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Abstract

The design of a process-flow representation is described that can be used to specify the
information needed to design, test, and execute processes to manufacture integrated cir
cuits. A prograiriming language representation is used so that a full complement of pro
gramming constructs are available (e.g., data structures, control structures, procedural
and object-oriented abstractions, and exception handling).

Programs written in the Berkeley Process-Flow Language (BPFL) are read and inter
preted by other programs, called interpreters, that perform tasks such as work-in-progress
tracking, process simulation, and factory scheduling.

The hardware and software architecture of adistributed computer-integrated manufactur
ing system, the design of BPFL, and the features provided to support theWIP and simu
lation input generator interpreters are described.

1. Introduction

A formal process-flow specification is an important component of an integrated circuit
GC) computer-integrated manufacturing (CIM) system. A process-flow specification
includes a complete description of the information needed to manufacture an IC (e.g.,
masks, materials, equipment, operations, and tests). Treated as a program, the
specification can beexecuted byacomputer, which will reduce manufacturing problems.

Manufacturing problems occur for many reasons including human errors (e.g., an opera
tor may enter the wrong parameters for a recipe), equipment failures (e.g., valve leaks),
material problems (e.g., wafer contamination), and environmental problems (e.g., water
contamination). Human errors can bereduced by connecting equipment to theQM sys
tem and minimizing the need for actions by an operator. The remaining problems can be
reduced by careful monitoring and checking during processing. The goal is to gain better
control of the process. This goal can be achieved by automated processing, which
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ments, National Semiconductor, Intel Corporation, Rockwell International, Motorola Inc., and Siemens
Corporation with a matching grant from theState of California's MICRO program.



requires an executable process-flow specification.

A formal process-flow specification can also dynamically change the processing for a lot
based on data gathered during prior processing of the lot or during processing of other
lots on the equipment Changing the processing that a lot receives is calledfeed-forward
orfeed-backward control depending on whether the change is influenced by processing
on the same lot in the past or lots that are processed before it

Lastly, a process-flow specification can be used as input to programs other than a shop
floor control system to improve other aspects of IC process design and manufacturing
(e.g., process simulators, factory scheduling systems, and process checking systems).
Each of these programs currently uses different specifications than the one used by the
shop floor control system. Consequently, these different specifications are often incon
sistent in the sense that they describe different processes. Failure to maintain consistent
specifications can significantly reduce productivity. The development of one process-
flow specification that can serve manyuses can eliminate these problems.

Current process-flow specifications are either structured documentation (e.g., the TI
TRAV system [4]) or run-sheet specifications (e.g., PROMIS1 and WORKSTREAM2).
These specifications are typically used only for shop floor control. In a structured docu
mentation system, a printed copy of the specification, called a traveler, is taped to the lot
and passed along with it to the different workcells. The operator follows the instructions
on the traveler that describe how the lot should be processed. A run-sheet system is
essentially an interactive traveler. It describes the processing at each workcell andwhere
the lot should be moved when the current step is finished. Instructions are displayed to
an operator on a terminal. Some run-sheet systems issue commands to execute recipes in
equipment that is connected to the system and to direct a material movement system to
move a lot to a different workcell [8].

The problem with these systems is that they do not automate fabrication. They track
work-in-progress (WIP) and provide much needed production management information
but they cannot support equipment integration and feed-forward and feed-backward pro
cess control. Run-sheet specification languages are better than structured documentation
systems because they automate some operations, but they aretypically limited to a small,
fixed set of commands. The specification languages provide operator input/output com
mands, material movement commands, and data collection and archiving commands.3

1PROMIS isaproduct of Promis, Inc., Toronto, Canada.
2WORKSTREAM, formerly called COMETS, isa product ofConsilium, Inc., Mountain View, Cali

fornia.

3 WORKSTREAM has a more powerful scripting language with some control structures that can be
called from a run-sheet command. However, many commands that can be executed in a script cannot be
executed directly in the run-sheet, which severely limits flexibility of thesystem.



These commands are adequate for tracking WIP and eliminating some operator errors.
However, they do not support direct communication with equipment, feed-forward and
feed-backward control, and diagnosis and correction of exceptional conditions (e.g.,
detecting equipment that violates qualification standards).

The fundamental problem with these systems is that they do not provide the power and
flexibility of a modern programming language. A process-flow specification is essen
tially a program for a very complex system composed of equipment in the fabrication
line, the material movement system, and data stored in databases that describe the factory
state and processing history. Moreover, they only specify production processing. They
do not include the information needed by process simulators, schedulers, and other pro
grams that operate on process-flows.

Several research groups are working on process-flow representations that havethe power
of a modem programming language and that include information needed by other pro
grams. Two kinds of representations are being explored by different groups: 1) a
knowledge-based representation and 2) a programming language representation. The
knowledge-based approach uses a hierarchical, object-oriented data structure to represent
a process-flow (e.g., MKS being developed at Schlumberger and Stanford [16,29], STDS
being developed atTI [11], and PFR being developed at MIT [12]). The data structure is
composed of objects that represent operations. An operation can be an equipmentopera
tion, a control operation (e.g., a conditional, looping, or procedure call command), an
input/output operation, or a database operation. A class is defined for each operation.
The class contains fields that specify the parameters for the operation. A method is
defined on the class that defines the semantics of theoperation.

The advantage of this representation is that new operations can be defined as a subclass
of an existing class so that default parameters of the newoperation can be inherited from
the existing operation. Other advantages are that the data structure can be conveniently
stored in a relational database (e.g., an object is stored as a tuple in a relation) and it is
relatively easy to write programs that access and update a process-flow because it is just
a data structure.

The disadvantage of the knowledge-based approach is that the knowledge representation
system does not include sophisticated control structure abstractions required to handle
unexpected situations (e.g., a furnace run aborts because of a power failure or a con
straint on the maximum time delay before starting a furnace operation is violated).4 This
representation emphasizes the correct behavior of the process.

The prograniming language approach uses a procedural representation for a process-flow
(e.g., the Berkeley Process-Flow Language, FABLE developed at Stanford [15], and

4Anecdotal evidence from other programming applications suggests that as many as 50% ofthe lines
of codedeal with unexpected and error situations.



