
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MIS-MV: OPTIMIZATION OF MULTI-LEVEL

LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/68

13 August 1990

MIS-MV: OPTIMIZATION OF MULTI-LEVEL

LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/68

13 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MIS-MV: OPTIMIZATION OF MULTI-LEVEL

LOGIC WITH MULTIPLE-VALUED INPUTS

by

Luciano Lavagno, Sharad Malik, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli *

Memorandum No. UCB/ERL M90/68

13 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MIS-MV: Optimization of Multi-level Logic
with Multiple-valued Inputs.

Luciano Lavagno Sharad Malik RobertK. Brayton Alberto Sangiovanni-Vincentelli

Dept. of EECS
University ofCalifornia, Berkeley

Abstract

We present techniques for theoptimization of multi-level logic withmultiple-valued inputvariables. Themotivation for
mis is to tackletheinputencoding problem in logicsynthesis, where binary codesneedto be found for the different values
thatasymbolic inputvariable cantake. Multi-level multiple-valued optimization is usedto generate constraints thatare then
used to determine thecodes. The state assignment problem in sequential logic synthesis can be approximated asaninput
encoding problem byignoring thenextstate field, which isreasonable when theoutput logic dominates thenextstate logic.

Common factor extraction is animportant stepin multi-level optimization andthus far it was not clearhow this could
be done withmultiple-valued variables. We present anovel technique forextracting common factors with multiple-valued
variables. Wethenshowhowtheothermulti-level optimization techniques areeasily extendedwithmultiple-valuedvariables.
These ideas have been implemented asalgorithms in theprogram MIS-MV. We present thepractical issues involved in the
implementation of these ideas, aswellasresults ofusing MIS-MV for input encoding onsome benchmark examples.

1 Introduction

Real life variables tend to be multiple-valued (MV) while digital circuit signals are restricted to binary values. Thus, any
digital circuit thatinvolves these variables as part of its function must use some binary encoding for the various values of
the MV variable. An example ofthis is the MV "instruction"ofa machine architecture which takes values over the different
instructions. However, inthecontrollerofthemachine each instructionvalue isrepresented byaunique binary "opcode". The
size ofthecircuits ingeneral is afunction of theencoding chosen for thedifferent values oftheMV variable. Thisgives rise to
theencoding problem in the automatic synthesis of logiccircuits, wherein anencoding is to bedetermined foraMV-variable
that results in "simple" logic. The version of this problem in which the MV variable is aninput of the logic description
is called the input encoding problem. We will restrict ourselves to this problem for this paper. Orthogonal to thetype of
encoding problem is the form of the target logic, Le. two-level ormulti-level For the case of two-level logic, satisfactory
solutions to the input encoding problem were obtained by first using a multiple-valued two level logic minimization step
(e.g. [13]) andthenusingthe result of thisto generate constraints thattheencoding hadto satisfy (e.g. [11,15]). However,
for multi-level logic as the target implementation the approaches currently usedtend to be "predictive" in asmuch as they
determine encodings for which amulti-level logic optimizer suchasMIS [4] is likely to find common divisors (e.g. [5, 8]).
In addition, they onlyconcentrate on finding common divisors that are cubes (orsingle product terms) and do not consider
larger common divisors. Our approach to theinput encoding problem is directed towards overcoming the shortcomings of
existing multi-level encoding programs while following theparadigm that was so successful in thecase of two-level logic.
We have developed techniques for multi-level optimization of logic withMV input variables. This permits us to view the
optimizations largely independent of theencoding and menusethe encoding in the final step. Also,using thisapproach we
wereableto consider commondivisorsthatwerenotrestricted to singlecubes.

Multi-level logic optimization involves theuse of several different techniques. One very important technique involves
finding common sub-expressions (factors, ordivisors) among asetof logic expressions. The common sub-expressions can
thenbeimplemented onlyonce resulting in substantial savings inlogic. Techniques for determining common sub-expressions
(kernel intersections) efficientlywith binary variables were first presented in [3]. However, it was not clearhow to extract
commonsub-expressions forexpressions with MV inputswhile guaranteeing thatthis extraction anda subsequent encoding

would be sufficient to obtain all possiblekernel intersections for allpossibleencodings. A major contributionofthis work is
to presentsuch a technique. In fact, this technique can potentiallyresultin common factors that areBoolean and hence even
strongerman the algebraickernel intersections. (This work is a development of the work we presented earlierin [9], so some
similaritymay be found in these two presentations.) The discovery of MV factorization techniques completed the missing
link in multi-level MV minimization since the othermulti-level optimization techniques were extended easily to MV inputs.
These techniques have been been implemented in the programMIS-MV, which is the multiple-valued extension to MIS, the
successful multi-level logic optimizer.

The organizationof this paper is as follows. In Section 2 we discuss the representation of circuits and functions with
multiple-valuedinputs. Section 3 describes the MV factorization technique. Next, in Section 4 we describe the extensions
of the othermulti-level optimizationtechniques to MV variables. Section5 describes the practical issues in implementing
MIS-MV as well as the final encoding step. In Section 6 we presentsome resultsusing MIS-MV as part of the encoding
procedure. Section 7 presents the concluding remarks regarding this work.

2 Circuit and Function Representation

Sincemultiplesymbolicvariables canbe mappedintoa single symbolic variable1, we restrict ourselves to a singlesymbolic
variablethroughoutthe paper. The rest of the variablesarebinaryvalued.

