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ABSTRACT

We have developed a method based on transmission matrices that allows us

to compute the emission spectrum of arbitrarily complicated semiconductor laser

structures below and above threshold. These can include active and passive

periodic or uniform sections. As examples, we compute the emission spectrum

of a normal Distributed Feedback (DFB) laser, a DFB laser with a X/4 phase

shifter, and a surface-emitting Distributed Bragg Reflector (DBR) laser. We also

discover some interesting features of the spontaneous emission in a periodic

waveguide. These can be used to measure the coupling coefficient in a DFB

laserwitha 7J4phaseshifter.
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1. Introduction

Distributed Feedback (DFB) lasers are now widely used in long-distance communication

systems because of the need for a single-mode operation and a high side-mode suppression ratio

(35 to 40 dB). To obtain high suppression ratio, it is important to know how the various parame

ters of the laser are going to influence the emission spectrum. Distributed Bragg Reflector (DBR)

laser structures are now widely studied to make frequency tunable lasers and are also used for

vertical-cavity surface-emitting lasers. In both these cases, it would be desirable to be able to

compute the emission spectrum.

In this paper, we will show how to compute the emission spectrum of these lasers without

having to resort to numerical integration as was the case in the paper by Soda and Imai [1].

Because we use a model that considers the laser as an amplifier driven by spontaneous emission,

our method is valid below, at and above threshold, as long as there is no spatial hole burning,

since we will assume a uniform gain in each section of the devices we consider.

We will start by showing in section 2 how we can extend the usual transmission matrices

theory to take into account sources that are in the structure we are analyzing. This allows us to

apply this theory to lasers, which was not possible with the usual form of the transmission

matrices technique. In section 3, we will give a brief summary of the theory of eigenmodes in a

periodic structure, which is an alternative to coupled mode theory. The advantages of of one

theory over the other have been the subject of some discussions [2,3]. In this paper, we will show

in section 4 that eigenmode theory has the advantage that it can be incorporated in a transmission

matrices formalism (and it will also allow us to avoid numerical integrations when we compute

the spectrum of a laser). In section 5, we compute the coupling of the spontaneous emission to



the eigenmodes. This then allows us to find how to compute the emission spectrum of a DFB

laser in section 6 and show the result on an example in section 7. We will then show (in section

8) how to extend the method to compute the spectrum of an arbitrary structure and we will illus

trate it with a DFB laser with a A/4 phaseshifter(in section 9). In section 10, we will briefly dis

cuss some features of the emission spectrum of a X/4 DFB laser that show the effect of the

periodicity of the waveguideon the spontaneous emission. Finally, in section 11, we will extend

the previous results to DBR lasers and take as an example a surface-emitting DBR laser.

2. Transmission matrices with sources

Usual transmission matrices (such as in Yariv and Yeh [4]), relate (see Fig. 1) the ampli

tudes of the waves going in and out of the structure at one end (AitB j), at position zlt to the

onesat the otherend (A2,B2), atposition z2. This canthenbe written as:

A21

B2 =T (1)

where T is in general a 2 x 2 complex matrix and is a function of wavelength. The matrix T is

always unimodular (i.e., its determinant is one).

Now, let us see how we can introduce a source at a position Z3between zx and z2. We can

always decompose (1) into two equations, one for the transmission from z\ to z3 (with a matrix

R) andone forthe transmission from z3to z2 (with amatrixL ). This gives us:

(2)

where LR =T and A$ and £3 are the amplitudes of two power orthogonal modes at z3 (not

necessarily the same modes as at Zj or z^). Now, if we have a source at z3, this source would

add to the amplitudes of the modes at that position, so that the first equation in (2) becomes:

•Ai Ai •A3 'A{

B2 =L B3
• •

and B3
to «•

=R
Bi

I J

A$

B2 =L (3)

whereSA and SB are the amplitudes added to theA and B modes, respectively. The minus sign

in front of SA is necessary because of the opposite direction of propagation of the A and B
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modes. Notice that this is perfectly general since L and R can represent any arbitrarily compli

cated structure.

This method is correct and allows us to get all the results derived below, but there is a much

more elegant way to express the same result This is by using 3x3 matrices, in the following

form:

A2

B2

1

Lu Ln 0 '1 0 -SA
L21 L22 0 0 1 SB

0 0 1 0 0 1

^11 ^12 0 *1

^21 ^22 0 Bi

0 0 1
*

1
• •

(4)

where the Lt;- and Ry are the elements ofthe L and R matrices defined above in(2). Wecan see

that this gives the same result as (3), but with the advantage that we do not have to introduce any

amplitudes for intermediate points. Also, this generalizes immediately to any number of sources

at any position. But we should be careful here because this formulation assumes that all the

sources are coherent. If they are not, we can still use this method for each source separately and

then combine the powers.

