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Abstract

In recent years there has been agreat increase intheuse ofcomputer modelling inmany
fields of science and engineering. The success of such modelling is evident in computer
aided design and manufacturing where muchof the testing process of the final product
can be done without resort to actual construction of intermediate attempts. However,

there is another area of computer modelling whose results have been widely studied
without recourse to considering the caveats that computer modelling itself may entail.
This area is the computer modelling of nonlinear vector fields.

To model a nonlinear vector field by the use of a computer introduces a number

of errors intrinsic to computer modelling. This paper considers one such source of

computer generated error and its interpretation from the viewpoint of the user who

wishes to understand the original vector field.

The approach taken to investigate the pragmatic results of computer modelling in

consideration of the properties ofthe underlying nonlinear vector field will be essentially

topological. Generic properties, as will properties of denseness and openess to be

discussed will be interpreted from their effects on computer modelling.

As a byproduct of this work the class of continuous piecewise linear vector fields

has shown to be very amenable to theorectical analysis. This suggests that the use

of piecewise linear vector fields to be the preferred modelling technique from both a

practical and theorectical viewpoint. The theorectical results justifying the practical

observations.

f This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
ft The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The use ofcomputers in the simulation ofnonlinear vector fields has grown enormously in recent years
with the advent of ever increasingly powerful computational speed in an era of decreasing hardware
cost. The computer generated phase portraits of nonlinear vector fields are now commonplace
and are indicative ofthe extent and impact which computers have had on the study of nonlinear
vector fields. Despite the pervasiveness with which computers are used in the study ofdynamical
systems, there still remain questions as tothe interpretation oftheir results, aquestion that becomes
exacerbated when the underlying system is not merely adynamical system but also possesses chaotic
behaviour.

As an example of the problems of computer simulation, consider a parameterised family of
nonlinear vector fields for which the vector field corresponding to a fixed set of parameter values
has a hyperbolic periodic orbit whose stable and unstable manifold meet nontransverally. This
could happen in the case of a researcher interested in particular values of the parameters with a

certain significance. Furthermore, the parameter values at which the researcher is interested in

are irrational (e.g. a-) and as the parameterised vector field passes through this set of parameter

values the stable and unstable manifolds ofthecorresponding periodic orbit change from transversal

and nonintersecting (nonchaotic) to transversal and intersecting (chaotic). Since computer storage

of numbers is implemented by finite precision approximation, the researcher's parameters would

therefore not be stored in their true irrational form but as rational approximations. As a result,

the vector field that he or she wouldbe observing would not be the desired vector field but that of

a vector field whose parameters are rational. It is then not inconceivable that the researcher may

one day observe chaoticbehaviour on a microcomputer with 16 bit precision to see such behaviour

disappear the next dayon a 128 bit precision supercomputer. This is clearly an unacceptable state

of affairs.

In this paper the predominant type of vector fields to be studied are continuous piecewise linear

vector fields. With respect to these types of vector fields it is possible to give a partialanswer of the

implicationsof computer simulationof such nonlinear vector fields. The problem to be addressed is

essentially the same as that brought up in the previous paragraph; namely, how does one interpret

the results of computer simulation of a piecewise linear vector field whose defining constants may

not be accurately stored inside a computer's memory?

A partial answer to this question requires the mathematical concepts of openness and density,

leading naturally to the ideas of structural stability and genericitv. Beginning with the work of

Poincare, Liapunovand Birkhoff, the understandingof these two basicconcepts in dynamical systems

has seen considerable development as fundamental research questions. It was in 1937that Andronov

and Pontryaginintroduced the modern definitionof structural stability. Two decades later, Peixoto

was able to prove density of structurally stable vector fields on 2-dimensional manifolds. It was



at this time that Smale proved a number of fundamental results and set down the main objective

of research into dynamical systems as the search for generic and stable properties. Hartman and

Grobman, simultaneously and independently, proved that local stability is a generic property. This

soon lead to the proof by Kupka and Smale that stable periodic orbits are also a generic property.

It is in this tradition of research into genericity and stability that the current work has been

directed. Although it may be tempting to apply previous results from the traditional theory on

compact manifolds and smooth vector fields, this is not the case of piecewise linear vector fields.

By the nature of their usage, the natural topology to induce on the set of piecewise linear vector

fields differs greatly from the traditionalCk topologies traditionallyused in differentiable dynamical

systems. Because of this departure, a separate analysis is needed to determine the properties of

s piecewise linear vector fields.

However, by using a topological approach to the problem, the results of the paper have to be

reinterpreted from the viewpoint in which they were originally asked. The main result is contin- •

gent on two important conjectures (conjecture 3.3 and conjecture 3.9) which serve as perturbation

claimson the families of piecewise linearvector fields. The main theorem (theorem 3.13) states that

givenany continuous piecewise linear vector field in $2 that contains saddle connections (including

homoclinic orbits) there exist arbitrarily small perturbations that do no contain any saddle connec

tions. Thus, continuous piecewise linear vector fields in $* without saddle connections are dense.

Furthermore, there are neighbourhoods about the perturbed vector field that contain vector fields

that do not contain any saddle connections at all Although not strictly an openness property, this

result has the same flavour with important implications for computer simulation. The implication

of the theorem is that the continuous piecewise linear vector fields without saddle connections are a

dense set with nonempty interior. From the standpoint ofcomputer simulation this could be weakly

interpreted as saying that in simulating a vector field with a saddle connection there isa possibility

of persistently simulating a vector field with nosaddle connections at all A piecewise linear vector

field full of saddle connections could be misleadingly simulated as having nosaddle connections and

attempts to rectify the situation by increasing resolution may not alleviate the problem. Another

interpretation is that if a simulation should show the vector field as having a saddle connection
then the chances are that the saddle connection is illusory. The density of vector fields without

saddle connections throws doubt on the chances of actually simulating a vector field witha saddle
connection.

The two previous interpretations of the results of this paper are further complicated by errors
that arise from numerical integration techniques which in themselves are simulating yet another
different type of vector field altogether. In conclusion it is remarked that great care needs to be
exercised in the interpretation ofcomputer simulation ofnonlinear vector fields, with each step of
the simulation process introducing its own set oferrors the final output has to be interpreted within



its proper context.

§1. Definitions.

In this section the definition ofa special class ofcontinuous piecewise linear vector fields in I?2 will
be presented. This definition is sometimes called a lattice piecewise linear vector field by other
researchers.

Definition1.1. P(n,m) is the set of order (n,m),0 < n,m, continuous piecewise linear vector fields
in R2 given by

«t]-fci*fc afc]*£fc]--Ete]"-
where 0 < or^ + ar22,71 < ... < 7„, 7„+1 < ... < ya+m. Henceforth, this special class of vector fields

will be called vector fields in P(n,m). Since only this class of vector fields are considered in this

paper, we will sometimes refer to them simply as vector fields to avoid clutter.

The lines x = 71,..., yn and y = 7«+i,..., 7n+m can be considered as boundary lines which lie in

$2 vertically and horizontally. Together, the vertical and horizontal lines effect a partition of $2

into which the vector field ( is linear in each element of the partition. This observation is elaborated

in the next definition of the partition associated with a given vector field (.

Example 1.2. (Figure 1.) As an example of a continuous piecewise linear vector field consider the

vector field given by the equation

X

.y.
=

1

.2.
+

3

.-2. I*+H-
' 2 '

.-3. W-[J]l*-H-
The lines x = —1,0,1 and y = —1,2 are the horizontal and vertical boundary lines respectively of

the vector field. These lines together divide 3ft2 into 12 regions in which the vector field is linear in

each region.

Definition 1.3. Given a vector field £ GP(n,m) there is an associated partition of 3£2, Part(£) where

Part(0 = {A,,- = L, x W; : 0 < i < n, 0 < j < m}

with

L0 = (-00,71],

U = [7i» 7t+i]» 1 < * < n

Ln = [7n, 00),

Wo = (-00,7„+i],

W< = frn+i, Tn+i+l], 1 < j < m

Wm = [7n+rai00).

3

Iv+i| + [;],*-*,.



Some basic topological concepts will be revised. The main topological ideas needed are openness

and density, but in order to give a rigorous meaning to these ideas and to understand their intent

some auxiliary definitions will be required.

Definition 1.4. Let X be a non-empty set. A metric d:XxX-»8+isa function that satisfies

the following axioms:

(t): Vx, y € Xy 0 < d(x, y) with equality holding if and only if x = y,.

(it): Vx, y € X, d(x, y) = d(y, x), and

(Hi) : Vx, y, z € X, d(x, y) < d(x, z) + d(z, y).

Example 1.5. In R a metric is given by d(z, y) = |x —y|. In the natural numbers N, i.e. the set of

all integers, a metric can be defined by d(n, m) = 0 if n = m, and d(n, m) = oo if n ?& m.

A metric enables the concept of distance to be imposed on an arbitratry set X. The first axiom

requires distance to be non-negative. Furthermore, two points are zero distance apart if and only

if they are the same point. The second axiom states the symmetry property of distance, that the

distance between two points is independent of which point the other is measured from. Lastly, the

third axiom is the triangle inequality.

Definition 1.6. Let X beanon-empty setwithmetric d(x,y).The metric d(x,y) defines acollection

ofopen balls as subsets of the set X. Given x € X and 0 < t the open ball I?(x, e) is the set

B(x,e) = {yeX:d(x,y)<€}.

Example 1.7. Using the above metrics, an open ball in 8 is of the form B(x, e) = (x - e, x +*)
while an open ball in N is of the form «B(n, e) = {n}.

Open balls can be thought of as the collection of points no further than a certain distance from the

centre of the ball. Open balls are necessary to define an open set.

Definition 1.8. Let X be a non-empty set with metric d(x,y). An open set 5 C X is a set for

which every element can be contained inside an open ball lying wholly inside the set 5. In other
words, for every x € 5 there exist 0 < e such that B(x, c) C 5.

Example 1.9. An example ofan open set in » is the set (0,oo). This can be shown as follows, let
x € (0, oo) then B(x,x) =s (0,2x) C(0, oo). However, the set ofrationals Q is not open in St. Given
arational point x € Q, there is no value of0<e for which B(x,*) = (x - e,x +«) contains only
rationals. All sets in N are open, this is because each element is an open ball containing itself



An open set is an extremely useful concept in topology. The set 5 C X may be all the elements ofX
containing acertain property. Ifthe set 5 is open then elements of5 have open balls that lie wholly in
5. Thus, elements in close proximity to x € S also lie in5. The property that x enioved is also shared

bv elements close to x. Under small perturbations of x it is seen that the property that x has
is also shared by nearby elements. Thus, the property that defined the set 5 can be seen to be

invariant under small perturbations. In the examples above, the property that a number is posi
tive is invariant under small perturbation of the number, however that a number is rational is not

a property that is maintained under small perturbation.

Having defined the open sets is tantamount todenning a topology on the cet X. A topology is
a preferred collection of subsets called the open sets which satisfy the topological axioms. For the
purposes of this paper all topologies will be induced by metrics on the underlying set.

Definition 1.10. Let A' be a non-empty set with metric d(x,y). Let S C X. The closure of the set
5, written as 5, is the set

S= {x € X :VO < €B(x,«)nS # {}}

where {} denotes the empty set.

Example 1.11. The closure of the set (0,oo) is the set [0,oo) while the closure of the set Q of

rational numbers is ft.

The closure of a set gives those elements whose open balls always meets the given set. Thus, points

in the original set can come arbitrarily close to points in the closure of the set. Intuitively, the set

5 consists of the elements of A" that can be well approximated by elements of 5.

Definition 1.12. Let X be a non-empty set with metric d(x,y). A dense set 5 C X is a set for

which S = A'.

Example 1.13. The set of rationals is a dense set in ft because Q = ft. The set (0, oo) is not a dense

set in ft because [0, oo) ^ ft. Note that dense sets need not be open (the rationals) and open sets

need not be dense (the set (0, oo)).

Because a dense set has closure equal to the whole set, this means that elements of the whole space

can be arbitrarily approximated by elements from the dense set. Thus, the dense set gives good

approximations to elements in X. The dense set may consist of those elements with a certain prop

erty, in which case this property becomes a generic property since elements of the original set can

always be approximated by an element with this property. In the examples for ft, that a number is

rational is a generic property which many numbers share while that of being a positive number is

not as prevalent a property as the former.



In dealing with the topological properties of the set of P(n,m) vector fields there arises the

question of the appropiate topology (open sets induced by the different metrics) to place on the set.

The underlying manifold ft2 on which the vector fields are defined is not a compact set. Because

of the non-compactness of ft2 the usual Ck topologies are inapplicable to the current analysis, the

Ck topologies only being defined on compact sets. One way to apply a topology to P(n,m) is to

consider the vector fields not as vector fields on ft2 but as vector fields on a compactification of ft2

and then to apply the usual Ck topologies to the induced vector fields on the compact extension of

ft2. However this approach has several drawbacks. One of the drawbacks of this approach is that

the induced vector fields may, cot necessarily be well-defined on the compact extension of ft3, this

could easily happen with the vector at the image of the point oo. A second drawback is that the

local linearity of the original vector field (away from the boundary lines) will be lost in the induced

vector field. Yet another way to induce a topology on P(n,m) is to a priori choose a compact set of

ft2 and apply aCk topology to the restriction ofvector fields to that compact set. The disadvantage
to this approach is that it is by no means clear how this compact set is supposed to be chosen. The

topology that was eventually chosen is that defined below in definition 1.14.

Definition 1.14. Let I:P(n,m)-+ ft3(n+«n)+6 be the isomorphism given by

I(0 = (I(0i»-mI(03(o+»)+6)

= (ori, o2, fcU, 612, 6211 $22. <*u, an,..., ar„+rol, Orn+n,2, 7i... •» 7n+m).

