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Control of Interconnected Nonlinear Dynamical

Systemsrthe platoon problem*

Shahab Sheikholeslam and Charles A. Desoer*

Abstract The problem in this paper is motivated by a highway automation project

[2]. The overall system consists of N vehicles,(the platoon); each vehicle is driven by the

same input u and the state of the fc-th vehicle affects the dynamics of the (k + l)-th vehicle;

furthermore, the dynamics of each vehicle is affected by its (local) state-feedback controller.

Under very general conditions, it is shown that for sufficiently slowly varying inputs, the

local feedbacks can be designed so that the platoon maintains its cohesion.

1 Introduction

The study of interconnections of dynamical systems has a long history usually under

the heading of "Large Scale Systems". Some of the main results are to be found in the

monograph of Michel and Miller [10], in that of Vidyasagar [11]; their long lists of references

are particularly useful. The treatise of Kokotovic, Khalil and O'Reilly [12] on singular

perturbations is an excellent reference on the concepts and techniques associated with the

notions of slow and fast dynamics. Key features of any such interconnection are a) the graph

of the interconnection [11] and b) the time-scale separation of dynamics [12].

The system under study here has a special interconnection scheme which is dictated by

the application: a platoon of N vehicles follows, under automatic control, a lead vehicle.

"This work was supported in part by the PATH Project, under Grant RTA-74H221, and the National

Science Foundation, under Grant ECS-88-05767

*Authors are with the Department of Electrical Engineering and Computer Science, University of Cali

fornia at Berkeley, Berkeley, CA 94720, tel:(415)643-8847.
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(For background information, see [2],[13] and references therein) To maintain the cohesion

of the platoon, the lead vehicle's velocity and acceleration is transmitted to each vehicle of

the platoon, and vehicle k measures the distance A* between it and the preceding vehicle.

As an approximation we may view the dynamics of the sensors and actuators and that of

the engine as fast with respect to that of the vehicle. We show that by suitable design

of each controller in each vehicle it is possible to achieve the following: given that the

platoon is operating in the steady state at constant velocity, u, at t = to, and that the lead

vehicle accelerates to reach a constant velocity v\ at some later time T, the control laws

can be designed so that for all k > 1, Ajt(i) is bounded on [to, oo) and, for some a < 1,

||Afc(.)||oo < a||AA;_i(.)||oo + ||<At(-)lloo where <t>k(t) —• 0 exponentially as t —• oo at a rate

controlled by the choice of the control laws; here ||.||oo denotes the sup norm over [T, oo).

2 Problem motivation

Consider a "platoon" of N + 1 vehicles traveling in the same lane of a straight stretch of

highway and following closely one another. Initially, all vehicles travel at the same constant

velocity, say v. The lead vehicle is labelled "/", the next one is labelled "1", and the last one

"Nn: Xk denotes the abscissa of the rear bumper of the k-th vehicle; each vehicle is alloted

a slot of length L\ let A/, be defined by

Afc := xk-i - (xk + L)

A* measures the deviation in the assigned distance between vehicle k —1 and vehicle k.

Each vehicle is equipped with sensors that measure xu,xjt, A/t, A*, and A* as well as x\

and xi (the last two measurementsare obtained by a communication link). Using a nonlinear

first order model of the engine, for the k-th vehicle we obtain the following dynamical model

in terms of the state £* := (Ak,Xk —v,£k) and the engine input u/., (say, the throttle input)

Gb = /*(C*»C*-i) + 9k{(k)uk (1)

for k > 2, [2],[13].



It turns out that these equations have such a form that a suitable nonlinear control will

lead to the following equation for the k-th. vehicle

a = /(c*,Cb-i,«) (2)

for k = 2,3,...,AT, where u(t) = (xi(t),xt(t)), the velocity and acceleration of the lead

vehicle.

