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Abstract

Curtailable electricity service is a voluntary option in which customers receive credits
for permitting the utility a certain number of discretionary interruptions per year. This
paper describes a methodology that allows an electric utility to design and manage these
service offerings to achieve maximal peak load reduction. This methodology was
developed as a case study project jointly sponsored by the Electric Power Research
Institute (EPRI) and New England Electric Service (NEES). It provides a decision
support tool for the system dispatcher, who must decide on a daily basis, when to call
for an interruption; as well as methods for planning new service offerings, by
determining the service attributes and pricing that will lead to the most efficient use of
customer interruptions. Although the methodology was developed for NEES, it can be
applied at other electric utilities, including those who use curtailable service offerings to
reduce peak energy costs or to improve tight reserve margins.
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Interruptible and curtailable service contracts for electricity have gained
popularity over the last decade as load management techniques for reducing utilities'
operating cost and mitigating capacity shortages. Many utilities offer discounted
electricity rates to customers (usually industrial) who allow part of their load to be
curtailed at the utility's discretion. The contracts typically specify the warning time,
maximum duration and frequency of the curtailments. In some cases, customers can

choose the terms of their contract from a menu that specifies the discounts associated

with various available sets of options.

The models and analysis described in this paper were developed as part of a case

study conducted at New England Electric System (NEES) which currently offers
curtailable service called CIS (Cooperative Interruptible Service) to its large industrial
and commercial customers. The case study was jointly sponsored by NEES and the
Electric Power Research Institute (EPRI). Some related background details concerning
NEES are outlined in Section 1. A more complete description and rationale for the

program is contained in a working paper by Wharton (1988).

This paper considers two problems faced by an electric utility with curtailable
service subscribers. (1) How should the existing contracts be used in the best possible
way to reduce the utility's peak loads? (2) What is the incremental value of additional
interruptible service contracts and what options should be offered? The specific
objective function used in this paper is minimization of the utility's annual peak load.
This was motivated by the needs of NEES that stem from the cost allocation rules of
the New England Power Pool (NEPOOL) to which NEES belongs. Reducing the
annual peak load is an important objective for all electric utilities, since capacity
requirements and reserve margin requirements are largely dictated by peak loads. The
same methods that we have developed in this paper can be applied to obtain the

maximal increase in available reserve margin or to reduce the peak real time price or

spot price that the utility experiences.

The economics literature dealing with design and pricing of

interruptible/curtailable service contracts for electricity has addressed these issues from
the point of view of product differentiation with respect to the attribute of service
reliability. Some of the early work on differentiation and pricing of service reliability in
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the electric power industry and on the efficient rationing of power is due to Crew and
Kleindorfer (1978), Fisinger (1980), Marchand (1974), Telson (1975), Tschirhart and Jen
(1979) and Vickery (1971). More recent work has focused on the design and pricing of
priority service and the alternative implementations which include interruptible and

curtailable service contracts. This work is contained in the articles and reports by Chao
et. al. (1986), (1987) (1989), Oren and Doucet(1990) Smith(1989) Viswanathan and Tse
(1989).

The work presented in this paper differs from previous research in several
respects. First, much of the earlier work on priority service and rationing is based on

supply uncertainties, while here the focus is on the reduction of demand fluctuations.

Second, while most of the previous work does not address the operational aspects of
implementing a priority service program, a main focus of this paper is the operational
dispatching of service curtailments. From this perspective, curtailable service contracts
are a resource rather than a component of service reliability. Consequently, the
management and design of the contracts becomes a problem of allocation and

acquisition of a scarce resource to meet uncertain demand. A key objective of this
research was to develop operational tools and decision aids for (1) the dispatcher, who
decides what interruptions should be called for on a particular day, and (2) the rate
design manager, who decides what menu of service options and prices to offer. An
important consideration in this development has been the availability of information
and the ease of use of the operational tools.

The first part of the paper describes a methodology used for dispatching the
customer load reductions available from a given set of interruptible service contracts.
The methodology is evaluated using simulation based on the historical load data from
NEES. The second part of the paper explores the desirable mix of service contracts and
their relative pricing so as to achieve a reduction in annual peak at the least social cost.
Although the analysis is performed in the context of NEES's load patterns and service
offerings, its results and insights should apply to other interruptible and curtailable
service programs, which are currently offered in some form by most electric utilities.
As noted previously, other electric utilities may replace annual peak demand with other
metrics to be optimized over the year, such as peak real time price or reserve margin.
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1. Background on NEES

New England Electric Service (NEES) offers a voluntary interruptible service
program, known as Cooperative Interruptible Service (CIS) for its major industrial and
commercial customers. CIS subscribers specify a firm power level or load, which must
be at least 10% below their annual peak demand. Upon notification by NEES, subject
to a specified warning time, each subscriber agrees to reduce his load below his firm
power level for the next day. The period of load curtailment lasts throughout the
normal business hours of the day, which constitute the peak period. Such calls to
subscribers can be made at most 30 times per year under the current service offerings.

