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ABSTRACT

A major part of the design effort for DSP systems is devoted to the al

gorithmic verification and specification process. The behavioral simulation of DSP

algorithms on a programmable computer will provide the flexibility to develop the

algorithms and enable the short design cycle. However, the simulation often requires

high computational throughput and thesimulation of large amounts of data. It takes

too long or is too costly to simulate on a general purpose computer.

Therefore a dedicated simulation engine called SMART has been developed

and presented in this report. It is a multiprocessor architecture optimized for real

time behavioral simulation of Digital Signal Processing (DSP) systems. The first

prototype, containing 10 processors, is currently operational with a peak performance

of 120 MFLOPS.

The SMART system features a Configurable Bus and a Bypass Unit to trade

off overall communication bandwidth and latency by taking advantage of the local

communication between processors. The system performance is further improved by
a Distributed Shared Memory system which lets the communication latency overlap
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with the computation time of the processors. Barriers, locks and events are sup

ported by hardware to minimize the synchronization overhead. The benchmarks

have demonstrated that the SMART architecture actually achieves the targeted low

communication and synchronization overhead.

In a SMART simulation environment, the designer can describe the algo

rithms using a high level language: C and Silage. The C programming environment,

which requires the partitioning information in the program, is currently available. A

high level software system, based on Silage, is under development to auto-schedule

the algorithmic description onto the SMART processor array with a balanced load

ing and an efficient usage of the communication system. Performance of the actual

SMART system was measured for typical DSP programs using floating-point opera

tions. The measurement shows an average speedup of 76 times over SUN 3/60 and

a speedup of 29 times over SUN SPARC Station 1. With extensive uses of library

routines in programming, the speedup can be easily doubled over the above results.

The performance is expected to increase even further when the system is upgraded

from 120 MFLOPS to 200 MFLOPS.
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Chapter 1

INTRODUCTION

The woods are lovely, dark and deep.
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.
- Robert Frost

DSP applications have become an important component in the rapidly ex

panding field of Application Specific Integrated Circuits (ASIC). Examples of appli

cations in this field include digital audio, speech synthesis and recognition, telecom

munication, image and video processing and robotics. Due to the high throughput

and special input/output requirements, it is often necessary to design special purpose

chips, which are optimized for only that particular application. Recently, a great deal

of attention has been focused on the development of computer aided design environ

ments, which may help to shorten the design time of those dedicated devices [36].

It has been noted that a major part of the design effort for DSP systems is

devoted to the algorithmic verification and specification process. This process often

requires high computational throughput and the the simulation of large amounts of

data [45] [61]. For example a computation rate of 1 GOPS (Giga Operations Per

Second) or more is typical for High Definition Television (HDTV) algorithms [27].

Furthermore, to verify the behavior of the algorithms, many frames of data have to

be simulated. These requirements dictate a hardware solution.

The process also includes the simulation of the noise and distortion behavior
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taking into account the effect of quantization, rounding and truncation. It is only after

a careful checking of all those parasitic effects that Application Specific Integrated

Circuits (ASIC) can be implemented.

While techniques such as bread-boarding and fast-prototyping can fulfill

the requirements, they typically exhibit long development time and offer very little

programmability which is essential in optimizing the parameters of some algorithms.

The behavioral simulation of DSP algorithms on a programmable computer

will provide the flexibility to develop the algorithms and enable the short design

cycle. Some commercial multiprocessor computers are capable of providing high

computation power but the high overhead in inter-processor communication, difficulty

in mapping the algorithms to the architecture, lack of instructions for supporting DSP

applications and the high cost of the machines often limit the effectiveness of these

machines.

In this report, a dedicated compute-engine called SMART (an acronym for

Switchable Multiprocessor Architecture supporting Real Time applications) is pre

sented. x The machine attempts to speedup simulation of DSP algorithms by at least

an order of magnitude as compared to general purpose computer architectures.

The speedup is achieved by using the following two methods. First, in order

to handle the number crunching bottleneck, a high performance DSP processor with

both floating point and fixed point instructions is used as the core processing unit

(DSP32C from AT&T Bell Labs [23] [8]). The processor executes up to 10 million

floating point (single precision IEEE) multiplications and additions per second. In

addition, it provides special instruction sets to support DSP applications. This results

in serveral times of speedup as compared to general purpose processors [67].

Second, another level of simulation speedup can be obtained by exploiting

the high degree of concurrency present in most signal processing algorithms [32].

The SMART system should be able to simulate a large variety of DSP algorithms

with various degrees and grains of concurrency. Pipelining and Parallelism are two

methods used to achieve concurrency.

1Early studies on the architecture can be found in [38] and [39].
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This report describes the architecture and implementation of the SMART

machine, and justifies and evaluates some of the architectural features with the aid of

system, software and application considerations. Chapter 2 provides an introductory

section, which reviews other multiprocessor systems, suggests architecture require

ments, and discusses pipelining and parallelism in a typical DSP algorithm. Then

the three major aspects of architecture - the memory structure, the reconfigurable

bus and the synchronization - are described. The set of software benchmarks are pre

sented to demonstrate the effectivenessof the architecture. In chapter 3, the physical

implementation of the SMART architecture is presented in a top-down manner. We

first present an overview of the the SMART prototype system. We next provide the

detail of implementation of the SMART processor array: the printed circuit board,

the processor, the memory structure and the custom VLSI chip sets. Chapter 4

briefly discusses our experiences regarding design and implementation issues. Chap

ter 5 discusses the supporting software environment of the system. A table which

shows the performance of the system is also presented. The last chapter includes

some general discussions of the system and the project. Concluding remarks and

future developments on SMART are also outlined.



Chapter 2

SMART ARCHITECTURE

To see a world in a grain of sand
And a heaven in a wild flower,
Hold infinity in the palm of your hand
And eternity in an hour
- William Blake

2.1 Introduction to the SMART Architecture

This section reviews contemporary multiprocessor systems, suggests archi

tecture requirements, and discusses pipelining and parallelism in a typical DSP algo

rithm - a pitch extractor example.

2.1.1 Multiprocessor Review

The last decade has witnessed the introduction of a wide variety of new

computer architectures for parallel processing that complement and extend the ma

jor approaches to parallel computing developed in the early years [17]. The recent

proliferation of parallel processing technologies has included new parallel hardware

architectures such as systolic and hypercube, interconnection technologies such as

multistage switching topologies, and programming paradigms such as applicative lan

guages. The sheer diversity of the field makes it difficult for a designer to find out

which architecture is right for his target applications.
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Our SMART project is motivated by the demand in the signal processing

area to build a simulation engine for simulating the behavior of DSP algorithms.

The scope of this target system is real-time operation [42] for medium speed DSP

applications (speech, telecom, audio and robotics) and a simulationspeedup for high

performance DSP applications (video and image processing).

In order to find out which architecture is right for our application, we first

reviewed the commercially available systems. From programming experiences and

studieson well-known machines such asConnection Machine [77] [75], WARP [22] [21],

Sequent Balance [71], Intel iPSC [34] and NCube [55]. we have learned the following

lessons and adopted them as the basic architecture requirements for the SMART

system.

Number of Processors — According to the Amdahl's law [6], as the number of

processors in a parallel computer increases, it becomes more and more difficult to use

those processors efficiently.

For instance, Connection Machine has 65,536 processing elements with a

peak performance of 2500 MFLOPS/2500 MIPS. The applications of the machine

include simulation of VLSI circuits, picture processing and language processing [76],

allof whichcontain large amountsof parallelism. However when the target algorithms

do not have enough parallelism to make use of all those processing elements, most of

the processing power is wasted. It is extremely difficult to partition typical medium

speed DSP algorithms to thousands or millions of processors.

Therefore, in order to build a system with a low cost/performance design

we are interested in a system with a relatively small number (10 - 100) of extremely

powerful processors.

Overhead of Interprocessor Communication — A general purpose multipro

cessor system often provides a flexible programming environment at the cost of a

substantial amount of performance degradation in interprocessor communication and

synchronization.

For example, the Intel iPSC and the NCube are two message-passing mul-
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tiprocessors. Both machines are based on the hypercube architecture originally de

veloped at Caltech [70]. The hypercube topology provides a network that is easily

scalable to a large number of processors. The network is dense enough to assume

each processor is connected to every other processor, while sparse enough to allow a

simple implementation.

However performance measurements on the above machines show that it

takes about 1msec to send one byte of data from one processor to a nearest neighbor

processor. l The large communication latency is a result of interprocessor communi

cation protocols implemented in software.

Real-time DSP applications cannot accept such run-time overhead in the in

terprocessor communication and synchronization. Therefore,the design of the SMART

architecture placesits highest priority on achieving low interprocessorcommunication

and synchronization overhead.

SIMD vs. MIMD — The simulation system should be able to simulate a large

variety of DSP algorithms with various degrees and grains of concurrency. The sim

ulation system should efficiently support both pipelining and parallelism.

A SIMD machine cannot exploit pipelining and parallelism simultaneously

because this requires execution of different instructions among processors. There

fore our SMART system has a MIMD (Multiple-Instruction stream, Multiple-Data

stream) architecture.

Local vs. Global Communication — A system should support both local and

global communications efficiently. For instance, the communication pattern of a FFT

algorithm, when partitioned in a pipelined fashion, mainly consists of local com

munications [38]. An architecture such as WARP [22] [21] can support those local

communications quite well. 2 On the other hand, the communication pattern of a

Matrix Multiplication algorithm, when partitioned in a parallel fashion, mostly con

sists of global communications [38]. According to a benchmark result [38], a system

JThe latency for one byte is quite large due to the initial cost to begin message transmission.
2WARP isa systolic array machine [44] [12] designed at Carnegie Mellon.
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with a high speed shared bus which provides a direct path between distant processors

performed better than a system with only local connections such as WARP. There

fore, we developed a system which can reconfigure the processor interconnections to

support both local and global communications [Section 2.4].

DSP Processor — On certain DSP-related benchmarks, the performance of pro

grammable DSP processors has consistently exceeded that of general purpose pro

cessors (with arithmetic co-processors) by several times throughout their ten year

history [48] [50] [52].

Recently, there have been a lot of efforts to develop real-time simulation

systems based on powerful DSP processors [46]. In order to handle the number

crunching bottleneck, the SMART system uses a high performance DSP processor

with both floating point and fixed point instructions as the core processing unit

(DSP32C from AT&T Bell Labs [23] [8] ).

The SMART architecture can be applied to far more powerful, new DSP

processors such as Texas Instruments TMS320C30 [63], Motorola DSP96002 [41] ,

and Intel i860 [68] [56]. 3

I/O Interface — The general purpose systems usually do not provide good envi

ronment to interfaceto real-time data. A real-timesystem should have I/O interfaces

which are easy to intergate with the peripheral devices and fast enough to keep up

with the incoming sample rate.

For instance, the DSP32C processor provides a fast hardware conversion

feature to convert typical 8-bit real-time data representation, which is used in audio-

A/D and D/A converters, to and from the 32-bit floating-point representation, which

is used for numeric processing. The SMART system also provides a standard VME

bus interface and a custom FIFO interface which allow easy integration to other

peripheral systems. Especially, sincea custom FIFO is directly interfaced to the core

processor, it is possible to build a high speed interface to the real-time data.

3The Intel i860 processor is more general than other DSP processors.
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Multiprocessor System using DSP Processors — There are many other real

time simulation systems using multiple DSP processors [28].

For instance, the Dolby architecture [49] is a shared memory multiproces

sor system. It consists of four Motorola DSP56000's. A transaction to access the

shared memory requires first requesting the bus, then reading the memory, checking

a semaphore, and resetting the semaphore. Each memory transaction requires about

30 instruction cycles [49]. This relatively high cost implies that only large-grain par

allelism can be supported efficiently.

D. Schwartz has developed a multiprocessor system using AT&T DSP32

processors [15]. The system has been specifically designed to support cyclo-static

scheduling [74]. The goal of the scheduling is to yield an optimal solution for the

following three parameters: the number of processors required, the minimum latency

betweeniterations of the algorithm, and the minimumtime between the availabilityof

an input and the availability of the corresponding output. However, the search for an

optimal solution requires an exponential run time. Furthermore, the scheduling algo

rithm does not allow data dependent execution in its fully specified flow graphs [13].

Therefore the system can handle only sub-set of the DSP algorithms.

The ASPEN parallel computer using the DSP32 has been developed by

AT&T [62]. 4 The system is designed for a large-vocabulary speech recognition

system, and is also applicable to other signal processing problems. The processing

elements are interconnected to form a complete binary tree [11]. The system is suit

able for pattern recognition, and for calculation of means and variances, which is well

suited for binary tree connection. However, the architecture is not suitable for other

typical applications. For instance, it is quite difficult to map the FFT (Fast Fourier

Transform) to the tree architecture. Furthermore, the system does not provide suffi

cient interprocessor communication bandwidth for the FFT algorithm.

SMART architecture — Based on the above observations and architecture re

quirements, we developed a SMART architecture. It utilizes a reconfigurable bus
[Section 2.3] to adapt the interconnection to the irregular communication pattern of

4The computer using the DSP32C is described in [2].
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an algorithm, a distributed shared memory [Section 2.2] to provide a shared mem

ory system with low interprocessor communication overhead, and hardware support

for three types of commonly used synchronizations [Section 2.4]. The following sec

tion discusses pipelining and parallelism in a typical DSP algorithm and gives the

background on how the architecture was initially developed.

2.1.2 Pipelining and Parallelism - A Pitch Extractor Ex

ample

The simulation system is targeted to simulate a large variety of DSP algo

rithms with various degrees and grains of concurrency. Pipelining and Parallelism

are two methods used to achieve concurrency [58] [61] [26]. Pipelining increases con

currency by dividing a computation into a number of steps and allowing a number

of tasks to be in various stages of execution at the same time. For our target DSP

applications, it is assumed that the program operateson an essentially infinite stream

of input data, executing once per input sample. Therefore we can overlap execution

of successive iterations to obtain our speedup. Pipelining is a common form of this

general technique. On the other hand, parallel processing emphasizes the concurrent

manipulation of data to solve a single problem. The SMART architecture is geared

towards exploiting block level pipelining and sub-block parallelism simultaneously to

obtain a speedup in simulation time.

The bus reconfiguration is used to achieve efficient communication pattern

when both pipelining and parallelism are present. A DSP system usually consists of

sequentially data-dependent sub-system blocks. The pipelining of sub-system blocks

can increase the throughput of the system and further pipelining within a sub-system

block may increase the throughput even more. But some sub-system blocks such as

iterative singular value decomposition (SVD) [25] or adaptive filters have constraints

such that pipelining within the block is not possible. This is the case when, for

instance, the output of the current samplehas to be produced before the next sample

can be processed. Pipelining within the block is not possible without changing the

algorithm. However, the iterative SVD has a large amount of parallelism in the
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algorithm. For this case, pipeliningwill be pursued at the system level and parallelism

will be exploited within the iterative SVD block. The following example shows how

important it is to exploit both pipelining and parallelism for load balancing.

Figure 2.1 shows an implementation of a high quality pitch extraction algo

rithm for speech analysis and synthesis [24]. The algorithm shows the combination

of pipelining and parallelism typical in DSP applications. Sub-system blocks like the

hamming window operation, the FFT, the amplitude calculation operate sequentially

on streams of data to extract a pitch from voice samples. The numbers beside the

blocks in the figure state the percentage of the computation load for each block. If

each block is mapped into a pipelined processor, the template matching block will be

the throughput bottleneck and we will only get a throughput improvement 1.6 times

over the single processor system. However the template matching block can be par

titioned naturally over 8 parallel processors [Figure 2.2 (a)], which reduces the load

of the bottleneck processor to one eighth. By load balancing sub-system blocks and

by mapping into pipelined processors, we get a speedup of 12.1 times over a single

processor using 15 processors.

Figure 2.2 (a) shows the data dependence graph for the pitch extraction

after partitioning and load balancing process. A data dependence graph consists of

nodes, arcs, and delay elements. A node represents operations on data. A directed arc

shows the data dependence or the relation between the producer and the consumer.

A delay element is a property of the arc connecting two nodes. If there is a unit delay

on the arc connecting node A and B, then the n-th data consumed by node B will

be the (n-l)st data produced by A. Delays can be placed on any feed-forward cutset

to increase the degree of pipelining without altering the computation, as long as the

latency of the system is not a consideration.

A one to one mapping of this load balanced data dependence graph on a

multiprocessor architecture with a customized communication pattern would result

in the architectureof Figure 2.2 (b). The dedicated architecture can now be mapped

onto the one dimensional SMART architecture as shown in Figure 2.2 (c). Processors

P0 to P5 and P14 are working in a pipelined fashion. Processors P6 to P13 are working

in parallel to each other and working in pipelined fashion with other processors.
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Figure 2.3 shows examples of a reconfigurable bus in simplified diagrams.

The SMART architecture can be statically reconfigured under software control to

match irregular communication patterns. This results in a flexible architecture and

increased bus bandwidth at the cost of hardware switches. The one dimensional

systolic array can be realized by opening all the switches [Figure 2.3 (c)] or and

the shared-bus multiprocessor system by closing all the switches [Figure 2.3 (d)].

In terms of interconnection, the one dimensional systolic array and the shared-bus

multiprocessor system are special cases of SMART architecture.

The following sections deal with the three main aspects of the SMART ar

chitecture - the memory structure, the reconfigurable bus and the synchronization -

which are formulated from the analysis of DSP examples. These features are imple

mented in a special semi-custom VLSI chip set [Chapter 3].

2.2 Memory Structure

The design objective of memory architecture in a multiprocessor system is to

balance the processor speed with the bandwidth of the memory at a reasonable cost.

In real-time system applications, a major concern in memory design is the reduction

of the communication overhead between processors.

First, cache coherence schemes are discussed in terms of reducing the com

munication overhead. Then, an implementation of a distributed shared memory with

a new cache coherence scheme is presented.

2.2,1 Cache Coherence Scheme Review

Multiprocessors can be grouped into two different sets of architectural mod

els: a tightly coupled multiprocessorand a looselycoupledmultiprocessor [14]. Tightly

coupled multiprocessors communicate through a shared memory. Hence the rate at

which data can communicate from one processor to another is on the order of the

bandwidth of the shared memory. Complete connectivity is provided between the pro

cessors and memory. Loosely coupled multiprocessors communicate by exchanging
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messages. They do not generally encounter the degree of memory conflicts experi

enced by tightly coupled systems. Loosely coupled systems are efficient when the

interactions between processes are minimal. On the other hand tightly coupled sys

tems can tolerate a higher degree of interactions between processes. Because of the

large amount of interaction between processes in our target applications, the through

put of the hierarchical loosely coupled multiprocessor may be too low for applications

that require fast response times [26]. Therefore, a tightly coupled structure is chosen

for the SMART system.

The presence of caches in a tightly coupled system introduces problems of

cache coherence. A system of caches is coherent if and only if a read performed by

any processor on any data in main memory always delivers the most recent value.

Since the producer and consumer processors of the data communicate through the

shared data in cache or main memory, the way to solve cache coherence is closely

related to interprocessor communication overhead. The overhead is the sum of the

time spent by the producer in writing a shared data word plus the time spent by

the consumer in reading the data. In the following paragraphs, the interprocessor

communication overhead for static coherence scheme and dynamic coherence scheme

is discussed. After that we present our cache design, where the main goal is to achieve

the low communication overhead.

