- Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MIS-MV: OPTIMIZATION OF MULTI-LEVEL
LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/68

13 August 1990

MIS-MV: OPTIMIZATION OF MULTI-LEVEL
LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/68

13 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

MIS-MV: OPTIMIZATION OF MULTI-LEVEL
LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli -

Memorandum No. UCB/ERL M90/68

13 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

MIS-MYV: Optimization of Multi-level Logic
with Multiple-valued Inputs.

Luciano Lavagno Sharad Malik Robert K. Brayton Alberto Sangiovanni-Vincentelli

Dept. of EECS
University of Califomia, Berkeley

Abstract

We present techniques for the optimization of multi-level logic with multiple-valued input variables. The motivation for
this is to tackle the input encoding problem in logic synthesis, where binary codes need to be found for the different values
that a symbolic input variable can take. Multi-level multiple-valued optimization is used to generate constraints that are then
used to determine the codes. The state assignment problem in sequential logic synthesis can be approximated as an input
encoding problem by ignoring the next state field, which is reasonable when the output logic dominates the next state logic.

Common factor extraction is an important step in multi-level optimization and thus far it was not clear how this could
be done with multiple-valued variables. We present a novel technique for extracting common factors with multiple-valued
variables. We then show how the other multi-level optimization techniques are easily extended with multiple-valued variables.
These ideas have been implemented as algorithms in the program MIS-MV. We present the practical issues involved in the
implementation of these ideas, as well as results of using MIS-MV for input encoding on some benchmark examples.

1 Introduction

Real life variables tend to be multiple-valued (MV) while digital circuit signals are restricted to binary values. Thus, any
digital circuit that involves these variables as part of its function must use some binary encoding for the various values of
the MV variable. An example of this is the MV “instruction” of a machine architecture which takes values over the different
instructions. However, in the controller of the machine each instruction value is represented by a unique binary “opcode”. The
size of the circuits in general is a function of the encoding chosen for the different values of the MV variable. This gives rise to
the encoding problem in the antomatic synthesis of logic circuits, wherein an encoding is to be determined for a MV-variable
that resuits in “simple” logic. The version of this problem in which the MV variable is an input of the logic description
is called the input encoding problem. We will restrict ourselves to this problem for this paper. Orthogonal to the type of
encoding problem is the form of the target logic, i.e. two-level or multi-level. For the case of two-level logic, satisfactory
solutions to the input encoding problem were obtained by first using a multiple-valued two level logic minimization step

(e.g. [13]) and then using the result of this to generate constraints that the encoding had to satisfy (e.g. [11, 15]). However,
for multi-level logic as the target implementation the approaches currently used tend to be “predictive” in as much as they
determiine encodings for which a multi-level logic optimizer such as MIS [4] is likely to find common divisors (e.g. [5, 8]).

In addition, they only concentrate on finding common divisors that are cubes (or single product terms) and do not consider
larger common divisors. Our approach to the input encoding problem is directed towards overcoming the shortcomings of
existing multi-level encoding programs while following the paradigm that was so successful in the case of two-level logic.

We have developed techniques for multi-level optimization of logic with MV input variables. This permits us to view the

optimizations largely independent of the encoding and then use the encoding in the final step. Also, using this approach we

were able to consider common divisors that were not restricted to single cubes.

Multi-level logic optimization involves the use of several different techniques. One very important technique involves
finding common sub-expressions (factors, or divisors) among a set of logic expressions. The common sub-expressions can
then be implemented only once resulting in substantial savings inlogic. Techniques for determining common sub-expressions
(kemnel intersections) efficiently with binary variables were first presented in [3]. However, it was not clear how to extract
common sub-expressions for expressions with MV inputs while guaranteeing that this extraction and a subsequent encoding

would be sufficient to obtain all possible kemnel intersections for all possible encodings. A major contribution of this work is
to present such a technique. In fact, this technique can potentially result in common factors that are Boolean and hence even
stronger than the algebraic kernel intersections. (This work is a development of the work we presented earlier in [9], so some

 similarity may be found in these two presentations.) The discovery of MV factorization techniques completed the missing
link in multi-level MV minimization since the other multi-level optimization techniques were extended easily to MV inputs.
These techniques have been been implemented in the program MIS-MYV, which is the multiple-valued extension to MIS, the
successful multi-level logic optimizer.

The organization of this paper is as follows. In Section 2 we discuss the representation of circuits and functions with
multiple-valued inputs. Section 3 describes the MV factorization technique. Next, in Section 4 we describe the extensions
of the other multi-level optimization techniques to MV variables. Section 5 describes the practical issues in implementing
MIS-MV as well as the final encoding step. In Section 6 we present some results using MIS-MV as part of the encoding
procedure. Section 7 presents the concluding remarks regarding this work.

2 Circuit and Function Representation

Since multiple symbolic variables can be mapped into a single symbolic variable!, we restrict ourselves to a single symbolic
variable throughout the paper. The rest of the variables are binary valued.