MPL.2 being developed atSiemens [31]). A process-flow is composed of acollection of
procedures that contain conventional programming language commands (e.g., variable
and data declarations, assignments, control structures, etc.) interspersed with commands
to communicate with equipment, operators, and the database. The process-flowis com
piled into an abstract syntax tree which is equivalent to the data structure in the
knowledge-based representation. The advantage of the procedural representation is thata
full complement of control-structures, data structures, and programming notations are
available. This representation emphasizes both the correct andincorrect behaviorof the
process.

The major difference between the two approaches, besides the different aspects of the
process they emphasize, is the use of a procedure call with default parameters as opposed
to a subclass with inheritance to define new operations in terms of existing operations.
Consequently, the kind of representation is less important than the particular constructs
and abstractions that are provided.

This paper describes the Berkeley Process-Flow Language (BPFL). The language is
designed to allow all information about a process to be merged into a common
specification. Different programs, called interpreters, read a BPFL program and perform
a task (e.g., run or simulate a process). An interpreter is a program that executes a BPFL
program. Each command is either a language primitive (e.g., an assignment command),
a built-in procedure call (e.g., a procedure mat allocates wafers), or a user-defined pro
cedure call (e.g., a procedure that performs a hard-bake operation by loading a furnace
and invoking the appropriate equipment recipe). For example, a WIP interpreter exe
cutes a BPFL program and in the process issues instructions to operators and equipment
to process lots. A simulation input-generator interpreter, on the other hand, executes the
program and outputs commands that can be input to a process simulator to produce a
wafer profile (e.g., PROSE [32], SIMPL [9] or SUPREM [7]). Other interpreters can
produce input for a factory simulator (e.g., MODES [10], CHIPS [17], and BLOCS [5]).
or check process correctness (e.g., check that resist is removed before executing a fur
nace operation).

The design goals for the language are:

(1) to share as much of a process specification as possible between the different
interpreter views (e.g., specify common parameters in only one place),

(2) to provide support for a complete specification including lot splits and merges,
exception handing, feed-forward and feed-backward control, and equipment and
operator communication, and

(3) to separate the facility specific information from the process specification to
make it easier to change equipment in a fab or move processes to a different fab.

The remainder of this paper describes the BPFL language and the WIP and simulation
input-generator interpreters. It is organized as follows. Section 2 describes the architec
ture of the CIM system and how the shared database and process-flow specification fit



into it. Section 3 describes the global structure of a BPFL process-flow and how to
specify different views of a process-flow. Sections 4 and 5 describe the fabrication and
simulation views. Section 6 describes the implementation status and our experiences
with BPFL. Lastly, section 7 presents conclusions.

2. System Architecture

This section describes the logical architecture of the hardware, software, and databases
that use BPFL. We envision the system running on a distributed heterogeneous comput
ing system connected by local area networks. A typical fab uses large microcomputers
for cell controllers, a large mini- or mainframe computer for area and factory control, and
a collection of workstations and terminals foruserinteractions. Figure 1 shows a typical
system. Notice that cell controllers have local databases and the fab has a large shared
database server, which motivates the need for a distributed database. Terminals and
workstations are provided where appropriate. They can be connected either to a terminal
server or to a convenient computer. Lastly, equipment is connected to the cell controll
ers.

This architecture suggests a hierarchical structure (i.e., a cell computer is subordinate to
an area computer which is subordinate to a factory computer) butin fact programs on any
computer can access databases and programs running on any other computer using an

Terminals

Workstations

Li
Factory

Computer

Local Ana Network

CeU
Computer -o o

s o

Workstation

Terminals
Wotkctl

5
itabase
Server

Cell
ComputerHO o

Workstation

Terminals
WotkceH

Figure 1: Typical fab computing system.



interprocess communication protocol.

A key component of the system is a shared CIM database that stores all information
about thedesign, manufacture, and sale of semiconductors. Thisdatabase contains infor
mation about the fabrication facility (e.g., rooms and areas, equipment, and utilities),
process-flow specifications, WIP (e.g., lots, wafers, data collected during processing,
material, etc.), equipment (e.g., status, recipes, qualification and maintenance logs, reser
vations, etc.), test data, product inventory, and orders. While the database is treated logi
cally as a single centralized database, the architecture that we envision stores data in a
distributed heterogeneous database (e.g., GESTALT [2] or INGRES/STAR5). Data will
be located on the computer that optimizes the cost, reliability, and access constraints
imposed by its use. For example, equipment recipes are stored in databases on the cell
computers, test data is stored on area computers in testing, and production schedules are
stored on the factory computer.

A heterogeneous distributed DBMS is required for two reasons. First, different applica
tions in the fab have different data requirements. One DBMS cannot satisfy all these
requirements. For example, the real-time performance and data volume required by
some on-line monitoring applications can only bemettoday by file systems.
Second, it must be possible to integrate existing applications that use older technology
storage systems (e.g., VSAM files and IMS databases) with this new architecture. It
would be prohibitively expensive to rewrite all corporate applications (e.g., order pro
cessing and product inventory) because anew system was introduced into the fab. How
ever, these new applications often must access the data managed bythese older corporate
applications. A distributed heterogeneous DBMS that provides gateways to different
storage systems will allow these fab applications to access new and old data. Conse
quently, data will be stored in many different systems including third generation database
systems (3GDBS) [24], conventional database systems (e.g., relational, network, and
hierarchical), and files where appropriate.

A 3GDBS is required for many CIM applications. A 3GDBS supports relational data
storage and access, an object-oriented data model (i.e., inheritance, user-defined data
types, and methods), and arules system. An example is the POSTGRES system being
developed at Berkeley [23,25]. A 3GDBS can store and access data that cannot be
stored and accessed easily in aconventional relational database. For example, measure
ments collected during wafer processing are often represented by a sequence of values
with units. A 3GDBS can store arrays of user-defined data types (e.g., values with unit
designations) in a table.

BPFL uses the CIM database in several ways. First, BPFL programs themselves are
stored in the database. A software version control system is implemented on top of the

5INGRES/STAR isa product of Ingres Corporation, Alameda California.



DBMS to manage libraries of BPFL procedures and their status (e.g., under development,
approved for use in a particular fab, etc.).

