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ON THE INTERPRETATION OF GRADES OF MEMBERSHIP

IN FUZZY DATA FROM RANDOM EXPERIMENTS

MARIA ANGELES GIL*

Department ofElectrical Engineering andComputer Sciences, University ofCalifornia, Berkeley

This paper first presents cases involving different sources of fuzzy imprecision firom random
experiments. Then, the interpretation of grades of membership in terms of probabilities in those
cases is discussed

1. INTRODUCTION

Statistical problems oftenconcern thedrawing of conclusions or makingof decisions about a

random experiment, on the basis of theinformation supplied by the performance of that experiment

(and, eventually, on the basisofotheravailable information). A random experiment is a process by

which something is made, resulting in one outcome that cannot be previously predicted. In

Statistics it is assumedthat the random experiment canbe repeated under (more or less) identical

conditions, and there is a predictable long-run pattern (what is referred to as statistical regularity).

To characterize a random experiment we need: i) to identify all experimental outcomes, ii) to

identify all events of interest, and iii) to assign probabilities to these events.

In "traditional" Statistics it is supposed that the observer is able to obtain the exact outcome

aftereachexperimentalperformance, and an eventofinterestis intended as a statementor question

regarding the experimental outcome and so that after the experiment has been conducted one can

determine if it is true or false. Then, the model describing a random experiment is given by a

probability space (CI^P), where Q is the sample space (or set of all possible experimental

outcomes), 7 is the a-field of all events of interest, and P is a probability measure on 7.

Furthermore, we often assume that in the experiment we incorporate a numerical quantity X

whose value is determined by the preceding experiment, that is, we consider a random variable (or

vector) is to be observed, so that we can describe the random experiment by means of a new

probability space (X,3X,P), where X is the setof all variable (or vector) values and contained in

a Euclidean space, 2JX is the smallest Borel a-field on X, and P is the induced probability.

* Visiting firom the Department of Mathematics, University of Oviedo, 33071 Oviedo, SPAIN.



Consequently, due to the assumption of the structure of a-field for the set of all events of

interest, Probability Theory guarantees thateveryelement in 7 can be identified witha "classical"

subset of ft, and the induced probability ofa Borel set Be 3X is given by the Lebesgue-Stieltjes

integral

P(B) =Jb dP(x) =Jx ^(x) dP(x) (1)
(where 5Cg =indicator orcharacteristic function of B).

The scheme in Figure1 explains the mechanism in traditional randomexperiments involving a

numerical quantification process.
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Fig. 1. Process in traditional random experiments

Nevertheless, one frequently encounters situations in which the quantification process or the

ability of the observer do not allow to express the available experimental information in terms of an

exact variable value or an exact datum (or, alternatively, an event of interest could be intended in

some situations as a statement or question regarding the experimental outcome, so that after the

experiment has been conducted one can determine the "degree to which it is true").

We next consider the usual ways according to which fuzziness arises in random experiments.

2. SOURCES OF FUZZY IMPRECISION IN RANDOM EXPERIMENTS

In this section we are going to discuss the most common arguments to incorporate fuzziness in

random experiments.



We first recall the notions of fuzzy subset and measurable fuzzy subset ([14], [15]) we will

employ later

DEFINITION 2.1. A fuzzy subset k. of X (universe of discourse) is characterized by a

membership function \L„ from X to [0,1], where \xJx) is the degree to which x belongs to *

(or degree to which x agrees or is compatible with k).When \L~ is a Borel-measurable function,

then * is called a measurablefuzzy subset or fuzzy event.

As we have emphasized in Figure 1, a random experiment involves the following steps:

experimental performance, numerical quantification, observation, and definition of the events of

interest. When the random experiment is understood in the traditional sense, the first step is

developed under randomness and the other ones are carried out under precise conditions leading to

exact elements. However, in practice fuzziness could arise in each of the last three steps. We are

now going to describe the situations corresponding to the presence of fuzziness in each of those

steps, and some suitable mathematical models for such situations we can found in the literature of

Fuzzy Sets.

2.1. Fuzzy random variable

In this first case, we are going to consider that fuzziness is incorporated through the second

step (numerical quantification). More precisely, it is assumed that the outcome from the original

experiment (Q,J*,P) is exact, but the random variable (or vector) may be described in terms of a

quantification process assigning an imprecise (fuzzy) value to each outcome. The scheme in Figure

2 explains the mechanism in this case.
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Fig. 2. Process leading to obtain fuzzy variable values



A mathematicalmodel that could suitablydescribe this situation is that resumed in the concept

offuzzy random variable introduced by Puri andRalescu (cf., [9], [10]). It should be pointed out

that in thiscase theinduced probability for the fuzzyrandom variable can be immediately defined.