The primary purpose of CIS is to provide a means for reducing NEES's largest
daily peak loads. Peak loads are a key factor in determining supply costs for all electric
utilities. For the region served by NEPOOL, the New England Power Pool, which is
the central supplier and dispatcher of power for NEES, peak loads also increase the risk
power shortages, because generation capacity is tight in this region. NEES must pay a
yearly demand charge to NEPOOL based on its annual peak load; thus peak load
reduction results in a direct costs savings in this demand charge. Reduction in the
largest daily peak demands also decreases the risk of power shortfalls, both for NEES's
customers, and for NEPOOL as a whole. Because its warning time requirement is 12
to 16 hours, CIS cannot respond directly to unexpected supply shortfalls such as the
failure of a generating unit, which must be handled by other procedures.

The pattern of daily peak demands at NEES is highly variable, as shown in
Figure 1. There are two seasonal peaks: a Winter or heating peak that includes
December, January and February; and a Summer or air conditioning peak, which
includes June, July and August. There is virtually no chance of an annual peak in the
other six months of the year. In addition to seasonal changes, weekend and holiday
demands fall roughly 25% below the weekday demand in each season, which produces
the periodic oscillations in the figure. Again, there is essentially no chance of an annual
peak on a weekend or holiday. Within the peak seasonal months, there is considerable
variation from one week to the next, which is largely due to the weather. A prolonged
hot spell generally results in successively increasing demands for air conditioning as
structures gradually heat up. Prolonged cold spells produce similar results in Winter.
Thus, the accuracy of the daily peak demand forecasts is similar to the accuracy of the
daily temperature forecasts for the service region.
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NEES currently has roughly 100 MW of interruptible load subscribed to CIS,
which, in principal, should allow its annual peak to be reduced by 100 MW. The
decision of whether to call for an interruption is made sequentially each day, and it
relies on three imperfect forecasts:

(1) The forecast of the annual peak
(2) The forecast of the daily peak for the next day
(3) The forecast of the number of future daily peaks that will be larger than the
next day's forecasted peak.

Errors in any of these forecasts can cause interruptions to be allocated suboptimally.
NEES was particularly interested in obtaining a dispatching methodology that could be
characterized by a simple heuristic, which could be implemented in a spreadsheet
program used by the system dispatcher.

2. Planning and Dispatching a Single Block of Interruptible Load

This section describes the solution for the case in which all the interruptible load

is dispatched as one block, which is the current situation at NEES. We develop the
planning methodology that addresses the question: For a given amount of interruptible
load L, how many interruptions are needed for the year and what customer credits
should be offered? Given that the total interruptible load is L, we need only be
concerned with a band L below the annual peak, since that is the largest possible
reduction in the annual peak. The planning model is designed so that the probability of
missing a peak within L of the annual peak is no larger than some specified value a.
We determine the number of interruptions k such that when they are dispatched
optimally, the desired confidence level is achieved.

The dispatching model serves as a decision support tool for the system dispatcher
who must decide a day in advance whether to call for an interruption. Given k
remaining interruptions at any point in time, the best dispatching policy is to attempt
to curtail the k highest remaining peaks. At any given time, the utility knows the
seasonal distribution of daily peaks, the number of interruptions yet remaining for each
class of customers, the number of peak demand days yet remaining, the estimated
yearly peak and the daily peak forecast for the next day. The dispatching methodology
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calculates a threshold such that an interruption is called for if the daily forecast exceeds
the threshold. The threshold is updated dynamically each day, as the input information

changes.

The dispatching problem is, in principle, a stochastic dynamic programming
problem, where the state space includes the number of remaining interruptions and the
number of peak demand days remaining. Since at any point in time the forecasted
future cost depends on the highest peak (after curtailment) observed so far, the state
space must also include the highest observed peak. This value is affected by the entire
dispatching history. The resulting large state space combined with the uncertainties
involved have made the dynamic programming approach intractable. Instead, we use
an "open loop" approximation with a rolling horizon. This determines a threshold H
for the next day's interruption decision under the assumption that the same threshold
will be used throughout the remainder of the contract period. The threshold is
computed by balancing the tradeoffs between (1) the probability a of missing a peak
due to forecast error; (2) the probability /? of running out of interruptions
prematurely. While lowering H will reduce the probability of missing an important
peak, it increases the probability of exhausting the allotted interruptions prematurely.

