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SIMULTANEOUS POTENTIAL AND CIRCUIT SOLUTION

FOR BOUNDED PLASMA PARTICLE SIMULATION CODES

JohnP. Verboncoeur, M.Virginia Alvesf, and V. Vahedi
Plasma Theory and Simulation Group

University ofCalifornia, Berkeley, CA 94720

Abstract

A second-order accurate method for solving the combined potential and circuit
equations in an electrostatic bounded plasma PIC simulation is presented. The
boundary conditions include surface charge on the electrodes, which are connected
to a series RLC circuit with driving terms V(t) and I(t). The solution is obtained for
planar, cylindrical, and spherical electrodes. The result is a tridiagonal matrix which
is readily solved using well-known methods. The method is implemented in the codes
PDPl (Plasma Device Planar ID), PDC1 (Cylindrical), and PDS1 (Spherical).

I. INTRODUCTION

A comprehensive review of the considerations involved in bounded plasma particle simu
lation is presented by W. S. Lawson [1]. Lawson presents a method which is second-order accurate
when Ar2/LC « 1 andRAt/L « 1, and is stable forAf2/LC < 2 andRAt/L < 2. Herewe improve
on the accuracy, stability, and simultaneity of the solution for potentials in a bounded one-
dimensional plasma with external circuit and driving terms.

In [1] and [2] the boundary conditions are decoupled from the potential equation. A first-
order circuit solution is used when the inductance is zero. The scheme is self-consistent when L

is non-zero and the applied (driving) potential is small compared to the space-charge potential
across the system. These conditions are violated for a large class of problems, including capac-
itively coupled RF discharges and plasma immersion ion implantation materials processing;
therefore, a new method is desired.

Particle-in-Cell (PIC) methods weight particles to a spatial grid using a particle shape factor
to obtain charge and current densities on the grid [2]. For example, the code PDPl uses the linear
weighting scheme shown in Figure 1. The field and circuit solution presented here is independent
of the weighting scheme used; we assume that the charge density is given on the spatial grid.

fPermanent address Institute for Space Research (INPE), P.O. Box 515, S. J. dos Campos, SP,
12201, Brazil; supported in part by CAPES, Ministry of Education, Brazil.
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Figure 1. PDP1 PIC with linear weighting to the
spatial grid. The subscript /is the particle index, /is
the grid index. For particles in a cell adjacent to an
electrode, the weighting must also account for the
half width of the cell.

Figure 2. Particle weighting to a radial grid, using
area (cylindrical model) or volume (spherical model)
ratio.

Particles of finite size, cylindrical shells in PDC1 and spherical shells in PDS1, are placed
in a gridded system, and weighted to the grid to obtain p(ry) atthe grid points. The particles are
assumed to have uniform density, so the area ofringsor the volume of shells can be used to weight
the charges to the grid as shown in Figure2. The particle of finite width Ar is centered at r4. The
intersection between the finite particle and the grid cell determines the fraction of the particle
charge assigned to each gridnode rr This is cloud-in-cell weighting, versus the particle-in-cell
weighting in [2, Figure 14-1la]. The fractions of the charge assigned to the grids are

and

SJ =

2 2

Q-t-1/2 ri-lf2

r2 -r2
'i + l/2 'i -1/2

Vi =
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In the spherical model, the squared terms arereplaced by cubic terms.

The charge density on the grid is used to solve the Poisson equation, V2® =-p/e, or the
equivalent flux conserving potential equationobtained from Gauss' Law. Once the potentials are
known, the electric field on the grid can be obtained from E = -VO. The force on the particlesis
obtained by interpolating E at each particle position using some weighting. The particlevelocity
is updated using the Lorentz force equation,

d\: a.-r^tEW+v^B]. (3)
at mi

The particle positions are updated using

d*= (4)
dt Vi

In cylindrical coordinates, Eq. (4) is

dvr mvl
m — = Fr+ ,

dt r

dt
m —77- = rFB, and

dv,

m17=F"

Here r, 9, and z are the cylindrical coordinates and vr= dr/dt and ve= rdQ/dt. For the cylindrical

model, B = Btz so Fr = q (Er +VeS,), Fe= -qvJB„ and F, = 0. Equation (5) is finite differenced to
obtain the sequence

f(vl+F?v;+A//2=v;-Ai/2+Af

=r'+Arv;+fl"',and (6)

9 ~^+w^[(r)~(r n-
r'vj qBt

The latter guarantees conservation of angular momentum.