Let thesymbolicvariablestakevalues from V —{t*>, vi,...,t>n-i}. v mayberepresented by amultiple-valuedvariable,
A, restricted to P = {0,1,..., n —1), where each symbolic value of v maps onto aunique integer in P 2. Let B = {0.1}. A
binary valuedfunctionf, of a single MV variable X and m - 1binary-valued variables, is amapping: f : P x Bm~l — B.
Each element in thedomain of the function is called aminterm of thefunction. Let 5 C P. Then A'5 represents theBoolean
function:

xs = f 1 ifAeS
\ 0 otherwise

Xs is called aliteral of variable X. If \S\ = 1then this literal is also aminterm of A'. For example, A'^ and A"*0'1* are
literals and X{0^ aminterm of AMf S = <p, then the value ofthe literal isalways 0. If S = P then the value ofthe literal is
always 1. Forthese two cases, the value ofthe literalmay be used to denote the literal We note the following:

(1)Xs> C Xs* ifandonlyif 5i C S2. (2) A5> UA'* = As»uS*. (3) As» n As* = As>nS*.
The literalof abinary-valued variable y is defined aseitherthe variable orits Booleancomplement A product term is a

Booleanproduct(AND) ofliterals. If a product term evaluatesto 1 fora given minterm, it is said to contain the minterm. A
cube is a productterm in which allthe literalsareofbinaryvalued variables. Note this distinctionbetween a productterm and
acube;the latterdoes not involve any MV variables. A sum-of-products (SOP)is a Booleansum (OR) ofproductterms. For
example: X*0'1* yijfc isaproduct term, yijft acube and A*0,11 yijft+X& yiyi isaSOP. A function f may be represented by
a SOPexpression/. In additionf may be represented as a factored form. A factored form is defined recursivelyas follows.

Definition2J. An SOP expression is a factoredform. A sum of twofactoredforms is a factoredform. A product of two
factoredforms is a factored form.

X^^teiX^0'1) 2/i + XWy$) isafactored form for the SOP expression given above.
A logiccircuitwith amultiple-valuedinputis represented asaMV-network. A MV network 77, is adirected acyclicgraph

(DAG) suchthat foreachnode nt in 77 thereis associated a binary valued, MV input function /,-, expressedin SOP form, and
aBooleanvariable y,-. There is an edge from n,- to n,- in rj if fj explicitlydepends on y,. Further, some of the variables in 77
may be classifiedas primary inputs orprimary outputs. These aretheinputsandoutputs(respectively) ofthe MV-network.
The MV-network is an extension of the well known Booleannetwork [4] to permitMV input variables. Since each node in
thenetwork hasabinary valued output, thenon-binary(MV) inputs to anynode mustbe primary inputs to thenetwork.

1For example, if there ate twosymbolic variables v1and v2 taking values from sets V1 and V2 respectively, then these may bereplaced by asingle
symbolicvariable v takingvaluesfrom V1 x V2. This is in factbetterthanconsidering v1andv2 separately sincethe encoding for v takesintoaccount
the interactions between vl andv2.

2The notation presented inmissection is thesame asmatused intwo-level multiple-valued minimization [13].

3 Multiple-Valued Factorization

In thissection we presentthe multiple-valued factorization technique alongwithits interesting properties withrespect to the
final encoded circuit In this direction, we first review theprocess of common sub-expression extraction when there areno
MV variables.

3.1 Kernels and Kernel Intersections

Common sub-expressions consisting of multiple cubes can be extracted from Booleanexpressions using the algebraic tech
niquesdescribed in [3]. We review some definitions presentedthere.

Definition3.1 A kernel, k,ofanexpression g isa cube-free3 quotientofg anda cubec. A co-kernel associated with a kernel
is thecube divisor used in obtaining thatkernel.

As an example considerthe expression g = ae + be + z and the cube e. The quotientof g and this cube;g/e is a + b.
Noothercubeis a factorof a + b, henceit is a kernel of g. The cubee is the co-kemel corresponding to thiskernel.

Animportant resultconcerning kernels is thattwoexpressions mayhavecommon sub-expressions ofmorethatonecubeif
andonlyif there is akemel intersection ofmorethanonecubefortheseexpressions [3]. Thus,we candetectallmultiple-cube
commonsub-expressionsby findingallmultiple-cube kernel intersections. In [2] algorithmsfor detectingkernel intersections
aredescribed bydefining themintermsof therectangular coveringproblem. Because oftheeasein understanding theconcepts
involved we use the rectangular covering approach fordeveloping ourideas in the rest of the paper. However, the ideas hold
with any technique for kernel extraction.

As an example of the rectangularcovering formulation, consider the expressions g\ and gi\

9\ = ak +

1

bk +

2
92 = aj +

4

bj +
5

The integer below a cube is a unique identifierfor it The kernels of g\ and gz and the rectangular covering formulation for
this example are shown below.

expression co — kernel kernel

9\

9\

92

92

1

k

1

J

ak + bk + c

a + b

aj + bj + d
a + b

a b ak bk aj bj c d
1 0 0 1 2 0 0 3 0

k 1 2 0 0 0 0 0 0

1 0 0 0 0 4 5 0 6

J 4 5 0 0 0 0 0 0

The tableon the rightis a co-kernel cube matrix for the set of expressions. A rowin the matrixcorresponds to a kernel,
whoseco-kernel is the label for that row. Each column correspondsto a cube which is the label for that column. A non-zero
entryin the matrixspecifies the integer identifier of the cube (in the originalexpressions)representedby the entry.