The isomorphism induces a metric on P(n,m) by

dtf, 17) = max{|I(0< - l(rj)i\: 1< t < 3(n + m)+ 6}.

Thus £({,e) will denote the open ball B({, e) = {77 € P(n, m): d(& tj) <e}.

The topology in definition 1.14 seems to be the most appropiate for computer work with the vector
fields to be considered. In the simulation of general vector fields (not necessarily piecewise linear) on
acomputer there are several potential sources ofsimulation error. Finiteness ofcomputer arithmetic
means that real numbers can be at best approximated by finite decimal representations, thus losing
information in the truncated digits ofthe real number. Under the application ofnumerical algorithms
it becomes an important question as to the accuracy ofthe algorithm's predictions and the true
value of the computer model. This problem becomes increasingly crucial as the time period in
which the simulation is performed becomes lengthened. The modelling ofthe original vector field
bya (piecewise linear) vector field introduces questions as to whether the vector field has the same
dynamics as the original vector field. Even if the dynamics were known to be faithful to the original
vector field, the representation ofthe vector field in the computer introduces itsown set ofconcerns.
Because ofthe representaion ofreal numbers in acomputer's memory, avector field with real defining



constants would in actuality be represented by avector field with rational constants approximating
the original real defining constants. The possiblilty then arises that the original vector field and the
represented vector field in the computer do not have the same dynamics.

Since the vector fields to be considered are stored as a list of defining constants in the com
puter's memory, a topology on the defining constants would most easily facilitate an analysis ofthe
faithfulness ofthe modelling ofavector field with real denning constants byitscomputer represen
tation. Under the topology ofdefinition 1.14, vector fields are considered "close'' in the topology if
the respective defining constants do not deviate too greatly from each other.

For each element in the partition of ft2 associated with a given vector field £, the vector field

restricted to that element is a linear vector field. The linear vector field to which this restriction of

( induces is given in the lemma following the definition.

Definition 1.15. For each Ay € Part({) there exists a unique linear vector field &,• such that
tijUn = £k,-. Let F(£ij) = {x € ft2 : &j(x) = 0} be the set of equilibrium points of £y. An
equilibrium point xy 6 F(£y) issaid to be transitional ifxy € 0Ay and nontransitional ifxy g 0Ay

f. Nontransitional equilibrium points are classified intothose for which xtJ- € Ay and xtJ- g Ay, the

former being called real equilibrium points and the latter being called virtual equilibrium points.

The set ofequilibrium point of£ is the set given by F(|) = UJL0 UJL0 F(£y).

Lemma 1.16. £,-;• is given by

"<*i - ELi «i»it«» +ESo«+i <*.'!-*' - EKi+i «w*» +ETir+i+i ««'i7f 1
.<*2 - ELi*mv +EJoi+i w - EKl+i ««> +ETir+i+i «mw J
+ 6" +E!'=1 <*i'l - E?=,+l <*i'l 612 +E?ii+1 a»'l " 127'in+j+l <*i'l] [X1

[hi +Eioi <*i'* - ET»oi+i«*a &22 +E?iJ„+i orw - EJS+i+i «m JLyJ'
Tie linear vector field £tJ- wH/ be written as &i(x) = dy + Mijx.

Proof. Since 7i < ••• < 7i < * < 7i+i < ... < 7n,7i»+i < ••• < 7n+; < y < 7n+;+i < ... < yn+m

then £|a0 is given by

(a

Thus,

eki

*k, ;]-t]+fc afcl+sfcl'-^.t
n+m

+i+ii'ssn+1 L ,2J i'=n+j

<*i'i

Qr,'2
W-y).

<*i'l

<*«'2
M-«)

<*i - E!'=i «<'i7i' +E?=.+i «*'i7<» - E?ti+i <*«'i7i' +EJi™+i+i a«'i7i'
al - E!'=l <*i'27i' +E?=i+1 «*'27<» - E"S,+1 <*<'27t' +E?in+j+l <*M7<'
+ &" +E!»=i «*a - E?=,+i <*i'i &i2 +E?=i+i oti'i - E?i™+i+i »i'i j

L&21 +E!'=l <*i'2 - E?<=,•+! <*.'2 &22 +E"Ji+l «<'2 - E"tn+j+l <*i'2 J
f #S denotes the boundary of a set 5, i.e. 55 = S —5.
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It is clear that there exists a unique linear vector field £j such that &jk, = £k,- I

§2. The generic equilibrium point structure.

In this section the generic equilibrium pointstructure ofvector fields inP(n,m) will be analysed. This

is to establish open and dense subsets of vector fields in P(n,m) whoseequilibrium point structure

is well understood before considering other phenomema that may be associated with vector fields.

It is understood that the term equilibrium point is used in the context of definition 1.4.

The first subset of vector fields to be considered are those with finitely many equilibrium points,

all of which are nontransitional. This will be shown to be an open and dense subset of the vector

fields in P(n,m). From the stand-point of computer simulation of vector fields it follows by denseness

that the generic vector field will have only finitely many equilibrium points. By openness of this

property, finite precision arithmetic can also accurately approximate a vector field with finitely

many equilibrium points with a vector field with the same number of equilibrium points. That

all the equilibrium points are nontransitional means that the number of "real" equilibrium points

(corresponding to points for which the vector at that point is the zero vector) is also maintained

under small perturbation of the original vector field.

Definition 2.1. Go CP(n,m) is the subset consisting of vector fields £ with (n+l)(m+l) nontran

sitional equilibrium points.

Theorem 2.2. Go is open in P(n,m).

Proof. (Figure 2.) Let { 6 G0. As F(0 = U^oUjloFtfy) the number ofequilibrium points |F(OI
of £ is given by

|F(fll = £I>«o-)l-
1=0j=0

The linear vector field fy has the form &,(x) = d,, + M,,x. The value of the determinant of the
matrix MtJ- determines the number ofequilibrium points of£y. IfdetMjy = 0 then fa has either 0
or infinitely many equilibrium points. Ineither case then |F(0l ^(n+l)(m+l). Thus detM.y # 0
for 0< i < n, 0< j < m. By continuity of the determinant function, there exists 0< cy such that if
?€ B(£,€ij) then the matrix corresponding to £0 (the linear vector field for which Jy|y. =?|a„)
being My also has nonzero determinant. Thus |F(?y)| = 1. Let *i = min{ey : 0 < t < n, 0< j <
m}. Then for ?€ B(^«i) we have |F(cf0)| = 1for 0<t <,0 < j < m. Then |F(f)| =(n+l)(m+l).

For each 1 < t < n + m we have 0 < o^ + or22. There exists 0< €i2 such that iff € B(£, e,2)
then Sii, 57,2 for the vector field £also satisfy 0< S^ + a22. Let e2 = minfe : t = 1< i < n+ m}.
Then for £6 £(£, e2) we have 0< eft + o22 for 1< t < n+ m.

Let Eij : P(n, m) x ft2 -♦ ft2 be the function

H,i(?',3e) = d,i(D + M,i(f)x.

8



As DxHy(£, xy) = My and detMy =£ 0, bythe implicit function theorem for Banach spaces there
are neighbourhoods JV£, JV* of £, xy and afunction fcy :N}j —iV§ assigning to each £€ JVy its
unique equilibrium point Xy = A#(|).

Asxy isnota transitional equilibrium point then it iseither avirtual equilibrium point or areal

equilibrium point. The proof will continue in the case that xy is a virtual equilibrium point. The
proof for areal equilibrium point in analogous. Since xy is virtual equilibrium point then xy g Ay.
As disjoint closed sets in ft2, {xy} and Ay may be separated bythe existence of0<ey3, ey4 such
that

£(*0> «0'3) a {y € »2 :d(y,x) < ey3}

*(Ay, tij*) = {y € ft2 : min d(y, x) < ey4}

are disjoint. The metric used in ft2 is that given by d(y,x) = min{|yi - xi|j \y2 - x2\).

Consider theset JVg- nB(xy, ey3) C JV?-. Bycontinuity ofthe function Jiy, there exists asubset
N?j CNlj such that fcy(JVg) = JV§ n B(xy,ey3). Finally, let

Jfy = JV°n2?tf,ey4)

Let £€ My. Then <f(?,£) <ey4. In particular the values y<,7*+i» T>» Ti+i corrresponding tof satisfy

|T,-7.|<*<;4»

lYi+l-7.+l|<«ii4,

lT>-7il<«ii4,

I7i+i-7i+i|<*ij4-

Thus Ay = Lt- x W,- is a set that satisfies Ay C 2?(Ay,ey4). Also 5cy = fcy(£) satisfies xy €

£(*tf»«*ia). As £(xy,ey3) n£(Ay,ey4) = {} it follows that xy g Ay. Thus, for £ € M?-,x*y is

also a virtual equilibrium point. Similarly, if x y was initially a real equilibrium point then xy is

also a real equilibrium point for £ € My (My suitably chosen).

Let €5 =b mm{min{7< - 7,-1 :2<t<n,n + 2<t<n + m},oo}. For f € B(£,cs/2) the

values 7!,..., 7n+m satisfy |f, - 7*1 < *s/2. Thus 7,+i - «5/2 < yi+1 and 7,- < 7,- + «5/2 for 2 < : <

n,n + 2< »<n + m. Hence 0 = 7i+i-7i-«5 <T,+i-Tt-. Thus, f! < ...<Tn,7n+i <•••< 7n+m-

Finally, let

M= (n?=0 njLo M}j) n £({,O n B(S, e2) n B(£, e5/2).

For £ € M, £ is a vector field which has (n+l)(m+l) equilibrium points, each of which is nontransi

tional. Thus Go is open. I

Theorem 2.3. Go is dense in P(n,m).



Proof. (Figure 3.) Let £ be a vector field in P(n,m). As in the proof that Go is open, there exist

0 < €i,€2 such that if f € £(£,«i) then 0 < 5T2! + o?22 for t = l...,n + m and if J € B(^€2) then

7"i < ... < 7~n, y~n+1 < ... < yB+TO. It is required to show that for each 0 < «,£(£, e) n G0 ^ {}.

It may be assumed that 0 < e < min{ei,«2}. Thus, it remains to show that in £(£,*) there exist

vector fields whose equilibrium points are all nontransitional.

For each Ay € Part(() there existsa unique linear vector field {y such that £yk, = Ik,- The

linear vector field £y may be writtten as £y(x) = dy + Myx. The determinant of My determines

the number of equilibrium points of £y and hence the number of equilibrium points of £.

If detMy s4 0 then the eigenvalues of My may be written as Ay,Ay where 0 == Ay,Ay. Let

||2|| denote the modulus ofthe complex number z. It is clear that if0< p<min{||Aji||, ||Ay||} then
the matrix My + /il also has nonzero eigenvalues. If detMy = 0 then either one or both of the

eigenvalues ofMy is zero. If one eigenvalue is zero, so that the eigenvalues are 0, Ay, it is possible
to take \}j = oo. Then for 0 < n < min{||A}yJ|,||A?i||} the eigenvalues of the matrix My + /xl are
nonzero. Ifboth eigenvalues ofMy are zero then take oo = AJ,, Ay. For 0< fi <min{||Ajli||, ||A?-||}
the matrix My + (il has nonzero eigenvalues.

Choose

0 < a < nim{«,min{||Ay||,||Ay||: 0 < t < n,0 < j < m}}.

Then the vector field £= £+ /xl lies in J3({, e) and for each 0<t < n,0< j < m the induced linear
vector field for the partition Ay is given by Jy(x) = dy+(My+/il)x. As det(My +xil) # 0 then
£y has a unique equilibrium point. Thus J has (n+l)(m+l) equilibrium points. It will be shown
that if£has transitional equilibrium points then there is aperturbation ofJto avector field without
any transitional equilibrium points.

As in the proofofopenness ofG0 in P(n,m) there is a0<e3 such that if£e B(Z €z) then | is a
vector field with (n+l)(m+l) equilibrium points. Let e4 =min{«3, e-ji}.Clearly B(f,c4) CB(£, e).
Without possibility of confusion, let £ = J.

Say a transitional equilibrium point lies along the vertical line x = yit < ... < yik, 1< i <
... < I* < n. Let £•» be avector field with all the same defining constants as £except

Ml

l«&j

'•12
lfc +

o*a»l+ll

laix+12

•l
•l+ll

l"«!+12j

laii2] LortVOti+12j '

yix _ r^ii . ra<i+",L

By considering the formula for £},£y it happens that $ = fy for t 5* tlt0 < j < m. It then
happens that ?* =£except on the vertical strip [7,^-1,7,l+2] x ft.

If the matrix

.<*,j2 <*i,+12.
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is nonsingular then the implicit function theorem may be applied to the function

la2} L«<»a + ot<,+i2-Of2J

todetermine a function hh and neighbourhoods JVj, JVg of(ailU ail2) and (71,72) respectively such
that /*,, : jVj -» JV? assigns to each element in JVj the corresponding vertical lines in JV?. In fact
the function h^ is a diffeomorphism. Let

iV? =B(Ki,owW(n +m))nAjl(J¥l[ nB((7fc,7i,+iW(n +m)))

<=M^)«

Let (tJJ.t/J+i) € tffl - {(7*,i7«»+i)}. Then there exist (ei\va\\2) such that ^(ag^ttj;,) =
(7,?,117,?,1+i)- Furthermore, the vector field f» with the samedefining constants as £ except the values

a!!i' Qr!112» 7<*i 7jJ+i lies m B(&€*/(n + m))« Note that, as hh is a diffeomorphism , it may be taken

that 7JJ ^ 7,j. As in the proof of openness, £•» can be chosen so that no new nontransitional

equilibrium points are created along the lines x = 7,- for 1 < »< *i —1.