In spherical coordinates, the equation of motion becomes

.2 , ,.2\dvr m(vi+v;)
ro—= Fr+

dt r r

d(rvB) 2 JdtoY
m—-— = rF6+mr sin 8cos0 —- , and

dt e {dt

.2-2d(mr* sin* Qdtydt)
dt

=rsin9F+,

(7)

where r, 9, and <(> are the spherical coordinates and v^ = r sinQdty/dt. For the spherical model,
B =0soFe =F^=0 andFr =qEr. If dtydt =0 initially, thenit remains zero. The motionis then
in a plane § =constant through the polar axis, in which r and 9 play the role of plane polar
coordinates. The angular momentum mrvBis then constant, and Eq. (7) reduces to the cylindrical
case, Eq. (5).

II. POTENTIAL EQUATION

—Tff\

V(t)orI(t) L

The planar,cyclindrical, and sphericalconfigurations for one-dimensional bounded plasma
systems are shown in Figures 3 and 4. The current in the external circuit interacts with the plasma
current via surface charge on the electrodes. Similarly, the potential within the plasma region is
affected by the distribution and motion of space charge, the electrode surface charge, and the
current in the external circuit. Thus, we seek a simultaneous solution for the potential and circuit
equations.

Figure 3. Configuration in planar coordinates with
series RLC circuit and voltage/current source. In
these coordinates, the particles are charge sheets
with motion in the x-direction.
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Rgure 4. Configuration in cylindrical and spherical
coordinates with series RLC circuit and volta

ge/current source. Particles are infinite annuli with
motion in the radial direction in cylindrical
coordinates, and spherical shells with radial motion
in spherical coordinates.

The boundary conditions for the potential equation are obtained by applying Gauss* Law
to the system,

dV+-^ =0,/..—ji (8)

where the surface S encloses the plasma and electrodes. A+ refers to the surface area of the
positively biased (left/inner) electrode, A. to the negatively biased (right/outer) electrode, and a
is the surfacecharge on the respective electrode. Note that p has units of charge/volume and a
has units of charge/area. Equation (8) is a statement of Gauss' Law; the first part reflects the
assumption of an ideal conductor connecting the electrodes to the external circuit elements, the
second part expresses conservation of charge in the system.

Applying Gauss' Law about each node of the gridded system, and using the definition of
potential, we obtain

planar

cylindrical

Ax2 E

r.Ar2
0+W°y+l-2^+r>-l/2°y-i=--27-py >™d

spherical r/+y20>+1 - (rj+m +r)_xJO,. +r)_xrp.}_x =-
3e

(9)
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In thecylindrical andspherical forms, rj±ia =r,±A/72. For all Eq. (9),y=l, 2,..., nc-1, where nc
is the number of cells in the gridded space. These results are equivalent to the flux-conserving
method of Birdsall and Langdon [2]. The planar and cylindrical result of Eq. (9) can also be
obtained by applying a central difference to the Poisson equation; the finite difference result is
different in spherical coordinates.