Second, BPFL interpreters use information in theCIM database. For example, the equip
ment in the fab and its current status is maintained in the database [13]. The scheduler
uses this data to determine which piece of equipment should be allocated to a run.
Another example is the WIP system itself, which stores the state of all activeruns in the
database so that the system can recover from a failure (e.g., a computer crash). Mirrored
disks, on-line backup andrecovery,andstandby spare databases [3] can reduce the possi
bility that information is lost and reduce the down time should a failure occur.

Third, BPFL programs store and access data in the CIM database. For example, an event
log that records the start- and end-times of operations, measurements, and other process
ing information is stored in the database. The log can be accessed by a BPFL procedure
to change future processing based on previously recorded measurements (i.e., feed
forward or feed-backward control). In otherwords, the database is a convenient reposi-:
tory for data that is shared within a run and between runs.

3. BPFL Program Structure

This section describes the global structure of a BPFL process-flow and the wafer, lot, and
view abstractions supported by the language.

The current version of BPFLis implemented asan extension to CommonLisp [22]. Lisp
was chosen as the host language for several reasons. First, it is very easy to develop pro
grams that manipulate other programs in Lisp since programs are represented using the
native list data structures. The interpreters discussed above operate on BPFL programs
so Lisp simplified their development Second, Lisp provides a very powerful and flexible
framework within which to experiment with language designs. This version of BPFL is
the second version of the language and it is very different from the first version [30]. We
could not have completed this redesign of the language and reimplementation of the
interpreters if we were implementing the language from scratch. Lastly, a well-defined
and powerful object-oriented programming model, the Common Lisp Object System
(CLOS), was already available in the language. CLOS is used extensively both in the
design of the language and in the implementation of the interpreters.

The Lisp representation of BPFL programs described in this paper is not the program
representation that users will see. A forms-based, graphical user-interface can be imple
mented that provides a user friendly interface. Examples of such interfaces are the
graphical representation of process-flows in the MKS system [16], the experimental user
interface to a process-flow representation developed at TI [6], and the Stanford Graphical
Design Toolkit [26].

A process-flow is represented by a BPFL procedure that contains a sequence of steps.
Each step contains a sequence of function calls on BPFL procedures or primitives or
Common Lisp functions. Figure 2 shows the top-level process-flow definition of the



standard CMOS process that is run at Berkeley.6 BPFL procedures are defined by the
defflow construct This construct has four arguments: the procedure name, a documenta
tion string, the formal argument list, and a procedure body. The procedure body contains
a sequence of process steps. The first step allocates the wafers that will be processed by
the run. The second step measures the resistivity of the wafers to insure that they are
within tolerances. The third step creates a well. The Berkeley CMOS-16 process-flow
has 12 top-level steps.

The first argument to the step construct is a symbol that names the step. It is used to
document the step. It is also usedin step paths, described below, to specify wherecertain
events occurred in a process-flow.

BPFL provides built-in abstractions to manipulate wafers and lots. Wafers are
represented by CLOS objects. Each wafer is assigneda globally unique number that dis
tinguishes it from all other wafers. This numbercorresponds to the identifying code that
is scribed onto the back of a wafer. The wafer is also assigned a logical wafer number
within the run. For example, the i-th wafer allocated within a run is assigned logical
number i. These logical wafer numbers are used to reference the wafer within a run.
Wafer objects also have properties that specify the resistivity, orientation, and type of the
wafer.

A for is a named set of wafers. Predefined lot names are supplied for wafers that will be
used to produce product (product), wafers that should be scrapped (scrap), and
wafers that need rework (rework). There is also a current lot that contains the wafers

defflow CMOS-16 (masks, lot-size)
"U.C. Berkeley Generic CMOS Process (Ver 1.3 14-April-89)

(2 urn, N-well, single poly-Si, single metal)n
begin

Step ALLOCATE-WAFERS: ...;

Step MEASURE-RESISTIVITY: ...;

Step HELL-FORMAT ION: ...;

end;

Rgure 2: Berkeley CMOS-16 process-flow.

6A modified notation similar toaconventional algebraic language isused instead of Lisp tomake the
programs easier to read. Keywords aredisplayed in a bold font Identifiers and constants are displayed in
a roman font Keywords and identifiers may contain the dash character ('-') to improve their readability.
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that an operation should process (current). A BPFL program can define new lots to
hold test wafers or to identify subsets of the product lot that will receive special pro
cessing. For example, a process might perform measurements on special test wafers. A
wafer can be in more than one lot at the same time. During processing for example, a
wafer might need rework in which case it will be in both the product lot and the
rework lot.

Functions are provided to access all wafers allocated during a run, all wafers in a lot, the
names of lots created during a run, and the lots that contain a particular wafer. In addi
tion, functions are provided to create and destroy lots and add wafers to and remove
wafers from lots. A lot split operation can be represented either by creating a new lot and
dividing the wafers between it and the previously existing lot or by spawning a new run
and passing it a set of wafers. The first representation is appropriate when special treat
ments within a process are required and the second representation is appropriate when a
run is being split into separate runs to improve the degree of concurrent processing.
Functions are also provided to mergelots.

Figure 3 shows the wafer allocation step in theBerkeley CMOS process. Arguments can
be passed to procedures either by position or by name. Arguments passed by name can
be passed in any order because the formal argument name precedes the value in the call.
For example, the bare-silicon-wafer procedure in the figure uses named argument pass
ing to pass its three arguments: the desired crystal orientation of the wafers (crystal-size),
the desired resistivity (resistivity), and thedesired dopant (dope).

Step ALLOCATE-WAFERS: begin
/* Allocate a device lot and 2 test wafers */

let spec :- bare-silicon-wafer(crystal-face: '<100>,
resistivity: [{18 ohm-cm),{22 ohm-cm}], dope: 'p);

begin

allocate-lot(size: lot-size, snapshot: spec, lot-name: 'product);
allocate-lot(size: 1, snapshot: spec, lot-name: 'well);
allocate-lot(size: 1, snapshot: spec, lot-name: 'nch);

end;

/* divide product into sublots for different ion implants */
lot-split(lot: 'product into: '(high medium low));
set-current-lot('product);

end;

Figure 3: Wafer allocation step.