The derivation of the threshold level and the relationship between k, a and 0

discussed above, requires specification of the two probability distributions

P{yearly peak = x | forecasted to be /*} = <t>(-^r)jf (2-1)

P{daily peak forecast =F| actual peak value =x} = ^(n^)r;? (2-2)

-z2/2
where ^(z) = e .

The probability densities (2.1) and (2.2) are assumed to be Normal with 0 means and to
be stationary, in that they are independent of the seasonal time in the year.

Historical data was available at NEES on one-day-ahead forecast errors for the

daily peaks. Figure 2 shows a histogram of the daily forecast errors for 1988 for the top
64 daily peaks, representing the typical days on which key interruption decisions will
be made. The Normal distribution (2.2) is convenient for analytical purposes, and
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based on the p-value of the Chi-sqaure statistic for the data in Figure 2, the Normal

distribution hypothesis would not be rejected at the confidence level of 10% and the
mean of the daily peak forecast errors is not significantly different from 0 for this

data. The unbiased estimate of the standard deviation <ri is 179 MW.

Historical data was not available on the errors in forecasting annual peaks and,

in any case, its sample size would be insufficient for statistical analysis. For

convenience, the Normal distribution (2.1) was assumed for the annual peak forecast
error. Based on discussions with the NEES dispatching personnel, <r the standard

deviation of the annual peak forecast error was subjectively estimated to be 100 MW.

The total forecast error, which is the sum of the forecast error and the error in

estimating the annual peak, thus has a standard deviation given by

<r2 = ]7f^. (2.3)

[This value was determined to be 205 Megawatts in the case of the NEES data.]

To capture seasonal fluctuations, a weight factor wt was determined for each

day t of the year, defined as

wt = P{day t is a peak demand day}. (2-4)

365
with W<p = Y^ wt = E[ number of peak demand days remaining at day T]. (2.5)

t=T

A "peak day" is classified as such by the system dispatcher. These days can viewed as

the set of possible candidates for interruptions. The relative frequency of "peak

demand days" was determined for each month, based on data from the three year

period 1986—1988. Weekends and holidays were assigned a weight of zero. Days with

nonzero weights are assigned equal wt values within each month determined so that

the sum of the wt in each month equals the expected number of peak demand days in

that month based on historical data. This provides us with an estimate of the

probability in (2.4).

The probability distribution for loads on peak demand days relative to the

annual peak is defined by
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F(D) = Expected fraction of peak demand days within D of the yearly peak.

The distribution F(D) was calculated empirically, based on the data for peak demand
days for the period 1986-88. The data, illustrated in Figure 3, was approximated by a

piecewise linear function, as indicated. It is assumed that the fraction F(D) is also

stationary, and thus is independent of t.

Given the independence assumption, we have that

P{the peak on day t falls within D of the yearly peak} = F(D)wt,
and (2.6)

WTF(D) = E[ # remaining peak days falling within D of the yearly peak].

Planning Problem Solution

Given the distributions above, a derivation is given in Appendix A that specifies

k, the number of interruptions required, as a function of the total interruptible load

and the number of peak days in the contract period. For planning, the formula for k

requires the selection of the probability a that a peak which should have been

curtailed is missed due to forecast error. The exact formula for the planning

relationship k cannot be solved in closed form, but is shown graphically in Figure 4.

This figure shows the function

k = k(y, WT), (2.7)

where y = za+L/<r2 and $(za) = 1—a

determines za, for given confidence level a. For example, a=10% yields za = 1.28

and for 100 MW of interruptible load and WT=60, we have y=1.28+100/(r2 = 1.76
and thus k=k(y,WT) = 33 interruptions from Figure 4. It can be seen from Figure 4
that increasing the interruptible load L will increase k the number of interruptions

required. Similarly, decreasing a, the probability of missing one of the desired peaks,

increases za which increases k.
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Dispatching Problem Solution

The dispatching decision at time T for given k is to choose an optimal

threshold H. This decision is independent of L and a. The dispatching threshold H
is determined by

H = ti - y<r2. (2.8)

where y is determined by looking up k on the vertical axis of Figure 4 and then
using the appropriate WT curve to obtain y = y(k,WT). Given a load L, it follows
from the inverse of (2.7) that the probability of a of missing a peak L Megawatts
below the annual peak satisfies

z<* = y(k,WT)-L/<r2, with a = 1 - *(zQ). (2.9)

Thus given k and T, the ztt and the corresponding probability a are adjusted
depending on the interruptible load L.

