG techniques is a special form of simplification
that does not usually involve local restructuring. Logic minimization based
techniques can result in local restructuring via a process of Boolean resubstitu-
tion.
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5.1 Combinational don't care sets

Two classes of don't cares have been identified. The first is the Satisfiability
Don't Care (SDC) set, which has to do with input conditions that can never
occur due to the structure of the network. These don't cares are a result of

the extended Boolean space, which includes both primary input and internal
variables. It is succinctly defined as:

SDCi =Y,i#VleM*) (5>
A much more difficult set to compute efficiently and correctly is the Observabil
ity Don't Care (ODC) set. These don't cares occur because the observability of
the internal node at the primary outputs is limited the network output structure
and is defined as follows:

The term Dk,at is the external don't care set at primary output k. The main
problem in computing ODC is reconvergent fanouts. Various researchers have
attempted to tackle this problem in different ways [2, 24, 18, 25, 11].

For sequential don't care minimization, there are two basic types of external
don't care conditions, namely input conditions that never occur (eg. invalid
states) and equivalent output responses (eg. equivalent states and incomplete
specification). Invalid don't care input conditions may be propagated into the
internal nodes of the logic networks in two different ways. The first is to simply
express them in terms of traditional external don't cares and use the observ
ability don't careequation (6) to propagate them inwards. However, since these
invalid input conditions are don't cares for all(primary and state) outputs, they
can be directly incorporated into the satisfiability don't care set since these con
ditions are indeed not satisfiable:

sDd =X)w(w ©/;(*)) +D™ (7)
The Dinv term is the set of invalid input conditions.

The exploitation of equivalent output conditions is more difficult. Equiv
alent output conditions may be Boolean relations [5] rather than traditional
external don't cares. Currently, ODC computation methods cannot handle di
rectly external don't care conditions due to Boolean relations. In principle, an
internal node may be set to either 1 or 0 under some input condition if doing
so will cause it to produce a valid output pattern under an equivalence class
even though the pattern may be different from the original pattern. ODC under
Boolean relation don't cares can be computed in a naive way by performing 2n
fault simulations. However, this is extremely inefficient. Alternatively, we can
temporarily construct a dummy network and attach to the end of the origi
nal network in a cascade manner for computing the internal don't cares. The
dummy network would map equivalent output patterns to the same output val
ues. In essence, combinational don't care algorithms are tricked into handling
Boolean relations output. However, this is not easy to compute due to recon
vergent fanouts. This is related to the problem of computing internal don't
cares corresponding to multiple faults in the circuit. Fortunately, a large part
of Boolean relations can be expressed using classical external don't cares. Note
that the handling of Boolean relations in a multi-level context does not require
a two-level Boolean relations minimizer since we are only simplifying a single
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internal node at a time. Once the internal don't cares are computed, standard
two-level Boolean minimizers [4] can be invoked. Currently, a maximal subset
of Boolean relation that can be expressed in terms of classical external don't
cares are used.

5.2 Using ATPG for combinational logic simplification

It is well known that ATPG techniques can be harnessed to perform the task
of redundancy removal, a restricted form of simplification. A signal or a gate
is considered redundant if removing it will not effect the overall combinational
behavior. Many different well-developed algorithms exist for this purpose. The
reader can refer to [17,15, 26, 27] for some representative approaches. For some
circuits, simplification via ATPG is extremely efficient and effective. Although
redundancy removal via ATPG is NP-complete, it can usually performed quite
fast using state-of-the-art pruning strategies. In [20], it was reported that all
the ISCAS combinational benchmarks can be made prime and irredundant in
less than one hour on a 10MIPS class machine. The simplified results were
comparable to those obtained using logic minimization.

One interesting property of ATPG based simplification is that it can be
easily extended to handle complicated external don't care conditions and even
Boolean relations. The two types of external don't care conditions, invalid input
and equivalent output conditions, can be accommodated in the ATPG process.
In the normal redundancy process, a signal or a gate is declared redundant
if no test vector can be found to produce a different vector at the primary
outputs. Handling invalid input conditions and equivalent output responses
can be done with some slight modification to the ATPG process as follows:
If the test generated for a node corresponds to an invalid input condition, or
the faulty output corresponds to an equivalent output vector, then the test
pattern generator can be tricked to reject the test. If no valid test can be found
to produce a non-equivalent output, then the signal or gate can be declared
redundant and removed. This extended combinational ATPG process can in
fact be harnessed to remove sequential redundancies, as described in Section 8.