The first operation creates a specification for the types of the wafers to be allocated.
Notice that the resistivity argument is enclosed in square brackets. This notation
specifies a range constant which in this case is a value between 18 and 22 ohm-
centimeters. The values in the range constant are enclosed in set brackets. This notation
specifies a value with unit designation. The first expression is the magnitude and the
second expression is the unit designation. For example, {18 ohm-cm} denotes the value
18 ohm-centimeters.

The next three operations allocate wafers and assigns them to lots. The size argument
specifies how many wafers to allocate, the snapshot argument specifies the required pro
perties for the wafers, and the lot-name argument specifies the lot in which to put the
wafers. The first allocate-lot call allocates the product wafers and the next two calls allo
cate test wafers.

After the wafers are allocated, the product lot is divided into three subsets that will
receive different treatments at the ion implanter. The lot-split function partitions wafers
from one lot into one lot to one or more other lots. It does not remove wafers from the

source lot, which in this case is the product lot The last operation in the step sets the
current lot to the product lot, which contains the wafers on which product will be
fabricated.

Figure 4 shows the WELL-FORMATION step. This step contains five operations. The
first operation creates a sacrificial oxideusing the wet-oxide BPFL procedure. The lots to
which the operation should be applied are specified in the with-lot statement Notice that
the product lot and nwell test lot are processed by this operation. The second
operation calls the pattern procedure, which performs a lithography operation. The argu
ment specifies the mask to use in the exposure operation, which in this case is the
WELL mask.

The third operation calls the implantation procedure, which performs an implant opera
tion. The arguments specify the dopant, dose, and energy level for the implant and a
parameter for a SIMPL interpreter.

The fourth operation is a nested step that drives-in the well. The drive-in is implemented
by calling the oxide-etch, strip-resist, anddry-oxide procedures. Notice that the wet and
dry oxidations are performed on the wafers in the product and nwell lots.

The lastoperation in the outer step measures the oxide thickness. Most BPFLprocedures
shown in this example are taken from libraries of procedures that are used by many
processes.

The information specified in the process-flow thus far will be of interest to most inter
preters. However, some interpreters need information that is meaningless to other inter
preters. BPFL providesa model to specify information in different views of the process-
flow. For example, the fabrication view describes the information needed to manufac
ture IC's. Information needed to simulate the process that is not meaningful to the fabri
cation process is specified in the simulation view. For example, the SIMPL implant

10



Step WELL-FORMATION: begin
/* Implant well and drive it in. */
with-lot ('product, 'well) do

wet-oxide(time: {11 min), temp: (1000 degC),
thickness: {100 nm), measure: 'well);

end;

pattern('NWELL);

with-lot ('product, 'well) do
implantation(dopant: #m(phosphorus), dose: {4el2 /cm*2),

energy: {150 keV), simp1-depth: {300 nm));
end;

step WELL-DRIVE-IN: begin
with-lot ('product, 'well) do

oxide-etch();

end;

strip-resist();
with-lot ('product, 'well) do

dry-oxide(thickness: {300 nm), temperature: {1150 C),
time: {4 hr}, anneal-time: {5 hr});

end;

end;

measure-oxide-thickness(

pick-wafer('product), tag: nwelln, location: "well");
end;

Figure4: Well formation step.

model must be given the junction depth.

A hierarchy of views is defined as shown in figure 5. An interpreter processes only the
commands in the view in which it is interested or any parents of that view in the view
hierarchy. For example, an interpreter that executes a process-flow in the scheduling
view will see procedure calls in thescheduling, fabrication, and bpfl views.

A BPFL program specifies the view in which each operation is defined. An interpreter
begins execution in a particular view. For example, theWIP interpreter begins execution
in thefabrication view and a simulation interpreter begins execution in the simulation
view. A control-structure primitive viewcase is provided to change the view. For exam
ple, the following viewcase specifies different operations for the simulation and. fabrica
tion views.

11



Figure 5: View hierarchy.

viewcase

case simulation: simulation view operations!
case fabrication: fabrication view operations;

end;

The codein the simulation view specifies the simulation operations that model the opera
tions specified in the fabrication view. The view statement is provided to specify code
for just one view as illustrated by:

view fabrication: fabrication viewoperations;

which specifies operations in thefabrication view.

Simulation input-generator inteipreten must maintain a model of the current state of
wafers as they are processed. Wafer state information is stored in a data structure that is
similar to the external profile interchange format (P1F) used by most simulators. The
definition of this data structure and examples of its use are given in section 5.

The code in thefabrication view specifies the operations required to make the IC. These
operations allocate equipment and issue commands either directly to the equipmentor to
an operator who performs the operation. Examples of these operations are given in the
next section.

4. Fabrication View

This section describes the BPFL abstractions provided to support IC fabrication. Figure 6
shows the software architecture of the WIP system. The WIP interpreter process
(WIPIP) accesses the CIM database, communicates with operators through a user inter
face process (UIP), or communicates with equipment through an equipment interface
process (EIP). The WIP interpreter and equipment interface processes are server
processes. In other words, they handle many runs and equipment at the same time. In
the Berkeley implementation, WIPIP is a Common Lisp program, EIP is the object-
oriented SECS server developed by Wood [33], and UIP is an Application-By-Forms

12



Figure 6:WIP system architecture

(ABF) program.7 Allof these processes access shared data stored inthe CIM database.
The remainder of this section describes the abstractions to allocate and communicate

with equipment, to communicate with operators, to log events and measurements, to
specify constraints and rework, and to specify feed-forward and feed-backward control.

4.1. Equipment Abstractions

The equipment in a fab is described in the database so that equipment specific commands
and settings can be separated from the commands to move lots, communicate with an
operator, and perform other housekeeping operations. An object-oriented design is used
to facilitate adding new types of equipment to the system. Figure7 shows the equipment
class hierarchy. In addition, the following class is defined that contains status informa
tion on all equipment

7ABF isaproduct of Ingres Corporation, Alameda, California.
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Figure 7: Equipment class hierarchy.