A rectangle %is denned as a set of rows 5r = {ro- n '"m-i} anda set ofcolumnsSc = {en. c\ cn_i} suchthat
foreach r,- 6 Sr and each c,- € Sc, the (r,. cj) entry of the co-kemel cube matrix is non-zero. V. coverseach such entry. 7v
is denoted as: {R{r0. ri,....rm_i).C(co.ci—-Cn-y)}.

A rectangularcovering of the matrix is definedas a set of rectangles that cover the non-zero integers in the matrix at least
once (anddo not cover a 0 entry). Once an integeris covered, all its other occurrences are replaced by don't cares (they may
or may not be covered by other rectangles). Each rectangle that has more than one row indicates a kernel intersection. A
covering forthe above co-kernel cubematrixis: {i?(2.4). C(l,2)}, {/?(1). C(7)}, {R{3). C(8)}.

The kernel intersection a + bbetween the two expressions is indicated by the first rectangle in the cover. The resulting
implementation suggested by the covering is:

g\ = kgi + c ; g2 = jgz + d ; g3 = a + b

Wewill use the total number of literals in the factored form of all the Boolean expressions as the metric for circuit size [4].
The above description has two fewer literals than the originaldescription.

3No cube is analgebraic factor of k.

3.2 Kernels and Multiple-Valued Variables

Now consider thecase where one oftheinput variables may beMV. The following example has asingle MV variable A* with
six values and six binary valued variables.

/i = A'^1iaJk+ A*<2>6Jfc+ c
1 2 3

h = XMaj+ X&bj+ d
4 5 6

The integers below each product-term are unique identifiers forthat product-term.
The definitions and matrix representations given inSection 3.1 are for binary valued expressions ofbinary valued vari

ables. We now extend these to binary valued expressions with MV variables. AsinSection 2 we consider only one of the
variablesto be MV,and the othersare binaryvalued.

We modifythe definitions forthekernel and co-kernel fora binary valued expression / ofMV variables as follows:

Definition 3.2 A kernel ofanexpression f is a product-termfree quotient of f and aproduct term. The co-kernel is the
product-term divisorusedinobtaining thekernel.

The co-kernel cube matrix is defined as follows:

Definition33 Each row represents a kernel (labeled by its co-kernel product-term) and each column a cube (labeled by
this cube). Each non-zero entry in the matrix now has two parts. Thefirst part is the integer identifier ofthe product-term
in the expression (product-term part). The second part istheMV literal (MV part) which when ANDed with the cube
corresponding toitscolumn and the co-kernel corresponding toits rowforms thisproduct term.

Thekernels of f\ andfa andthecorresponding co-kemel cube matrix is given below:

exp. co-

kernel

kernel

h 1 akXW + bkXW + c

h k aXW+bXW

h 1 ajX<W + bjXW + d

h 3 aXM+bXW

a b ak bk aj bj c d

1 0

0

0

0

1 2

A'<2>
0

0

0

0

3 0

1 0

k 1 2

A'<«
0

0

0

0

0

0

0

0

0 0

0 0

1 0

0

0

0

0

0

0

0

4
A-{3.4}

5

A<5>
0 6

0 1

3 4

A<3-4>
5

A<5>
0

0

0

0

0

0

0

0

0 0

0 0

In the co-kemel cube matrix the product-term part isgiven above the MV part for each entry. The adjectives MV and
binary will beused with co-kemel cube matrices and rectangles inorder to distinguish between the multiple-valued and the
binary case.

Arectangle isdefined asinthe case for all binary variables with one modification. Now the rectangle ispermitted tohave
zero entries also. Associated with each rectangle U isaconstraint matrix M^ whose entries are the MV parts ofthe entries
ofH. Forexample, for the MV co-kemel cube matrix given above, Mi, is the constraint matrix for the rectangle {R(2,4),
C(U)}.

A'<°-i} A"W
_A<3'4> A-<5>

A constraint matrix is said to be satisfiable if:

Mi =

X* c{JM(iJ)/\X° C\JM(i,j) => XQ CM(iJ)

Le. ifaparticularvalue ofX occurs somewhere inrow i and also somewhere incolumn j, then itmust occur ia.M(i.j). Mi
givenabove can be shownto be satisfiable. If a constraint matrix is satisfiable thenit can be usedto determine a common
factor between the expressions corresponding to its rows as follows. The union ofthe row entries for row /, ([j M{ i.j'))
isANDed with the co-kemel product-term corresponding to row i. Similarly the union ofthe column entries for column j (

U, Af(»\ J)) is ANDed with the kernel cube corresponding to that column. Thus, this results in the following factorization
ofthe expressions f\ and f2.

fl = X^l#k (x{o,i,3,4}a+ X<2<5H)+ c ; f2 = A'<3-4'5>./ (A^1-3-4)a+ A'<2-5H) + </

Note that there isnowacommon factor between thetwoexpressions which was notevident tostart with. Thiscommon factor
may benow implemented as aseparate node inthe MV-network and its output used tocompute /i and f2 as follows:

f^X^^kys + c ; /2 = A'{3-4-5>i2/3 +d ; h = X^^a + A'<«>&

Not allmatrices are satisfiable. An exampleofthisis:

M2 =
A"0> A'W A<5>
A<4> A<5> XM

since A'*5} occurs in row 1as well incolumn 2but is not present inM{ 1,2).
A non-satisfiable matrixcannot be used to generate a commonfactor asshownabove. This is because the addition to the

row co-kemel product term (A* 1A5> for row 1inthis example), and that to the column kernel cube (X{25J for column 2for
M2) for the "offending"rows and column when intersected yieldextra terms that are notpresent inM{i,j). (The intersection
isA"*2*5* which contains A"*5) which isnot present inM(1,2).)

