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Cell Generation and Two-Dimensional Folding for VLSI Layout

Dong-Min Xu

Abstract

Most research on VLSI cell generation has been concentrated on linear architec

tures and one-dimensional optimizing algorithms. In this report, a quadratic architec

ture, two-dimensional folding-based architecture (2FBA), is proposed. To rninimize the

area of this new architecture, a two-dimensional folding (or array optimization) algo

rithm is developed by using a deterministic strategy. The experimental results indicate

that the algorithm, like simulated annealing, has the property of climbing out of the

local optimums. However, it requires much less computing time.

Based on the new architecture and algorithm, a layout program, PASTORALE, is

developed. In order to deal with the practical constraints, a new cost function is used

in an improved two-dimensional folding algorithm. Also, the swap operation is added
to this improved algorithm.

Some 2FBA layout results are illustrated in this report. The future work is also
discussed
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Chapter 1

1. Introduction

1.1. Module Generation:

A random logic cell is defined as an irregular structure of basic components, such

as transistors and gates. Being widely varied in complexity and constraints, the cells

cannot be kept in a library without expensive maintenance. Random cell (or module)

generators are therefore becoming important in VLSI layout design.

From the silicon compilation point of view [1], the cell generator is a part of the

cell compiler, which translates a cell's behavioral description into mask layout It gen

erates layout from a structural description, a circuit or logic schematic, instead of from

a Boolean equation. Cell generation, even from a circuit schematic, is difficult Tradi

tionally, this problem has been treated by using some different layout architectures.

A layout architecture (or style) is defined by a set of global layout rules to satisfy
some constraints on cell size, shape, and I/O pin positions. Global rules specify topo

logical relationships between objects (transistors, contacts and wires), orientation of

objects, and layer assignment. The constraints could be the restriction of all vertical

wires to the polysilicon layer and all horizontal wires to the metal layer, or the restric
tion of all P devices to one row and all N devices to another parallel row, etc.

Layout architectures can be viewed as linear (or one-dimensional) architecture or

as quadratic (or two-dimensional) architecture. In linear architecture, the components,
such as gates and transistors, are placed in a linear array with connections among com
ponents. As the circuit complexity increases, the size of the array expands mainly in

one direction. The consideration of optimization is also focused on one direction,

which results in the one-dimensional assignment problem. In quadratic architecture,
however, the components are connected in a more flexible way. The arrays expand in



both horizontal and vertical directions. The area can be reduced by using two-
dimensional optimization algorithms. We can thus avoid the long, narrow cell shapes
that occur in linear architectures for large circuits.

In recent years, most attention has been concentrated on linear architectures and

one-dimensional optimizing algorithms. The systematic formulation and theoretical
description of the one-dimensional problem have been well understood for many years.
However, quadratic architecture and its theoretical description still need fundamental
study. In the following sections, we review several different layout architectures.
Some of them are linear architectures; others are quadratic.

1.2. Layout Architectures:

1.2.1. Weinberger Array:

The Weinberger array [2] was the first attempt to stylize the layout implementa
tion of multilevel combinatorial logic. A circuit consisting only of NOR (or NAND)
gates is converted into aone-dimensional array of NMOS gates, one gate in each
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column. Each column consists of two vertical metal wires. One is connected to the

pullup transistor and serves as the gate output port, while the other is connected to the

ground power line. In a real application, two neighboring gates share a common
ground wire. The input signals to the gates are a set of polysilicon rows which are
routed horizontally across all gates. A transistor is formed by the intersection of a
diffusion segment between the output and ground lines, and a vertical polysilicon
extension from a horizontal polysilicon row. A NOR gate schematic and its equivalent
Weinberger layout are shown in figure 1 and figure 2, respectively.
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The size of a Weinberger array layout is proportional to the product of the
number of gates and the number of nets. Since each gate occupies a single column and



each net occupies a single row, this approach generates a sparse array, although it is

simple. In practice, the number of rows can be reduced by having two or more nets

share one row, as shown in figure 3. This net assignment problem can be solved by

using the left-edge algorithm [3], which can yield an optimal solution. Although the

left-edge algorithm is easier to deal with, it does not solve the layout problem since

different gate placements result in different net assignments. Finding an optimal gate

placement is a one-dimensional assignment (or linear placement) problem, which has

been proved to be NP-complete [4].
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1.2.2. Gate Matrix Layout:

Gate matrix layout is also a linear architecture, which was first introduced by
Lopez and Law [5] of Bell Laboratories for the layout of custom CMOS circuits. It is



very similar to the Weinberger array style. Since it uses a simple and regular structure,
it is easy to complete a random logic design automatically [6\. The theory behind gate
matrix layout was first given by Ohtsuki, etc. in [7].