Static Coherence Scheme — Solutions to the cache coherence problem can be

generally grouped into two methods. The first method, called static coherence, does

not allow multiple copies of the shared writable data to exist in different caches at

any given time.

One of the possible implementations is shown in Figure 2.4 (a). Shared

data structures which are modifiable remain in shared main memory - called non

cacheable data. References to these shared data are made directly to main memory.

On the other hand, Read-only segments of data need not be non-cacheable. Read-only

segments of data which are shared by several processors may be copied into the cache

- called cacheable data. The cacheability of read-only data reduces conflicts in main

memory. However, when processors communicate to each other, both a producer and
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a consumer have to access the main memory, not the cache. The overhead to access

the main memory is too large for a high degree of communication between processes.

The other type of implementation is to provide shared cache for the shared

writable data as well as private cache for the private data. The shared cache is

connected to the processors and the main memory through switching networks. Fig

ure 2.4 (b) illustrates this shared cache concept. The shared data is accessed through

a shared cache while instruction fetches and private data references are made in pri

vate caches. Data references by producers and consumers proceed at the cache speed

except when conflicts occur at the shared cache or a miss occurs. The communication

overhead of the this scheme depends on how well the switching networks are designed.

The communication overhead is small for a rather small number of processors. How

ever, as the number of processors increases to tens and hundreds, the potential gain

in speed will be limited by the transmission delays through the switch to access the

shared cache and by the number of conflicts at the cache. Therefore this cache scheme

is not appropriate for our application.

Dynamic Coherence Scheme — The second method for solving cache coherence,

called dynamic coherence, allows multiple copies of the same data to exist in caches,

provided that all the copies are identical.

To enforce the cache consistency rule in hardware, a tag is associated with

each cache block. It indicates the state of the shard data: read-only state, exclusively

read-write state, exclusively read-only state and invalid state.

If the processor associated with each of the caches has not modified its copy

since the data was loaded in its cache, the copy is in read-only state (RO). In order

to modify the copy in the cache, a processor has to own the copy with exclusive read-

write (RW) or exclusive read-only (EX) states. A RW state means the cache is the

only one with the copy and it has been modified. Similarly, an EX state means the

cache is the only one with the copy and it has not been modified. Therefore at any

time , in order to keep cache coherence, only one processor can own a RW or an EX

state of a copy. On the other hand, an invalid (INV) state means the copy is not

valid. For instance, when a processor owns an RW state, all the other copies in other
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processors will be in INV states. 5

Figure 2.5 shows a simple example of how a producer and a consumer change

states of copiesduring interprocessor communication. In order to modify a block copy,

a producer has to wait until it owns the block copy with RW state and invalidates

other copies. Then in order to read the modified copy, a consumer has to regain its

RO state and wait for the missed data. Therefore both a producer and a consumer

have to pay communication overhead.

This dynamic coherence scheme is more flexible than the static coherence

method, but also more complex and possibly more costly. When a producer and a

consumer alternately writes and reads data the communication overhead is far worse

than a simple static coherence scheme.

Our Scheme — Our cache design is based on a variation of a static coherence

scheme. Figure 2.6 shows our shared cache implementation. It illustrates how to

achieve cache coherence and low interprocessor communication overhead simultane

ously. A read-only segment of data which is shared by several processors is cacheable

by all processors. In otherwords, multiplecopies of shared read-only data are allowed

to exist in different caches at any time.

On the other hand, a shared data structure which can be modified is cacheable

by only one processor. As shown in Figure 2.6 (a), shared data words in address

segment-1 can be cacheable by only processor-1, and shared data words in address

segment-2 can be cacheable by only processor-2. The caches are directly connected

to the associated processors to reduce the access time to the cache. When a processor

accesses a shared data in its own address segment, it can access the copy in its own

cache - unless there is a cache miss. However, when a processor accesses a data word

in other address segment, it will have to access the data in another processor's cache
through the interprocessor network.

The other processor's caches, even though they are not directly connected,

are still accessible by the processor through the interconnection network. The access

5The cache coherence scheme isa rather complicated process. There are several variations ofthis
scheme. More detailed information on cache coherence is discussed in [40] [35] [37].
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times of write operations to those caches are as small as accessing its own cache, since

the processor does not have to wait for the data to reach the destination; the data

will be pushed into the interprocessor communication queue and will be automatically

forwarded to its destination as shown in Figure 2.6 (b), regardless of hit or miss on

the other side. In the case of a read operation to another processor's cache, however,

the processor has to wait until the read data comes back; that is, it has to pay

communication overhead.

Therefore in order to keep communication overhead small, the producer has

to write a shared data word to the consumer's cache and the consumer has to read

the data from its own cache without spending time on accessing the interconnection

network. Hence both a producer and a consumer pay no communication overhead

unless there is a cache miss. When there is more than one consumer, the producer

may broadcast the data to all the consumers at once.

2.2.2 Implementation of the Distributed Shared Memory

A communication scheme in which the producer writes explicitly the shared

data word to the consumer's cache memory was proposed in the previous section.

This section describes how it is implemented in our system.

Since the SMART system is designed to support real-time applications, it

is efficient to schedule processes at compile time and to use the physical address to

access the memory. Hence the producer and the consumer know statically where -

what physical address - to write the data to and where to read the data from.

Furthermore, after the address space of AT&T DSP32C processor (24-bit

byte address) was partitioned into various functions for 64 processors as in Figure 2.7,

the whole memory segment size for each processor (32KB) was small enough to be

implemented by cache memory. Therefore, it was not necessary for the main memory

to back up the cache miss nor to implement the extra hardware to deal with the miss.

However the major ideas of the memory structure remain the same. The prototype

system can be regarded as a special case of the proposed cache coherence scheme

without any cache miss. In the next generation of the SMART system, since the
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processor is expected to have 32-bit address space, it will be necessary to implement

the main memory to cover the large segment address space.

In order to implement the above interprocessor communication scheme, the

following address map - which is same for every processor - is provided as shown in

Figure 2.7. The map consists of address spaces of local memory, front side shared

memory, bus side shared memoryand address mapped functions. 6

Figure 2.10 (a) shows the configuration of thosememories. 7 Each processor

has its own local memory to store the private data and program which are not shared

among processors. The front side address space is used for accessing the shared

data from the front side of the cache. The bus side shared address space, which is

assigned for the communication through the interconnection network, is partitioned at

the high address bits into equal memory segments and distributed among processors

in proper order [Figure 2.7]. The physical memory of each segment corresponds

to the physical memory of the associated processor's front side address space. In

other words data, which is written to segment t, can be read from the front side

of the processor t, thereby achieving the interprocessor communication. The name

shared distributed memory is used for this memory scheme to emphasize the feature

that shared memory is segmented and distributed to enable the low interprocessor

communication overhead.

Figure 2.10 (a) alsoshowsa bus masterunit and a busslaveunit. Those units

enable access to the cachememories of other processors. The bus master unit provides

the interface between the processor and the network. It consists of an interprocessor

communication queue, a network arbitration block, and extra circuitry. The queue

stores the address and the data for interprocessor read and write operations. The

network arbitration block decides when to send a data word from the queue to the

6The address mapped functions are specific to the system. A function is invoked by accessing
a predefined memory location. In the SMART system, for instance, an input and an output FIFO
memory can be accessed with an address of 0xf40000. A far more detailed address map is shown
in Appendix-A. Chapter 3 shows more detailed informations on the implementation of the actual
memory structure.

7Figure 2.10 (b) shows the distributed shared memory system which is integrated with a recon
figurable bus. The distributed shared memory system can be interfaced with other networks as
well.
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network. The extra circuitry is responsible for generating appropriate control signals

which are specific to a particular network. The bus slave unit controls access to the

bus side of the distributed shared memory. The bus slave unit constantly monitors

network traffic and compares the destination processor ID field of the network with the

local processor ID. If the result of the comparison matches, a read or write operation

to the distributed shared memory is performed.

The distributed shared memory may have a main memory structure for a

system with a large address space. In the case of a cache miss, due to the access

through the shared address space or the front address space, the miss can be handled

the same way as for the case of a single processor cache based system.

2.3 Reconfigurable Bus

2.3.1 Previous Work in Reconfigurable Bus Architectures

The matching of the multiprocessor structure to an algorithm has a fun

damental influence on performance and cost effectiveness [26]. For instance, the

hexagonally connected mesh is used for L-U decomposition. The binary tree is used

for sorting. The double rooted tree is used for searching. Furthermore when an al

gorithm with an irregular communication pattern is mapped onto a multiprocessor

system with a regular and fixed interconnection network, it is very difficult to schedule

the algorithm to achieve efficient communications.

To alleviate this problem, reconfigurable interconnection schemes were pro

posed by several people. Synder has examined this problem in the CHiP architec

ture [72] [47]. The CHiP computer consists of three components: a collection of

homogeneous processing elements (PE), a switch lattice, and a controller. As shown

in Figure 2.8 (a) The switch lattice is a regular structure formed from programmable

switches connected by data paths. The PEs are not directly connected to each other,

but rather are connected at regular intervals to the switch lattice. A configuration

setting enables the switch to establish a static, circuit switching connection between

two or more of its incident data paths. In Figure 2.8, for instance, a mesh intercon-
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nection pattern of the PEs are reconfigured to a binary tree connection. In order

to host a large number of switch lattice, the CHiP architecture requires wafer-scale

integration (WSI).

Like the SMART architecture, the interconnection network is reconfigured

to enable more efficient use of the hardware. The CHiP architecture is geared to the

fine grain parallelism with thousands and millions of processingunits. Hence the PEs,

the switch lattice, and the controller have to be very simple to host a larger region

of the switch lattice in a single chip. On the other hand, the reconfigurable bus of

the SMART architecture is developed for the medium and coarse grain parallelism.

It has the shared memory architecture and consists of extremely powerful processors

(up to one hundred processor range).

The reconfigurable bus for the coarse grain parallelism has been used in

the MP/C system [59]. It has the shared memory aspect of the tightly coupled

multiprocessor systems and the connection simplicity associated with the loosely-

coupled multicomputer systems. A large address space is partitioned into contiguous

segments of memory that can be accessed by a single processor. The partitioning is

accomplished by switching the buses. To demonstrate the operation of the MP/C,

consider the 3-node tree structured multicomputer in Figure 2.9 (a). A typical tree

algorithm will first run on the root node, then concurrently on the two leaves, and

finally on the root again. Initially, PO is active, playing the role of the root node,

and it can access MO and Ml, as in Figure 2.9 (c). Then Pi is activated and each

processor does the computation at a leaf, as in Figure 2.9 (d). Finally, PI deactivates

itself, PO resumes the root's role and regains control over the whole address space, as

in Figure 2.9 (e).

The MP/C architecture has some similarities with the SMART system, since

it uses the memory segmentation and the bus switching. However, unlike the SMART

system, in order to access shared data, the MP/C architecture must use the inter

connection network, making the cost of accessing the shared data quite expensive.

Furthermore, when the switch is open, the processors cannot access the shared mem

ory on other buses at all. Therefore the applications are limited, and the programming

effort is larger than the SMART system which has the bypass ability to bridge the
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gap between the separate buses.

2.3.2 Our Reconfigurable Bus

A high-speed reconfigurable bus for shared memory architecture was pro

posed to provide high performance and bandwidth at low cost for up to a 100 proces

sor range. It alleviates the problems of the bus saturation typical for a single shared

bus shared memory system. The basic function of the reconfigurable bus is to divide

the single shared bus into several independent sections to increase usage of of the bus.

A ring connection is formed by connecting one end of the bus to the other end of the

bus to reduce the maximal distance between any two processors in the array.

Figure 2.10 (b) shows an example of a reconfigurable bus. Processor-1

and processor-2 have switches closed and processor-3 and processor-4 have switches

opened. Switches can be opened and closeed dynamically under software control.

When the buses are separated by open switches, they can be accessed simultaneously.

For instance, the bus master unit of processor-1 may send a data word to the bus

slave unit of processor-2. At the same time, the bus master unit of processor-3 can

send a data word to the bus slave unit of processor-4.

When a group of processors is actively communicating with each other, we

reduce the delay of communication between them by closing the bus switches in be

tween. When they are not frequently communicating with each other, we increase

the system throughput by opening the bus switches between the processors. Thus,

we can obtain the efficient bus reconfiguration by trading the delay of global com

munication for the bus bandwidth. It is possible to dynamically reconfigure the bus

under hardware control. It is called the self-reconfiguration bus, which is explained

in Section 2.3.4.

A bypass unit which forwards the interprocessor communication from one

bus to another is an important function of the system. As shown in Figure 2.10 (b),

when the buses are disconnected, they are automatically linked by the bypass unit to

support global communication. Through bypass units, the data may be sent through

several buses automatically to reach the memory in other bus groups. Hence it is
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possible to program independently of the bus reconfiguration. The program results

can be logically the same, although the performance will be affected. Therefore the

reconfigurable bus provides a simple programming environment to a programmer.

The bi-directional bypass and the self-reconfigurable bus features are im

portant features for a large number of processors. The bi-directional bypass (both

left-to-right and right-to-left directions) has the shorter average distance for the com

munication across the buses than the one-directional bypass (left to right direction)

as shown in Figure 2.10 (b). On the other hand, the self-reconfigurable bus has

switches dynamically reconfigured at every bus cycle. This allows the dynamic be

havior of the bus which is hard to be achieved under software control. However, for

a small number of processors, the performance gain is too small compared to the

complexity of implementation. Those features were not implemented for the first

prototype SMART system with 10 processors. Instead, the one-directional bypass

and the software controlled reconfigurable bus were implemented.

2.3.3 Interprocessor Communication

Section 2.2, Memory Structure, has presented the shared distributed mem

ory to achieve small interprocessor communication overhead. The previous section

has described how the reconfigurable bus improves the performance of the single

shared bus through reconfiguration, bypass and ring connection. This section shows

a combined view of the shared distributed memory and the reconfigurable bus using

a simple interprocessor communication example.

The Figure 2.11 shows how interprocessor communications (A-F) between

the processor-1,2,3,4 are handled by the hardware in a pipelined fashion when the

bus is configured as in Figure 2.10 (b). Recall that each processor has a distributed

shared memory, a bus master unit, a bus slave unit and a bypass unit. Each box

in Figure 2.11 represents a pipeline stage with horizontal axis showing the time unit

(100ns) and the vertical axisrepresenting the bus transactions. For exampleMaster-2

represents a master cycle by processor-2 and Arb-3 represents an arbitration cycle by

processor-3.
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Bus transaction-(A) is the write operation from processor-2 to processor-l's

distributed shared memory. The communication will be later accomplished by the

read operation by processor-1 from the Front Side Memory port. The first pipeline

stage of the bus transaction-(A) is the master cycle, where the bus master unit of

processor-2 receives the write request from the processor-2. At the second pipeline

stage(arbitration cycle), the arbitration cycle selects the bus master unit or the bypass

unit within the bus domain which has an access to the bus in the following cycle.

A simple statically prioritized arbitration algorithm is implemented in hardware: a

bypass unit has the higher priority then a master unit, and processors with a low

identification number(ID) have higher priority than processors with a high ID. During

the following bus cycle, data, address and control are placed on the reconfigurable bus

by either the bus master unit or the bypass unit of processor-2. Then the bus slave

unit of processor-1, which is always snooping the bus, finds out that the current bus

transaction belongs to its own distributed shared memory and writes data to the

distributed shared memory during the slave cycle. Sometime later when processor-

1 needs the data sent by processor-2, it simply reads the data from the front side

memory port without accessing the shared bus.

Bus transaction-(B) is another write operation from processor-1 to processor-

4. However, since the switch of processor-3 is open, there is no direct path from

processor-1 to processor-4. During the bus cycle, the processor-3's bypass unit, which

is activated as a result of an opened switch, detects that the current transaction to

processor-4 should be forwarded to the adjacent bus. Therefore the bypass unit latches

the contents of the bus into the bypass queue, generates an arbitration request, and

place the copy on the adjacent bus. The slave unit of processor-4 will update the

distributed memory accordingly. If there are more than one bypass unit involved in

the transaction, each bypass unit will take two extra cycles to forward the data to

the next bus.

When the bus transaction-(B) was generated by processor-1, bus transaction-

(C) was simultaneously initiated by processor-2. Since the bus couldn't accommodate

two data at the same time, the transaction-(B) was granted the first arbitration, and

the transaction-(C) was suspended for one pipeline stage. Then it tried for another
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bus arbitration and won the following arbitration. After the arbitration cycle, the

bus cycle and the slave cycle executes the same pipeline stages as transaction-(A).

Bus transaction-(D) is a NOP (No OPeration), which means no bus mater

or bypass unit wants to use the bus at that time.

Bus transaction-(E) represents bus readoperation from processor-1 to processor-

3's distributed shared memory. The bus master cycle and arbitration cycle operates

the same way as in the case of write operation. However the bus cycle consists of the

following three sub-pipeline stages: At the first stage, the address and control signals

are placed on the bus, which will be latched by the slave unit-3. During the following

stage, it will read the data from its bus side memory port. At the last stage the data

will be placed on the bus by slave unit-3 and latched by bus master unit-1. Then the

data will be forwarded to processor-1, which has been waiting for the arrival of the

data.

The bus transaction-(F) is a broadcast from processor-1 to processor-1, 2, 3.

Since it's a broadcast, all the bus slave unit will update its memory. The broadcast

can be bypassed through switches as the same way as the bypass write operation.

All the functional blocks of reconfigurable bus such as the bus master unit,

the bus slave unit, the bypass unit, the switch, the arbitration and other functions

are implemented as 2 VLSI chips: Master Access Controller (MAC) and Slave Access

Controller (SAC). The details of those chips are described in Section 3.4.

2.3.4 Self-Reconfigurable Bus

The reconfigurable bus presented in previous sectionswas reconfigured under

software control. Changes in the switch configuration had to be specified in the

program. Sometimes it is not clear what the optimal bus reconfiguration is for a

given algorithm. The optimal reconfiguration may be hard to estimate or even change

frequently during the different phases of the algorithm. Therefore the architecture of

the self-reconfigurable bus is developed to dynamically and automatically reconfigure

the bus under hardware control.

The self-reconfigurable bus has a couple of major advantages over the soft-
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ware reconfigurable bus. First of all, the programmer or the automatic scheduler

does not have to know anything about the bus switches and their reconfigurations.

Therefore it reduces some of the programming effort. Second, switches are dynami

cally reconfigured at every bus cycle. Therefore the network can be reconfigured to

maximally utilize the bus resources.

The bus transaction consists of four cycles, as in the reconfigurable bus: a

master cycle, an arbitration cycle, a bus cycle, and a slave cycle. The arbitration

cycle is the main source of the difference. The arbitration is not used to decide which

processor will be granted access to the bus as in the reconfigurable bus, but rather is

used to find out which processor will be given which portion of the bus in the following

cycle. In other words, switch reconfiguration is determined simultaneously with the

arbitration. When a data word needs to be transferred through the bus switch in one

bus cycle the switch will be closed, otherwise the switch will be opened.

Figure 2.12 shows three examples of self-reconfigured bus at bus cycle-

(i),(i+l),(i+2). For example,at bus cycle(i+2), processor-3 transfers data to processor-

1 and processor-4 transfers data to processor-6, and switches are reconfigured accord

ingly.