Now, by using either (2)-(3) or (4), we can relate the output field to the sources in the case

when there is no lightinjected intothe structure (i.e., B x=A 2=0). Remembering thatLR=Tt

we canthen solve for A j andB 2,which givesus:

A1 - f— [L11 $A ~L12 $BJ

82= f [(7,21^11~7,11^2l)^A+(7,U '̂22~7,21^12)«S!fiJ
(5)

As an example of this technique, let us take a Fabry-Perot type cavity (Fig. 2). The total

(3 x 3) transmission matrix TFP for the cavity with a source can be obtained as the produa of

five matrices: 7lt the matrix for transition between free space and thecavity modes 2Xzx\P l% the

propagation matrix from z j to z3; S, the source matrix atz3; P2»tne propagation matrix from z3

to z2; andT2, the transition matrix from cavity to free spacemodes. Thus:

Tpp ~ i2/>25 PjTj=Z/ S R

with L=T2P2 and R=PiTx (6)

(We will not distinguish between the 2 x 2 and 3 x 3 L and R matrices in the notation, since the
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3 x3 is trivially obtained from the 2x2 by adding a one on the diagonal and zeroes elsewhere.

The distinction will be clear from the context.)

The 2x2 matrices are, in this case:

r,=

1 R2~]
Ti Tt yw-«i> o *

*l Ni Pi- o e-M-**
Tx T,

te ^

• x R4-

T3 T3 VPrs 0 '
!= R3 N2

P2 = 0 e-J*\
T3 'T3

(7)

wherethe R; and7*,- are the reflection and transmission coefficients of the mirrors defined in Fig.

2 and

Nl=T1T2-R1R2

N2=T3TA^R3fi4

Using this with (5) and (6), we get then:

-;P(I-z3) SA+RAe'mL+2i)SB
A^TX

Bo=T<

l-RxR^e-i7^

l-^1/?4e-^L

(8)

(9)

We can easily see that this is the same result as the one obtained by summing the multiple

reflections. The advantage of this method is that it works also for much more complex structures.

And, as we will see below, it can also be used for Distributed FeedBack (DFB) and Distributed

Bragg Reflector (DBR) lasers.
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3. Eigenmode theory summary

There are two ways to use transmissionmatrices in the case of a periodic structure. One is

to use a matrix for each period andmultiply them all. The othermethod is to treat, forexample, a

normal DFB laser as the Fabry-Perot we saw in the previous section, but with the plane wave

modes inside the cavity replaced by the eigenmodes of the periodic structureand the correspond

ing modifications of the reflection and transmissioncoefficients and the propagation factors. We

will use this second method here, but first let us look at a quick summary of some results of

eigenmode theory that we will need (theirderivationcan be found in [51 and [6]).

If we have a one-dimensional even periodic structure of period A, the solution of the wave

equation around the Bragg wavelength is of the Floquet-Bloch type and can be written as:

£(zA)=A0[l+5(X)expO'2^z)]erz+50[l+j(X)exp(-y2Arflz)]e"rz

=A0[l+sf]en +B0[l+sb]e-rz (10)
where KB =p tc/A (p is the order of the Bragg reflection), and Aq and Bq are the amplitudes of a

forward andbackward propagating mode, respectively. Notice that the origin(z =0) must be at a

point of even symmetry. The other coefficients are defined by:

8=/^-p(A) (ll.a)

(G+yS^^te+yS^+K2 <H.b)

r=G+y8^-y^ (ll.c)

'"gJw,) (lld)
Xo=2neffA/p (ll.e)

where g and $(k) are the average amplitude gain and propagation constant in the periodic struc

ture, and Kis the coupling constant (= $p, the coefficient ofexp(yp 2n/Az ) in the fourier expan

sion of p(z)). Equation (ll.b) is the dispersion relation of the periodic structure. If only the

index of refraction is periodic, Kis real and, in the stop-band (151 <K), G is <0 if g <0 and G is

>0 if g >0. Equation (1 l.e) expresses the Bragg condition and gives the Bragg wavelength Xq as

a function ofthe effective refractive index (neff) and of the period A.



If the periodic structure does not have even symmetry and if the gain exhibits also some

periodicity, things get more complicated. These effects are discussed at some length in [6]. It

can also be shown that the choice of the root in (ll.b) is arbitrary and does not change any

measurable result (see [6]), and as a consequence, the designations forward and backward mode

are also arbitrary and used only as means to distinguish the two modes. Both the modes carry

power in both directions. We can usually choose the root of (ll.b) such that the "forward"

mode has a net power flow in the forward direction (take Is I < 1), but that is not necessary (see

[6]).

We can then find apropagation factor £>y that relates the amplitude of the forward wave at

a position Zj to the amplitude at z2 (z2<z{). We can find a similar propagation factor Db for

the backward wave.

1+j exp(/ 2KBz{)

l+s txp(-j2KBz2)Eb(z2) =Db,12Eb(z,)=T__£^_^eXp(TL) Eb(z,)

(12)

where L=Zi~z2. From the continuity of the tangential electric and magnetic fields, we can

compute the reflection and transmission coefficient between a uniform and a periodic regioa

Appendix A gives these coefficients (which are derived in [5] and [6]).