Gate matrix is a layout style for CMOS circuits. An example is shown in figure
4. In this layout, the P transistors are placed in the top half of the matrix and the N
transistors in the lower half, and all the vertical polysilicon gates are placed in

columns. The interconnections among transistors are made by horizontal metal lines. A

net is defined as a series of metal lines which connect transistors in the same row. The

size of a gate matrix is proportional to the product of the number of columns and
rows. To minimize a gate matrix, the number of rows can be reduced by placing more
than one nonoverlapped net on a row. The number of required rows depends heavily
on the column ordering. After the column ordering is decided, the number of rows

becomes fixed. Finding an optimal column ordering is a one-dimensional assignment

problem.
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Programmable Logic Arrays ( PLAs ) are perhaps the most popular structures for

the implementation of a bi-level logic function. Most modern VLSI microprocessors



include large PLAs to implement the data path control and a variety of smaller PLAs

for controlling other activities on the chip. A PLA can map a set of Boolean functions

in canonical, bi-level sum-of-product form directly into a geometrical structure [8]. It

is very convenient to implement the logic synthesis from Boolean equations to the

mask level automatically. The whole procedure of PLA logic synthesis can be divided

into logic-level (or functional) optimization, topological optimization and layout optim
ization [9].

A PLA consists of an AND-plane and an OR-plane, shown in figure 5. For every

input variable in the Boolean equations, there is an input signal to the AND-plane. The

AND-plane produces product terms by performing the AND operation on the selected

set of input signals. The OR-plane generates output signals by performing an OR
operation on the product terms fed by the AND-plane.
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The area of a PLA is proportional to the product of the number of columns and

rows used, where the number of rows equals the number of product terms, and the
number of columns equals the sum of the number of output signals and twice the



number of input signals. A PLA layout can be compacted by using logic minimization

to reduce the number of rows and folding to reduce the number of columns.

PLA folding allows two or more signals to share a single row or column and thus

reduce the total number of rows or columns. Figure 6 shows the folding result of

figure 5.
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A PLA folding is said to be a simple folding when the maximum number of

input, output or product terms in each column or row is less than two. In multiple

folding, more than two input, output, or product terms are collapsed into the space of

a single term. Early work on PLA folding theory and implementation was carried out

in [10]. In [11], the optimal PLA folding problem was shown to be NP-complete.

A PLA multiple column or row folding can be considered to be a one-

dimensional assignment problem [12]. If a PLA is folded for both columns and rows

simultaneously [13], it becomes a two-dimensional folding problem.

A storage/logic array ( SLA ) [14][15] is an extension of the PLA architecture. It

was first introduced in 1975 [16]. In contrast to the PLA architecture, an SLA mixes



AND and OR operation on a single plane (see figure 7). It allows higher level com

ponents such as flip-flop and inverters to be placed at grid points, while a PLA allows
only transistors to be placed at grid points.
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Since the cells in the SLA are of widely differing sizes (one may be ten times the

area of the other), two-dimensional SLA multiple folding is even more difficult than

PLA compaction.

1.2.4. Multi-level Matrix (MLM) Architecture:

A multilevel matrix (MLM) [17] is a two-dimensional structure like a PLA but

supporting multistage logic circuits. It is a hybrid structure, with characteristics of both

gate matrix and Weinberger array structure. In an MLM, more than one gate can

10



occupy a column (like a gate matrix), and more than one signal can occupy a row (like
a Weinberger array). Figure 8 shows an example of an MLM.

Figure 8

Like a PLA, an MLM can be folded for both rows and columns. Multiple fold
ing can be used for intermediate inputs without any penalty. In [18][19], two different
algorithms, TWIST and GENIE, were proposed for MLM folding.

1.2.5. Metal-Metal Matrix (A/3) Architecture:

The Metal-Metal Matrix (M3) was proposed by Kang[20] for high-speed VLSI cir
cuits in single-poly and double-metal CMOS technology. Unlike gate matrix layout, it
employs maximal use of metal interconnections while restricting delay-consuming
polysilicon. The most important motivation ofM3 layout is to avoid the RC delay.
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Figure 9 illustrates the basic A/3 structure. All the signals run vertically with the

second-layer (upper) metal lines forming the signal columns. Interspersed between

these metal lines are diffusion columns. The first-layer (lower) metal lines are used to

horizontally connect the signal columns to the gates of MOSFETs, to interconnect the

sources and drains of MOSFETs, and to run power and ground busses.

Figure 9

A symbolic layout system, iSILVER, using the M* layout style has been
reported[21].

In [22], a M3 generator was reported. It tries to merge some transistor diffusions

by reordering the rows of a node incidence matrix Aa. The signals, including diffusion

strips, are then rearranged so as to reduce the number of horizontal tracks in M3 [23].
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1.2.6. Doubled Folded Transistors Matrix Layout:

A new two-dimensional folding cell generator [24] was proposed recently. This
method is more flexible than the gate matrix layout style and is suitable for NMOS
one-layer metal technology. It does not require transistors with the same gate signal to
be on the same poly strip so that both vertical nets and horizontal poly strips can be
folded. This two-dimensional folding technology makes it possible for the aspect ratio
to be adjusted with a large range. Also, the chip area is more compact than it is in gate

matrix layout

In this layout style, a circuit is represented by a net list The target of the layout
is to assign the signal nets to columns and the transistors to rows without overlapping
them. The signal nets are implemented in metal, while the transistors use diffusion and
polysilicon. Figure 10 is an example of this layout style.

Figure 10
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1.3. Optimization Problem:

The dimensionality of a specific layout architecture refers to the number of direc

tions in which a module may grow. In a linear array, the module grows in one dimen

sion with respect to the number of components (Weinberger array) or the number of

nets (gate matrix). In a quadratic architecture, the modules grow in both directions.