Satisfiable constraint matrices are not the only source of common factors. In tact the condition canbe relaxed aswe see
below.

Definition3.4 Mrisa reduced constraint matrixofM #Vz, j Mr (i, j) Q M(i, j)

Note that this definition includes the original constraint matrix. Anexample of areduced constraint matrix for M\ is:

M3 =
aw a-w

A<3'4> A<5>

A reduced constraint matrix that is satisfiable can be used to generate a common factor bycovering the remaining entries
separately. For example with the original expressions and A/3 we can obtain the following factorization.

/i =*<W>*(.Y<i**>o +XWb) +X^ak +c ; /2 = Xl***> j(X*l*4a+A'̂ 5>6) +d

Note that AWak must be covered separately.
LetusnowseewhattheMV-factorization process gets usinterms of the final encoded circuit. We are interested in obtain

ing large common factors inthe encoded implementation. The work we reported in[9] was carried out with the underlying
assumption that the common factors inthe final encoded implementation depended on the encoding chosen. This assumption
was not questioned and wepresented encoding techniques that would result inlarge common factors inthe encoded imple
mentation. However, continuing the work in this area led tosome rather surprising results. The following theorem showed
thatour initialassumptionwas not valid

Theorem 3.1 Let Sbean encoded implementation and let f be afactor in this network, f can be obtained by first finding a
factor in the MV-network andthen using the same encoding.

Proof. Omittedforbrevity. I
This was asurprising result, since if factors do not depend on the initial encoding then we need not worry about the encoding
since we can always goahead and select an encoding and find thecommon factors later. However, thecatch here is that our
techniques for finding common factors in Boolean networks are algebraic and thus notstrong enough to discover Boolean
factors. Thus, even though acommon factor may exist inthe Boolean network itwould remain undetected. Using conven
tional algebraic factorization after selecting an encoding exposes only a fraction of the common factors present. What is
desirable isthat we should at least be able to obtain all see all the factors that can be obtained using algebraic techniques and
some encoding. In fact, the MV-factorization process, using reduced constraint matrices, does exactly that as shown by the
following theorem.

Theorem 3.2 Let S be an encoded implementation and let k be a kernel intersection in this network, k can be obtained by
first finding a common factor inthe MV-network and then using the same encoding.

Proof. Omitted for brevity. •
Thisresult is significant because it givesus the satisfaction thatwe are notmissingouton anypossible algebraic factors in the
encoded implementationthatare dependent ontheencoding. In fact, theMV factorization process described iseven stronger
in as much as it can potentially discover Boolean factors in the encoded implementation that couldnot have been found
using algebraic techniques. Thusby using aprocedure thatis anextension of theknownalgebraic factorization process, we
havebeenableto see allpossible kernelintersections in allpossible encoded implementations aswell as additional Boolean
factors.

4 Other Boolean Network Concepts

In the previous section we demonstrated how we could extract common factors with MV-variables. We now show how the
other common multi-level optimization techniques usedwith Boolean networks, viz. node simplification canbe usedwith
almostno modification in the contextofthe MV-network. Nodesimplificationinvolvesusingatwo-levellogicminimizerfor
eachnode function. (Recall thateach node functionis storedin SOP form.) Since we know how to do two-level minimization
withMV variables [13], nothingnew needsto be developed here.

In [1] it was shownhow implicit don't cares in the Boolean network could be usedin the nodesimplification process.
We now examine these in the context of the MV-network. The satisfiability don't care set (SDC) for a Booleannetworkis
defined as theset of signal values in thenetwork that are inconsistent withthenetwork. Mathematically thisis expressed as
SDC = |J,. SDQ and SDQ = fiyl -f y,/, Le. the SDC atnode i is the setof values for which the function computed
withthe nodeis not consistent with the outputvalueofthe node. Note thateachnode function in the MV-network is binary
valued, therefore its complement is defined. Thus, the equation of SDC, is stillvalidin the MV-network, onlythe domain
nowisPx B^m-1J.

For a Boolean network, the observability don't care (ODC) at a nodeis the set of primary inputvalues for whichthe
output of this nodeis inconsequential (or cannot be observed) at the primary outputs. For node i in a Boolean network
ODQ = f]j (FJy^FJj-)• Here Fj is the function at primary output j and Fjy% indicates the cofactor operation ofthis
node function with signal y,-. Again note thatin the MV-network eachnode function is binary valued, hence cofactor with
respect to a signal andits complement are defined andtherefore the equation forODQ is stillvalid.

From the abovewe see thatnode simplification withimplicitdon't cares is donein die MV-network in exactly the same
wayasin theBoolean network. It canbe similarly shown matother Boolean networklogicsimplification techniques such as
simplification usmg permissible functions [12] have directextensionsto the MV-network.

Combinational logicverification (also referred to as Boolean comparison) is an important part of any combinational
synthesis system. Almost allverification techniques use some form of Shannon's decomposition ([7]) (/ = xfx + 7/-).
This decomposition is for binary valued x. However, it is easily extended to multiple valued A [13] as follows: / =
X^fxM +•••AT^ri~1J/x-{»_i}, where fx{,> isthe value of/ when A" is equal to i. This extension enables us to use all
die Booleannetwork comparison techniques forMV-networks(see also [14]).