Dispatching Procedure and Simulation

The dispatching methodology discussed above was implemented in a spreadsheet,
illustrated in Figure 6, for use by the NEES system dispatcher. The user entries on the
spreadsheet are shown in boxes and were coded as unprotected cells. The calculation
portion of the spreadsheet is not shown. To begin the spreadsheet program operation,
the user specifies the initial settings shown in the first square for Yearly Peak Forecast,
Standard Deviation (of Forecast Error) and Total Interruptible Load. The user also
enters the number of interruptions permitted (30 in this case) and then sequentially
enters the Daily Forecast for each day. The spreadsheet calculates an updated
Threshold each day, based on (2.8), with y determined as described in Appendix A.
The WT values are reduced each day by the individual daily weight wt. The number
of interruptions k is reduced as interruptions occur, based on the 0,1 values in the
Int? column.

To test the methodology, the spreadsheet was applied retroactively to the 1988
data in a simulated day to day fashion. The results, as one might expect, depend
crucially on how close the annual peak forecast p is to the actual annual peak. For the
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data tested, the actual annual peak was 4280 MW. The simulation is illustrated in

Figure 5, for initial annual peak estimates of 4100 MW, 4300 MW and 4500 MW,
respectively. The 4100 initial estimate caused too many peaks in December and

January to be interrupted, as indicated. When peaks higher than 4100 MW were
observed, the forecasted annual peak was updated to the largest observed value, which
caused the large jump in August. Smaller upward jumps occur in other cases, when the

ratio k/WT is reduced due to a rapid decrease in the remaining interruptions. This
"self-correcting" characteristic of the threshold calculation prevents the remaining
interruptions from being exhausted before the end of the year. For the 4100 MW
forecast case, it also caused some of the large peaks occurring in later August to be
missed because the number of remaining interruptions was too small.

3. Designing and Dispatching Multiple Block Contracts

In this section, we extend the results presented so far to interruptible loads that

are segmented into multiple blocks, which are curtailed in a prescribed priority order as

needed. The analytical development assumes that the amount of load curtailed is a

continuous variable £, ranging from zero to the total interruptible load L. We also
show how this is implemented for the case of discrete blocks. The index t is defined in

such a way that £=0 is the first increment curtailed, and £=L is the last. For a fixed

value of a, a curtailment policy is equivalent to a set of thresholds {ha(£,L)}, which
are monotonically increasing in £, for any given value of a. The load increment t is

curtailed on day t if and only if the forecast Ft > h0(£,L). With a single block of size
L, as in Section 2, whenever the first increment £=0 is to be curtailed, the entire block
will be curtailed. Thus ha(0,L) = Htt(L).

For analytical convenience, we derive planning and dispatching policies only for
the case in which the same a value is used for all load increments L This leads to a

simple form for the threshold policy, but is optimal only under certain circumstances.

A sufficient condition is that the marginal net benefit of each KW of annual peak
reduction is constant in the range [A0-L, A0], where L is the total interruptible load.
In other situations, it is possible that the optimal a could vary with £, but we have
not analyzed this case.

Given the forecasting error distributions used in this paper and fixed a for all
load increments, we have
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Lemma 3.1. The thresholds htt(*,L) = Htt(L-£) = HQ(L) -I- £. (3.1)

Proof: Focusing on the load increment £, a corresponds to the probability that an
actual peak of A0-(L-£) is not curtailed, where A0 is the actual annual peak. Given
o, the curtailments of load increment £ should be the same as if we had a single block
of size L-£ and curtailed according to the policy in Section 2. It is shown in
Appendix A that curtailment occurs if and only if the sum of the forecast errors Et+E0
is such that A0-(L-£)+Et+E0<Ha(L-£). Thus it follows that

a = P{A0-(L-£)+Et+E0 <Ha(L-£)} = P{A0-(L-£)+Et+E0 <ha(£,L)},

while Ha(L-£) = Ha(L) + £ follows from (A.3). QED.

Lemma 3.1 simplifies the form of the optimal policy considerably, because it says
in effect that the thresholds {ha(£,L)} are implemented by curtailing down to the
threshold h«(0,L) = Ha(L). That is, for any forecast such that Ft > Ha(L), the
curtailed load should be the difference £= Ft—H<*(L).