4. Simple DFB laser

We can now consider a simple DFB laser, which has exactly the same structure as the

Fabry-Perot laser in Fig. 2, except that the cavity is filled with a medium that is periodic in the z

direction instead of being uniform. To do a transmission matrices analysis of this DFB laser, we

need the same matrices as in (6)-(7). The matrices Tj and T2 are exactly the same as in (7),

except thatthe /fy *s and 7}*s are givenby Appendix A. The propagation matrices P j and P2 can

easily be found to be:

1
0

Pi =
731

0 '6,13
Pi =

1
0

D7.23

0 0*32
(13)
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Then, by thesame method as for theFabry-Perot [i.e., by using(5)], weget:

Ai= 1 pJn d [Df* Sa +d/*r*di>&Sb\ (14)

l-R\R^>f2\DbM L J7.21

where we used the fact [easily obtained from (12)1 that

DbM=Db.l3Db22
(15)

Now,onehas to be careful aboutthe meaning of SA andSB in this formula. They are the ampli

tude of the eigenmode of the periodic medium due to a source at position z3. This means that we

have to compute the coupling coefficient between the source and the eigenmodes before we can

compute the emission spectrum. This is what we are going to do in the next section. When that

is known, we will use the result to obtain a relation between the power emitted by the source and

the output power (as a function of wavelength). Then we will sum over the source position (i.e.,

integrate over z3), which we will be able to do analytically.

To conclude this section, let us notice that there are several other ways to obtain the result

(14). One of them is to sum the geometric series obtained by adding all the possible reflections,

as one would do with a normal Fabry-Perot laser. Another one is to add eigenmode amplitudes in

the cavity as unknowns and obtain a system of equations relating these to the sources and the out

put fields. This system can then be solved and gives (14) again. The transmission matrices

method is used here because its generalization is more straightforward than the other methods.

5. Extension of Petermann's method for spontaneous emission coupling

In this section, we will compute the coupling between a source in a periodic waveguide and

the two longitudinal eigenmodes corresponding to the fundamental transverse mode. The method

we use is derived from the method of Petermann [71, but we extend it to take into account the

periodicity of the waveguide. In this paper, we will treat only the simple case when the periodi

city has even symmetry, but the theory can easily be extended to any shape of grating (see [6]).

The wave equation for the waveguide without sources is of the form:
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V2£JC+co2p0E(jc,y^)£x=0 (16)

with e(jc,v ,z) periodic in the z direction. A good approximation to the solution can be written

as:

i=0 L J

where the F,-(xoO are the solutions of the transverse equation, the f, are the corresponding s

coefficients and theT; are the corresponding propagation constants. We will not assume that the

F;(x ,y) are normalized to one, but we will assume that they can be taken as independent of z.

They satisfy an orthogonality relation that we can write as:

JJFi(x,y)Fj(x,y)dx dy =tf28lV (18)
R2

where 8,-j is the Kronecker symbol and N is the (non-dimensional) normalization constant.

Notice that the F; 'shave dimensions of[m"1] and the D±l- *s (as well as Axand B£ have dimen

sions ofVolts.

As the source in the waveguide, we will take a classical dipole oscillating at a frequency CD,

situated at (xp ,yp ,zp) and oriented parallel tothe electric field (x direction). The wave equation

with the source term is then:

V2Ex +coV0e(*,y,z)Ex =/ co\1qJx

=7 ©Mo QId) 5(* -xp) 5(y -yp) b(z -zp) (19)

where/ and /^ are the current anddipole lengthof the source, respectively.

We will assume that the solution for z >zp can be written with the forward part of (17)

(i.e., in jD+1) and the solution for z <zp can be written with the backward part (in D_{).

Expressing the field continuity at zp gives us:

2 \D+i (1+Si ej2KBZp)er'Zt,-D_i (1+*,- e~j2KBZp)e~riZp] F,(jt,y)=0 (20)

And if we integrate equation (19) from z =zp -0 to z =zp +0,we obtain:

h£ \D+i(ri+<ri+j2KB)siei7KBZ>)eT'
i=0L



+D_i (Tf+Cr, +J2KB)Si e'^^e'^] F,(x,v) (21)
=/ ©Mo(/ W'S(* -V5^ -yp)

By using the orthogonality relation (18), wecan now look at the fundamental mode, which

is the one we are interested in. In the following, we will drop the i subscript, since we will

always be working with the fundamental mode (i = 0). Thus, multiplying (20) and (21) by

F0(x j) and integrating overx and y gives us,respectively:

D+[l+s ei2KBZp]eTZp -DM+s e~~J2KBZp]e~TZp =0 (22)

and

D+[T+(T+j2KB)s ej2KBZp]eTZp+D_[r+(r+j2KB)s e~j2KBZp]e'TZp

=J(0\io(Hd) P P
JjFo2 dx dy

By solving the system of equations (22) and (23), we obtain the coefficients:

2 jJF$ dx dy

(l+se*j2KBZp)e*rZp
T+(r+j2KB)sz+2s (T+jKB)cos(2KBzp)

Some signs in the result differ from the corresponding result in [6] because of an incorrect way

(in [6]) of setting up the continuity equations (20) and (21). (However, this had no influence on

the final result, the effect of the sign error disappears after integration). And if we take zp =z$,

we see [from (17)] that the sourceterms in (14) aregiven by:

SA=D+(l+sf3)erz>
SB=D_(l+sb3)e-Tz> (25)

where 5^3 means Sf calculated at z =z3and similarly for 5^,3 [Sf and fy were defined in(10)].

