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ABSTRACT

We present a multistart method for solving global satisfycing problems. The method uses data

generated by linearly converging local search algorithms to estimate the cost value at the local

minimum to which the local searchis converging. When the estimate indicates that the local search

is converging to a value higher than the satisfycing value, the local search is interrupted and a new

local search is initiated from a randomly generated point. When the satisfycing problem is difficult

and the estimation scheme is fairly accurate, the new method is superior over astraightforward adap

tation of classical multistart methods.
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1. INTRODUCTION

The task of finding parameters which satisfy performance specifications is of great importance

both in engineering design, and in economics planning. In engineering, parameters which satisfy

specifications are referred to as feasible designs (see [Pol.2]), while in economics the special term

satisfycing decisions has been coined to describe them (see e.g., [Wie.l, Mar.l]).

Frequently, performance specifications can be expressed in terms of a system of inequalities,

such as

max ty(x ,yj)<bj , j= 1,2 ,...,/ , ,U)

where tf :R" xRm' -> R, Yy c r'', and the bj express the desired satisfycing level. The system
of inequalities (1.1) is obviously equivalent to the more compact form

V(x)<0, j = 1,2,...,/, (1.2)

where

\\fj(x) £ max tf(x ,yj)-bj , j =1,2 ,..., / . n ^
y. e y; VA-V

If we define the satisfycing function \\r: R" -> R by

V(^)^max \\fj(x)-bj , (1 4)

where I ^ {1,2,...,/}, then we can replace the original system of inequalities (1.1) by the single
nonsmooth inequality

VCO^O. (1.5)

Quite commonly, the functions #(•, •) and their gradients vV(-, •) are Lipschitz continuous

and the sets Yj are compact intervals of the real line. In such cases, if for every local minimizer x,

\\f(x) < 0, then an implementable algorithm such as the one presented in [Pol.5], which combines the

Pshenichnyi-Pironneau-Polak minimax algorithm ([Psh.l], [Pir.l], [Pol.2]) with appropriate schemes

for the discretization of thesets Yj, is capable of finding a satisfycing solution x in a finite number of

iterations. Unfortunately, it is not uncommon for a satisfycing function to have strictlypositive local

minima, which can trap a minimax algorithm. Thus we see that although the satisfycing problem is

easier than that of finding the global minimum of y(), the two problems do have common features.



The Pshenichnyi-Pironneau-Polak minimax algorithm converges linearly (see [Pol.3]). How

ever, the standard rate of convergence analysis addresses only the conceptual algorithm: it does not

take into account the effect of the inevitable discretizations of the sets Yj in (1.1), required for the

evaluation ofthe functions V(). Recently, we have developed a rate preserving adaptive discretiza

tion scheme which results in an implementable version of this algorithm which converges with the

same rate as the conceptual version ([Pol.4).

Now, as we will see in Section3, whenever we use a linearlyconvergingalgorithm to minimize

a function \|/(), we can use the values of \|/() at the points it constructs to estimate the local minimum

value to which it is converging. Qeariy, if the estimated local minimum value is larger than zero, it

makes sense to terminate the run and use a random reinitialization. The combination of this simple

idea with well tried and highly efficient multistart global optimization techniques, including cluster

ing, asin [Boe.l], [Rin.l], [Rin.2] and [Tor.l], is the basis of the novel multistart method for satisfyc

ing problems presented in this paper.

In Section 2 we present our algorithm and analyze its performance under the assumption that

the functions y (•) can be evaluated without discretization (e.g., when the sets Yj are singletons),

because it is currently too difficult to account for the discretization effects. We show that when our

local minimum value prediction method is fairly reliable and the satisfycing problem is inherently

difficult, our multistart satisfycing method is demonstrably better than the underlying multistart

method which does not use such estimates. Our analysis does not take into account the beneficial

effects of clustering, since these affectbothour method and the underlying multistart method moreor

less equally. In section 3 we present our method for estimating the value of \j/() at the local

minimum to which the algorithm appears to be converging. Numerical results are presented in Sec

tion 4. These show that by and large, our local minimum value prediction method is highly reliable

and that the new multistart method is considerably superior to the originalmultistart method.