Based on this idea, the Weinberger array, gate matrix and PLA (where folding is

allowed in one dimension) are linear arrays, while the Multi-level Matrix (MLM) and

PLA (where folding is allowed in two dimensions) architectures are quadratic arrays.

The linear array is usually formulated as a one-dimensional assignment (or linear

placement, gate sequencing) problem. It can be stated as follows: Given a set of

modules, numbered 1,2, ..., m and a set of nets nu n2, ..., **, together with a net list

which specifies the connection pattern. A net corresponds to a horizontal wire which

interconnects modules assigned to the net The assignment can be considered to be a

permutation n = { nu1^..., nm } of modules such that module n, is placed in the i-th

position on a row. The most commonly used objective function for minimization is the

total wire length. However, a different criterion is often used in the Weinberger array

and gate matrix layout: the number of tracks.

The quadratic array can be formulated as an array optimization problem. The

array optimization problem can be stated as follows: Given a set of cells with varying

sizes, each cell is connected to a horizontal and a vertical net To reduce the area of

the array, several vertical nets are allowed to share a column and several horizontal

nets to share a row. The objective of the optimization is to find a folding result such
that the folded array has minimum area.

In this report, the one-dimensional assignment problem is also called the one-
dimensional folding problem, and the array optimization problem is also referred to as
the two-dimensional folding problem.

14



1.4. Organization of The Report:

In chapter 2, a new quadratic architecture, 2-dimensional Folding Based Architec

ture ( 2FBA ) is introduced. Then, a 2-dimensional folding (or array optimization)

algorithm is presented in chapter 3. Chapter 4 describes a new module generator pro

gram, PASTORALE, which uses 2FBA architecture. Some experimental results are

included in chapter 4. Chapter 5 gives some ideas for future work.
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Chapter 2

2. A 2-D Folding Based Architecture: 2FBA

This chapter introduces a new architecture which is more flexible than the ones
previously discussed. In this layout architecture, the horizontal nets are usually imple
mented by the second (upper) layer metal lines for gate signals. The horizontal connec
tions can also be made by the short polysilicon segments, if the adjacent transistors are
closely spaced. The vertical nets consist of transistors which are connected by the first
(lower) layer metal lines. A vertical net may contain more than one transistor. Some
times, the interconnection among transistors can be diffusion segments. From another

point of view, the horizontal and vertical nets are used to form two-dimensional grids
on a tile plate. Transistors sit on the grids.
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Figure 11
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Second Layer
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Figure 11 illustrates the basic structure of 2FBA architecture. The primary

motivation for this kind of architecture is to be able to minimize the area by using

two-dimensional folding (or array optimization) algorithms. To do so, we require both

horizontal and vertical nets to be rearrangable, as long as the connectivity is main

tained.

(a) (b) (c)

Figure 12

To build a 2FBA architecture according to a given circuit schematic, three basic

(a) (b)

Figure 13

vertical nets are necessary. They are shown in figure 12. Figure 12(a) indicates a sin

gle transistor, while figure 12(b) and figure 12(c) represent a group of serial and paral

lel transistors, respectively. The vertical nets in figure 12(a), figure 12(b) and figure

17



12(c) are called, respectively, the single transistor nets, serial transistor nets and paral

lel transistor nets.

In a static circuit, the ordering of series-connected transistors is logically imma

terial. For the example in figure 13, the series-connected transistors can be reordered.

As the ordering of the horizontal nets changes, figure 12(a) and figure 12(b) have

some variations. They are shown in figure 14. However, the configurations in figure

12(a) and figure 12(b) are preferred.
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fl fl

«J ftr
(c) (d) (c)

Figure 14
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Figure 15 shows a transistor in detail. To connect a transistor's polysilicon with

the second layer metal line, we have to connect it to a small segment of the first layer

metal by means of a via.
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Metal 2
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(b)

Figure 15
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The mask-level appearances of the three basic vertical nets are plotted in figure

16.

Figure 16

20



The layout of an ADDER, shown in figure 17, is realized by using the 2FBA
architecture.

Figure 17
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Chapter 3

3. 2-D Folding Algorithm:

3.1. Introduction:

In 1986, Devadas and Newton [19] gave a description of the two-dimensional

folding problem. An algorithm GENIE (primarily for PLA folding) was introduced in

that paper. It employed the technique of simulated annealing. A new state or

configuration is randomly generated and accepted or rejected according to a random

acceptance rule which is controlled by the parameter analogous to temperature in the

physical annealing process. Later, another simulated annealing algorithm [25] was pro

posed by Wong and Liu.

A naive solution to the two-dimensional folding problem, is to divide it into two

1-dimensional assignment problems. For example, we first rearrange the ordering of

vertical nets so as to rninimize the number of horizontal tracks and the length of hor

izontal nets. After the horizontal track assignment, the ordering of horizontal tracks

can also be changed to minimize the number of vertical tracks and the length of verti

cal nets. Because the ordering of vertical nets has been fixed at this time, the vertical

track assignment is extremely constrained. So this naive method can not succeed in

general.