6 Efficient Symbolic Computation Techniques

6.1 Transition relations

Coudert, Berthet, and Madre [9, 10] propose an extremely elegant method of
implicitly enumerating through state space using BDDs to represent the state
space. Unlike explicit enumeration on state transition graphs, their breadth first
traversal algorithm examines a large set of states at each step, thus making it
extremely powerful for large state space exploration. In [9], they proposed the
use of transition relations, or consistency functions, to perform the range and
domain operations used in implicit traversal. Burch et al [8] used a similar idea
in their work on model checking and design verification. The overall method
can be succinctly stated as follows. Let

F:Bn -* Bm

x denote the set of input variables, and y denote the set of output variables.
Then

XF = UT=iVi s/«W,
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XF Q Bn x Bm

where (x,y)€XF =>• y = F(x).

The transition relation captures all satisfiable input output conditions. Once
this is constructed, both range and domain computation can be done quite
elegantly using known BDD operators. Concisely, let

t:Bn - B

be the subdomain under consideration. Then the image of F under £ is simply

F(x) = Sx(xF(x,y)At(x)). (8)

The interpretation is the subset of output elements that satisfies the following
condition:

{y\3x€t(x) : xf(*,v) = 1 A £(x) = 1}.

Similarly, the inverse-image of F under a restricted subrange of ip : Bm —*• B
is

F-1(y) = MxF(x,y)A^(y))- (9)

6.2 Recursive range computation

Range computation can be easily performed on the transition relation of the
function. However, it requires the construction of the consistency function,
which may be quite time consuming for some circuits. Alternatively, Coudert et
al [10] described a recursive method using the cofactor operation that in practice
performs much faster. Let

F:Bn -> Bm

be a multiple output function and A, ...,/m be the corresponding individual
functions. Then the image computation can be efficiently computed using the
following recursive equation:

lJ,(*) = yi(/2,...>/m)/l(aj) +l?r(/3j...,/m)7r(*) (10)
In the worst case, this basic method would still require exponential computa
tion. The efficiency depends heavily on the selection of output function at each
level of recursion. Also, bounding techniques play a significant role in pruning
unnecessary computation. For example, disjoint support information may be
used to advantage in bounding the recursion.

6.3 Domain computation via composition

Domain computation using the consistency method is also limited by the ability
to construct the consistency function. Instead, domain computation can be done
using the composeoperator [7]. Let

F:Bn -* Bm

be the function and

rf>: Bm -> B

be the subrange under consideration. Then

F~\v))=V)oF (11)

This can be directly implemented using BDDs without first constructing a con
sistency function.
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circuit inputs outputs latches gates literals

s27 4 1 3 10 18

s298 3 6 14 119 244

s382 3 6 21 158 306

s386 7 7 6 159 347

s400 3 6 21 164 322

s420 19 2 16 196 336

8444 3 6 21 181 352

s526 3 6 21 193 445

planet 7 19 6 606 1346

sse 7 7 6 130 318

Table 1: Statistics of some ISCAS and MCNC examples.
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7 Preliminary Experimental Results

We give in this section some preliminary results on our propose ideas and al
gorithms. At this time, we have only implemented a small subset of the don't
cares described in this paper. Thus, the results do not fully reflect the power of
our propose techniques. Nonetheless, we were able to observe substantial gains
over combinational simplification alone.

