
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A CONNECTION BETWEEN FUZZY NUMBERS

AND RANDOM INTERVALS

by

Maria Angeles Gil

Memorandum No. UCB/ERL M90/74

22 August 1990



A CONNECTION BETWEEN FUZZY NUMBERS

AND RANDOM INTERVALS

by

Maria Angeles Gil

Memorandum No. UCB/ERL M90/74

22 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A CONNECTION BETWEEN FUZZY NUMBERS

AND RANDOM INTERVALS

by

Maria Angeles Gil

Memorandum No. UCB/ERL M90/74

22 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ARTICLE TITLE : A CONNECTION BETWEEN FUZZY NUMBERS

AND RANDOM INTERVALS *

AUTHOR'S NAME : Maria Angeles GIL **.

AFFILIATION : Departmentof Electrical Engineering andComputer Sciences

University of California

Berkeley, CA 94720

* This research is supported in part by NASA Grant NCC 2-275, California MICRO Grant 88-094, LLNL Grant
442433-26705, NSF PYI GrantDMC-84511622 anda Grant from the Spanish DGICYT. Their financial support
is gratefully acknowledged.

** Visiting from the Departmentof Mathematics, University of Oviedo, 33071 Oviedo, SPAIN



A CONNECTION BETWEEN FUZZY NUMBERS

AND RANDOM INTERVALS

MARIA ANGELES GIL

DepartmentofElectricalEngineering andComputer Sciences, University ofCalifornia,
Berkeley, CA 94720

Abstract

Some connections between Fuzzy Set Theory and Probability Theory have been developed in the literature (cf.
Goodman, Nguyen, Wang & Sanchez, Wang, and others). In this way, Goodman proved that any random set
determines a naturally corresponding fuzzy set, although the converse of this result is not immediate.

In this paper we will analyze the converse result when dealing with fuzzy numbers. Thus, we will verify
that for most of fuzzy numbers we can easily and intuitively associate random intervals such that the the
membership degree of any element to a given fuzzy number coincides numerically with the probability of that
element belonging to the associated random interval. We will finally discuss some of the advantages and
inconveniences of that special connection.

1. Introduction

The problem of connecting exhaustively Fuzzy Sets and Probability Theories has been

studied for many authors. In particular, Goodman(1976,1982), Nguyen (1979), Wang (1982),

Wang and Sanchez (1982), and others, have tried to establish such a connection in terms of the

concepts of fuzzy sets and random sets, where if X is agiven (referential) space, then

DEFINITION 1.1. A fuzzy set A of X is characterized by amembership function

\M X -> [0,1]

where \l#(x) is the degree to which x belongs to A (or degree to which x agrees or is

compatible with A).

If (Q,^,P) isaprobability space, and X isasubset of the euclidean space IR, then

DEFINITION 1.2. A random set S of X associated with (ft^P) isa function

S: Q -» ^(X)

where the image of S is contained in #(X) =collection of all nonempty compact subsets of

X, and satisfying the following measurability condition: G§ =graph of S={(co,x) € QxXI
xe S(oo)} € CxjB^ (where J^x isthe smallest Borel a-field on X).

In some of his studies, Goodman proved that for any random set there is an immediate

fuzzy set satisfying that



P(x e S^) =H^(x), for all x € X (1)

Goodman also formulated the converse result: Given a fuzzy set A of X, does there

exist arandom set S^ such that (1) is true?. Goodman answered his question in affirmative.

Foreach of the fuzzy sets he constructed the class of all random sets associated with it through

(1). Nevertheless, Goodman's answer is general and, due to this generality, it is not immediate

and easy to interpret and discuss the relationships between each fuzzy set and its associated

random sets. Forthis reason, the aim of this paper is to analyzea slightly less general result,but

more intuitive, immediate and easier to interpret and discuss.

The basicidea for this analysis canbe illustrated by meansof the example below:

Example 1.1. Let A be the class of"tafC people. This class if often regarded as a fuzzy

set of the space X =IR characterized byamembership function \l%, say that in Figure 1
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Fig. 1.Membership function of the fuzzy set^ = classof Tta/P'people.

