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Abstract

In [1] we subjected the single and double loop Sigma Delta (EA) encoders to time
domain analysis, and described an optimal table look-up decoding principle for constant
inputs under the assumption of known initial integrator states. This paper introduces a
simple implementation technique, dubbed zooming, for optimal decoders. The technique is
applicable to all the current popular EA encoder structures, including single and double
loop encoders, the MASH encoder [2] and the interpolative encoder proposed in [3].

1 Introduction

Sigma Delta (EA) modulators as A/D converters have recently received considerable attention
both in industry and in the communications and signal processing literature. Their theoretical
attraction lies in the trade-off provided between sampling rate and resolution of the in-loop
quantizer — specifically, they achieve the same resolution as a multi-bit quantizer operating
at the Nyquist rate by employing a one-bit quantizer operating at many times the Nyquist
rate. In practice, the nonlinearity resulting from unevenly spaced quantization levels in the
multi-bit quantizer is detrimental, and a one-bit quantizer is often preferred for its extreme
ease of implementation and inherent linearity of the two levels.

EA modulators generally require few and simple components, and are resistant towards
circuit imperfections. Furthermore, they obliterate the need for stringent analog anti-aliasing
filtering, and relegate the strict processing demands to the digital domain. They are thus
attractive for VLSI applications in which analog and digital signals occur on the same chip and
require conversion.

In a previous paper [1] we introduced a general time domain technique for analyzing EA
modulators as A/D converters under certain assumptions; these assumptions include

• One-bit in-loop quantizer, given by

where B —(—6,+6) is the full dynamic range.

'This work was supported by NSF Grant MIP-8911017 and Joint Services Electronics Project.



Xi
« D

Ui
Q

QXUi)

+
L li

i i > i

Figure 1: Single loop EA encoder.

• Constant input. The input X is assumed to be a constant in the dynamic range D C B.
This reflects the fact that we are focusing on data acquisition applications.

In practice, the full dynamic range is seldom used. One reason is to avoid the danger of
exceeding the dynamic range; another is that the largest estimation errors are generally
made when the input is close to ±b [1, 3]. Therefore we restrict the dynamic range to
D = (-&&, +kb)> where k is chosen to be 0.9.

• Known initial integrator states. We assume for convenience that these are all initialized
to zero before the encoder is started. For data acquisition it is reasonable to assume that
the problem is to arrive at-an estimate of the input given N quantizer,outputs, where N
is the oversampling ratio; the encoder can then be reset after each estimation cycle.

In [1] we decoupled the modulator into the encoder and decoder parts and investigated
the encoder separately. The idea was to view the encoder as a source coder or non-uniform
quantizer, dividing thedynamic range into intervals separated by transition points; each interval
corresponds to a distinct JV-bit outputsequence orcodeword. The optimal performance in terms
of minimizing the MSE is achieved by a decoder which takes a codeword as input, and outputs
the midpoint of the corresponding interval. Such a decoder is highly nonlinear.

In [1] we indicated that the optimal decoder could in principle be implemented using a
table in the form of a PLA. In practice this is not feasible, as the table would be prohibitively
large. Here we present a general technique, called zooming, which takes a codeword as input
and outputs the corresponding upper and lower bound on the input interval producing the
codeword.

2 Single loop modulator

2.1 Theory

Figure 1 shows the discrete-time model of the ideal single loop EA encoder. It consists of
two summers E, a delay element D and a one-bit quantizer Q. The inner loop is a discrete
integrator which operates on the difference between the input and the quantizer output; thus
the encoder seeks to minimize the integrated difference between the input and the output. It
is assumed that the state variable at time zero is Uo = 0. The length in bits of the codewords,



i.e., the oversampling ratio, is denoted N. It is seen that

Un =£ [Xi - Q{Ui)\ = 2*-E«°i). 1<»<JV-1 (2)
{=0 tsO t=0

An important observation which proves useful for more complicated encoders is that the input
and thequantizer output are bothprocessed bysimple linear filters derivable from the open-loop
encoder. In this case, both the input and the output are filtered by the in-loop integrator; for
the input, this is seen by removing Q and its feedback connection, and for the output it is seen
byremoving Q and theinput. Assuming thattheinput is aconstant X, Xi —X, 0 < t < JV—1,
the first sum in (2) equals nX. For any given codeword, we can easily find the second sum by
digital integration.