Our algorithms were developed on top of misll [3], version 2.2, which pro
vided extensive support for experimentation. For preliminary experiment, we
tested our algorithms on a set of multi-level sequential network benchmarks;
all but two are from the iscas sequential logic benchmark set. The examples
planet and sse were from the MCNC benchmark set. Some vital statistics of
the examples tested are given in Table 1. The most number of latches tested
so far is 21. We should be able to handle significantly larger examples than
the ones tested thus far. We plan to report results on them in the final pa
per. To illustrate the effects of sequential don't cares, we compare results with
pure combinational logic simplification, as shown in Table 2. The column la
beled initial is the number literals initially prior to simplification. We then
ran the simplify and cspf_simplify commands in misll to minimize the net

work. The command simplify makes use of the satisfiability don't care sets and
CSPFJ3IMPLIFY makes use of Muroga's compatible set of permissible functions
(CSPFs) and observability don't cares. The results after one pass of simplify
and cspf_simplify are reported in the column labeled comb-dc. Note that
substantial reduction was already possible without considering sequential don't
cares. For the iscas examples, it is well known that they contain a number
of combinational redundancies, which would explain the significant reduction
using only combinational simplification. We than proceeded to compute the in
valid and equivalent don't care sets using the BDD based algorithms described
in the paper. These don't care sets were used as external don't cares to further
minimize the network. We used the CSPF-SIMPLIFY command with the external

don't care sets. Only a single pass simplification was carried out 7. Depending
on the example, significant further reduction was possible when these don't cares
are exploited. The results after the use of sequential don't cares are reported
in the column labeled seq-dc. In the fifth column labeled ratio, we indicate the

7To check the correctness of the minimization procedure, we actually performed sequential
verification using a BDD based method [28].
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circuit initial comb-dc seq-dc ratio

s27 18 17 17 1.06/1.00
s298 244 179 149 1.64/1.20
s382 306 238 204 1.50/1.17
s386 347 259 233 1.49/1.11
s400 322 253 207 1.56/1.17
s420 336 275 209 1.61/1.32
s444 352 275 223 1.58/1.23
s526 445 340 244 1.82/1.39

planet 1346 1159 1153 1.17/1.01
sse 318 239 212 1.50/1.13

Table 2: Preliminary results using a subset of the don't cares.
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relative improvements of the methods. The first ratio is sequentially simplified
result versus the initial circuit size. The second ratio is the sequentially simpli
fied result versus the result via only combinational simplification. To check the
correctness of the algorithms and the intermediate steps, the optimized results
were sequentially verified against the initial specification. For all the examples
reported, the optimized results were correct, as indicated in the last column.

For the final paper, we expect to have results for larger examples. Also,
we believe that much greater simplification can be achieved when iterated with
global restructuring techniques. We are currently implementing the algorithms
for computing the latency and multi-cycle don't cares. Experimental results for
these don't care sets will also be reported.

8 Sequential Redundancy Removal

Sequential redundancy removal is required if the circuit being manufactured is
to be tested using non-scan testing procedures. A fault is said to be redundant if
the removal of the associated circuitry will not effect the overall behavior of the
circuit. Combinationally redundant faults can be removed quite efficiently today
using state of the art combinational ATPG techniques such as podem [17], fan
[15], and SOCRATES [26, 27]. However, sequentially redundancies, those that
cannot be detected at the primary outputs with a single test, are substantially
more difficult to eliminate.

One approach to sequential redundancy removal is to use sequential ATPG
technology to identify redundancies. Particularly, ATPG techniques are very
good at identifying when a fault is not redundant. But effectively, the faulty
machine must be shown to be equivalent to the fault-free machine before we
can be certain that the fault under test is sequentially redundant. This can be
very time consuming since a large part of the state space must be traversed.
Sequential testers such as steed [16], developed by Ghosh and Devadas, can
be harnessed for sequential redundancy removal. The basic STEED procedure
can be improved upon, possibly quite significantly, by incorporating the BDD-
based symbolic implicit enumeration techniques. Specifically, the state justifi
cation and differentiation steps of STEED can be replaced by BDD operations.
This represents a viable approach for sequential redundancy removal, but may
require time consuming justification and differentiation steps to remove each
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redundancy.

An alternative approach is use combinational techniques in conjunction with
sequential don't cares to remove sequential redundancies. This is very similar
to the general concept introduced by Devadas, Ma, Newton, and Sangiovanni-
Vincentelli in [14], and Devadasand Keutzer in [13]. Their general method can
be summarized as follows: 8

1. Compute invalid and equivalent states by extracting a state transition
graph for the state machine.

2. Perform optimal two-level Boolean minimization using a minimizer like
ESPRESSO [4] to obtain a prime and irredundant cover using the invalid
and equivalent states as external don't cares. Repeat Step 1 and 2 until
convergence. At this point, the two-level implementation is guaranteed to
be sequentially irredundant.