If the matrix

.<*ii2 CCil+i2\
is singular then

<*»i+n

ftii+12 =*<•[:::;]
for some constant k^. As 0 < a2l+11 + o21+12 then k^ ^ 0. A solution to the following equalities

U + *.i)

is given by

+
>i+ii

•1
»i+12.

=
0*11

.°ii2.

'•ill'
.<2.

7J: +
<

<

>;;+
»';+

11

12.
'•1 + L =

Oiil

'"!:>' "ill'

.«&. .<*«i2.

°ii+n — h-
Ofill

a
•1
«'i+12.

^ (r"»i
.Or•i2.

(7ii+*ii7*x+i)

7*; =7n + IHt

7i1,+i = 7ii+i-WiA<i-
Choose 0 < fiil < min{«4/(n + m),€4|Jfc,J/(n -I- m)}. The vector field f*1 with all the same defining

constants as £ except 7?'*, 7j*+l lies in B(£, e4/(n + m)). As in the proof of openness, £•* can be
chosen so that no new nontransitional equilibrium points are created along the lines x — 7,* for

1 < » < «i - 1-

Assume a transitional equilibrium point x,,j exists for the linear vector field faj this point

King along the vertical line x = 7,-,. The point x,^- is also a transitional equilibrium point for frj-y.

11



Consider the perturbed vector field £l with y\l ^ 7^. Note that for the vector field £*1 it happens

that dl-ij = 61-ij sothat x,u is also anequilibrium point for £'*, in particular it is anequilibrium

point oftij.y.
If Zllj also had a transitional equilibrium point for the linear vector field xjjj along the fine

x = y£ thenthiswould be another equilibrium point for the linear vector field £,'J_y AsdetM,u- ^ 0

then dl-ij may have at most one equilibrium point. By contradiction, ('* does not have any
equilibrium points along the line x = y\l.

By induction, if transitional equilibriumpoints lie alongthe lines 7,-, < ... < 7,*, 1 < »i < ... <

ik < n then there is a sequence of perturbed vector fields £»,...,{•* with the final vector field £*k

having no transitional equilibrium points along x —7,-, 1 < t < n.

Say a transitional equilibrium point lies along the line x = yn. Consider the vector field (" with

all the same defining constants as ( except that

-fin
Qnl

°n2

7S = 7;fc+/i«

where 0< ^ < mm{€4/(n+m)i€4/((n+m)\a%l\),€4/((n+m)\a%\)}. Bychoosing jx„ small enough,
it is possible to ensure that no new transitional equilibrium points are created along the lines x = 7,-

for 1 < t < n - 1. The vector fields £*,{•'* coincide on (-oo^i^J x ft. Furthermore ^.j. and
£n-i/ are identical as linear vector fields. Saya transitional equilibrium point existed for the vector

field £y» Jt ** *ko an equilibrium point for the vector field £jly, then it is also an equilibrium
point for £JJ_y. If £y has a transitional equiUbrium point along 7J 9* y£ then £_w would have
two equilibrium points. This is not possible as detMJJ.^ ^ 0. Thus £n does not have transitional
equiUbrium points along the Une x= 7,-, 1< t < n. Similarly, the vector field fn can be perturbed
toa vector field f»+m with neither vertical nor horizontal lines 71..., 7„+m having any transitional
equiUbrium points. As successive perturbations are at most a distance €4/(71 +m) apart, and there
are at most (n+m) perturbations necessary, then £»+m 6 B(£, c4). Thus G0 is dense in P(n,m). I

The next subset of P(n,m) to be considered is an open and dense subset ofGi consisting ofthose
vector fields all ofwhose equilibrium points are hyperboUc. The concept ofahyperbolic equiUbrium
point occurs frequently in differential dynamical systems. Again, it can be shown that hyperbolic
equiUbrium points are a generic feature of vector fields.

Definition 2.4. The point xy is ahyperboUc point ifthe eigenvalues of the matrix My (fy(x) =
dy+Myx) do not lie on the imaginary axis. The point x € F(0 isahyperboUc ifit is hyperboUc
for some F(£y).

Definition 2.5. Let Gt CG0 be the subset consisting of vector fields £€ G0 with (n+l)(m+l)
nontransitional hyperbolic equiUbrium points.

12



Theorem 2.6. G\ is open in P(n,m).

Proof. Let { € Gu there exist 0 < ei such that if f € £(£,«i) then J € G0. Let xy,0 < i < n be
the equiUbrium points for £. Each xy is the unique equiUbrium point for fy. As £y(x) = dy+Myx
and xy is a hyperboUc equiUbrium point for My then the eigenvalues of My do not Ue on the
imaginary axis. By continuity of the eigenvalues on the defining constants of a vector field, there is

an 0<ey such that if £€ £(£,«y) then Jy has a unique hyperboUc equiUbrium point.
Let € = min{ci,min{ey : 0 < i < n,0 < j < m}}. For £ € £({,e) the vector field £ has

(n-f-l)(m+l) nontransitional hyperboUc equiUbrium points. |

Theorem 2.7. Gx is dense in P(n.m).

Proof. It is suffiicient to prove that G\ is dense in Go. Let { € Go and 0 < c. Without loss of

generality e may be chosen so small that £({, e) C Go. Thus, it is needed to showthat £((, e)nGi ^

{}. For each linear vector field £y(x) = dy +Myx let Ay, A^- denote the eigenvalues of the matrix
My.

If 0 ^ reAy,reAy then let «y = min{|reAy|, |reA?y|}. If 0 = reAj,- and since { has nonzero

determinant then Ay is purely imaginary. As the eigenvalues of a 2 x 2 matrix with real entries

occur in complex conjugate pairs then 0= reA^. Let *y = oo. If J= £+ pi with 0< /i< cy then
the vector field £y(x) = xy + (My + /il)x has a hyperboUc equiUbrium point.

Finally, let «i = min{e, min{€y : 0 < i < n, 0 < j < m}}. For 0 < /i < €i the vector field

{(x) = (£+ /*I)(x) has (n+l)(m+l) nontransitional hyperboUc equiUbrium points. |

Our next generic property is a preparatory result needed for a later proof. The generic property to

be presented in definition 2.8 refers to the eigenvalues at a hyperboUc equilibrium point, namely that

genericaUy the eigenvalues are distinct. As a result of having distinct eigenvalues, it foUows that the

eigenvectors associated to the eigenvalues are also distinct and remain so under small perturbations

of the original vector field.

Definition 2.8. Let G2 C G\ be the subset of vector fields such that if £ € G2 then £ has

(n+l)(m+l) nontransitional equiUbrium points. For each equiUbrium point xy the matrix My

(£y(x) = dy + Myx) has two distinct eigenvalues.

Theorem 2.9. G2 is open in P(n,m).

Proof. Let £ € G2. There exist0 < «i such that if f€ £(£,€1) then J e Gi. For each 0 < i < n,0 <

j < m let the eigenvalues of the matrices My be A?,-, Ay.

As 0 ^ Ay —A^- then by continuity of the eigenvalues on the defining constants of the vector

field £ there exists 0 < £y such that ifJ € 2?(£,ey) then the corresponding eigenvalues Xy,Xy are
also distinct. Let € = min{e1, min{ey : 0 < i < n,0 < j < m}}. For J € £(£, e), the vector field
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£ has (n+l)(m+l) nontransitional hyperbolic equiUbriumpoints, the corresponding matrix at each

equiUbrium point having two distinct eigenvalues. I

Theorem 2.10. G2 is dense in P(n,m).

Proof. It is sufficient to show that G2 is dense in G\. Let £ € Gi and 0 < e. Without loss of

generaUty it may be assumed that e is so smaU that B(£,e) C G\. It is sufficient to show that

B(£, e) n Gi ^ {}. For £y(x) = dy + Myx let the matrix My be written as

.11 12
my mi>
m;21

where the entries are polynomial functions in the defining constants of£. If the matrix My has two

distinct eigenvalues then

0# (my + m?/)2 - 4(m}}m% - mj/m2/).

By continuity of the abovediscriminant (being the discriminant of the corresponding characteristic

equation of the matrix) there exist 0 < ey such that if 0 < \i < ey then the matrix

11
m

i2*m» + 0

22
m

m}f + n
22

m

also hasa pair ofdistince eigenvalues. If the matrix My does not have twodistinct eigenvalues then

0= (mj/ + m2?)2 - 4(m}/m?/ - m^m*]).

If0± |m}? + m?/| then let ey = |m}/ + m2}\. For 0< jx < ey then the matrix

.11

11
m

my1 mg + /i
[m2/ + // m??

has nonzero discriminant 4n(m}j + m?? + /i) and thus two distinct eigenvalues. If0= |mj2 + m2l\
then let etJ = 00. Again, for 0 < /1 < ey the matrix

m}j + n
rrt} + H

wiU have nonzero discriminant 4/i2 and two distinct eigenvalues.

Finally let ex = min{e, min{ey : 0 < : < n,0 < j < m}}. For 0 < \i < ei then the vector field

-t]*ki,'•Jlfcl'ttli—*lti»-
wiU have (n+l)(m+l) nontransitional hyperbolic equiUbrium points, the corresponding matrices
having a pair ofdistinct eigenvalues. |
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The property ofavector field being properly transversal (to be denned below) wffl be shown to be a
generic property ofvector fields in P(n,m), specificaUy the vector fields that are properly transversal
form an open and dense subset of the vector fields in P(n,m). Properly transversal vector fields
have importance from the viewpoint ofcomputer simulation of piecewise linear vector fields. In a
properly transversal vector field the invariant manifolds ofdistinct hyperboUc equiUbrium points
meet transversaUy, thus any saddle connections between distinct equiUbrium points in a properly
transversal vector field must contain points of nonzero curvature. It is an immediate observation

that saddle connections between manifolds at the same equilibrium point (homocUnic orbits) have
points ofnonzero curvature along the connection. Any saddle connection must then contain points
ofnonzero curvature. Along these points ofnonzero curvature a numerical algorithm runs the risk
of deviating from the original saddle connection. This makes the accurate simulation of saddle

connections in the generic vector field more"difficult than would otherwise be the case.

Definition 2.11. Let £y(x) = dy +Myx be a linear vector field for which My has a pair of
distinct nonzero eigenvalues which do not lie on the imaginary axis. Let the eigenvalues ofMy be
Ay,X}j. If the eigenvalues are complex then let

L)i = {},

If the eigenvalues are real then to each eigenvalue there is a corresponding eigenvector through the
equiUbrium point xy; namely v^, vj-. Thus, let

£?; = {xy +tvy:<€8}

£?; ={xy+tvy:te*}.

The sets L\j, L}j are called the Unes through xy.

Definition 2.12. A vector field £ is called properly transversal whenever max{|t' - t|,|j' - j\] = 1
implies that the Unes through xy intersect each line through x,^> transversally.

Definition 2.13. Let G3 C G2 be the subset of vector fields that are properly transversal

Theorem 2.14. G3 is open in P(n,m).

Proof. (Figure 4.) Let{ € G3. As £ € G2 there exists 0 < e2 such that if f € .B({,«i) then £€ G2.

For the equiUbrium points xy,x,-^ with max{|i/ - t|, \j'- j\) = 1 the Unes Lkjy Lk!Jn Jb, Jb' = 1,2
intersect transversally. By continuity of the Unes on the defining constants of the vector field £,

there exists 0<etjki'j'k' such that ifJ€£(&(#*<';'»') then the corresponding lines ly,!^, also
intersect transversally.

15



Finally, let e = mm{ei,min{eyt,^#jk/ : 0 < t < n,0 < j < m,max{|t' —t|, \j' —j\) = l,k,k' €

{1,2}}}. If £ € (G, «) then the vector field J is properly transversal I

Theorem 2.15. G3 is dense in P(n,m), 2 <n,m.

Proof. (Figure 5.) Let £ € G2 and 0 < e. It is sufficient to show that £(£,e) nG3 ^ {}. Without

loss of generaUty it may be assumed that e is so small that 2?((,e) C G2.

Consider the matrix

[<*« <*i+lll
ot« <*i+12J

for 1 < t < n —1, n + 1 < t < n + m — 1. Consider the foUowing sequence of perturbations given by

*1,...,r-1,r+1,...,r+ro-1.

If the matrix

[on 021'
<*12 OT22.

has nonzero determinant then let (* = £. By continuity of the determinant function, there exists

0 < ej such that if £ G£(£*, ei) then the corresponding matrix for J also has nonzero determinant.

Let ei = min{ei,e}.

If the matrix above has determinant equal to zero then consider the perturbation f1 obtained

from £ as the vector field having all the same defining constants except

OrJl = <*21 - /iiOri2,

a22 = 022 + A*iOfii

for 0 < m < min{e/|o11|),e/|a12|)}. Then the matrbc

*h "211
a\2 ajj

has nonzero determinant 01(0:11 +af2). There also exists 0< ei such that iffe Btf1, ei) then the
corresponding matrix for J also has nonzero determinant. Let ei =min{ej, e- d^1, £)}.

If the matrix

Ul ai+ll

ri2 ai+12.

has nonzero determinant then let ? = {'-1. By continuity of the determinant function, there exists

0 < e{ such that if Je £(£*,*{) then the corresponding matrix for £ also has nonzero determinant.
Let 6j = min{e(-,e,_i}.

If the matrix above has determinant equal to zero then consider the perturbation £ obtained
from £$_1 as the vector field having all the same defining constants except

*!+i2 = ofci2 +Wor£l
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for 0< m < mmfo-x/lafc1!), ei-x/lajj1!)}. Then the matrix

"« "i+n
a •2 a!•+12.

has nonzero determinant «((*!i"l)2+(««2 l)2)- There also exists 0<ej such that iff € £(£', e{) then
the corresponding matrix for (also has nonzero determinant. Let e< =min{e(, e,_i —d(£*,£'~x)}.