For a one dimensional system, the boundary conditions can be written

<!>« = 0 and (10)

(11)

Equation (10) fixes a reference potential for the system without implying a grounded electrode.
For the cylindrical and spherical models the inner electrode is driven; the outer electrode serves
as the reference potential for the system even when the inner electrode is not present. Equation
(11) can be written atone half grid cell from the boundaryin conjunction with a central difference
applied to the definition of potential to obtain
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Equation (9) and its boundary conditions for the gridded system are written in a general
matrix form,

(b,

n

o co

a, bx cx 0

0

0 flj b2 c2 0

ane-2 "nc-! Cne-2

anc-l K-\J

*0

O,

O ne-2

v*-v

-/

M«c-2

\dnc-\J

(13)



The superscript indicates the quantity is evaluated at time t. The matrix elements in planar
coordinates are

and

aj= 1,

b0 = -l, bj= -2,
j = l,2,...,nc-l;

y = l,2,...,nc-l;

y = 0,l,...,/ic-2;

y = l,2,...,/ic-l;

>-¥•
The matrix elements in cylindrical coordinates are

and

bo — r\a»

aj~rj-i/2»

fr; =-2r,,

Cj~~rj+V2>

y = l,2,...,nc-l

7 = 1,2,. ..,/zc-l

y = 0,l,...,*c-2

4> =<-r;+;r^(''i2/2-''o2)» ^ =0Pj» 7=l,2,...,*c-l;
Ar 2Ar

'-4-
The matrix elements in spherical coordinates are

b0 = -r

and

2

1/2 »

aj = rj-m>

bj =-irj-u2+rf+vz)>
cj~ri+\n*

rf0 =3o;+r02+pJ)(r13/2-r03), dj =(r]+V2-r]_V2)p,J,

y 3e

y = l,2,...,«c-l

y = l,2,...,/ic-l

y=0,l,...,/ic-2

7 = 1,2,...,/zc-l

(14)

(15)

(16)

When the center conductor is not present in the curvilinear models, the boundary conditions
must be modified. From Gauss' Law, the electric field at the origin must be zero. Integrating
Gauss' Law from the origin to r = r1/2, we obtain the modified form of Eq. (12) for the hollow
cylindrical system [2, Section 14-10],



(17)

The coefficients are still given by Eq. (15), with the modification that

*-£*• (18)
The modificationofEq. (16) for removal ofthe center electrodein the spherical system is similarly

, jj (19)
«0 = P0ri/2-

CIRCUIT

The externalcircuit is coupled to Eqs. (13)-(16)throughconservationofchargeateach wall,

AAG= QC0ltv + AQ, (20)

where Qeom, is the charge deposited by the convection (particle) current and AQ is the charge
deposited by the external circuit current, both over some interval in time. Equation (20) is applied
at the positively biased electrode as shown in Figures3 and4, guaranteeingconservation ofcharge
at all times. The same logic can also be applied to the other electrode; however, the surface charge
on the second electrode is determined readily from Eq. (8) when the first surface charge is known.
The charge conservation equation becomes

&=ef-&t^com ^ U—, (21)
A

where Q is the charge on one plate of the external circuit capacitor. An alternate method of
coupling the circuit to the potential matrix is applying continuity of current (Kirchhoff's Current
Law) at the boundary [2, Section 16-9],

3o / (22)
dt Jemf A9

where JeOHV is the plasma convection current at the electrode. The methods are equivalent when
a first-orderbackward difference is used for da/dt and/ = BQ/dt. Since Qcom is in general a noisy
quantity in a particle simulation, any other quantity in Eqs. (20) and (22) will contain similar noise.
Thus Eq. (20) causes the wall charge a to be noisy as might be expected, because the capacitor
chargereactsto the particleconvection currentonly throughthewallcharge; i.e., particles absorbed



by the wall contribute immediately to a, but the charge drains slowly to the capacitor through
currents. It can be shown that Eq. (22) results in the convection current being absorbed gradually
into a, so the noise is induced in the capacitor chargeQ (andconsequently in the external current
I) to satisfy conservation of charge. Therefore we use the conservation of charge method of Eq.
(20).