2. MULTI START METHODS FOR GLOBAL SATISFYCING PROBLEM

To be realistic, the decision variable x in (1.1) must be assumed to be bounded. Hence consider

global satisfycing problems of the form

GSP : find x* e B c R" such that \?(x*) < v , (2.1a)

where



B = {x e R" I /,- < Xi <Ui , i = 1 n } , (2.1b)

and the function \j/(-) is as defined in (1.4), with the y : B -> R, j e i. either continuously differenti-

able or of the form (1.3), in which case we assume that thesets Yj arecompact intervals and that the

functions y (•, •) and their gradients V<^(-, •), are locally Lipschitz continuous.

We will refer to x* and v, in (2.1a), as a satisfycingsolution and the satisfycing value, respec

tively.

To construct our new algorithm, we begin with a simple multistart method for solving the glo

bal satisfycing problem GSP, which is an obvious adaptation of a standard multistart method for

finding the global minimizer of \|/() (see, e.g. [Aral], [Bet.l], [Boe.2] [Dix.l] and [Rin.l]). We then

modify this method by introducing into its termination tests estimates of the local minimum value to

which the local search algorithm is converging. Although clustering schemes such as those in

([Boe.l], [Rin.l], [Rin.2] and [Tor.l]) improve the performance of multistart global optimization

methods, to simplify our analysis, we will not incorporate them in the algorithms below because they

have exactly the same beneficial effect both on the simple multistart algorithm and our modification

of it However, we do expect these clustering techniques to be used in the final implementation of

our method.

Let A :B -» B denote the map defined by one iteration of a minimax algorithm. The simple

multistart method for solving global satisfycing problems, below, is assumed to use a standard local

search stopping rule, such as the step length, or value of an optimality criterion, dropping below a

certain threshold.

Master Algorithm 2.1 (Simple Multistart Method for GSP).

Step 0: Set / = 1.

Step 1: Draw a random point xt from B. Set z0 = x-t and j = 0.

Step 2: Compute zj = A(zj_x).

Step 3: If \j/(zj) < v, then zj is a satisfycing solution; stop.

Else,

If the local search stopping rule is satisfied, stop the local search, set / = i + 1 and go

to Step 1;

Else, replace j by j + 1 and go to Step 2.



•

It is quite obvious that the simple multistart method is not very efficient because it may keep

rediscovering the same unacceptable local minimizerx', (i.e, \\f(x?) > v). Clustering schemes, such as

those in [Boe.l], [Rin.l], [Rin.2] and [Tor.l]), reduce the occurrence of this undesirable phenomenon

and can beused both inconjunction with Master Algorithm 2.1 aswell aswill the following one.

In the next section, we will describe an estimation scheme which uses the outcome of a certain

number of iterations of the Pshenichnyi-Pironneau-Polak minimax algorithm to predict the value of

\|/() at the local minimizer to which the the algorithm is converging. For the time being, we simply

assume that wehave such an estimation scheme associated with thelocal search algorithm, which, of

course, need not be the Pshenichnyi-Pironneau-Polak minimax algorithm. Furthermore, we do not

require thattheestimation scheme be 100% accurate, ina sense to bemade clearshortly.

For any x e B and positive integer k, let $„,„(*,&) denote the predicted local minimum value,

yielded by the estimation scheme on the basis of information produced in performing k iterations

using the local algorithm A, starting from the initial point x, and let ymin(x) denote the actual local

minimum value to which the sequence {\j/(A'(jc)) }£q converges (with A°(x) £x). Our new algo
rithm is as follows:

Master Algorithm 2.2. (Multistart Method for GSP, with Estimation Scheme).

Data: m^ the minimum number of iterations in each local search required by the estimation

scheme.

StepO: Seti=l.

Step 1: Draw a random point *,- from B. Set zj, = *,- and j = 0.

Step2: For / = 1,2,..., m lf compute

zj=A(zj_l). (2.2)

Step 3: Estimate the local minimum value \j/min(*i , m{).

Step 4: Ifvjymin(x,- ,mx) >v, stop the local search, set i =i +I and go to Step 1.

Else, reinitialize the local search algorithm with zlmx and iterate until either a satisfycing

solution is found or the local search stopping rule is satisfied.



Step5: If a satisfycing solution was found, stop. Else, set / = i + 1 and go to Step 1. •

We will carry our analysis under the following assumptions.

Assumption 2.1.

(i) The random drawing is uniformly distributed on B.

(ii) The functions y (•) in (1.13) can be evaluated without discretization of intervals.