In this chapter, we propose a new algorithm for the two-dimensional folding

problem. Instead of using simulated annealing technology, we use a deterministic stra

tegy to solve this problem. Usually, when a horizontal (or vertical) net is moved to a

new position, the length of the attached vertical (or horizontal) nets will be changed. If

the length of those attached vertical (or horizontal) nets increases, the move is called a

negative move. If it decreases, the move is called a positive move. For each negative

move of a horizontal (or vertical) net, we set an upper bound to control the increase of

22



the length of the attached vertical (or horizontal) nets. The length increase is not

allowed to be more than this upper bound.

For a set of nets, the algorithm attempts to find a number of positive moves. If

those moves result in an improvement to the total length of the nets, the moves are

accepted. If not, the algorithm will try to find another set of moves which include

both positive and negative moves. The algorithm allows the length of the nets to

increase subject to a chosen upper bound. This process continues until the objective

function can not be improved any further.

We illustrate the algorithm by means of the curves from an example in [25]. The

curves consist of the number of moves from 1219 to 11498. For each move, we mark

the total length of nets and the number of tracks in Y coordinates. The results tell us

that our algorithm, like simulated annealing, has the property of climbing out a local

optimum. Unlike the simulated annealing approach, it requires much less computing

time. We have tested some published examples. The results are shown later.

3.2. Two Dimensional Folding Problem:

An unfolded two-dimensional example is illustrated in figure 18(a). For simpli

city, we assume that all the cells are of the same size. In figure 18(a), the cells are

connected by a set of horizontal and vertical nets. Each net consists of a number of

cells. We are supposed to rearrange the horizontal and vertical nets without disturbing

the cell connectivity. This is accomplished by folding horizontal and vertical nets for

the purpose of minimizing the area usage. Figure 18(b) is the folded result of figure

18(a). In addition, the two-dimensional folding problem attempts to achieve a specific

aspect ratio of the resulting rectangle which encloses the cells.

3.3. Definitions:

Let H = { hu h2, ..., hm } denote a set of horizontal nets, and V = { vu v2,..., v„ }

a set of vertical nets. Let hf denote a horizontal net hL which is on the horizontal track
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k and, similarly, let vj denote a vertical net vj on vertical track 1. Let ckj denote a cell

(a)

r—| h4

—1 "1 r-

vl v3

"i h2r
2

i—i h3 r
v5

nh6r1 1
v6 v4
r-|h5|-

(b)

Figure 18

at the cross point of horizontal track k and vertical track 1 (see figure 19). A net can

be described by a set of cells which are connected to the net Thus,

h l Ckj I fa all I, ekJ connects with net hf '

V> =I C*J I teallk. ekj connects with net vj

An interval of a horizontal net hf can be defined as:

I(Ai') =[min{ll^eV}, max{ll,ue^}]

Similarly, for a vertical net,

I(vj) =[min{k \CtjtY,), max(k l^e,; }]

24



The length of a horizontal or vertical net can be defined as,

am =max {ll^J-minUl^,}

Ktfl-nwCkl^J-mMkl^}

For a set of nets A = { au a* .... a, }, the total length of those nets is thus:

H(A)l =f !/(<.,) I
i»l

Horizontal

Track k

yl
J

hk

cu
1

1 Vertical Track 1

Figure 19

If two horizontal (or vertical) nets hfx and *£ (or v)x and vj2) are on the same
track, they are described as "overlapping" if and only if the interval l{hf) overlaps
with the interval I(a£).
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For the example in figure 18(a), H = { hl9 h2, A3, h4, h5, h6 }, V = { vlf v2, v3, v4,

V5, v6 }, and the set of cells is { cu, cu, cw, cw, c3|2, c3t6, c4,i, c4>2, c4,4, c4,6, c5,4, c5>5 }.

The above definitions can be illustrated by using net h4t hs, vt and v2.

According to the definition, net h4, h5f vj and v2 can be represented as,

A4 = { c4tl, C4(2 } hs = { c4f4, c4>6 }

vl - { Cut C4.1 } vj = { C3t2, C4t2 }

The intervals of these nets are,

I(/»44) = [ min(l, 2), max(l, 2) ] = [1, 2]

l(h$) = [ min(4, 6), max(4, 6) ] = [4, 6]

IW) = [ min(l, 4), max(l, 4) ] = [1, 4]

I(v|) = [ min(3, 4), max(3, 4) ] = [3, 4]

Assume A = { h%t ht, v}, v| }, we obtain

II(A)I = II(A44)I + \l(hi)\ + II(v/)l + II(v22)l

= (2 - 1) + (6 - 4) + (4 - 1) + (4 - 3) = 7

The horizontal nets hi and hi are on the same track, as shown in figure 18(a).

Their intervals [1, 2] and [4, 6] do not overlap. So, net hi does not overlap with net

As4.

If a horizontal net ht connects with a vertical net vj , h?r~\vj * <>, the vertical (or

horizontal) net vj (or hf) is said to be related to the horizontal net ht (or vj). In figure
18(a), the horizontal net hi connects with the vertical net v| at cell c4t2. Thus, we get

hirvi = { c4tl, c4<2 } n { c3>2, c4X } = { c4a ) * 4

The vertical net vf is said to be related to net hi and vice versa.

26



For a horizontal (or vertical) net A* (or vj), all the related vertical (or horizontal)
nets can be represented by

Rftft-H I for all v},h?nv}*$]
R(vj) ={AM fora///£vjnA/*0}

In figure 18(a), R(A44) = { v,1, v22 }.