The policy for each load increment £ is the same as if the total interruptible
load were equal to L-£. Thus, the function k=k/?(Ha(L-£),T) defined in (A.12)
gives the number of interruptions k such that (3 is the probability of running out of
interruptions prematurely when the threshold Ha(L-£) = ha(£,L) is used for the
remainder of the contract at time T. As discussed in the Appendix, the relationship
0=a/2, which approximates the optimal tradeoff between missing a peak and
exhausting the available interruptions reduces (A.12) to (A.19), which holds for all
values of £. To minimize the probability that an actual peak A0-(L-£) is not
curtailed, we use the relationship k=k(y(£)) in (A.19), which is plotted in Figure 4,
where

y(£) = z« + (L-£)/<r2. (3-2)

This solves both the planning and dispatching problems is a manner analogous to the
one block case with interruptible load L—£.

We have that k(£) = k(y(£),WT) is the number of times that load increment £
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should be curtailed with WT peak days remaining. For dispatching any load
increment £ with given k and WT, we determine a corresponding y value from
Figure 4 and then dispatch it according to the threshold value

H = n - y<r2. (3.3)

In the planning case, k(£) can be chosen so that a is constant across all £ using
(3.2). For the dispatching case (3.3), this is true at the beginning of the contract year,
but is true in expectation only thereafter. That is, after some curtailments have

occurred, the a value for the remainder of the contract year would differ from its

initial values (as in the one block case), and would differ for different load increments.

Using Discrete Multiple Blocks

Discrete multiple blocks can be used in practice by selecting any staircase

function that uniformly bounds the curve k(£) from above as illustrated for two blocks

in Figure 8. In this case, the interruptible load is segmented into two blocks of Lj and

L2 units, where the subscripts denote order of interruption. Then k(0) interruptions are

required of the low priority L: units, while k(Lx) < k(0) interruptions are required for

the higher priority L2 units. For any given set of discrete blocks, an analogous

procedure can be used to determine the number of interruptions required for each

service priority block.

Figure 9 illustrates the appropriate procedure for dispatching multiple blocks.

For the two blocks shown, L2 is the load with higher priority (fewer curtailments per

year), which has k2 interruptions remaining, and Lx is the lower priority load, which

has kj interruptions remaining. For a given T value, we select the appropriate W^
curve and determine the two intersections with the horizontal lines drawn from kx and

k2. The y value for each block is determined by its right most edge. In general, the

value yj determines the threshold Hj for each block i from the relationship

Hi = ii - yjir2, (3.4)

where the same procedure is used for any number of blocks.

At the start of the contract year, all the thresholds will satisfy
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H. = ha(£.,L) where i{ = £ L-. (3.5)
{j interrupted before i}

As interruptions are used, some priority levels will become "out of balance." However,

when a priority level has been interrupted too often, its threshold will be set

disproportionately high based on (3.4), so that the imbalances will tend to correct
themselves as the contract year progresses.

Determining a Price Schedule

In this section, we analyze the relative pricing of service priorities. We assume

that the total interruption losses for each customer load type are linear in the number of

interruptions per year, with the cost per interruption varying over the customer

population. The distribution of interruption costs defines a demand function

v(x) = the value such that at least x units of load have a cost per interruption

which is < v(x).

= credit per interruption which will elicit x units of interruptible load.

The electric utility must know the function v(x) for the customer population, but need

not know the interruption cost of any particular load unit in order to design the tariff.

Economic efficiency dictates that a lower priority block should consist of load units of

lesser interruption cost than a higher priority block. Pricing should induce customers to

assign load units to service priorities in this manner, while the contracts for the blocks

must also be consistent with the design considerations discussed in the previous section.

These goals can be achieved by a nonlinear credit schedule, in which the credit

given to each customer is linear in the subscribed load and the credit per load unit is an

increasing concave function of the allowable number of interruptions, illustrated in

Figure 10. Since the function k(£) specifies the number of required interruptions with

£ or more curtailed units of load, its inverse £(k) denotes the load £ that must be

available for curtailment during the k most severe interruptions. This can be induced
thby setting the incremental credit c(k) per load unit for the k interruption so that

c(k) = v(£(k)) for k > k(L), and c(k) = v(L) for k < k(L). (3.6)
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With (3.6), the number of interruptions k selected for each load unit £(k) is such that

the incremental credit equals the incremental interruption loss, and thus is incentive

compatible. Further, since v(£) is decreasing in £, the marginal credits are positive

and decreasing, thus establishing concavity. Finally, since £(k) was used to determine

the credit level for k interruptions, the number of subscriptions in each category will

be consistent with (A.19) and (3.2).

