
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



PARALLEL QUERY PROCESSING IN XPRS

by

Wei Hong and Michael Stonebraker

Memorandum No. UCB/ERL M90/47

24 May 1990



PARALLEL QUERY PROCESSING IN XPRS

by

Wei Hong and Michael Stonebraker

Memorandum No. UCB/ERL M90/47

24 May 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



PARALLEL QUERY PROCESSING IN XPRS

by

Wei Hong and Michael Stonebraker

Memorandum No. UCB/ERL M90/47

24 May 1990

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720



Parallel Query Processing in XPRS

Wei Hong and Michael Stonebraker

Computer Science Division, EECS Department

University of California at Berkeley

hong@postgres.berkeley.edu

mike@postgres.berkeley.edu

May 23, 1990

Abstract

In this paper, we present our design and some initial performance results of parallel

query processing of XPRS1, a parallel database machine based on shared-memory mul

tiprocessors and disk arrays. In XPRS, we achieve load balancing by emphasizing on

intra-operation parallelism and partitioning data equally among the processes. We solve

the complex optimization problem of parallel query processing plans by dividing it into

two steps. In the first step, we optimize sequential plans and in the second step we opti

mize parallelizations of sequential plans. Justifications to our approach are also provided

in this paper.

1 Introduction

XPRS (extended Postgres on Raid and Sprite) is a parallel database machine based on

shared-memory multiprocessors and disk arrays. The parallel environment of XPRS is shown

in Figure 1. An outline of the initial overall design of XPRS can be found in [STON88]

and the underlining reliable disk array system RAID is described in [PATT88]. This paper

describes our approach to explore intra-query parallelismin XPRS.

lThis research wassponsored by the National Science Foundation under contract MIP 8715235.



CPU CPU

relation striping

Figure 1: The Parallel Environment of XPRS

A shared-memory architecture has the following two major advantages over the shared-

nothing architectures[STON86]adopted by other parallel database machines such as GAMMA

[DEWI86] and BUBBA[COPE88]:

• easy load balancing, because a shared-memorysystem can automatically allocate the

next ready process to the first available processor;

• low message costs, because message passingcan be done through the shared memory.

In order to keep up with the I/O requests from the parallel CPU's, XPRS uses a disk

array to eliminate the I/O bottleneck by parallelism among disks. In XPRS, all relations

are striped across an array of disks and we have a two-dimensional file system[SELT89] to

automatically balance the load among the disks. Therefore, to achieve load balance, all we

need to do is to make sure that each process gets the same amount of tuples to process.

Our main goal is to achieve a close-to-linear speedup in query processing. With the

advantages described above, we are confident that XPRS will outperform a shared-nothing

system with an equivalent total number of processors, disks and amount of main memory



until XPRS hit the limit of the internal bus bandwidth. The simulation results in [BHID88]

show that the potential win of XPRS over a shared-nothing system to be as much as a factor

of two.

There are a few parallel query processing algorithms for shared-memory environments

that havebeen published, e.g., [BITT83a, MURP89, RICH87, GRAE90]. However, they only

deal with single operations, mainly, joins and sorts. They do not consider the amount of main

memory buffer space available and other dynamic resource allocation issues in a multi-user

system. In XPRS, we take all these issues into account, i.e., we will try to find optimal

or near-optimal ways to parallelize a whole query processing plan in a dynamicly changing

multi-user environment.

There aretwomajor difficulties that wehaveto overcome: first, the enormous search space

of parallel query processing plans, second, the the dynamic parameters, e.g., number of free

processors, amount of available buffer space, etc. Our strategy is to divide query optimization

into two steps. The first step deals with sequential query plans and static parameters and is

done at compile time, just like conventional query optimization. The second step parallelizes

the sequential plan obtained at the first step according to the run-time system environment.

We will show that our strategy does not compromise the optimality of parallel query plans.

The rest of this paper is organized as the following. Section 2 explores the search space of

parallel query plans and shows the complexity of our problem. Section 3 describes how intra-

operation parallelism can be achieved in all the basic relational operators and shows some

performance measurements of parallel scans. Section 4 formulates our optimization problem

and justifies two key design hypotheses that lead to our two-step optimization strategy. Sec

tion 5 gives the overall query processing architecture of XPRS. Section 6 sketches future work

and concludes the paper.