Horizontal Track Number

1 .—e- [3-
vl

]
2 ....>. I M—

-a
v3

4

a

v4

o-^

2 3 4 5

Vertical Track Number

a

Figure 20

If a horizontal net A,*1 is moved from track £, to track 42, all the related vertical

nets in R(A,*') will be changed. Thus, the length of those related nets may be changed.
If a horizontal net A*1 is moved from track 4, to track klt the change of the total length
of its related nets is defined as follows:
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IAR(A,Al) I£ =II(R(A**))I - II(R(A*'))I

If IAR(A,l) I** £ 0, the move is called a positive move. If it is greater than 0, it is

said to be a negative move.

For the example in figure 18(a), if the horizontal net hi is moved from track 4 to

track 2 (see figure 20), we get

IAR(A44) 11 = II(R(A42))I - H(R(A44))I
= [(2 - 1) + (3 - 2)] - [(4 - 1) + (4 - 3)] = -2

Thus, the move is positive. It means the move reduces the total length of the

related vertical nets by 2.

Similarly,

AR(V;») Ill=II(R(v;*))l - II(R(v*l))l

3.4. Algorithm:

We use the wire length as the objective function for rninimization. The number

of tracks, as a subordinate objective, is not allowed to increase during the minimiza

tion. This is because we may have many opportunities to put more nets on a track if

the lengths of those nets are short. This strategy can obtain better results than just con

centrating on minimizing the number of tracks.

The algorithm is divided into horizontal phases and vertical phases. In the hor

izontal phase, a set of horizontal nets is moved, while in the vertical phase, a set of

vertical nets is moved. A move of a horizontal (or vertical) net A,l (or vjl) from track
ki to track k2 is accepted if the following conditions are satisfied:

(1) A, * ( or v/ ) does not overlap with the horizontal (or vertical) nets on track

*2;
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(2) after the move, all the related vertical (or horizontal) nets in R(A, *) (or

R(v**)) do not overlap with the other vertical (or horizontal) nets; and

(3) IAR(A,*0 I*f ^C ( or IaR^I^sC ), C^O.

By comparing the current and the required aspect ratios of a cell, the algorithm

can decide which phase is going to be the next one. If the cell is wide, it enters the

vertical phase and tries to reduce the length of horizontal nets and the number of verti

cal tracks. If the cell is slender it will pick the horizontal phase and attempt to reduce

the length of vertical nets and the number of horizontal tracks. The algorithm will keep

choosing the horizontal or vertical phase to fold the given problem, until the result

cannot be improved.

Let H = { hlt A2,..., h„ } be the set of all horizontal nets and V = { v„ v2,..., v„ }

be the set of all vertical nets. In a horizontal (or vertical) phase, we select a set of

horizontal (or vertical) nets P c H ( or Q c V ) and attempt to reduce the length of

vertical (or horizontal) nets and the number of horizontal (or vertical) tracks by mov

ing these nets to better positions. If the length of the nets cannot be reduced, some

negative moves are then accepted.

P = { Pi» P* .»»Pr } ( r £ m )

Q = { ?i» ?2» ...» o, } (s £n)

For a horizontal (or vertical) net pt eP (l£i £r) ( or $ eg (1 £i <s) ), a

number of moves can satisfy the above three conditions. In the algorithm, we choose

one of the moves arbitrarily. After all the nets in P ( or Q ) are moved, we calculate

the change in length of the nets:

AR= 2 IaR(p**)I*2
p-1zp

*.x I *3( or AR= 2 IaRU;i)IAi2 )

If AR £ C (C £ 0, at the beginning of a phase, C is set to be 0), this set of moves

is accepted. Otherwise, we increase C slightly and try another set of moves for these
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nets. This means that some negative moves are allowed. If the moves are still rejected,

we increase C again, until C reaches an upper bound UB. In the case of C = UB, we

consider this phase a failure. After several continuous failed phases, the algorithm

stops.

Algorithm 2D_FOLDING

{

do {

get required aspect ratio: reqAspectRatio;

calculate actual aspect ratio: realAspectRatio;

if ( realAspectRatio >= reqAspectRatio )

Phase( vertical);

else

Phase( horizontal);

} while ( movesAccepted );

}

Phase( P) {

{

C =0;

do {

AR = 0;

for (PitP ) {

if( IaR(^)I*2<=C) {
move pi e P from track kx to k2;

AR += IARG>*>) I*2;
}

} /*for*/

if ( C++ > UB ) return( movesRejected );

} while ( AR > C )

return( movesAccepted );
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Figure 21 shows the searching approach of this algorithm. In figure 21, the X

and Y axes indicate the move steps and the total length of nets, respectively. The solid

dot at the left side indicates the total length of nets at step k.

We define the number of moves in each phase as the phase size. For a set of

moves in a phase, a number of nets are selected to be moved. At the beginning, C is

1+10-

Figure 21

set to be 0. This means that each move of the selected nets should result in a decrease

of either the total length of nets or no change. Comparing the ending point with the

beginning point of the phase, if the length increase of the nets is less than C, this

phase is completed. Otherwise, the phase is not completed, and C will then be set to 1.

Thus, the total length of nets is allowed to be increased by 1 at each step of the move.

