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Abstract

The design of a formal process-flow programming language andaWIP
system thatexecutes it is described. The process-flow language, called the
Berkeley Process-Flow Language (BFFL),can be used to specify a com
plete representation of theoperations tomanufacture andtesta semiconduc
tor integrated circuit.

Programs in BPFLcanberead by otherprograms thatexecuteor sim
ulate the process. A WIP systemexecutes a BPFL program. A simulation
input generator or a process checker simulates the program. Maintaining
oneconsistent process specification that canbeusedboth inprocess design
and fabrication can reducedesign andmanufacturingerrors.

A WIP system is described that executes BPFL programs. Complex
heuristics can becoded intoaprocess-flow toautomate theactionstypically
performed byhand because BPFL isaprogramming language. The advan
tage ofautomating these actions is that detailed records can bemaintained
automatically that describe what was done. And,successful actions can be
easily reviewed and made standard policy. Inaddition, theWIP run man
agement system isdesigned toallow dynamic changes toactive runs (e.g.,
changing the process and splitting and merging runs). While dynamic
changes donotautomate the manufacturing process, theyare necessary in
practice.

1. Introduction

This paper describes the use ofa formal language inacomputer-inte
grated manufacturing (CIM) systemtospecify the process usedtomanufac
ture anintegrated circuit (IC). The formal specification language is the
Berkeley Process-Flow Language (BPFL). BPFL is a programming lan
guage that can be used tospecify the information needed tomanufacture an
IC (eg.,masks, materials, equipment, operations, and tests).

The following goals influenced thedesign of BPFL:
(1) Allow all manufacturing operations to bespecified including lot

splits and merges, conditional tests, feed-forward and feed-back
ward control, rework, timing constraints, equipment andoperator
communication,andexception handling.

(2) Separate the facility specific information from the process spedfi-
cation to make it easierto change equipment in a faborto move a

process to another fab.
(3) Allowaprocess specification tobeused asinput toother programs

(eg.,process simulators and checkers and factory scheduling sys
tems) toreduce thetime required todesign a process and manufac
ture product.

Aprogram written inBPFL, called aprocess-flow, isread byother pro
grams mat execute or simulate the process. Anexample ofaprogram that
executes aprocess-flow isawork-in-progress (WIP) system. Statements in
the process-flow cause commands to be sent toequipment connected tothe
CIM system orto people who operate theequipment (eg.,load and run a
particular furnace recipe).

* Thisresearch wassupported by the Nations] Science Foundation (Grant
MIP-8715557) andthe Semiconductor Research Corporation. Philips/Signetics
Corporation, Harris Corporation.Texas Instruments. National Semiconductor. Intel
Corporation, Rockwell International. Motorola. Inc.. and SiemensCorporation with
amatching grant from theState of California's MICRO program.

A program that simulates t process-flow canchecktheprogram for er-
ion (eg., putting wafers withresist in a furnace tote) ot generate inputfor
other programs (eg., • process simulator or a scheduling system). State
ments intheprocess-flow change thestate of theprogram that is simulating
theprocess (eg., keeping track of thematerial ona wafer)orcause simula
torcomrriands to beoutput Figure 1 depicts theinformation flowin a pro
gram that generates commands for thePROSE simulator [8].
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Ftgme 1; Information flowina process simulatimiiyut generator.

Most WIP systems are either paper-based orrun-sheet systems. Paper-
based systems use aninformal textual language tospecify theprocess. The
process-flow contains operator instructions that specify equipment recipes
andwhatshould be doneforeachstep.Aprintedcopyof the process-flow
istaped tothe lotand passed along withitasthe lotismoved around the fab.

Arun-sheet systemusesaformal language to specify the process-flow1.
Theprocess-flowlanguage inthese systemsincludes commands tocommu
nicate with anoperatorthrough a form displayed onaterminal and, insome
cases, communicate withequipment. However, these languages are notfull-
function programming languages sodata structures (eg., arrays, records,
etc.)and control structures (eg., conditional statements, looping state
ments, exception handling, etc) are not provided2. Data and control struc-
tures are needed inaprocess-flow language inorder to specify conditional
processing (eg^IfIt has been along time since preventative maintenance
wasdone onapiece of equipment, tweaktherecipe parameters to compen
sate for thechange inequipment performance) and feed-forward and feed-
backward control. More importantly, exception handling mechanisms axe
needed to allow theCIM systemto respond to unanticipated events (eg.,
equipment failures).