2 The Space of Parallel Plans

We call the query processing plans in conventional query processing which assumes a unipro

cessor environment, sequential plans. A sequential plan is a tree consisting of basic relational



Ooin>

(a) a left-only-tree plan for a 4-way join (b) a bushy-tree plan for a 4-way join

Figure 2: Left-only-tree Plans v.s. Bushy-tree Plans

operation nodes. In XPRS, the basic relational operators include sequential scan, index

scan, nestloop join, mergesort join and hashjoin. Most optimizers, such as the System

R optimizer[SELI79] and the original Postgres optimizer[FONG86] only consider leftonly-

tree(see Figure 2a) plans to reduce the search space. However, in a parallel environment,

bushy-tree(see Figure 2b) plans should be considered because they are better tailored to

wards parallelism. For example as in Figure 2, leftonly-tree plans will forbid the possibility

of executing (A JOIN B) and (C JOIN D) in parallel.

We call the query processing plans in a multiprocessor environment, parallel plans. Ob

viously, each parallel plan is a parallelization of some sequential plan and each sequential

plan may have many different parallelizations. Parallelizations can be characterized in the

following three aspects.

• Form of Parallelism

There are twogeneric ways to achieve parallelism: data partitioning and junction parti

tioning. Data-partitioning achieves intra-operation parallelism andfunction-partitioning

achieves inter-operation parallelism. In a database system, we can have multiple pro

cesses workingon the same relational operation but each with a different set of tuples.

We call this partitioned operations. We can also have one set of processes working on

one operation and one set of processes working on another operation. They can be



unit of
parallelism

pipelined
operations

degree of
parallelism

Figure 3: An Example of Parallelizations

fully in parallel or in a pipeline. We call these twoforms of inter-operation parallelism

parallel operations and pipelined operations.

Figure 3shows an example ofa parallelization ofa three-way join,(A JOIN B) JOIN C,

in which the first join is performed by mergesort and the second by hashjoin. For con

venience, we have separated the two phases of a hashjoin into two nodes: hash build

and hash probe. The sort, indexscan and hashjoin probe can be executed in parallel by

multiple processes, as examplesofpartitioned operations. The sort and indexscan can be

performed as parallel operations, and the sort, indexscan and merge can be performed

as pipelined operations.

• Unit of Parallelism

Unit ofparallelism refers to the group ofoperations that is assigned to the same process.

In general it can be any connected subgraphs of a plan tree and can range from a single

operation to multiple operations. We also call a unit of parallelism a planfragment. For

example in Figure 3, the hash build and merge is a plan fragment.



• Degree of Parallelism

Degree of parallelism is the number of processes we use to execute a plan fragment. For

example in Figure 3, we assign two processes to work on the indexscan in parallel, thus

the degree of parallelism is two.

Figure 3 gives a global picture of parallelization of sequential plans. The next section will

zoom inside the boxes and shows how each relational operation can be parallelized.

3 Parallelization of Relational Operations

All query processing consists of execution of the basic relational operations as mentioned

above. Fortunately, all these relational operations are suitable for intra-operation parallelism.

In XPRS, we emphasize on exploring intra-operation parallelism because if we partition the

input relations into equal-size chunks, intra-operation parallelism guarantees load balance.

Load balancing becomes much harder with inter-operation parallelism. Parallelizations of

individual relational operations are described belowed.

Sequential Scan is trivial to parallelize. We partition the disk blocks and have each

process work on tuples from a different set of disk blocks.

Index Scan is more problematic. The basic approach to parallelize index scan is to par

tition the scan rangeinto subranges and haveeachprocess scanfor tuples withina subrange.

For load balance, we have to make sure that each of the subranges contains approximately

the same number of tuples. In Postgres, there is a vacuum daemon process that wakes up

every once and a while and scans through the entire database to dump out-of-date tuples

into archives and keep statistics about data distributions in the current database. Range-

partitioning for index scan has to rely on these statistics. It is also possible to get the

information we need for a balanced range-partition in the B-tree index itself.