When multiple processors concurrently request the usage of the bus, the

bus is reconfigured to accommodate the maximal number of processor requests and

to send the data as near as possible to the destination, as in Figure 2.12. During

the arbitration cycle-(i), a bus request is made by processor-1 to send data-aa" to

processor-6 which conflicts with other processors bus request. The arbitration result-

(i) shows that each processor is fully granted access to the bus except processor-1

which is granted access to the bus as far as data-"a" could travel without the conflict,

between processor-1 and processor-2. The bypass unit in processor-2, activated when

the bus switch is opened, generates a bus request at the next arbitration cycle-(i-f-l)

and propagates data-tta" to its destination at bus cycle-(i-j-l) as if the data was

generated by its own processor. The bypass operation on data-"a" is repeated once

again by processor-4 until the data reaches its final destination at bus cycle-(i-f2).

The above example describes how a bidirectional bypass unit, with a com

bined dynamic bus reconfiguration scheme, transfers data to its destination regardless
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of switch reconfiguration and how the self-reconfigurable bus reconfigures switches at
every bus cycle. A programmer does not need to partition the bus and is able to

treat the interconnection network as if it is a single shared bus which supports tightly

coupled shared memory.

2.4 Synchronization

In addition to the efficientcommunication providedby the distributed shared

memory and the reconfigurable bus, issues like process synchronization [16], data co

herence, and event ordering are important factors in the performance of a multipro

cessor system.

The synchronizationmechanismin the SMART system can be categorized as

the following three types: barriers, locks and events. When a group of processes must

be synchronized at a certain point in the program, the barrier is used by preventing

any process from going further until every process in the group reaches the synchro

nization point. On the other hand, when several processes try to access a shared

resource such as the shared memory, the lock which is a simple type of semaphore

guarantees that only one process will be granted access while other processes busy

wait until the resourceis unlocked. The event is something that must happen before a

process can proceed. The event is accomplished by post and clear operations between

processes through distributed shared memory to notify the occurrence of a predefined

event.

The barrier and the event are useful to ensure the order of execution, thereby

preserving the data dependency between processes. For instance, the producer writes

a set of data to the consumer's distributed shared memory which the consumer needs

in order to execute the process. To maintain data coherence, the producer issues a

barrier synchronization after writing data and the consumer issues a barrier synchro

nization before reading the data. After the barrier, while the consumer is accessing

the data, the producer will create a whole new set of data on the other part of the

memory to execute the next process, thereby any memory contention between pro

ducer and consumer is avoided. When a block of data is produced and consumed,
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the barrier synchronization is issued only once for the whole block. In most of the

applications we confronted, the barrier synchronization seemed to be very useful.

Therefore, the SMART architecture provides special hardware support for the barrier

synchronization; it takes only two instruction cycles to check if all the processors

are synchronized. It is also possible to synchronize selectively for a local group of

processors.

The event can be also used to ensure the data coherence by posting the

validity of the data from the producer to the consumer, and by posting the acknowl

edgement of receiving the data from the consumer to the producer. Using events has

the advantage that consumer and the producer do not have to be at the synchro

nization point at the same time. However, the event involves extra overhead due to

handshake and software operations for posting, checking and clearing.

The following sections discuss the details of the three synchronization mech

anisms. Chapter 5 shows how those synchronizations are used in real application

programs.

2.4.1 Barriers

A barrier is a synchronization point which involves the following operations:

1. Mark the current process as present at the barrier point.

2. Wait for all the other processes in the synchronization group to arrive.

3. Proceed when all the processes are present at the barrier.

The barrier synchronizationis often issued to ensure the validity of the data.

The barrier synchronization is satisfied when all the processors in the barrier group

have reached the synchronization point and all the data transactions in the waiting

queue are transmitted. The application of barrier can also be interpreted as keeping

the precedence relations between actors or processes running on different processors.

It is especially useful when the computation time is data or time dependent, or very

hard to estimate exactly.
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Examples of Barriers are shown in Figure 2.13. Barrier-A point is used to

synchronize processor 1, 2 and 3. Note that processor 2 and 3 are waiting for processor

1 to arrive at the barrier point, and about 2 bus cycles (200ns) after processor 1

reaches the barrier point, all the processors proceed to the next steps. Barrier-B

point is to selectively synchronize only processor 1 and 2. There are five hardware

barrier synchronizations which can be programmed selectively to satisfy the different

types of barrier synchronization. In case the application needs more than those five

types for each processor, the events can be used, sacrificing speed however.

2.4.2 Locks

A lock ensures that only one process at a time can access a shared data

structure. A lock has two states: locked and unlocked. Before attempting an access

to a shared data structure, a process waits until the lock associated with the data

structure is unlocked, indicating that no other process is accessing the data structure.

The process then sets the lock, accesses the shared data structure and frees the lock.

While a process is waiting for a lock to become unlocked, it spin-locks in a tight loop,

producing no work.

The locking mechanism provided on SMART systems perform the actions

required to establish a lock as a fast single indivisible operation. The locking operation

takes about 200ns (if it is not locked),and the unlockingoperation takes about 100ns.

Figure 2.14 shows an example of lock operations which involves three processors.

The hardware implementation of the lock is fast but primitive. Higher level

semaphores can be built on top of the lock to give more versatility. Waiting mecha

nisms other than spin-lock can be also implemented in software on top of the hardware

lock.

2.4.3 Events

An event is something that must happen before a task or process can pro

ceed. The completion of a task, the arrival of needed data and the occurrence of

certain conditions to be noted are examples of the events. An event is accomplished
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by handshaking between the source processor (which reports the event) and the des

tination processor (which accepts the event) in the following steps [Figure 2.15]:

1. The source processor checks the acknowledge flag queue to prevent the new

event from overwriting the last events which are not served yet.

2. The request flag is posted on the destination processor event queue by the source

processor.

3. The destination processor checks the event queue and serves the event.

4. The acknowledge flag is posted to the source processor queue by the destination

processor.

No special hardware feature is required to implement the event. A small

portion of the distributed memory can be allocated for the request and the acknowl

edge event flags. The request flag is placed in the destination processor's memory

and the acknowledge flag is placed in the source processor's memory. Therefore the

flags are posted through the bus side memory and the flags are checked and cleared

through the front side memory. When an event flag is set, there are two different

ways to initiate the checking. One way is to let the destination processor poll the

flag periodically. The other way is to let the source processor, which has posted the

event, initiate the checking in the destination processor. This operation involves the

interrupt operation from the source to the destination processor. The latter method

has the advantage in that an important event can be served right away. On the other

hand, serving the interrupt in the middle of executing another program can be quite

expensive.

2.5 Benchmark

We have studied typical DSP algorithms extensively to determine the effec

tiveness of the proposed architectures. The results of four DSP algorithms (256-point
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256-pts FFT Echo Canceller Pitch Extr. Matrix-Vector Mult.

Speedup 13.65 14.04 13.29 14.58

Communication

Overhead (%)
0.64 0.13 0.03 1.11

Idle Time (%) 8.91 18.52 16.12 1.80

# of Buses 16 3 4 1

Average Bus
Usage (%)

32.67 0.65 4.05 14.33

Average # of
Bus Requests

1.00 1.59 1.50 8.62

Table 2.1: Benchmark Results for 16 Processors.

256-pts FFT Echo Canceller Pitch Extr. Matrix-Vector Mult.

Speedup 39.13 41.80 53.89 34.95

Communication

Overhead (%)
20.39 0.73 1.11 15.45

Idle Time (%) 16.75 28.81 13.68 17.19

# of Buses 64 10 12 1

Average Bus
Usage (%)

72.7 2.96 30.90 34.17

Average # of
Bus Requests

1.00 2.20 2.57 32.74

Table 2.2: Benchmark Results for 64 Processors.
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FFT, Echo Canceller [20], Pitch Extractor [24], and 64x64 Matrix-Vector Multiplica

tion) are shown in Table 2.1 and Table 2.2. More details of the benchmark analysis

can be found in [38]. The performance on the real SMART system hardware is

presented in Section 5.4.

The four different algorithms were chosen to represent two major aspects of

concurrent programming in the SMART architecture. The first aspect is the degree

of communication. The algorithms were chosen to represent communication inten

sive algorithms (FFT), computation intensive algorithms (Echo Cancellation), and in

between (Pitch Extraction and Matrix-Vector Multiplication) so that we can under

stand how the architectureperforms for different types and degrees of communication.

The second aspect is the type of concurrency exploited: pipelining (FFT), parallelism

(Matrix-Vector Multiplication) or both (FFT, Echo Cancellation and Pitch Extrac

tion). However, caution is required in analyzing the results using the above classifica

tion, since the degree of communication and the type of concurrency varies depending

on the granularity, mapping, programming, problem size and other factors.

The benchmark results show close to ideal speedup and very low commu

nication overhead in all cases. Speedup is defined as the time taken to execute the

sequential algorithm for a problemon a single processor divided by the time taken to

execute the parallel algorithm for the same problem on a multiple processor. Commu

nication overhead gives the extra amount of time used in communication compared

to an ideal multiprocessor machine in which there is no contention or penalty in ac

cessing any portions of the global shared memory. The low communication overhead

in the test benchmark result confirms the ability of SMART to adapt to different

communication patterns. Idle time is a measure of how well the load is partitioned

among processors and has a direct effect on speedup. For each bus, the bus usage,

which is defined as the fraction of the observation period in which the bus was used,

is measured to represent the degree ofinterprocessor communication through the bus.
The average bus usage % is an average of the bus use %over all the buses.

The benchmark programs simulated on the 16-processor system showed

speedup from 13.65 to 14.58 over the single processor, as summarized in Table 2.1.

During the observation period, processors have paid less than 2% of the time for
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interprocessor communication overhead and much less than 1% of the time for syn

chronization overhead. 8 However, idle time of the processors was from 1.80% to

18.52%; it was especially high for the irregular programs, such as Echo Canceller and

Pitch Extractor, since load balancing is very hard to achieve for those cases.

The bus was reconfigured for each algorithm, from 1 bus to 16 buses, to ob

tain the best results; the FFT program, when reconfigured differently as a single-bus,

showed 2.40 times of performance degradation due to the shortage of bus bandwidth.

When many processors request the bus at the same time, the communication

can be temporarily congested, which can cause a bus saturation for a short period of

time. The degree of congestion is measured by the number of processors requesting

(arbitrating) the bus when at least one is requesting. The Matrix-Vector Multipli

cation benchmark shows that an average of 8.62 processors, among 16 processors,

requested the bus at the same time, although the bus is used only 14.33% of the time.

The same set of benchmarks, simulated on 64 processors, showed a speedup

from 34.95 to 53.89. The reconfigurable bus becomes more and more important, as

more processors are used, as the programs become more irregular, and as the program

becomes more communication bounded. The reconfigured bus, in many cases, has

performed about a factor of 2 to 3 times better than fixed bus interconnections (a

single-shared-bus and a pipelined bus).

Although the SMART architecture has successfully reduced the overhead of

communication and synchronization to a low value, the idle time accounts for most

of the performance degradation. More speedup improvements can be expected (by

10% - 20%) with more careful load balancing of application programs.

8Since the synchronization overhead is negligible, the numbers are not included in the table.
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SMART ARCHITECTURE

IMPLEMENTATION

The Eagle soars in the summit of Heaven,
The Hunter with his dogs pursues his circuit.
0 perpetual revolution of configured stars,
0 perpetual recurrence of determined seasons,
O world of spring and autumn, birth and dying!
The endless cycle of idea and action,
Endless invention, endless experiment,
Brings knowledge of motion, but not of stillness;
Knowledge of speech, but not of silence;
Knowledge of words, and ignorance of the Word.
- T. S. Elliot
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3.1 SMART System

The major components of the SMART system are the processor array, the

Heurikon CPU Board [29] using the VxWorks real-time operating system [78], the

Analog/Digital Unit, the Interface Unit, and the host system, as depicted in Fig

ure 3.1. Figure 3.2 shows a view of the SMART system. A single 20-inch VME rack

hosts the Heurikon CPU board, a SMART array of 10 cells, as well as associated

power supplies and fans. All the components except the host station are housed

inside a VME card cage.
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Figure 3.1: Block Diagram of the SMART System.
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Computation is performed by the SMART MIMD processor array which

consists of a set of programmable core processors (AT&T's DSP32C) with 32-bit

floating-point capability (peak 20 MFLOPS) connected to each other via the re-

configurable shared bus Figure 3.2. The array is controlled by the CPU Board, a

micro-computer running a real-time Unix-like Operating System. Data is supplied to

and received from the processor array in real-time through the Analog/Digital Unit.

The Interface Unit, consisting of Ethernet, VME bus, and RS232, provides efficient

communication and cooperation between Units. Communication between the host

computer and the CPU board is established by the Ethernet which also allows the

CPU board to access data files in the file server of the host system directly. In ad

dition to the VME bus, an optional custom bus can be implemented to speed up

communication between the SMART system and the outside world.

The host is a SUN workstation system that functions both as a software

development station and as a large auxiliary data storage unit. The workstation pro

vides a UNIX environment for cross-compiling and developing application programs.

The first prototype of the 10 processor SMART system is operating reliably

at 24 Mhz system clock with peak 120 MFLOPS performance. We are currently

working on improving the system speed to a 40 Mhz system clock, which would yield

200 MFLOPS of peak performance.

All the main features of the architecture, such as the reconfigurable bus, the

bus master unit, the bus slave unit, the distributed shared memory system, and the

synchronization mechanism, are implemented as semi-custom VLSI chips. One set is

required per processing node.

The following sections describe the implementation details of the SMART

processor array and then focuses on a single processing node which consists of a

DSP32C processor, Master and SlaveAccess Controllers, and memory modules. Chap

ter 5 presents the programming methods to utilize the described system.
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3.2 SMART Processor Array

The 10 processor SMART prototype consists of five printed circuit boards.

All boards are functionally equivalent: they can be easily added, removed, or inter

changed with a little or no change in the application programs.

A simplified block diagram of the SMART Processor Board is shown in

Figure 3.3. Each SMART board contains an array of two processing units, a VME

interface unit [57] and a control unit. The board is implemented on a eight layer

printed circuit board with dimensions of 14.6" x 14.4". [Figure 3.2] It has two layers

for power and ground, and another six layers for routing signals. Section 4.3 (Board

Implementation) provides more detailed information about the printed circuit board.

The VME interfaceis responsible for down-loading programs to the core pro

cessors, monitoring the internal status of the processors and transferring data in and

out of the SMART processor array. Our VME bus implementation provides a peak 6

Mhz transfer rate for 32-bit data. The bus is interfaced to the processors through the

FIFO memories, the parallel I/O portof the processor and the input/output registers.

Peripheral devices such as the speech sampling board and the Heurikon CPU board

can access the processor array through the VME bus interface.

The VME bus address consists of five fields: a system field, a board field, a

processor field, a mode field and a selection field. The system and the board fields

are used to select one of the SMART processor array boards. On the other hand the

processor field is used to choose the processing node on the board. The mode field

designates one of the three types of VME interface: the FIFO memory, the parallel

I/O port and the board status register. The selection field provides detailed operation

regarding the parallel I/O mode and the register mode. For the parallel I/O mode,

it provides the address bits of the parallel I/O port. They are used to down-load the

program and data, inspect the status registers of the processor and access memory

through DMA. For the register mode, the field selects between the input, output, and

scan registers. The input register contains the status of the processor array such as full

and empty bits of the FIFO memory and the processor interrupt acknowledge signals.

The output register provides signals to reset the board, interrupt the processor, and
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enable the scan mode for testing. The scan register is used to scan the test vectors

in and out of four VLSI custom chips on each board.

The control unit, which resides on the board side opposite to the VME in

terface, generates, distributes and buffers the global clock and system control signals.
It also provides an interface between processors across theboard boundaries as shown
in Figure 3.2. The flat ribbon cable, shown in the picture, carries the global system
clock, which ranges from 20 Mhz to 40 Mhz, as well as interprocessor connections

such as the data, address, control and synchronization signals.

Since a high frequency clock has to be distributed throughout the multiple

board system, the clock is carefully distributed to solve problems such as clock skew

and transmission line effects. To shorten the buffered wire length and balance clock

skews, the system clock is buffered locally on each board. To alleviate transmission

line effects, terminating resistors are used to reduce the ringing of the clock.

In the SMART system, processors communicate only with their adjacent

neighbors, which are physically located close to each other. Therefore only clock
skew between adjacent processors has to be considered carefully. The worst case

occurs between the first and the last processors which are located at opposite ends

of the array of processor boards due to the ring connection. Therefore the clock

is generated on the board in the middle of the system and distributed to an entire

SMART processor array.

Figure 3.4 shows the clock waveforms measured at different points in the

system. By balancing the loading of the clock line on both sides of the array, the
clock skews experienced bythe first (point-C) and the last processors (point-D) tends

to cancel out.

3.3 Processing Unit

Each SMART processing unit consists of an AT&TWE DSP32C processor,

an input/output FIFO, local RAM, distributed shared memory and an access con

troller chip set (consisting of a Master Access Controller (MAC) and a Slave Access
Controller (SAC)) as depicted in Functional Block Diagram [Figure 3.5].
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Processor Bus — The role of the processor bus is to provide a path between the

access controller (MAC and SAC chips), the memory blocks and the processor. The

bus consists of an address field (26 bits), a control field (5 bits) and a data field (32

bits). Through the processor bus the processor can issue instructions to the access

controller for accessing not only the local memory, the distributed shared memory,

the FIFO but also the distributed shared memory of other processing units. In other

words, the access controller decides how the instructions are interpreted and provides

the necessary signals to access memory. The access controller is further described in

Section 3.4 and the instructions are listed as a table in Appendix-A. The processor bus

is restricted to a processing unit. The external interface is discussed in the following

paragraph.

External Interface — Communication between the processor and the Heurikon

system CPU board is established through the VME interface via the parallel I/O

port and FIFO memory. The FIFO memory also provides an asynchronous custom

interface to the outside world. *

The left and right reconfigurable buses connect adjacent processing units

to form a linear reconfigurable array. They provide the only communication path

between the processing units. For processing units sitting on different boards, short

ribbon cables are used to implement the reconfigurable bus.

Memory Structure — Each processor's memory consists of a 4KB input FIFO

and a 4KB output FIFO, 256KB of static local RAM, and 16KB of distributed shared

memory.

Each input and output FIFO memory module consists of four IK x 9 fifo

chips with a 50ns access time. One side of the FIFO is connected to the processor

bus, while the other is connected to the external interface. Data, which were queued

from the external interface, can only be accessed from the processor side. On the

other hand, data, which were queued from the processor side, can only be accessed

from the external interface. In order to avoid a FIFO overflow and an underflow, it

xMore detailed informationon the FIFO interface is given in Section 5.3.
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is required to check full and empty flags before accessing it. As technology advances,

the current FIFO chips may be replaced by a larger and faster FIFO chips without

any hardware or software modifications.

A local static RAM module is used for storing the program and private data.

It consists of eight 64A" x 4 static RAM chips with 25ns access time. Even though

the specification of the overall access time from the processor to the local memory is

50ns, logic delays in the implementation require static RAM with a 25-30ns access

time. Since the DSP32C processor requires such a high memory bandwidth, the cost

of building such a memory system is rather high.

The distributed shared memory module is used for storing shared data, or

for interprocessor communication. It consists of eight 2K x 8 static dual-port RAM

chips with a 30ns access time. To facilitate concurrent access to the distributed shared

memory, one port is connected to a processor bus, and the other port is connected to

access controller chips (MAC and SAC). The costof dual-port RAM is quite expensive

in terms of the price and the physical package size. If the core processor had provided

a high-speed handshaking facility to take care of a case when requests were accepted

from both sides at the same time, we would have been able to replace the dual-port

RAM by the one-port static RAM, which would bring down the implementation cost

significantly. In the selection of the core processor, the memoryinterface should have

been more carefully evaluated.