However, this class could alternatively be identified with the random set S% of X, S%

= [Z,+ oo), where Z is arandom variable uniformly distributed on [66,74]. That is, theevent

"Being taff' could bedescribed by means of an interval, [Z,+ ©°) (what means that a person is

considered as "Being taCP' whenever his height is higher or equal to Z), but where Z is not a

fixed value, butarandom one, and having auniform distribution on [66,74]. In thiscase, the

P(S;a contains x)=P(x e S^) =P(Z<x)=|X^(x), for all x € X .



2. Particularizing Goodman's question

The purpose of this paper is to formalize this last idea by particularizing Goodman's

question to the case in whichwe deal with fuzzy numbers and random intervals. Thus, according

to a general definition, we have

DEFINITION 2.1. A fuzzy number A is a fuzzy set of X = IR characterized by a

membershipfunction JX^: ]R —> [0,1] such that

i) \i<% is piecewise continuous.

ii) There exist a^, b^, C^, d^ e IR with a^ <b^ <C% <d^, and

* ^Uq(x) =0 for all x e (-<»,a^] U [d^-H**),

* \L% is non-decreasing on [a^b^] and non-increasing on [c^,(Lq]

* Ma(x)= 1 for all x€ [b^,C^].

As we have previously commented, thevalue |X^(x) is interpreted in thissituation as the

degree of compatibility of x with X. Thus, if ^ is the class of "tatt" people and x = 68

inches, then Figure 1indicates that |J^(x) = 0.25, what means that 0.25 is the degree with

whichaheightequal to 68 inches agrees with the property of being"tafC.

On the other hand,

DEFINITION 2.2. A random interval 3 of X = IR associated with the probability

space (Q,^,P) is a random setof IR associated withthat probability space such that it may

be described by means of two random variables Y and Z (associated with the same space) so

that 3 (©) = [Y(co),Z(co)], for all co € Q, and it will be denoted by 3 = [Y,Z].

In this situation thevalue P(x € 3) admits two possible interpretations: the objective

one and the subjective one. According to the first one, P(x € 3) is the relative frequency of

occurrence of the event « x e 3 » to be expected in a long-run. Thus, if in Example 1.1

3 =class of "taCC people and x = 68 inches, the fact that P(x € 3) =0.25 means that if

N people were requested to indicate if a person having 68 inches of height is "faff, then

0.25N of the inquired people would be expected to answer YES. Nevertheless, according to

the subjective interpretation, P(x € 3) is the degree of belief that « x e 3 ». Thus, if in

Example 1.1 3 =class of "ta(C people and x = 68 inches, the fact that P(x 6 3) =0.25



means that 0.25 is the quantified individual's judgement about the fact that aperson having 68

inches of heightwill be classified as"faff (or degree of belief thatthe next person requested will

answer YES to « x e 3 », that is, will classify as "toff a person having 68 inches of

height).

The question we are now interested in is the following one: Given a fuzzy number ^,

does there exist arandom interval 3% such that P(x G3^) =|X^(x), for all x € IR ?.

To guarantee that the numerical coincidence (2) is true we will introduce a general

condition for the fuzzy numbers we will considerin this paper. Later, under such a condition, we

will prove that for any fuzzy number thereexists a randominterval satisfying (2).

3. Justifying the relationship between

fuzzy numbers and random intervals

The result we aregoing to prove entails that the class of all random sets associatedwith a

given fuzzy number, always contains at least a random interval. In addition, the justification for

this result is developed in an intuitive way providing us with an easy interpretation.

THEOREM 3.1. Given a fuzzy number .2, such that supp(2) ={x G IR I \i^(x) >

0} = [a^dLg], and satisfying that

* |X^ iscontinuous from the right at every xG [a^,b^],

* li^ is continuous from the left at every xG [c^,d^].

there exists arandom interval 3^ such that

P(x G 3^) =^(x), for all x G IR (2).