The source of fuzzy imprecision we have just examined may be illustrated by means of the

following example (cf., [4]).

Example 2.1. In Decision-Making literature we can often find examples involving decision

problems in which utilities or losses are quantified in terms of exact values, but it would be more

natural to quantify them by means of fuzzy values.The example we are now going to analyzehas

been taken from an introductory text of Statistics ([13]): suppose a neurologist has to classify his

most serious patients as requiring exploratory brain surgery (action ax) or not (action a^. From

past autopsies, it has been found that 60% of the examined people needed the operation, while

40% did not. The losses of right classifications are null. The losses of wrong classifications are

obvious: an unnecessaryoperation means resources are wasted and the patient may be hurt The

other loss may be higher: if a patient requiring surgery does not get it, the time lost until clear

symptoms appear may be crucial. In Wonnacott andWonnacott ([13]), the preceding problemis

regarded as adecision problem with state space CI = {cOpCOj} (o)j =the patient requires surgery,

©2 =the patient does notrequire surgery), action space A ={a^}, and loss function L on ClxA

given by the random variables L1: CI -» R, L2: CI -» R, such that L1(cd1) = L(co1,a1) =

L2(G)2) = L(co2,a2) =0, L,(G)2) = L((n2fa1) =5 l^o^) =5 M©^) (with L2((a{) > 0).

However, the preceding assessment of losses seems to be extremely precise, due to the nature

of the states and actions in the problem. Thus, the following assessment could express better the

decision-maker (neurologist) "preferences": Lia*^)=L((H2^ =0,£(CD2«a1) =« inconvenient»,

L(oav2^) =« dangerous ».This "loss function" L could be defined in terms of the fuzzy random

variables I*,: CI -> F(IR), L2: CI -» F(]R) (with F(E) =collection of fuzzy sets of IR), such that

£.,((») =L^aj), L2((n) =^(co,^), for all co € Q, and £1(co2) and £2(C0i) are described by

means of the (measurable) fuzzy subsets characterized by the membership functions in Figure 3.
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Fig. 3. Membership functions of the fuzzy losses « dangerous » and «inconvenient»

2.2. Fuzzy experimental information

In this second case, we are going to consider that fuzziness is incorporated through the third

step (observation) in random experiments, that is, fuzziness arises becauseof the lack of precision

in observing the variable(orvector) values. More precisely,it is assumed that the random variable

(orvector) may be describedin terms of a quantification process X assigning a numericalvalue to
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each experimental outcome, leading to (X,3X,P), but this value cannot beexactly reported by the

observer, so that he cannot answer YES or NOT to the occurrence of events assimilable with

elements in 3X, and anew type ofinformation (fuzzy experimental information) regarding X has

to be considered. The scheme in Figure 4 explains the mechanism in this case.

A mathematicalmodel that could serve to suitablymanage this problem is that involving the

definition offuzzy information (as intendedby Okudaet at., [8], Tanaka et al., [12], Zadeh, [16],

and analyzed in some of our previous studies, [2], [3]). Unlike the situation in 2.1, the induced

probability for the fuzzy information is not immediate to define, sincethereis not a rule associating

with each exact variable value a specified observation.

An illustrative example for this situation is the following one:

Example 22. Water in a lake is examined to determine if it is drinkable. It is known that the

water may contain a type of microorganisms, so that if the mean number of microorganisms per

milliliter, 0, is greater than 7 water cannot be regarded as drinkable. Consider the random

experimentconsistingin drawinga milliliterof lake water, co, and observingthe numberof micro

organisms in it, X(co), and assume random distribution of microorganisms in lake water. Then, if

exact information were available, we could describe this situation by means of a Poisson

experiment with mean 6, (N,3N,Pe), Pe(x) =9xe~e/x! for xe Ns X.

x
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Fig. 5. Membership functions of the fuzzy observations « a very smallnumberof microorganisms »(•),
« a moderate number of microorganisms » (&), and « many microorganisms »(*!*)



Suppose that a biologist is interested in concluding if lake wateris drinkable or not, but the

microorganisms are actually very difficult to be identified, andbasedon some features he canonly

report after eachexperimental performance thatthere is a«very small numberof microorganisms »,

or a « moderate numberof microorganisms », or « many microorganisms », and so on. This type

of observations can be easily described in terms of fuzzy subsets of X, rather than in terms of

classical ones. Thus, the preceding observations couldbe described, for instance, by means of the

(measurable) fuzzy subsetscharacterized by the membership functions in Figure 5.