DSP32C Processor — The DSP32C is a 32 bit CMOS Digital Signal Proces
sor packaged in a standard 133-pin pin-grid-array (PGA). It offers a unique set of

architectural features that include: 32 bit floating point arithmetic, 16 or 24 bit in

teger arithmetic, 16MB of address space, on-chip ROM and RAM, serial, parallel

and external memory I/O ports all equipped with direct memory access capability
(DMA), 4 40-bit accumulators and 22 general purpose registers, 2 external and 6
internal individually maskable interrupts. At its practical maximum operating clock
frequency (40 Mhz), 2the DSP32C executes 10 MIPS for integer operations and and

Currently, AT&T provides a50 Mhz version ofthe DSP32C chip. However, torun at50 Mhz, the
processor requires static RAM chips with less than 20ns access time. Therefore, in order to achieve
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20 MFLOPS for floating point operations. 3 Each processor in the system is identified

by a unique 6-bit processor identification number (PID) and therefore a maximum of

64 processors can be supported. The PID's are assigned in such a way that processors

on the left-hand-side have smaller PID numbers than their right-hand-side neighbors.

The address space of DSP32C is divided into two banks; bank 0 and bankl,

and only bank 0 is expandable off-chip. The external memory of bank 0 is divided

into two sections, a low partition and a high partition. The number of wait states

for each partition, where each wait state is one fourth of the instruction cycle, is

independently configurable via the processor control word register. Configuring the

wait states allows DSP32C to access fast memory without handshaking, and slow

memory or peripheral devices with handshaking, using a synchronous ready signal.

More detailed information about how the memory space is configured is provided in

the following section and Appendix-A.

Internal Clocks of MAC and SAC chips — A4-phase non-overlapping clocking

strategy isused in SMART asshown in Figure 3.6. Thefunction of the clock generator

block is to generate these non-overlapping clock signals, guaranteeing that the skews

between the falling edge of the reference clock and the falling edges of the internal

clock signals are always constant, as required by the synchronous interfacing scheme

used between chips. The four phase clock - phil, phi2, phi3 and phi4 - is chosen

since this matches the clocking scheme of the DSP32C processor. The processor may

generate memory access in any phase. Furthermore, sinceeach DSP32C performs one

memory transaction in two phases, the al and a2 clocks which run at 20 MHz are

used in the MAC and DSP32C interface.

The pi and bl clocks define a bus cyclefor the switchable bus in MAC and

SAC respectively. Inone bus cycle, a message is transferred from one processor to all
the other processors in the same bus segment. Notice that the bus cycle of SAC lags

high performance, the access to the static memory isusually implemented with one-wait state at 50
Mhz system clock [8] or without any waitstate at 40 Mhz system clock. We havechosen the 40 Mhz
system clock, since the system generally performed better without the wait state, especially when a
program is stored in the external memory.

3For further information on the DSP32C processor, consult to the DSP32C manual [7]
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Figure 3.6: Internal Clock Signals.
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that of MAC by one phase. The one phase difference accommodates the propagation

delays from MAC to SAC and therefore eliminates time-critical interface problems

between MAC and SAC.

Two clock-generation methods were implemented to provide the interal

clocks. The first method is to derive the clock signals from the reference clock using

a digital phase-locked loop (DPLL) [60]. The DPLL block was implemented for each

MAC and SAC chips. A simple clock generator circuit could have been used but the

skew between the reference clock and the internal clocks would vary from chip to

chip due to process variations and differences in operating temperature. On the other

hand, the DPLL clock could provide a virtual zero-delay clock driver. In order to

save design efforts, a design used in the Berkeley SPUR Project [31] was taken with

some modifications to suit our needs.

The second method is to generate the clocks externally using combinational

logic gates. It was provided, in case the first method did not work. Since the system

did not run reliably with the DPLL clocks, the second method is being used in the

current system. It is believed that the large current switching noise on the board is

causing the unstability for DPLL clocks. The debugging effort has been concentrated

on solving the clock skew problems due to the change in clock-generation method.

3.4 Master Access Controller and Slave Access

Controller

All the functions needed to integrate the individual processors and memory

modules to form the SMART multiprocessor system are implemented into two 208-pin

VLSI Access Controllers: 4 the Master Access Controller (MAC) and the Slave Access
Controller (SAC). As its name implies, MAC is the brain of the Access Control, and

handles address and control signals, while SAC is working as a companion or a slave
to MAC, and handles data signals.

4More information regarding circuit and layout of those chips is discussed in A. Yeung's Re
port [79].
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To maximize the performance, the SMART architecture permits each pro

cessor to operate at or near full speed with a minimum of interference from the other

processors. Although the DSP32C processors werenot specifically designed for a mul

tiprocessor environment, the support circuitry, implemented as a MAC and SAC chip

set, isolates the processor from the complications of a multiprocessor environment.

MAC and SAC direct the traffics between processors through the reconfig

urable bus, handle synchronization, generatecontrolsignals to the access input/output

FIFO, the local memory as well as distributed memory for interprocessor communi

cation.

The functionality and the implementation of MAC and SAC will be discussed

in this section. A description of the instruction set of the access controllers will first

be explained, followed by the explanation of the functional blocks in the MAC and

SAC chips.

3.4.1 Access Controllers Instructions

The DSP32C processor passes instructions to MAC and SAC chips in a

memory mapped fashion. MAC decodes the address according to the SMART pro

cessor bus address map [Appendix-A] and carries out the necessary steps to complete

one of the following four types of instructions:

• System Configuration

t Local Memory Access

• Interprocessor Memory Access

• Interprocessor Synchronization

Those instructions can be divided into two groups based on their handshake

interface between MAC and DSP32C. Group 1 instructions include instructions whose

execution should be completed within a pre-determined constant period of time and

therefore no handshaking is required. On the other hand, Group 2 instructions such

as barrier and lock instructions usually take a variable amount of time to execute.
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In this case, DSP32C must busy-wait until MAC asserts the system ready signal

(SRDYN). Details of Group 1 and Group 2 instructions are shown in Appendix-

A. The following paragraphs describe the functionality of the four classes memory

mapped instructions.

System Configuration Instructions — System Configuration Instructions ma

nipulate the configuration registers in the MAC. Most of these registers are set up

during the initial system setup and do not change much during the run time. Their

functions include:

• Configuration for reconfigurable bus and synchronization bus.

• Enabling and disabling the bypass and the synchronization signals,

• Releasing the lock.

• Setting the processor identification for interprocessor communication

Local Memory Access Instructions — The local memory access instructions

involve accessing the following memory modules through the processor bus: local

memory, input/output FIFO, and distributed shared memory. Those modules were

discussed in Section 3.3.

Interprocessor Memory Access Instructions — The memory access through

the bus slave unit is used when a processor needs to communicate with another

processor or to access data in a distant shared memory.

In the case of an interprocessor writeoperation, the write request is queued

for the communication through the reconfigurable bus in the bus master unit. If

queue is not full, the acknowledge signal (SRDYN) is asserted. Otherwise the ac

knowledgement is delayed until some space is freed in the queue. In the case of an

interprocessor read operation, the read request is queued as in the write request, but

the acknowledgement is delayed until the data is returned.

A broadcast operation is served in the sameway as a write operation by the

bus master unit. The request is broadcasted to a group of processors specified by the
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instruction. Once a data word is broadcasted on the reconfigurable bus, all bus slave

units in the group update their own memory.

Interprocessor Synchronization Instructions — The barrier synchronization

and the lock synchronization instructions can be issued through memory mapped

instructions. The synchronization instructions belong to Group 2 except the unlock

instruction which does not require any handshaking between the access controller and

the processor. The barrier synchronization is custom-designed in hardware for high

speed applications. To synchronize a set of processors at a certain point in the pro

gram, every processor in the set is required to execute a synchronization instruction.

Then the acknowledge signal, which causes the completion of the synchronization,

will be issued by MAC.

Controlled access to a shared resource can be implemented with locks and

unlocks. In the case of a lock request, the lock is acquired and the acknowledge

signal (SRDYN) is asserted by MAC, if the lock has not been acquired by anybody.

Otherwise the acknowledgement is delayed until the lock is freed. The lock is released

by an unlock operation. This does not need any acknowledgement signal.

A simple programming example using synchronization instructions is shown

in Section 5.2.

3.4.2 Functional Blocks in the MAC Chip

This section describes the functional block diagram of MAC [Figure 3.7] and

its functions. The block diagram includes a master control unit, a bus master unit,

a bus slave unit, a bypass unit, a switch block for the reconfigurable bus, an arbiter

for the arbitration, logic for the synchronization, and an internal clock generator.

Master Control Unit — The DSP32C issues instructions to MAC by generating

an external memory address. The Master Control Unit decodes the instructions and

controls the majority of the operations in MAC.
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Bus Master Unit — The bus master unit consists of the master FIFO and extra

circuitry to provide the interface between the DSP32C and the reconfigurable bus.
The master FIFO stores the address and control signals for interprocessor read and
write operations. The queue is served on a first-come-first-serve basis to preserve the
order and data consistency. The serving operation always starts with a reconfigurable
bus request and ends with a delete operation from the queue upon completion of the
service. The full flag of the FIFO queue is used to delay the acknowledge signal to
the DSP32C to prevent the overflow.

Reconfigurable Bus and Bus Switch — The switch block implements the
switches and the precharge of the reconfigurable bus. The opening and closing of
the switches is controlled by the special instructions. In one bus cycle, a data word
has to ripple through a series of closed switches to reach its destination. Therefore
the speed of the switchable bus is crucial to the performance of the system, because
this imposes an upper bound on the number of processors in the same shared-bus.
The buses which are separated by more than the upper bound should communicate
through the bypass.

Bus Slave Unit — The bus slave unit controls access to the the dual-port RAM.
The bus slave unit constantly monitors the bus traffic and compares the destination
processor ID field of the bus with the local processor ID. Ifthe result of the comparison
matches, a read or write operation from or to the dual-port RAM is performed.

Bypass Unit — The bypass unit controls the bypassing of the interprocessor com
munication from one bus segment to the next bus segment. If the destination proces
sor ID is larger than the local processor ID and ifthe bypass unit has been activated
by a special instruction, then the contents on the reconfigurable bus is copied into
the bypass FIFO queue. Abus request is generated for the next bus segment to serve
the bypass queue. The service is completed by forwarding the contents of the bypass
queue to the next bus segment.
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Arbiter — To avoidcollisions on the bus, a MAC chip performs arbitration with all

the other MAC chips on the sameshared bus before any MAC can send out the data.

The prioritized bus arbitration scheme is used for its simplicity of implementation.

For instance, a bypass unit has the higher priority then a masterunit, and processors

with a low identification number(ID) has higher priority than processors with a high
ID. To obtain higher throughput on the bus, the arbitration is pipelined with the

data transmission. The bus pipeline was described in Section 2.3.3.

Sync (barrier) and Semaphore (lock) — The barrier and lock synchronizations

are implemented in the Sync and Semaphore block. The left and the right synchro

nization buses are directly connected to the right and left buses of the two adjacent

processors to form an interprocessor synchronization bus. There are five barrier syn

chronizations bits in the bus and each bit can be configured and programmed to

control a specific group of processors for the barrier synchronization. A global barrier

synchronization, which does not have switch, is also provided to synchronize all the
processors in the system.

3.4.3 Functional Blocks in the SAC Chip

The SlaveAccess Controller (SAC) is a slave to the Master Access Controller

(MAC). It responds to the control signals from the MAC chip and carries out the
requested actions exclusively on the data, transferring it between its four 32-bit buses.

The functional block diagram of SAC is shown in Figure 3.8. It includes a bus master

unit, a bypass unit, a switch block for the reconfigurable bus and a clock generator.
The primary function of the master and bypass unit is to provide a tempo

rary storage for the data section of a request. Placing and removing requests from
the queue is entirely controlled by MAC. The switch block and the clock generator
performs the same function as in the MAC chip.
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The biggest change of a design comes at the last
stage of its implementation.
- Murphy's Engineering Law

The design of the SMART system has involved architecture design, func
tional organization, logic design and various levels of physical implementation. The

implementation encompasses VLSI design, printed circuit board design, software de
velopment, and system integration of the hardware and the software.

With the help of the recent developments in the CAD technology and the

design disciplines, the SMART system was designed and implemented in a two and
half year period by two graduate students. The layout and testing of the two VLSI
custom chips - MAC and SAC - were performed by Alfred Yeung [79].

This chapter concentrates on the integrated use of CAD programs, the func
tional description and the disciplines in various levels ofimplementation. The design
and implementation steps are presented in the following order: architecture design,
functional description, board implementation, chip implementation, testing and sys
tem integration.
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4.1 Architecture Design

The SMART system is designed to meet functional specifications as well as

price and performance goals, set by the requirements to achieve real-time behavioral

simulation. The main design goals are as follows:

• High Computational Throughput

• Low Interprocessor Communication and Synchronization Overhead

• High I/O Bandwidth

• Fast Switchable Bus

• Modular Design in Increasing Number of Processors

• Short Design Cycle

Once a set of functional requirements of the architecture was established, the archi
tecture was optimized and defined in functional description language. The functional

description and simulation in designing a system was a major design discipline.

4.2 Functional Description and Simulation

Whenever a hardware design is developed, its functionality needs to be veri
fied. One way toverify the functional operation ofthe design is tobuild abreadboard,
a prototype or an actual hardware, drive the test vectors and monitor the results.

However this is very expensive in terms of time and cost. As the target system be
comes more complex, it is very hard to locate the error. Therefore the functions of

the architecture and design needs to be verified before the prototype is built. This
significantly reduces debug cycle time and cost.

Functional simulation is one of the most effective methods to verify the
functions of the architecture and the design. In terms of hardware debugging, the
functional simulation can separate the errors in the logic from the errors due to the
electrical problems. It is also easy to prepare input stimuli for functional simulation
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and to debug and modify the design. Morerover, components that are not available

at the time of design canbe simulated by providing an abstract model, such as for the

Master Access Control and Slave Access Control custom chips. In terms of hardware

design, the functional description helps the designer to think in a top-down manner.

Hardware can be described and simulated at the behavioral level, register transfer
level and gate level. Hence the functional description can be gradually developed

from the behavioral level to the gate level. This allows the designer to concentrate
on the current level of the design.

The SMART Processor Array has been described and simulated using the

THOR functional simulation system [5]. The description consists of the models of

circuit elements and their interconnections. Models were written in a language called

CHDL, which is based on the C programming language with added features for mod

eling. The models describe the behavior of a primitive functional element such as

the AT&T DSP32C processor, memory elements, and sub-blocks within the access
controller chips.

Figure 4.1 shows a model Arb.c which handles bus arbitration, and is a sub-

block of the MAC chip. The model consists of the interface section, the initialization

section, and the behavioral description section. The behavioral description section

is the main body of the model describing the algorithms or designs. It allows all
standard C statements. In addition, data formatting and conversion constructs are

provided. It allows a programmer to check data values more rigorously. For instance,
arbL = larbLN in the example can be expressed as finv(arbL,0,0,arbLN,0,0) using
the THOR constructs. When arbLNhas the logic values of 0, 1, 2, 3 (ZERO, ONE,
UNDEF, FLOAT), the arbL will be assigned to 1, 0, 2, 2, respectively.

The model is executed whenever an input or biput changes. For instance,
when clock phi( changes, the model is executed and byPassRequesUc4 and master-
Request^ signals is latched into the s[l] and s[2] registers. The output arbRN is be
re-evaluated as a result. More informations on modeling are described in [5].

The interconnections were described by a component oriented language
called CSL. It allows a hierarchical description where a group of elements can be
defined and treated as an entity called a sub-network. For example the descriptions
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Arb.c

MODEL (Axb)
{
IN LIST

/* From Clock */
SIG (phil);
SIG (phi2):
SIG (phi3);
SIG (phi4);
SIG (al);
SIG (a2);
SIG (pi);

/* From MAC L * /
SIG(arfaLN);

/* From CeruCtr */
SIG(switchSlate_c4);

I* From ByPass or Master * /
SIG(byPassRequest_c4);
SIG(masterRcquest~c4);

/* From'busR */
SIG(wniR);

ENDLIST;

OUT_UST
/* To ByPass (also SACSByPassi and Master */

SIG(byPassGrant_c3);
SIG(masterGram c3);

/* To MAC R * I
SIG(arbRN);

ENDLIST;
STJIST

SIG(arbL);
SIG(arfaR);
GRP(s,5);

ENDLIST;
arbL = JarbLN;

If(phi4){
s[l] a byPassRcquest_c4;
s[2] s masterRequest~c4;

)
s[0] = arbL II !switchState_c4

arbR = s[0] && !(s[l] II s[2]);

if(phi3){
byPassGrant_c3 = (byPassRequest_c4 = 1) &.&. s[0] && wmR ;
masteiGrant_c3 = (masterRcquest34=» 1) && s[0] && wrnR

&.&. !byPassRequest_c4;

arbRN = !arbR;

Figure 4.1: Thor Modeling Example - Arb.c.



CHAPTER 4. DISCUSSIONS ON DESIGN AND IMPLEMENTATION 72

of the Master Access Controller and Slave Access Controller Chips consist of net

works of functional sub-block elements. The description of the whole system consists

ofmultiple processing node sub-networks which again consist of the DSP32C proces
sor, Memory, and the MAC and SAC sub-networks.

Oncemodels were described and interconnected, the simulation was achieved

by exercising the input stimuli and monitoring the results. Figure 4.2 shows a sim

ulation timing diagram for a three processor system. In this particular example, all
bus switches are opened, and the bypass operations are enabled. The vertical axis

represents signal orbus names and horizontal axis shows the timing step. Each timing

step resolution corresponds to 1/16 of instruction cycle time (6.25ns).

At time 506, processor 1 drives I-addrP with a value of 0x187001, * I-msnP

with 0x0, I-mwnP with an active low, and I-cycleinP with an active low. This results

in a write operation to processor 3. The signals are decoded and queued into the bus

master unit of the Master Access Controller (MAC) chip. I-srdynP is driven low at

time 510 to acknowledge processor l's request. Since the reconfigurable bus I2II-bus
is busy bypassing data which are coming from IIM-bus the request is serviced at time

610. The high address bits on I2II-bus has been changed to an appropriate form for

bus transmission (0x3070010). Due to the limited screen size, this output only shows
the signals of processor 1.

For our purpose it was sufficient to model only the parallel port and access
operations of the DSP32C. This processor model has allowed us to write high level
command program to exercise the various functional blocks of the system.

The functional simulation environment, however, has its limitations. Even

though thedelay ofthe signal can bemodeled up to certain level, it is hard to include
the timing information in the model, which is necessary to detect problems such
as critical paths, race conditions, clock skew, and setup/hold times. Whether the
timing model should be integrated with the functional simulation is a controversial

issue. However the present CAD environment lacks a support to solve the above
mentioned problems.

*0x represents a hexadecimal notation.
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The functional description was used as the specification for custom chips
and printed circuit boards. Therefore the description was placed at the center of the
design and used throughout the whole design process.

The functional simulation vectors were utilized to test the physical layout of
the custom chip. Signal values in the model were used as stimuli for an event-driven

switch level simulator called irsim [19] to verify the physical layout.