Equipment-Status(

equipment: Equipment*
status: (FREE,PROCESSING,OFF-LINE,WAITING-REPAIR,

BEING-REPAIRED, BEING-MAINTAINED),
allocated-to: datetime,
estimated-time-available: datetime,
time-last-used: datetime)

The equipment attribute contains a reference to an instance of an equipment object The
asterisk denotes that the reference can be to an equipment object or an object of a class
that inherits from equipment(e.g., tylan).

Equipment is allocated to a run by the with-equipment construct, which takes the name of
a specific piece of equipment (e.g., lam-etcher-01), the name of a category of equipment
(e.g., oven), or a list of equipment names or categories and allocates a currently free
piece of equipment that satisfies the specification. The equipment allocation function
also implements the equipment reservation or scheduling policy [14,19,27]. A CLOS
object that represents the allocated equipment is bound to a variable which can be used in

14



the body of with-equipment. Other users are prohibited from using the equipment while
it is allocated.8

After the particular piece of equipment has been allocated, operations are performed
either directly by equipment operations or indirectly by communicating with anoperator.
Figure 8 shows a BPFL procedure that implements a hard bake operation that illustrates
how equipment is allocated and direct execution operations are specified. The hard
bake-resist procedure takes one argument that selects either a standard or double-photo
hard bake.

The fabrication view in the procedure body allocates an oven, downloads a recipe to the
oven, executes the recipe, and deallocates the oven. The recipe in this example is
specified with methods on the piece of equipment (set-temp and wait). These methods
are compiled to SECS-II commands. If the equipment allows recipes to be downloaded
dynamically, the code in the body of the with-equipment construct can use the database
to track the recipes currently in the equipment and download the recipe when needed.

defflow hard-bake-resist(double-photo)
"Hard bake resist on wafers."

begin
viewcase

case simulation: ...;

case fabrication: begin
with-equipment an-oven: 'oven do

if double-photo then
set-temp(an-oven, {150 degC});

wait(an-oven, {30 min});

else

fi;

end;

end;

end;

end;

set-temp(an-oven, {120 degC});

wait(an-oven, (20 min});

Figure 8:Equipmentoperation example.

* Functions are also provided so that fab managers can deallocate equipment through a facility
management program should the need arise.
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4.2. Operator Communication

The user-dialog function can be used to communicate with an operator. This function
calls an ABF frame in the UIP. A frame contains a form through which data can be
displayed to or edited by the operator and operations thathe or she can execute [18]. The
form contains data display fields that describe the operation to be performed and data
entry fields in which the operator can enter measurements and status data. The frame
includes operations the operator might need to execute such as abort an operation, opera
tion completed, check equipment status, and disconnect from a run.

Figure 9 shows a procedure that communicates with anoperator to inspect the resiston a
wafer. The body of the procedure allocates a microscope and asksthe operator to inspect
each wafer in the lot The operator enters wafer identifiers and inspection results into the
form in the inspect-resist frame shown in figure 10that is called by the user-dialog com
mand. The data entered by the operator is returned to the procedure as a list of two lots:
those to be reworked and those to be scrapped. The procedure moves the wafers from the
current lot to either the rework or scrap lots. After examining the wafers, the
microscope is deallocated.

4.3. WIP Log
A BPFL procedure can append records to the CIM database to log events that occuror
measurements that are taken during processing. The log is represented by a sequence of

defflow inspect-resist ()
"Inspect each wafer and put wafers to be reworked into rework

and wafers to be scrapped into scrap.**
begin

view fabrication:

with-equipment scope: 'microscope do
let results :« user-dialog(name: 'inspect-resist,

tag: ** inspect-wafer-resist**, equipment: scope);
begin

move-sublot(first (results), 'current, 'rework);

move-sublot(second(results), 'current, 'scrap);

log('Resist-Inspection-LO, wafer-status: results);
end;

end;

end;

Figure9: User-dialog function example.
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Figure 10: Inspect-resistframe.

CLOS objects of different classes. Each class represents a different type of event that is
being logged. Figure 11 shows the class hierarchy. Figure 12 shows the database table

Analytical-Equipment-LO

Log-Object

Processing-Equipment-LO

Figure 11: WIP log objectclass hierarchy.
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definitions for the different typesof logobjects (LO).

The log is stored in the CIM database as a separate relation that contains information
about each entry (e.g., the time the object was written and the run that wrote it) and a
reference to the specific LO. The log objectwritten in the inspect-resist procedure above
was a Resist-Inspection-LO object which recorded the status entered by the operator for
each wafer inspected.

The WIP-Log entry also includes attributes that allow a user to determine which opera
tion in a process-flow wrote the entry. The process-name attribute specifies the process,
the procedure-name attribute specifies the procedure, andthe step-path attribute specifies
the step that wrote the entry. The value stored in the step-path attribute contains the
current step names concatenated together to form a string. A path name is required
because steps can be nested. For example, the WELL-FORMATION step shown in figure
4 contained a nested step WELL-DRIVE-IN. Consequently, the step path for a log entry
written in the WELL-DRIVE-IN step is 4,WELJL-FORMATION/WELI^DRIVE-IN.,,

The time attribute specifies the date and time when the object was written and the tag
attribute records a value included in the command that writes the log object The tag
attribute can be used to specify a unique string that identifies the log objects written by a
particular command. This string can be used to simplify the predicate required to search
the log for all objects written by the command.

WIP Log Class
WIP-Log (run-id: integer, log-object: Log-Object*, process-name: string,

procedure-name: string, step-path: string, time: datetime,
tag: string)

Analytic EquipmentLog Objects
Log-Object {)
Nanospec-LO(t: unit[]) inherits (Log-Object)
Ellipsometer-LO (t: unit[J) inherits (Log-Object)
Alphastep-LO(height-array: unit[J) inherits (Log-Object)
Resist-Inspection-LO (wafer-status: string) inherits (Log-Object)

• • •

Processing Equipment Log Objects
Laml-LO(wafer-etch-time: datetime) inherits (Log-Object)
Sink8-LO(etch-time: datetime, resistivity: unit) inherits (Log-Object)

Figure 12: Database schema for WIP log objects.
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The log function is provided to write log entries. The arguments to log include the log
object class to be written and a collection of class specific arguments that record the
desired data. For example, the logcommand in the inspect-resist procedure above is:

log('Resist-Inspection-Log, wafer-status: wafer-inspections)

The first argument is the log object class and the class-specific argument is an array of
wafer status data.