Discrete Block Pricing

For discrete blocks, the above pricing approach would set the credit per

interruption in each block to the value corresponding to the most costly load unit in

that block. As shown in Figure 11, the first block (low priority) with Lx units will be
interrupted kx times while the second block (high priority) with L2 units will be
interrupted k2 times. The incremental credit should be v(L!+L2) for the first k2
interruptions and v(Lj) for the incremental kj-k2 interruptions. The total credit has a

concave piecewise linear shape with the vertices corresponding to the offered contracts.

This contract structure will induce the Lj units with the lowest interruption losses to
select the low priority contract and L2 units with the next higher interruption losses to
select the high priority contract. Generalizing to the case of n blocks with respective
loads of Lx, ..., Ln and number of interruptions ki>k2>... >kn will result in a menu
of contracts with

a-)Cn = knv(

and
/ i \

for i = l,...,n—1.

where credit C- is offered for k- interruptions.

In the one block case, the utility must pay for each incremental interruption an
amount that equals the highest loss incurred by any unit of load sustaining that
interruption. Thus, the credits paid by the utility substantially exceed the cumulative
interruption losses sustained by customers as illustrated in Figure 12. This
"overpayment" in turn reduces the utility's incentive to enlist interruptible load, which
reduces the social efficiency of the system. Multiple discrete blocks can significantly
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reduce the "overpayment" and thus provide incentives to increase social surplus. Figure

13 illustrates the saving for each of the kj—k2 interruptions in which the high priority

L2 units are not curtailed in the two block case. The area A1 represents the saved social

cost of the spared curtailments, while the area Ai+A2 represents the savings to the

utility based on the original credit for the one block dispatch. The utility achieves an

additional savings A3 due to the fact that the incremental kx—k2 interruptions can

be compensated at a lower rate. Thus, the total social savings due to blocking is

(kx—k2)Ax while the credit savings to the utility is (kx—k2)(Ax+A2+A3). These savings

clearly increase with the number of blocks.

4. Conclusion

This analysis accomplished two main objectives. First, we developed an

operational tool for dispatching a single block of interruptible load. This solved a

practical problem faced by the New England Electric System and the spreadsheet

solution described in this paper is currently in experimental use by the System

Dispatcher. Our second objective was to develop insights and practical tools to aid the

electric utility in the expansion of its interruptible service program. We developed a

methodology for evaluating the costs and benefits of new service options for curtailable

service and determining its most efficient features.

The planning methodology was useful in demonstrating to NEES that, given
their current subscribers and demand patterns, there is limited benefit in enlisting more

interruptions per year from existing CIS subscribers. Instead, the focus should be on
enlisting new CIS subscribers, or additional load from current subscribers, by offering
service options with fewer interruptions per year to induce additional subscription. Our
analysis also showed how the number of required interruptions increases, as the amount

of interruptible load increases in the single block case. As interruptible load is added,
segmenting the load into blocks that are dispatched according to a priority order
becomes more economically efficient and requires lower credit payments from the

utility.

We have also shown in this paper how our dispatching algorithm can be

extended to the multiple block case, but this generalization has not been implemented

currently. For the multiple block case, we have also presented a methodology for

pricing a menu of service options with different numbers of interruptions during the

- 15 -



contract period. The pricing methodology requires knowledge only of the distribution of
interruption losses in the population and is based on some simplifying assumptions.
The resulting menu of service options induces self-selection by customers. That is,
service priorities are selected for load units in a way that produces a socially efficient
resource allocation and the desired contract mix for the utility.
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6. Appendix A

The models derived in this appendix are used to develop the relationships

illustrated in Figure 4. Suppose that our goal is to interrupt a peak if it falls within L

of the annual peak A0. Let us consider a threshold policy in which an interruption is

called for if the daily forecast exceeds the threshold H. For any given H, there is

some probability that a peak which is actually A0—L will be missed due to forecast

error, namely

or = P{the forecast < H on a day with peak A0-L}

Since the forecast is increasing in the actual peak size, this is the worst case, for peak in

the range [A0—L, A0], In general, a could also depend on the time of the year T,

but we have assumed that annual peak forecast errors are stationary throughout the

year.