Nest loop Join is another easy operation to parallelize. We partition the outer relation

and have each process join a portion of the outer relation with the inner relation.



Hashjoin parallelization requires a large chunkofshared memory because we have to put

the hash table in the shared memory so that in the first phase wecan havemultipleprocesses

insert into the hash table and in the second phase have multiple processes probe into the hash

table.

Sort parallelizationis similar to index scan. First, wepartition the entire range of the sort

key into subranges such that each subrange contains approximately the same number of tuples

according to the current database statistics. Then, we do a parallel scan to redistribute tuples

according to the subranges and have each process sort tuples within a subrange independently.

Last, we attach these sorted segments together and form an entire sorted relation.

Mergesort Join can be parallelized in almost the same way as sort.

As we notice from above, in parallelization of all the relationaloperations except hashjoin,

the multiple processes all work independently of each other. In hashjoin parallelization, we

have a shared hash table that introduces critical sections. However, possible conflicts only

happen when two processes try to insert tuples into the same hash bucket at the same time.

If we always make the number of hash buckets large enough, we can keep the possibility of

conflict negligible. Therefore, if we partition the operand relations properly, we can always

achieveload balance in the parallelizations of the basic relational operations and see a near-

linear speedup. We have implemented parallel scans for XPRS and the following are some

performance measurements.

Right now XPRS is being implementedon a Sequent Symmetry with 12 CPU's connected

via an 80MB/s bus and 5 disks controlled by 2 dual-channel disk controllers. The operating

system that we are using at the moment is Dynix, a BSD-based multiprocessor UNIX. XPRS

will eventually move onto the Sprite operating system.

In the experiments, wecreated twosamplerelations with 10,000 tuples each. One relation

has 100 bytes/tuple with the same fields as the Wisconsin-Benchmark relations [BITT83b].

The other relation has IK bytes/tuple. The relations are striped across disks using a simple

mod function, i.e., block x, is stored on disk (x mod number of disks). The relations are also

partitioned among the parallel scan processes with a simple modfunction, i.e., process i scans



Speedup of Parallel Scan

Figure 4: Speedup of Parallel Scan: small tuples, forward scan

block x such that x mod number of processes = i. We adopt this partition scheme instead

of a range-partition scheme because this schememay get the benefit of file system readahead

in UNIX when the number of processes is smaller than the number of disks. The striped

relations axe stored in separate files, one on each disk. In our partition scheme, if we have

less processes than the numberof disks, then the I/O requests on each file will be sequential,

and therefore the file system readahead will be turned on. Before each parallel scan, the file

system cache is always cleared so that no blocks of the test relations are left in memory. All

the processes are pre-forked so that process startup overhead is negligible. In order to isolate

the effect of file system readahead, we scan the relations both forward and backward. When

the relations are scanned backwards, no readahead is possible.

Wehavemeasured the speedup ofparallel scans on the tworelationsvarying the numberof

processes and number of disks. The results are presented in Figure 4-6. In Figure 4, because

the tuples are small, the scans are completely CPU-bound and disk striping does not make

much difference in performance. The speedup is only limited by the number of processors

available. However, in Figure 5 and 6, because the tuples are large, the scans are I/O bound



Speedup of Parallel Scan

Figure 5: Speedup of Parallel Scan: large tuples, backward scan

and disk striping does show a big win. In Fiugre 5, we can see a near-linear speedup as we

increase the number of processes until it saturates the disk bandwidth. However, in Figure

6, we see a drop in the speedup when the number of processes exceeds the number of disks.

This is because after that point the access pattern to each file becomes random and the file

system readahead is turned off.

4 The Optimization Problem and Two Key Hypotheses

We have understood the possible parallelizations of sequential plans and parallelizations of

each individual relational operations. Now the question is how to optimize them.

Suppose P is a sequential plan and let PARALLEL(P) be the set of possible paralleliza

tions of P. Suppose Q is a given query and let SPLAN(Q) be the set of sequential plans of

Q. Then PPLAN(Q), the set of parallel plans of Q, is given by

PPLAN(Q) = (J PARALLEL(P)
P€SPLAN(Q)



Speedup of Parallel S

2.00 4.00 6.00 S.00 10.00 12.00 14.00

Figure 6: Speedup of Parallel Scan: large tuples, forward scan

PPLAN(Q) is the space to explore for intra-query parallelism.