Let the symbolic variable v take values from V' = {vy, vy, ..., v5-1}. v may be represented by a multiple-valued variable,
X, restricted to P = {0, 1, ..., n— 1}, where each symbolic value of v maps onto a unique integerin P 2. Let B = {0.1}. A
binary valued functionf, of a single MV variable X and m — 1 binary-valued variables, is a mapping: f : P x B™~! — B.
Each element in the domain of the function is called a minterm of the function. Let S C P. Then X' represents the Boolean

function:
ys_[1 £Xes
~ 1 0 otherwise

XS is called a literal of variable X. If |S| = 1 then this literal is also a minterm of X. For example, X{%} and X101} are
literals and X {°} a minterm of X. If S = ¢, then the value of the literal is always 0. If S = P then the value of the literal is
always 1. For these two cases, the value of the literal may be used to denote the literal. We note the following:

(1) X5 C X5 if and only if S; C S>. QX5 uXs = x5hus, B) XS N X% = XN,

The literal of a binary-valued variable y is defined as either the variable or its Boolean complement. A product term is a
Boolean product (AND) of literals. If a product term evaluates to 1 for a given minterm, it is said to contain the minterm. A
cabe is a product term in which all the literals are of binary valued variables. Note this distinction between a product term and
a cube; the latter does not involve any MV variables. A sum-of-products (SOP) is a Boolean sum (OR) of product terms. For
example: X {%1}y,y, is a product term, y; 3, a cube and X {01}y, 3, + X {3} 445 is a SOP. A function f may be represented by
a SOP expression f. In addition f may be represented as a factored form. A factored form is defined recursively as follows.

Definition 2.1 An SOP expression is a factored form. A sum of two factored forms is a factored form. A product of two
Jfactored forms is a factored form.

X 1013}y (X {01}y + X131 y,) is a factored form for the SOP expression given above.

A logic circuit with a multiple-valued input is represented as a MV-network. A MV network 7, is a directed acyclic graph
(DAG) such that for each node »; in 7 there is associated a binary valued, MV input function f;, expressed in SOP form, and
a Boolean variable y;. There is an edge from n; to n; in n if f; explicitly depends on y;. Further, some of the variables in 7
may be classified as primary inputs or primary outputs. These are the inputs and outputs (respectively) of the MV-petwork.
The MV-network is an extension of the well known Boolean network [4] to permit MV input variables. Since each node in
the network has a binary valued output, the non-binary(MV) inputs to any node must be primary inputs to the network.

1For example, if there are two symbolic variables v1 and v2 taking values from sets V1 and 172 respectively, then these may be replaced by a single
symbolic variable v taking values from V1 x V2. This is in fact better than considering v1 and v2 separately since the encoding for v takes into account
the interactions between v1 and v2.

2The notation preseated in this section is the same as that used in two-level multiple-valued minimization [13].

3 Multiple-Valued Factorization

In this section we present the multiple-valued factorization technique along with its interesting properties with respect to the
final encoded circuit. In this direction, we first review the process of common sub-expression extraction when there are no
MYV variables.

3.1 Kernels and Kernel Intersections

Common sub-expressions consisting of multiple cubes can be extracted from Boolean expressions using the algebraic tech-
niques described in [3]). We review some definitions presented there.

Definition 3.1 A kernel, k, of an expression g is a cube-freé quotient of g and a cube c. A co-kernel associated with a kernel
is the cube divisor used in obtaining that kernel. '

As an example consider the expression ¢ = ae + be + : and the cube ¢. The quotient of ¢ and this cube; g/e isa + b.
No other cube is a factor of @ + b, hence it is a kernel of g. The cube ¢ is the co-kemel corresponding to this kernel.

An important result concerning kernels is that two expressions may have common sub-expressions of more that one cube if
and only if there is a kemel intersection of more than one cube for these expressions [3]. Thus, we can detect all multiple-cube
common sub-expressions by finding afl multiple-cube kernel intersections. In [2] algorithms for detecting kernel intersections
are described by defining them in terms of the rectangular covering problem. Because of the ease in understanding the concepts
involved we use the rectangular covering approach for developing our ideas in the rest of the paper. However, the ideas hold
with any technique for kemel extraction.

As an example of the rectangular covering formulation, consider the expressions ¢, and g,:

g1 = ak+ bk4+ ¢ ; g2 = aj+ bj+ d
1 2 3 4 5 6

The integer below a cube is a unique identifier for it. The kemels of ¢; and g, and the rectangular covering formulation for
this example are shown below.

exrpression | co— kernel kernel a b ak bk aj b ¢ d
a9 1 ak + bk + ¢ 1{fo 0 1. 2 0 0 3 O
g1 k a+b k[t 2 0 0 0 O 0O
92 1 aj+bdj+d 1{0 0 0 0 4 5 0 6
g2 J a+b j|45 0 0 0 0 0O

The table on the right is a co-kernel cube matrix for the set of expressions. A row in the matrix corresponds to a kemel,
whose co-kernel is the label for that row. Each column corresponds to a cube which is the label for that column. A non-zero
entry in the matrix specifies the integer identifier of the cube (in the original expressions) represented by the entry.