(23)

(24)
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6. Emission spectrum of a simple DFB laser

We are now nearly ready to compute the emission spectrum of a DFB laser. For simplicity,

we will compute the output power through one facet only (the power through the other one is

computed in the same way). So, we substitute (25) in the first equation of (14). By looking at

Appendix A, (14) and (25), we notice that most factors ofthe form (1 +Sf) and (1 +fy) actually

cancel each other. So, if we redefine the propagation factors and reflection and transmission

coefficients by omitting the factors inside squarebrackets in AppendixA, we can write:

gr^-Z3)(1^^3)+er(Zl^3"2Z2)^4(1^^3)]
T+(T+j2KB)s2+2s (T+jKB)cos(2KBz3)

Fo(x3,y3)

(26)

JjF02 dx dy

Now, in this model we will assume that the waveof amplitude A i has the sametransverse mode

profile as the field in the cavity (a reasonable approximation). We can then find the total output

power (for that facet) by integrating the Poynting vectorover the cross-section:

/\>«/=^r^ui,2JJ,Foi2<fr4y (27)
om 2g)Ho jj

where k0 is the free space wavevector amplitude (=2jtA). And the total power radiated by the

dipole is given [8] by:

_A/^ ©2« (7 lh (m
**-\^"isr~ (28)

where n is the refractive index of the active region.

We can now find the ratio between the power radiated by the dipole and the output power

(one facet) as:

T\(x3,y3lz3) = —— = —
Fj;,dip 2» ll-Jt,J?4ea*,-,'>la
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|er(z1-z,)(1+^3)+gr(z1+r3-2z2)/?4(1+^3)|2

\T+(T+j2KB)s2+2s (T+jKB)cos(2KBz3)\2
(29)

lF0{x3y3)\2 ff|w 2
X~~7T~; -\\\F0\*dxdy\jJF$dxdy\2jJ

But in general, the dipoles are randomly oriented. If we average over the orientation, we will get

a factorof 1/3. We also want to average over the distribution of dipoles in the transverse direc

tion. We will assume that the distribution of dipoles idip (xy) (which is adensity and has units

[m~3]) isconstant This isagood assumption if there isno longitudinal hole burning.

Let us define:

Tc _ j\\F0(xy)\2idip(xy)dxdy
dw& [jjidipix^dxdy] [jj\F0(xty)\2dxd^

where Tc is the energy confinement factor, d is the thickness of the waveguide and w^ is an

effective width for the waveguide. For a double heterostructure (i.e., an index-guided structure),

idip (x «y) is constant in the active region and zero elsewhere. Then w^ is the real width, since

Tc is defined by:

jj \F0(xy)\2dxdy
action

\\ \F0(xj)\2dxdy

For a gain-guided structure, (30) defines an effective width Wgff. We are also going to use the

Kp factor defined by Petermann [7]. It is a measure of the astigmatism of the wavefront in the

guide:

2

(32)
[fJlF0(sj)l2rix4y]

P~ \jJF§(Xty)dxdy\2

It is equal to one for index-guided structures (since the eigenmodes are then real).

We can now obtain the ratio between the output power and the power radiated by a dipole

(at z=z3\ averaged over the dipole orientations and position in the transverse direction:
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-, s 1 \]^x^az)idip{x^)dxdy
W3) =T Tr

5 )}idip<*>y)dx<iy

I\ff» IT, I2% *c*P

2n Wtfd ll-/?1/?4c2rLl2

ler(z1-z3)(1+^3Hgr(L+z3-z2)/g4(1+^3)|2

ir+(r+72^3)j2+2j (r+7/r5)cos(2/^z3)i2

where we usedL=Zi~z2. And the next step is to average over the positionin the cavity, i.e.,

z3. To do this averaging, we will proceed in two steps: first separate the slowly varying faaors

[exp(G z) and exp(y 8^-z)] from the rapidly varying factors [txp(jKB z)]. We notice then that

the slowly varying factor changevery little over one period A, so that we can average the rapidly

varying faaors over one period and then average the result over the length of the cavity. It has

been shown (in [6]) that an exaa analytic formula can be obtained for the average over one

period by using the change of variables u =exp(/2/T5 z), which gives an integral over the unit

circle in the complex u plane. The result of the integral is then obtained by the residue method.

But numerical examples show that we get the same result (with arelative error <10"3 for edge-

emitting lasers and <2 x 10~2 for surface-emitting lasers at all wavelengths of interest, in the

worst case: no gain or loss), if we omit the cosine term in the denominator of the last factor in

(33) before integrating over the period. We will use this approximation since the resulting

expression is much simpler. Thus, the average over one period gives us:

1At=±^ « TcRP lri'2 1
AI Z~2n Wtfd \l-RlR4e2rL\2 \r+(T+j2KB)sz\2

x[ (1+ Isl2) [«»«•>-**+ l^4l2e2G(£-2lH (34)

+4R^s)e2CL^[R4eJ2iK'-^y'1eJ2S'r'^\
Now, by integrating the previous result from z2 to z i anddividing by L, we get y, the average of

T| over the whole cavity:

Y= 2n Wtfd ll-/?1i?4c2rz'l2 \T+(T+j2KB)s2\2

(33)
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(i+i*i2)(* r1)a+i*4i2*2GL)

O-flr L I J

The dimensionless quantity Y that is given by (35) is a function of wavelength since s, T,

G, and other variables are functions of wavelength. Assuming that the sources areuniformly dis

tributed over the cavity (as is usually the case for spontaneous emission), we can now compute

the total output power (through one facet) if we know the total power emitted by the sources.