Several research groups are working on process-flow representations
that have the powerofamodem programming language [23.6,7]. Two dif-
ferent representations are being explored: knowledge-based and program
ming language While there are differences in representation, the real
differences are theabstractions being o^vdopedtorepresem processing en
tities (eg.,equipment, materials, profiles, etc) and operations (eg., proce
dures, parameter passing,object-oriented programming, etc.). BPFL uses a
programming language representation.The advantageofthis representation
is that a full complement of control and data structures can beprovided
whichaDows sophisticated dedskm makingto
cess-flow. Moreover, it emphasizes both thecorrect and inconect behavior
ofthe process.

1 TncimflwitWy usedcommercial niMhwasy
formerly called COMETS, from Consilium Inc.. Mountain View. California and
FROMIS from Promis Systems Inc^Toronto. Canada.

2 WORKSTREAM hasa scripting language with some control structures
eat canbe calledfroma naxhect cuaiuand. However,these commandscannot
beexecuted directly intherun-sheet, which severely limits theflexibility of the
system.



This paper describes the use ofBPFL byaWIP system. The WIP sys
tem allows operators and process engineers tomanage runs (eg^start, stop,
and suspend runs), to change arun in process (eg., modify the process-
flow, addorremove wafers, orsplit ormerge runs), and tobrowse alog that
tracks processing history. The remainder ofthe paper isorganized as fol
lows. Section 2 presents an overview ofthe CIM system. Section 3briefly
describes BPFL. Section4 describes theWIPrunmanagement system. And,
section 5 describes the status ofthe prototype system.

2. CIM System Architecture
Figure 2 shows a typical computing system in a fab. Many different

sized computers (e.g.. micros, minis, and mainframes) are connected toand
communicate through a local area network. Equipment is connected to
workceD computers, peoplecommunicatewithmesystemthrough worksta
tions and terminals, and data is stored in databases located on different ma-

chines. Ideally, programs onanycomputercan communicate withprograms
and databaseson any other computer.
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Figure 2: Typicalcomputingsystem in fab.

The software architecture that runs on this distributed computing sys

tem must be a distributed software system. A key element ofthis software
systemis a shared CIM database thatcontains information aboutthe fabri
cationfacility (e.g., work areas andequipment),processes (eg., masksand
process-flows), WIP (eg., lots,wafers, andprocessing history), equipment
(eg., status, recipes, maintenance logs,etc.). test data, product inventory,
andorders. Applications treat this database asa centralized, single-site da
tabase, but it is actuallya distributed database (DDBMS).Moreover, it is a
heterogeneous DDBMS because data is stored in files and in different
DBMS's.

The softwarearchitecture of the WIP systemis shownin figure 3.The
systemis composedofmanyprocesses thatexxnmrrmrrte withu>^ equip
ment, and the CIM database. The main processis the WIP interpreter that
executes BPFLprograms. AruncorrespondstoanexecutionofaBPFLpro-
gram. Eachrun is represented by datastructures thatcontain the run state
(eg., the next statement to execute,thenamesandvaluestfkxal variables
created by the program, anddata retrieved from thedatabase). TheWIPin
terpreter executes manyBPFL programs atthe same time. Inother words,
it is a server process.

The user interfaceprocesses) supportcommunication with operators.
Operators atdifferent locations in the fabcancommunicatewithanyrunby
connecting to the WIP interpreter through their user interface process.
BPFLuser-dialogcommandsaresent to the appropriate userinterface pro

cess3. The user interface process is anApplication-By-Forms program in
the current prototype4.

Figure 3; WIP systemarchitecture.

Theequipment interface processes) support communication with
equipment. This process isan instance ofWood's SECS server [9]. Anob
ject-oriented SFXS interface is defined wiWn BPFL. Memcxis are
for high level equipment operations (eg., runrecipe, monitor ran, fetch
equipment status, etc.). These methods are implemented byremote proce
durecalls on SECS commands handled by the server.

Allprocesses in theWIPsystem communicate withtheCIM database.
TheWIPinterpretercheckpoints thestate ofrummthedatabase sothat oth
erojersand prograrns canaccess roninformationandsoth^
berecovered ifacomputerornetworktails.The userinterface process uses
form definitions stored in the database and allows the user to browse the

CIMdatabase (eg., active runs, runlogs, equipment status, ete). Theequip-
ment interface process accesses equipment information stored in thedata
base.