2.3. Fuzzv events of interest

Finally, we can consider the situation in which fuzziness is incorporated through the fourth

step (definition of events of interest).Thus, it is assumed that both, the outcome from (CIJ,P)

and the associated variable (or vector) value from X, are exact and the value is exactly perceived

by the observer, but the events of interest are statements or questions regarding X so that after

knowing the value from X the observercannotanswerYES or NOT to their occurrence but he is

able to specify the degree with which each of them is true (or false). The scheme in Figure 6

explains the mechanism in this case.
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A mathematical model that could suitably describe this situation is that based on identifying the

events of interest with (measurable) fuzzy subsets of X, so that after knowing the value from X

the degree with which each of the events is true is the grade of membership of that value to the

corresponding fuzzy subset. As in 2.2, the induced probability for the fuzzy events is not

immediate to define, since a fuzzy event cannot beidentified with anelement of 2X.

An example for this source offuzziness is the following one:

Example 23. Suppose that an observer is measuringthe height of a given person, <o, having

70 inches of height, X(co), and assume that to the occurrence of the event "the person is tall" the

observer is not able to answer YES or NOT, but he prefers to answer « more or less » (or, in

other words, he prefers to answer that the event is true with degree .5). Consequently, the event

« being tall » could be described by means of a fuzzy event characterized, for instance, by the

membership function in Figure 7.

t
1 -

^ «tall»

Fig. 7. Membership functions of the fuzzy event« being tall»

3. DISCUSSING AN INTERPRETATION OF GRADES OF

MEMBERSHIP AS PROBABILITIES

In previous papers ([5], [11], [12]) it was emphasized that \iJx) could be interpreted or

estimated as the probability of x. given x.
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In accordance with the analysis of the sources of fuzziness we have just developed, we can

assert that in Section 2.1 the interpretation above mentioned does not make sense, since the exact

value x is not given. In fact, unlike cases 2.2 and 2.3, there is not an exact numerical

quantification process underlying the situation in 2.1, so it is not possible to talk about the

probability with which something happens when the observer obtains x.

Ontheother hand, theinterpretation of M*(x) as aprobability in 2.3could makesense, butit

would mean that the criterion to classify the exact value x as belonging or not to x, varies from

observer to observer (so thata lOOjijXx) %of themwould agree that x belongs to *> or leads to

the occurrenceof *)» but any given observer may answer YES or NOT to the occurrenceof x.

when x is obtained. However, in accordance with the "fuzzy approach" in Section 2.3, M*(x) * 0

or 1 would indicate that the given observer cannot answer YES or NOT to the occurrence of Xj

but he prefers to answer that it is true according to a degree equal to \ijx). Consequently, this

interpretation of \iJfl) in terms of probabilities would lead to a problem definitively different in

nature.

In fact, the only case in which such an interpretation could make some sense is the one

considered in Section 2.2. Thus, 2.2 is the only case in which for a given input in the step under

fuzziness the unicity of outputs cannot be guaranteed, that is, in which a "kind" of randomness

justifying the interpretationabove could implicidy be involved, since as we have alreadyremarked

there is not a rule associating a specified fuzzy observation with each exact variable value. In other

words, in this case we cannot guarantee that whenever a given value x of X arise, the observer

will always report the same fuzzy information x. (since should this be the case x. could be identified

with a classical subset of X, or grouped datum). That interpretation may be illustrated in Example

2.2 by saying that |ll« mo(|erate »(^) =-75 indicates that in75 %of milliliters from thelake water in

which there really are 9 microorganisms, the observer would perceive that there would be a

moderate number of them.

We are now going to discuss the interpretation of the gradesof membership as probabilities for

random experiments involving fuzziness because of the reasons explained in Section 2.2. To
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formalize the discussion, we have to remark again that the induced probability for the fuzzy

information associated with the experiment (X,3X,P) is not immediate to define. Zadeh, ([15]),

suggested to quantify this "induced probability" of the fuzzy information x. associated with the

experiment (X,EX,P) as follows:

DEFINITION 3.1. The probability of *induced by Pis given by the Lebesgue-Stieltjes integral.