Conversely, for given a and L, we can determine a threshold H<*(L) such

that a peak of size A0—L is missed with probability a based on (2.1) and (2.2). In
general, the forecast on a day with peak A0—L satisfies

Ft = A0 -L + Et + E0 (A.l)

where Ft = daily forecast on day t

Et = error in the daily forecast for day t

E0 = error in forecasting the annual peak.
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Now define the random variable Zt = A0 + Et + E0. If we assume that E0 and Et
are independent, it follows from the additive property of Normal distributions that

P{Zt <z) =•$£), (A.2)

where <r2 = Jo^-f^i , based on the distributions defined in Section 2.

The probability a that the peak A0-L is missed equals the probability that
the forecast on that day is less than H. Thus, for the threshold Htt(L), we must have
a = P{Zt-L < Ha(L)} from (A.l). Since Zt is normally distributed, we can obtain
a corresponding za value from a Normal table and obtain Htt(L) from

Ha(L) = \i -L- za<r2. (A.3)

In addition to missing a peak due to forecast error, it could also be missed if the
remaining interruptions are exhausted before it occurred. Thus, it is important to

consider the probability

0 = /?(H,k,WT) = P{ k interruptions are used up, given threshold H and
WT peak days remaining}.

For any day t and given H, an interruption occurs if and only if Ft > H. To consider
the probability that this occurs, we need to consider all peaks that may trigger an
interruption. Let Dt be the random variable corresponding to the difference between
the peak on day t and the annual peak A0. Using the random variables Et and E0
discussed above, the threshold H is exceeded by the forecast on day t if and only if

A0 -Dt + Et + E0 >H or Dt < Zt - H, (A.4)

using the random variable Zt defined above.

For any value D, let us define an indicator random variable

xt(D) = 1 if day t falls within D of the yearly peak
0 otherwise,
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with

P{xt(D)=l} = F(D)wt (A.5)

based on (2.5). The probability that the forecast on day t is greater than H is

cp CO
P{xt(Zt-H)=l} =wtj F(z-H)*(^)gf =wtf F(<r2z)*(z-y)dz =wtI(y), (A.6)

H 0

where y = (/i-H)/<r2.

The function I(y) is the expected fraction of days whose forecasts are within y
standard deviations of ^, the forecasted annual peak, or equivalently, the expected
fraction of peak days whose forecasts are above the threshold H. The variable

xt(Zt—H) is a Bernoulli random variable with

E[xt(Zt-H)] = wtI(y) and Var[xt(Zt-H) ]= wtI(y) - wt2 I2(y). (A.7)

Given the current day is T, the number of remaining days whose forecast
exceeds H is the random variable

365
ST(H) = £ *t(Zt-H). (A.8)

t=T

It can be shown that the sum ST(H) satisfies the Central Limit Theorem. This
follows from the fact that it is a sum of independent random variables which are

uniformly bounded in absolute value [see Feller(1957), pp.238-9]. Thus we have the
approximate relationship

P{ST(H) <k} „*(^™} (A.9)
where y = (^-H)/<r2

WTI(y) = E[number of remaining forecasts greater than H]

s(y,T) = >|WTI(y)-I2(y)<rT2 = standard deviation of the number of remaining
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0/?_ oee forecasts greater than H
ooo ooo

and WT = 2 wt anc^ ^T2 = 5Z wt**
t=T t=T

Since 0(H,k,T) is the probability that the remaining interruptions are exhausted, it is

clear, given there are k interruptions remaining on day T, that

l-/?(H,k,T) = P{ST(H) < k}. (A.10)

Conversely, for given /?, H and T, we can determine the number of

interruptions k*(H,T) that are required. Using /?, we obtain a value z* from a

standard Normal table, which based on (A.10) must satisfy

_ k-WTI(y)
Z0 ~ s(y,T) • (A-11}

We then solve (A. 11) to obtain a formula for k^(H,T)

k = kj(H,T) =WTI(y) + Z/?s(y,T). (A.12)

In (A.12), y is the number of standard deviations that H is away from the forecasted
annual peak /i, i.e., y = (/i-H)/(r2. Given that the interruptible load is L, we can
use (A.3) to substitute for H, which yields

y = zQ + L/(t2. (A.13)

Solving the Dispatching Problem

For the dispatching problem with given k, the goal of the dispatching
methodology reduces to one of attempting to interrupt the k highest remaining daily
forecasts in the year. This can be seen intuitively because the optimal use of the k
interruptions is to interrupt the k highest peaks. Since the errors in daily forecasts are
time independent, this implies that the highest k forecasts are the most likely
candidates for the k highest peaks. It is clear that the dispatching solution should
depend on k and T, but not on L and, in effect, we solve the case L = 0.