4.3 Board Implementation

The PCB design task is basically to select, place and interconnect compo

nents such as processors, memory chips, passive elements (resistors and capacitors),
connectors and jumpers, on a printed circuit board. Electrical components have a

wide variety of specifications ranging from memory chips with diiferent speed and size

to connectors with various shapes and pin-out. The designers has to explore various

design alternatives using different electrical components withdesign constraints, such
as speed, board size, and power consumption.

The board implementation process consists of the schematic design phase
(circuit diagram), simulations, and the printed circuit board implementation. The
schematic design describes what physical components are used and how they are con
nected. Its principal use is to capture the design data for a printed circuit board im

plementation and to document for future debugging and enhancement. The schematic

design can be described by a textual description as well as a graphical entry. The
textual description called SDL (Structural Description Language), which is part of a
LAGER silicon compilation system [19] [9], has been used to design both the board
and the chips. The architecture is hierarchically described with library cells at the
lowest level of a design tree. The placement information on the printed circuit board,
such as position and rotation angle, were also hierarchically annotated. The Design
Manager, which is also a part of the LAGERsystem, has been used to take the SDL

description and the parameter values to form a complete hierarchical description of
the design and to direct the CAD tools to generate the output. The output is an
intermediate netlist file for a printed circuit board design tool.
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The Visula PCB Design environment was used to implement its PCB design.

It performed the placement, routing and produces physical mask films starting from

the netlist information of the schematic design [65]. Components were placed either

from the placement information specified in SDL or by using the auto-placement tool

of Visula. Physical routing was done 100% by the auto-routing routine after several

tries of re-placement and re-routing. Analysis of the routing result shows that good

placement is essential for successful routing.

The printed circuit board has dimensions of 14.6" x 14.4", uses 8 layers (2

layers for power and ground), and has 8 mil trace and 8 mil spacing design rule.

Each contains 665 parts, 2801 connections (excluding power and ground connection),
7775.7 inches of total routing length, and 8584 holes (vias and pads). Each auto-

routing run took 11 hours, followed by 15 hours of smoothing, mitring and fattening
steps on SUN3/60 with 100 MB of local disk space.

Critical signals on the printed circuit board, such as global clocks and mem

ory strobe signals, were modeled as transmission lines [53]. They were simulated by

SPICE using the lossless line model. The goal of the simulation was to find out the

potential problems on the printed circuit board. The simulation was also used to

find out the optimal termination resistors. The simulation was useful in avoiding
some of the potential transmission line problems. However, the measurement showed

that sometimes the transmission line behaved quite differently from the simulation

results. One of the main reason was the modeling problem. It is difficult to simulate

a signal when it passes through several layers, vias and packages which have different

line impedances and delays. Furthermore, the coupling effects between signals often
contributes a signficant amount of noise to the signal. There have been some efforts

to improve the transmission line simulation environment [10] [18].

Other electrical problems, such as driving capability, noise, and cross talk of

signals, were checked mostly by hand analysis. In analyzing the electrical properties
of the board, we also had problems in modeling and extracting parameters to simulate
accurately.

As the state of the art in printed circuit board advances, boards grow larger
and denser, while their electrical properties become increasingly critical. If board
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designers can analyze how routing affects the electrical characteristics, they can save

a significant amount of time and effort. Furthermore, they can evaluate the require
ments, conditions, and constraints being imposed upon the routing process in order

to arrive to a practical set of compromises. There are growing efforts to incorporate

modeling capabilities into PCB environments [54].

The functionality of the board was simulated using THOR by extracting
netlists informations from SDL and by using the library models developed during
the functional description stage. While the purpose of the functional simulation for

the architecture was to check whether the architectural design was valid, the goal
of the functional simulation of the board was to check whether the original func
tional description is implemented with the right components and connected correctly.
Simulation inputs were driven from the board-system interface such as a VME bus.

Most of the functional descriptions and test input vectors, developed before for the
architecture, were reused to simulate the board.

4.4 Chip Implementation

The large number of inputs and outputs of the access controller required a
partitioning into smaller sub-systems for VLSI implementation. After carefully con
sidering design issues such as die size, pin-out, package, testability, and minimization
of interface signals and critical paths between sub-systems after partition, the access
controller was partitioned and implemented as two chips: Master Access Controller

(MAC) and Slave Access Controller (SAC), each of which has 208 pins. MAC is the
master of access controller and SAC, being the slave, only responses to the control
signals generated by MAC.

The twoVLSI chip set implementation is strictlybased on the functional de

scription ofthearchitecture. The layout ofthe chip was achieved byusing acell-based
modular design and the LAGER silicon compilation system [19]. Physical layout was
implemented manually on the leafcell level if the required cell was not available in

the LAGER cell-library. The chosencells were then assembled and connected to each

other to form blocks. LAGER provided a number of assembling layout generators
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for blocks with different layout styles such as Timberwolfe [69] [3] for standard cell

design, dpp [73] for datapath compilation, and TimLager [73] for memoryblocks and

pads. The blocks were then hierarchically placed and routed by Flint [51] which is an

interactive floor-planner and channel router.

Simulation took a very significant portion of the design cycle. Fast and ef

ficient CAD support were required for a successful design. The physical layout was

simulated by irsim [19], an interactive event-driven logic-level simulator for MOS

transistor circuits. Using the linear simulation model, irsim was also used as a tim

ing verifier. Inputs to irsim containing netlist, and resistive and capacitive loading
information were directly extracted from the layout. SPICE simulation was used for

more accurate timing checkon critical paths such as a reconfigurable bus, and a mem

ory and processor interface. Some of the important electrical characteristics such as

power and gnd signal noise were simulated with SPICE. The noise was due to the

change of the current flowing through the inductive power and ground pads. Given

the inductance of the packaging, the noise were reduced by assigning more Power and
Gnd pins and by optimizing the output pad sizes [43]. About 40 out of 208 pins were
used for Power and Gnd pins which resulted in 0.7 Volts of worst-case noise in SPICE

simulation.

The complete functional description, which was used to drive physical design
of the chips, not only allowed for the verificationof the architecture in advance but also

provided a cross-checking facility between the functional description and the physical

layout. This cross-checking facility is available in the THOR functional simulator so

that signal values in the functional model can be used as stimuli for irsim and the

responses is compared with the corresponding signals in the functional simulation.

4.5 Testing and System Integration

Tests for a VLSI chip and a printed circuit board are developed in two
phases [66]. In the first phase, known as design verification, test vectors are generated
to verify logical correctness and timing behavior of the circuit through simulation.
These test are carefully designed to exercise various functions of the circuit. For any
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reasonably large circuit it would be impossible to use all possible input sequences. As

a practical compromise, a subset of inputs, considered to be critical by the designer,

is used for verification. The second phase of test generation consists of generation

of manufacturing tests. Verification tests check for the right logic element to be

connected in the right way. They do not necessarily check for specific types of defects

produced during fabrication. Ideally, manufacturing tests must cover all faults that

can possibly occur during fabrication. Since we were building the prototype system,

it was the first phase of test generation that was our main interest. Diagnostic test

programs were developed to perform verification testing. The testingstrategy for two

semi-custom VLSI chips (MAC and SAC) and SMART processor board is discussed

in the following paragraphs.

Figure 4.3 (a) shows the the test setup for two VLSI chip testing. The

conventional input/output test approach, driving and observing the external pins of

the chip, was used. Test vectors were generated by the simulation environment which

was used to verify the chip before fabrication. Programs were written to automate

the process ofextracting the test vectors from thesimulation patterns, down-loading
the vectors to the tester, and up-loading and verifying the acquired results from the

tester after testing is performed. Since it is very difficult for the tester to access our

208 pin package at the same time, a boundary scan register chain was implemented
at the pads to allow for testing the chips with access to only a few pins.

After the semi-custom chips were verified, the SMART processor board was

tested in an environment as shown in Figure 4.3 (b). Diagnostic programs were
developed in a high level language C to exercise various parts of the board functions

from the host workstation. Then, cross compiled diagnostic programs were down
loaded and run on the CPU board and the SMART processor array. The test results
and error reports were collected from the SMART processor array to the CPU board.

In case the input/output behavior - such as a logical value, timing or waveform -
of the chips has to be checked, testing equipments such as an oscilloscope, a logic
analyzer and on-board test logics were used to drive input or to observe the output.
The oscilloscope was used to accurately measure the timing and the waveforms of
the critical signals such as clock, memory interface, interprocessor bus and strobe
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signals. The logic analyzer was useful to generate and acquire hundreds of sequences

of signal values which cannot be accessed from the CPU board. The following on

board test logics were provided to give an extra dimension to the test by temporarily

reconfiguring the board: input registers to acquire the values of the signals, output

registers and the strobe signals to drive the signals, and snap-shot register to record

the values of the signals when a certain signal changes its value.



Chapter 5

PROGRAMMING SMART

A programmer is a person who passes as an exacting expert on the basis of
being able to turn out, after innumerable punching, an infinite series of
incomprehensible answers calculated with micrometric precisions from
vague assumptions based on debatable figures taken from inconclusive
documents and carried out on instruments ofproblematical accuracy by
persons ofdubious reliability and questionable mentality for the avowed
purpose of annoying and confounding a hopelessly defenseless depart
ment that was unfortunate enough to ask for the information in the
first place.

- IEEE Grid news-magazine
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5.1 Overview of Programming Environment

A multiprocessor simulation environment is only useful when high level sup
port tools for algorithm specification, processor partitioning, and code compilation
are available.

We have chosen Cand Silage [30] as our source languages. Being an applica
tive language, Silage is ideally suited for the description of algorithms with inherent
concurrency. It does not require explicit expression ofconcurrency in the program. A
high level software system is under development to auto-schedule the Silage descrip
tion on the SMART processor array taking a load balancing and an efficient usage
of the communication system into account. Section 5.5, Auto Scheduling, provides
more detailed information about this system. An alternative approach is to program
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the SMART machine starting from the C programming language. This approach,
however, requires manual partitioning of the program. Section 5.2 describes how
programs can be written in C.

Figure 5.1 provides anoverview of programming environment for the SMART

system. Application programs are developed and cross-compiled in thehost computer
due to its superior user interface and availability of related software routines. The

DSP32C C-compiler developed from AT&T generates object code which is executable
on the DSP32C software simulator. Another program takes the object code produced
by the DSP32C C-compiler and converts it to a format which is appropriate for
down-loading.

The Heurikon CPU board can directly access files shared with the host

computer via NFS (Network File System) and has RPC (Remote Procedure Call)
facilities to cooperate with host processes. VxWorks routines have been developed
to provide low-level support such as initializing the SMART system, down-loading a
program to the SMART processor array, and transferring data between a UNIX file

and the SMART system. Appendix-D provides commands for compilation and down
loading, and ascript file example, which includes aset ofprocedures for initialization,
running and collecting data.

The CPU board also features a run-time software library that allows a pro
grammer to read and write any part of the memory using DMA without disturbing
a currently running program. Interrupts, which are controlled through the VME
registers, are provided to interrupt the DSP32C processors. The processor, when in
terrupted, executes interrupt routines pointed by interrupt vector registers [8]. When
the interrupt signal is kept being asserted, the DSP32C processor is interrupted at
every instruction cycle. This feature can be used to single step in a parallel debug
ger program. The parallel debugger program, however, has not been developed yet.
Therefore the currently used debugging methods utilize the external output FIFO
to print out critical data at the various points in the program and uses the DMA
operation to access memory. A programmer may write his own routines to satisfy his
particular run-time interaction requirement [78].
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5.2 Programming in C

This section deals with programming algorithms in the C language. The

simple, linear, reconfigurable structure of the SMART system makes it easyto exploit
concurrency.

Since each processor executes its own program, a programmer can write dif

ferent program for each processor, or combine them to one or two programs. When

programs are combined, the pid (processor ID) is tested to execute a processor de

pendent part of the code. The 1024-point complex FFT program shown further in

this section, is an example where the 10 processors are programmed with an identical

code, even though the actual execution of the code may be different from one pro

cessor to another. A single combined program is generally easier to write and faster

to compile than ten programs are. The run-time overhead for a combined program is
usually negligible.

The image processing program in Appendix-C, called image.c, shows another

example of how a program can be written for 10 processors. First, the initialization

function InitQ loads in a processor ID, a process number, and source and destination

addresses from the input FIFO. * Then the main routine selects a function, such as

minimum filter, median filter, laplacian and sobel, from library routines, based on

the process number. Each function acquires data from the memory pointed to by the
source address and generates data to the memory pointed to by the destination ad

dress. The above described programming style is useful when a group of applications
uses a library of routines.

Macros play an important role in programming the SMART system. The

macros, defined in header files such as smart.h and sl.h, hide the implementation

details of the physical address mapping. The macros are divided into the following
three groups: memory access marcos, synchronization macros and system configura
tion macros. Macros defined by the SMART system software have Sm- as the prefix.
The data type is specified as the suffix of the macro name such as -fl, Jnt, sint, or

In the case ofan interprocessor communication, the source address usually points to its own dis
tributed shared memory, and thedestination address points to thedestination processor's distributed
shared memory.
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.charwhich stands for a float (32-bit) , an integer (24-bit), a short integer (16-bit),

or a character (8-bit) data type. All macros are listed in Appendix-B. The following

paragraphs illustrate the key macros which are frequently used in programming.

5.2.1 Macros for Accessing Memory

Macros are provided for each memory module such as the local memory,

front memory, bus memoryand FIFO. A macro for accessing the local memory treats

the data as an array. The argument of the macro provides the index into the array.

For example,

SmJm-fl(S) = SmJm.fl(2) + 5mJm.//(3);

will read two floating point numbers from the local memory, add them, and put the

result back to the local memory.

On the other hand, the front memory and the bus memory require more

than one argument. The front memory takes a bank select number and an index

address as its arguments.

Sm.fm.fl{bank~select,indexjaddress);

There are two banks in each distributed shared memory so that producer and con

sumer processors can access different banks of memory without interfering with each

other. The bank select number specifies the memory bank being accessed.

The busmemorymacro isused for interprocessor communication. It requires
four arguments.

SmJmi-fl(rnode, pid, bank^elect, index-address);

The first argument mode specifies one of the five different modes of access: regular
read-write (L-RW), regular broadcast (L-BC), circular write (L-CW), short write

(S-W) and short broadcast (S-BC). A Regular transaction requires an acknowledge
signal from MAC to DSP32C, buta short transaction does notrequire an acknowledge
signal. The acknowledge signal is used to delay the transaction when the queue

in the bus master gets full so that a programmer does not have to worry about
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overflowing the queue. For a short transaction, the interval between transactions

should be controlled by software to prevent an overflow. 2 The second argument pid

selects the distributed memory associated with the target processor. The third and

the fourth arguments specify a bank and an index address, respectively.

The fifo macro does not require any argument. When it is used in a left

hand side of an assignment, for example,

Sm.fifosintQ = tmp;

a value of a variable tmp on the right hand side is pushed to the output FIFO. On

the other hand when it is used in a right hand side of an assignment, for example,

tmp = Sm.fifo-&intQ;

a data word is poped from the input FIFO, and assigned to a variable tmp.

5.2.2 Macros for Synchronization

The synchronization mechanism in the SMART system can be categorized

as the following three types: barriers, locks and events. The following paragraphs
illustrate macros for barriers and locks.

A barrier synchronization can be issued by

Sm^syncV(lines);

It takes lines as an argument whose value is interpreted as the status of 6-bit syn

chronization lines. For example, Sm-syncV(l) requires a global synchronization, and

Sm-syncV(2), Sm_syncV(4) and Sm_syncV(8) require a local synchronization for line
1, 2 and 3 respectively. On the other hand Sm_syncV(2 + 4 + 8) will require a
synchronization from all line 1, 2 and 3.

A lock can be acquired by

Sm-semP();

2Section 3.4 and Appendix-A provide detailed information about read-write and broadcast
operations.
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If it is being locked by other processor, the processor, which requested the lock, will

go into a busy-wait state until it acquires the lock. A lock can be released by

SmsemVQ;

operations. It does not have any effect if the lock was not currently owned.

5.2.3 Macros for System Configuration

The bus can be opened and closed at any time by software. Usually the

reconfiguration macros are preceded by the barrier synchronization with other pro

cessors to make sure the bus is not reconfigured in the middle of a data transaction.

SmsyncV(lines);

SmuopenSwitchQ;

or

SmsyncV(lines);

SmjcloseSwitchQ;

The barrier lines, except the global barrier line, can be reconfigured in the
same way as the data bus.

SmjwrSyncSwitch(lines);

It takes lines as an argument, which represents synchronization line reconfigurations.
A bit with a value of one sets a switch to the closed state and a value of zero sets

a switch the opened state. For example, Sm.wrSyncSwitch(0x3f) will close all the
switches, and Sm-syncV(Oxa) will close switches for line 1 and line 3. Since a global
synchronization does not have any switch, a least significant bit, which corresponds
to a global synchronization, has no effect. It is also possible to enable or disable each
barrier line.

Sm.wrSyncDefault(lines);
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A bit with a value of one sets a barrier to the enabled state and a value of zero sets

a barrier to the disabled state.

A memory bankin adistributed shared memory can be selected using a swap
state which is stored in the MAC chip. The swap state is often used when processors

are working in a pipelined fashion. They operate on an essentially infinite stream

of input data, executing once for every input. A processor reads from one bank of

memorywhile the other processor writes to the other bank of memory. At the end of

the iteration, the memory bank is swapped to exchange two memory banks.

The swap state is Exclusive-ORed with a bank select argument in the macro

toaccess the distributed shared memory (Sm.bmJl(mode, pid, bank-select, index-address)).
For example a swap state one and a bank select mode zero will select bank one. The

swap state can be cleared, set, and toggled by the following macros.

SmjclrSwapQ;

SmsetSwapQ;

SmJoggleStvapQ;

A bypass operation can be enabled and disabled. When the bypass is dis
abled, no bypass operation is allowed between two adjacent disconnected buses. On
the other hand, when the switch ofthe data bus is closed, the bypass is automatically
disabled. Since there is only one data bus, it does not require any argument.

SmudisableBypassQ;

SmuenableBypassQ;

The processor number, called pid, needs to be defined by the software. The
pid can be defined within the program or it can be loaded from the FIFO. The

following code is frequently used at the beginning of the program. It first load in the
pid from the input FIFO and write pid as the processor number.

pid = Sm-fifoJnt();

Sm-wrProcNum(pid);
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The programming environments were presented based on our current macro

definitions. There are a lot more other ways to program than what has been shown

here. As more programs are developed, the programming environments will be ex

panded and the higher level macros will be provided. The following section provides

a FFT programming example using macros.

5.2.4 A FFT Example

Figure 5.2 shows a 1024-point complex FFT program. 3 Each of the ten

processors works on one tenth of the total computation load in a pipelined fashion.

First, the program is initialized. The pid (processor ID = 0..9), maxpid (maximal

processor = 10), and tasksize (number of points = 1024) are loaded from the FIFO.

Other informations, such as initializing variables, can also be loaded from the FIFO.

pid = Sm.fi foJnt();

maxpid = Sm.fifoJntQ;

tasksize = Sm.fifoJntQ;

Once initial informations are loaded from the FIFOs, the SMART system

is configured for the FFT algorithm. This is achieved by setting status registers in

access controllers. First, pid is written to the access controllers.

Sm.wrProcNum(pid);

Since the interprocessor communication is limited to the adjacent processor, the data

bus switch is opened and the bypass is disabled.

SmjopenSwitchQ;

Sm-disableBypass();

The global synchronization is enabled to synchronize all the processors.