Note that in (2), the function /(.,.,.) depends only on the state of the k-th. and (k—l)-th

vehicle and the "input" u: the dependence on the vehicle characteristics (mass mt, cross

section Ak, aerodynamic coefficient Ck, and engine characteristic r(ijt) have been eliminated

by the nonlinear feedback law[2]); hence, /(.,.,.) does not depend on k for k > 2. For the

first vehicle, the control law leads to an equation of the form

Ci=/i(Ci.«) (3)

The above discussion suggests the following problem: suppose the platoon oi N+l vehicles

is initialized as above and suppose that at t = t0 the lead vehicle accelerates from the velocity

v to some other constant velocity, say ui, which it reaches at some time T. Is it possible

to choose the vehicle control such that, for such increases in velocity, for k = 1,2,..., iV,

Ak(.) is bounded, Ak{t) -* 0 as t -» oo and, for t' sufficiently large, maxt>T+tf\&k(t)\ is a

decreasing function of kl

3 Problem formulation

With the above considerations in mind, we state the problem as follows: we are given an

interconnection of nonlinear time-invariant dynamical systems described by the following

differential equations:

Ci = /i(Ci,u)

C2 = /(C2,G,«)



6 = /(&C2,«)-

Gv = /(Cn,Cn-i,«) (4)

where the exogeneous control u belongs to an open set U C Rm and for k = 1,2,..., N,

0t belongs to an open set Pu0 C Rn; fi and / are C2 functions of their arguments; (k includes

Xk-,Xk, and Xk as components.

Consider the situation where all vehicles travel at the same constant velocity, say v (i.e.,

Xk = v) and are at their assigned positions (i.e., At = 0 for k = 1,2,...,N). Call u0

the corresponding input Uo = (u,0): then by the nature of the vehicle dynamics we have

/i(Ce?Uo) = 0, and /(Ce,Ce>^o) = 0, where the equilibrium state £e is a function of uq. We

assume that, by clever design of the control law within each vehicle, the dynamical system

(4) has a whole set of such equilibrium points for appropriate values of uo and that about

each such equilibrium of (4) there is a suitable basin of attraction.

Theorem 1 considers a special case of (4) and gives precise conditions under which a

slowly varying input u will cause £ to vary slowly and remain within the basin of attraction

of the corresponding equilibrium point. Theorem 2 considers the interconnection of nonlinear

dynamical systems described by (4) and gives precise conditions under which the deviations

of 0t {k = 1,2, ...,N) from the equilibrium state £> remain bounded for a slowly varying

input w; furthermore, if after some time T, u(t) becomes constant, then the peak value of

these deviations decreases as k increases.

Consider the dynamical system described as follows:

C = /(C,Cp*«) (5)

where £ and £p belong to Pu0, an open set of i?n, and u belongs to £7, an open set of Rm,

with u(t0) = u0.

Definition A point Co in Puo is called a sink of (5) corresponding to the constant state-

input CPo in Pu0 and constant input iu0 in U if/(Co,CPo, u'o) = 0 and Rea[Dif((0, CPo, u'o)] < 0;



where D\/(.,.,.) denotes the Jacobian matrix of /(.,.,.) with respect to the first variable

and &[.] denotes the spectrum of a matrix.

It is well known that if Co is a sink corresponding to (CPo, Wo)> then there is a ball B(Co> ?*),

centered on Co? such that for all C(*o) € B{(o,r), the solution of (5) is bounded and decays

exponentially to Co (see e.g. [8],[9]).

We also assume that by suitable design of the control law in (5) we may move the

spectrum of Dif((e,(e,u) further into the left half plane.

Theorem 1 Suppose that Pu0 C Rn is open and convex, and U C Rm is open; let

/ : Pu0 x Pu0 x U —> Rn be a C2 function such that

M*o := {(Ce,Cp,u) € Puo x Puo x U\ Ce is a sink of (5) corresponding to ((p,u)}

has a non-empty interior (relative to topology of Muq). Let Qu0 be a compact, connected

subset of Muo, with a non-empty interior Quo. Let u : [to, oo) —• U, with u(to) = wq, (p :

[t0, oo) —> Puo, and Ce : [to, oo) -* Puo be three given C1 functions such that ((e(t), CpM> UW) €

Quo for all t > t0. Let C(-) be the solution of (5) with the ((p(.),u(.)) defined above and with

initial condition C(*o)-

Then,, for any p > 0, there exist 80 > 0, 6U > 0, 6^ > 0 independent of t0, such that for all

u(.),CP(.)> and Ce(-) as defined above and satisfying |C(*o) —Ce(*o)| < $o, maxt>to \u(t)\ < 8U

and max(>(0 \(P{t)\ ^ $< we nave:

i) ICM - Ce(*)l < 9 ^ all t > t0,

ii) if, in addition, p is sufficiently small, then for all t > to, ((t) belongs to the basin of

attraction of the sink Ce(0 with respect to (£p(t),u(t)).