(Hi) The work associated with each iteration of the local algorithm A (•), expressed in function

evaluation equivalents, is C units, where C is a constant.

(iv) The average number of iterations used by one local search, starting from an initial point *,- until

the stopping rule is satisfied, ism2. •

Notation:

(i) Let B! and B2 denote two disjoint attraction regions for the local search algorithm, such that in

Bx the local minimum values are below or equal to the satisfycing value v, and in B2 the local

minimum values are above the satisfycing value v, i.e.,

Bx& [xeB Iymin(x)<v} . (2.3a)

B2k [xeB lfmb(x)> } . (2.3b)

(ii) Let Bxx{mx) and Bl2(mi) be the two disjoint subsets of Bx, obtained by partitioning of Bx

according to the predicted local mimmum value obtained at the end of mx iterations of the local

search, i.e.,

BnQnd& {x<zBx I ymin(x ,m,)<v } (2.4a)

Bx2{mx)± [x<eBx\ \\fmin(x,ml)>v}. (2.4b)

Similarly, let B2i(mx) and £22(^1) be the two disjoint subsets of B2j obtained by partitioning B2

according to the predicted local minimum value, i.e.,

B2X{mx) &{x € B2 I ymin(x ,«,) <v } , (2.4c)

*220»i) = (x e B2 I ymin(x ,«,)>v}. (2.4d)



(Hi) For i =1,2, let a{ kVol(B,)/Vol(B), where "Vol" denotes the volume of the set in R", and
for i =1,2 and j =1,2,let at>- (m!) ^ Vol(5/y (m x)IVol(B).

(7vj Let ^ denote the probability that a satisfycing solution will be found in one try by Master

Algorithm 2.1 (simple multistart method), and let/?g denote the probability that a satisfycing solution

will be found inone try by Master Algorithm 2.2 (multistart method with estimation scheme), respec

tively.

(v) Let NIS and NIe denote the number of outer iterations (initializations of the local algorithm)

required for solving problem GSP by Master Algorithm 2.1 and Master Algorithm 2.2, respectively.

Both NIS and NIe are random variables.

(vi) Let NFS and NFe denote thenumber of function evaluations required for solving problem GSP

by Master Algorithm 2.1 and Master Algorithm 2.2, respectively. Both NFS and NFe are random

variables. •

Note that the number ax = Vol(£ x)No\(B) is a strong indicator of the satisfycing problem

difficulty, since the expected number of local searches for Master Algorithm 2.1 is Vax. Note also

that Master Algorithm 2.1 will stopif and only if an initial point xt, produced by the random drawing,

is in B lt and Master Algorithm 2.2 will stopif and only if aninitial pointxt, produced by the random

drawing, is in B n(m x). Hence we obtain the following, ratherobvious result.

Proposition 2.1. (i) ps =ax=an(mx) + a 12(mx), pe =a„(mx).

(ii) The probability distributions of NIS and NIe are geometric distributions and have the following

form:

Prob{NIs = k) =ps(\ -ps)k~l , k=l,2 (2.5)

Prob(NIe =k)=pe(l-pe)*-*, k = 1,2 (2.6)

(Hi) Hence,

Prob(NIs <k) = (\-(l -ps)k), k=l,2 (2.7a)

E(NIS) = Vps , D(NIS) = (1 -ps )/ps2 , (2.7b)

and



Prob(NIe<k) = (l-(l-pe)k) , * = 1,2,..., (2.8a)

E(NIe) = \lpe , D(NIe) =(1 -pe)!pe2. (2.8b)

where E(z) denotes the expectation and D(z) denotes the standard deviation of a random variable, zD

Thus, we conclude that both multistart Master Algorithms terminate after a finite number of

reinitializations of the local search algorithm, with probability 1. We restate this result as:

-Theorem 2.1.

Prob(NIs <oo)=l , (2.9)

Prob(NIe <oo) = i. (2.10)

•

The calculation of the average number of functionevaluations used by Master Algorithm 2.2 in

solving GSP is complicated by the fact that when jcf e BX2(mx)\jB22(mx), only mx iterations of

local search algorithm are performed, while in all the other cases an average m2 of iterations are per

formed, and the fact that Master Algorithm 2.2 will stop if and only ifxNlt e Bxx(m x). For / = 1 , 2

and j = 1, 2, let the random variable A//;;- bethe total number oflocal searches originated from start

ing points in Bij(mx). Hence, NIe can be expressed as NIXX+NIX2 + NI2X+NI22. Therefore,

NFe =Cm1(A//12 + A//22) + Cm2(M11 + A//2i).