III. GENERAL SERIES RLC CIRCUIT

Fourcases cover the full range ofexternal circuit parameters. Forthe generalvoltage-driven
series RLC circuit, the capacitor charge Q is advanced using Kirchhoff's Voltage Law,

d2Q ndQ Q _//x _ _
——+R——+— = V(t) + Q> —Oa.dt2 dt C VKl)™" v°* (23)

The polarity of the source and resultant positive current are shown in Figures 3 and 4. The
generalcircuit equation is finite differenced using the second-order backward Euler representation
of the first derivative,

and the second derivative,

dQ

dt

t-ta , r\t-2bi3Q'-4e'-*+e
2Ar

(j2d2Q T 3(dQ/dt)' - AidQ/dt)'-" +(dQ/dt)t-2M

dt' 2Af

I/-3AI , sit-4&*9Q*-24Q'-"+ 22Q1-2" - ZQ"™+ Q
4Ar2

(24)

(25)

The latter is obtained by a second application of the first derivative to Q. An alternate 4 point
difference for the second derivative is given by:

VfiY 2Q'-5G'-* +4Q'-2A/-G'-3A/
\dtj At:

(26)

The charge on the capacitoris not known at t. Combining Eqs. (23)-(25), we obtain

(27)



where

t-3At

4Ar

__9L_ 3/^ J^
(Xo"AA.2+2Ar +C,

11 L ...i^
2Ar

L_
At'
1 L

0C3 = -2— ,and

a-4A,-

l-4Af

+a4e

(28)

Combining the potential equation results, Eqs. (13)-(16), with the circuit equation results,
Eqs. (27) and (28), using the boundary condition, Eq. (21), we obtain the self consistent field
solution matrix for the voltage-driven series RLC circuit case. The matrix can still be represented
by Eq. (13), replacingelements of Eqs. (14)-(16) as follows. In the planar model,

Ax
b0= -l rand

OLoBA

an = — -\—: h
1

2 Ax AAx
(Q< _Q.-»+YVh!L}
V °o J

In the cylindrical model,

2 2
rl/2 ~~ rt

bo = ~rv2-
Ar

Ineaji
and

r

4> =
o / ro t-t* 1

2Ar Po Ar * 2nhAr QL-Q'-"*
t-* . Vlt)-K\

Oo

In the spherical model,

bQ--rv2-
Ar

4rceao
and

do =(rx\ - r03)pi+3rfc-" +H<&„-Q

10

(29)

(30)

(31)



Here, A is area of the planar electrodes andhis axial lengthofthecylindrical system. The solution
is then self-consistent and second-order accurate for the general circuit case. The matrix can be
solved using any algorithm optimized for tridiagonal matrices [3].

IV. OPEN CIRCUIT (FLOATING OUTER ELECTRODE)

When C —» 0, the impedance of the external circuit approaches infinity, becoming an open
circuit. The potentials on the boundaries are floating; no circuit solution is required since there
is no external current. The surface charges on the electrodes influence the potential as always,
but the electrodes cannot exchange charge via external current In this case, the field solution is
given by Eqs. (13)-(16), with

V. SHORT-CIRCUIT

When R=L=0 and C -»<», the external circuit is a short, with

<&o-*-c = y(f). (33)

The short-circuit case is applied in practice when

Q
planar —— >105,

eA/l

cylindrical , ,fflC/ , x>105, (34)
2neh/\n(rjr0)

Q
spherical >105,

4Jierwro/(rw-r0)

where / is the length of the planar plasma region.

The field solution is still given by Eqs. (13)-(16), with

ax = b0 = c0 = d0 = 0, (35)

and

11



planar dx =p\—y>

V A' 1 A ri/2V(0 A (36)
cyhndncal "i = riPi 7—*™&

3 3 , rmV(*)
spherical dx = (rOT - r1/2)pt —.

Equation (35) eliminates the first row of Eq. (13). In Eq. (36),/depends on the model as
given in Eqs. (14)-(16). Note that the wall charge is no longer required to solve the potential
equation. Wall charge is foundusingEq. (12) oncethe potentials have been determined, andthe
current is found by finite differencing Eq. (22),

Determiningthe currentin this way produces a noisy resultas discussed above; however, with a
shortbetween electrodes, we expect large currents with rapid changessince potential differences
cannot exist along an ideal conductor. Note that here / is only a diagnostic quantity, so the
time-centering is not a problem.