There are two methods for proving this theorem: 1) estimation in the time domain (see

Kelemen[l], with improvements [3]); 2) using Lyapunov functions (the existence follows from

lemma 2 of Hoppensteadt [4], the technique is detailed by Khalil, et al.[5]).

Since Qu0 is compact, from i) of theorem 1, we have for all t > to, £(t) € Zuo where Zuq is

a compact set.



4 Main result

We consider now the composite dynamical system described by (4); Let / satisfy the as

sumptions of theorem 1; consider some slowly varying u(t) and the corresponding (e(t).

With respect to the first equation of (4):

Ci = /i(Ci,«). (6)

we assume that f\ : Pu0 x U —» Rn is a C2 function such that

-^uo ;= {(Ce?u) € Puo x U\ Ce is a sink of (5) corresponding to u]

has a non-empty interior (relative to topology of M^0). Let Qu0 be a compact, connected

subset of M*0, with a non-empty interior QluQ. Let u : [t0, oo) —> U, with u(t0) = u0 and

Ce : [to, oo) —* Pu0 be two given C1 functions such that ((e(t),u(t)) € Q\0 for all t > t0.

Consider (6). It is a well known result (e.g. [1],[5]) that given these assumptions on

/i, for any p > 0, there exist 6% > 0 and Si > 0 such that if |Ci(*o) - Ce(*o)| < <^o and

maxt>to|u(*)| < <$i then for all *> t0, £(*) 6 Zu0 and |G(*) - Ce(*)l < P-

Lemma 1 Consider the nonlineardynamical system described by (4) keeping in mind the

above considerations. Under the conditions stated above, by suitable design of the control

laws, if p is chosen sufficiently small, then for k = 1,2,..., N: 1) for all t > t0, £k(t) 6 Zu0,

and 2) for all t > t0, maxt>t0\(k(t)\ < Re

proof We use induction.

Writing the Taylor expansion of (6) about (Ce,u) and noting that fi(Q,u) = 0 we obtain

Cl=//l(Ce,U,Cl)(G-Ce) (7)

where Hi((e,u,b) := /J A/i[Ce + A(Ci - (e),u]d\; note that #i(.,.,.) is continuous.

Since for all t > t0, (Ce(*)>w(0iGW) € Q\q x Zu0, a compact set, and #i(.,.,.) is
continuous, there exists a constant, h\ > 0, such that

hx =maxt>t0\H1(<;e(t),u{t),(;i(t))\. (S)

From (7) and (8) we obtain

maxt>t0\^{t)\ < hxp (9)
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hence,
c

If P < -r then maxt>i0\(i(t)\ < 6<. (10)
hx

Induction step We use the notations of theorem 1. Assume that for some k > 1,

l0fc+i(*o)-Ce(*o)l < ^o, maxt>to\u(t)\ < Su, and for all t > t0, &(*) € Zu0 and maxt>to\Ck(t)\ <

S^; we will show that for all t > t0, (k+i{t) € Zuq and maxt>io\Ck+i(t)\ < S^.

Consider the following dynamical system

Ck+i = HCk+i,a,u) (ii)

Since the assumptions of theorem 1 are satisfied for (11), we have for all t > t0, Cfc+iM €

Zu0 and \Ck+i(t) - Ce(0l < P-

Writing the Taylor expansion of (11) about (Ce,Ce?«) and noting that f(Q,C,e,u) = 0 we

obtain

Ofe+l = /lA/[C +A(C*+l-Ce),Ce +A(C*-Ce),«]rfA(Cib+l-Ce)
JO

+ ri>2/[Ce +A(CiH.l-Cc),Ce +A(C*-Ce),«]rfA(C*-Ce). (12)
•/O

Here Dkf(.,.,.) denotes the partial derivative of /(.,.,.) with respect to its k-th argument.