Proposition 23, (i) Thejoint distribution of (NI xx, NI x2, NI2X, NI22) is a multinomial distribu

tion (see e.g. [Boe.2], [Fel.l], [Zie.l]), of the form

Prob{NIxx = ixx,N1X2 = iX2,NI2X = i2x ,NI^ = i^

0'll+*12 + '21+'22)! ; • • •
= I I* II II I flll^l)"^12^l)"^2l(^l)'^22(^iy22 • (2.11)

Ml!l12«21"22-

(ii) The joint distribution of(NIxx,NIx2 + Nl^, NI2X) is a multinomial distribution, of the form

Prob(NIxx =/n ,W12 + M22 = / ,NI2X =*/21)

(M1 + 1+/21)! 1
= / 1/1/ I flll('^l),,[a12('"l) +«22('"l)],«2l('"l)'2,• (2.12)lXXMU2X\

D

Theorem 2.2. The expected values E(NFS) and E(NFe) satisfy the following relations



E(NFS) = Cm2E(NIs) = Cm2lps = Cm2/ax

=Cm (flu(mi) +fl2i(^i)) (fli2(^i) +fl22(^i))
m2 (an(m^12(^1)) + m2 (fluOwi^^Cw,)) ' (2*13)

£(W,) = Cm2 —— + Cm1 — , (2.14)
axx{mx) an(mx)

E(NFe) ax mx
E(NFs) =-^^^n(rnx) +a2X(mx))+—(aX2(mx) +a22(mx))] • (2.15)

Proof. (2.13) follows immediately from Proposition 2.ICO, (Hi) and the fact that NFS = Cm2NIs.

Now Master Algorithm 2.2 will stop in k+l local searches, where k £ 0, if and only if the starting

points in the first k local searches are not in Bn(mx) and the starting point in the last local search is

in B n(m x). Let us assume that among the first k local searches, the number of local searches started

from B21 is i, and the number of local searches started from BX2 and 522 is y, where i +j =k.

Then, clearly, the probability of such an occurrence is

Prob{NIj j = 0 , NIl2 + N22- j , N2X =i)axx(m x), and the number of function evaluations involved

is Cm2(1 + /) + Cmxj. Therefore, we have that

00

E(NFe)= 2 Z (Cm2(l+i) + Cmxj)Prob(NIxx = 0,NIl2 + NI22=j fNI2X = i)axx(mx)
k = 0 i+j =k

= Z Z (Cm2(l+0 +CmJ)-^^(a12(m1) +a22('«i)>/a2i('"i)/«ii(mi)
* =0 i+j = k l'J •

=«n('"i)Z IJ:h7T^(.Cm2 +Cm2i+Cmxj)(ax2(mx) +a22(mx)ya2x(mxy . (2.16)
,=0 y=0 *V !

Making use of the fact that for all pairs (dx,d2) such that -\<dx + d2<\,

ZZ-Mr^ =1/(1 -dx -di), and ZZ'^^^H^ =d2l{\ -dx -dj)2, and the fact that
;=Oy=o l'J- ,=0y=0 W*

a n("* 1)+ a \i(m i)+#21(^1 1) + a22(tt* 1) = 1. we obtain from (2.16) that

cva/zt a i \% Cm2 Cm2a2X{mx)E(NFe) = axx(mx)[-
(\-a X2{m x) - a22(jn x) - a2x(jn x)) (\-a 12(m x) - a22(jn x) - a2x(m x))2



Cmx(ax2(ml) + a22(mx))

(l-aX2(mx)-a22(mx)-a2x(mx))2

„ (fln(mi) + fl2i('"i)) „ («12(^1) +«22(^1))
= Cm2 ~^~^T\ +Cmi 71^\ • (2-17>an{mx) axx\jn\)

a

Remark 2.1. The average number of local searches used by Master Algorithm 2.1 (NIs)is smaller

than the average number of local searches used by Master Algorithm 2.2 (NIe) because a x> a xx(m x).