Sm.wrSyncDefault(\);

3The header file of FFT is included in Appendix-B
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#include "smarUT
#dcflne IN_OFFSET 2
mainO

{
register Int i, j, pid. tasksize;
register float *a»*b. *x.*y.*W. bwr. bwi;
int maxpid;

I* initialize * /
pid o Sm_fifojnt();
maxpid = Sm_fifo_imO;
tasksize = Sm_fifo_intO;
SmjjpenSwitchO; ~ I* open all switches * I
Sm_disableBypassO;
Sm_wrProcNum(pid);

/* global sync is enabled for processors used. * I
Sm_wrSyncDefault(001)

/* Download twiddle from fifo to local memory * I
for (i=0; i<tasksize; i+-r) Sm_lm(i) = Sm_fifo_fl();

/* For proc(O), download input data from fifo to front memory *I
I* For other procs. just initialize to some dummy values. * I

for (i=0; i<2*tasksize; i+-r) {
If(pid = 0){ Sm fm(BSEL SWAP, i) = Sm_Sfo_fl(); 1
Sm_&n(BSEL_SWAPB, i) =~Sm fm(BSEL_SWAP, i);

}
Sm_syncV(001); /* gloabl sync * I
for~(j=0; j<maxpid; j-H-) {

/* set up i ,'o and twiddle pointers * I
a a Sm &n addrtBSEL_SWAP. 0);
b = a+IN OFFSET;
x « Sm>n_addr(L_RW, (pid+l)%MAX_PROC, BSEL_SWAPB. 0) ;
y = x + tasksize;
W = Smjm_addr(0);
for(i=0; i< (tasksize»l); i++) {

bwr a (*b+^ * *W++) - (*b— * *W);
bwi = (*b++ • *W—) + (*b++ * *W++);
*x-h- = bwr + *a++;
•x-h- = bwi + *a—;
*y++ = *a++ — bwr;
*y++ s= *a — bwi;
/* update pointers * /

W++;
a = b;
b += IN OFFSET;

)
Sm_syncV(001);
Sm~toggleSwapO:

I* For the last proc. upload output data from front memory to fifo * I
If (pid=(maxpid%MAX_PROC)) { ,„ „ .*

for (i=0; i<2»tasksize; i-H-) Sm fifo flO = Sm_&n(BSEL_SWAP. 0;
}

Figure 5.2: Programming Example - FFT.
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After thesystem initialization stages, the coefficients used in the FFT (called
twiddle factors) are preloaded from the FIFO.

SmJm(i) = Sm.fifo.flQ;

For processor-0, the input data words are down-loaded from the FIFO to the front

memory. After all the initialization steps, we synchronize every processors and start
computation.

SmsyncV(l);

The main body of the program starts after global synchronization. It is

similar to a C-program for a general purpose computer. The base addresses to point
data and coefficients are assigned before the actual computation. Macros are provided
to calculate those addresses.

a = Sm.fm.addr(BSEL^WAP,0);

W = SmJmjaddr(0);

x = Sm.bmjaddr(L.RWi(pid+l)%MAXJ>ROC,BSEL^WAPBi0);

The BSEL.SWAP, L-RW, MAX.PROC are all constants defined in the header file.

For instance, float pointer a is initialized to the base of the front memory, while

the memory bank is selected by BSELJ5WAP. The float pointer W is initialized to

the base address of the local memory where the FFT coefficients were down-loaded.

The float pointer x is used to write the result to the consumer processor's bus side

memory (Sm-bm-addr()). The first argument L-RW selects the read-write mode

through the bus. The second argument calculates the next processor number which

can be obtained by adding the current processor number by one. %MAX-PROC is

used for the processor-9 to write the result back to the processor-0. The memory
bank is selected by BSEL.SWAP and the base index is 0.

The inter-loop actually performs the FFT operation using the pointers ini

tialized just before entering the loop. At the end of each outer-loop iteration, the
processors are globally synchronized and the memory banks are swapped. Therefore



CHAPTERS. PROGRAMMING SMART 92

after the global synchronization, every processor will start with a set of data which
were produced by the adjacent processor.

SmsyncV(\);

SmJoggleSwapQ;

When the computation is over, the result is up-loaded to the FIFO by processor-9.

Sm.fifo.flQ = Sm.fm(BSEL-SWAP,i);

5.3 Real-Time Input/Output

The SMART system can include a variety of peripheral devices which trans
fer real-time data via a VME bus or via a custom FIFO bus [Figure 5.3]. Real-time
behavioral simulation will often require the interfacing of a peripheral device to the
SMART system. This section gives an overview of those I/O interfaces, and discusses
the bandwidth of the system.

Our VME bus implementation provides a peak 6Mhz transfer rate for 32-bit
data (24 MB/sec). However, when the transfer is handled by a software program,
the actual transfer rate may be reduced by an order of magnitude due to software
overhead like instructions for creating a loop and calculating next data addresses
within the loop. Therefore a system which needs to transfer in the order of 6 Mhz
rate requires either a special hardware unit or an interface to acustom FIFO bus.

Aspeech processing simulation environment can be set up using the VME
bus interface. For a sample rate of 8Khz and an 8-bit representation, the VME bus is
more than sufficient to handle the real-time data. An A/D &D/A board, interfaced
to the VME bus, acquires the input speech from the microphone and generates the
output speech to the speaker.

A custom FIFO bus consists of five 32-bit ports: one port for each board.
The custom FIFO bus can transfer data at a 20 Mhz rate to and from the input
and output FIFO units as shown in Figure 5.3. However the rate is limited by the
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DSP32C which can transfer the data at a peak 3.3 Mhz (13.2 MB/sec) [33]. 4 The

bandwidth of the FIFO port may or may not be large enough depending on the size

of image or video applications. For example, an image processing example which

requires the following bandwidth, can not be handled in real-time.

TotalBandwidthRequirements —

512 xS12(jnxels)

xZO(frames/sec)

xZ(bytes/pixel)

x2(inputi output)

= ASMB/sec

The I/O requirements of the video and image processing system can be 15 MB/sec

(monochrome 512 x 512 image), 54 MB/sec (NTSC CCTR-601) or more (HDTV).

The basic I/O problem lies in the limited bandwidth of DSP32C. Therefore,

if applications require I/O bandwidth to be less then 13.2 MB/sec, the SMART system

can process them in real time. Otherwise, the system I/O bandwidth is not sufficient

for real-time processing. However, the system can provide non-real-time simulation

speedup.

The system was designed especially for real-time medium speed DSP appli

cations such as the speech processing, whose I/O requirement was discussed earlier

in this section. The system provides sufficient bandwidth for those applications.

As the semiconductor technology advances, it will be possible to build a

multiprocessor system to handle the bandwidth and the processing requirements of

real-time image and video processing applications. To incorporate the future tech

nology advancement and to improve the real-time I/O bandwidth, a heterogeneous

SMART system which consists of a variety of processors is proposed in Chapter 6.

4The peak rate was calculated based on the following assumption. The DSP32C requires SRDYN
signal to access FIFO. Therefore, it takes one and a half instruction cycle to read the data from
the FIFO and another one and a half instruction cycle to transfer the data to a distributed shared
memory.
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5.4 Performance of the SMART System

Since the SMART machine became first operational in Feb. 1990, we have
programmed several DSP algorithms and commonly used routines, and have measured
the performance of the system.

Task Time(ms) Speedup Over
one DSP32C

Speedup Over
SPARC-1

Speedup Over
SUN 3/60

1024 point
Complex FFT

33 8.8 24 121

Echo

Cancellation
0.2 7.0 15 55

Pitch

Extraction

2.1 8.6 52 70

Matrix

Multiplication
.25 8.4 25 59

Average for
FP programs

— 8.2 29 76

Sobel

filtering
2150 9.1 9.5 15

3x3 maximum

filtering
1500 9.0 4.1 12

laplacian
filtering

1380 8.7 14 15

invert

filtering
110 9.1 6.4 13

Average for
INT programs

9.0 8.5 14

Table 5.1: Performance Results for 10 Processors.

Application area that most strongly guided the development ofSMART was
real-time simulation of a medium speed DSP applications such as speech, telecom
munication, audio and robotics.

Table 5.1 reports the performance of the SMART prototype system for a
variety of algorithms. The table includes all system overhead except for the initial
program memory loading. It is assumed that the input is a stream of data. The
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performance is measured from the point the input data arrives to the point the data

is completely processed.

We compare the SMART performance with a SUN 3/60 and a SUN SPARC-

1. Both of them have floating-point co-processors. These computers are widely used

and The relative performance comparison to other computers can be easily obtained.

Since the SUN 3/60 and SPARC-1 computers do not have a real-time I/O interface,

w«= have assumed that the real-time data is in the main memory when it is first

accessed, which will give us the maximum speed those computers can have.

The programs are measured in twogroups. The first four programs in the ta

ble- FFT, Echo-Cancellation, Pitch-Extraction, and Matrix(100xl00)-Vector(100xl)-
Multiplication - represent the typical medium speed DSP applications using floating

point operations. Their benchmark performances, simulated on the system software

model, were shown in Section 2.5. 5 The last four programs in the table - Sobel-

Filter, Maximum-Filter, Laplacian, and Inversion - represent the commonly used

image processing routine 6 using only integer operations. For DSP programs using
floating-point operations, the measurement shows the average speedups of 8.2 times

overa single DSP32C processor, 29 times overSUN SPARC-1, and 76 times overSUN

3/60, respectively. On the other hand, for DSP programs using only integer opera

tions, the measurement shows the average speedups of9.0 timesover a single DSP32C

processor, 8.5 times over SUN SPARC-1, and 14 times over SUN 3/60, respectively.

The result shows larger numbers of speedups for programs using floating

point operations than for programs using integer operations. This is because the

DSP32C, even though it also provides integer operations, is a floating point oriented

chip. For instance, it can execute a floating point multiplication and an addition

in one instruction cycle, while it can only execute one integer operation per one
instruction cycle.

The speedup over SUN 3/60 and SPARC-1 depends heavily on the perfor

mance of the DSP32C processor itself. From the architectural point of view, it is more

interesting to examine the speedup over a single processor. Overall, the SMART sys-

5Note that the benchmark performances were measured for 16 and 64 processors.
6monochrome 512 x 512 image.
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tem with 10 processors has shown a speedup ranging from 7.0 to 9.1 times over a
single DSP32C processor.

In highly regular programs with a large amount ofcomputation, we typically
observed nearly the peak performance of the machine. As an example, for a FFT
algorithm, the system provides 8.8 times of speedup over a single processor. On
the other hand, in irregular programs like echo cancellation, we observed a smaller

speedup of 7.0 times due to load unbalancing. It is a very hard problem to correctly
estimate and balance the load. We hope the auto-scheduling system, which is being
developed [Section 5.5], will alleviate this problem.

All the programs shown in the table were programmed in C. The SUN

3/60 and the SPARC-1 provide very efficient C-compiler. However, the DSP32C
C-compiler could not generate efficient machine code due to the following problems:

• The DSP32C is a highly pipelined processor (6 stages). It is quite difficult for

a compiler to generate efficient code for a processor with many pipeline stages.
This is due to the data dependency between the sequence of instructions.

• The special hardware for DSP applications, such as a bit reversal addressing
for FFT, can boost up the performance. However, it is very difficult for the

C-compiler to recognize the pattern in the source code and utilize that special
feature.

Extensive use of library routines and assembly macros can alleviate those

problems. For instance, the data dependency at the instruction level can often be

avoided if programmed in assembly language. Furthermore the special hardware

instructions can be directly addressed to improve the performance. On the other

hand, AT&T is developing a C-compiler for the DSP32C which will do a better job
in optimizing the code. Hence, the optimization in programming environment will

give further speedups over the performance given in the table.

Research groups that are developing speech coding algorithms [1] for low-
power portable communication devices and grammar processing in a speech recogni
tion system [64] are planning to test their algorithms on the SMART system. As
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more complex application programs are developed, they will give better indications

of the performance.

5.5 Auto Scheduling

The goal of the auto scheduling is to provide an environment where users

can express DSP algorithms textually or graphically, and have a compiler partition
and translate the program into sections of assembly code to be executed on the

multiprocessor system [67] 7 [Figure 5.4].
The Silage To SMART (S2S) Compiler, which implements the partitioning

algorithm consists of 4 tasks:

• Silage to Flowgraph (S2F) Translation

• Flowgraph Partitioning

• Flowgraph to C (F2C) Translation

• C to DSP32C Code Compilation

The Flowgraph Partitioning represents the most challenging aspect of the

compiler. We are given a program represented by a hierarchical flowgraph, and con

straints on the number of processors and amount of memory available. Assuming

that the program will be applied to an infinite stream of input samples, the goal is to

find a mapping of the program onto SMART, as well as a bus configuration, to ob

tain maximum throughput, taking into account communications and the constraints

above.

An efficient software environment to balance processor loads is being devel

oped. This algorithm uses estimates of the computation time and communication

time for the individual atomic tasks to optimally partition the program onto the

processors. First, pipelining at the block level will be performed. Then, within the

sub-block, parallelism or further pipelining can be used to exploit the finer grain

7The auto scheduling algorithm and its implementation is being studied by P. Hoang.
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concurrency. Initial results from the Flowgraph Partitioning are very good, although

more intelligent heuristics are being investigated to make the algorithm more robust.

The S2F Translator generates a flowgraph that is hierarchical in that a node

may represent an instance of a subgraph. C is chosen as an intermediate language

because the DSP32C has a C compiler available, allowing us to concentrate on the

partitioning strategy. The S2F Translation is near completion. The F2C Translation

has not been implemented, and the last task will be done using AT&T's C Compiler

for DSP32C.



101

Chapter 6

CONCLUSIONS

Take yesterday's worries and sort them all out
And you'll wonder whatever you worried about.
Look back, at the cares that once furrowed your brow,
I fancy you11 smile at most of them now.
They seemed terrible then, but they really were not,
For once out of the woods, all the fears are forgot.
- Author Unknown

SMART is a multiprocessor architecture optimized for real-time behavioral

simulation of Digital Signal Processing systems. The first prototype, currently in

operation, contains 10 processors (peak 200 MFLOPS).1

The SMART system features a Configurable Bus and a Bypass Unit to trade

off overall communication bandwidth and latency by taking advantage of the local
communication between processors. The systemperformance is further improved by a

Distributed Shared Memory system which let the communication latency overlap with
the computation time of the processors. Barriers, locks and events, which are three

types of commonly used synchronization mechanisms, are supported by hardware

to minimize the synchronization overhead. The software benchmark analysis have

demonstrated that the SMART architecture has achieved the low communication

and synchronization overhead.

*The prototype version is currently working at lower speed. The peak performance is 120
MFLOPS.
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In a SMART simulation environment, the designer can describe the algo

rithms using a high level language: C and Silage. The C programming environment,

which requires a manual partitioning of the program, is currently available. A high

level software system, based on Silage, is under development to auto-schedule the

algorithmic description to the SMART processor array with a balanced loading and

an efficient usage of the communication system. Performance of the actual SMART

sytem was measured for typical DSP programs using floating-point operations. The

measurement shows an average speedup of 76 times over SUN 3/60 with MC 68881 co

processor and a speedup of 29 times over SUN SPARC Station 1 with a floating-point

co-processor.

Designing the SMART system has involved many topics, such as architec

tural design, functional organization, logic design and various levels of physical im

plementation. The implementation encompasses VLSI design, printed circuit board

design, software development, and system integration of the hardware and the soft

ware. With the help of the recent developments in the CAD technology and the

design methodologies, the SMART system has been designed and implemented in a

two and half year period by two graduate students.

A functional description was used to develop architectural concepts, to pro

duce an architectural specification and to document the system for maintenance pur

poses. The whole SMART processor array was modeled and simulated before it was

physically implemented. The design methodology reduced the efforts to debug the

physical system dramatically.

In retrospect, there were several important design decisions which had an

impact on the performance and the design time. Perhaps the most aggressive design

decision we have made was to utilize the dynamic circuit design concept on the printed

circuit board level. It not only provided the high speed but also saved the number of

pins which were very expensive resources in ourVLSI chip design. Subsequent testing

of the design proved that it was unreliable in the presence of large noise. Therefore

we had to switch to a static design.

Another important design decision was the selection of a core processor.

We chose the DSP32C which was the most advanced DSP microprocessor at that
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time. As the technology advances, however, the performance has been excelled by

more powerful processors, such as the Texas Instruments TMS320C30, the Motorola

DSP96002, and the Intel i860.

As a future research topic, we propose a method to integrate a variety of

processors and ASIC chips, to the existing SMART system - a heterogeneous simu

lation environment - with a minimum design effort. That is, replace the processor

and reprogram the programmable-chips, while using the same printed circuit board.

Since every processor provides a memory interface which does not vary a lot

among processors, it is possible to design an access controller chip set which can be

used for various types of processors. Once the processor is interfaced to the access

controller, it can communicate, synchronize, and access memory through the access

controller. On the other hand, a plug-in daughter board may be used to integrate a

new processor whose pin-out does not match the socket implemented on the printed

circuit board.

The I/O bandwidth of the system can also benefit from the heterogeneous

environment. As discussed in Section 5.3, the I/O rate was basically limited by the

DSP32C processor itself. Therefore I/O processors or application specific processors

can be employed to handle high bandwidth real-time I/O. Once the data is brought

into the system, the configurable bus can handle the high bandwidth communication.

Several other interesting ideas and alternatives can be suggested to improve

the performance of the SMART system. Alternative designs in internal clock gen

eration and distributed share memory were discussed in Chapter 3. Asynchronous

bus design, and its impact on system extensibility and speed, needs to be studied.

On tiie other hand, a self-reconfigurable bus, which was described in Section 2.3.4,

can improve the performance and relieve programmers from configuring the buses. A

hierarchical distributed memory system can be employed to simulate memory-hungry
algorithms such as a speech recognition system [4].
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Appendix A

MAC Instructions

The DSP32C issues instructions to MAC by performing external memory
accesses. MAC figures out the instruction by decoding the address bus according to
an address map.

In the DSP32C, the entire address space is divided into 2 banks: bank 0

and bank 1. In one instruction, concurrent access to two different memory banks is

allowed. In SMART, the Mode 7 Memory Configuration (ROM-less version) is chosen
(Table A.l).

As explained in Section 3.4, MAC instructions can be broadly categorized
into two groups. Instructions in Group 1 are all mapped to external memory A and
instructions in Group 2 to external memory B. Address mapping for the entire address
space is shown in Table A.2, Table A.3 and Table A.4. Adr[12-0] is the external word
address bus and Msn[3-0] is the byte select of the DSP32C. By asserting one or more
of the byte select bits, the DSP32C can selectively access one or more bytes of the
32-bit word. All instructions in Group 1 are located in Table A.2 and instructions

in Group 2 in Table A.3. Table A.4 shows address mapping for memory bank 1. All
accesses to this memory bank are internal to the DSP32C.
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Memory Bank Byte Address Memory Assignment

BANKO 0x000000

0x0007FF

RAMO

0x000800

0x5FFFFF

External

Memory A
0x600000

OxFFDFFF

External

Memory B
BANK 1 OxFFEOOO

0xFFE7FF

RAM2

0xFFE800

0xFFF7FF

RESERVED

0xFFF800

OxFFFFFF

RAMI

Table A.l: DSP32C Memory Configuration, Mode 7 (ROM-less version),

112

A description of Group 1 instructions (Without Acknowledge) is given below.

1. External Local Memory Read/Write (lmemRd/lmemWr):

MAC responds by asserting chip enable signals for the local memory (LMEM).