The first sum in (2) is greater or less than thesecond sum depending onwhether Q(Un) = +&
or —6. Equation (2) then leads to the following bounds:

X > Xn if Q(Un) = +b; X < Xn if Q(Un) = -6 (3)

where

As U0 = 0, we have Q{Vq) = -6. It is seen from Figure 1 that

^ = ^o + X0-Q(17o) = X + 6>0 (5)

so Q(Ui) = +6 regardless of the input. Hence the first informative bit is QiJJz). The zoomer is
the decoder which uses the succession of lower and upper bounds from (3) to arrive at overall
lower and upper bounds on the JC-interval generating the codeword. This is done using two
registers L and U, initialized to -b and +b, respectively. Sweeping n from 2 to N - 1, the
zoomer maintains the greatest lower bound and the least upper bound in the registers. This
extracts all information from the codeword, and thus the resulting bounds are the tightest
possible. After finishing the process, the decoder outputs (L + U)/2. The zoomer has a large
linear component, but the conditional register updating is nonlinear.

For specificity, Figure 2 shows a flowchart for the single-loop zoomer algorithm. It embodies
an initialization phase, an update of running sums, and an update of either the lower or the
upper bound. The variable S is the cumulative sum of quantizer outputs, and X is the quantity
calculated in (4). When n = JV - 1, the zoomer terminates and outputs its estimate.

2.2 Performance comparison

This subsection provides somequantitative measure of the performance of the zoomercompared
to linear decoders. The linear decoder under consideration is the asymptotically optimal JV-tap
FIR filter derived by Gray [4] with unity DC gain and tap coefficients

Two performance measures are used, viz., the mean squared error (MSE) and the worst-case
estimation error, or equivalently, the signal-to-noise ratio (SNR) and the worst-case resolution
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Figure 2: Fiowcnart for the single-loop zoomer algorithm.



in bits. To define these, we first introduce some notation. The number of codewords is denoted
by C, and the decoder estimate of the tth codeword is denoted by Xi. This estimate is found
as the average of the interval bounds determined by the zoomer. We denote the length of the
interval corresponding to the tth codeword by <£,-. Finally, the decoder estimate as a function
of the random variable X is denoted by X. We assume that the constant input X is uniformly
distributed on the dynamic range D. This is an analytical convenience, but it is not cardinal
to our technique. Any piecewise continuous probability density function for X on D can be
incorporated in the analysis below. The performance measures are defined as follows:

• The MSE is given by
MSE =e[(X-X)2] (7)

The MSE contribution from the tth interval is

MSE,- =E[(X-X)2 |X€ Ii] =y| (8)
The total MSE is found by taking the weighted sum of these errors,

MSB-g^- MS* =|4 (9)
where | D | is the width of the dynamic range. The average input power is

M-jC+HJ_^,=w2.**"*'*?•;• (10)
Defining SNR. = 101oglo [E(X2)/MSE], we thus have

SNR =101oglo^)! (11)

• The worst-case error is given by

e=max(^| (12)

The worst-case resolution in bits is

R=log, ^T =log, 7 (13)
Figures 3 and 4 show computer simulation results obtained in accordance with these defini

tions. It is seen that for a given oversampling ratio, the zoomer reduces the MSE by a factor of
about 6 and the worst-case error by a factor of 2. The zoomer requires half the oversampling
ratio of the FIR filter to obtain essentially the same performance. This translates into shorter
data acquisition times. Alternatively, for a fixed oversampling ratio, the zoomer gives an extra
bit of worst-case resolution, and it improves the SNR by 7-8 dB or slightly more than one bit.
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Worst-case resolution for single loop encoder
WC res. (bits)
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Figure 4: Worst case resolution in bits as a function of over-
samplingratio for the zoomerand the asymptotically optimal
FIR filter for single loop decoding.

Oversampling ratio



Q(Vi)

Figure 5: Double loop EA encoder.

A direct and fair comparison of these results to those obtainable with other types of A/D
converters is difficult, but for purposes of illustrationwe briefly consider the popularDual Slope
converter which is cheap and robust. We assume that the required number of clock cycles can
reasonably be compared with the oversampling ratio of a S A modulator.