The optimization problem is to minimize query processing cost among all the possible

parallel plans. In XPRS, we measure plan cost by response time. Obviously, plan costs

depend on two parameters: amount of available buffer space and number of free processors.

For PP € PPLAN(Q), let Cost(PP, NBUFS, NPROCS) be the cost of the parallel plan

PP given NBUFS units of buffer space and NPROCS free processors. Our optimization

problem is to find,

min{Cost(PP,NBUFS,NPROCS)\PP £ PARALLEL(P),P GSPLAN(Q)}.

There are two major difficulties in this problem. First, the search space PPLAN(Q) is

orders ofmagnitude larger than SPLAN(Q), therefore the conventional wisdom for query op

timization to do exhaustive searches simply does not work. Second, the dynamic parameters,

NBUFS and NPROCS are unknown until query execution time, therefore compile-time

optimization will have to deal with these unknown parameters. Our objectives are to reduce

the complexity in plan searching and to do as much as possible at compile time. Fortunately,

we have justified the following two design hypotheses for XPRS which greatly simplify our

10



optimization problem.

Let BPP(Q, NBUFS, NPROCS) be the best parallel plan for query Q given NBUFS units of

buffer space and NPROCS free processors. Lei BP(Q, NBUFS) be the best sequential plan for Q

given NBUFS units of buffer space.

1. The Buffer-Size-Independent Hypothesis

The choice of the best sequential plan does not depend on the amount of buffer space

available, i.e., Cost(BP(Q,NBUFS),NBUFS) « Cost(BP(Q,NBUFSf),NBUFS),

where NBUFS 5* NBUFS'

2. The 2-Step Hypothesis

The best parallelplan is a parallelization of the best sequential plan, i.e.,

BPP(Q,NBUFS,NPROCS) 6 PARALLEL(BP(Q, NBUFS)).

Our justifications are based on the following assumptions.

• There is no overlap between CPU and I/O.

This is an assumption most optimizersmake in their cost models, simply because with

overlapping, response time becomes too hard to estimate. We have adopted this as

sumption in the cost model of our XPRS optimizer. Conventionalquery optimization

minimizes a linear combination of I/O cost and CPU cost. Under this assumption, it

also minimizes response time.

• Buffer size is always above the hashjoin threshold, approximately the square root of the

size of the smaller relation[DEWI84, SHAP86], and large enough hold all the selected

data pages in a non-clustered index scan.

XPRS is designed to have a large amount ofmain memory buffer. Forexample, joining

two 10 gigabytes relations with a disk blocksize of 4K requires 6.4 megabytes of buffer

space for a hybrid hashjoin. XPRS is expected to routinely have much more buffer

space than this amount. It has been proved in [DEW184, SHAP86] that hashjoin is

11



always the best join plan for unindexed relations as long as the buffer size is above the

the threshold. Our buffer-size-independent hypothesis is based on this result.

We justify the buffer-size-independent hypothesis by our experiment results on the Post-

gres optimizer. The Postgres optimizer is a standard conventional query optimizer, i.e., it

uses a generic exhaustive search algorithm on all the possible bushy-tree plans and a set of

standard of cost functions as in [SHAP86]. Given a query and a buffer size, the Postgres

optimizer finds the optimal sequential plan.

In the experiment, 10random relations aregenerated in a Postgresdatabase. The number

of attributes in the relations is randomly distributed between 5 and 20. 75% of the attributes

are 4-byte integers (25% other data types). 50% of the integer attributes are indexed. No

actual tuples are generated, but appropriate statistics are fabricated and loaded into the

system catalogs to make the join and qualification clause selectivities more realistic. The

number of tuples in a relation is randomly chosenamong 10,1,000,10,000,100,000,1,000,000

and 10,000,000. 30% of the attributes are assumed to have unique values and therefore the

number of distinct values in these columns is the same as the number of tuples in the relation.