Notice that if fe •B(£B+ro~1»«i.+m-i) then the matrices

[5ii 2F«+ii]
*?i2 5f+i2j

have nonzero determinant for 1 < t < n - 1, n+ 1 < t < n + m - 1.A vector field that is properly

transversal in the baU B((n+TO-1,e„+ro_1) wiU also be properly transversal in the original ball

£(£, e). Without possibiUty of confusion let ( = £"+m-i and e = en+fn-i.

It may also be assumed that the matrices given by

-an

—Ot,2

<*»+ii

<*i+12

Ti+i - 7i

0 7.+1

Qfil

CCi2'„][ <*t+12
(2ry - 7,- - 7,+1)

for equiUbrium points xy = (*y, yy) and 1 < t < n - 1,0 < j < m have nonzero determinant.

Similarly, it may also be taken that the matrices

T-oy! oy+nj +I"
L—<*j"2 <*j+12j L

Ti+i - 7;

0•oy2 ai+12 J L « 7j+i

for equiUbrium points xy = (xy, yy) and 0 < i < n, n + 1 < j < n + m-1 have nonzero

determinant. It may also be taken that for J € £({»t) the corresponding matrices for J also have

nonzero determinant. These claims foUow by a proof analogous to that for the matrices

' lh1 a>+11l(2yy-7i-7i+i)-7iJ {ocj2 ai+i2J J^

an

<*i2

Qfi+ii

°»+12.

for 1 < t < n —1,n + 1 < t < n —+m —1 having nonzero determinants.

Consider a perturbation of £ with aU the same defining constants except

a2i

<*22

<*21

<*22

CfcMH-fcM
*]<♦ It]*-d" 72-

Consider the function

Hi(oi,a2,7i,72) =

As DaHi(an.ai2,7i»72)»

7i +
an + <*2i - <*i
«12 + Of22 — <*'2

71-72

0

0

7i -72

17
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has nonzero determinant, there exist neighbourhoods N} x AT2,AT3 of (71,72) and (an, 0:12) and

function h\ : Nf x N2 —♦ AT3 satisfying

Hi(fci(y1,7j).yI,72) =

As the matrix for D7Hi(an, 012,7i, 72) is

'011'
71 +

021

.a12. .°22.
72-

on 021

,012 022

with nonzero determinant then hi is in fact a diffeomorphism. Note that

dtm™)=[V\A,
on 021

012 022

Let Xi(7j, 72) De tne vector field with the same defining constants as £ except that

"11
/yXl

."12.

<*x>""21

.a22I.

= /*i(7i»72)»

on + 021 - Orfj1
012 + 022 - ajj m

7?1 = 7j.

7?l=72.

Let Gli(X1(7j,72),x) = dlj(X1(y[yy2)) + M^Xi^y^x. As DIGli(X1(7i,72)(xii) = Mljy
which has nonzero determinant, by the impUcit function theorem there exist neighbourhoods N}- x
A7>. AT?,- of (71,72) and xij and function g^ : AT^- x Njj -* Ari3- assigning to Xi(tJ, *&) its unique
equiUbrium point x^1.

Now,

Gi;(Xi(7i,72),x)

^1 - "11

02 - oiY7f' +

01

+

- o&7?» +ax>72Xl +EJo3«W* " E?ii+i «i*nv +EJir+i+i ««'i7*'
— <vXl«vXl

&11 + ox» -

&21+Q&1 —

— *YX»«VX»n7ri +

*2-arX2,7X| +

&11 + of,' -
621 + 0X2» -

«& - E?=3 ««'i *«+E?ii+i "<'i - ssr+i+i «i'i1fx 1
«& - E?=3«« t22 +ESii+i «« - EJir+i+i ««'2J l»J

(on +021 - ax')72Xl +E?=3 ".'17,' - EEi+i «MV +EJtT+i+i o,a7.'
(012 +a22 - ox>)72Xl + C«3««> - EKi+i««)»' + EJS?.l+i+lOt«27,-,j

(ttlI +021 - oft)- EJB3 aM 6l2 +E?±J„+1 0*1 - E?i?+i+i««
(On +a22 - org) - E?=3 '̂2 622 +EK1+, «M - EJir+i+1^2
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Thus, and writing xy = (iy, yy),

D7Gii(X,(7i,7i),Xii)

= [0 on+ 021] [72-71 0 ] fan 012], , *,
l0 a12 +a22j "I 0 72 - 7i J I021 022] (71 +72j+
[-on -anj+2r72-7i 0 UQll a12l
L-012 -012J L 0 72-71J L021 022J '

__ f-orn 021] , [72-71 0 1 [on o2il/0 .
-I-012 o22J +l 0 72-7JU2 «J <**-*-*>•

As the matrix above has nonzero determinant it foUows that g\j :N}jxNfj -* AT3.- may be considered

a diffeomorphism for 0 < j < m. As gij is a diffeomorphism, the sets gTf(Loy)>9if(L2j')'k =
It2, j' = j - 1, i, j + 1 are submanifolds ofN}j x N}j. Then if

(7i, V2) € N}j x N'j - uj« _tuLi (g^HLlj.) U9$(L\,.))

the vector field ? = Xi(tJ, 7$) is identical to £ except on the region (-00,73] x R.

On the region (-00,7i] x R,£^ = £0j and on the region [73,73] x R,^. = (2;0 <j<m. Thus,
X(y, = XjjM X2j, = X2/* for fc = 1,2, j' = j —1, j, j +1. As the equiUbrium point x^ does not Ue on
any of these Unes then X'y, *= 1,2 can only intersect the Unes X'JjM L'2j,k =1,2, j'= j- 1, j, j+1
transversally.

Finally, let

(7i, 72) €n?=0 (jVfc xAT?,- - uj"_t fa)1^) Û /(X^,)))
n B((7i, 72), e)n ArW n £((on, o12), e))

and f1 = Xi(7i, 72) De tne perturbed vector field. Note that the points Xy, x},j„ max{|x' - t|, \j'-
il}»,v £ * nave tines that only intersect transversaUy. Note that d(£*,0 < e. There exists 0 < ei

such that if £ € ^(e1^) then the corresponding Unes for £ also intersect transversaUy. Let ei =

min{ei,e- d(^,0>- Then Bfc1, d) C £({,e).

Continuing in this manner, there is a sequenceof perturbations f2,..., f""1 and suitably chosen

e2,...,e„_i such that B(f»-1,e„«i) C ••• C B(^,ei) C £(£,e). The vector field f1"1 is such that

if Xy"I,x",J,1 are equilibrium points with max{|i/ - t|, \j'—j\) = l,t' ^ i then the Unes through
these points only intersect transversaUy.

As in the case for the vertical lines x = 7i,...,7„, there are perturbations of the horizontal

lines y = 7n+i»-...7i»+m. The corresponding perturbed vector field £n+1,...,£n+m and suitably

chosen «„+!,...,e„+m-i satisfy 5(en+m-1,en+m_1) C ... C B(£n+1,e„+i) C B(C-l,en-i). The

final perturbation £n+m~1 is avector field such that ifXy+m~l, xjj/*""1 are equiUbrium points with
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max{|:' —i|, \j' —j\) = 1 then the Unes through these equiUbrium points only intersect transversally.

The vector field £"+TO is properly transversal and Ues in £((, e). Thus, G3 is dense in P(n,m). |

Theorem 2.16. G3 is dense in P(n,l), 2 < a, P(l,m), 2 < m.

Proof. The theorem wiUbe proved for the case P(n,l), 1 < n. The proof for the case P(m,l),l < m

is analogous and wiU not be repeated.

It is sufficient to prove that G3 is dense in G2. Let £ € G2 and 0 < e. It is required to show that

B(£y e) n G3 ^ {}. Without loss of generaUty it may be taken that e is so small that B(£, e) C G2.

As in the proof that G3 is dense in P(n,m), 2 <n,m there is a sequence of perturbations

Z1,..., ^n"1such that & is a perturbation of•^"1(1 <j<n) ending in £B"1. The perturbaton £n_1

is avector field such that ifxjj^.xjij,1 are two equiUbrium points with max{|t'-i|, \j'-j\) = l,t' £ i
then the Unes through these points only intersect transversally. The vector field f""1 may be

constructed with d(fl"1.0 < *(n - l)/n. There also exists 0 < ei such that if £€ B(Cl,*i) then

the corresponding Unes for £ also intersect transversaUy.

Let0 < i < n and consider theUnear vector fields (jfl, QJ"1. Along thevertical strip [7,-, 7,+i] x
R the vector field ^n~1 is given by

£ I[7ii7i+ilx» (*-??-)+

n
on-10|'l
.n-1

i»=.+l La<'2 .

Consider the perturbation X,(oi,a2) of ^n~1|[7i,% jx* where
LQf»+12

to-TKil.

X,(oi, a2) =
n-l

a
n-l- (oi - On+ll)7n+l 6n-l

°11
6n-l
°21

o„ + Oj - on+11'12
.n-l
1 - l<*2 — on+12j7n+1

0|»1
n-l

or#t'=l L"»'2 J tf'ss+1

Notice that X,(ai,a2)l0 = {JJfl regardless of the values of(oi,o2). Now define the function

H,(X,(oi,o2),x) = X,(oi,o2)(x).

As

dxh,(x,(oS;}i.oS;}2),x,i) = Mfr1

and detM"f*± 0there exist neighbourhoods A? x AT2, AT? of (o^n,o^n) and x,i respectively
and a function h4: N} x AT? -» JV,3 assigning to X,(oi,o2) its corresponding equiUbrium point x?{.
Furthermore, with x,i = (x,i, ya),

D.E,(w.:;i„.:;i,).»,, .[-f _i,]+[; ;]•«+[; ;]<•«-««
n-l_r2y,i-27^J

°22 +"2 On+12

ft""1ai'i

On_1ai'2
w1-*)*

-
n-l2y,i-27^;i

20
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As £n_1 does not have any transitional equUibrium points then x<i does not Ue on the line y= 7n*l}-
Thus, 2ytl - 27^} * 0 and

detD0Hi(x,(o;;;u, <;J2), x,i) * 0.

Thus, hi is in fact a diffeomorphism.

Let XJ0, X?0 be the lines through the point Xi0. By choosing (oj,a'2) € N} xN\ - Kj\slhj\Lk0)
the vector field Xi(a'v o2) has a equiUbrium point x$ which does not Ue on the Unes XJ0,X20. The
lines through xXf can only intersect the Unes through xJq' transversally.

Finally, choose

(oi, oa) € n|L0 (A? x Ni - uLi*rl(XS,)) nB((a;;}lf a»;}2), e/n) n*((*;&. o»;}2), ei).

The vector field

X

.y.
=

'•r1- w "n+llHn+l

on+12;7n+1
+

"^r1 ^2-1+oi-a-n'
.62V1 i?2-1 +o2-a-}2>

X

.y.
n "xw"-l" r ' *

$'=1

O.-.j

Q,»2
l«-7j"1l +

oi

"2J |y-7:;}|.

is properly transversal. As d(£n, C1) < c/n then d(£n, 0 < e. Thus G3 is dense in P(n,l). |

Theorem 2.17. G3 is dense in P(l,l).

Proof. It is sufficient to prove that G3 is dense in G2. Let £ 6 G3 and 0 < e. Without loss of

generaUty emay be chosen so small that £(£, e) C G2. It is required to show that £(£,e) n G3 ^ {}.
The vector field £ may be written as

X

.y.
=

01

.02.
+

fell fei2

,621 &22.
+

on'

.012.
I*-7i|+[021

022
|y-72|.

As in the proof that G3 is dense in P(n,l), there is a perturbation ^ of£ such that if xy is an
equiUbrium point of£2 then the lines through x^- and xf_ljM/ = 0,1 only intersect transversaUy.
The vector field £2 has the form

e

01 - (oi - 021)72
02 - (o2 - o22)72

^11 fel2 +oi-Of2l] , [On] . foil

for which it is possible to choose (ot'va'2) € B((o2i,o22),€/2). Thus, d(£2,{) < e/2. There exist

0 < ei such that if £ € B(£2, ei) then the equUibrium point 5cy also have nontransversal intersection

with Unes through the points xi-y,/ = 0,1.

As with the proof that G3 is dense in P(l,m), there is a perturbation {l € i?(£2,min{ei,e/2}).

The vector field ^ is such that if Xy,x}a_^,f' = 0,1 are equiUbrium points of £l then the Unes
through these points only intersect transversaUy. The vector field f1 has the form

01 - (oi - 021)72 - (o^ - 011)71
02 - (oi - 022)72 - (o2'- 012)71

fen + 0" - on fei2 + oi —021
&21 + 02; —Ori2 622 + 0^ —O22

|*-7l| + |y-72|.
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for (a", o2) € B((aii,Oi2),min{ei,e/2}). The vector field £* is properly transversal and satisfies

<*(€** 0 < «• Thus G3 is dense in G2. I

Theorem 2.18. G3 is dense in P(0,0), P(n,0) 1 < n, and P(0,m) 1 < m.

Proof. It is sufficient to show that G3 is dense in G2. Let £ € G2 and 0 < e. It is required to

show that 2?((, e) n G3 ± {}. Without loss of generaUty it may be taken that e is so small that

B(t>€)CG2,

That G3 is dense in G2 for P(0,0) is apparent from the fact that P(0,0) only contains linear

vector fields, thr proof for P(0,m), 1 < m, is analagous to the proof for P(n,0), 1 < n.

If 2 < n then by the same technique as used in the proof of denseness of G3 in P(n,m), 2 <

n, m, there is a sequence of perturbations £l,..., £n~1. The final vector field, f""1, has equiUbrium

points x"0_1 such that the Unes through this equiUbrium point only intersects the Unes through

the equiUbrium point x?^ transversally. The vector field £n~1 is properly transversal and can be

chosen such that d(^n~1,^) < e.