However, on the average, the total number of function evaluations used by Master Algorithm 2.1 can

be larger or smaller than the number of function evaluations used by Master Algorithm 2.2, depend

ing on (i) the difficulty of the problem GSP is (the smaller the a j, the more difficult the problem),

(ii) the accuracy of the estimation scheme, (the closer a n(m x) is to a xand a22(jn x) to a2, the more

accurate the estimation scheme), (Hi) the smallness of the ratio of mxto m2. It is quite obvious that

Master Algorithm 2.2 is definitely better than MasterAlgorithm 2.1, in terms of the expectednumber

of function evaluations, when (i) GSP is a hard problem, i.e., ax is quite small relative to 1, (ii) the

estimation schemeis quite accurate, and (Hi) the ratio of mxto m2is quite small. •

To obtain a betterunderstanding of the superiority of Master Algorithm 2.2 overMaster Algo

rithm 2.1, we assume that ourestimation scheme has a probability ofcorrect prediction x(m x), i.e.,

axx(mx) = z(mx)ax, aX2{mx) = (1 -x(mx))ax, (2.18a)

a2i(mx) = (1 -z(mx))a2, ^22(^1) =^{rnx)a2 • (2.18b)

After rearranging terms, we obtain that

E{NFe) mx [2t(mx)ax-T(mx)-ax + V(l -m^m^]
E(NFS) "[ ~m2 ] ^) • (2'19)

Let usexamine the equal cost contour ofE(NFe )IE (NFS) as a function ofaxand x(m x), with mxlm2

fixed. The equal cost contour in[0, l]x[0,1],for E(ATF, )/£(^) = y, isa hyperbola defined by

w»i>-w>x-*+i>m-X-ZiS • (220)
where y* = y/(l-m1/m2). The equal cost contours, in [0,l]x[0,l], of E(NFe)IE(NFs), for

mxlm2- 0.2, are shown in Fig.2.1.
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3. ESTIMATION SCHEME FOR LINEARLY CONVERGENT ALGORITHM

Now suppose that if {zy- }JIq isasequence constructed by the local search algorithm insolving

min \|/(z), then the corresponding sequence of costs {\j/(zt)} ,~0 is monotone decreasing and con-

verges linearly to\|/*, alocal minimum value, i.e., there exist constants 9* e (0,1) and p* >0, such

that

\{/(zt)-V|>*£p*9*'\ i =0,1,2,... (3.1a)

We will develop a scheme for estimating the local minimum value \j/* and rate of convergence con

stants p* and 9*.

Suppose that the starting point x e B is given and, for i =0,1,..., m lf let yt = y(A ' (*)), so

that \j/0 >Yi >...>\|fOT|. The worst case situation corresponding to (3.1a) is given by the following

equivalent equations:

Vi-V* =P*e*'"f fori =0,1 mi. (3.1b)

Vm,-¥* =e*m,"'(\|/t-\|/*) , for/=0,l,...,/*!. (3.1c)

Estimation of y* and 9* by means of a least squares fit is not very satisfactory because (i) the

resulting estimate \j/ of the local minimum value y* may be larger than \j/mi, and (ii) the least

squares fit problem is a nonlinear minimization problem. Hence we propose using the recursive pro

cess that we will now describe.

Suppose that we have an estimate 9 of the rate of convergence constant 9*, then an estimate

\|/(9) of the local minimum value \j/* can be obtained by averaging thevalues givenby (3.1c), viz.:

-/m i ™i;1(v,n1-em,->l)
V(9) = £ ^—; • (3.2)

m\ /to (l-9m,_l)

On the other hand, if we have anestimate \j/of the local minimum value\j/*, then we can use (3.1b)

to set up alinear least squares fit problem to obtain estimates tk\|/).^W. ofme rate or* convergence
constants p*, 9*, as follows:

£
i=0

#W .ft(V)) =argmin £ [log (y£ - \j/)) - / log (9) - log (P)]2. (3.3)

Since, in the end, we only require an estimate of y* and since y(-), as defined by (3.2), does not

11



depend on $, we can discard fyy), as defined by (3.3), and combine (3.2), (3.3) to define a map

0 : (0,1) -» (0,1), with 0(9) =?K\j/(9)). We propose to use any fixed point ^ of the map ©as our

estimate of the rate of convergence constant 9*.

Proposition 3.1. The functions \j/() and ©have following properties:

(i) The function\jr()is strictiy decreasing, with\j/(0) =ymi and$(1) =-«».