For known k, (A.12) and (A.13) provide two equations for the three unknowns
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y, za and z^. Thus, one additional relationship is required to obtain an optimal value
of y, which leads to an optimal threshold H for the dispatching problem. The
solution is completed by determining a relationship between za and Za that balances

the probability of missing a peak due to forecasting error and missing a peak due to

running out of remaining interruptions.

Let 0 equal the probability of running out of interruptions and a equal the

probability that the annual peak A0 is missed due to forecast error. Then the

probability that the annual peak is missed can be expressed as

P{missing annual peak} = /?P{A0 occurs after running out | run out} +

(1—/?)P {forecast on day of A0 < H | given that don't run out}.

As a first order approximation, we assume independence permits the conditioning to be

ignored in the two conditional probabilities above. We also take the expected value

case in which the interruptions are used at exactly their average rate during the

remainder of the year. This implies that 0 is the probability that the annual peak

occurs after the interruptions are exhausted, given that they are exhausted. Thus,

substituting these assumptions we have

P{miss annual peak} = (1-/?)<* + 00 = <* - <*0 + 0*- (A-14)

We then wish to minimize this expression with respect to the ratio a/0 = r.

The probability can be rewritten as

a - ra2 + rV. (A.15)

It can be verified from the first and second order necessary conditions that this

expression has a unique minimum at r = 1/2, i.e. /?/<*= 1/2, for any fixed value of a.

Thus we have established a second relationship based on (A.15)

0 = a/2. (A.16)
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Using (A.16) with a standard Normal distribution table determines a trajectory of
possible (za, z*) pairs. Applying linear regression to the points shown gives the
approximate relationship

zfi =0.8022 zQ +0.6272, (A-17)

which provides an excellent fit, with an R2 value of 0.997.

Substituting (A.17) into (A.ll), we obtain

0.8022 za +0.6272 =^ffl. (A.18)
s(y>T)

For the dispatching problem, we consider the case L = 0 so that (A.13) reduces to
y=za, which when substituted into (A.18) reduces to

k =WTI(y) + s(y,T)[0.8022y + 0.6272]. (A.19)

This implicit relationship can be used to obtain a tabular solution for y and thus the
threshold H by substituting in various values of y and T and calculating the
corresponding k. This function is shown graphically in Figure 4. To solve the
dispatching problem for a given k, T, we determine y=za from Figure 4. Then the
corresponding dispatching threshold H is

H = fi - y<r2, (A.20)

which is equivalent to Ha(0) in (A.3).

Solving the Planning Problem

For the planning problem, we wish to determine the appropriate number of
interruptions to allocate for the year. For a given interruptible load L, the planning
problem objective is to determine how many interruptions are required so that the
probability of missing a peak within L of the annual peak is a, given that they are
dispatched in the manner discussed above.

The solution of the planning problem begins with the same relationship (A.19),
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which describes the solution of the dispatching problem. However, in this case, k is

not specified, but any choice of y determines a dispatching threshold H from (A.20).

To compute the probability that the dispatching threshold misses a peak that falls

within L of the annual peak, we determine what z value is implied by the threshold

H, by setting it equal to the righthand side of (A.3) to obtain

/i - L - za<r2 = H = \i - y(r2. (A.21)

That is, the probability that a peak within L of the annual peak is missed by a
threshold H = \k - ya2 is a = 1 - *(za), where za is determined from a Normal
table. Thus to solve the planning problem for a given L and probability a, we set y

= z0 + L/<r2 and obtain the appropriate k from (A.17).

In the spreadsheet implementation of the dispatching threshold, it was necessary
to obtain approximate linear relationships for I(y) and s(y,T) to simplify (A.17).
Using the numerical integration and applying regression to the results gave

I(y)« 0.0089 + 0.2306y, where y = (,i-H-L)/<r2 (A.22)

s(y,T) « JW^{0.2875 +0.1464y}. (A.23)

The regression for s(y,T) used the T value corresponding to WT = 30. The R
values in these regressions were both larger than 0.99. The fits of the functional forms
in (A.22) and (A.23) are shown in Figure 7 for WT = 15, 30 and 60.

Substituting in (A.22) and (A.23), (A.19) becomes a quadratic function to be
solved for H. Using the quadratic formula, and selecting the positive root for y, we
have

= ^B+>|B2 - 4AC
2A " (A.24)

where A=0.1174, B=0.2306jW^ +0.3224, C=0.1803 +JW^[0.00887- k/WT].
This formula was used for the spreadsheet in Figure 6.
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Figure 6. Spreadsheet Implementation
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Figure 7. Linear Approximations for I(y) and s(y,T)
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