After a set of moves, the algorithm will compare the last point of the phase with the

beginning point of the phase again. If the length increase is not less than C, this phase

is still not completed, we increase C to 2. The algorithm will continue until either C

reaches UB or the phase is completed. If C reaches UB, we consider this phase a

failure. After several continuous failed phases, the algorithm stops. In figure 21, the
solid curve shows a set of possible moves in two phases. The broken lines in each

phase indicate that the moves are not accepted. So, phase 1 is not completed when
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C=0. And, phase 2 is not completed when C=0 and C=l. Phase 1 and phase 2 are

completed when C equals 1 and 2, respectively.

According to the above description, we know that the algorithm is going to find a

set of positive moves at the beginning of a phase. The positive moves are greedy.

However, if the number of positive moves is less than the phase size (i.e., the total

number of moves specified), the algorithm will not give up. Instead, it introduces some

negative moves. By choosing moves this way, the algorithm is no longer greedy and

the searching approach resembles that of the simulated annealing algorithms.

To illustrate the property of climbing out of a local minimum, we trace all the

moves of this algorithm when it is applied to an example in [25]. In this example, the

total length of the nets is 1920. The horizontal and vertical tracks are 56 and 81,

respectively. Figure 22 shows two curves which are obtained when UB equals 0. Each

of the curves consists of 1219 points, and each point corresponds to a move. The

upper flat curve (called the track curve) indicates the change of the sum of horizontal

and vertical tracks. The lower curve (called the wire length curve) describes the

change of the total length of the nets. The algorithm obtained a result with the hor

izontal tracks, vertical tracks and the length of the nets equal 31, 44, and 974, respec

tively. Figure 23 shows the curves when UB equals to 2. The curves of UB=4 and

UB=8 are shown in figure 24 and figure 25, respectively. The detailed results related

to these curves are listed in table 1.

Table 1

UB
horizontal

tracks

vertical
tracks

wire
lenpth

number

Of moves
0 31 44 974 1219

2 28 36 890 3583

4 26 33 908 8426

8 26 32 882 11498

As shown in figures 22 through 25, the wire length curves become more rugged

as the upper bound UB is increased. When UB equals 0, the curve in figure 22

behaves in a greedy way. When UB is greater than 0, the algorithm exhibits a property

which is similar to that of the simulated annealing algorithms: it climbs up and down

and goes through a lot of local minimums. The algorithm traces all the local minimum
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solutions and keeps the minimum one as the final solution. Notice that because the

algorithm does not allow the increase of tracks, the track curves keep descending.

A special feature of this algorithm is that it embeds a greedy searching into a glo

bal searching strategy. This accounts for its speed, which makes it much more attrac

tive than algorithms based on simulated annealing. In the beginning, the algorithm

reduces the total length of nets and the number of tracks very quickly.

In this algorithm, a couple of beginning phases can be completed when C equals

0. As the density of the nets increases, the negative moves are introduced gradually.
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Then the result begins to oscillate. From this point on, improvement to the total length

^V

y A

the totallengthofwires(for the wirelengthcarve)

the Dumberof tracks(for the nek curve)

the number ofmove sept

Figure 22

the total lengthofwires (for the wire length carve )

the number of tracks (for the track curve )

the number ofmove steps

Figure 23

♦ X

•*- X
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of nets and the number of tracks becomes difficult

* 4 the totallengthofwires(for the wirelengthcurve )

the number oftracks ( for the track curve)

Xx^J>^^^>J^JUL^^JU^^uu^

the number ofmove steps

Figure 24

the total length of wires(for thewirelengthcurve)

the numberoftracks(for the trackcurve)

•*» X

x^aJJu-
ft t

the numberof move steps

Figure 25
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3.5. Conclusion:

The algorithm has been programmed in C and implemented on a DEC 3100. We

have tested three examples in [25] and [19]. For all three examples, we set UB to be

8. The results are shown in figure 26, figure 27 and figure 28. The detailed comparison

is listed in table 2.

Table 2

Examples
example 1 example 2 example 3

ri91 ours T191 ours T251 ours

horizontal tracks 18 14 32 32 24 25

vertical tracks 19 13 52 50 30 32

time (seconds) - 3.3 - 4.9 720 66.2

In this chapter, a new algorithm for optimizing the two-dimensional folding prob

lem was proposed. It divides all the moves of nets into a number of phases. The

moves in each phase can be either positive or negative. The algorithm prefers the

positive moves in each phase, so it improves the solution very fast at the beginning of

calculation. Since negative moves are also allowed in each phase, the algorithm has the
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property of climbing out of local minimums. It resembles the simulated
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annealing approach in this respect, but, it is much faster.

Figure 28
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Chapter 4

4. 2DFA Layout Package:

4.1. Introduction:

A module generator program, PASTORALE, has been developed by utilizing the

2DFA architecture. Its inputs are the net lists, which specify the interconnection rela

tions among transistors. Its outputs are CIF files. It can also produce the output files

in PostScript description. PASTORALE allows users to specify the time limit in the

input files. If the two-dimensional folding algorithm is still doing the iterative improve

ment when the time limit is reached, PASTORALE will stop the folding processes

automatically and begin some post processes.

PASTORALE can accept a positive real number given by the user as the con

straint of the aspect ratio. There is no limit to this real number, But, the final aspect

ratio is up to the initial architecture and the flexibility of the two-dimensional folding

algorithm. The program tries to achieve a layout result with an aspect ratio approach

ing this given number. It is sometimes difficult to satisfy the aspect ratio constraint

precisely.