A rectangle R is defined as a set of rows S, = {rp.71..... rm-1} and a set of columns S. = {cp.c;..... Cn—1} such that
foreach r; € S, and each ¢; € S., the (7;. ¢;) entry of the co-kemel cube matrix is non-zero. R covers each such entry. R
is denoted as: {R(To. Peveee?m=1). Clco.C1ee. . Chy)} '

A rectangular covering of the matrix is defined as a set of rectangles that cover the non-zero integers in the matrix at least
once (and do not cover a 0 entry). Once an integer is covered, all its other occurrences are replaced by don’t cares (they may
or may not be covered by other rectangles). Each rectangle that has more than one row indicates a kernel intersection. A
covering for the above co-kemel cube matrix is: { R(2.4).C(1.2)}, {R(1).C(7)}, {R(3).C(8)}.

The kernel intersection « + b between the two expressions is indicated by the first rectangle in the cover. The resulting
implementation suggested by the covering is:

n=Fkgs+c ; g2=jgz+d ; ga=a+b

We will use the total number of literals in the factored form of all the Boolean expressions as the metric for circuit size [4]).
The above description has two fewer literals than the original description.

3No cube is an algebraic factor of k.

3.2 Kernels and Multiple-Valued Variables

Now consider the case where one of the input variables may be MV. The following example has a single MV variable X' with
six values and six binary valued variables.

H = Xolak 4+ X@bk+ ¢ ;3 fo = XB4gj+ XUlpj+ d
1 2 3 4 5 6

The integers below each product-term are unique identifiers for that product-term.

The definitions and matrix representations given in Section 3.1 are for binary valued expressions of binary valued vari-
ables. We now extend these to binary valued expressions with MV variables. As in Section 2 we consider only one of the
variables to be MV, and the others are binary valued.

We modify the definitions for the kernel and co-kemel for a binary valued expression f of MV variables as follows:

Definition 3.2 A kernel of an expression f is a product-term free quotient of f and a product term. The co-kernel is the
product-term divisor used in obtaining the kernel.

The co-kernel cubé matrix is defined as follows:

Definition 3.3 Each row represents a kernel (labeled by its co-kernel product-term) and each column a cube (labeled by
this cube). Each non-zero entry in the matrix now has two parts. The first part is the integer identifier of the product-term
in the expression (product-term part). The second part is the MV literal (MV part) which when ANDed with the cube
corresponding to its column and the co-kernel corresponding to its row forms this product term.

The kemels of f; and f, and the corresponding co-kemel cube matrix is given below:

exp.| co— kernel a b ak bk aj bj ¢ d
kernel 1| 0 0 1 2 0 0 3 0

fi 1 ak X101} L pExT2h 4 ¢ 0 0 xfo} x{z 0 0 10
E| 1 2 0 0 0 0 0 0

A k aXx101} 4 px (2} xto} x{z ¢ 0 0 0 00
1[0 0 0 0 4 5 0 6

) 1 aj X34 4 pix {8} 4+ d 0 0 0 0 x4 xist o 1
i| 4 5 0 0 0 0 0 0

A j aX {34} 4 px15) x4 x88 ¢ 0 0 0 00

In the co-kemnel cube matrix the product-term part is given above the MV part for each entry. The adjectives MV and
binary will be used with co-kemel cube matrices and rectangles in order to distinguish between the ‘multiple-valued and the
binary case. .

A rectangle is defined as in the case for all binary variables with one modification. Now the rectangle is permitted to have
zero entries also. Associated with each rectangle R is a constraint matrix M/® whose entries are the MV parts of the entries
of R. For example, for the MV co-kernel cube matrix given above, M, is the constraint matrix for the rectangle {R(2,4),

C(L.2)}.
) x{ot X{’}]

My = [X34} x{s)

A constraint matrix is said to be satisfiable if:
xe UM Axe UMty = x° C MG, j)
J i
ie. if a particular value of X occurs somewhere in row ; and also somewhere in column j, then it must occur in M (i. J). M
given above can be shown to be satisfiable. If a constraint matrix is satisfiable then it can be used to determine a common

factor between the expressions corresponding to its rows as follows. The union of the row entries for row i, qV) ;M)
is ANDed-with the co-kernel product-term corresponding to row :. Similarly the union of the column entries for column Jj(

s

U; M(¢,7)) is ANDed with the kernel cube corresponding to that column. Thus, this results in the following factorization
of the expressions f; and f,,

H = X102 (x{0134}g 4 X‘z;5lb)+ c fr = XBasH; (x{0134)g 4 y{25)p) 4 ¢

Note that there is now a common factor between the two expressions which was not evident to start with. This common factor
may be now implemented as a separate node in the MV-network and its output used to compute f; and f as follows:

=X kg e 3 f2=X043jy 44 ; f = X103 4 x {25}
Not all matrices are satisfiable. An example of this is:

X x{2} xis}
M=% Y1 yi)

since X {5} occurs in row 1 as well in column 2 but is not present in (1, 2).

A non-satisfiable matrix cannot be used to generate a common factor as shown above. This is because the addition to the
row co-kernel product term (X {125} for row 1 in this example), and that to the column kemel cube (X {25} for column 2 for
M) for the “offending” rows and column when intersected yield extra terms that are not present in M (i, j). (The intersection
is X {%5} which contains X {5} which is not present in (1,2).)