The log can be queried to fetch arbitrary setsof log objects that can be analyzed to deter
mine what happened when the process was run. Queries can be executed from an ad hoc
query interface, an engineer's notebook interface [1], or a BPFL program. The
engineer's notebook interfaces allows a user to browse the log and create hypertext links
to particular entries. A program can access the log to make decisions based on it's past
history without having to create special data strutures to save the desired data. In other
words, the log acts as an extensible data structure for recording information about the run
that can be queried by the process-flow itself.

Figure 13 shows three sample log queries specified in an extended version of SQL mat
can be run. The first queryretrieves all log objects written for a specific run. This query
creates a data set about the run that can be further analyzed. The second query shows

/* retrieve log entries for run 132 */
select*

from WIP-Log
where run-id = 132

/* retrieveresist-inspect measurements forCMOS-16runs in
the past 30 days */
select log-object.wafer-status
from WIP-Log
where process-name = "CMOS-16" and time £ todayO - "30 days"
and class(log-objeci) = "Resist-Inspect-LO"

/* calculate the average numberof ellipsometer entrieswritten for
eachrun since the beginningof the year */
select averageOog-object)
from WIP-Log
where time 2 "1 January 1990*'

and class(log-object) = "Ellipsometer-LO"
group by run-id

Figure 13:Sample log queries.
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how particular log entries for a collection of runs can beretrieved. The last query shows
how the log can bequeried to determine statistics about equipment usage.

4.4. Constraints and Rework

Process-flows oftenrequire the specification of time constraints between operations (e.g.,
the time between exposing and developing theresist in a lithography operation must be
less than one hour) and rework loops. BPFL provides functions to implement both
features. These functions are typically of interest only to the WIP interpreter and
scheduler because they deal with fabrication issues.

Constraints are specified as a scope over which certain predicates must be true. If a con
straint is violated, the interpreter raises an exception that must be caught by a handler
that knows how to deal with the situation. The proposed ANSI standard Common Lisp
conditions packageis used to define exception handlers and raise exceptions.

The constrain statement specifies the constraint, the action to take if the constraint is
violated, and a sequence of statements over which the constraint must hold. For exam
ple, the following constraint suspends processing if the temperature in the fab goes above
72 degrees farenheit

constrain

case current-temperature > {72 degF) then suspend-run();
begin

statement;

statement;

• • •

end;

The case clause specifies a constraint predicate which is followed by a then clause that
specifies what to do if the constraint is violated. Several case-then clauses can be
specified in one constrain statement The WIP interpreter implements environmental
constraints by passing them to an environment monitor that will notify the WIP inter
preter if the condition is violated. After posting the constraint, the WIP interpreter con
tinues execution of the operations in the constrain body. The constraints are removed
when the execution of the body is completed.

A time constraint is more complicated. The following code specifies constraints on the
time between lithography operations:

contrain

case ((max-time-between('spin-on-resist, 'expose-resist) > {2 days))
or (max-time-between('expose-resist, 'develop-resist) > (1 hour}))
then signal('time-constraint-violation);

begin
spin-on-resist();
expose-resist(mask-name: mask);
develop-resist();
hard-bake-resist(double-photo: true);

end;
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The body of this statement spins, exposes, develops, and hard-bakes the resist. Time
constraints are defined between spinning and exposing the resist (two days) andbetween
exposing and developing the resist (one hour). The arguments to the max-time-between
function are function names. Max-time-between returns the time between the last equip
ment operation executed in the first function and the first equipment operation in the
second function. This function is only useful in constrain predicates because it is not a
true function.

Time constraints are implemented by the WIP interpreter. It maintains a data structure
thatkeeps track of equipment operations called from functions within a constraint body.

Constraints are frequently used inside a rework loop. The rework loop specifies the pro
cessing to be done, a test for correctness (e.g., inspecting the resist with a microscope),
and operations to execute if one or more wafers fail the test The rework function takes
the following arguments:

(1) the operations to perform (body),

(2) a procedureto test whether the operations were successful (test),

(3) the number of times to retry the loop before giving up (retries),

(4) operations to perform before retrying the operations in the body (rework-prefix),
and

(5) a function to call if the retry count is exceeded (retry-failure).

The semantics of the rework function are shown in figure 14. The test function tests the
wafers and puts the ones that can be reworked into rework and the ones that cannot be
reworked into scrap. The loop is exited if the rework lot is empty. Otherwise, the
rework prefix is executed and the rework wafers are reprocessed.

Figure 15 shows the definition of the pattern procedure which uses a rework loop, a con
straint, and the inspect-resist procedure described above. Notice that the contrain dis
cussed above is used in the body of the rework loop to performthe patterning operation.
The only difference is that instead of raising a general exception theforce-rework excep
tion is raised which is caught by the rework statement. This exception causes all wafers
to be reprocessed as though they failed the test after processing.

4.5. Control and Data Structures

BPFL is embedded in CL so the full complement of Lisp control and data structurescan
be used. For example, a BPFL procedure can store a measurement in a variable which
can be tested later in the run to change the processing on the lot In other words, simple
programming constructs are used to specify feed-forward control. Feed-backward

9Functions are provided so that equipment operations performed by an operator using a user-dialog
function can also be logged correctly.
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let retry-count :- retries;
begin

with-lot ('current) do
while true do

body;
test;

deallocate-wafers('scrap):
if null (lot-indexes ('rework)) then return; fi;
if zerop (retry-count) then retry-failure; fi;
retry-count :- retry-count - 1;

set-current-lot('rework);

rework-prefix;
end;

end;

end;

Figure 14: Semantics of rework.
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defflow pattern (mask, will-double)
/* Pattern a positive resist. */

begin
viewcase

case suprem: ...;

case fabrication: begin
rework

contrain

case ((max-time-between ('spin-on-resist, 'expose-resist)
> [2 days))

or (max-time-between('expose-resist, 'develop-resist)
> (1 hour}))

then force-rework();
begin

spin-on-resist();
expose-resist(mask-name: mask);

develop-resist ();

hard-bake-resist (will-double: will-double);
end;

test inspect-resist ();
retries 5;

rework-prefix strip-resist();
end;

end;

end;

end;

Figure 15: Patternprocedure definition-

control is specified by having the procedure query the database for information stored
there by previous runs.