Explicitly, if r^(k) is the spontaneous emission rate spectral density per unit volume, the out-

pout power spectral density Pout (X) is given by:

Pout(K) =
he

X
[rrtodWfL^tfo

(35)

(36)

where h is Planck's constant, c the speed of light and d w^ L is the total active volume. In

edge-emitting lasers, one can usually assume that r~, is about constant in the spectral range of

interest or approximate it with a parabolic profile, but in surface-emitting devices, one has to use

a more realistic model (as was done in [6]). If the spontaneous emission is constant in the spec

tral range of interest, y(k) is thenproportional to theemission spectrum we werelooking for.

Notice that (35) also allows us to find the threshold condition. Indeed, we will be at thres

hold if y becomes infinite, i.e., if a factor in the denominator becomes zero. It is easy to see that

this means:

RxRAe2GL =\ (37)

which is exactly the expression for a Fabry-Perot cavity, except that we have an effective gain G

instead of the actual gain g. This is a complex equation for which the two unknowns are the

amplitude gain and wavelength at threshold. It can also be transformed into the usual expression

for the threshold of a DFB laser, using R xand /?4 from Appendix A (without the terms between

square brackets) and (11).
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7. Example of simple DFB laser

We will take as an example a quaternary DFB laser with a center wavelength of 1.528 |im,

rieff =3.2336 (which gives A=236.3 nm). The coupling coefficient Kwill be 100 cm"1. We
will assume a length L =300 \un and that we have antireflection coating, so that the result

becomes independent of z2 [since in that case R^txp{2jKBz2)=s and

RlR4=s2exp(2jKBL)] and all dependences are only onL=zx-z2. In that case, by solving

(37), we see that we have two degenerate modes, symmetrically located on each side of the Bragg

wavelength of 1.528 |lm, at X= 1.5296 |!m and 1.5264 Jim, with a threshold amplitude gainof

20.754 cm'1 (the slight height difference isdue to numerical imprecisions). The next two modes

are situated at 1.5254 |im and 1.5306 nm, with a threshold 44.26 cm'1. Figure 3 shows the

emission spectrum calculated with (36), assuming no spectral dependence of the gain and the

spontaneous emission rate. Three curves are shown, corresponding to three different values of

the amplitude gain.

If the facets are not anti-reflection coated, the spectrum is going to be a function of the

phase of the grating at the facets (i.e., a function of Zj and z2 and not only a function of L). As

an illustration, Figure4(a) shows the spectrum of the same laser,but withno coatings, withz2=0

(the facet is at a point of even symmetry of the grating). The lowest threshold mode is then at

1.5262 nm, with a threshold amplitude gain of10.635 cm'1. Figure 4(b) shows the spectrum of

the same device, but with z2= 100 nm. In that case, the main mode is at 1.5295 |im, with a thres

hold amplitude gain of8.896 cm'1. This illustrates once again the problem ofmode control for

simple DFB lasers: with anti-reflection coating, there are two degenerate modes and without

anti-reflection coating, the phase of the grating at the facet has to be controlled very accurately

(within 25 nm), which is nearly impossible. This is why people are using more complicated

structures such as DFB lasers with a X/4 phase shifter, which we will see howto analyze in the

next section.
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8. General DFB structures

To compute the emission spectrum ofa multisection DFB laser such astheDFB with a X/4

phase shifter is basically very simple. The calculation for each section is exactlythe same as for

the simple DFB laser, except that Tx and T2 (the two transmission matrices at each end of the

periodic section) are replaced withmorecomplicated matrices accounting for the rest of the struc

ture.

To make it easier to perform the summationover all the sources in the same periodic sec

tion, let us reformulate (4). Assume that there are n periodic sections in which there is spontane

ous emission. We must use a different coordinate system in each section (since the origin has to

be at apoint ofeven symmetry). Each section will go from z^} to z^. For asource in section

i at z '̂ \ we can write:

(38)

A 2 \L& L® o]
1 »A

'*& *# 0
B2 = Lff L& 0 0 DgbDftfP R$ *$ 0 *1

1
•

0 0 1 0 0 1

b m

0 0 1
b -

1

where L(l> and R^ are now the transmission matrices for everything to the left and the right of

section i, respectively (but without the periodic section itself). This allows us to rewrite (5) as:

A,=
1

11

£,=
n

SPL$f^-L$Db%sP

SP(T2lL$ -r„Lff)^-+tJuLff -r21L{2>)^2 sP

(39)

where T is independent of i, since it represents the whole structure.

Now, by going through the same sequence of steps as in section 4, we will be able to obtain

'/^(X), the power coupling factor for section (i). And the total output power spectral density will

then be given by:

i=l

(40)
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where PQ\X) is the total spontaneous emission spectral power density for section i.

To compute */'\ we use the same assumptions as in section 4: all the (1 +Sf) and (1 +sb)
faaors (the ones between square brackets in Appendix A) have already been cancelled, the

averaging over z^ is done first by averaging over aperiod, then over the section's length L*\

We get then:

-4Re(,<0)i!*^Re[(L1(i))- Lff e^V™']

where the asterisk indicates the complex conjugate.

And we can readily see that the threshold condition for such a structure is given by:

rn=0 (42)

which gives (37) for the simple DFB laser.