Satisfiable constraint matrices are not the only source of common factors. In fact the condition can be relaxed as we see
below.

Definition 3.4 M, is a reduced constraint matrix of M ifVi,j M, (i,j) C M (i, j)
Note that this definition includes the original constraint matrix. An example of a reduced constraint matrix for M is:

x{} x{2}
Ms = [x4 xi%)

A reduced constraint matrix that is satisfiable can be used to generate a common factor by covering the remaining entries
separately. For example with the original expressions and M3 we can obtain the following factorization.

fr= XU (X138 g 4 x253p) 4 X(Oak +¢ ; 2= X345 jx 1134 L x{25)p) 4 g

Note that X {°} ak must be covered separately.

Let us now see what the MV-factorization process gets us in terms of the final encoded circuit. We are interested in obtain-
ing large common factors in the encoded implementation. The work we reported in [9] was carried out with the underlying
assumption that the common factors in the final encoded implementation depended on the encoding chosen. This assumption
was not questioned and we presented encoding techniques that would result in large common factors in the encoded imple-
mentation. However, continuing the work in this area led to some rather surprising results. The following theorem showed
that our initial assumption was not valid.

Theorem 3.1 Let £ be an encoded implementation and let f be a factor in this network. f can be obtained by first finding a
Jfactor in the MV-network and then using the same encoding.

Proof. Omitted for brevity. ,]
This was a surprising result, since if factors do not depend on the initial encoding then we need not worry about the encoding

since we can always go ahead and select an encoding and find the common factors later. However, the catch here is that our
techniques for finding common factors in Boolean networks are algebraic and thus not strong enough to discover Boolean

factors. Thus, even though a common factor may exist in the Boolean network it would remain undetected. Using conven-
tional algebraic factorization after selecting an encoding exposes only a fraction of the common factors present. What is
desirable is that we should at least be able to obtain all see all the factors that can be obtained using algebraic techniques and
some encoding. In fact, the MV-factorization process, using reduced constraint matrices, does exactly that as shown by the
following theorem.

Theorem 3.2 Let £ be an encoded implementation and let I: be a kernel intersection in this network. k can be obtained by
Jfurst finding a common factor in the MV-network and then using the same encoding.

Proof. Omitted for brevity. |
This result is significant because it gives us the satisfaction that we are not missing out on any possible algebraic factors in the
encoded implementation that are dependent on the encoding. In fact, the MV factorization process described is even stronger
in as much as it can potentially discover Boolean factors in the encoded implementation that could not have been found
using algebraic techniques. Thus by using a procedure that is an extension of the known algebraic factorization process, we
have been able to see all possible kemel intersections in all possible encoded implementations as well as additional Boolean
factors.

4 Other Boolean Network Concepts

In the previous section we demonstrated how we could extract common factors with MV-variables. We now show how the
other common multi-level optimization techniques used with Boolean networks, viz. node simplification can be used with
almost no modification in the context of the MV-network. Node simplification involves using a two-level logic minimizer for
each node function. (Recall that each node function is stored in SOP form.) Since we know how to do two-level minimization
with MV variables [13], nothing new needs to be developed here.

In [1] it was shown how implicit don’t cares in the Boolean network could be used in the node simplification process.
We now examine these in the context of the MV-network. The satisfiability don’t care set (SDC) for a Boolean network is
defined as the set of signal values in the network that are inconsistent with the network. Mathematically this is expressed as
SDC = |J; SDC; and SDC; = f;7; + yi f; i.e. the SDC at node 1 is the set of values for which the function computed
with the node is not consistent with the output value of the node. Note that each node function in the MV-network is binary
valued, therefore its complement is defined. Thus, the equation of SDC; is still valid in the MV-network, only the domain
nowis P x Bim-1},

For a Boolean network, the observability don’t care (ODC) at a node is the set of primary input values for which the
output of this node is inconsequential (or cannot be observed) at the primary outputs. For node i in a Boolean network
oDC; = ﬂj(ij.§ij‘.-). Here Fj is the function at primary output j and Fj,, indicates the cofactor operation of this
node function with signal y;. Again note that in the MV-network each node function is binary valued, hence cofactor with
respect to a signal and its complement are defined and therefore the equation for O DC; is still valid.

From the above we see that node simplification with implicit don’t cares is done in the MV-network in exactly the same
way as in the Boolean network. It can be similarly shown that other Boolean network logic simplification techniques such as
simplification using permissible functions [12] have direct extensions to the MV-network.

Combinational logic verification (also referred to as Boolean comparison) is an important part of any combinational
synthesis system. Almost all verification techniques use some form of Shannon’s decomposition ([7]) (f = zf. + Tf7).
This decomposition is for binary valued z. However, it is easily extended to multiple valued X [13] as follows: f =
X0 r +... X101} fy oy, where fy(,) is the value of f when X is equal to i. This extension enables us to use all
the Boolean network comparison techniques for MV-networks (see also [14]).