VI. CURRENT-DRIVEN CIRCUIT

The final case is the current-driven external circuit. An ideal current source is assumed

which can drive the specified time-varying current /(f). The externalcircuit elements R, L, and
C are ignored since an ideal current source is an open circuit. Then Eqs. (13)-(16) are applied
with the wall charge found by finite differencing Eq. (22) for diagnostic purposes.

VII. INITIAL CONDITIONS

The multi-point finite difference methods require initial values for the fi\ where n < 0.
Physically, these values are used to obtain the desired initialconditions for the circuit equation,
Eq. (23). For example, the initial charge onthe capacitor, Q°, and the initial current inthe external
circuit, 7°, form a complete setof initial conditions for the differential equation. However, the
finite differencerequires five initialvalues forQ (four forthe 4-pointmethod). There are several
ways the conditions can be obtained.

The traditional method for starting a multi-point scheme (second or higher orderaccurate)
is to use a 2-point method (first orderaccurate) to obtain the required initial values. A smaller
timestep is used with the 2-point method to maintainthe same accuracy. This presentsa problem
for a PIC code; the time-centered mover is initialized such that positions are known at integral

12



timesteps,while velocities are known at half timesteps [2]. Thus, it is difficult to switch to a new
Ar andmaintain the time centering. Also, switching schemes is inefficient from a coding stand
point. In addition, the stability of the starter method must be considered in relation to the circuit
parameters R, L, and C.

Another method of initializing the solver is to solve the circuit equations analytically. To
do this, we must replace the plasma by a known impedance. Using the vacuum capacitance of
the plasmaregion is the obvious choice; physically, this means there is no plasma until r=0+. If
plasma is then introduced, the impedance changes abruptly and the circuit has been conditioned
for a different system. This problem is less severe when the plasma is generated at a slow rate
since the impedance change is gradual.

If the method turns out to be stable, the initial conditions will be damped regardless of the
value (this includes desired initial conditions as well as error in the initial conditions). If the

method is unstable, any error in the initial conditions grows exponentially. If the method is
marginally stable, any error in the initial conditions remains in the solution, neither growing nor
damping.

VIII. STABILITY

We now explore stability of the circuit equation, Eq. (27). As is customary for stability
analysis [4], we neglect the driving terms and study the homogeneous circuit equation

L~7s+R^+c-°' (38)

We study the stability of the 5-point circuit difference, Eqs. (24)-(25), as well as the 4-point
difference, Eq. (24) and (26).

In the limit of no inductance, L -> 0, both methods produce

(

Q'
2Ar) ,„,.* , ^,-2* A (39)

3+=|-4fl'-"+ fl'— =0.
V

Letting Q'=Q°ev and £=eTAx we obtain

Q'^Q'-^^Q'-2", (40)

where | £ |£ 1 is required for stability. Here, y and £ are arbitrary complex variables. Then the
characteristic stability equation for Eq. (39) is

£2(3 +2AtlRC) - 4^+1=0. (41)

13



The roots are

5=
2±Vl-2Ar//?C

3+2Ar//?C

(42)

1

UNSTABLE

.
STABLE

0.8 - -

0.6 -

/"%
•

0.4
/

>v

0.2

n

•

1 1

fti

Figure 5. Stability roots in the limit L ->0. Since
|£|£i everywhere, the method is stable. The
scheme can only followthe RC time when At < RC/2.
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As shown in Figure 5, both methods are stable in the limit L -»0 for all positive, real AtIRC.

Now we attack the more difficult general case. The general characteristic stabilityequations
for the four and five point schemes are respectively

q2+^1+̂]-^2(5+2x1)+a4+^1]-l=0and
\ l ) V l )

54(9 +6xx +4$ - £3(24+Sxx) +£2(22 +2xx) - 8^+1=0,

(43)

(44)

where thenormalized times are xx =RAtlL and x^ =AtHLC. We obtain the roots of Eq. 31 using

the Lin-Bairstow method [5], which gives the complex roots of polynomials. Figures 6 and 7
show the stability of the four and five point methods, respectively, for a wide range of xx and x2-

14
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Rgure 6. Magnitude of the three roots of the four
10to point method, whose characteristic equation is Eq.