Proof To justify intuitively the result above we are going to distinguish two possible

situations: when [1% is symmetric with respect tothe middle point of SUppC^), and when \L%

is non-symmetric.

i)When (I^ is symmetric (see Figure 2) with respect tothe middle point of supp(#),

[b^+C^]/2, then the random interval

%»= [ [Vc„]/2 - Z, [Vc;,]/2 + Z ]
where Z isarandom variable whose distribution function F35 =membership function of the



fuzzy set (< 7?f - [b^+C^]/2 (with (< 7if =complement of the fuzzy number "lower than

or equal to A") (see Figure 3), is a solution of (2).
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Hg. 2. Membership function of the symmetric fuzzy number A.
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Fig. 3. Distribution function of therandom variable Z.

ii) When Jl^ is non-symmetric (see Figure 4) with respect to the middle point of

SUpp(^), [b^+C^]/2, then the random interval



3„=[Y,Z]
where Y isarandom variable whose distribution function Fy =membership function of the

fuzzy set (> A) (see Figure 5) (with (> A) =fuzzy number "higher than orequal to ^") , Z

is arandom variable whose distribution function F^ =membership function of the fuzzy set

(<TCf (see Figure 6), and Y and Z are independent, is a solution of (2).
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Fig.4. Membership function of the non-symmetric fuzzy number 7(.
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Fig. 5. Distribution function of the randomvariable Y.



Fig.6. Distribution function of the random variable Z.
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REMARK 3.1.The solution given for thenon-symmetric case, could also be applied for

the symmetric case, but the first one describedmore intuitively the solution.

4. SOME ILLUSTRATIVE EXAMPLES

The situation in Example 1.1 illustrates the result above established. We now consider

more examples illustrating the solutions stated in the proof of Theorem 3.1, and for which the

interpretation of the associated randomintervals is easy and immediate.

Example 3.1. Let 7i be the class of "very young" people. If this class is regarded as a

fuzzy number characterized by the membership function |lg in Figure 7, then the associated

random interval according to the proof ofTheorem 3.1 is 3^ =[Y,Z] where Y is a

random variable degenerated in 0, and Z is a random variable having a distribution

characterized by the triangular density function given by

' 0.16(z-10) if ze (10,12.5]

f(z) = « 0.16(15-z) if z € (12.5,15)

„ 0 otherwise

(what means that a person is considered as"being very young" whenever his ageis loweror equal

to the random value Z).
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Fig.7. Membership function of the fuzzy number ^ = classof "very young" people.

Example 32. Let A be the proposition "approximatefy 250 incites". If this proposition is

regarded as a fuzzy number characterized by the membership function (0^ in Figure 8, then the

associated random interval according to the proof ofTheorem 3.1 is 3% =[ 250 —Z , 250

+ Z] where Z isarandom variable having auniform distribution in [0,25] (what means that

arealnumber is considered as"Being approximate^ 250 inches" whenever it is in a neighborhood

centered at 250, and whose radium Z is random).

A Ha
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Fig. 8. Membership function of the fuzzy number A = napproKimatefy 250incAes".



Example 3.3. Let ft be the class of "modcratety expensive" restaurants (assumed defined

on the basis of the average per-person dinner cost). If this class is regarded as a fuzzy number

characterized by the membership function [1% in Figure 9, then the associated random interval

according to the proof of Theorem 3.1 is 3^ =[Y,Z] where Y is arandom variable

umformly distributed in [5,10], Z is arandom variable uniformly distributed in [20,30], and

Y and Z are independent (what means that a restaurant is considered as "Being moderateCy

expensive" whenever its average per-person dinner cost is Y to Z, Y and Z being random

values).

Fig.9. Membership function of the fuzzy number X =nmoderatefyexpensive".

x

($)

5. Advantages and inconveniences in treating

fuzzy numbers as random intervals

Although we have formally established a relationship between fuzzy numbers and random

intervals, it is worth briefly analyzing the advantages and inconveniences that could arise in

practice if we replace fuzzy numbers by the associatedrandom intervals.