S Implementation '

5.1 General approach

The full functionality of misiI was extended to the case of multiple-valued inputs. Namely we are able to perform the fol'owing
area-optimization operations on a multi-valued boolean network:

simplify using either the full satisfiability don’t care set or a suitable subset.
algebraic common factor extraction using kemels and product-terms.
local collapsing of low value nodes.

decomposition of complex nodes.

The following subsections detail some of the problems that we encountered during the implementation of mis-MV, out-
lining the solutions, their strength and weakness. We will deal in particular with:

The cost function : how to verify if the operation being applied effectively decreases the implementation cost of the network.

- : 6

Don’t cares : some aspect of don’t care computation that are specifically related with the multiple-valued variable are de-
scribed.

Constraint matrices : how to reduce a constraint matrix that initially does not satisfy the intersection condition.

Encoding : how to derive an optimal encoded implementation from a multiple-valued boolean network.

5.2 Cost function estimation

Almost all algorithms used by misil are greedy. At each decision step (which kernel intersection to extract, which node to
simplify first, ...) they make the choice that gives the best (expected) cost function reduction. So having a "good” cost
function is extremely important. In the binary-valued case, the number of literals in the best available factored form of a node
function is used whenever possible, since it has an excellent correlation with the area of the final implementation.

In the multiple-valued case we have two problems to solve:

1. Find a good factored form for the node function. This uses the kernel extraction algorithms described in Section 3
and a straightforward extension of the cube (now product-term) extraction and algebraic division algorithms from the
boolean case.

2. Estimate the cost of the MV-literals appearing in the leaves of the factoring tree.

The latter problem proved to be the most difficult one, and it is still subject of active research. The cost of a MV-literal,
suchas X {13456}, depends on the encoding, that will be defined for all the MV-literals at the same time. So we cannot make
a purely local estimate.

A first approximate solution assumed that each MV-literal could be implemented as a single cube* using minimum en-
coding length. This was overly optimistic, and it led to poor results.

A somewhat better approach is:

1. Perform an encoding step on the multiple-valued network. Do not replace MV-literals with their encoded implementa-
tion, just keep the codes aside. :

2. Use the codes to estimate the cost of each MV-literal, creating a minimal sum of products expression for the function
denoted by the encoded MV-literal.

E.% the estimated cost of X {1-34}2 with the codes:

XU =566 (X)) =gage X)) =geng X =gaos X)) =ahGG (X)) =m0,
would be 1, since the minimum sum of products expression for €1¢3¢3 + T1c2¢3 + Ciezcs with the explicit don’t care T7¢2¢3
and the implicit don’t cares (unused codes) c1¢2¢3 + cicacs is just c;.

This solution has the advantage that the estimated cost is valid for at least one encoded implementation. It has the dis-
advantage that it is very hard to predict what is the gain of an optimization step, since the optimal encoding for the network
after the optimization can be very different. According to preliminary experiments the cost seems to be relatively "smooth”
over time, so that there are no big changes between the old estimate and the new one after each optimization step.

5.3 Don’t cares

There are two kinds of don’t cares that are somewhat specific to the multiple-valued optimization case:

1. The product-terms in each node cover need not be maximally expanded in the multiple-valued variable. These shall be
denoted encoding don'’t cares in the rest of this paper.

2. A subset of the observability don’t care sets can (and should) be computed before the encoding phase.
4Le. that all the face-embedding constraints from all the nodes in the network could be simultancously satisfied.

53.1 Enceding don’t cares

The encoding don’t care set EDC., is computed for each product-term ¢ of a node N whenever the user applies the simplify
command to N. The algorithm is:

e perform node simplification with the appropriate don’t care set
e reduce as much as possible the multiple-valued variable
o for each product-term ¢
e let EDC. be the set of all values that appear in the expanded MV-literal but do not appear in the reduced one

For example if the expanded cover obtained from the simplification is:
fe=aX 1% 4 px {1} 4 gpx {012}
then the reduced cover is:
fo=aX1} 4 px {1} 4 gpx {2}
and we have an encoding don’t care X% for the last product-term:
fo =ax 10} 4 px {1} 4 gpx{2}0)
Here X{2}0], assuming that X can have values {0, 1.2, 3}, denotes the boolean function that has value

1 if X € {2}
xX5=<{0 ifX € {4}
eitherQorl otherwise

The encoding don’tcares are specific to a particular sum-of-product form of the node function. So they must be discarded
whenever that form is changed, that is whenever a new simplify or collapse operation is performed on the node. On the other
hand they remain valid whenever an algebraic operation is performed on the node.

532 Observability don’t cares

Here is an example of the observability don’t cares associated with the multiple-valued variable. Given:
f=aXx{022g4 4

g = bx {0134} 4 o x {25}

and assuming that X can have values {0, 1,...7}, X167 is a don’t care for the first product-term of f:
f = axton2}leng 4 4

g= bx{01,3.4} + cXx {23}

because when we resubstitute g and multiply out, the MV-literals are intersected.

Notice that X%7] in this case was arbitrarily assigned to a product-term of f. We could also have assigned it to both
product-terms of g, giving:
f=axo12g iy
g = bx{0134}167) 4 o x{2.5}6,7]
butnotto both f and g.