We can write (12) as follows

a = Gi(Ce,ti,a,Cb+i)(c*+i - g) + G2(Ce,ti,CA,c*+i)(a " & (13>

where Gi((e,u,£k,Ck+i) and G2(Ce,u,Gfc»0fe+i) denote the first and the second integrals in

the right hand side of (12), respectively.

Let ^Quo.uo := {(Ce,ti)|(Ce,Cp»«) € Quo}- Now, for all t > t0, (Ce(0»«*(*),Ofc(«),Cib+i(0) €

pQuo,uo x Zu0 x Zu0 := Yu0, a compact set; G2(.,.,.,.) € C\ and G2(.,.,.,.) 6 C1. Hence

Gi(.,.,.,.) and G2(.,.,.,.) are bounded on V'u0 by g\ > 0 and #2 > 0 respectively.

Using these bounds and (13), and noting that by the induction hypothesis for all t > t0,

\Ck{t) - Ce(t)\ < p we obtain

maxt>t0\(k+l{t)\ < (gx + g2)p (14)

hence,
c

Up< ^— then maxt>totek+i{t)\ < Sc. (15)
<7i + 92
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From (10) and (15) we note that for k = 1,2,...,7V, if p < m2n{^"?^^7/ then
maxt>to\(k(t)\ < Sc.

Again, let / satisfy the assumptions of theorem 1; consider some slowly varying u(t) and

the corresponding Ce(*)- Let for k > 2, dk(t) + Ce(t) = (k{t) and assume dk(to) = 0 for all k.

Theorem 2 Under these conditions,

1. if (a) p is sufficientlysmall so that lemma 1 holds, (b) for some sufficiently small Su > 0

as in the statement of theorem 1, rnaxt>t0\u(t)\ < Su, and (c) for some sufficiently small

6( > 0 as in the statement of theorem 1, maxt>t0\(e(t)\ < S^, then, by suitable design

of control laws, there exist some constants a and /? such that 0<a<l,0</?< oo,

and for k > 2,

||4+l||co<a||4||oo + ^||Ce||oo (16)

hence, for large k,

II4IL< r2-||&IL +O(o*-1); (17)
I — a

i.e., there is a uniform bound on \\(k —Ce||<»;

2. if, in addition, after some time T, u(t) and (consequently) Ce(^) become constant, then

by local control law design, 77 > kj can be increased; hence, we can obtain

||4+i||co <a||dfc||oo + ||*b||oo. (IS)

where, as in (16), a < 1; here <j>k(t) —* 0 exponentially as t —> 00, and ||.||oo denotes

the sup norm on [T,00).

In other words, in case of a change in u in the lead vehicle from the initial steady-state

value Wo to the final steady-state value uj, the peak disturbances down the platoon,

i.e., d2(.),dz(.),... decrease as k increases.

Proof(theorem 2, part 1) Adding and subtracting Dif(Ce,Q,u)dk+i to the right

hand side of (12) and noting that Cfc+i = Ce + <4+i we obtain

4+i = A(t)dk+l + R(t)dk+l + B(t)dk - Ce (19)



where

A(t):=0i/(&(t), «*),«(')) (20)

R(t) := /' {A/[C.(«) +A4+iW,C«W +*<**(<).«(<)] - Dlf(Ut),Ut),«(*))}^
./o

(21)

and

5(4) := f1D2f[(e(t) +\dk+1(t),<;e(t) +\dk(t),u(t)]d\. (22)
./o

Let $(£,r) be the state transition matrix of i = A(i)^- Then from (19) we obtain

4+i (0 = $(Mo)4+i(*o)

+ f m,T)R{T)dM(r)dr
Jto

+ f m,r)[B(r)dk{r) - Ur)]dr (23)
./to

here the first term in the right hand side of (23) is zero since 4+iUo) = 0.

Note that for all t > t0, ((e(t),u(t)) G Pqu0,uo, a compact set, and D\f(.,.,.) is

continuous; hence,

A(.) is bounded on [t0, oo). (24)

Since <r[i4(i)] = (r[Dif((e(t),£e(t),u(t))] is a continuous function of its entries and for

all t > t0, (£e(t),(e(t),u(t)) € Qu0 with CeM being a sink of (11) corresponding to

((e(t),u(t)), there exists a constant /i < 0 such that

for all t > t0 , Recr[A(t)] < ft. (25)

From (24) and (25) we note [6,Theorem 2, sec.32] that there exists a constant e > 0

such that if \A(t)\ < e then

for some k > 1 and some rj > 0 and for all t > s > tQ , \$(t,s)\ < kexp[—r)(t —s)].