This section described the functions provided to execute equipment operations, to com
municate with the operator, to write log entries, and to control the flow of execution. The
next section describes the BPFLfunctions provided to specifywaferstate changes.

5. Simulation View

This section describes the BPFL abstractions used to specify information required by
simulation input-generator interpreters and an example of generating SIMPL input
BPFL provides abstractions for material specifications, masks, and wafer profiles.

Figure 16 shows the class hierarchy for materials. These classes have attributes that
describe properties of the material and names that simulators use for the material. For
example, the class poly hasthe following attributes: 1)crystal that specifies that poly has
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amorphous-silicon

material

Figure 16: Material class hierarchy.

boronll

positive-resist

negative-resist

exposed-resist

unexposed-resist

a crystal structure, 2) grain-size that specifies the grain size of the poly material, and 3)
simpl-name that specifies the name for poly used by the SIMPL simulator. Material
objects are used to specify materials usedin anoperation.
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Masks are represented by a class that includes two attributes: name and location. Name
specifies the external name of the mask (e.g., NWELL). Location specifies a set of
design layers that are used to make the mask. Location values are expressed as predi
cates that indicate which regions of the mask areclearand dark. For example, the value
NOT layer-1 specifies that the colored area(s) in the design layer ktyer-1 are inverted,
which means those areas are clear in the mask. The boolean operator OR specifies area
union and the operatorAND specifies area intersection. Mask objects are used as argu
ments to procedures that perform lithography operations such as pattern in Figure 15.

A profile interchange format (PIF) abstraction is provided by BPFL to represent the
stacking of materials in a wafer profile. A data structure is maintained that contains a
collection of snapshots that represent wafer profiles. The structure is optimized so that
only one copy of the information is maintained for wafers with the same profile. Opera
tions are provided to change snapshots to simulate the effects of processing operations
(e.g., depositing material, etching material, and removing material).

Figure 17 shows a block diagram of a wafer profile that contains three layers: silicon,
oxide, and resist. The area above the resist layer is the ambient air. Figure 18 shows a
graphical depiction of a PIF snapshot for this block diagram. Snapshots are composed of
segments, boundaries, and attributes. Segments specify the information about a region or
layer in a profile. They are represented by labeled ovals in the graphical depiction. The
snapshot has three segments that correspond to the three layers in the block diagram.
The ambient segment is a built-in segment supplied by the system for each snapshot

A boundary specifies that one segment is on top of or next to another segment Boun
daries are represented by solid lines in the graphical depiction. The profile above has

Ambient

Resist

Oxide

Silicon

Figure 17: Block diagram ofa wafer profile.
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Figure 18: Graphical depiction of the PIF structure for the blockdiagram in figure 17.

three boundary lines that represent that each layer is on top of another. The dotted
arrows point to location predicates that specify where the boundaries exist For example,
boundary between oxide and silicon everywhere so the predicate is T which represents
true in Lisp. Oxide is exposed to the ambient on the top and backside of the wafer as

specified bythe two boundary lines that exit the Ambient oval.10
Attributes are used to specify properties about the profile (e.g., material name,whethera
resist is exposed, boundary locations, etc.). They are represented by pairs of keywords
and values. Attributescanbe attached to segments, boundaries, andotherattributes.

Functions to manipulate PIF snapshots are provided that correspond to typical operations
in a process-flow. Figure 19is a partial list of these functions with a short description of
their semantics. Forexample, the function

etch-material-in-lot(#m(resist, negative: nil, exposed: true),
true)

changes the PIF structure of all wafer snapshots in the lot to etch the exposed resist
These functions are usedto model changes in wafer profiles asa lot is processed.

Figure 20 shows theexpose-resist procedure called from the pattern procedure defined in
figure IS. This procedure takes a mask name argument which specifies the mask to use

10 The block diagram in figure 17 only depicts the material on the top ofthe wafer.
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Function Description

find-segments Return a list of segments that have the desired properties.

find'Surface-segments Restrict find-segments to exposed segments.

set-ptf-attr-in-lot The given attribute is added to the given segments in all
snapshots.

deposit-in-lot A segment with the given attributes is added to all snapshots.
Its location may be restricted to the top side.

split-segments-in-lot Segments that overlap the given location are split in each
snapshot One new segment is within the given location, the
other is outside.

etch-material-in-lot All surface segments made of the given material are etched
down completely where they are exposed.

Figure 19: Higher level functions to manipulate PIF structures.
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defflow expose-resist(mask-name)
let mask :- find-mask (mask-name);

location :- mask-location(mask);
exposure-location :-

intersect-layers(top-side(), invert-layer(location));
newsegments;

begin
viewcase

case simpl: ...;
case fabrication:

with-equipment e: 'exposure-machine do
viewcase

case sample: ... ;

case fabrication:

user-dialogCalign-and-expose, mask: mask);
end;

end;

end;

/* modify PIF snapshot */
new-segments :• split-segment-in-lot(

find-segments(material: #m(unexposed-resist)),
exposure-location);

modify-segment-material-in-lot(new-segments, exposed: true);
end;

Figure20: Expose-resist procedure definition.

in the patterning operation. The procedure has four local variables: 1) the mask object
(mask), 2) a specification of the dark areas on the mask (location), 3) a specification of
the clear areas on the mask (exposure-location), and 4) a variable to hold the list of new
segments (new-segments); The clear area is calculated from the dark area specification
given in the mask object The body of the procedure executes the expose operation and
modifies the PIF snapshot The commands to change the PIF snapshot follow the fabri
cation command so that the changes will not have to be undone if the equipment opera
tion fails. Notice that simulation view commands are mixed with fabrication view com
mands to specify parameters that are specific to a particular simulator (e.g., SAMPLE
and SIMPL).

The commands that change the PIF snapshot split the resist segments into exposed and
unexposed segments. Exposed segments are ones on the top of the wafer where the mask
is clear. Figure 21 shows ablock diagram ofthe wafer profile after the expose-resist pro
cedure has been executed on awafer with the profile shown in figure 17.
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Figure 21: Block diagram after expose-resist procedure.