Adr[12-0] and Msn[3-0] specify the address at which the data are to be read or

written.

2. Synchronization Switch Write (wrSyncSwitch):

The lower order 5 bits of DSP32C address bus are written into the syncSwitch

configuration registers which controls the switches on the synchronization bus.

3. Synchronization Disable Write (wrSyncDisable):

The lower order 6 bits of DSP32C address bus are written into the syncDisable

configuration registers which enable or disable the corresponding synchroniza

tion patterns.

4. Semaphore Unlock (semV):

MAC releases the semaphore.

5. Switchl Write (wrSwitch):
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DSP32C Word Address - Byte Select
AAAAAAAAAAAAAAAAAAAAAAMMMM
ddddddddddddddddddddddssss
rrrrrrrrrrrrrrrrrrrrrrnnnn
2211111111119876543210-3 210
109876543210

0x000000 Start 000000000000000000000 0-0 0 0 0
On-chip Ram (2KB)

0x0007FF End QOOOOOOOOOOOOlllll^111"1111
0x000800 Start 00000000 0000100000000 0-0 0 0 0

External Local Memory (256KB)
0x0407FF End Q0 0 0 0 1 0 0 0 0 0 0 0 H H 1 1 1 1 Ml H
0x040800 Start 00000100000010000000 0 0-0000

Reserved for Future Expansion of Local Memory (254KB)
0x07FFFF End 0 0 0 0 0 1 1 1 1 1 1 U H H 1 1 1 1 M 1 H
0x080000 Start 000010000000000000000 0-0 0 0 0

Special Instructions (I)
wrSyncSwitch oOOOlOOxxxxxxxxxxuuuuu-xxxx
wrSyncDefault oOOOlOlOxxxxxxxxuuuuuu-xxxx
semV 0000101100xxxxxxxxxxxx-xxxx
wrSwitch oOOOlOllOluxxxxxxxxxxx-xxxx
wrSwap 0000101110uxxxxxxxxxxx-xxxx
wrSwapToggle 0000101111xxxxxxxxxxxx-xxxx
wrByPassEn oOOOllOOOOuxxxxxxxxxxx-xxxx
wrSwitch2 oOOOllOOOluxxxxxxxxxxx-xxxx
wrProcNum oOOOllOOlOxxxxxxuuuuuu-xxxx
decode 0000110011xxxxxxxxxxxx-xxxx
OxOFFFFF End 0 0 0 0 1 1 1 1 1 1 1 H H 1 1 1 1 1 1 Ml 1 1
0x100000 Start 00010000000 0 00000000 0 0-0000

Front-side Memory Access (Read or Write)
OOOlxxxxxssAAAAAAAAAAA-AAAA

OxlFFFFF End OOOllllllllllll*111111"1111
0x200000 Start 001000000000000000 0 0 0 0-0000

Bus-side Memory Broadcast (Write Only)
OOlppppppssAAAAAAAAAA A-A AAA

0x3FFFFFEnd ooiillllllllllllllllll-llll
0x400000 Start 01000000000000000 0 0 0 0 0-0000

Bus-side Memory Access (Write Only)
OlOppppppssAAAAAAAAAA A-A AAA

0x5FFFFF End 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"1 1 1 1
LEGENDS: - refer the following page

Table A.2: Address Mapping for Memory Bank 0 (Group 1 Instructions).
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DSP32C Word Address - Byte Select
AAAAAAAAAAAAAAAAAAAAAAMMMM

ddddddddddddddddddddddssss

rrrrrrrrrrrrrrrrrrrrrrnnnn

2211111111119876543210-3 210

109876543210

0x600000 Start 011000000000000000000 0-0 000

BusSide Memory on Bus Side with Wait
01 lppppppssAAAAAAAAAA A-A AAA

0x7FFFFFEnd 0111111111111111111111-1111

0x800000 Start 100000000000000000000 0-0 000

Special Instructions (II)
synchronization lOOOxxxOOOOOOOOOuuuuu u-x x x x
semP lOOOxxxlxxxxxxxxxxxxx x-x x x x

0x9FFFFFEnd 1001111111111111111111-1111

OxAOOOOO Start 101000000000000000000 0-0 000

Broadcast with Wait

10 lppppppssAAAAAAAAAA A-A AAA
OxBFFFFFEnd 1011111111111111111111-1111

OxCOOOOO Start 110000000000000000000 0-0 000

Circular ByPass with Wait
1 lOppppppssAAAAAAAAAA A-A AAA

OxDFFFFFEnd 1101111111111111111111-1111

OxEOOOOO Start 111000000000000000000 0-0 000

Fifo Read/Write with Wait
OxFFDFFFEnd 1111111111011111111111-1111

LEGENDS:

x: Don't Care

u: User Programmed Bits
8: Dual-port Memory Bank Select Bits
A: Byte Address of Dual-port Memory
p: Processor Id of Destination Processor

Table A.3: Address Mapping for Memory Bank 0 (Group 2 Instructions).
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DSP32C Word Address - Byte Select
AAAAAAAAAAAAAAAAAAAAAAMMMM

ddddddddddddddddddddddssss

rrrrrrrrrrrrrrrrrrrrrrnnnn

221111.111111987654321 0-3 210
109876543210

OxFFEOOO Start 111111111110000000000 0-0 0 0 0
On-chip Ram (2KB)

0xFFE7FF End 1111111111100111111111-1111
OxFFESOO Start 111111111110100000000 0-0 000

Reserved (4KB)
0xFFF7FF End 111111111111011111111 l-l ill
0xFFF800 Start 111111111111100000000 0-0 0 0 0

On-chip Ram (2KB)
OxFFFFFFEnd 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l l l i i 1-1 i i i

Table A.4: Address Mapping for Memory Bank 1 (Internal Access Only).

Bit 11 of the DSP32C address bus is written into the switchState configuration
register which controls the switches on the reconfigurable bus.

6. Swap State Write (wrSwap):

Bit 11 of the DSP32C address bus is written into the swapState configuration
register which controls the bank select of DPRAM access.

7. Swap State Toggle (toggleSwap):

Toggle the swapState configuration register.

8. Bypass Enable Write (wrBypassEn):

Bit 11 of the DSP32C address bus is written into the bypassEn configuration
register which enables bypass operation.

9. Switch2 Write (wrSwitch2):

Bit 11 of the DSP32C address bus is written into the switchState2 configuration
register.

10. PID Write (wrPID):
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The lower order 6 bits of DSP32C address bus are written into the pidReg

configuration registers which contains the Processor Identification Number of

local processor.

11. Interrupt Generate (genlntr):

The single-phase positive pulse is generated at the interrupt output of MAC.

This signal can be used to generate an interrupt to the VME interface, thus

providing the DSP32C the ability to interrupt the VME bus master.

12. Processor-port DPRAM Read/Write (ppmemRd/ppmemWr):

MAC responds by asserting chip enable signals for the processor-port of the

dual-ported RAM (DPRAM).

Adr[12-ll] together with the swapState specify the memory bank to be accessed.

Adr[10-0] and Msn[3-0] specify the address at which the data are to be read or

written.

13. Slave-port DPRAM Broadcast Write (spmemBcWr):

A write request is broadcasted to the slave-ports of groups of processors specified

by the pid of the destination processor given in Adr[18-13]. Adr[12-ll] together

with the swapState specify the memory bank to be accessed. Adr[10-0] and

Msn[3-0] specify the address at which the data are to be read or written.

14. Slave-port DPRAM Write (spmemWr):

A write request is made to the slave-port of a destination processor whose pid

is given by Adr[18-13]. Adr[12-ll] together with the swapState specify the

memory bank to be accessed. Adr[10-0] and Msn[3-0] specify the address at

which the data are to be read or written.

Following is a description of Group 2 instructions (With Acknowledge):

1. Slave-port DPRAM Slow Read/Write (spmemSWr/spmemSRd):

Same as spmemWr except that MAC generates an acknowledge and both read

and write requests are allowed.
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2. Synchronization (syncV):

Any one's in the lower order 6 bits of DSP32C address bus activate the corre

sponding synchronization patterns. MAC generates an acknowledge when every

member of the processor set defined by the activated synchronization pattern

is synchronized.

3. Semaphore Request (semP):

MAC makes a request to acquire the semaphore. After the semaphore is ob

tained, the semaphore is automatically locked and an acknowledge is generated.

4. Slave-port DPRAM Broadcast Slow Write (spmemBcSWr):

Same as spmemBcWr except that MAC generates an acknowledge.

5. Slave-port DPRAM Circular Bypass Slow Write (spmemCBcSWr):

Same as spmemBcSWr except that circular bypass is enabled.

6. External FIFO Read/Write (effRd/efiWr):

A read(write) request is made to the external input(output) FIFO. An acknowl

edge is generated upon the completion of the access. The empty(full) flag of

the FIFO is checked prior to the access to prevent underflow(overflow) of the

FIFO.
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Appendix B

MACRO Definitions

In this chapter, the macros which were described in Section 5.2 are defined

in smart.h header file.

New macros can be defined, too. Those macros are used in image.c program

and are listed in smart.h [Appendix-C].

/* smart.h */

♦define BSEL.0 0x000000

♦define BSEL.l 0x002000

♦define BSEL.SVAP 0x004000

♦define BSEL.SVAPB 0x006000

/* Bus-side Memory Access Mode */

♦define S.BC 0x200000

♦define S_W 0x400000

♦define L.RV 0x600000

♦define L.BC OxaOOOOO

♦define L.CV OxcOOOOO

♦define TRUE 1

♦define FALSE 0

/* Max number of processors in the system */

♦define MAX.PROC 10
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/* Max number of processors allowed to be on one shared bus */

♦define MAXJPROC.GROUP 2

/♦ 64KB (not counting on-chip ram) */

/* TM.SIZE is in WORDS */

♦define TM.SIZE 0x004000

/* 192 KB */

/* LM.SIZE is in WORDS */

♦define LM.SIZE OxOOcOOO

/* 2K Words or 8KB per bank */

/*

♦define DP.SIZE 0x800

*/

♦define DP.SIZE 0x800

/* IK Words or 4KB */

♦define FIF0.SIZE 0x400

/* Max number of local sync bits */

♦define NAX.LSYIC 6

♦define LSYIC.MASK 0x00000031

♦define GSYHC.MASK 0x00000001

* *

* MACRO definitions (Version 1.0) *

* *

♦define Sm_wrSyncS*itch(val) (*(int *)(0x080000 ♦ 4*(val)) = 0)

/• val « 0..31 */

♦define Sm_wrSyncDefault(val) (*(int ♦)(0x0a0000 ♦ 4*(val)) = 0)

/* **1 = 0..63 */

♦define Sm_8emV() (*(int *)0x0b0000 = 0)

♦define Sm_openSwitch() (*(int *)0x0b4000 = 0)

♦define Sm_closeSwitch() (*(int »)0x0b6000 = 0)
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♦define Sm_clrSwap() (*(int *)0x0b8000 = 0)

♦define Sm_setSwap() (*(int *)OxObaOOO = 0)

♦define Sm_toggleSwap() (*(int *)0x0bc000 = 0)

♦define Sm_disableBypass() (*(int *)0x0c0000 = 0)

♦define Sm_enableBypass() (*(int *)0x0c2000 = 0)

♦define Sm_openSwitch2() (*(int *)0x0c4000 = 0)

♦define Sm_closeSwitch2() (*(int *)0x0c6000 « 0)

♦define SnuwrProcIum(val) (*(int *)(0x0c8000 + 4*(val)) = 0)

/* val = 0..63 */

♦define Sm_decode() (*(int *)0x0cc000 = 0)

♦define Sm_syncV(val) (*(int *)(0x800000 + 4*(val)) = 0)

/* val = 0..63 */

/* global sync is the LSB bit */

♦define Sm_semP() (*(int *)0x810000 = 0)

♦define Sm_fifo_fl() (*(float *)0xf40000)

♦define Sm_fifo_int() (*(int *)0xf40000)

/* Memory */

♦define Sm_tm(addr) (*(int *)(0x000800 + 4*(addr)))

♦define Sm_lm(addr) (•(float •)(0x000800 + 4*(TM_SIZE+(addr))))

♦define Sm_fm(bsel, addr) (*(float •)(0x100000 ♦ (bsel) + (4*(addr))))

♦define Sm.bm(mode, pid, bsel, addr) \

(♦(float *)(mode + (pid « 15) + (bsel) + (4*(addr))))

♦define Sm_lm_addr(addr) (float *)(0x000800 + 4*(TM.SIZE+(addr)))

♦define Sm_fm_addr(bsel, addr) (float *)(0x100000 + (bsel) + (4*(addr)))

♦define Sm_bm_addr(mode, pid, bsel, addr) \

(float O(mode + (pid « 16) + (bsel) ♦ (4*(addr)))
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IMAGE.C Program

"smart.h"

/* smart.h */

♦define BSEL.O 0x000000

♦define BSEL.1 0x002000

♦define BSEL.SWAP 0x004000

♦define BSEL.SWAPB 0x006000

/* Bus-side Memory Access Mode */

♦define S.BC 0x200000

♦define S_W 0x400000

♦define L_RW 0x600000

♦define L.BC OxaOOOOO

♦define L_CW OxcOOOOO

♦define TRUE 1

♦define FALSE 0

♦define IIT.TYPE 0

♦define FLOAT..TYPE 1

♦define HEX.TYPE 2

/* Max number of processors in the system */

♦define MAX.PROC 10

121



APPENDIX C. IMAGE.C PROGRAM 122

/♦ Max number of processors allowed to be on one shared bus ♦/

♦define MAX.PROC.GROUP 5

/♦ 64KB (not counting on-chip ram) ♦/

/♦ TM.SIZE is in WORDS ♦/

♦define TM.SIZE 0x004000

/♦ 192 KB ♦/

/♦ LM.SIZE is in WORDS ♦/

♦define LM.SIZE OxOOcOOO

/♦ 2K Words or 8KB per bank ♦/

/♦

♦define DP.SIZE 0x800

♦/

♦define DP.SIZE 0x800

/♦ IK Words or 4KB ♦/

♦define FIF0.SIZE 0x400

/♦ Max number of local sync bits ♦/

♦define MAX.LSYIC 6

♦define LSYIC.MASK 0x0000003f

♦define GSYIC.MASK 0x00000001

♦define Sm.wrSyncSwitch(val) (♦(int ♦)(0x080000 + 4^(val)) = 0)

/♦ val » 0..31 ♦/

♦define Sm_wrSyncDefault(val) (♦(int ♦)(0x0a0000 + 4*(val)) = 0)

/♦ val » 0..63 ♦/

♦define Sm_semV() (♦(int ♦)0x0b0000 » 0)

♦define Sm_openSvitch() (♦(int ♦)0x0b4000 = 0)

♦define Sm_closeSvitch() (♦(int ♦)0x0b6000 = 0)

♦define Sm_clrSwap() (♦(int ♦)0x0b8000 = 0)

♦define Sm_setSwap() (♦(int ♦)0x0ba000 = 0)

♦define Sm_toggleSwap() (♦(int ♦)0x0bc000 = 0)

♦define Sm_disableBypass() (♦(int ♦)0x0c0000 = 0)

♦define Sm.enableBypass() (♦(int ♦)0x0c2000 = 0)
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♦define Sm_openSvitch2() (♦(int ♦)0x0c4000 = 0)

♦define Sm.eloseSvitch2() (♦(int ♦)0x0c6000 = 0)

♦define Sm_wrProcIum(val) (♦(int ♦)(0x0c8000 + 4^(val)) = 0)

/♦ val = 0..63 ♦/

♦define Sm_decode() (♦(int ♦)0x0cc000 = 0)

♦define Sm.syncV(val) (♦(int ♦)(0x800000 + 4^(val)) = 0)

/♦ val = 0..63 ♦/

/♦ global sync is the LSB bit ♦/

♦define Sm_semP() (♦(int ♦)0x810000 » 0)

♦define Sm.fifo_int() (♦(int ♦jOxf40000)

♦define Sm.fifo.fK) (♦(float OOxf40000)

/♦ Memory ♦/

♦define Sm.tm(addr) (♦(int ♦)(0x000800 + 4*(addr)))

♦define Sm.lm(addr) (♦(float 0(0x000800 ••• 4^(TM_SIZE+(addr))))

♦define Sm.fm(bsel, addr) (♦(float ♦)(0x100000 + (bsel) + (4*(addr))))

♦define Sm.bm(mode, pid, bsel, addr) \

(♦(float ♦)(mode + (pid « 16) + (bsel) + (4^(addr))))

♦define Sm.lm_addr(addr) (float ♦)(0x000800 + 4*(TH_SIZE+(addr)))

♦define Sm_fm.addr(bsel, addr) (float ♦)(0x100000 4 (bsel) ♦ (4*(addr)))

♦define Sm.bm.addr(mode, pid, bsel, addr) \

(float ♦)(mode ♦ (pid « 16) + (bsel) + (4^(addr)))
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tt8l.h"

♦define sl.swapB(i) ((short int)((((i)«8) ft OxffOO) I (((i)»8) ft OxOOff) ))

♦define MASK 0xff9fff

♦define ADD 0x002000

♦define sl.inc_mask(i)((unsigned char ♦) (((int) i + 1) ft MASK))

♦define sl_add_mask(i,a)((unsigned char ♦) (((int) i + (int) a) ft MASK))

♦define sl.sub.mask(i,a)((unsigned char ♦) (((int) i + ADD - (int) a) ft MASK))

♦define sl.i2c(int_short,char.l,char.h){ \

char.l = (unsigned char) ((int.short) ft Oxff); \

char.h = (unsigned char) (((int.short) » 8) ft Oxff); >

♦define sl_c2i(i){ (int) (i) >

♦define Sm.fifo.sint() (♦(short int ♦)(0x140000))

♦define Sm.fm.sint(bsel, addr) (♦(short int ♦)(0x100000 + (bsel) + (2*(addr))))

♦define Sm_bm_sint(mode, pid, bsel, addr) \

(♦(short int ♦)(mode + (pid « 16) + (bsel) ♦ (2^(addr))))

int pid, process;

int vbegin, vend;

int isrc, idst;



APPENDIX C IMAGE.C PROGRAM

"image.h"

struct rasterfile {

short int ras.magic.h;

short int

short int

short int

short.int

short int

short int

short int

short int

short int

short int

short int

short int

short int

short int

short int

ras.magic.l;

ras.width.h;

ras.width.1;

/♦ magic number ♦/

/♦ magic number ♦/

/♦ width (pixels) of image ♦/

/♦ width (pixels) of image ♦/

ras.height.h; /♦ height (pixels) of image ♦/

ras.height.l; /♦ height (pixels) of image ♦/

ras_depth_h; /♦ depth (1, 8, or 24 bits) of pixel ♦/

ras.depth.1; /♦ depth (1, 8, or 24 bits) of pixel ♦/

ras_length.h; /♦ length (bytes) of image ♦/

ras_length_l; /♦ length (bytes) of image ♦/

ras_type.h; /♦ type of file; see RT_^ below ♦/

ras.type.1; /♦ type of file; see RT_^ below ♦/

ra8_maptype_h; /♦ type of colormap; see RMT.^ below ♦/

ras.maptype.l; /♦ type of colormap; see RMT.^ below ♦/

ras_maplength_h;A length (bytes) of following map ♦/

ras.maplength.l;A length (bytes) of following map ♦/

/♦ color map follows for ras.maplength bytes, followed by image ♦/

>;