The number of distinct values in the other 70% columns is randomly distributed between 1

and the number of tuples in the relation. 100 random queries on the above 10 relations are

generated for the experiment. The number of relations in a query is randomly distributed

between 1 and 6. Eachrelation in a query is equijoined to another randomlychosen relation

in the query on two randomly chosen integer attributes. 50% of the relations in a query

also have one qualification on some random attribute. The length of the target list and the

attributes in the target list of the queries are also randomly chosen. The following is an

example of the random queries.

retrieve (r3.al 7,r4.a6,rS.a8)

where r0.a8=l and r6.a9=l

and r3.a9=r6.al and r6.aO=r4.a4 and r4.a6=r0.alO

Each of the 100 random queries is optimized by the Postgres optimizer assuming buffer

size ranging from 16 to 16384 pages, i.e., 128KBto 128MB (Postgres has 8K pages). For each

12



Optimizer Experiment Result
Caat(B«P<Q.x).xyCa«<B«atP(Q*n).i)

1.20

1 1 1 I 1 1

I.IO

l.OO

-

0.90 —

o.to
-

0.70
-

0.60
-

OJO
-

0.40
-

0.30
-

0.2O
-

0.10
-

0.00

l I l 1 l I

Figure 7: Justification to Buffer-Size-Independent Hypothesis

query, Q, we first find the best plan assuming the entire buffer pool is available. Suppose

this plan is BP(Q,ALLBUFS). Then for each buffer size, NBUFS, we compare the cost of

BP{Q,ALLBUFS) and BP{Q, NBUFS). We found that,

Cost(BP(Q,ALLBUFS),NBUFS)/Cost(BP(Q,NBUFS),NBUFS)« 1,

for all NBUFS above the hashjoin threshold as is shown in Figure 7.

Our justification to the 2-step hypothesisis based on the results from the previous section

that intra-operation parallelism can achieve near-linear speedup. The basic reasoning is the

following:

1. the optimal sequential plan is the fastest sequentialplan assumingno CPU-I/O overlap;

2. by exploiting intra-operation parallelism, given the same number of processors, all the

sequential plans get an equal speedup;

3. therefore, the parallelization of optimal sequential plan remains the fastest.

13



5 XPRS Query Processing

Based on the above two hypotheses, we can overcome the enormous complexity of parallel

plan optimization by the following 2-step algorithm.

• Step 1. Find the optimalsequential plan given a fixed amount of buffer space, i.e., find

BP(Q, ALLBUFS) where ALLBUFS is the size of the whole buffer pool.

• Step 2. Find the optimal parallelization of the optimal sequential plan, i.e., find

min{cost(PP, NBUFS, NPROCS) \ PP € PARALLEL(BP(Q, ALLBUFS))}

where NBUFS and NPROCS are the run-time available buffer size and the number

of free processors.

Because we have a fixed buffer size ALLBUFS in the Step 1, Step 1 can be carried out

at compile time. It is the same as a conventional query optimization. Step 2 still has to be

performed at run time, because it takes the run-time parameters NBUFS and NPROCS

intoaccount and tries to dynamically determine the best parallelization of the sequential plan

chosen in Step 1.

Figure 8 gives an overall architecture of XPRS query processing. The XPRS optimizer

is the same as any conventional optimizer. We will simply use the Postgres optimizer. The

paxallelizer takes a sequential plan and decomposes it into a set of plan fragments, decides

the degrees of parallelism for each fragment and passes the fragments to the parallel executor.

The executor sends the plan fragments to a number of Postgres backend processes running on

separate processors according to the degree of parallelism determined by the parallelizer. The

multiple Postgres backend processes execute the plan fragments in parallel. After they finish

executing their plan fragments, they send acknowledgements back to the parallel executor

and the parallel executor will mark the corresponding fragments as completed and send the

modified plan tree back to the parallelizer. Then the whole parallelization process repeats.

The XPRS parallelizer is the key part for exploiting parallelism. In fact, it does not have

to examine all possible parallelizations of a sequential plan. The following are the heuristics

that it uses in the different aspects of parallelization.