5 Implementation

5.1 General approach

Thefull functionality oimisllwas extended tothecase ofmultiple-valuedinputs. Namely weare able toperform thefollowing
area-optimization operations on a multi-valued booleannetwork:

simplify using either the full satisfiabilitydon't care set or a suitable subset.

algebraic common factor extraction usingkernels andproduct-terms.

local collapsing oflow value nodes.

decomposition of complex nodes.

The following subsections detail some of the problems that we encountered during theimplementation of mis-MV, out
lining thesolutions, theirstrength and weakness. We willdeal in particular with:

The cost function :howtoverify iftheoperation being appliedeffectively decreases the implementation cost ofthenetwork.

Don'tcares : some aspect of don't care computation that are specifically related with the multiple-valued variable are de
scribed.

Constraintmatrices : howtoreduce a constraint matrix thatinitially doesnotsatisfy the intersection condition.

Encoding : how to derive anoptimal encoded implementation from a multiple-valued boolean network.

52 Cost function estimation

Almost all algoriduns usedby misllare greedy. At eachdecision step(which kemel intersection to extract, which node to
simplify first,...) they make the choice that gives the best (expected) cost function reduction. So having a "good" cost
function isextremely important Inthebinary-valued case, dienumber ofliterals inthebestavailablefactoredform ofa node
function is used whenever possible, since it has anexcellent correlation with the area of thefinal implementation.

In the multiple-valued case we have twoproblemsto solve:

1. Find a good factored form for the node function. This uses the kernel extraction algorithms described in Section3
anda straightforward extension of thecube (now product-term) extraction andalgebraic division algorithms from the
boolean case.

2. Estimate the costof dieMV-literals appearing in theleaves of thefactoring tree.

The latterproblem provedto be the mostdifficult one, andit is still subject of active research. The cost of a MV-literal,
suchasA't1'3'4*5'6), depends ondie encoding, that will be defined for allthe MV-hterals atthe same time. So we cannot make
a purely local estimate.

A first approximate solution assumed thateach MV-literal could be implemented as a single cube4 using minimum en
codinglength. Thiswas overly optimistic, and it led to poorresults.

A somewhat better approach is:

1. Perform anencoding steponthemultiple-valuednetwork. Donotreplace MV-literals withtheirencoded implementa
tion,justkeep the codes aside.

2. Usethecodes toestimate diecostof eachMV-literal, creating a minimal sum of products expression for the function
denoted by the encoded MV-literal.

E.g. the estimated cost of A*1'3'4*!2! with the codes:
e(A'<1>)=cTc2cT e(A<2>)=cTc2C3 e(A<3>) =cic2c5 e(A<4>) =cTc2c3 e(A<5>) =cicicj e(A<6>) =ciC2C3
would be 1, since theminimum sum ofproducts expression forc\c2cz + cic2ci + c[c2ci with theexplicit don't care cfcici
andtheimplicit don't cares (unused codes) c\c2ci+ c\c2c$ is justc\.

Thissolution has the advantage thatthe estimated costis valid for at leastoneencoded implementation. It has the dis
advantage thatit is veryhardto predict whatis the gainof an optimization step,sincethe optimal encoding for thenetwork
afterthe optimization can be verydifferent According to preliminary experiments thecostseems to be relatively "smooth"
overtime, so thatthere areno bigchanges between theoldestimate andthenewone aftereachoptimization step.

53 Don't cares

Thereare twokindsof don't cares that are somewhat specific to the multiple-valued optimization case:

1. Theproduct-terms ineachnode coverneednotbemaximally expanded in themultiple-valued variable. Theseshallbe
denotedencoding don't caresin the rest of thispaper.

2. A subsetof theobservability don't caresetscan(andshould) be computed before theencoding phase.

*Le. that all the face-embedding constraints from all the nodes inthe networkcould besimultaneously satisfied.

53.1 Encoding don't cares

The encoding don'tcare setEDCC is computed foreach product-term c ofa node Ar whenever the user apphes thesimplify
command to N. The algorithm is:

• perform node simplification with the appropriate don't careset

• reduce as much as possiblethe multiple-valued variable

• for each product-term c

• let EDCC bethesetofallvalues thatappear in theexpanded MV-literal butdonotappear in thereduced one

Forexample if theexpanded cover obtained from thesimplification is:
fe = aA<°> + bXM + abXtoW
then the reduced cover is:

fe=aXW+bXM+abXW
and we have anencoding don'tcare X&V forthe last product-term:
/c = aXW + bXM + a&A<2>M
Here A^HM, assuming that X can have values {0,1.2,3}, denotes the boolean function that has value

f 1 ifA€{2}
As = I 0 ifA € {4}

[eitherOorl otherwise

The encoding don'tcares are specific toaparticular sum-of-product form ofthe node function. Sothey must bediscarded
whenever that form ischanged, that iswhenever anew simplify orcollapse operation isperformed onthe node. On the other
hand they remain valid whenever analgebraic operation is performed onthenode.

532 Observability don't cares

Here is anexample ofthe observability don'tcares associated with the multiple-valued variable. Given:
f = aXl°>Wg+ d
0 = 6X{O,l,3,4}+cJ{2,5}

and assuming that A canhave values {0,1,... 7},A'16'71 is a don'tcare forthefirst product-term of /:
/ = aX{0,l,2}[6,7]ff + d

g = bX*wy + cX&5'>
because when we resubstitute g andmultiply out,theMV-literals areintersected

Notice that X^M in this case was arbitrarily assigned to aproduct-term of /. We could also have assigned itto both
product-terms ofg, giving:
f = aX<°>l>Qg + d
g = 6A<0'1'3-4>t6'7l + cX&WK
but not to both / and g.