If 1 = n then, as in the proof that G3 is dense in P(n,l) 2 < n, there is a perturbation £* of (

of the form

—on 612

012 &22
ci [*1 = [ai~(ai * 0"fri1 . [6" +°i "

[vl Lo2-(oi-012)71 J L^i+aj-
on

012
|x-7i|

which is properly transversal Furthermore, £* can be chosen such that d(£*,£) < e. Thus G3 is

dense in G2. I

The final subset of P(n,m) to be considered is a technical result that wiU aid in some of the proofs

in the next section. Again, this subset is an open and dense subset of P(n,m).

Definition 2.19. Let GA C G3 be the subset of vector fields such that if £ € G4 and fy, 0 < t <

n,0 < j < m is the linear vector field that satisfies 4yU,> = £|a0 with the form

' W" kJ k» ««J l»J
then Q£ m\Jm2j.

Theorem 2.20. G4 is open in P(n,m).

Proof. Let £ € G4. As { € G3 there exists 0 < ei such that £({,ei) C G3. For each0 < t < n,0 <

j < m there exists 0<ey such that if f € 5(^,ey) then 0^ mljrrff} for the vector field f.
Finally, let e = min{ei,min{ey : 0 < i < n,0 < j < m}}. For £ € B({,*i) the vector field £

satisfies 0^ m}jm2} for 0< i < n,0< j < m. |

Theorem 2.21. G4 is dense in P(n,m).
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Proof. It issufficient to show thatG4 isdense inG3. Let£ € G3 and 0 < e.Withoutloss ofgeneraUty

it may be taken that e is so small that B(£,e) C G3. It is required to show that B(Z,c) n G4 £ {}.

For each 0 < t < n,0 < j < m consider the linear vector field £,- for which £y|A<, = £|a.;.
If 0 ? m}}m2} then there exists 0 < ey such that if £ € B(£,ey) then 0 5* m}}m2} for the
corresponding values off. In particular, the vector field £ given by

•fcl-fcR:][;]
for 0 < fi < ey Ues in £(£, ey).

If0=m}}m2} then either 0=mj? or 0=m2}. If0± m\] then let ey =|mj/|. If0# m2} then
let ey = |m2/|. If 0= mj? = m2/ then let ey= 00. Clearly the perturbation

[;]-<[:]♦[!:][;]
for 0 < // < ey satisfies 0 ^ mJ/ffTy1. FinaUy let ei = min{e, min{ey :0 < t < n,0 < j < m}}. For
0 < p < ei the vector field given by

'[:]-«[:]♦[
Ues in G4. Thus G4 is dense in G3 as required.

§3. Saddle connections in the generic vector field.

This section wUlbe concerned with the phenomenon of saddle connections in a vector field. It had

been originaUy hoped to prove that the set of vector fields without saddle connections form anopen

anddense subset of P(n,m). This goal hadnot beenachieved but in the process results were obtained

whose interpretation from the standpoint of computer simulation is identical The first step in the

sequence of the results pertains to the occurence of homoclinic orbits in vector fields.

Definition 3.1. Let 0(x,t) denote the orbit through the point x and satisfying the following

differential equation
*'(x,t) = ^(x,t))

*(x,0) = x.

Assume that the vector field £ € G4 contains a homoclinic orbit through the (necessarily) real

equiUbrium point x,oio As linear vector fields do not admit homoclinic orbits, the orbit T must

cross one of the boundary lines x = 71,..., yn or y = 7„+i,..., 7„+ro. If the vector field V should

only cross a horizontal Une y = 7,-, then consider the vector field J obtained as the rotation of {

under ir/2 radians. The vector field J has a homocUnic orbit T crossing one the the vertical Unes
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x = —7n+m»'"•> —7n+i« It may thus be taken that the original homoclinic orbit crosses a vertical

line x = 7<,.

If to < t'i then consider the vector field J obtained from ( by reflection about the y-axis. The

vector field £ has a homoclinicorbit passing through the point x„_,0j0 and crossing the vertical line

x = —7i, = Tn+i.j, Thus, for the vector field £ it happens that n + 1 —ii < n —t'o. It may be

assumed that for the original vector field £ that the homoclinic oribit through x,0j0 crosses a vertical

line x = 7<j with t'i < t'o-

Theorem 3.2. Let £ € G4 havea homocline orbit T through the point xloj0 crossing the line x = 7,,

with ti < t'o. Let

S —{(7iu y)' r crosses x = 7^ at the point (7^, y)}.

Then S has finitely many elements.

Proof. Without loss of generaUty the elements of 5 may be ordered according the the times of

crossing of T with the line x = 7^,

S = {(7ii,y*): (7iiiyfc+i) = ^((7»nyfc).<*)» <* = min{0 < t: ^((7n,y*)»0 crosses x = 7,-J}.

Thus the y-ordinates yi,..., y*... give the sucessive points (7^, yi),..., (7,-,, yt),... of crossing of

T with x = 7,-j.

Assume 5 has infinitely many elements. If lim*_.oo |y*| = 00 then the points (7^,7*) are

unbounded. The homoclinic orbit T wiU then be unbounded, as also will be T U{x,-<y0}. However,

ru{x,0j0} ishomeomorphic to S1 (the circle in R2). As S1 isbounded andru{x,0j0) is unbounded,

a contradiction arises. Thus it can be concluded that Um*_Qo |y*| < 00.

By the Bolzano-Weierstrauss theorem, the set {j& : 1 < k < 00} has a convergent subsequence

•{y*i : 1< I < 00} with limit y1. Consider the vector £(7^, y*) at the point (7,-,, y*). There are three

cases to consider as to whether ^(7i1tJ//).[l 0]' is less than, equal to, or greater than zero.

Assume £(7,-,, y').[l0]« < 0.The vector {(7^, y>) points leftintothe region {(x, y): x < 7,,}. By

continuity of the vector field there exists0 < e such that if y € (y* - e, j/ +e) then £(7^, y).[l0]' < 0.

As Umj^oo yjfc, = y*, it is possible to choose yklo,Vktl € (y* - e,^ +e) with yfe,0 < yfc|j. Let V be
the portion of T joining the points (7i1iyti0)»(7n.y*,1). Consider the closed curve T~ U({7,,} x

[y*,0,yfc,J). It is immediate that lim^oo tf((7.-,»y*,0),0 and Um<^_00^((7II,yJfcli),<) Ue in different
components ofT" u({7.1} x [y^yjt.J). Then lim,-*, +({yiltykJ,t) ^ lim^-oo <t>((yit,ykll),t)
contradicting the assumption of a homoclinic orbit.

Similarly, the assumption that £(7ii»y').[l 0]* > 0 wiU also lead to the same type of contradic
tion. Thus, consider the case that ^(y^,y'J.fl 0]'= 0.

Consider the two intervals (j/ - e, y*), (y1, y> + e) where e is chosen so small that (j/ - e, y') C

wio* (if'i 1^+€) Q wii for some 0 < j0 < jx < m. At least one of the two intervals contains infinitely
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many elements from 5. It may be assumed that it is the interval (y* —e,y*) C Wy0 which contains

infinitely many elements ofS. Consider the Unear vector field given by

&,*[»]~U2
•iio j

11
nio
21
•iio

m

m

Along the Une x = 7,-, the Unear vector field is given by

&Uo

7n

y

If6'iio(7ii»y) has x-ordinate zero then

d* •

A.J

11
*iio
21
*U0

m

m

»'iio [7ii]
?i-.JL»J'

As mj2^ ^ 0 there is a unique solution to the above equation. Thus, y* is the only value of y

for which the above equaUty holds. This implies that for y € (if' - e,^) the vectors 6,i0(7i1,y)

are not tangent to the line x = 7,^. In other words, ((7<|ty).[l 0]' < 0 or £(7.-,,y).[l 0]1 > 0 for

ye(y'-€,yf).

If£(7n 1y)-[l 0]1 <0for y € (y'-e, y>) then choose ykIo, yt|i € (y'-e, y>) with y*,o < yktl. Let T~
be the portion ofT joining the points (7,-,, y*,o), (7^, ykll). Consider the closed curve T" U({7,-,} x

[y*.0'yfc.J)- It is immediate that limt-00^((7il»yfc,0)t<) and Urn,—oo^((7.,iyifc,1),<) Ue in different
components ofT" U({7,1} x [yt.^yjk.J). Then Um^oo^^.y*,,,)^) # Umt-._oe ^((y^y^yt)
contradicting the assumption ofa homoclinic orbit. Sinularly, if £(7^, y).[l 0]' > 0 for y € (j/ - e, j/)

then a contradiction also arises. Thus, it cannot happen that £(7tny')»[l 0]1 = 0.

Hence, 5 has finitely many elements. |

The foUowing conjecture was found to be necesary to prove the results in this section. DifFerentiable

dynamics is able to utilise local perturbations of vector fields in the Ck topologies, this technique

of local perturbation is not available when the vector fields are piecewise Unear vector fields. The

conjecture is essentiaUy a global perturbation conjecture whose validity has been supported by

computer simulation.

Conjecture 3.3. Let (7,-,, y) bea point for which 1< t'i < n. Let theorbit through (7,-,, y) cross the
•yi -Aline x = ytl at the point (7,,, j/). For every 0< e there exists £ , { € B(£, e) with y}t = 7* = 7,,,

—1 —2
and£y, £y = £y for t'i < t such that the orbit through the point (7^, y) crosses the line x = 7*, at

(7.11 y1),(7.,, y2) ™th y1 <y<y2.

Remark: There do exist vector fields that coincide with ( on the set [7,-,, 00) x 3£. For example, let
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£ be the vector field with aU the same defining constants as £ except

Si - Si-,17,-, = oi - otJtiTjj

&n + oTin = 6n + o,,!

S2 - o7,127n = «a - 011271!

$21 +5it2= &21 + 0r,,2.

Clearly fy = £y for t'i < i while

I \z]s f5l ~^*'sl Qf<'l7,V +SS+i °»'l7i' +Si,i7i, +E?=ll+i *Mv-
*' IyJ [0T2 - £|,sl Oi»27,/ +E!?=h.i <**'27i' +5i127.» +£?»-,-, +i <*i'27.'-

. J27H+1 ^1 ti»+Lrio+i+i o,»i7,-»
E?'ii+1 °<'27i' +S?'tn+i+l <*<'27i'.
x ^11 +E!'=i a<'i - E!'l=/+i «*'i - s,u - E"=i,+i <*i'i

.&21 +E!'=l «i'2 - £!?=/+! <*i'2 - S,l2 - E?»=ii+1 <*i>2

for t < ti.

612 +EEi+i«« - EJJT+i+i«

+2(7.l-x)f?'1-°-1]
r.*2 JLs/J

= ZH

Let x be a saddle point. To the saddle point can be associated the stable manifold W(x) = {y :
lim,_oo<£(y,<) = x) and unstable manifold Wu(x) - {y : limi^_oo ^(y, t) = x). Furthermore,

W(x) = Wi'(x)u{x}UW2'(x) where W{(x),Wj(x) are the connected components ofW(x)-{x).
Similarly, Wu(x) = W?(x) U{x} UW$(x) where W?(x),W$(x) are the connected components of
Tv-«(x)-{x}.

Theorem 3.4. Let £ € G4 have a homoclinic orbit T through the point xiojQ joining the manifolds
ttTCxiojo)! wi (xiojo) and crossing the line x= yilt t'i < t0. For every0< e there exist aperturbation
t1 of£ and 0<ei such that iff € B(?, d) CB(£, e) then £does not have ahomoclinic orbit through
the point x-,-oio joining W^ioh), T*7(3c,oio).

Proof. (Figures 6,7.) Let

s - {(7ii,y*) :T crosses x = 7,-, at the point (7^,yk)}.

By theorem 3.2, the set 5 has finitely many elements. Furthermore, the points (7^, yk) are ordered
by k as to their respective times ofcrossing ofT with the Une x =7,^.

As 5 is bounded, there exists values y_ < y+ such that (7,,,y_) and (7,x,y+) are not in the
interior ofTu {x,oio} and if (7<„Jfc) € S then y~ < yk < y+. As (yfl,y±) axe not in the interior
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of 7 U{x,0j0}, by the Jordan curve theorem anyclosed curve joining these two points which crosses

TU{x,OJO} finitely does so an even number of times. As y^was chosen so that t'i < t0 and x,0y0 is
a nontransitional equiUbrium point, the Une segment {7,,} x [y-,y+] crosses F an even number of

times. Thus, S has an even number of elements. Let S = {(Ti^y*) : 1 < k < 2p) for some 1 < p.

Note that if k is odd then ^„m)'[l 0]' < 0 and if fc is even then ^(7,ltyt).[l 0]e > 0.

It may be taken that the homocUnic orbit F is transversed in a clockwise direction. If this were

not the case, then under a reflections about the x-axis the vector field ( is conjugate to a vector field

£ having a homocUnic orbit T through x*,,y0 transversed in the clockwise direction. Thus yi < y2p.

There are two cases to consider as to whether T*2*(x,0>0) lies in the interior or exterior of the

region bounded by TU{x^}. The proof wiU proceed in the case that W2'(x»oio) *"« in the exterior

of the region bounded by F U {x,oj0}. The proof in the other case in analagous and will not be

repeated.