♦define RAS.MAGIC.H 0x69a6

♦define RAS.MAGIC.L 0x6a96

/♦ Sun supported ras.type's ♦/

♦define RT.OLD 0 /♦ Raw pixrect image in 68000 byte order ♦/

♦define RT.STAHDARD 1 /♦ Raw pixrect image in 68000 byte order ♦/

♦define RT.BYTE.EICODED 2 /♦ Run-length compression of bytes ♦/

♦define RT.EXPERIMEHTAL Oxffff /♦ Reserved for testing ♦/

/♦ Sun registered ras.maptype's ♦/

♦define RMT.RAW 2

/♦ Sun supported ras.maptype's ♦/

♦define RMT.I0HE 0 /♦ ras.maplength is expected to be 1 ♦/

♦define RMT.EQUAL.RGB 1 /♦ red[ras.maplength/3].green[],blue[] ♦/

125
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♦define WHITE 266

♦define BLACK 0

♦define PI 3.141692664

♦define TAP 12

static int reversed, LUTinversed;

static int do_med6, do.hist, do.skel, do.greymod,do_qroj,do_bloat;

do.proj, do.thresh, do.recog, draw.wind, do.rev,do.lheq;

draw.col, do.sobel, do.inverse, do.detangle, do.detpos;

rprt.thr, auto.thr, do.rats, do.roberts, do.sel.range;

do.laplace, do.lapel, do.min, do.max, do.nlheq;

static unsigned char ♦source, ♦destination, ♦trapstor;

static unsigned char ♦src, ♦dst;

static int src.width, src.height, src.length,dst_length,

orig.src_width, orig_src.height,

dst.width, dst.height;

static int l.wind, r.wind, t.wind, b.wind,

wiiidow.chg, black.val, white.val;

static int thresh, scndthr, bloat.iter, lapel.thr, lo.thr, hi.thr;

static float angle;

char ♦src.name, ♦dst.name, ♦hist.name, ♦proj.name;

unsigned char LUT[266];

struct rasterfile src.header;

char ♦src.fp, ♦dst.fp, ♦hist.fp, ♦proj.fp;
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"image,c"

♦include "smart.h"

♦include "sl.h"

♦include "image.h"

InitO

•C

pid s Sm.fifo_int();

Sm.fifo_int() = pid;

(Sm_fifo.sint() == 0) ? Sm_openSwitch() :Sm.closeSwitch();

/♦ initial system configuration ♦/

Sm_wrSyncSwitch(0x00);

Sm_wrSyncDefault(Oxff);

Sm.enableBypas8();

Sm.wrProcIum(pid);

/♦ process selection ♦/

/♦ source and destination address ♦/

/♦ set number of wait states at the beginning and the end ♦/

process = Sm.fifo.int();

isrc = Sm_fifo_int();

idst = Sm_fifo_int();

wbegin = Sm.fifo.int();

wend = Sm_fifo.int();

>

InitVarO

<

int i,j, k;

i « 0;

src.header.ras.magic.h = Sm_fm_8int(l,i4+);

src.header.ras.magic.l = Sm.fm_sint(l,i++);

src.header.ras_width_h = Sm_fm_sint(l,i++);

src.header.ras.width.! = Sm.fm.sint(l,i++);
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src.header.ras.height.h = Sm_fm_sint(l,i++);

src.header.ras.height.l = Sm_fm_sint(l,i++);

src.header.ras.depth.h = Sm_fm.sint(1,i++);

src.header.ras.depth.l = Sm_fm.sint(l,i++);

src.header.ras.length.h = Sm_fm_sint(l,i++) ;

src.header.ras.length.l = Sm_fm_sint(l,i++);

src.header.ras.type.h = Sm_fm_sint(l,i++);

src.header.ras.type.l = Sm_fm_sint(l,i++);

src.header.ras.maptype.h = Sm_fm.sint(l,i++);

src.header.ras.maptype.l = Sm.fm.sint(l,i++);

src.header.ras.maplength.h = Sm_fm.sint(l,i++);

src.header.ras.maplength.l = Sm.fm_sint(l,i++);

for(i=0;i<128 ;i++H

8l_i2c(Sm_fm_sint(l,i+16),LUTC2^i+l],LUT[2^i]);

>

dst.width = src.width = src.header.ras.width.1;

dst.height = src.height ^src.header.ras.height.l;

dst.length = src.length = src.width ♦ src.height;

>

EndHeaderO

<

int i,j,k;

for(i=0; i<(16+128^3); i++H

Sm_fifo.sintO = Sm_fm.sint(l,i);

>

>

InitHeader()

•C

/♦ read src header and broadcast them to other processors ♦/

/♦ bank 1, address 0 to 16+266 ♦/

int i,j,k;

for(i«0;i<16 ;i++H

Sm_bm_sint(S.BC,MAX.PROC-l,l,i) = Sm_fifo.sint();

>

for(i=0;i<128 ;i++H

Sm.bm_8int(S.BC,MAX_PR0C-l,l,i-H6) « Sm.fifo.sintO ;

>
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for(i=0;i<128 ;i++){

Sm_bm_8int(S_BC,MAX_PR0C-l,l,i+16+128) = Sm_fifo.sintO; '

>

for(i=0;i<128 ;i++){

Sm_bm.8int(S_BC,MAX.PR0C-l,l,i+16+128+128) = Sm_fifo.sintO ;

>

>

MoveO

i

short int tmp ;

int i=0,j=0;

unsigned char ♦ src.ptr;

unsigned char ♦ dst.ptr;

src.ptr = ( unsigned char ♦) isrc;

dst.ptr = ( unsigned char ♦) idst;

for(i=0;i < src.height; i++){

for(j=0;j < src.width; j++H

♦dst.ptr » ♦src.ptr;

src.ptr « sl.inc.ma8k(src.ptr);

dst.ptr a 8l.inc_ma8k(dst.ptr);

}

Sm.syncV(l);

>

MoveOutO

{

short int tmp ;

int i=0,j=0;

unsigned char ♦ ptr;

ptr & ( unsigned char ♦) isrc;

for(i=0;i < src.height; i++K

*or(j=0;j < src.width; j=j+2){

tmp s ( unsigned int) (♦ptr ft Oxff);
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ptr = 8l.inc_mask(ptr);

tmp = (tmp « 8 ) I ( unsigned int) (♦ptr ft Oxff);

ptr = sl.inc.ma8k(ptr);

Sm_fifo.sintO ="tmp;

>

Sm_8yncV(l);

}

MovelnO

short int tmp ;

int i=0,j=0;

unsigned char ♦ ptr;

ptr = ( unsigned char ♦) idst;

for(i=0;i < src.height; i++H

for(j=0;j < src.width; j=j+2)<

tmp = Sm.fifo.sintO ;

♦ptr « ( unsigned char) ((tmp » 8) ft Oxff);

ptr = sl.inc.mask(ptr);

♦ptr = ( unsigned char) (tmp ft Oxff);

ptr = sl.inc_mask(ptr);

>

Sm_syncV(l);

>

main()

i

/♦ fifo data will be coming in 16 bits at a time ♦/

struct rasterfile src.header, dst.header;

int i.j.k;
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InitO;

if(process == 0)<

InitHeader();

Sm_syncV(l);

InitVarO;

> else if(process == 1){

Sm.syncV(l);

InitVarO;

EndHeaderO;

> else {

Sm_syncV(i);

InitVarO;

>

while(wbegin—) Sm_syncV(l);

switch(processH

case 0:

MovelnO;

break;

case 1:

MoveOutO;

break;

case 2:

MoveO;

break;

/♦

case 3:

LinHistEQO;

break;

case 4:

HonLinHistEQO;

break;

case 6:

GreyModO;

break;

♦/

case 6:
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GreylnvertO;

break;

case 7:

Min();

break;

case 8:

MaxO;

break;

/♦

case 9:

Median&O;

break;

♦/

case 10:

SobelO;

break;

/♦

case 11:

Roberts();

break;

case 12:

Laplace();

break;

case 13:

Lapel();

break;

case 14:

HistoO;

break;

case 16:

SelectRangeO;

break;

case 16:

ThreshO;

break;

case 17:

RatsO;
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break;

case 18:

Bloat();

break;

case 19:

SkeletonO;

break;

♦/

default:

Sm_fifo_int() « 0x39;

MoveO;

break;

>

while(wend—) Sm.syncV(l);

GreylnvertO

i

short int tmp;

int i=0,j=0;

unsigned char ♦src.ptr;

unsigned char ♦dst.ptr;

src.ptr = ( unsigned char ♦) isrc;

dst.ptr = ( unsigned char ♦) idst;

for(i=0;i < src.height; i++H

for(j=0;j < src.width; j++){

♦dst.ptr = 256 - ♦src.ptr;

src.ptr = sl_inc.mask(src.ptr);

dst.ptr = sl.inc.mask(d8t.ptr);

>

Sm.syncV(l);

>

>

Min()
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unsigned char ♦src.ptr, ♦dst.ptr;

int i.j;

src.ptr 8 ( unsigned char ♦) isrc;

dst.ptr 8 ( unsigned char ♦) idst;

for(i=0;i < src.height; i++H

for(J80;j < src.width; j++){

♦dst.ptr 8 Min3x3(src.ptr);

src.ptr 8 8l_inc_mask(src_ptr);

dst.ptr - 8l_inc_mask(dst.ptr);

>

Sm_8yncV(l);

>

Max()

unsigned char ♦src.ptr, ♦dst.ptr;

int i,j;

src.ptr 8 ( unsigned char ♦) isrc;

dst.ptr 8 ( unsigned char ♦) idst;

for(i80;i < src.height; i++){

for(j80;j < src.width; j++){

♦dst.ptr 8 Max3x3(src.ptr);

src.ptr 8 sl.inc.ma8k(src_ptr);

dst.ptr 8 sl.inc_mask(dst_ptr);

>

Sm.syncV(l);

>

Min3x3(in_ptr)
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register unsigned char *in.ptr;

<

register int i;

register int res;

register int p[9];

p[8] 8 ♦sl_8ub_mask(in_ptr , src.width + 1);

pCl] = ♦sl.8ub_mask(in_ptr , src.width );

p[2] s ♦8l.sub_ma8k(in.ptr , src.width - 1);

p[7] 8 ♦sl.sub.mask(in_ptr , 1);

pCO] s ♦(in.ptr);

p[3] 8 ♦sl_add.mask(in.ptr , 1);

p[6] 8 ♦Bl_add_mask(in.ptr , src.width - 1);

p[5] 8 ♦sl.add_ma8k(in_ptr , src.width );

p[4] 8 ♦sl.add.mask(in_ptr , src.width + 1);

i = 9;

res 8 266r

while (i—X

res s (p[i] < res) ? p[i] : res;

>

return(res);

>

Max3x3(in.ptr)

register unsigned char ♦in.ptr;

<

register int i;

register int res;

register int p[9];

p[8] s ♦sl.sub.maskUn.ptr , src.width ♦ 1);

pCl] « ♦sl.sub.mask(in.ptr , srcjwidth );

p[2] 8 ♦8l.sub_mask(in.ptr , src.width - 1);

p[7] c ♦sl.sub.maskUn.ptr , 1);

pCO] c ♦(in.ptr);

p[3] 8 ♦sl_add_mask(in_ptr , 1);
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p[6] -s ♦8l.add.mask(in_ptr , src.width - 1);

p[5] 8 ♦8l_add_maak(in_ptr , src.width );

p[4] s ♦sl.add.mask(in.ptr , src.width + 1);

i 8 9;

res 8 0;

while (i—){

res 8 (p[i] > res) ? pCi] : res;

>

return(res);

SobelO

-C

short int tmp;

unsigned char ♦src.ptr, ♦dst.ptr;

int is0,j80;

int kernx[3][3], kerny[3][3];

kernxCOHO] 8 -i

kernx[0]Cl3 = 0

kernx[0]C2] 8 l

kernx[l][0l 8 -2

kernxClHl] 8 o

kerax[l][2] 8 2

kernx[2][0] = -1

kernx[2][l] 8 o

kernx[2][2] 8 l

kerny[0][0] 8 -i

kemyCl][0] = 0

kernyC2][0] 8 i

keray[0][l] a -2

kerny[l][l] 8 o

kemy[2]Cl] 8 2

kemy[0]C2] = -1

kerny[l][2] 8 o
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kemy[2][2] =1;

src.ptr 8 ( unsigned char ♦) isrc;

dst.ptr s ( unsigned char ♦) idst;

for(i80;i < src.height; i++){

for(j80;j < src.width; j++)<

Sob3x3(kernx,src.ptr, dst.ptr);

src.ptr 8 sl.inc.maskUrc.ptr);

dst.ptr 8 sl.inc.mask(dst.ptr);

>

Sm_syncV(l);

>

>

Sob3x3(kernx,in.ptr,out.ptr)

int kernx[3][3];

unsigned char ♦in.ptr, ♦out.ptr;

i

register int xres, tbs;

register int p[103;

p[9] s ♦sl_sub.mask(in.ptr , src.width ♦ 1);
p[2] 8 ♦sl_8ub_mask(in_ptr , src.width );

p[3] 8 ♦sl.8ub.mask(in_ptr , src.width - 1);
p[8] s ♦sl_8ub_mask(in.ptr , 1);

pCl] = ♦(in.ptr);

p[4] 8 ♦sl_add_mask(in.ptr , 1);

p[7] 8 ♦8l_add_mask(in_ptr , src.width - 1);

p[6] 8 ♦8l_add_mask(in.ptr , src.width );

p[53 s ♦sl_add.mask(in.ptr , src.width + 1);

xres c p[9]

xres +8 p[2]

xres +s p[3]

XTeS +s p[8]

xres +s p[i]

xres *s p[4]

XX99 +8 p[7]

kernx[0][0];

kemx[03[l3;

kernx [0] [2];

kernx [1] [0];

kernx [13 [13;

kernx [1] [23;

kernx [23 [03;
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xres +8 p[63 ♦ kernx[23[13;

xres +8 p[63 ♦ kernx [23 [23;

res 8 abs(xres);

xres = p[93 ♦ kernx [03 [03

xres + 8 p[23 ♦ kernx [13 [03

xres +8 p[33 ♦ kernx [23 [03

xres + 8 p[83 ♦ kernx [03 [13

xres + 8 p[i3 ♦ kernx[l3[l3

xres + 8 p[43 ♦ kernx [23 [13

xres + 8 p[73 ♦ kernx [03 [23

xres <fs p[63 ♦ kernx [13 [23

xres •fs p[53 ♦ kernx [23 [23

res +8 ab8(xres);

♦out.ptr 8 (res < 266) ? res : 266;

Conv3x3(kern,in_ptr)

register int kern[33[33;

register unsigned char ♦in.ptr;

<

register int res;

register int p[103;

p[9

PC2

p[3

p[8

Pil

PM

PC7

p[6

p[6

8 ♦(in.ptr - src.width - 1);

= ♦(in.ptr - src.width );

= ♦(in.ptr - src.width + 1);

8 ♦(in.ptr - 1);

8 ♦(in.ptr);

8 e(in.ptr +1);

c ♦(in.ptr + src.width - 1);

= ♦(in.ptr + src.width );

8 ♦(in.ptr ♦ src.width + 1);
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res « p[9

res +8 p[2

res +8 p[3

res +8 p[8

res +8 p[i

res +8 p[4

res +8 p[7

res +8 p[6

res +8 p[6

return(res);

kern [03 [03

kern [03 [13

kern[03[23

kern[13[03

kern[l3[l3

kem[l3[23

kern[23[03

kern[2][13

kern[23[23

abs(a)

int a;

i

retum((a > 0) ? a :

>

-a);
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# COMPLIATIOH *

# Write image.c program and compile it for dsp32c.

*

sun3> d3optcc -o image -Q -m tmap -s startup.o image.c

sun3> "wookkoh/bin/d3image image >! image.i

# Compile VxVorks library routines, if necessary.

# For example,

#

sun3> cc -c -0 -I/usr/tools/vw/h vw.c

# DOWN-LOAD SCRIPT : LOAD file *

# "wookkoh/vw/image/LOAD

*

# First, the VxVorks library routines are loaded (Id < ).

# Then, the SMART system initialization routine is executed

# (initO).

# Finally, the image.i (program) is downloaded (downloadO).

«

Id < vw.o

Id < vxUtil.o

Id < vxtest.o

init()

download("image.i")

# The initO and downloadO routines are described in

# "wookkoh/vw/vw.c.

* RUHHIHG SCRIPT : SRUH file #

#«#«tf#««##«###«####««#######tf#########«#«ff#tf«##««#«###########
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# *wookkoh/vw/image/SRUH

*

runO

InOutieO'proc.in'Vlennay.ras", "out.rasM,Oxl,0x1000000)

# First, the informations described in proc.in file are pushed

# into the SMART input FIFOs.

# Then, the input data words are acquired from lenna2.ras file

# and are down-loaded to the input FIFO 16 bits at a time.

# At the same time, the output data words are up-loead from the

# output FIFO, and are generated to the out.ras file.

# The runO, In0utl6() routines are described in *wookkoh/vw/vw.c.

##############################################################

« IIITIAL D0VN-L0AD : proc.in file #

t "wookkoh/vw/image/proc.in

*

# The In0utl6() routine initially down-load the following

# informations to the FIFOs.

# The file consists of ten groups of informations:

# one group for each processor.

# Each group consists of pid (processor ID), switch (1- closed,

# 0- opened), process (the process number selects one of the

# functions such as MoveO, SobelO, GreyO, etc.), src (source

# address of the data), dst (destination address of the data),

# wbegin t wend (programming parameters for global sync.).

# The initial down-loading can be used to initialize variables

# in the program.

«

0 pid

1 switch

0 process

100000 src

608000 dst
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0 wbegin

30 wend

1 pid

0 switch

6 process

100000 src

610000 dst

4 wbegin

3C) wend

2 pid

0 switch

7 process

100000 src

618000 dst

8 wbegin

3C ) wend

3 pid

0 switch

8 process

100000 src

620000 dst

c wbegin

30 wend

4 pid

0 switch

6 process

100000 src

628000 dst

10 wbegin

30 vend

6 pid

0 switch
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7 process

100000 src

630000 dst

14 wbegin

30 wend

6 pid

0 switch

8 process

100000 src

638000 dst

18 wbegin

30 wend

7 pid

0 switch

2 process

100000 src

640000 dst

1c wbegin

30 wend

8 pid

0 switch

a process

100000 src

648000 dst

20 wbegin

30 wend

9 pid

0 switch

1 process

100000 src

600000 dst

24 wbegin

30 wend
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# RLOGII *

«

*

sun3> rlogin vw3

# Sow you are in the SMART system, running VxVorks real-time

# O.S. Refer to the VxVorks Manual for shell commands and

# detailed informations.

# change directory to where your files are.

# For example,

-> cd Mzabriskie:/home/zab2/wookkoh/vw/imageM

# lote that -> prompt means the commands are being interpreted

# by the VxVorks shell.

* RUBTIHG *

*

-> < LOAD

-> < SRUI

-> logout

sun3>

# The script files can be concatenated into one file.

•#####«*«##««##«««##tf«##«*##«#####««########«««ff######tf#######

f DISPLAY THE OUTPUT: out.ras *

######««##««###ff###«########ff##ff###«##ff#«ff#«####«ff#ff#####«ff##«

f The output is a monochrome 612x612 raster image.
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*

sun3> "wookkoh/bin/dixppix out.ras

sun3> rm out.ras
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