These don't cares could have been computed using the expand/reduce algorithm outlined above, creating the appropriate
don't care set tor either / org. This "algebraic" formulation, though, isfaster, and itdid not show an appreciable difference
from the"boolean" approach in practical cases.

Inthe current implementation partial observability don't cares are computed locally for each node indepth-first fashion,
startingeither from network outputs orfrom networkinputs, asrequested bythe user. Let usdenote byD, the setofall values
of themultiple-valued variable thatdo not appear in anyoftheMV-hterals ofthe ?'-th node function.

E.g. letusassume A can have values {0,1,..., 7}. If F0 = 6A*0'1-3'4) + cA'<2,5> then D0 = {6.7}.
On the other hand ifFi = 6A<01'3'4> + cthen Di = <p because the don't care MV-literal isequivalent to A"*0-1 7>.

The algorithm to compute the multiple-valued don't care set 10DQ associated with each product-term c of node A\
given the encoding don't care set EDCC1 is:

• let ODC = Universe.

• for each fanout node N0 of Ar

• \&tODC = ODCf\D0

• for each fanin node N(ofN0 (.V, £ N) that appears together with Ar inaproduct-term ofA0, with both literals
in thepositivephase

• let ODC = ODC n Di

• for each product-term c of N

• l&tlODQ = ODC U EDCe

• for each fanin node N, of N

• let IODCc = IODCe U Di

5.4 Constraint matrices

As was pointed out inSection 3.2, rectangles correspond to vahd common factors ifand only ifthe constraint matrix asso
ciated with them satisfies the intersection condition C'satisfiable" rectangles and matrices). In general we cannot just reject
unsarisfiable rectangles,because we wouldmiss some usefulcommonfactors.

There are two ways in which we can reduce a matrix:

1. Eliminate some rows and/or columns from die rectangle.

2. Eliminate some values from some rectangle entries (multiple-valued tags).

5.4.1 Row/column elimination

If,for example, we want tofind a common kernel inthe following case:
A = a&A*1'2) + acA<2> + adX™
f2 = c6A^3> + ecA<2> + edA<3-4>
we obtain the constraint matrix:

" A*1'2) A<2> A"<3>
M =

X{&) x& A<3'4>
thatdoes notsatisfy dieintersection condition inposition M11 because
{1,2}^ {1,2,3} n {1,2,3} (the union over row 1intersected with the union over column 1).

We candelete either column 1 orcolumn 3, obtaining

either M' =
X& A<3>
J£{2} X<3'4> orM" =

^{1,2} X{2)

A<2»3> A<2>
that are both satisfiable. Ofcourse we could also have deleted either row, but the resulting single-row rectangle would not
probably have been useful to extract

We can formulate the problem ofoptimally choosing the rows/columns to delete as aminimum column covering problem
forwhich good solution heuristics exist The resulting covering matrix C has one column foreach row and each column of
M whose deletion can remove a conflict in the constraint matrix.

• for each My where die intersectionconditionis violated

. let Vij = ((J, My) n (IJ; My) - My
(the setofvalues thatmust disappear from either column j or from row 0

• foreachrow k suchthatMjy n Vy ^ <j>
(deleting all these rows is one option)

• foreachcolumn / suchthat M,-; n Vy ^ <f>
(deleting all these columns is another option)

• create a row ofCwith 1's inthe columns associated with rows / and kand with columns / and j
(deleting either i or j is the last option)

• solve theweighted minimum column covering problem

• delete the chosen rows and/or columns from M

The weightof each columnof C is the sum over the corresponding row or columnof M of the costsof the kemel cubes
thatappearin the corresponding rectangle entries. Therationale for thisis to have anestimate of the penalty associated with
notextracting thosecubesas a common factor. It is likelythatmoreprecise costevaluations wouldgreatly helpin thisphase.

5A2 Value elimination

As an alternative to deleting rows and/or columns from M, we could have eliminated the value 3 either from M2\ or from
M13 obtaining

either M'" =
*<W> A<2> A<3>
A'<2> A<2> A<3-4>

orM"" =
<>•> A<2> A<>
A'{2,3} X{2) X{3A]

Wecan againformulate theproblem asminimum column covering. Thistimeeachcolumn q of thecovering matrixM is
associated witha particularset ofvaluesin a particularmatrixentry, whosedeletioncanremovea conflict I.e. it is associated
with a triple (row, column, setj>f-values).

• for each Mij where the intersectionconditionis violated

• let Vy = ((J, My) n (U;- Ma) - Mij
(the set of values that must disappearfrom eithercolumnj or fromrow 0

• for each k such that My n Vy ^ <j>
(deletingMy n Vy fromall such My's is oneoption)

• for each / such that Mu n Vy ^ <j>
(deletingMu n Vy fromall such M,/'s is one option)

• let c\ be the column whosetagis (k, j, My n Vy)
ifno such column exists, add a new one

• let c2 be the column whose tagis (i, /, Mu n Vy)
ifno such column exists, add a new one

• create a row of C with l's in c\ and c2

• solvedie weightedminimum columncoveringproblem

• delete the chosen rows and/or columns from M

Theweight ofeachcolumn ofC is thecostofthekemel cube thatappears inthecorresponding rectangle entry (using only
thedeleted partof dieMV-literal). Therationale forthisis to have anestimate of thepenalty associated with notextracting
those points in the common factor. Again this estimation is very erode, andit is likely that a more precise algorithm can
achieve better results.