These don’t cares could have been computed using the expand/reduce algorithm outlined above, creating the appropriate
don’t care set for either f or g. This “algebraic” formulation, though, is faster, and it did not show an appreciable difference
from the "boolean” approach in practical cases.

In the current implementation partial observability don’t cares are computed locally for each node in depth-first fashion,
starting either from network outputs or from network inputs, as requested by the user. Let us denote by D; the set of all values
of the multiple-valued variable that do not appear in any of the MV-literals of the i-th node function.

E.g. letus assume X can have values {0, 1,...,7}. If Fp = bX1%134) 4 ¢ X125} then Dy = {6.7}.

On the other hand if F; = bX {0134} 4 ¢ then D; = ¢ because the don’t care MV-literal is equivalent to .\ {017} _

The algorithm to compute the multiple-valued don’t care set JODC, associated with each product-term ¢ of node N,

given the encoding don’t care set EDC., is:

e let ODC = Universe.

o -for each fanout node N, of N

¢ letODC =0DCN D,
o for each fanin node N; of N, (N; # N) that appears together with ¥ ina product-term of N, with both literals
in the positive phase
e let ODC = 0ODC N D;
o for each product-term ¢ of N

e let JODC, = ODC U EDC,
o foreach fanin node NV; of N
e let JODC, = IODC, U D;

5.4 Constraint matrices

As was pointed out in Section 3.2, rectangles correspond to valid common factors if and only if the constraint matrix asso-
ciated with them satisfies the intersection condition ("satisfiable” rectangles and matrices). In general we cannot just reject
unsatisfiable rectangles, becanse we would miss some useful common factors.

There are two ways in which we can reduce a matrix:

1. Eliminate some rows and/or columns from the rectangle.
2. Eliminate some values from some rectangle entries (multiple-valued tags).

54.1 Row/column elimination

If, for example, we want to find a common kemel in the following case:
fi=abX 12 4 gcX 12} 4 adx12)
fo=ebX 123} 4 ecX12} 4 edx (34}
we obtain the constraint matrix:
. x2} x{2y x{3}

M=% y2 x4
that does not satisfy the intersection condition in position M 1; because
{1,2} # {1,2,3} N {1,2,3} (the union over row 1 intersected with the union over column 1).

We can delete{ei}ther cc:h;mn 1 or column 3, c{;bt?ining{ ,

2 3 12} y{2

cither M = [§{2})‘?{3.4}] or M" = [f’{z.s} ?{{z}]
that are both satisfiable. Of course we could also have deleted either row, but the resulting single-row rectangle would not
probably have been useful to extract.

We can formulate the problem of optimally choosing the rows/columns to delete as a minimum column covering problem
for which good solution heuristics exist. The resulting covering matrix C has one column for each row and each column of
M whose deletion can remove a conflict in the constraint matrix.

o for each M;; where the intersection condition is violated
o let Vi = (U; M) n (U; Mij) — My,
(the set of values that must disappear from either column j or from row ¢)

o foreach row k such that M;; N V;; # &
(deleting all these rows is one option)
o for each column / such that M; N V;; # ¢
(deleting all these columns is another option)
¢ create a row of C' with 1’s in the columns associated with rows i and k and with columns ! and J
(deleting either 7 or j is the last option)

e solve the weighted minimum column covering problem

o delete the chosen rows and/or columns from M

The weight of each column of C is the sum over the corresponding row or column of M of the costs of the kemel cubes
that appear in the corresponding rectangle entries. The rationale for this is to have an estimate of the penalty associated with
not extracting those cubes as a common factor. It is likely that more precise cost evaluations would greatly help in this phase.

§.42 Value elimination
As an alternative to deleting rows and/or columns from A, we could have eliminated the value 3 either from 1f,; or from

M obtaining
) x2} x{2} x{3} xt2 x{2? x4
either M "'=[x@ x@ x4 [TMY=| %oy 3o yee

We can again formulate the problem as minimum column covering. This time each column ¢; of the covering matrix 1/ is
associated with a particular set of values in a particular matrix entry, whose deletion can remove a conflict. Le. itis associated
with a triple (row, column, set.of values).

o for each M;; where the intersection condition is violated

o letVy = (U; Mij) 0 (U; Miz) — M
(the set of values that must disappear from either column j or from row i)
o foreach ksuch that M;; NV;; # ¢
(deleting M;.; N V;; from all such My;’s is one option)
o foreach!suchthat M;;NV;; # ¢
(deleting M;; N V;; from all such M;;’s is one option)
e letc; be the column whose tag is (£, j, Mi; N V;;)
if no such column exists, add a new one
@ let c; be the column whose tag is (7,1, M;; N V;;)
if no such column exists, add a new one
e create a row of C with 1’sin ¢ and ¢,

e solve the weighted minimum column covering problem
o delete the chosen rows and/or columns from M

The weight of each column of C is the cost of the kemel cube that appears in the corresponding rectangle entry (using only
the deleted part of the MV-literal). The rationale for this is to have an estimate of the penalty associated with not extracting
those points in the common factor. Again this estimation is very crude, and it is likely that a more precise algorithm can
achieve better results.