PASTORALE reads inputs from the given input files. If there is something wrong

with the input format, it will report the error type and the error position, and then stop.

As we mentioned in chapter 2, the 2DFA layout style has three basic vertical nets: the

single transistor net, the serial transistor net and the parallel transistor net. In order to

build an initial 2DFA architecture from a given circuit description, PASTORALE

should find the serial and parallel connected transistor groups first. The vertical nets

are then constructed. The horizontal nets are established by relating each of the nets to

a node in the given circuit. The aspect ratio of the initial layout depends on the given
circuit schematic.
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To reduce the area of the initial layout, the two-dimensional folding algorithm, as

discussed in chapter 3, is applied. In chapter 3, the cost function includes the wire

length and the number of tracks. In this chapter, a more practical cost function will be

used. Based on it, we propose an improved algorithm.

In chapter 3, the algorithm was devoted to move operations only. A move opera

tion is defined as moving a net from one position to another, while maintaining the

connectivity. A given two-dimensional folding problem can be completed by using a

sequence of the move operations.

In the improved algorithm, we will consider both move operations and swap

operations. A swap operation is defined as one which switches the positions of two

different nets, while keeping the connectivity unchanged. The improved algorithm

achieves better results.

4.2. Improved Algorithm:

4.2.1. Swap Operation:

Considering the example in figure 29(a), we find that no nets can be moved if the

number of tracks is not allowed to increase. So the move operation cannot reduce the

number of tracks any more. In this example, if we swap the vertical nets v2 and v5,

figure 29(b) is obtained. By moving up horizontal net A5, the number of horizontal

tracks can be reduced from five to four. This example indicates that better results can

be achieved if we take advantage of both the move operation and the swap operation

in the algorithm.
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Our improved algorithm begins the swap operation after the move operation is

done in each phase.

(a) (b)
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4.2.2. Cost Function:

In chapter 3, the cost function included two factors: the length of nets and the
number of tracks. In a real layout, additional factors should be considered.

The 2DFA architecture deals with CMOS circuits. According to the design rules,

the space between the same type (P or N) of transistor is much smaller than the space
between different types of transistor. In SCMOS technology (a kind of VLSI design
rule used at UC Berkeley), the space between the same type of diffusion is 3X, while
the space between different types of diffusion is 10a.. This is shown in figure 30.

To minimize the layout area, it is necessary to cluster the same type of device
together, so as to reduce the space consumed by adjacency of different types of
transistor. If we cannot avoid the adjacency of different types of transistor, we may

take advantage of the space in between by allowing a metal line to go through it, as

shown in figure 31.
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In the cost function, we define pnPenalty as the number of adjacent P and N

transistors. It should be minimized.

During the layout, the interconnections among transistors are usually implemented

by metal lines. To do so, a number of contacts and vias are required. However, when

they are close enough, we can sometimes abut the transistors together through poly or

diffusion segments, as shown in figure 32.
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We use abutGain to represent the number of abutments in a layout Thus, -abutGain

can be considered as the penalty.

As described in chapter 2, three fundamental vertical nets are used to construct a

2DFA layout Each of the vertical nets connects with the horizontal lines through two

vias and one or more transistors. If we put one via on the top, another one on the bot

tom, and leave all the transistors in the middle, the vertical interconnection of this net

can be made by a number of straight lines, instead of the bended lines (see figure 14).

So we prefer this kind of permutation with transistors in the middle and vias in the top
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and bottom. If one or two vias are put in the middle, a further penalty is generated.

We use midPenalty to represent the number of bended vertical nets.

The new cost function is defined as follows:

cost = kx x netLength + k2 x tracks +k$xpnPenalty

- *4 x abutGain + ksx midPenalty

where, netLength is the total length of horizontal and vertical nets, and tracks is the

number of horizontal and vertical tracks.

4.3. Results:

PASTORALE has been implemented in C on a DEC 3100. It takes the circuit

description at transistor level as its input. Users can put the constraint of the aspect

ratio and time limit constraints into the input files. In the final layout, the horizontal

and vertical nets are put on equally spaced grids which are separated in a worst case

distance according to the design rules. However, unless we apply compaction, the final

results are not as good as those of gate matrix layout Currently, the compaction pack

age is not integrated into PASTORALE.

We will present some results in the following pages.
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Chapter 5

5. Future Work:

5.1. Theoretical Problem:

The two-dimensional folding (or array optimization) problem was proposed
several years ago [19]. It has not been solved precisely. Some more work should be

done, for example, on a theoretical formulation.

5.2. Practical Constraints:

For a module generator, it should be able to accept the user's specified con
straints, such as the position of I/O pins, the aspect ratio, the ordering of I/O pins, etc.
In order to optimize the performance of the chip, the timing problem should also be
considered. PASTORALE can handle the aspect ratio constraint; The other constraints
should be considered.