14



query

Optimizer (bushy tree)

fragment.

plan

Parallel
Executor h

Compile Time

Run Time

plan
Parallelizer

(fragments)

Figure 8: The Architecture of XPRS Query Processing

• Form of Parallelism

The parallelizer tries to exploit intra-operation parallelism as much as possible for the

sake of load balance. It only considers executing two independent plan fragments in

parallel when there are some free processors left by previous fragments. No pipelined

operations are considered to avoid process waiting.

• Unit of Parallelism

Obviously larger plan fragments will cause less temporary relation overhead. However

the size of a plan fragment is limited by blocking edges in the plan tree. We draw a

blocking edge between twooperations ifoneoperation has to waitfor the other operation

to finish producing all the tuples before it can start. Alledges coming out ofa sort node

or a hash node are blocking edges. Obviously, we do not want to include any blocking

edges in a plan fragment. Initially, the parallelizer will decompose a sequential plan

tree across blocking edges and get a unique set of plan fragments which are the largest

possible plan fragments. See Figure 9 for an example.

15



AKMMMMMAMAMAMWWWMMWWM

blocking
fragnient3

A

Figure 9: An Example of Initial Plan Fragments

The size of plan fragments are also constrained by the runtime available buffer size. For

example, we can not take two hashjoins in a plan fragment unless there is enough buffer

space to hold both hash tables. In case of insufficient buffer space, the parallelizer will

have to decompose the plan fragments into even smaller fragments.

• Degree of Parallelism

The degree of parallelism is ultimately limited by the disk bandwidth and number of

free processors. The parallelizer will make sure not to create too many processes to

saturate the disk bandwidth. And to be considerate of other users on the system, the

parallelizer will adjust the degree of parallelism according to the current system load

average. Some detailed formulas are given in [STON89].

6 Conclusion and Remaining Work

We have sketched the overall design of XPRS query processing and shown some initial per

formance numbers of parallel scans. In summary, our approach is unique in two aspects.

16



First, we emphasize on intra-operation parallelism and guarantee load balance by partition

ing data equally among the processors. Second, we use a 2-step optimization algorithm to

overcome the enormous complexity in searching for an optimal parallel plan without com

promising optimality. So far, the implementation for parallel scans have been completed and

the implementation for parallel joins is moving along. The parallelizer has also been partially

implemented. However, there is still a lot of work remaining to be done:

1. Complete Implementation and Performance Evaluation

First, we need to complete the rest of the implementation and test our hypotheses

and measure speedups in a fully functional system. Our justification to the buffer-size-

independent hypothesis is basedon the experimenton the Postgres optimizer. After we

complete the implementations, especially on hashjoins, we will test this hypothesis in

terms of real execution costs instead of estimated optimizer costs. If it turns out to be

not valid, we will need to have a more elaborate optimizer at the first step. A simple

extension to our current approach is to try to identify the intervals of buffer sizes within

which the choice of optimal plan does not change and find the optimal plans within

these intervals. It is easy to achieve this for single operations. By intersecting intervals

of all the operations in a query plan, we can get the intervals of the whole plan. And

we can also calculate the plan cost in each of the intervals. By comparing the plan

costs in corresponding intervals,we can find the optimal plan for each interval. As long

as there is only a small number of intervals, this extension will work perfectly fine. It

will generate the same number of plan trees as conventionalquery optimization and for

each plan tree the extra cost is a little interval intersecting. In our current design, we

postulate that parallelization overhead is small. This also needs to be confirmed by a

working system.

2. New Hashjoin Algorithm

Because hashjoin is the best join algorithms for unindexed relations given enough buffer

space, we expect to see a lot of hashjoin nodes in the query plans. However, traditional

17



hash table 1 hash table 2

Rl X R2

Figure 10: Non-blocking Hashjoin

hashjoin algorithmintroduces a lot of blockings into the plan tree because it consists of

twophases: the build phase and the probe phase, and the probe phasehas to block until

the build phase finishes. Alternatively, we have a non-blocking hashjoin algorithm as

illustrated in Figure 10. The idea is use two hash tables, one for each relation. Every

time we get a tuple from one relation, we look into the hash table of the other relation.