Thisalgorithm neglects the fact that theunionof twosetsof values to be eliminated from an entrycan "cover" another
set to be eliminated from thatentry. The constraint matrices thatappear in practice, though, seem to be very easyto make
satisfiable, so thisdoesnot appearto be a seriousproblem.

The points of the MV-literal that has beendeleted from the rectangle entry tag cannot be extracted, and they must be
covered separately. For example, let us assume that we chose to delete value 2 from AJfo. Then we have:
/i = abXW + acX™ + adX<> + adX&
h = e&X<2'3> + ecA<2> + e<tt'<3'4>
where now the common kemel can be extracted without harm:
/i = ag + adXW
h-eg
g = 6JT<l*s> + cX<2> + dX<3'4>

5.5 Encoding algorithm

Given a multiple-valued multi-level network, output ofmis-MV, we have tosolve the following problem:

findan encoding for the multiple-valued input variable such that the costof the encoded boolean network is
minimum

10

We do not know how to solve this problem if the cost function is the sum of the literalsin the factored forms of the node
functions. Alsowe neglect the fact that further optimizations are stillpossible after theencoding5

We currently solve the problem using the sum of the literals in the sum-of-product forms of the node functions as the
network cost In the experiments we made to assess the vahdity of mis-MVwe used a simulated annealing-based input
encoding algorithm, since no other algorithm available to us was able to handle don't cares in the MV-hterals.

The algorithm is:

• assign initial random codes

• foreach temperature

• repeat until equilibrium

• exchange two codes (one of them can be a unused code)

• let C = 0

• for each node

• add to C the sum ofthe cost of all MV-hterals in the sum-of-products expression for N
• let = C - C0id

• accept the move always if < 0,
wim probability e~T if >= 0

The computation of the costof the MV-literal is very expensive6. Since the simulated annealing encoding algorithm is
currendy the bottleneck ofmis-MV,we are currendy studying some deterministic alternative.

6 Experimental results

We made two kinds ofexperiments to verify the vahdity ofmis-MV as inputencoder:

• comparethe relativeimportanceofthe various multi-valuedoptimizationsteps.

• comparemis-MVwith some existing state assignment piogrdms, such asNOVA ([15]), MUSTANG ([5]), JEDI ([8])and
MUSE ([6]). Notice that the comparison is not completely appropriate, since these programs embody also heuristics
for the output encoding problem, that mis-MVdoes not handle.

In both sets ofexperiments we used the MCNC '89 set ofbenchmark state machines, and we encoded their present state
input only. The output was left one-hot _

The experiments were conducted as follows:

• minimum-length encoding was always used.

• a single simplified boolean script (using simplifyonly once) was used both for multi-valued and binary valued opti
mization.

• the script was run twice in all cases.

• mis-MV:

1. espresso was run on the unencoded machine.

2. all or partof the first script was run in mis-MV's multi-valued mode.

3. the inputs were encoded, using the simulated annealingalgorithm.

4. the remaining partof the first script and the second scriptwere run in binary-valued mode.

• NOVA, MUSTANG, JEDI and MUSE:

5For example wecan still extract common kernels that involve only code variables, since it is impossible tohave a good estimate of the value of these
kernels in the multiple-valued kemeling phase.

6Weuseasingle shotof theexpand phase of espresso

11

1. eachprogram wasrunin input oriented mode C'-e in" ioiNOVA, "-p -c" forMUSTANG, "-e i" totJEDI and"-e
p" for muse) to generate the codes.

2. espresso was run on the unencoded machine.

3. the symbolic input was encoded.

4. espresso was run again, using the invalid states as don't cares.

5. the script was executed twice.

We performed five experiments oneachmachine, twousing NOVA, MUSTANG, JEDI andMUSE and three using mis-MV.
Theexperiments onmis-MV differed in thepointwhen encoding was performed:

1. at the beginning, to verify the encoding algorithm itself(thatat thispointhas exacdy thesame two-level information
as the other programs).

2. after simplify, to verify multiple-valuedboolean resubstitution.

3. afteralgebraic optimization (gkx, gcx,...), to verify thefull power ofmis-MV.

Table 1 contains the results, expressed as factored form literals.
Apart from a couple of cases (namely keyb and tbk) most of the gain seems to be associated with the multiple-valued

simplify, that takes advantage of the additional don't care sets associated with unused codes. This does not mean that in
general multiple-valued kemeling is not useful, justthat in this setofexamples most useful kernels were either independent
of the encoding or they were found by mere chance7. Another reason is that multiple-valued kemeling extracts boolean
common factors (as opposed to algebraic in thebinary-valued case). So the computation of the value of a common kernel
intersection8 must be more sophisticated than the current algebraic-based techniques.

7 Conclusions and future work

Thisworkprovedthatmultiple-valued multi-level logicsynthesis is bothfeasible anduseful.
It relies heavily upon previous results inmultiple-valued two-level logic synthesis [13] andinput encoding [11, 15] and

inbinary-valued multiple-level logic synthesis [4], extending both theoretical results and algorithmic ideas.
The challenging partof theimplementation is stilltobeable to foresee theimpact ofoptimization decisions on thefinal

results. Goodheuristics havebeendeveloped to tackle thisproblem.
Possible directions for future work are:

1. analyze more examples, toexplore theimportance ofmultiple-valued kemeling.

2. improve the heuristics, especially those related with matrix reduction and kemel value computation.

3. develop a fast and efficient encoding algorithm, handling also encoding don'tcares.

4. explorethe outputencodingproblem.