9. Quarter-wavelength phase-shifted DFB

As a simple example of a more complicated DFB structure, let us look at a DFB laser with a

X/4phase-shifter in the middle. We will assume thatthe two sections of grating are identical and

have the same gain, so that K, s and T are the same. Figure 5 shows the structure anddefines the

reflection and transmission coefficients (which are given in Appendix B). Notice thatR$,R& T5

andT6 are for the whole phase shifter section (see AppendixB and [6]). The phase shifter hasa

length LP =X/4rigff.

For simplicity, we will neglect the spontaneous emission from the phase-shifter region,

since it is very small. (If we want to take that into account, we can use the DBR method

explained in a following section and add the contribution to the spectrum calculated here.) Figure

5 shows the coordinate system in each section. We will choose the origins on the edges of the
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active region, i.e., zP =0and z|2* =0. (This choice is correct if the grating is made the way it

is shown in Figure 5.)

For the spectrum calculation, we do not need all the elements of the transmission matrices.

We need only:

T - Dill —11 T<r3T<ppDp

13 13

, m_ N ,(2) _RtN+R££iPPDF>_

where:

N^l-R^p^D^
D=(l-R4R5D}»Db<1>)(l-R1R6D}2ty2>)-Rfi (44)

From this, we see immediately that the thresholdcondition (42) is here D =0, which means

(after cancellation of the factors between square brackets in Appendix B):

a-R4R5e2rLWH\-RlR6e2rLa')-RlR4T5T6e2r<f-m+La>=0 (45)

And, using (40) and (41) with (43), we can now compute the emission spectrum.

As an example, let us take the same device as in section 7 (with anti-reflection coating), but

with a phase shifter of length A/2 (=118.1 nm) in the middle of the device. By solving (45), we

find that the main mode is now at the Bragg wavelength 1.528 |im, with a threshold amplitude

gain of 10.93 cm'1. The two next modes are at 1.5258 nm and 1.5302 |im, with athreshold

amplitude gain of 34.63 cm'1. We see that the degeneracy of the lasing mode is lifted and we

have a good control on the lasing frequency.

In Figure 6, we show the calculated spectrum for two values of the amplitude gain (5 and

10.5 cm'1). Notice that the two peaks on either side ofthe main mode do not correspond to the

next modes (we will discuss this in the next section). The other bumps in the spectrum do

correspond to longitudinal modes. They aremuch closer to one another than to the central mode

because the variation of the phase of the reflectivity of the periodic sections with wavelength is
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much faster outside the stop-band.

10. Spontaneous emission in a periodic waveguide

In Figure 6 we notice something strange: the two peaks adjacent to the main mode do not

increase but decrease with increasing gain! This is because they do not correspondto any mode

that is below threshold as the other peaks in the spectrumdo, but aredue to the way the spontane

ous emission couples to the periodic waveguide. Indeed, if we trace where these peaks come

from, we see that they come from the following factor 5 in (35) and (41):

S = rr (46)
\T+(T+j2KB)s2\2

and that factor arose in section 5, when we computed the coupling to the waveguide. Figure 7

shows S for the same device and two same values ofthe amplitude gain as in Figure 6.

To understand physically why this is happening, we must remember that cavities can

influence spontaneous emission because they modify the spectral density of electromagnetic

modes available [6]. Indeed, Fermi's Golden Rule:

Wfi =2£\<f\H'\i>\2pf (47)

says that the transition rate is proportional to pf is the density of final states (//' is the interaction

Hamiltonian). In this case, what we have is not really a change of the total spontaneous emission

rate, but a modification of the spectral and spatial distribution of the modes and thus of the spon

taneous photons (as in [9,10]). The mode distribution in the case of an infinite space periodic in

one dimension was worked out in [6]. (And the radiation pattern of a dipole in such a space was

calculated in [11].) It turns out that the spontaneous emission is enhanced at the edges of the

stop-band and decreased in the stop-band. From (11) and [5], we can see that this means that

these spontaneous emission peaks will be situated at:

2lZneff

This can also be seen from (46), since the denominator has to be close to zero for S to be large

and that means s2close to one. From (11), we can see that this happens only at the edges ofthe
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stop-band (i.e., 8=±K).

This prediction of thebehavior of the spectrum of a X/4 phase shifted DFB laser should be

verified experimentally by measuring the evolution of the emission spectrum below threshold as

the pump current is changed. In a normal DFB laser, this would be much more difficult to

observe since the position of the modes is very close to the these spontaneous emission peaks.

Nevertheless, in Figure3 and4, we can see some smallbumps due to these spontaneousemission

peaks. The main feature that reveals their nature is the fact that they decrease with increasing

gain, relatively to the other peaks.

Notice that if this can be observed in real devices, it would give us the first practical mean

to measure directly the coupling coefficient K in a DFB laser,by using (48).

If one wants to use the usual transmissionmatrix method (i.e., one matrix for each layer and

each boundary [4]) to check the results obtained here for a layered medium, one should be very

careful with how the coupling of the source with the structure is done. The naive approach of

assuming that the source emits plane waves of the form exp(±ypz) is false because these plane

waves do not satisfy the differential equation [such as (19)]. The cornea way to do it is similarto

what we did in (20)-(22): use the two linearly independent solutions of the differential equation

(which are each a combination of plane waves)andexpressthe continuity of the fields. Then the

result can be again decomposed in plane waves for use in the transmission matrices.