5.3. Coupling of Folding and Compaction:

In a sense, PASTORALE is still under development. The next version will

include the compaction program. According to traditional compaction methodology, the
objective of compaction is to minimize the space between adjacent objects, as long as
the design rules are not violated. The insertion of jogs may be necessary to achieve a
more compact layout. During compaction, the topological structure of the objects is not
changed: The objects are moved around without running into one another.
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Figure 33(a) gives an example of eight objects together with horizontal and verti

cal nets. Considering one-dimensional compaction in the horizontal direction, we can

shift a number of objects to the left by introducing a couple of jogs. The result of the

compaction is illustrated in figure 33(b). The objects 7 and 8 can not be shifted to the

left any further.

1 5

1
1

2 3

4 7

6 8

<
Compacting Direction

(a)

Figure 33
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2 3
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.J. '

6 8

Compacted Result

(b)

Notice that we are now dealing with an architecture which allows the folding of
vertical nets. A new problem emerges: Is it possible to obtain a more compact result
by coupling the folding process with the compaction process? Let us take a look at

the example in figure 34. Figure 34(a) is the same problem as that in figure 33(a).
Before the compaction, we fold the object 7 and 8 to the left side, as shown in figure
34(b). The topological structure is changed. Then we apply compaction to figure 34(b).
Finally, a more compact result is obtained (see figure 34(c)).

The above example indicates that a more compact result is achieved if the topo
logical structure is allowed to change during compaction. This represents a more gen
eralized compaction. In 2FBA architecture, this concept can be seen as a combination
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of folding and traditional compaction. To handle this problem, an efficient data struc
ture and algorithm need be designed.
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Figure 34

The concept of this generalized compaction can also be extended to the two-
dimensional case.
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5.4. Net Splitting and Jog Insertion:

According to the way we build the initial 2FBA architecture, the layout usually

consists of long horizontal nets and short vertical nets. Since a lot of short vertical nets

are connected to a small number of long horizontal nets, it is very difficult to fold the

vertical nets. So the aspect ratio cannot be well-controlled.

To handle this problem, we can either split the horizontal nets or insert jogs into

the horizontal nets, as shown in figure 35. After the horizontal long nets are removed,

better results can be achieved.
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5.5. Layer Change and Via Minimization:

In 2FBA architecture, the first metal layer is restricted to the horizontal connec

tions, and the second metal layer to the vertical connections. This rigid rule produces a

lot of vias for the interconnections between metal 1 and metal 2. If we allow some

horizontal nets on the first metal layer, both the number of tracks and the number of

vias may be reduced. In figure 36, the big rectangles represent transistors, and the

small rectangles represent vias. In figure 36(a), all the horizontal nets are the second

layer metal lines. If we implement net 1, net 2, net 4 and net 7 on the first layer metal

lines, the number of vias will be reduced by ten, see figure 36(b). Also, net 7 can be

moved up on top of net 5. To do so, the number of tracks is reduced by one.

B •53
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B •£] B «

• 7 m a H

(a) (b)

Figure 36

The layer change problem is related to the via minimization problem. In 2FBA

layout, the via minimization problem can be formulated as follows: Given a bounding

box with some rectangles in it, a set of nets can be accessed from the boundary of

both the bounding-box and the rectangles (see figure 37), the objective of the via

minimization is to find the interconnection topology and the assignment for all nets so

as to minimize the number of vias used.
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This is the constrained via minimization problem.
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5.6. Improvement on 2FBA architecture:

In 2FBA architecture, a vertical net consists of a couple of transistors. In many

cases, a vertical net includes just one transistor, so the initial layouts are not very com

pact. The area optimization depends heavily on the two-dimensional folding algorithm.

We are now considering an improved architecture which may produce a more

compact layout. The basic architecture is illustrated in figure 38. In figure 38, the fun

damental components are a number of gate matrices, which are represented by the rec

tangles. The PG nets on top and bottom can be accessed by each gate matrix. The bro

ken lines in each gate matrix represent polysilicon stripes. These polysilicon stripes

can be connected through the second layer metal lines (see the horizontal solid lines).

The interconnections in each gate matrix can be implemented by first layer metal lines

and short diffusion segments. Since the gate matrix layout style is very efficient for
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small circuits, this new architecture may result in more compact layouts.

The two-dimensional folding algorithm can be applied to this new architecture.
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Chapter 6

6. Conclusion:

In this report, a new quadratic architecture, two-dimensional folding-based archi

tecture (2FBA), is introduced. In this architecture, the horizontal nets are implemented

on the second layer metal lines for the gate signals. The vertical nets consist of transis

tors which are connected by the first layer metal lines. The transistors sit on the grids

which are formed by the horizontal and vertical nets.

To minimize the area of this new architecture, a new two-dimensional folding (or

array optimization) algorithm is proposed. Instead of using simulated annealing tech

nology, we use a deterministic strategy to solve this problem. The experimental results

indicate that our algorithm, like simulated annealing, has the property of climbing out

of the local optimums. However, it requires much less computing time. Some pub

lished examples were tested, with satisfying results.

Based on the new architecture and the new two-dimensional folding algorithm, a

layout package, PASTORALE, is developed. In order to get better layout results, a

more practical cost function is considered in an improved two-dimensional folding

algorithm. Also, the swap operation is included in this improved algorithm.

Some 2FBA layout results are illustrated in this report. Since the horizontal and

vertical nets are put on the equally spaced grids which are separated in a worst case

distance, a compaction program is necessary. We intend to integrate a compaction

package into PASTORALE. Some more future work is also discussed in the report.
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