A Dual Slope converter using M clock cycles has the effect of dividing the dynamic range
into Af/2 intervals oflength 46/M each. This leads tolog2 4f bits ofworst-case resolution, and
the MSE equals 462/3M2. To match the worst-case error of the single-loop zoomerat N = 128,
the Dual Slope converter thus requires M « 450, and to match the MSE, it requires M « 3000.

3 Double loop modulator

3.1 Theory

The analysis of the double loop encoder proceeds in a fashion similar to the one in subsection
2.1. Figure 5 shows the discrete-time model of the ideal double loop SA encoder. The inner
loop consists of two cascaded discrete integrators, and the quantizer output is fed back two
places. The governing difference equations are

Vn^Vn-x + Xn-QiUn); V0 = 0

It can be shown [1] that

Un =b+ ][> - i)Xi - £(n - i +l)Q(^), 2<n < N - 1
»=i »=i

(14)

(15)

As in subsection 2.1 the two summation terms in (15) can be accounted for as results of open-
loop Altering of previous samples. The first summation can be obtained by applying X to the
open-loop digital Alter resulting when the output feedback paths and the quantizer are deleted,
leaving the cascaded integrators. Assuming that the input is constant, Xi —X, 1 < t < N —1,
this sum equals n(n —l)X/2. For the second summation in (15), the pertinent open-loop
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filter can be obtained by removing the input and the quantizer. More explicitly, if the second
summation is denoted by Wn,

Wn=2(n-t+l)0(^), n>2; W1 =0 (16)
»=i

we have

Wn = Wn-1 + 5n+ g(ff«-i), n>2 (17)

where

The first sum in (15) is greater orless than the second sum, depending onwhether Q(Un) = +b
or —b. Equation (15) thus leads to the following bounds:

X > Xn if Q(Un) = +6; X < Xn if Q(Un) = -6 (19)

where

-6+£(n-i +l)«(0i)
*«- *T1 n ' n*2 (20)±n{n -1)

As Q(Uo) = -6, Q(J7i) = +6 regardless of the input, the first informative bit is Q{U2)- The
zoomer for the double loop encoder is the obvious generalization of the single loop zoomer which
updates the bounds L and U according to (19,20) for 2 < n < JV - 1.

To be specific, Figure 6 shows a flowchart for the double-loop zoomer algorithm. The
variable S is the cumulative sum of the quantizer outputs given by (18), and W holds the result
of the summation (16). P is the denominator in the bound fraction (20).

3.2 Performance comparison

This subsection compares the performance of the double loop zoomer to that of linear decoders.
There is no parallel in the literature to the asymptotically optimal FIR filter (6) for single loop
modulation. The linear decoder under consideration here is chosen to be the JV-tap sine3 filter
which is believed to be close to optimal. To heuristically support this we mention that for
M-stage MASH encoders, it is shown in [6] that sincM+1 decoders perform very well. Further,
the optimal FIR filter for the single loop encoder is quite close in shape to a sine3 filter.

The performance measures considered are again signal-to-noise ratio and worst-case resolu
tion.

Figures 7 and 8 show computer simulation results for the signal-to-noise ratio and the
worst-case resolution. It is seen that the zoomer is far superior to the sine3 filter. The SNR and
worst-case resolution achieved by the sine3 filter at at oversampling ratio of 256 are reached by
the zoomer at N » 100 and 64 respectively. This translates into shorter data acquisition times.
At N = 256, the zoomer ideally achieves 5 bit better worst-case resolution than the FIR filter.
At the same oversampling ratio, the SNR is ideally improved by 38 dB or more than 6 bits.

A tentative comparison with a Dual Slope converter, similar to the one in subsection 2.2,
can be made. To match the worst-case resolution of the double-loop zoomer at an oversampling
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SNR curves for double loop encoder
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Figure 7: SNR as a function of oversampling ratio for the
zoomer and the asymptotically optimal FIR filter for double
loop decoding.
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Worst-case resolution for double loop encoder
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Figure 8: Worst-case resolution in bits as a function ofover-
sampling ratio for the zoomer and the asymptotically optimal
FIR filter for double loop decoding.
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Figure 9: Two-stage SA encoder; from [5],

ratio of N = 128, the Dual Slope converter requires M « 20,000 clock cycles, and to match
the MSE performance, about 90,000 clock cycles.