11. DBR lasers

Upto now,we have considered onlythecase when the spontaneous emission takes place in

a periodic region. But in DBR lasers, the active region is uniform and there is no spontaneous

emission in the periodic regions that act as mirrors. Also, in multisection lasers, there are often

uniform active regions. So, we should consider this case also.

Actually, all we haveto do is take the result we got for the periodic case and eliminate the

periodicity, i.e., take K=0. This gives us then s =0and T= (g -j p) = (g -j neff kQ). We get
then, instead of (41):

7 2««> wefdV \Tn\2 lg«>-y p«>l2 m
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x-^jj-f IL,<\> iHl-e-W)* Itff \2(e^nLm-l)}
This is a slight approximation, since we neglect some interference terms. But they are of order

(g /p) =10"3 compared to the terms in (49).

If we have a simple DBR laser, this is the only contributionto the spectrum. If the uniform

section is a partof a more complicated structure, we can then use this in (40). Actually, this for

mula is also valid for a Fabry-Perot laser, ifwe use the correcttransmission matrix elements.

As an example of DBR laser, let us take a typical surface-emitting structure such asthe one

shown in Figure 8 (similar to the one in [12]). It is a AlGaAs/GaAs device with a GaAs active

region that has alength Lp=2\im(n= 3.620). The top and bottom mirrors have 25 and 42 pairs

of layers, respectively. Each pair consists of aAl0Q5GaQ9^As layer (n= 3.565, 61.7 nm thick)

and a Al0A5Ga055As layer («= 3.292, 66.8 nm thick). The substrate is also GaAs (n= 3.620).

All refractive indices areat the center wavelength of 880 nm (these were computed using a model

developed in [6]). A correct complete solution would involve taking into account the change of

refractive index with wavelengthandthe losses in the minors (this was done in [6]), but here, for

simplicity, we will neglect the losses and assume a constant refractive index. By computing the

first Fourier coefficients, we find that n^ =3.4231 and K= 6192.5 cm'1.

Again, the location of the origin and the boundaries is important because the dielectric

reflections at the ends of the mirrors will be in phase or out of phase with the Bragg reflections

depending on the phase of the grating. In Figure 8, we take z j= 30.85 nm and z2=-3181.65 nm

(but any translation by a multiple of A=128.5 nm is also good). And we also take z\= 30.85

nm and z '2= -5366.15 nm. This gives usLx=5.397 nm for thebottom mirror and L2=3.2125

Jim for the top mirror. The reflection and transmission coefficients in Figure 8 are forthe whole

mirrors and are given in Appendix C.

The matrix elements we need are:

rn~z>' r„~ d'

where:

*- (50)

D'=l-R\R'AP2
p

(51)^P=exp[(gp-;pp)Lp]
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where gp and fip are the gain and propagation constant in the active region. The threshold condi

tion is D'=0, which means:

R\R\tasp[vgp -7Pp)^p) =1 (52)
Notice that this is nearly identical to a Fabry-Perot threshold condition. The only difference is

thathere, the reflection coefficients havea phase thatdepends on wavelength.

With an active region length of 2 |im, we find that themain modeis at 878.22 nm with a

threshold (amplitude) gain of95.95 cm'1. The next modes are at 854.34 nm (847 cm'1) and

905.59 nm (535.9 cm'1). They are not placed symmetrically with respea to the main mode

because the mirrors arenot symmetrical, due to their different thicknesses and the presence of the

dielectric reflection at the air interface on top.

Because of the large difference in threshold gains, we see that this device should be single

longitudinal mode. A rough estimate of the threshold current can be made, assuming a device 10

Urn in diameter. The carrier density for obtaining an intensity gain of 190 cm"1 at 878 nm can

be estimated at about 1.3 x 1018 cm'3 (using amodel ofthe gain described inAppendix A of [6],

for an-type active region doped to 1018 cm'3). Ifwe assume acarrier lifetime of4ns, this gives

us a threshold current of 8.2 mA, which is a reasonable number.

In Figure 9, we have plotted the calculatedspectrum for this DBR surface-emitting laser for

two values of the amplitude gain (10 and 95 cm'1). This calculation assumed that the gain was

the same at all wavelengths, which is not the case in practice. But it gives nevertheless a good

idea of what the spectrum is going to look like. One spectrum was shifted downwards because

the two spectra were nearly exactly on top of each other, except for the main mode (this is

becausewe did not include an increase of the spontaneous emission as the gain increases). There

is no spontaneous emission peaks in this case since the emission takes place in a uniform

waveguide, not in a periodic one. The large separation between the main modes and the side

modes is due to the large coupling coefficient K of the mirrors in this case. Notice that the main

mode position depends quite critically on the active region length Lp [as can beseen from (51)].