This algorithm neglects the fact that the union of two sets of values to be eliminated from an entry can "cover” another
set to be eliminated from that entry. The constraint matrices that appear in practice, though, seem to be very easy to make
satisfiable, so this does not appear to be a serious problem.

The points of the MV-literal that has been deleted from the rectangle entry tag cannot be extracted, and they must be
covered separately. For example, let us assume that we chose to delete value 2 from Af3. Then we have:
fi =abX 112} 4 g X2 4 gd X} 4 qad X 13
fo=ebX 123 + ecX {2} + edX 134}
where now the common kemel can be extracted without harm:
fi=ag+ adXx 13}
fa=eg
g =bx{123} 4 cX 12} 4 gx {34}

5.5 Encoding algorithm
Given a multiple-valued multi-level network, output of mis-MV, we have to solve the following problem:

Jind an encoding for the multzple—valued input variable such that the cost of the encoded boolean network is
minimum

10

We do not know how to solve this problem if the cost function is the sum of the literals in the factored forms of the node
functions. Also we neglect the fact that further optimizations are still possible after the encoding®

We currently solve the problem using the sum of the literals in the sum-of-product forms of the node functions as the
network cost. In the experiments we made to assess the validity of mis-MV we used a simulated annealing-based input
encoding algorithm, since no other algorithm available to us was able to handle don’t cares in the MV-literals.

The algorithm is:

o assign initial random codes
o for each temperature

o repeat until equilibrium
o exchange two codes (one of them can be a unused code)
e letC=0
o for each node
e add to C the sum of the cost of all MV-literals in the sum-of-products expression for N’
elet =C-Cu4
s accept the move always if < 0,
with probabilitye =T if >=0

The computation of the cost of the MV-literal is very expensive®. Since the simulated annealing encoding algorithm is
currently the bottleneck of mis-MV, we are currently studying some deterministic alternative.

6 Experimental results

‘We made two kinds of experiments to verify the validity of mis-MV as input encoder:
e compare the relative importance of the various multi-valued optimization steps.

o compare mis-MV with some existing state assignment programs, such as NOVA ([15]), MUSTANG ([5), JEDI ([8]) and
MUSE ([6]). Notice that the comparison is not completely appropriate, since these programs embody also heuristics
for the output encoding problem, that mis-MV does not handle.

In both sets of experiments we used the MCNC ’89 set of benchmark state machines, and we encoded their present state
input only. The output was left one-hot. -
The experiments were conducted as follows:

o minimum-length encoding was always used.

o a single simplified boolean script (using simplify only once) was used both for multi-valued and binary valued opti-
mization.
o the script was run twice in all cases.
o mis-MV:
1. espresso was run on the unencoded machine.
2. all or part of the first scrpt was run in mis-MV’s multi-valued mode.
3. the inputs were encoded, using the simulated annealing algorithm.
4. the remaining part of the first script and the second script were run in binary-valued mode.
o NOVA, MUSTANG, JEDI and MUSE:
SFor example we can still extract common kernels that involve only code variables, since it is impossible to have a good estimate of the value of these

kernels in the multiple-valued kerneling phase.
SWe usc a single shot of the expand phase of espresso

11

1. each program was run in input oriented mode ("-¢ ih” for NOVA, "-p -¢” for MUSTANG, "-e i” for JEDI and "-e
p” for muse) to generate the codes.

2. espresso was run on the unencoded machine.

3. the symbolic input was encoded.

4. espresso was run again, using the invalid states as don’t cares.
5. the script was executed twice.

We performed five experiments on each machine, two using NOVA, MUSTANG, JEDI and MUSE and three using mis-MV.
The experiments on mis-MV differed in the point when encoding was performed:

1. at the beginning, to verify the encoding algorithm itself (that at this point has exactly the same two-level information
as the other programs).

2. after simplify, to verify multiple-valued boolean resubstitution.
3. after algebraic optimization (gkx, gcx, . . .), to verify the full power of mis-MV.

Table 1 contains the results, expressed as factored form literals.

Apart from a couple of cases (namely keyb and rbk) most of the gain seems to be associated with the multiple-valued
simplify, that takes advantage of the additional don’t care sets associated with unused codes. This does not mean that in
general multiple-valued kemeling is not useful, just that in this set of examples most useful kemnels were either independent
of the encoding or they were found by mere chance’. Another reason is that multiple-valued kemeling extracts boolean
common factors (as opposed to algebraic in the binary-valued case). So the computation of the value of a common kernel
intersection® must be more sophisticated than the current algebraic-based techniques.

7 Conclusions and future work

This work proved that multiple-valued multi-level logic synthesis is both feasible and useful.

It relies heavily upon previous results in multiple-valued two-level logic synthesis [13] and input encoding [11, 15] and
in binary-valued multiple-level logic synthesis [4], extending both theoretical results and algorithmic ideas.

The challenging part of the implementation is still to be able to foresee the impact of optimization decisions on the final
results. Good heuristics have been developed to tackle this problem.

Possible directions for future work are:

1. analyze more examples, to explore the importance of muitipie-valued kemeling. -

2. improve the heuristics, especially those related with matrix reduction and kernel value computation.
3. develop a fast and efficient encoding algorithm, handling also encoding don’t cares.