3. BPFL

The current versionofBPFLis implemented as an extension to Com-
monLisp[51. Lispwaschosen because it is well-suited towriting programs
that manipulate programs(eg-,theinterpreters)andbecauseit isagood en-
vironmenl for experimenting with programming language designs. This
representation for BPFLisunsuitable for novice computerusers soagraph
icaluserinterface is beingdeveloped. Similar interfaces arebeing devel
opedby otherresearch groups[1,3).

A process-flow is represented by a BPFL procedure. A procedure is a
sequence of steps composed of function calls en Bfa^jaiicedniesorprim
itivesorLisp functions. Figure 4 showsa fragment of BPFL matallocates
some wafers, implants aweU, and drives itin5.

Arguments canbe passed to procedures eitherby position orby name

3 fa a tow volume fabsuch»teBerkeley Micnrtafc^
ttrentterminal andreconnects to theran.TnewTPiystemaaKbttieeoninandto
me userinterface process atthe appropriate workceU m a highvolume fab with
many operators.

4 Application-By-Farms isaproduct of Ingres Corporation, Alameda. Cali
fornia.

5 AinodifiodmuaJantofeamrfartoacoiwentJQ^
used instead of Lisptomaketheprograms castatoread. Keywords are displayed
inaboldfont Identifiers andconstants are displayed toa tenon font. Keywords
and identifiers maycontain thedash character (*-*) to improve theirreadability.
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dofflow CMOS(masks lot-size)

begin

•top ALLOCATE-WAFERS begin

allocate-lot(size: lot-size, lot-name: 'product, spec: ...);
allocate-lot(size: 1, lot-name: 'well, spec: ...);

•ad;

•tap WELL-FORMATION begin

with-lot (product, well) do
wet-oxide(time: (11 min), temp: {1000 degC), thickness: {100 run});

pattern(get-mask(mask-name: 'NWELL, mask-set: masks));
with-lot (product, well) do

implantation(dopant: tm(phosphorus), dose: (4«12 /cm*2), ...);
•tap WELL-DRIVE-IK twain

with-lot (product, well) do
oxide-etch{)

•ad;

measure-oxide-thickness(wafer:
and;

pick-wafer(product), location: "well");

ead;

Rgore4: Dcfminoo ofa BPFL procedure.

Arguments passed by name can be passedin any order becausethe formal
argument nameprecedes the value in the call.Forexample,the allocate-lot
procedure in the figureuses named argument passingto passits three argu

ments:the numberofwafers to allocate(size), the lot in which to put the wa

fers{lot-name), and a specificationof the propertiesof the desiredwafers
(&ec).

Wafers allocated by a BPFL program are placedin lots. Built-in lot
namesare provided for product,reworkand scrap. In addition,a process-
flow can define new lot names (e.g., well) that can be used to hold test wa

fersor subsetsofwafersthat will receivespecialprocessing. A wafercanbe
in several lots at the same time In actuality, all wafers are stored in one car

rier. The mappingbetween wafers and lots is maintainedby the interpreter
(eg., the WIP system). During processing, particular wafersareidentified
by scribesonthe backofthe wafer.The WIP interpreter specifiesoperations
in termsofthe wafer scribesbut the process-flowuses lot variables to spec
ify which wafersshouldbe processed. This simplifies the codingofthe pro
cess.

The step statement specifies a process step.The statement hasa name
icjg.tALLOCATE-WAFERS orWELL-FORMATION) andabody.The body
contains the operations in the step. Notice that steps can be nestedas illus
trated bytheWELL-DRI\'E-IN stepintheWELL-FORMAT/ON step.

The with-lot statementspecifiesthe wafersthat shouldbe processed by

theoperations in its body.Forexample, the wafers in (beproduct md well
lotsare processed by thewet-oxide operation atthebeginning of theWELL-
FORMATION step.This constructgivesthe processengineercompletecon
trol over which wafers are processed.