3. Algebraically factorize the network to produce a multi-level logic network.
The fully sequential testable property is retained.

The above procedure is limited in applicability to those circuits whose state
space and combinational logic can be represented efficiently in two-level form.
However, a large class of sequential logic networks has large numbers of latches
and complicated data path like logic components. A further shortcoming is that
an area penalty may be incurred due to the restriction of algebraic operations
in obtaining the multi-level implementation. The severity of this shortcoming
is dependent on the problem instance.

We improve on the above procedure by the use of BDD-based implicit state
space enumeration techniques to compute the sequential don't care sets, as de
scribed in the previous sections, and well developed combinational ATPG algo
rithms (or multi-level combinational don't carebased simplification algorithms)
to obtain a prime and irredundant multi-level network under the sequential
don't care sets. Our new procedure is outlined as follows:

1. Begin with a (potentially optimized) multi-level sequential logic network.
No restriction is placed on the type of optimizations that can be applied to
the network prior to this redundancy removal procedure. Thus, sequential
logic optimization can be carried out without regards for testability con
siderations. Transformations like Boolean factorization and retiming can
be applied freely (assuming the overall sequential behavior is preserved).

2. Use the implicit enumeration algorithms EXTRACT-INVALID-STATES and
EXTRACT-EQUIVALENT-STATES (Cf. Section 3) to compute the invalidity
and equivalence don't care conditions.

3. Use combinational ATPG to remove redundancies under the invalid and

equivalent state don't cares. A test is rejected if it corresponds to an in
valid input condition or the faulty next state corresponds to an equivalent
state (primary outputs the same). If no valid test can be found under the
external don't care conditions, then the corresponding signal or gate is
declared redundant. This step can be replaced, or applied in conjunction,
by multi-level combinational don't care based minimization techniques,
such as those proposed by [2, 24] (Cf. Section 5). If the only concern is
redundancy removal, the ATPG process is typically much faster. Repeat
Step 2 and 3 until convergence.

8constrained synthesis procedures from state transition graphs have also been proposed.
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We conjecture that current combinational ATPG technology and implicit state
space enumeration technology can be harnessed to handle very large sequential
networks.

It remains to be proved that the above procedure will, upon convergence,
guarantee the same degree of sequential testability as the method proposed by
Devadas in [14]. We are now in the process of verifying this assertion. However,
following the lines of argument from [14], under the same assumptions, we are
optimistic that similar theoretical results can be achieved.

9 Concluding Remarks

We have described a set of algorithms for the efficient computation of sequen
tial don't cares using BDD-based symbolic implicit state space enumeration
techniques. This permits the application of our algorithms to a large class of
sequential networks, including those with data path like components and large
number of storage elements. We have shown how sequential don't care con
ditions such as invalid states and equivalent states can be exploited with well
developed combinational multi-level simplification procedures by treating them
as external don't cares. We also describe how incompletely specified don't care
conditions, obtained from high-level descriptions, can be efficiently re-computed
once structural transformations such as retiming are applied.

A new class of sequential don't cares, called operation don't cares, was also
introduced to consider the intended operating nature of the circuit. Specifically,
circuits, involving pipeline like and multi-cycle operations can benefit tremen
dously from the proper use of these don't cares.

At present, we have only implemented a subset of the techniques proposed in
this paper. Early results indicate the feasibility and effectiveness ofour proposed
approach. For the final paper, we plan on experimenting with much larger
example (eg. other examples in the ISCAS benchmark set). We are currently
implementing the latency and multi-cycle don't care procedures. Results are
forthcoming.

As a final point, we note that the use of the sequential don't cares in a
repeated combinational ATPG process can be used to remove sequential redun
dancies, with the end goal of producing a fully sequentially testable network.
We conjecture that this process of sequential redundancy removal is more effi
cient than currently known sequential ATPG process involving justification and
differentiation.
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