(43). Since for ail three roots, I$lA3 \<l.thefourpoint

difference method is stable over the range shown.
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Rgure 7. Magnitude of the four stability roots of the five point method, whose characteristic
equation is Eq. (44). Since all four roots, I£1>2,3|41< 1,the five point difference scheme is stable

over the range shown.

IX. SIMULATION ACCURACY

As discussed above, the circuit and field solution is second-order accurate. We now dem
onstratethe accuracyof the five point circuit as implemented in the code, PDPl. To compare the
simulation results with analytic circuit theory, the permittivity of the plasma region is taken as
1020 and noplasma isused. Then wehave apassive voltage-driven series RLCcircuit. Thecurrent
for a sinusoidal driving voltage V = sin(cor +9) can be predicted using

a2W(coZ) cos(0 - 8)+VIZ sin(9- 8)
/ = : : exp(fljf)

a^ax-\

axV7((aZ) cos(9 - 8)+VIZsin(9- 8)

fli/02-1
exp^r)+—sin(cor +9 - 8),

where co is the angular frequency of the voltage, 9 is the initial phase of the voltage, and

z=<\Jr
8=asiiJ

R I R2 l"~

•L-LT
coCj

caL-l/(G)C)

16
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Rgure 8. The frequency spectrum of the steady-state current obtained from PDP1.

We chooseR = 1, C =5 x 10"6, L = 10"6, and ©= 106, and initial conditions g(0)=0 and/(0)=0.
The code PDPl, using the same parameters and timestep Ar0 = 2tc/128©, gives the results shown
in Figures 8 and 9. Here, xx = 0.049 and tj = 0.022 for the baseline case. Note that the x scale
with AtlAt0.

Fromthe frequency spectrum of the currentshown in Figure8, we see the driven frequency
peak is six ordersof magnitude larger than the magnitude at other frequencies, indicating nearly
a pure sinusoid. Since PDPl storesresults in single precision (32 bits), we expect roundoff error
inthe sixth orseventh significant digit, so the powers less than 10*7 are neglible. Comparing the
phases I(t), we see the the PDPl results follow Eq. (45) closely, with increasingphaseerrorasAr
increases. From the history of the current, we see the initial transientdue to the chargingof the
capacitor from Q(0)=0.

17
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Rgure 9. PDP1 output forvoltage-driven series RLC circuit. The exact current predicted by
Eq. (45) compared to the results of the PDP1 circuit solver at various ratios of A//A/0 where

A/0=2tc/(128co). Note the transient charging of the external capacitor.
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Rgure 10. The relativeerror, | (/^ - /«,!»,)//,„* |,versus A//A/0 compared with a power fit. The

exponent of the best power fit is 1.94.
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Therelative error, plotted in Figure 10, follows thecurve 0.00158(Ar)194 closely. An ideal
secondorderaccurate scheme would resultin apower fit exponent of2. This demonstrates second
order accuracy, with errors resulting from truncation of the finite difference at Ar2 terms.

X. CONCLUSION

A method for the simultaneous solution of the coupled potential and external circuit
equations forone-dimensionalelectrostatic plasma particle simulationsis presented. The method
is stable over many orders of magnitude for the values of the RLC circuit elements, and can in
principle be extended to arbitraryexternal circuits.

The method is implemented in the codes PDPl (PlasmaDevice Planar 1 Dimension), PDC1
(Cylindrical), and PDS1 (Spherical)*. These codes have been used to simulate many complete
bounded plasma devices [6-11], including voltage-driven RF discharges, plasma immersion ion
implantation devices, and Q-machines. The codes have performed reliably, generating many
interesting discussions and discoveries.
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