Figure 22 shows the definition of the develop-resist procedure called in the pattern pro
cedure. This procedure contains commands that specify operations in three views:simpl,
sample, andfabrication. The simplview operation specifies the SIMPL simulator com
mand for a develop operation. The fabrication view operation executes a particular

defflow develop-resist()
begin

viewcase

case simpl: simpl-op("DEVLn, "ERST");
case sample: ...;

case fabrication:

with-equipment e: 'mti-developer do
develop-recipe(e);

end;

end;

etch-material-in-lot(

#m(resist, negative: nil, exposed: true), true);

etch-material-in-lot(

#m(resist, negative: true, exposed: nil), true);
end;

Figure 22: Develop-resist procedure definition.
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recipe on a developer. The two function calls at the end of the procedure remove the
exposed positive resist and the unexposednegative resist from the PIF snapshots. Figure
23 shows a block diagram of the wafer profile after the develop-resist procedure has been
executed on a wafer with the profile shown in figure 21. Notice that the exposed seg
ments in the block diagram have been removed.

The SIMPL input-generator interpreter produces the following code when it is run on the
expose-resistand develop-resist procedures given the wafer profile shown in figure 17:

EXPO mask-name no ERST

DEVLERST

The EXPOcommand is generated when the expose-resist procedure is interpreted and the
DEVL command is generated when the develop-resist procedure is interpreted. The
mask-name in the EXPO command is replaced by the particular name of the mask passed
to the procedure. The no argument specifies that the mask should not be inverted. This
value is derived from the mask object The ERST argument specifies the SIMPL name
for exposed resist. The DEVL command takes one argument, which specifies the resist
that should be developed.

This section described the BPFL abstractions supplied to specify information required by
simulators.

6. Discussion

This section comments on the size and complexity of process-flow specifications,
describes the status of the BPFL interpreters that have been implemented, and discusses
the infrastructure required to implement a CIM systemlike the one described here.

Ambient

Resist

Oxide

Silicon

Figure 23: Block diagram afterdevelop-resist procedure.
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A BPFL specification for the Berkeley CMOS-16 process has been completed. The
specification is approximately 650 lines of BPFLcode not counting the definitions of the
75 ABF frames used for operator interactions. The textual definition of this process is
approximately 500 lines not counting the equipment recipes. While the BPFL
specification is larger and more complex than the textual specification, remember that it
is more complete and it can be used both for fabrication and simulation.

The size problem can be reduced by using libraries of predefined procedures. In a com
mercial fab that runsmany processes, procedures can be developed that canbe shared by
the different process-flows. An important side-effect of using a formal process-flow
language is that the design, implementation, and control of procedure libraries can be
managed more easily. More importantly, processengineers can re-use procedures in the
library and thereby shorten process development time. The full benefits of using a for
mal process-flow language will not be realized unless it is used with a good procedure
library.

We have implemented a WIP and simulation input-generator interpreters. The WIP sys
tem is being tested now in the Berkeley Microfabrication Laboratory [28].

The simulation input-generator interpreter can generate the input needed by the PROSE
simulator. We are in the process of completing the connection between the interpreter
and the simulator.

BPFL programs can be decomposed into user-defined functions (e.g., defflow procedures
and Lisp functions) and built-in functions. Built-in functions are either lisp functions
(e.g., setf or let) or functions supplied by an interpreter (e.g., user-dialog is supplied by
the WIP interpreter). A Lisp code walker is used as the basis for the two interpreters. A
particular interpreter is implemented by supplying definitions for the built-in functions
defined for that interpreter.

The WIP interpreter just interpretes the BPFL program. The state of a run is check-
pointed to the database when operations will take a long time (e.g., an equipment opera
tion or an operator dialog). The run is retrieved from the database when the WIP inter
preter receives input for it (e.g., the equipment or operator signals completion of an
operation). Recall that the WIP interpreter is a serverprocess so it switches between dif
ferent runs. The WIP interpreter is approximately 10,000lines of lisp.

The simulation input-generator interpreter is slightly different. It walks the BPFL pro
gram and translates it into a lisp program that will generate the simulation input when
executed. This design simplified the implementationof the interpreter, which is approxi
mately 9000 lines of lisp.

Considerable infrastructure is required to implement a CIM system such as the one
described here. Some parts of the system have been easy to implement (e.g., the CIM
database and the WIP system user interface) because we could use commercial software
packages. Other parts of the system were relativelyeasy to implement because we chose
good tools (e.g., Lisp simplified the implementationof BPFL and the interpreters).
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Some parts of the system have been very hard to implement We have had considerable
trouble implementing equipment connections and a graphical user interface to specify
BPFL. Fortunately, tools are now available that should alleviate these problems.
Wood's SECS server provides an excellent model for connecting equipment to the sys
tem and interfacing programs to it And, the PICASSO graphical user interface develop
ment system will make it possible to experiment with forms- and icon-based interfaces
forBPFL[20].

Lastly, the recent development of distributed prograrnming tools for Unix' (e.g., OSF's
Decorum and Unix International's Open Network Computing) should simplify the
development of a CIM system. Good application program interfaces (e.g., remote pro
cedure call) and other higher level services (e.g., program abstractions to register for a
stream of monitoring data similar to the Dow Jones news wire feeds supported in
Teknekron's software bus [21]) will further simplify CIM system development

7. Conclusions

This paperdescribed the design of a process-flow language that can be used to represent
IC manufacturing processes. The novel features of the language are:

(1) integrated process specifications that can be used by different applications (e.g.,
WIP, simulators, etc.),

(2) a PIF model that is used to support simulation process correctness interpreters,
and

(3) support for the full power of a programming language (e.g., data and control
structures and exception handling).

We believe BPFL achieves the design goals established for the language. Examples were
presented that illustrated how one specification can be used by different interpreters.
And, examples were presented that showed how conditional processes and feed-forward
and feed-backward control can be specified.

Two interpreters for BPFL have been implemented: a WIP system and a simulation
input-generator. While further experimentation is needed, our experience to date with
the language and these interpretershas been positive.
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