Expressions in BPFLcanincludeconstant values,valueswithunitdes-
ignatiens,andmaterial specifications. Constant valuesaredenotedeitherby
numeric literals (eg., "32"') or by named literals that are quoted (eg.,
""NWELL"). Values with unit designations are denoted by two values en-
closedin set brackets.The first value is the magntode and the second value
fatheumtoesignaiion.Forexample,'4{1000 degC)nrepresents 1000de
greesCelsius. Material specificationsaredenoted by an escapesequence
C#sf) followed by a materialname Forexample, M#m (phosphorus)"

specifiesphosphorus. Materials are represented by instancesof objects
from a materialclass hierarchy. Materialpropertiesare stored in fields in

each object

BPFL also provides statements to communicatewith equipmentand
operators. The with-equipment statement allocates a piece of equipment,
which is represented by an equipment object fetched fromthe CIM data

base,executes a sequenceofequipment operations,and then deallocatesthe

equipment.The followingexample shows an oven operation.

wlth-aejuipxwnt an-oven: 'oven do bagia
set-temp(an-oven, {150 degC));
wait(an-oven, {30 min});

•ad

The procedures set-temp and wait are methods defined on the oven
class.This exampleusesa genericequipmentcategory(i.e. oven)to spec
ify thedesiredequipment.The equipment specificationcanalsobea partic-

olarinstanceofequipment (eg., y2 -hard-bake-oven).
Operator communication is specified by the user-dialog function.For

example, the following statement allocates an instrument that is used to
measureoxide thickness and calls a particularframe in the user interface
process.

with-acjulpmant x: 'nanospec do
results :s user-dialog(frame: 'nanospec,

expected: {100 nm));

A frame containsa form and a menu ofoperations.The form contains

fieldsin whichdatacanbe enteredby ordisplayedto the user.The menuof
operations is listed across the bottom of the frame The nanospec frame
called by this code is shown in figure 5. The form in the frame containsin-
structions thatdescribethe operationto be performedand fieldsinto which

the operator canentertheresultsofthe inspection. Tte operator enters the
measurements into the table at the bottom ofthe form. The system checks
that the valuesuse the correctunits (eg^ time values would be wrong)and
dose to me expectedvalue When the operatorfinishesmapecting the wa
fersandentering the results,he or she executesthe i4dbkm^£* operation
which causesthe values enteredto be returnedto the BPFL pro

signed to the variableresults.
More details on the designof BPFL and its interpreters is givenelse

where^].

4. vvTPRtm Management System

This sectiondescribes the WIP nm management system. Frames are
provided that showsummary information aboutactiveruns and detailed in
formation about a particular run.Figure 6 showsdetailedinformation about
a nm. The frame showsthe process-flow beingexecuted,the runstatus, the
lotsintherun,andthewafers in onelot Operations areprovided that allow
the operator to browse the runlog, modify the process-flow, andsplitor
merge runs.

-3-
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Figure5: Nanospec frame.

Figure 7 shows the frame that displays theevent logthat iscalled when
the Event-Log operation isexecuted. The table inthe middle ofthe form is
ascrollable window onalllogentries written by thema More information
about logentries can beexamined byexecuting theZteauV operation. Other
frames are provided that allow users to browse thelogentries written by
more than onerun. A description of thedatabase design for thelogand ex
ample queries are given inthepreviously referenced paper [4].
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Figure 6: Run-detail frame.
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Figure7: Event-Logframe

TheModify operation inthe run-detail frame allows aprocess engineer
oroperator totweak the process (es>, change equrpmera settings), modify
the process-flow (e.g., adding ordeleting an operation), ormodify the run.
BPFL programs are storedinaversion control system sochanges can either
bemade totheprocess-flow for just this run ortothe process-flow used by
otherruns. A perarissionsrnecrMnism
bemade bypeople whoare mthoriadtodoso.

Th» mgfr»*»r —• «f**a<«ir can altotpHt anm into twoormore tuns or
merge oneormorenrnsinroanott»
tributed to tots in the newnm(s) andnewwaferecanbeaflocatedmarun
merge, wafers from the different runs cm be merged into one ormore lots
inthe resulting run. A tot split might beused when abatch operation (eg.,
a furnace ran) cannot hold a full totand the fab policy istosplil alotsothai
theoperationbmAlctnh-^niigto
ing product wafers tails below some threshold. These operations can be ex
ecuted byhand ortheycanbeinvoked by another program.

5. Status and Conclusions

TheWIPsystem described above is almost complete TheirOerpreter
has been implemented and tested and the user interface isnwsUy done. The
functions that remain tobeimplemented are theversion control system for
process-flows and the operations tomodify process-flows and runs. The
WIP interpreter is approximately 10,000 lines of Lisp. Wehave coded a
CMOS process used inthe Berkeley Microlab. Theprocess-flow isapprox
imately 650 lines of code and ituses approximately 75 frames. Many pro-
cedures inthe process-flow belong toaHorary that weexpect wffl beused
by manyotherprocess-flows.
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