(ii) For any 9 g (0,1),

m« W; - w(9)
log (0(9))= £ [(*-m,/2)log( I )]/[m1(m1 + l)(m1+2)/12]. (3.4)

(Hi) The function0()is stricdy increasing, with lim 0(9) = 0and lim 0(9) = 1.
e-»o e-»i

Proof, (i) Since ymi < \ft for i = 0,1,..., mx -1, each term in the sum in (3.2) is stricdy

decreasing, and hence \j/() is stricdy decreasing. Observing that y,- >\|/m, for all

i =0,1,..., mi - 1, we derive that $(0) =\j/m, and \Jr(l) =-°o.

(7/J Therelation (3.4) follows direcdy from the expression forthesolution of the linear least squares

problem (3.3).

(Hi) Since y(-) is stricdy decreasing and y, <ym,_,- for i >m^, (V,- - V(9))/(Vm,-* - V(6)) is

stricdy increasing for i > m^2. Making use ofthe fact that the logarithm is a stricdy increasing func

tion, we conclude that each term on the right side of the summation in (3.4) is strictly increasing.

Therefore ©(•) is stricdy increasing. It now follows from (i) and (ii) that log(0(0+-)) = -«> and

log(0(l-)) = 0. Hence 0(0+) = 0 and 0(1-) = 1. •

In view of the above established properties of the map ©(•), we can propose the following

bisection scheme forlocating a fixed point of themap ©(-)1

Estimation Scheme 3.1.

Step 0: Select initial lower and uppers bound for the fixed point of ©(•), 9/, 9M, respectively (e.g.,

9/ = 0.0001 and 9M = 0.9999).

'Another way of finding afixed point of©(•) is to generate asequence 0O, 9i ,63, .. numerical experiments show that this approach
is veryslowdue to the fact that0(8) - 0 is quite flat around the fixed point.

12



Step I: If 9U - 9/ < 0.0001, then accept 9 = (9U + 9/)/2 as the estimate of the rate of convergence

constant 9*, and \j/(9) as theestimate of thelocal minimum value y*, and stop.

Else, go to Step 2.

Step 2: Set 9 = (9U + 9/)/2. If 0(9) > 9, set 9/ = 9. Else, set 9„ =9. Go to Step 1. D

Remark 3.1. If the initial lowerand upper bounds on the fixed point are such that 0(9/) > 9/ and

0(9U) < 9M, then 9, the result of the above estimation scheme, is an approximate fixed point, say 9*,

which is stable in the sense that there is a neighborhood of 9*, say (9j, 9^, such that for any

9 e (9!, 9*), 9 < ©(9) < 9*, while for 9 e (9* , 9^, 9* < 0(9) < 9. Although one can construct

defining data, in the form of a monotone decreasing sequence {\|/,- }/2>f for which ©(•) has no fixed

point in (0,1), our numerical experience shows that in practice this is highly unlikely when the data

is constructed by a linearly converging algorithm. Furthermore, in our numerical experience we have

not encountered a case where ©(•)had more than one fixedpoint. •

To test the accuracy of the estimation scheme, we consider two sequences, and set mx = 10.

The first sequence converges geometrically to zero and is defined by \|/4- = 10(0.5)' for

i = 0 ,1,2 ,...,, for the other sequence we assume that we only have the first 10 points: (68.0,43.0,

36.0,28.0,21.0,18.0,16.0,14.5,13.0,12.0,11.5 ). Fig. 3.1. and 3.2 show the graph of ©(•) for these

two cases. We see that in both cases ©(•) has a fixed point, and that the fixed point of ©(•) associated

with the first sequence is 0.5, which is the actual rate of convergence of this sequence. Fig. 3.3

shows how accurately the linearly converging sequence, p(9)' +\j)r(9), approximates the sequence \|/,-

for the second test sequence. A more extensiveevaluationof our estimation scheme is given in Table

4.3.