By conjecture 3.3 there exists {* € B((, e) such that for the vector field £x the orbit through

(7ti»yi) crosses the Une x s 7i, at the point (7i,»y2P) where yjp < y2p. Let T1 be the portion of
the orbit starting at (7i,»yi) and ending at fri^yjp) under the vector field £. Consider the region

bounded bythe five sets: r1,ursseS^((7.1»yi),t), {%i} x [y^,y2p], U£0*((7.',.y2P),<), {x,oio}. Note
that Tv*2'(x>oio) is not in the region bounded by the above set of points. Note also that the orbit

through the point (7^, y\p) under £l cannot exittheaforementioned region, then the orbit of(7^, yx)

under the vector field f1 does not form a homocUnic orbit. The vector field £* does not have a

homocUnic orbit through xfoio joining W?(x}ojo) and W/(xJoio). Furthermore, as the the boundary

of the above region canbe continuously deformed under smaU perturbations in the defining constants

of f1 there exists 0 < ei such that if f€ B(^,ei) C B(£,e) then the vector field (does not have a

homocUnic orbit through x\oio joining W^(Jciojo) andW{(x-iojo). |

Corollary 3.5. Let{ € G4 and 0 < e. There exists ? and 0 < e* such that iff € B(?, e*) C B((, e)

then £ does not have any homoclinic orbits.

Proof. For a given vector field £ let #(£) denote the number of homoclinic orbits that £ posseses.

For a subset 5 C G4 define N(S) = max{#(£) : ( € S). Note that since S C G4 and any £ € G4

may haveat most (n + l)(m + 1) real equiUbrium points then £ may have at most 2(n + l)(m + 1)

homocUnic orbits, thus N(s) < 2(n + l)(m + 1).

Without loss of generaUty it may be assumed that 0 < e is so smaU that B(£,e) C G4. If

N(B(£, e)) = 0 then the coroUary is true for £' = ( and e* = e. Thus let $ € B(£,e) be a vector

field for which there isa homocUnic orbit through the point x,oio and joining W£(x,oio), W^i(x,0j0)
with *},*j€ {1,2}.

Consider £(£j,e- d(£},()) C £((,e). By theorem 3.4 there exists £l and 0 < ei such that if

J€ B(il,ei) C B(fl,€- d($,£)) C B(£, e) then Jdoes not have a homoclinic orbit through x,0y0
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and joining W«}(x\Wo), *?}(%•*). Thus N(B(e,d)) < 2(n+ l)(m +1) - 1. If J^B^ei)) = 0
then the corollary is true with £' = t1 and e* = cx. Otherwise let $ € B((1,ei) be a vector field

with a homocUnic orbit through the point x2tjl and joining ^(x2^), WJa(x$til).
As before, there is a set B(?,e2) C B(&€2 - d(^,^)) C B(?,€i) C J3(£,e) such that

if £ € 2?(£2,€2) then the vector field J does not have a homoclinic orbit through x\«y0 join-

tog ^fcU^«ojo)'̂ ii(x"io./o)' nor does ** Dave a homocUnic orbit through the point x",Ul joining

W?j(*iii).^tV^iii). Thus, J\r(B(£2,e2)) <2(n+ l)(m +1) - 2.
Continuingin this manner there is a sequence of sets B(£*, e*) C ... C B^1, ei) C B(£, e) such

that if f € B(tk, e4) then £ has at most 2(n +l)(m +1) - k homocUnic orbits. If N(B(£k, ek)) =0
then the coroUary is true with {' = {* and e* = e*. Since 0 < N(B(£kt e*)) < 2(n+ l)(m + 1)- k

then the number of terms in the sequence cannot exceed it = 2(n + l)(m + 1). The sequence wiU

thus terminate after a finite number of terms in a set B(£*,e*) for which N(B(tk, e*)) = 0. The

corollary is then true for £' = (* and e* = et, |

Saddle connections betweendifferent saddle pointswulbe divided into two types. Saddleconnections

which are of type I have results amenable under conjecture 3.3 while similar results for saddle

connections of type II need conjecture 3.9 for their proof.

Our aim of the proofs about saddle connections is to show that the vector fields without saddle

connections are dense in P(n,m). In particular, given a vector field with a saddle connection,

there exists a perturbation such that neither the perturbed vector field not any vector field from a

sufficiently smaU neighbourhood of it has the same saddle connection as the original vector field.

Definition 3.6. Let £ € G4 have a saddle connection T joining the two saddle points x,0j0,x,lJl
with to < t'i. If j0 < J! then define A = [7.0,7i,+i] x [7io»7i,+i]. If ii < jo then define A =
[7io> 7<i+i] x [yJt, 7io+i]- The saddle connection T is said to be oftype I ifTn (3c2 - A) £ {} and to
be of type II if T € A.

Let r be a type I saddle connection for a vector field £ € G4. AsTn A £ {} and theendpoints ofT
Ue in the interior of A, then there are points for which T crosses dA. By rotation and reflection of

the original vector field, if necessary, it may be assumed that T crosses dA at points along the Une
x = 7,0 and that the saddle points which T joins are x^^x,^ where t0 < t'i. It may further be
taken that for (x, y) €Tit happens that lim^.^ <f>((x, y), t) = x,oio and Urn^*, <f>((x, y), t)= xtlil.

Theorem 3.7. Let £€ G4 have asaddle connection Toftype Ijoining the saddle points x,oio, xtljl
where t'o < t'i, and crossing the line x s yt0. Let

s = {(7i„» y): T crosses x = 7,0 at the point (7,0, y)}.

Then S has finitely many elements.
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Proof. Order the elements ofS according to their times ofcrossing ofTwith the Une x =%,,

S= {(7i0»y*) :(7i0»y*+i) =#(7i0.y*)»<*)» <* =min{0 <t: ^((7.0,y*),<) crosses x=7,x}}.

Thus the y-ordinates yi,..., y*,...give the successive points (yioJ yx),..., (7,0. y*)»... ofcrossing of
T with x = 7,0.

Assume S has infinitely many elements. If lim*^oo|yfc| = 00 then the points (7,0,y*) are
unbounded as a set in *2. As the point Xiojo is nontransitional there exists 0 < ei such that

^(xioiot^i) n {x = 7,0} = {}. The point x,Ul is nontransitional, there exists 0 < c2 such that

£(x»-iii)n {* s 7.0} ={}• Furthermore, there exists tx <t2 such that ift < tx then ^((7,,, yi), <) €
*(*.-oio>*i) and if t2 <t then ^((7^,yi),t) € B(xMl,e2). Consider <f>((yio,yi),i) for t € [*i,ta]. For
these values of i, W((7i0»yi)»<)ll attains a maximum M for <€ [ti.t*]. Thus, for any two values

<',*" € [<i,<2] it happens that |W(7,0,yi),<') - tf((7.0,yi),t")ll < M\t'-t"\ < M(t2-tt). Thus,
|yi-y*l= ll(7io»yi)-(7.'o»y*)ll <M(t2-t{) from which it foUows that \yk\ < JW(t2-<i)+|yi|.Then
Hmfc^oo |y*| <00 contradicting limt-oo \yk\ = 00. Thus it may be assumed that Um*_oo M < 00.

By the Bolzano-Weierstrauss theorem, the set {y* : 1< k < 00} has a convergent subsequence

{y*i : 1< / < 00} with limit y'. Consider the point (7<0,y/), as £ does not have any nontransitional

equiUbrium points then {(7i0»y/) ^ 0. Thus there exists 0 < e3,e4 such that the flow in [7,,, -
«3,7i0 + «3] x [y' - e4, y> + e4] = V conjugate to a a Unear flow. Let 1 < /0 be such that if 70 < /

then (7i0,y*,) € [yt0 - e3/2,7i0 + €3/2) x [y' - e4/2,y' + e4/2] = U. Consider the orbit of a point

(7i0> y*i) for h < I. As the flow in the regions U, V are conjugate to Unear flows then the orbit of

the point (7.0»y*,) can only join with the point (7i0>y*,+i) by exiting U, exiting V, re-entering V
and re-entering U. As U C V there exists a finite time 0 < r bounding from below the amount of

time for the orbit through (7.0,y*,) to travel from dS to dR. Thus, if (7,,, yt|+l) = ^((7^*,),**,)
then It < tkl. Inductively it foUows that (7i0,y*,) = ^((7.0»y*i0)»<*•) where 2(1 - /0)r < <*,. As
/ -♦ 00 then (7.01 y*i) € B(xiljli€2) in contradiction to (7i0»y*i) being on the Une x = 7,0. Thus 5
has finitely many elements. |

Theorem 3.8. Let £ € G4 have a saddle connection Toftype Ijoining the saddle points x,0y0, x,-,,-,
where t0 < t'i, along Wia(x,0,0) and W/(**iii) respectively and crossing the line x = 7,0. For every
0 < e there exists ? and 0 < e* such that if£e B(^/,e/) C B(£,e) then the vector field £ does

not have a saddle connection joining the saddle points x'iojo,x'iljl along W?(xiojo) and Wf(*;•,>,)
respectively.

Proof. (Figures 8,9,10.) Let

s = {(7i0» yk): T crosses x = 7,0 at the point (7,-,, yk)}.

Consider the set 3fc2 U{00} as the one point compactification ofR2. In this set {x = yio) U{00} is
a closed curve passing through the point 00. The points x,0,0, x,,^, both lie in the same component
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of»2 U{00} - ({x = 7<0} U{00}). As T is a curve joining x,0,0, x<lix, if it crosses the line x = 7,0
a finite number of times then by the Jordan curve theorem, this number of crossings is even. Thus

5 = {(7^,^) : 1 < Jb < 2p) for some 1 < p. Without loss of generaUty it may be assumed that
(7i0» y2p) is a point of transversal intersection ofT and the Une x = 7,0. The end ofthe proof wiU
consider the case if this should not happen to be the siutation.

By conjecture 3.3, there exists a vector field £ € B({,e) such that, the orbit through (7i0,yi)

intersects the Une x = 7,0 at the point (yi0,vlp) where vlp < Wp- Furthermore, y\p can be chosen
so close to y2P that for y € \ylp, top] the vector tl(yi01 v) » transversal to the Une x =7,0.

As (7i0, y\p) is formed by the transversal intersection of W7(x,oio) and x=7i0» for sufficiently
smaU 0 < e} the vector field J € B(£x, ej) also has transversal intersection ofWffaoio) and x = 7,0
at the point (7,0, y"2p) where V2p is close toyjp. As (yio, y2P) is formed by the intersection ofW{ (xtlJx)

»

and x = 7,0, for sufficiently small 0 < ef the vector field ?€ B(£*, ej) has transversal intersection of

W{(xixil) and x = yio at (tV?.) where 37. is close to y2p.

Choose 0 < ei < min{e}, ej,e- dtf1,0} sosmall that for f € B(£*, ex) C B({, e), j?2p < Jr. and

the vector Z(yio, y) istransversal tox = yt0 for y € (ftptftl* Consider the set Bd1,ei). Ifit happens
that for every J € B(£x,ei) the vector field £ does not have a saddle connection joining the saddle

points Scioio,3?.^ along W^ST,-,,*,), WJ(**iit) then the theorem is true with ? = ? and e> = e.
Let £2 € B(^J,ei) have a saddle connection T2 joining the saddle points xj0^0,xfl^1 along

wi(*lj0) and W/M^,) respectively. Let

52 = {(7?0, y*): T2 crosses x = 7?0 at the point (7?,, yk)}.

As noted before, S2 = {(7?0,y*) : 1 < * < 2g) where p < q. Observe that (7?0»y2) € S2 so that
y2 = y2 for some 2p < / < 2g. Since there is a saddle connection joining x20j0 and x2xil the orbit

through (7?0,y2p) meets x = 7?0 at (7?0,y2) = (7?0»y2). Let e2 = e- d(£,£) and consider the set

Say it happens that / = 2q. By a secondappUcation of conjecture 3.3, there exists £3 € B(£2, €2)

with y?,g < y3, and £3(7?0i y) is transversal to x = 7^ for y € [y2,, l/?,]* Thus £3(7?0» y) is transversal
to x = 72o for y € [y3p, yfj]* Let F3 be the portion ofthe orbit thatstarts at (7^, yfp) and ending at

(t?0' y|«) Let U" = T3 U({720} x [yjp, yfj). There are two possibilities as to whether x3^ Ues in the

interior or exterior of the region bounded by U.

Consider the case that x2jl Ues in the exterior of the region bounded by U. Note it happens

that lirni^_oo03((72o» 1/23)1 <) € U while Umt_>Oo^3((72o,y2f)»0 $ u- lt tnus foUows that the orbit
through (720,y2f) cannot join with (720,y|9) to form a saddle connection between WJ,(x20j0) and

In the case that x2^ Ues in the interior of the region bounded by U it is possible to observe

that lim(_-oo^3((720, yl,),t) £ U whUe lim^^^y3,),*) € U. The orbit through (t?0,»J,)
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cannot join with (7?, yfg) to form asaddle connection between W?(x?oio) and W{(x2ljl).
As the boundary of IT is preserved under smaU perturbations in the defining constants of £3,

there exists 0 < e3 such thatoff € B({3, e3) then the vector field £3 does not have asaddle connection

joining T*7(x\oio) and W{(x\xjx). The theorem is then true for {' = £3 and e' = min{e3, e-d(£3, £2)}.
Next, consider the possibiUty that I< 2q. Consider the point (7? ,jj,) and the orbit through

this point. Define the set

T2 = {(7?0,y*): ^((7?0,y2,),<t)n{x = t?0} = (7?0,y*)»2? <M <tk).

Note that if (7J, yk) € T2 then (7?, yk) $ S else (t?0, Mb) would not be the last point oftransversal
intersection ofT2 with x = 7?. Hence the orbit through the point (y}0,yk) is tangent to the Une
* = 7?0.