?(x)= Jx^(x)dP(x) (2)
According to Zadeh, ([15]), thevalue ?(x) could beviewed as the"degree of consistency" of

the probability distribution P with the possibility distribution associated with the membership

function \iK

Although (2) is introduced as a definition (not a result), it may be justified through the two

following arguments:

* it is the most immediate extension of the non-fuzzy case in (1) (in which we replace the

indicator or characteristic function by the membership function),

and

* it is coherentwith Le Cam's definition of the probability ofboundednumerical functions in a

single stage experiment (cf., [6], [7]). Thus, Le Cam suggested to replace the structure of

a classical experiment, by a weaker structure (X/VX,P), called single stage experiment,

where Vx is a vector lattice for the usual operations (sum, product by real numbers,

pointwisesupremumandinfimum) that contains the indicator or characteristic function of X

and complete for the norm sup LI, Pis a normalized linear functional on Vx, and for fe

Vx thevalue of P at / may beconsidered as the Lebesgue-Stieltjes integral given by P(/)

=Jx/(x) dP(x). Consequently, if the fuzzy event x, is such that \iK belongs to the vector
lattice Vx in a single stage experiment, then P(|iJ =P(k)-

On the basis of this probabilistic definition we can now discuss the interpretation of grades of

membership we have previously commented on.

Let (X,3X,P) be a random experiment and let x, denote a fuzzy event associated with it.

Given x° e X, we can define a new experiment characterized by the probability space
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({x°},3fxo},Pxo) (with Pxo({x0}) =1) in which anew random variable (or vector) degenerated at

x° is to be observed. This experiment wouldbe characterized by the probability space. If we now

consider the restriction of the fuzzy event x. to {x°} (or, more precisely, the restriction of the

mapping \iK from X to {x0}), then

PROPOSITION 3.1.The probability of therestriction of x. induced by Pxo is givenby

*x°« =^(x°) (3) a
This last result indicates that, when we use Zadeh's probabilistic definition, M-^(x°) could De

intuitively interpreted as"akind" of (induced) probability withwhich theobserver gets x. when he

really has obtained x°.

Nevertheless, it shouldbe emphasized that such aninterpretation is just an intuitive but it does

not mean a rigorous approximation to quantifythe grade of membership, because of the following

reasons:

i) It dependson the particular probabilistic definition for fuzzy events we have considered.

ii) The process of restricting the fuzzy event x. from (X,3X,P) to ({x°},3 jxoj,Pxo) does not

mean anintuitive step in computing \iJx°), sincexmakes only sensewhen it is defined over allX.

4. CONCLUDING REMARKS

The preceding arguments indicate that when we try to use the probability of x. given x as an

alternative way to approximate \U?Q in the caseof fuzzy experimental information, we have first to

formalize x, and its probability. This formalization can be carried out in a framework involving

ProbabilityTheory and Fuzzy Sets Theory, but it is not possible to develop it only in a classical

probabilistic framework. Consequently, we can conclude that such an approximation can be

sometimes viewed as an intuitive but not a formal way to assign grades of membership to fuzzy

information associated with a random experiment

On the other hand, to accept such an interpretation implies to treat * as a random set. This

identification would allow us to formally compute the probability of x. given x, but it presents an

inconvenient in practice: operations between random sets are usually much more complex than

those between fuzzy sets.
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It shouldbe pointedout that sources of fuzzy imprecision we have considered in this paper can

beeasily combined, leading to a general model involving thethree cases above considered. In this

sense, it is worth remarking that the discussion regarding the sources of fuzziness in random

experiments has been developed in this paper attending to the step in which fuzziness arises.An

alternative interesting discussion could also be developed attending to the nature of the fuzziness.

In other words, all kinds of fuzziness could possibly be modeled by combining to aspects: i)

uncertainty in observation (error, imprecision, lack of information), and ii) subjective judgement

(vagueness, cognition, personal bias). As special cases, uncertainty in observation couldbe zero or

nonzero, and subjective judgement could be consistent or vary. According to this alternative

discussion, situations in 2.1 and 2.3 would correspond to the particular case in which the

uncertainty in observation is zero and subjective judgement varies, whereas the situation in 2.2

would correspond to the one in which uncertainty in observation is nonzero and subjective

judgement is consistent.When the uncertainty in observation is nonzero and probabilitistic in

nature, then the interpretation of grades of membership as probabilities can make sense, but

otherwise that interpretation does not make sense. Consequently, this alternative discussion leads

also to obtain the conclusions in Section 3.

Finally, probabilities in the original probability space could also involve fuziness in practice,

leading to a new kind of statistical problems.
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