(26)

Differentiating the right hand side of (20) with respect to t and using the chain rule

we obtain

A(t) = {DlDJ((:e(t),Ut),u(t))^D2DJ((:e(t),Q(t),u(t))}Ut)

+ z?3zWe(0,Ce(0^(0W) (27)



Since DiDif(.,.,.),D2Dif(.,.,.), and D3Dif(.,.,.) are continuous and for all t > t0,

(Ce(*),Ce(*)>«(*)) ^ Qu0, a compact set, AA/(,,.)M/(,,-), and D3D1f'(.,.,.)

are bounded on Qu0. Let

ai :=maa;{|i?iJD1/(Ce,Ce»w) +^2A/(CeJCe,«)| : (Ce,Ce,u) G<2u0}

and

a2 :=max{|Z)3JDi/(Ce,Ce,w)| : (Ce,Ce,«) £ <2uo} •

If maxt>t0\u(t)\ < Su < 2^- and ma£f>t0|Ce(£)| < ^C ^ 2a~ ^en fr°m (27) we obtain

\A(t)\ < e and (26) is satisfied.

Now, from lemma 1, for all t > to, (CeM»uW>Gfc(*)iOfe+i(0) € ^vOt a compact set, and

£?(.,.,.,.) is continuous; hence, there exists a constant b > 0 such that

6 = maa?4>to|£(0|. (28)

Similarly, /?(.,.,.,.) is continuous and bounded on Yuo', hence, by compactness, for

some constant 7 > 0 we have - .

7 = maxt>to\R(t)\ (29)

From (23),(26),(28), and (29) we obtain

|4+i(<)l < f h exp[-rj(t - T)]\dk+i{r)\dT
+ f kexp[-r,(t - T)][b\dk(T)\ +\Ur)\]dT (30)

J to

Applying a form of Gronwall lemma to (30), [7, Corollary 1.9.1], we obtain

14+iMI < /' kexp[(-ij +h)(t - r))[b\dk(T)\ +|C,(T)|]rfr
J t0

< f kexp[(-ri +h)(t - r)]rfr[6||4||oo +HCelU] (31)
J to

By suitable design of the control law, we can increase 77 sufficiently beyond £7 so that

0<a := ^ < 1; let 0 := ^. Then, from (31), for all t>t0,

|4+lWI<«H4||co + /?||Ce||co ' (32)
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hence,

||4+l||oo<a||4||oo + |̂|Ce||oo (33)

By recurrence, noting that a < 1, we see that for all k > 2,

||4||co<r^-HC«IU +0(a*-1). (34)

Proof(theorem 2, part 2) From (19) we note that for t>T,

4+i (t) = *(t,T)dk+1(T)

+ £$(t,T)R(T)dk+1{T)dT
+ fT *(*, r)[B(r)dk(r) - Ur)]dr (35)

Hence, noting that for t > T,Q(t) = 0, from (35), (26),(28), and (29) we obtain

|4+i(*)l < kexp[-r,(t-T)]\dk+1(T)\
rt .

+ / k'y exp[-ri(t - T)]\dk+i(T)\dr

+ / kb exp[-r}(t - T)]\dk(r)\dT (36)

Applying a form of Gronwall lemma [7, Corollary 1.9.1] to (36) and using the previously

defined a, we obtain for all £ > T,

|4+i(*)l < kexV[(^ + h)(t-T)]\dM(T)\

+ J ~kbexp[(-r) +k<y)(t-T)]\dk{T)\dT (37)
< fccajpK-iy + ^Kt-TJUdib+ijr)!

+ a||4|U (38)

By design, 77 > Icy can be increased so that a := -H- < 1 and we have |4+i(0l <

<*||4||oo + Halloo where 4>k(t) —> 0 exponentially as t —*• 00, and ||.||oo denotes the sup

norm on [T,00).

These theorems, together with simulations using realistic vehicle models [2],[13], es

tablish that it is reasonable to contemplate platoons of vehicles traveling down the

highway at high speed and maintaining a tight formation by automatic control.
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