IfT2 = {} then (yfo1ylq) is the last point for which *a((7?0i y|f)i<) meets x = 7? for 0<t.
** *iojo *• a nontransitional equiUbrium point there exists 0 < e2q such that B(x$oio1€iq) n {x =
7?0} ={}• It may be taken the €2q is so smaU that for £€ B(£2,e2) it happens that B(x*2oio,e2,) n
{* s 7?0} = {}• There exist 0< i2q such that if t2q < t then *2((7?0,y2,),<) € B(x20>0,e2,). Let
T2 be the orbit ^2((7?0,y5,),<) for times 0 < t < t2q. Note that T2 is a compact set for which
r2 n {x = 7t2o} = (7?0.y2,)- By restricting 0 < e3 it is possible to ensure that for £ € B(£2,e2)
it happens that x = y20 and F. only have the point (7*20,y"2*) m common. If the vector field
£3 € B(£2,€3) has a saddle connection then consider

53 = {(730,Vk): T3 crosses x = 7? at the point (7?,yk)}.

As before, S3 = {(730,y*) : 1< k< 2q'} where q< q*. Consider the point (7?0,y|,) with image
(7?0, y?) for some 2q < I< 2q'. If / < 2q* then the orbit T3 intersects x = 7? at a point other that

the image of (7?0>y2*)' This is incontradiction to the construction of B(£2,e2). Thus / = 2q*.
IfT2 ^ {} then consider the perturbation £• of£2 as the vector field with all the same defining

constants as £2 except
U2 2a? = cx{ - axo?o1

OtJ = «2 " /iQf?o2

where 0< ft < m= min{e2,e2/|a2ol|,e2/|o2o2|} is so smaU that TS has only the point (yf0,y^q) in
common with the Une x = 7?o. Thus T* = {). If there is a value of /i0 such that no has a saddle

connection joining W?(x%jo) and W^xf^) then let £3 = £"° and e3 < e2 - d(f,{2) be so smaU

that T = {} for any vector field £€ B(£3, e3). The proof can then proceed with respect to showing
that there is a subset B(£*,e4) C B(£3,e3) such that if Je B(£4,e4) then £ does not have a saddle

connection joining Wffa^) and W{(5[ixjl). If it happens that for every valueof h the vector field

£" does not have a saddle connection joining Wftxj^) and Wftxg^) then let £3 = £">/2 and
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e3 < e2 - d(£3, £2) be so smaU that T = {} for vector fields J € B({3,e3). If none of the vector fields

in B(£3, e3) has the required saddle connection then the proof is finished else the proof can proceed

with respect to showing that there is a subset B((*,e4) C B(£3, e3) such that if £ € B(£4, e4) then £

does not have a saddle connection joining Wxu(xi0j0) and W{(x",^).

Consider the case that the last point of crossing of the saddle connection F and the Unex = 7,0

should not happen to be a point of transversal intersection. For sufficiently smaU 0 < n < Hi < e

consider a perturbation of the original vector field { to f where the latter vector field has all the

same defining constants as the former vector field except that

<*i = Qfi - P«M0i

Of? = °2 - l*<Xio2 -

7?0 = 7.o " A*

It may be assumed that y. is chosen so smaUthat the last point of crossing of any saddle connection

with the Une x s y?Q is transversal. Say there existsa value of no such that the vector field f0 has

a saddle connection whose last point ofcrossing with the Une x = y?Q is transversal, then the proof

can proceed as before but within the set B(^°, e- d(£tf0, £)). If it should happen that for all values

of n the vector fields £** do not have the required saddle connection then consider f^2. Choose

0 < eMl/2 so smaU that if £ 6 B(^l/2,€p,/2) and the vector field J has a saddle connection then
the last point of crossing of that saddle connection with the Une x = f,- is transversal. If none of

the vector fields in B(^»/2,ePl/2) have the required saddle connection then the proof is completed,

otherwise it reduces to the case at the beginning of the proof. |

The foUowing conjecture is to type II saddle connections what conjecture 3.3 is to type I saddle

connections. Again, the significance and difficulty of proving the foUowing conjecture Ues in the

type of perturbations aUowable for vector fields. Neither conjecture 3.3 nor conjecture 3.9 are

anticipated to have simple proofs, although proofs can be given for restricted cases, the general

prooffor both these conjectures wUl haveto allow for a wide varietyof behaviour for the orbit that

these conjectures claim to perturb.

Conjecture 3.9. Let x,0j0 be a real equilibrium point for which 1< t'o < n. Let the orbit through
xiojo CT°ss the line x = 7,0+1 at the point (7.0+1 .l/)- For every 0<e there exists J1, ? € B(£, e)
with y-}t = 7?, = 7,,, and £y, ^ = fa for t0 +1 <.t such that the orbit through the points

*Joio'*?oio crosses theUnex =7.0+1 at(7.0+i,y^^^o+ity2) witoy1<y<y2.

Theorem 3.10. Let £ € G4 have a saddle connection T of type U joining the saddle points
xi0joi 3c»iii ^here t'o < t'i, and crossing the line x = 7i0+i. Let

s = {(7.0+1. y) :T crosses x = 7,0+1 at the point (7.0+i,y)}.
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Then S has finitely many elements.

Proof. Order the elements of 5 according to their times of crossing of T with the Une x = ts0+i,

s = {(7.0+1, yk): (7.0+1. y*+i) = ^((7.0+1. y*).<»).

tk = min{0 < t: ^((7i0+i,y*),<) crosses x = 7.0+i}}-

Thus the y-ordinates yi,...,y*,... give the successive points (7.0+i.yi)."'.(7.0+i.y*).-«' of cross

ing of T with x = 7.0+1*

Assume S has infinitely many elements. If lim*_oo |y*| = 00 then the points (7i0+i,y*) are

unbounded as a set in R2. As the point x,0j0 is nontransitional there exists 0 < ei such that

•E(x»"oio.ei) n {x = 7.0+1} = {}• The point x,,^ is nontransitional, there exists 0 < €2 such that

•B(x.ii,)n{x = 7i0+i} = {}• Furthermore, there exists fi < t2 such thatif t < tx then ^((7i,,yi),t) €

B(xioio,€X) and if t2 < t then ^((7*,. !&).*) € B(x,lil,e2). Consider tf((7.0+i.yi),0 for t € [ti,t2].

For these values oft, ||<£'((7*o+i» yi). Oil attainsa maximumM for t € [t 1, t2]. Thus, for any twovalues

t',t" 6 [<i,<2] it happens that |M(7.0+i,yi),*W((7.o+i,yi),t'OH < M\t'-t"\ < M(t2-tx). Thus,

|yi-yfc| = ||(7.o+i. yi)-(7.0+1.y*)ll < M(t2-tx) from which it foUows that \yk\ < M(*2-<i)+|yi|.

Then Umj^oo \yk\ < 00 contradictinglimbec |yt| = 00. Thus it maybe assumed that lim*_oo M <
oc.

By the Bolzano-Weierstrauss theorem, the set {y* : 1 < fc < 00} has a convergent subsequence

{yk, : 1 < / < 00} with limit y'. Consider the point (7*0+1. y')» as£ does not have anynontransitional

equiUbrium points then £(7.0+i,y') 5* 0. Thus there exists 0 < e3,e4 such that the flow in [7,0+1 -

*3> 7io+i +*3] x [y'-e4, y'+e-i] = V conjugate to a a Unear flow. Let 1 < /0 be such that if /0 < / then

(7<o+i. yk,) € [7,0+1 - «3/2,7*0+1 + «3/2] x [y' - e4/2,y'+ e4/2] = U. Consider the orbit of a point

(7.0+1,yk,) for /o < I- As the flow in the regions U, V are conjugate to linear flows then the orbit of

the point (7.0+1, yk,) can only join with the point (7.0+1. yti+J by exiting Uy exiting V, re-entering V
andre-entering U. As U C V thereexistsa finite time 0 < r bounding from belowthe amountof time

for the orbit through (7,0+1, yk,) to travel from 55 to OR. Thus, if (7,0+1, yfc,+1) = tf((7.0+i,yfc, ).<*,)

then It < tkl. Inductively it foUows that (7.0+1.yk,) = 0((7.o+i»y*lo).<*«) where 2(1 - 10)t < tkr As
/ -♦ 00 then (7*0+1.yk,) € B(xiljlt€2) in contradiction to (7.0+i,y*,) being on the Une x = 7,-0+1.
Thus 5 has finitely many elements. |

Theorem 3.11. Let $ € G4 have asaddle connection Toftype IIjoining the saddle points x,0y0, Xiji
where t0 < t'i, alongW^xt^) and W{(xijl) respectively and crossing the line x = 7,0+i. For every

0< e there exists? and 0< e* such that iff € B(f, e') C B({,e) then the vector field £ does not have
a saddle connection joining the saddle points x,oj0, x,,^ aJong WT(5c,0y0) and W{ (x\xjx) respectively.

Proof. (Figures 11,12,13.) Let

s = {(7.0+1. Vk): T crosses x = 7<0+i at the point (7.0+1. y*)}«
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Consider the set £2 U{00} as the one point compactification of £2. In this set {x = 7*0+i} U{00}

is a closed curve passing through the point 00. The points x,0j0, Xilj1 Ue in different components of

S2U{00} - ({x = 7.0+1} u {°°})' As T is a curve joining x,0^0, x,-^, if it crosses the Une x = 7,0+i

a finite number of times then by the Jordan curve theorem, this number of crossings is odd. Thus

$ = {(7.0+1. yk) : 1 < fc < 2p+ 1} for some 1 < p. Without loss of generaUty it may be assumed

that (7.0+1.3/2p+i) is a point of transversal intersection of F and the Une x = 7j0+i. The end of the

proof will consider the case if this should not happen to be the siutation.

By conjecture 3.9, there exists a vector field {* € B({, e) such that the orbit through (t,0+i, yi)

intersects the Une x = 7,0+i at the point (7<0+i»y2p+i) where y2p+x < y2p+i« Furthermore, y2p+x
can be chosen so close to jfcp+i that for y € [yip+i.yip+i] the vector ^frfo+i.y) is transversal to
the Une x = 7,0+i.

As (7.0+1. ylp+i) is formed by the transversal intersection of W]f(xi0,0) and x = 7i0+i, for

sufficiently smaU 0 < e} the vector field f € B^e}) also has transversal intersection of Wxu(^ioj0)

and x = 7l0+1 at the point (7<0+l, fop+i) where y~2p+x isclose to yj^. As (7.0+1. y2p+i) is formed by

the intersection ofW{(xiljl) and x = 7«0+i» for sufficiently small 0 < ef the vector fieldf € B({2, e?)

has transversal intersection ofW{(xixjx) and x = yi0+1 at (7,0+i,y*.) where p. is close to y2p+i-

Choose 0 < ei < min{ej,ef,e- d(^,0} so small that for J € B(?,€X) C B({,e),y-2p+1 < y.
and the vector £(7\0+i,y) is transversal to x = 7<0+i for y € [^p+i.F.]- Consider the set B(^,ei).
If it happens that for every£ € B(£*, ei) the vector field £ does not havea saddle connection joining

the saddle points x^x^, along Wxu(xioj0),W{(x'ilj1) then the theorem is true with ? = f1 and

e/ = e.

Let £2 € B(£*,ei) have a saddle connection T2 joining the saddle points x^-^x2^ along
W?(x2oio) and W^xljJ respectively. Let

S2 = {(720+i,yjfe): T2 crosses x = y}0+x at the point (7?0+i»y*)}-

As noted before, S2 = {(7t20+i,yk): 1<* < 2q +1} where p< q. Observe that (7?+!,y2) € S2 so
that y2 = yf for some 2p+ 1 < / < 2q + 1.Since there is a saddle connection joining x? .• and x? .•

" ° *ojo *i7i

the orbit through (7?0+i,ylp+i) meets x = 7?0+i at (7?0+i,y2) = (t^i,!/?). Let e2 = e-d({,0 and
consider the set B(42,e2) C B(^,ei).

Say it happens that / = 2q «+• 1. By a second appUcation of conjecture 3.9, there exists £3 €

£(£2,e2) with y2g+1 <yf9+1 and £3(7?0+i.y) is transversal to x= t?0+i for y€ [yi0+i.yf0+i]. Thus
^3(7?0+i. y) is transversal tox = yf0+l for y € fofp+i, y^q+x\. Let T3 be the portion ofthe orbit that
starts at (y?0+x, y%P+i) and ending at (TlUi.yfo+i) Let V=r3U({720+,} x [y\p+x,y\q+x\). There
are two possibilities as to whether x?^ lies in the interior or exterior of the region bounded by U.

Consider the case that xj^ Ues in the exterior of the region bounded by U. Note it happens
that Um^_O0^3((720+1,y29+1),t) € V whUe Um«^oo^3((720+1,y3o+1),t) g V. It thus follows that
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the orbit through (7?0+n y29+i) cannot join with (7?0+u yf9+i) to form a saddle connection between

In the case that x2^ Ues in the interior of the region bounded by V it is possible to observe

that Um,^-.oe^3((720+i,yi,+i),<) i u **ik limt-oo ^3((7?0+i.yf,+i).t) € V. The orbit through
(720+i»y2g+i) cannot join with Wo+nyf^+i) to form a saddle connection between ^(x3^) and

As the boundary of V is preserved under smaU perturbations in the defining constants of £3,

there exists 0 < e3 such that ofJ € B(£3, e3) thenthe vector field £3 does not have asaddle connection

joiningtt7(x\0,0) and W{(x\lh). The theoremis then true for ? = £3 and e = min{e3, e-d({3, £2)}.

Next, consider the possibiUty that / < 2q + 1. Consider the point (7?0+1, y^+i) and the orbit
through this point. Define the set

T2 = {(7?0+i,yfc): ^2((7?0+i.y2o+i).<*) n {x= 7?0+i} = (720+i.y*),2? +1 <M <tfc}.