4. NUMERICAL RESULTS

To obtain statistical information needed to compare Master Algorithm 2.1 with Master Algo

rithm 2.2, we carried out a set of computations to determine the range of the various quantities which

determine their relative effectiveness. Our test problems include seven "classical" global optimiza

tion problems described in [Dix.l] and eighteen test problems described in [Lev.l]. A summary of

the essential features of these test problems is shown in Table 4.1, where the number of variables, the

number of local minima and the global minimum value (rounded to four digits), are given in the

second, third and fourth column, respectively.
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In our numerical experiments, we used the local iteration algorithm A (•) map defined by a

straightforward extension to problems with box constraints, of the Pshnichnyi-Pironneau-Polak algo

rithm. For problems of the form

min maxij^OO , (4 i\
xeBje/ v ' '

with the x^O continuously differentiable, this algorithm computes search directions h(x) according

to the rule

h(x) AargminyJ(x)+ (Vy (*),h)+V4MD2, (42a)
h 6 B-x K ' '

and uses an Armijo type step size rule of the form

\(x) 4 max {p* Iv(x +p*A(x)) -itf*)) <pkaQ(x)} , (4 2b)
k e IN v^-""/

where IN &{0,1,2,...}, a, Pe (0,1) are fixed parameters and the optimality function 9(*) is
defined by

9(jc)A min yJ(x)+ {V\\rj(x) ,h HVUAO2. (4#2c)

Hence for any x e B,

A(*) =*+A.Ct)/i(;t). (4.3)

We used the scheme proposed in Section 3, with mx = 10, to estimate the values of

\)f(x) = max y (x) at the local minimizers.
ye/

For each test problem, several hundred local searches were started from randomly generated

points, using a uniform distribution on B. Due to computing time constraints, the maximum number

of local searches per test problem was limited to 2500. In order to obtain sufficient data for our esti

mates, we performed N = min {2500 ,100 x number of known local minima } local searches for

each problem. Since the local searches were continued until the stopping rule, I9(jc> I < 10~5, was

satisfied, it was possible to determine whethera starting point*,- was in B xor B2.

To estimate the a^(m 1), we used the formula

number of initial points tried in Bu(m x)
a:j{mx) = . (4.4)

1 total number of local searches

We obtained an estimate of m2 by averaging the number of iterations used in the local searches and

we computed the estimates of E(NFe)IE(NFs) from the estimates of the aij(mx) and of m2,

14



according to (2.15).

Table 4.2 shows the number of local searches tried (N), the satisfycing value (v), the estimates

of alx(mx), aX2(mx\ a21(mx), a22(^1). and a! =axx(mx) +ax2(mx), the ratio ofmx tom2, and finally

the ratio of expected number of function evaluations in Master Algorithm 2.2 to Master Algorithm

2.1. All thenumbers in thelast seven columns of Table 4.2were rounded to 3 digits after thedecimal

point.

Referring to Table 4.2, we see that

(i) With the exception of SQRIN5, the classical test problems in [Dix.l] are very easy, i.e., ax is

quite large.

(ii) Most ofLevy's problems are quite difficult.

(Hi) For the hard problems, the expected number of function evaluations used by Master Algorithm

2.1 is about 4 times the expected number of function evaluations used by Master Algorithm 2.2 (our

new algorithm). On easy problems Master Algorithm 2.2 is only slighdy better than Master Algo

rithm 2.1.

Table 4.3 enables us to evaluate the reliability of ourEstimation Scheme 3.1 on the problems

tested. We note that axx(mx)/ax is the fraction of times we were able to establish correctiy that an

initial x e Bxis in fact in Bx, a22(mx)la xis the fraction of times we were able to establish correctiy

that an initial x e B2 is in fact in B2; and finally, axx(mx) + a22(mx) is the fraction of times we

correctly identified whether an initial point x is in Bx or in B2. We see that our prediction success

rate, averaged over the test problems, is well over 80%, and that it is particularly good on Levy's

problems. •

5. CONCLUSIONS

We have presented a new multistart method for solvingglobal satisfycing problems. The novel

feature of this method is the utilization of the fact that many minimax algorithms converge linearly,

which makes it possible to estimate the local minimum value to which costs generated by a minimax

algorithm converge. Hence, when the projected local minimum value exceeds the satisfycing value,

the local search is aborted. Our statistical data indicate that the new method is much superior to an

obvious adaptation of a classical multistart, global optimization method, whenever the satisfycing

problem is difficult and our local minimum estimation scheme is fairly accurate. Our numerical

15



experience show that in most cases our estimation scheme is indeed quite accurate and hence the new

method should prove a valuable addition to the decision maker's toolbox.
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Problem n number of local minima global minimum value