4. explore the output encoding problem.

Output encoding is probably the most interesting aspect, since a good solution to state encoding requires to handle both
symbolic inputs and outputs. It is likely that a procedure similar to symbolic minimization ([10]) can be used for this purpose.
It will require to merge the ideas presented in this paper together with a deeper understanding of the observability don’t care
sets that the encoding induces in the network.

7In some pathological cases, such as the dk* family, kernels come almost only from the code inputs.
3The reduction in total area if the kernel is implemented as a node, used in guiding kernel extraction routines.

12

file nova | mustang | jedi | muse best || beginning | simplify algebraic
mis-MV optimization

bbara 106 9% | 9| 99 84| . 84 84 ssq
bbsse 151 148 | 125 | 126 130 130 132 131
bbtas 32 37| 34| 36 31 35 31 31
beecount 70 65| 57| 60 56 62 56 58
cse 214 208 | 189 | 192 191 191 199 195
dk14 98 18| 97| 102 79 97 79 81
dk15 65 65| 65| 65 65 65 68 69
dk16 351 314 | 254 | 244 225 225 247 261
[dx17 s8| - 69| 63| 58 58 58 62 63
dk27 38 34| 30| 29 27 27 27 27
dk512 93 | 13 73 68 70 68 69
donfile I' 186 195 | 132 131 123 127 123 123
exl 246 252 | 256 | 239 232 240 232 236
ex2 167 197 | 179 | 169 143 143 144 - 154
ex3 98 98| 87| 96 82 82 86 82
exd 84 B | 7”7 72 90 74 72
ex5 83 80| 79| 79 67 67 69 69.
ex6 98 90| o1 9 84 85 85 84
ex7 94 100| 93| 84 78 89 79 78
keyb 195| 203 186 180 146 186 172 146
kirkman 168 181 | 175 | 195 160 169 166 160
16| 16 16 16 16 16
55| 55 38 40 38 38
9% | 92 90 90 94 92
32| 30 30 35 30 30
58| 72 7 7 71 71
83| 70 70 87 70 74
454 | 511 466 512 466 473
347 | 291 249 335 253 249
262 | 195 214 217 214 225
50| 52 43 52 48 48
552 | 498 509 523 509 528
24| 25 24 24 24 24
125 | 126 130 130 132 131
413 418 438 442 438 465
27 27 27 27 27 27
463 | 570 393 426 456 393
65| 79 59 60 59 59
14 14 14 14 15 15
5566 | 5562 5087 54723 5243 5232

Table 1: Input encoding comparison

13 -

References

(1] K Bartlett, R. Brayton, G. Hachtel, R. Jacoby, C. Morison, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Multi-level logic
minimization using implicit don't cares. JEEE Transactions on Computer-Aided Design, 71(6):723-740, June 1988.

(2] R. Brayton, R. Rudell, A. Sangiovanni- Vincentelli, and A. Wang. Multi-level logic optimization and the rectangular covering problem.
In Proceedings of the International Conference on Computer-Aided Design, 1987.

[3] R. K Brayton and C. McMullen. The decomposition and factorization of Boolean expressions. In Proceedings of the International
Symposium on Circuits and Systems, 1982.
[4] R. K Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A multiple-level logic optimization system. IEEE
Transactions on Computer-Aided Design, (6):1062-1081, November 1987.
[5] S.Devadas,H.-K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG: State assignment of finite state machines targeting
multi-level logic implementations. IEEE Transactions on Computer-Aided Design, (12):1290-1300, December 1988.
[6] G. Hachtel, X. Du, and P. Moceyunas. Algorithms for state assignment based on multi-levelrepresentation. In Proceedings of the
Hawaii International Conference on System Sciences, 1990.
(71 G.D. Hachtel and R. M. Jacoby. Verification algorithms for VLSI synthesis. JEEE Transactions on Computer-Aided Design, CAD-
7(5):616-640, May 1988.
[8] Bill Lin and A. R. Newton. Synthesis of multiple level logic from symbolic high-level description languages. In Proceedings of the
. International Conference on Very Large Scale Integration, 1989.
[9] Sharad Malik, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Encoding symbolic inputs for multi-level logic implementa-
tion. In Proceedings of the International Conference on Very Large Scale Integration, 1989.
[10] G. De Micheli. Symbolic design of combinaticnal and sequential logic circuits implemented by two-level logic macros. JEEE
Transactions on Computer-Aided Design, (4):597-616, October 1986, .
[11] G.De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state machines. IEEE Transactions
on Computer-Aided Design, (3):269-285, July 1985. ;
[12] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method - design of logic networks based on permissible
fanctions. In JEEE Transactions on Computers, 1989.
(13] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimization. JEEE Transactions on Computer-
Aided Design, (5):727-750, September 1987.
[14]) A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipulation. submitted to the Intemational
Conference on Computer-Aided Design, 1990.
[15] T. Villa. Constrained encoding in hypercubes: Algorithms and applications to logical synthesis. Technical Report UCB/ERL M87/37,
Electronics Research Lab., U. C. Bezkeley, May 1987.

14