Note that if (7,20+i,y*) € T2 then (7?0+i»y*) g S else (yf0+vyk) would not be the last point
of transversal intersection of T2 with x = 7?0+1. Hence the orbit through the point (if0+1,yfc) is
tangent to the Une x = T^+i.

If T2 = {} then (7?0+i,y2,+i) is the last point for which ^2((7?0+i»!^^.i).<) meets x =
7?0+i for 0 < t. As x20jQ is a nontransitional equUibrium point there exists 0 < €2q+x such that
^(^oio'^o+i) n {x = 7?0+i} = {}• It may be taken the e2,+i is so small that for £ € B(£2,e2)
it happens that B(x2oio,€2,+i) n {x = 7*20+1} = {}. There exist 0 < t2q+x such that if t2q+x < t
then 42((720+i,y!,+i),<) € B(x2oio,e2o+i). Let T2 be the orbit ^2((720+i,yi,+i),t) for times 0 <
*<<2o+i. Note that T2 isa compact set for which T2 n {x= 7,20+i} = (7?0+it y^+i)- By restricting
0 < e2 it is possible to ensure that for £ € B(£2,e2) it happens that x = y20+1 and F. only have
the point (7?0+i»y2«+i) iQ common. If the vector field £3 € B(£2,e2) has a saddle connection then
consider

s* = {(730+i. yk): T3 crosses x = yf0+x at the point (yf0+x, y*)}.

As before, S3 = {(7f0+i.y*) : 1<* < 2q' +1} where q< q1. Consider the point (7?0+n jj,) with
image (7,3+i, yf) for some 2q +1</ <2q' +1. If/ <2q' +1then the orbit T3 intersects x =7?o+1
at a point other that the image of (y20+x> y2q+x). Tnis is m contradiction to the construction of
B(£2,e2). Thus/ = 2g'+l.

If T2 ^ {} then consider the perturbation & of£2 asthe vector field with all the same defining

constants as £2 except
of = a\ - /to?0+u

<*2 = <*l - /*<*?o+12

7<o+i = 7i0+i — f*
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where 0 < n < nx = min{e2,e2/|o20+11|,e2/|a20+12|} is so small that F. has only the point

(7,20+i» y!iq) m common withthe Une x = 7?0+i. Thus T" = {}. If there isa value of no such that fio
has asaddle connection joining Wx"(x?fjo) and W{(xf^h) then let £3 = £*•• and e3 < e2 -d({", £2) be
so smaU that for any vector field £ € B({3, e3) it happens that T = {}. The proof can then proceed

with respect to showing that there is a subset B(£*,e4) C B((3,e3) such that if J € B({4,e4) then

£ does not have a saddle connection joining WxM(x\0ja) and W^x*,^). If it happens that for every

value of n the vector field £* does not have a saddle connection joining W"(xj^0) and W{(xf^)

then let £3 = £*»/2 and e3 < e2 - d(£3, $2) be so smaU that T = {} for vector fields £ € B(£3, e3).

If none of the vector fields in B((3, e3) has the required saddle connection then the proof is finished

else the proof can proceed with respect to showing that there is a subset B(£*, e4) C B((3, e3) such

that if £ € B(£4,e4) then (does not have a saddle connection joining Wf(5c,0,0) andW^x^/J.

Consider the case that the last point ofcrossingof the saddle connection F and the Une x = 7,-0+i

should not happen to be a point of transversal intersection. For sufficiently smaU 0 < \l < fiX < e

consider a perturbation of the original vector field ( to C where the latter vector field has all the

same defining constants as the former vector field except that

oj1 = ai - /Mk<0+ii

Of? = a2 - A«*jo+12 .

7f0+i = 7.0+1 - A*

It may be assumed that /i is chosen so smaUthat the last point of crossing of any saddle connection

with the line x = y?0+x is transversal. Say there exists a value of fto such that the vector field £**°

has a saddle connection whose last point of crossing with the Une x = 7&+i is transversal, then the

proof can proceed as before but within the set B(^°,e- d(C°,£)). If it should happen that for

aU values of ft the vector fields £*• do not have the required saddle connection then consider C>/2.

Choose 0 < eMl/2 so smaU that if J € B(£"»/2,eMl/2) and the vector field f has a saddle connection
then the last point of crossing of that saddle connection with the Une x = 7,-0+i is transversal. If

none of the vector fields in B^'^e^/a) have the required saddle connection then the proof is

completed, otherwise it reduces to the case at the beginning of the proof. I

Corollary 3.12. Let£ € G4 and0 < e. There exists ? and 0 < e' such that iff € B((', e>) C B(£,e)

then ( does not have any saddle connections between distinct saddle points.

Proof. For a given vector field £ let #(£) denote the number of saddle connections between distict

saddle points that £ posseses. For a subset S C G4 define N(S) = max{#(£) : £ € S}. Note that

since SCG4 and any f € G4 may have at most (n + l)(m + 1) real equUibrium points then £ may

have at most (n + l)(m + l)(2(n + l)(m + 1)- 1) saddle connections between distinct saddle points,

thus N(s) < (n + l)(m + l)(2(n + l)(m + 1-1).
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Without loss of generaUty it may be assumed that 0 < e is so smaU that B(£, e) C G4. If
K(B(t< c)) = 0 then the coroUary is true for ? ={ and e/ = e. Thus let $ € B(£, e) be a vector field
for which there is asaddle connection joining the points x«oio, xMl and joining Wfr (x,oio), W*x (xtlil)
with *},*J €{1,2}.

Consider B({J,e- d(£j,0) C B(£,e). By either theorem 3.8 or theorem 3.11 there exists

*l and 0 < ei such that if £ € B({l9€x) C B(#,e- d(&0) Q B(S,c) then £ does not have
a saddle connection through ^iojoixilh and joining W« (x^J.W'j(*;,*). Thus iV(B(^,ei)) <
(n+ l)(m + l)(2(n+ l)(m + 1) - 1) - 1. If N(B(?} cx)) = 0 then the coroUary is true with? = f1

and e' = ei. Otherwise let $ € B(£*,ei) be a vector field with a saddle connection through the

points x?aia, x23>3 and joining W«,(x27Ja), W^xfa).
As before, there is a set B(?,€2) C B(4g,e3 - dtf&t1)) C B(^,ei) C B({,e) such that if

£ € B(£2,e2) then the vector field J does not have a saddle connection through x^,*^, joining
WjfcUx.ojo), W£i(x*iiii)» nor does it have a saddle connection through the points 5c,ay3,xi3ja joining

W??(*«a). WJ,(^,). Thus, N(B(?, €2)) <(n +l)(m +l)(2(n +l)(m + 1) - 1) - 2.
Continuing in this manner there is a sequence of sets B(£*, e*) C ... C B(£*,ei) C B(£, e) such

that ifJ€ B(£*, e*) then J has at most (n +l)(m +l)(2(n +l)(m+1) - 1) - jfe saddle connections.
If N(B(£k, e*)) = 0 then the coroUary is true with £'= £* and e7 = e*. Since 0 < JV(B({*, e*)) <

(n + l)(m •+ l)(2(n + l)(m + 1) —1) —k then the number of terms in the sequence cannot exceed

k = (n + l)(m + l)(2(n + l)(m + 1) - 1). The sequence wiU thus terminate after a finite number

of terms in a set B(£*,e*) for which N(B(tkyCk)) = 0. The coroUary is then true for £' = £k and

«' = cjfc, I

The following is the main theorem of this paper as alluded to in the introduction. The proof is an

immediate consequence of corollaries 3.5 and 3.12.

Theorem 3.13. Let£ € GA and 0 < e. There exists ? and 0 < e' such that iff € B(£', e>) C B(£,e)

then £ does not have any saddle connections.
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

^W=H+[-Jl-i|-[-Jw-K]"-i'-[o]'«'—[i]-2'-
Figure 2. The equiUbriumpoint xy and the set A,j can both be perturbed so that the corresponding

images 3c,;- and Ay do not intersect, thus preserving the nontransitional nature of the original point

Xij and the Une x = 7,-. This means that the property of being a nontransitional point is persistent

under smaU perturbations of the originalvector field.

By limitingthe amountof perturbation ofthe equiUbrium pointand the set AtJ with constraints

on the defining constants of the vector field, the nontransitional nature of an equiUbrium point can

be preserved.

Figure 3. If it should happenthat the pointx(lj-, is a transitional equiUbrium point then a perturba

tion ofthe Une x = 7^ to x = 7?j changes the nature ofx,-^ to that ofa nontransitional equiUbrium

point. In contrast to nontransitional points, the transitional nature of a point is not necessarily pre

served under perturbation of the original vector field. Being transitional is not a persistent property

of equiUbrium points. Furthermore, since transitional pointscan always be perturbed to nontransi

tional points, the latter property is a denseness property. That is, being a nontransitional point is

generic property.

Given a vector field with transitional points, by carefully manipulating the defining constants

of the vector field, the formerly transitional equlibruium point can be made nontransitional. By

repeating the process to aU the equUibrium points results in a vector field that consists only of

nontransitional points. It shouldbe noted that in perturbing a point to be nontransitional that care

must be exercise not to create new transitional equUibrium points.

Figure 4. In this example, the equUibrium points xoo,xoi,Xio,xn have transversal intersection of

their lines, for sufficiently small perturbations to Xoo, xoi, xio, xxx the properly transversal nature of

the original vector field is stiU preserved. A properly transversal vector field is thus preserved under

smaU perturbations ofthe original vector field. Being properly transversal isa persistent property
of a vector field.

By contraints on the original defining constants of the vector field, the properly transversal
nature of the vector field is maintained.

Figure 5. The equiUbrium point x#_i has lines that do not meet transversaUy with the Unes of
x,_y_i and x,-+iy_i. By perturbing the equUibrium point Xij-X to x}j_lt the new equiUbrium point
has only transversal intersection of its lines with the points Xj_y_i and Xj+y.i. In contrast to
properly transversal vector fields, those which are not properly transversal can always be perturbed
to avector field that is properly transversal. Being properly transversal is thus a generic property.



A pair of lines which intersect along their entire lengths can be pertubed to intersect transver

sally. By perturbing all pairs ofUnes which do not intersect transversaUy to transversaUy intersecting
Unes, the original vector field becomes one which is properly transversal. It should be noted that

in perturbing a pair ofUnes to intersect transversaUy, that care must be taken so that previously
transversal intersection of Unes are stiU preserved.

Figure 6. The vector field £has ahomocUnic orbit atthe equiUbrium point xl0j0 joining theinvariant
manifolds W?xt0j0 and W{xioio. This is the assumed set-up of the vector field for the proof of the
theorem.

Figure 7. Because of the set formed by T1 and portions of the invariant manifolds WxuXi0j0 and

Wix<oio>tne vector field Z1 does not have a homocUnic orbit joining Wfxloj0 and W{xi0j0.
By perturbing the vector field so that the homocUnic orbit enters a region that it cannot

escape, the orignal homocUnic orbit has been destroyed. This process can be appUed repeatedly to

the original vector field to create a vector field without any homoclinic orbits. However, in repeated

applications of the process, case must be taken that new homocUnic orbits are not created.

Figure 8. The vector field £ has a type I saddle connection between the saddle points x,0,0 andx,,y,.

This saddle connection joins the invariant manifolds Wxu(xi0j0) and WfCx,-^,). This is the assumed

set-up of the vector field for the proof of the theorem.

Figure 9. The vector field £2, after perturbation of the vector field £ stiU has a saddle connection

joining the saddle points x20j0 and x2ljl along the invariant manifolds Wxu(x2oio) and W{(x2tji).
It is possible that after small perturbation of the vector field that a saddle connection stiU exists,

as iUustrated by this figure. By perturbing a second time it is possible to remove the possibility

of a saddle connection between the original manifolds by forcing the orbit to enter a region from

which it cannot escape nor form the connection between the original manifolds. This process can be

repeatedly appUedto ensure that the ensuing vector field does not have any type I saddle connections.

However care must be exercised, that in the process new saddle connections are not formed.

Figure 10. The vector field (3, being a perturbation of the original vector field (, does not have a

saddle connection joining the saddle points x2Wo and x2jl along the invariant manifolds Wf (x20 0)

and ^v*/(x2Ul). This is because-of theset formed by T3 and part of theUne x = yf . The orbit cannot

form a saddle connection along the given manifolds as it cannot escaped the formed region.

Figure 11. The vector field £ has a type II saddle connection between the saddle points x,0y0 and

x^y,. This saddle connection joins the invariant manifolds Wf (x,-0y0) and W{(xiljl). This is the

assumed set-up of the vector field for the proof of the theorem.

Figure 12. The vector field £2, after perturbation of the vector field £ stiU has a saddle connection

joining the saddle points x?ojo and xfljl along the invariant manifolds W^x,2^) and Wi (x2^).

2



It is possible that after small perturbation of the vector field that a saddle connection stiU exists,

as iUustrated by this figure. This is a situation analagous to that for a type I saddle connection of

persistence of a saddle connection under a particular choice of perturbation. By perturbing a second

time it is possible to remove the possibUity of a saddle connection between the original manifolds by

forcing the orbit to enter a region from which it cannot escape nor form the connection between the

original manifolds. This process can be repeatedly appUed to ensure that the ensuing vector field

does not have any type II saddle connections. However care must be exercised, that in the process

new saddle connections are not formed.

Figure 13. The vector field £3, being a perturbation of the original vector field (, does not have a

saddle connection joining the saddle points x3^ and x2^ along the invariant manifolds Wf(x3oio)
and Wi(*?iii)« Tnis is because ofthe set formed byr3 and part ofthe Une x = 7fo. UnUke the case
in figure 11, the equiUbrium point x2ojo may be perturbed to xf^ due to side effects of coroUary
3.9. The orbit cannot form a saddle connection along the given manifolds as it cannot escaped the

formed region.
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