SQRIN5 4 5 -10.15

SQRIN7 4 7 -10.40

SQRIN10 4 10 -10.54

HARTMAN3 3 4 -3.998

HARTMAN6 6 4 -3.322

RCOS 2 3 0.3979

GOLDPR 2 4 3.000

LEVY1 1 3 7.000

LEVY2 1 19 -14.5

LEVY3 2 760 -186.7

LEVY4 2 760 -186.7

LEVY5 2 760 -186.7

LEVY6 2 6 -1.032

LEVY7 2 25 0.000

LEVY8 3 125 0.000

LEVY9 4 625 0.000

LEVY10 5 105 0.000

LEVY11 8 108 0.000

LEVY12 10 1010 0.000

LEVY13 2 900 0.000

LEVY14 3 2700 0.000

LEVY15 4 71000 0.000

Table 4.1. The Test Problems



Problem N V au(mx) an(«i) fl2l(ml) ar>imy) a^ mylnt^ E(NF,)IE(NFt)
SQRIN5 500 -10.0 0.156 0.000 0.808 0.036 0.156 0.175 0.970

SQRIN7 700 -10.0 0.704 0.001 0.234 0.060 0.706 0.200 0.953

SQRIN10 1000 -10.0 0.795 0.000 0.145 0.060 0.795 0.205 0.952

HARTMAN3 400 -3.5 0.785 0.105 0.000 0.110 0.890 0.166 0.931

HARTMAN6 400 -3.0 0.985 0.000 0.000 0.015 0.985 0.045 0.986

RCOS 300 1.0 0.933 0.067 0.000 0.000 1.000 0.163 1.012

GOLDPR 400 4.0 0.153 0.423 0.053 0.373 0.575 0.058 0.945

LEVY1 300 8.0 0.780 0.000 0.000 0.220 0.780 0.259 0.837

LEVY2 1900 -14.0 0.398 0.000 0.000 0.602 0.398 0.267 0.559

LEVY3 2500 -180.0 0.070 0.001 0.025 0.904 0.071 0.174 0.255

LEVY4 2500 -180.0 0.011 0.000 0.052 0.937 0.011 0.176 0.228

LEVY5 2500 -180.0 0.015 0.000 0.051 0.934 0.015 0.176 0.230

LEVY6 600 -0.5 0.782 0.000 0.005 0.213 0.782 0.287 0.848

LEVY7 2500 0.25 0.416 0.022 0.008 0.553 0.438 0.060 0.484

LEVY8 2500 0.25 0.363 0.080 0.016 0.540 0.443 0.038 0.492

LEVY9 2500 0.25 0.329 0.121 0.018 0.532 0.450 0.030 0.502

LEVY10 2500 0.25 0.312 0.136 0.026 0.527 0.448 0.026 0.509
LEVY11 2500 0.25 0.286 0.164 0.034 0.506 0.470 0.023 0.539

LEVY12 2500 0.25 0.284 0.202 0.040 0.474 0.480 0.022 0.580

LEVY13 2500 0.25 0.058 0.002 0.016 0.924 0.060 0.021 0.097

LEVY14 2500 0.25 0.010 0.012 0.014 0.964 0.022 0.016 0.088

LEVY15 2500 0.25 0.002 0.006 0.014 0.978 0.008 0.014 0.147

Table 4.2. Data for a Statistical Comparison of Master Algorithms 2.1and 2.2.



Problem anCmO/a, a».0m)/fl?. «„(«„ +a„.(m,)

SQRIN5 1.000 0.043 0.192

SQRIN7 0.998 0.204 0.764

SQRIN10 1.000 0.293 0.855

HARTMAN3 0.882 1.000 0.895

HARTMAN6 1.000 1.000 1.000

RCOS 0.933 1.000 0.933

GOLDPR 0.265 0.877 0.525

LEVY1 1.000 1.000 1.000

LEVY2 1.000 1.000 1.000

LEVY3 0.989 0.973 0.974

LEVY4 1.000 0.947 0.948

LEVY5 1.000 0.948 0.949

LEVY6 1.000 0.977 0.995

LEVY7 0.950 0.985 0.970

LEVY8 0.819 0.971 0.904

LEVY9 0.731 0.967 0.861

LEVY10 0.696 0.955 0.448

LEVY11 0.609 0.955 0.792

LEVY12. 0.585 0.921 0.758

LEVY13 0.973 0.983 0.982

LEVY14 0.446 0.974 0.974

LEVY15 0.200 0.986 0.980

AVERAGES 0.817 0.864 0.851

Table 43. An Evaluation ofThe Effectives of Estimation Scheme 3.1.