4 Two-stage MASH modulator

4.1 Theory

Figure 9 shows the discrete-time model of the two-stage MASH encoder. The MASH architec
ture was originated by Uchimura et al. [2] and has been extensively analyzed by Wong, Chou
and Gray in several papers, including [5] and [6]. The figure is copied from [5] with slightly
modified notation. Specifically, we have translated (u,v,q,x,y) in [5] into (U,V,Q,X,Y) for
consistency.

The encoder consists of two single loop stages, of which the first is fed with the input,
and the second is fed with the quantization error sequence of the first stage. In addition, the
figure shows a simple noise cancelling circuit. This has the effect of eliminating the direct
appearance of the first stage quantization error in the output sequence {Yn}. It should be
noted that although this is a desirable characteristic, the circuit might in general be throwing
away information present in the separate stage outputs. Here we will adopt the viewpoint that
the noise cancelling circuit is really part of a decoder, and the decoder should not be limited to
operate on the Yn sequence obtained by irreversibly collapsing the two output sequences into
one. We will therefore work directly with {Q{Ui)} and {Q(V*)}.

The difference equations governing the two-stage encoder are

^ = ^-l+*n-l-WTn-l); ^0 = 0
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•V. = V„_, - Un-1 + Q(Vn-i) - Q(V_t); V0 = 0 (21)

These can be solved to yield

D'„-2*«-2fl(0i), »>I (22)
t=0 t=0

V„ =-2(. -1- i)X{+J> - i)Q(Vi) -2 «W). »*2 (23)
t=0 *=0 «sO

In (23), the first summation can be interpreted as the result of filtering the X sequence with a
cascade oftwo integrators. This is also seen directly from Figure 9 by removing the quantizers
and their feedback. The third summation in (23) can be explained by removing the first stage
and deleting the feedback from the second quantizer. Finally, the second summation in (23)
is explained as follows: the first stage integrates the outputs of the first quantizer, and this
sequence is fed to a second integrator.

As before we assume that theinput is theconstant X. Attime n, (22) and(23) each provide
potential new bounds suitable for a zoomer. Specifically, (22) gives

X > XP if Q(Un) = +6; X < XP if Q(Un) = -6; n > 1 (24)

where

ni=o

Equation (23) gives

X < Jt« if Q(V„) = +6; X > X& if <?(V„) = -6; n> 2 (26)

where

X> - Ofl(Di) - £ «W)
*&-— 1 , n"* " (27)%n{n -1)

To be specific, Figure 10 shows a flowchart for the two-stage zoomer algorithm. Variables
S and T hold the cumulative sums of the twoquantizer outputs Q(Un) and Q(Vn). W contains
the first summation of (27). P is the denominator of (27). X^ and X& correspond to the
quantities (25) and (27).

4.2 Performance comparison

We will compare the MASH zoomer to the JV-tap sine3 filter. It is shown in [5] that this
filter has the same performance dependence on oversampling ratio as the ideal lowpass filter;
furthermore, it is stated in [5] that no sincM filter, M > 3, will achieve a better trade-off with
oversampling ratio N.

Figures 11 and 12 show SNR and worst-case resolution as functions ofN. It is seen that the
zoomer outperforms the sine3 filter by 20-30 dB of SNR and 2-3 bits of worst-case resolution.
For the depicted range ofoversampling ratios, this translates intoa reduction bya factor of2-3
in data acquisition times to achieve a given performance.
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SNR curves for two-stage encoder

Figure 11: SNR as a function of oversampling ratio for the
zoomer and the sine3 filter for two-stage decoding.
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Figure 12: Worst-case resolution in bits as a function ofover-
sampling ratiofor thezoomer and thesine3 filter for two-stage
decoding.
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5 Conclusions

We have introduced a general technique for optimal decoding of the output of ideal EA mod
ulators, under the assumptions of constant input and known initial integrator states. The
technique is based on deriving a succession of upper and lower bounds on the input interval.
The bounds are given as fractions. The numerator of a bound fraction is the result of filtering
a quantizer output sequence up to some time n with a filter closely related to the open-loop
linear part of the encoder. The denominator is the result of passing an all-1 sequence through
another filter easily derivable from the encoder.

The optimal decoder is highly nonlinear, as might be expected from the nonlinear nature
of the encoder. Our results indicate that under ideal circumstances, substantial reductions in
MSE and worst-case error can be achieved. This translates into substantial reductions in data
acquisition times.
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