This effect and the effect of layer thickness variations were studied in detail in [13].
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12. Conclusion

In this paper, we developed a general method for calculating the emission spectrum of

lasers (mainly semiconductor lasers), usingtransmission matrices. We showedhow that method

could be applied to usual Fabry-Perot lasers andnormal DFB lasers. Then, we developed a gen

eral formalism for multi-section DFB lasers and applied it to a DFB laser with a X/4 phase

shifter. In doing that, we discovered some interesting features of the spontaneous emission in a

periodic waveguide that should be investigated further. If confirmed by experiment, this would

give for the first time a direct way to measurethe coupling coefficient k in a DFB laser. The pre

vious work by Soda and Imai [1] did not show this charaaeristic probably because of their

incorrect treatment of the coupling of the source to the modes and the neglect of interference

terms in their calculations.

Next, we showed how to extend the results to structures with uniform sections and to DBR

lasers. As an example, we calculated the emission spectrum of a surface-emitting DBR laser.

We pointed out that the major differences between DBR and Fabry-Perot lasers are due mainly to

the wavelength dependence of the phase of the reflections for DBR mirrors.
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Appendix A

The reflection and transmission coefficients in Figure 2 are:

r~*fi
l~rsbl

l+sb] Sbi-r
*l =

r! =(l+r)

1+*/i

l~sfisbi
(l-rsbl)

Ri=

1+5
'/U

l-rsM L J

and

*3 =
Sro-r>fi

1-r Sf2
Ra =

r~Sb2

1-r Sf2

l+s/2

1+^2

T>=737^[H T*=«+r) I~sb2sf2
Sf21-r 1+^2

(A.1)

(A.2)

where r is the reflection coefficient due to the change in propagation constant (between the guide

and air in this case):

KB~k0 neff-l
r = -— -— = —J-

KB+k0 nejf + l
(A.3)

The factors inside square brackets always cancel each other when combined in formulas and can

be omitted.
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Appendix B

In Figure 5, Rt and 7$ are the same as in Appendix A for i = 1,2,3,4, except that Z\ (for

I=1,2) is replaced by z f2) and z2 (for i =3,4) is replaced by z<p. The reflection and transmis

sion coefficients for the phase shifter are given by:

PmSfi —,R _ FPSf2-sfl
1-Pp2sblsf2

2

1+**
1+5VI

1+5PpSbl~sb2
Ka— r1-Pp2sblsf2 [ l+sb2

f/2

1+5r/2
•r5=T~r5—:—i-pp2sblsf2 [1+5/i.

Pp(l-Sf2Sb2)
l-P2SblSf2 [ l+^2_T6 =

l+5i;

(B.l)

where the subscript 1means z f** and 2means z|2^ (both are zero in this case, so we have actu

ally Sfi=sbi=Sf2=sb2=s). And Pp isthe propagation faaor inthe phase-shifter

^=exp[(g-7Pp)Lj (B.2)
where g and $p are the gain and propagation constant, respectively. The formulas (B.l)

easily be established by usingthe formulas of Appendix A (with r =0) and the method of multi

pie reflection [6]. Again, the factors inside square bracketswill cancel and canbe omitted.

can
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Appendix C

For the spectrum and threshold calculation of the DBR of Figure 8, we need only three

coefficients. The first two are:

t3tarxd}2)d£2)
\-RxRfijpDJp

R\=R3+ ' « A J^°^ (CI)

r,=l~ l-RxRADf2>>D£(2)

where R lt Tx are the same as in Appendix A and R3,RA, T3,TA are also the same, except that r

is replaced by ra given by:

n-flp — n,neff — nara= eff ^ (C.2)

where na is the refractive index of the active region. Again, the factors inside square brackets

cancel out.

The third coefficient we need is:

r1r2/?4p/1)Di>(1)
R A"-R7^ 7T\—777 (C.3)4 2 1-RxR^D^

where R4 is the same as in Appendix A, butwith z '2 replacing z2 and Rx,R2t Tx, T2 are also

the same, except for r replaced by ra and z2 replaced by z'2. Once more, the factors between

square brackets cancel out
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Figure Captions

Fig. 1: Model for the transmission matrices.

Fig. 2 : Model of the Fabry-Perot cavity and definition of the reflection and transmission

coefficients.

Hg. 3 : Emission spectrum of a DFB laser with anti-reflection coating, center wavelength in

1.528 \lm, ntf =3.2336,10= 100 cm'1, L= 300 \im for three different gains. Threshold

gain (amplitude) is20.754 cm'1.

Fig. 4 : Emission spectrum ofthe same device as in Fig. 3, but without anti-reflectioncoating, (a)

z2=0, threshold gain (amplitude) =10.635 cm'1, (b) z2= 100 nm, threshold gain (ampli

tude) =8.896 cm'1.

Fig. 5 : Model for the DFB laser with a X/4 phase shifter in the middle. This figure defines the

reflection and transmission coefficients.

Fig. 6 : Emission spectrum of a DFB laser with a X/4 phase shifter. The device is the same asin

Fig. 3, except for the phase shifter. Threshold gain (amplitude) is 10.927 cm'1.

Fig. 7 : S faaor of equation (46), forthe device of Fig. 6. This is the factor giving the spontane

ous emission peaks.

Fig. 8 : Model for a vertical-cavity surface-emitting DBR laser.

Fig. 9 : Emission spectrum for the device of Fig. 8. Center wavelength is 880 nm, K= 6192.5

cm'1 and the active region is 2 Jim. The main mode is at 878.2 nm, with athreshold gain

(amplitude) = 95.95 cm'1. The two curves were shifted vertically to distinguish them

better.
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