The main advantage we can found in this replacement is the objectivity ofrandom intervals

in comparison with fuzzy numbers, when using objective probabilities to compute P(x e

3*>-
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On the otherhand,it is possibleto find several inconveniences in this replacement Firstly,

the employment of objective probabilities to compute P(x E 3^j) (when available) usually

entails a cost (for inquiries, observations, etc.). However, the maininconvenience is thatrelated

to operations. Thus, operations between fuzzy numbers, when based on Zadeh's extension

principle, admit a general expression that is often very operative. On the contrary, operations

between randomintervals are frequently much more complex than those between fuzzy numbers,

they additionally require to explicit a dependence relation between the random variables

representing the upper and lower extremesof the intervals, and there is not a general formula

expressing the distribution of the randomvariables obtained through the operations in terms of

the distributions of the random variablesinvolved in those operations. This last comment is now

illustrated through a very simple example:

Example 5.1. Let ft and 3 be the classes of "very cheap" and "cheap" restaurants

(assumed defined on the basis of the average per-person dinner cost). If these classes are

regarded as the fuzzy numbers characterized by the membership functions \l% and \l% in

Figure 10,

ft =very cheap 3 =cheap

1 -

Fig. 10. Membership function of the fuzzy numbers 7\ = "very c6eap" and 3 = "c/usop"

then, the addition of ft and 3, based on Zadeh's extension principle, that is,

(u,v)
u+v=x
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leads to thefuzzy number characterized bythe membership function [1%+% in Figure 11.

f(z) =

0.04(z-15)

0.04(25-z)

I 0

25 ($)

Fig. 11. Membershipfunctionof the fuzzy number A + 3.

The associated random intervals according to the proof of Theorem 3.1 are 3^j =

[YjjZj] and 33 =[Y2,Z2] where Y1 and Y2 are both random variables
degenerated in 0, and Zj is a random variable uniformly distributed in [5,10], Z2 is a

random variable uniformly distributed in [10,15]. If we now assume that Zj and Z2 are

independent random variables, then the addition of ft and 2J, based on Minkowski's addition

of ordinary sets, that is,

3^+3s = [Y1+Y2,Z1+Z2]

leads tothe random interval whose lower extremum isarandom variable Yj+Y2 degenerated

in 0, and whose upper extremum is a random variable Zj+Z2 whose distribution is

characterizedby the triangulardensity functiongiven by

if z g (15,20]

if z e (20,25)

otherwise
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It should be emphasized that theinterval above would be theoneassociated in theproofof

Theorem3.1 with the fuzzy number C whosemembership function is that in Figure 12.

Mc
11111111111111111111111111111111111 i 11111 t^.

H+H

15

Fig. 12.Membership function of the fuzzy number C.
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Consequently, the solutions obtained under the assumption of independence of Zj and

Z2 are definitively different, and the time and background required tomake the first addition are

smaller than those for the second one.

6. Concluding remarks

In Section 5 we have discussed the interest of the connection between fuzzy numbers and

random intervals, when the purpose is to replace the first ones by the second ones. On the other

hand, it is worth remarking that such a replacement is not very coherent if we pay attention to the

essential differences in the nature of imprecision in both cases. Thus, when fuzziness arises

because of an uncertainty in observation (error, lack of information, etc.) honprobabilistic in

nature, or because of a subjective judgement (vagueness, cognition, personal bias, etc.), then the

assimilation of fuzzy numbers with random intervals does not make real sense. To illustrate this

last comment, we can consider for instance the situation in Example 1.1, in which according to

the fuzzy approach "ta(C is an imprecise event in the sense that for a given height x each person

is assumed not to be able to answer YES or NOT to the occurrence of that event, but that
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person can only asserts that the event is true with a certain degree. Nevertheless, accordingto the

probabilistic approach "ta(C is an imprecise event in the sensethat the criterion to classify people

as being or not "ta((" varies from person to person. However, it is supposed that for a given

height x each person is assumed to be able to answer YES orNOT to the occurrence of that

event, although the opinion is not the same for everybody.
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