Output encoding is probably the most interesting aspect since a good solution tostate encoding requires tohandle both
symbolic inputs and outputs. Itislikely that aprocedure similartosymbolic minimization ([10]) can be used for this purpose.
Itwill require tomerge the ideas presented inthis paper together with adeeper understanding of the observability don'tcare
sets that the encoding induces in the network.

7In some pathological cases, such as the dk* family, kernels come almost only from the code inputs.
Thereduction intotal area if thekernel is implemented asanode, used inguiding kernel extraction routines.

12

file nova mustang jedi muse best

mis-MV

beginning simplify algebraic
optimization

bbara 106 96 96 99 84 84 84 85

bbsse 151 148 125 126 130 130 132 131

bbtas 32 37 34 36 31 35 31 31
beecount 70 65 57 60 56 62 56 58

cse 214 208 189 192 191 191 199 195
dkl4 98 108 97 102 79 97 79 81

dkl5 65 65 65 65 65 65 68 69

dkl6 351 : 314 254 244 225 225 247 261
dkl7 58 69 63 58 58 58 62 63
dk27 38 34 30 29 27 27 27 27
dk512 93 78 73 73 68 70 68 69
donfile 186 195 132 131 123 127 123 123

exl 246 252 256 239 232 240 232 236

ex2 167 197 179 169 143 143 144 154

ex3 98 98 87 96 82 82 86 82

ex4 84 73 71 72 72 90 74 72

ex5 83 80 79 79 67 67 69 69

ex6 98 90 91 92 84 85 85 84

ex7 94 100 93 84 78 89 79 78

keyb 195 203 186 180 146 186 172 146

knkman 168 181 175 195 160 169 166 160

lion 16 14 16 16 16 16 16 16
lion9 43 . 61 55 55 38 40 38 38

markl 98 99 94 92 90 90 94 92

mc 32 30 32 30 30 35 30 30

modulol2 71 77 58 72 71 71 71 71

opus 82 77 83 70 70 87 70 74

planet 551 538 454 511 466 512 466 473

si 345 377 347 291 249 335 253 249

sla 253 264 262 195 214 217 214 225

sS 48 47 50 52 48 52 48 48

sand 542 519 552 498 509 523 509 528
shiftreg 35 34 24 25 24 24 24 24

sse 151 148 125 126 130 130 132 131
styr 501 460 413 418 438 442 438 465
tav 27 27 27 27 27 27 27 27

tbk 567 603 463 570 393 426 456 393

trainll 92 88 65 79 59 60 59 59

train4 14 18 14 14 14 14 15 15

total 6163 6172 5566 5562 5087 5423 5243 5232

Table 1: Input encoding comparison

13

References

[1] K. Bardett, R.Brayton, G. Hachtel, R.Jacoby, C Morrison, R.Rudell, A Sangiovanni-Vincentelli, and A Wang. Multi-level logic
minimization using implicit don'tcares. IEEE Transactions on Computer-AidedDesign, 7(6):723-740, June 1988.

[2] R.Brayton, R.Rudell, A Sangiovanni-Vincentelli, andA Wang. Multi-level logic optimization and the rectangularcoveringproblem.
InProceedings ofthe International Conference on Computer-AidedDesign, 1987.

[3] R. K.Brayton and C.McMullen. The decomposition and factorization of Boolean expressions. InProceedings ofthe International
Symposium onCircuitsand Systems,1982.

[4] R. K. Brayton, R. Rudell, A.Sangiovanni-Vincentelli, and A R.Wang. MIS: A multiple-level logic optimization system. IEEE
Transactions onComputer-AidedDesign, (6):1062-1081, November1987.

[5] S.Devadas,H.-K. Ma, A.R.Newton, andA Sangiovanni-VincentellL MUSTANG: State assignmentoffinite state machinestargeting
multi-level logic implementations. IEEE Transactions on Computer-AidedDesign, (12):129O-1300, December 1988.

[6] G. Hachtel, X. Du, and P. Moceyunas. Algorithms for state assignment based onmulti-levelrepresentation. LiProceedings ofthe
Hawaii International Conference onSystem Sciences, 1990.

[7] G. D. Hachtel and R. M Jacoby. Verification algorithms for VLSIsynthesis. IEEE Transactions on Computer-Aided Design, CAD-
7(5):616-640, May 1988.

[8] Bill Lin and A. R.Newton. Synthesis ofmultiple level logic from symbolic high-level description languages. InProceedings ofthe
International Conference onVery LargeScale Integration, 1989.

[9] Sharad Malik, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Encoding symbolic inputs for multi-level logic implementa
tion. Ja Proceedings ofthe International Conference on Very Large Scale Integration, 1989.

[10] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented by two-level logic macros. IEEE
Transactions onComputer-AidedDesign, (4):597-616, October 1986.

[11] G.De Micheli, R.K. Brayton, and A.Sangiovanni-VincentellL Optimal state assignment for finite state machines. IEEE Transactions
onComputer-AidedDesign, (3)269-285, July 1985.

[12] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. CuUiney. The transduction method - design oflogic networks based on permissible
functions. InIEEE Transactions onComputers, 1989.

[13] R.L.Rudell andA. Sangiovanni-VincentellL Multiple-valued minimization for PLA optimization. IEEE Transactions on Computer-
AidedDesign,(5):727-750,September1987.

[14] A. Srirrivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipulation, submitted to the International
Conference on Computer-Aided Design,1990.

[15] T.Villa. Constrained encodinginhypercubes: Algorithms and applications tological synthesis. Technical Report UCB/ERL M87/37,
Electronics Research Lab.,U. C Berkeley, May 1987.

14