If we find a match, we output a result. In any case, we always insert the tuple into the

hash table ofits own relation. Obviously, there isno blocking in this hashjoin algorithm.

We candetectmatches as soon as they show up along with building the hashtables. The

advantage ofnon-blocking hashjoin is that by reducing the number ofblocking edges in

a plan tree, we can increase the possible sizes of plan fragments. The disadvantage of

non-blocking hashjoin is that it requires more than twice as much memory for two hash

tables instead ofone. We plan to implement non-blocking hashjoin in XPRS and study

the performance implications.

3. Abstract Data Types

18



So far, we have only dealt with traditional relational operations. Because Postgres is

an extendible database, wealso need to deal with various kinds user-defined operations

on abstract data types. For example, we may need to provide an interface to let the

user provide special functions for data partitioning and gathering, or special heuristics

for parallelization.

4. Multiple Query Optimization

In the design described above, we have only considered optimization of a single query.

The problem of how to allocate the shared memory and processors to a set of queries

submitted by different users at the same time has not been addressed. We plan to study

this problem after we get more experience with single query parallel execution.

References

[BHID88] Bhide, A. and Stonebraker, M., "A Performance Comparison of Two Architec

tures for Fast Transaction Processing, n Proc. 1988 IEEE Data Engineering Conference, Los

Angeles, CA, Feb. 1988.

[BITT83a] Bitton, D., et. al., "Parallel Algorithms for the Execution of Relational Database

Operations," ACM-TODS, Sept. 1983.

[BITT83b] Bitton, D., et. al., "Benchmarking Database Systems: A Systematic Approach,"

Proc. VLDB, 1983.

[COPE88] Copeland, G., et. al., "Data Placement in Bubba," Proc. 1988 ACM-SIGMOD

Conference on Management of Data, Chicago, IL, June 1988.

[DEWI84] Dewitt, D., et. al., "Implementation Techniques for Main Memory Data Base

Systems," Proc. 1984 ACM-SIGMOD Conference on Management of Data, Boston, MA,

June 1984.

19



[DEWI86] Dewitt, D., et. al., "GAMMA: A High Performance Dataflow Database Machine,"

Proc. 1986 VLDB Conference, Kyoto, Japan, Sept. 1986.

[FONG86] Fong, Z., "The Design and Implementation of the POSTGRES Query Optimizer,"

M.S. Report, Univ. of California, Berkeley, CA, Aug. 1986.

[GRAE90] Graefe, G., "Encapsulation of Parallelism in the Volcano Query Processing Sys

tem," Proc. 1990 ACM-SIGMOD.

[MURP89] Murphy, M. and Rotem, D., "Processor Scheduling for Multiprocessor Joins,"

Proc. 1989 IEEE Data Engineering Conference, Los Angeles, CA, Feb. 1989.

[PATT88] Patterson, D., et. al., "RAID: Redundant Arrays of Inexpensive Disks," Proc.

1988 ACM-SIGMOD Conference on Management of Data, Chicago, IL, June 1988.

[RICH87] Richardson, J., et. al., "Design and Evaluation of Parallel Pipelined Join Algo

rithms," Proc. 1987 ACM-SIGMOD Conference on Management of Data, San Francisco,

CA, May 1987.

[SELI79] Selinger, P., et. al., "Access Path Selection in a Relational Data Base System,"

Proc. 1979 ACM-SIGMOD Conference on Management of Data, Boston, MA, June 1979.

[SELT89] Seltzer, M., "Analysis of Extent Allocation Policies in File Systems," M.S. Report,

Univ. of California, Berkeley, CA, 1989.

[SHAP86] Shapiro, L., "Join Processing in Database Systems with Large Main Memories,"

ACM-TODS, Sept. 1986.

[STON86] Stonebraker, M., "The Case for Shared Nothing," Proc. 1986 IEEE Database

Engineering, March 1986.

[STON88] Stonebraker, M., et. al., "The Design of XPRS," Proc. 1988 VLDB Conference,

Los Angeles, CA, Sept. 1988.

20



[STON89] Stonebraker, M., et. al., "Parallelism in XPRS," Electronics Research Laboratory,

University of California, Berkeley, CA, Report M89/16, February 1989.

21


