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Abstract

The design of a formal process-flow programming language and a WIP
system that executes it is described. The process-flow language, called the
Berkeley Process-Flow Language (BPFL), can be used to specify a com-
plete representation of the operations to manufacture and test a semicondoc-
tor integrated circuit.

Programs in BPFL can be read by other programs that execute or sim-

ulate the process. A WIP system executes a BPFL program. A simulation.

input generator or a process checker simulates the program. Maintaining
one consistent process specification that can be used both in process design
and fabrication can reduce design and manufacturing errors.

A WIP system is described that executes BPFL programs. Complex
heuristics can be coded into a process-flow to automate the actions typically
performed by hand because BPFL is a programming language. The advan-
tage of antomating these actions is that detailed records can be maintained
sutomatically that describe what was done. And, successful actions can be
casily reviewed and mads standard policy. In addition, the WIP run man-
agement system is designed to allow dynamic changes to active runs (¢.g.,
changing the process and splitting and merging runs). While dynamic
changes do not automate the manufacturing process, they are necessary in
practice.

1. Introduction

This paper describes the use of a formal language in a computer-inte-
grated manufacturing (CIM) system to specify the process used to manufac-
ture an integrated circuit (IC). The formal specification language is the
Berkeley Process-Flow Language (BPFL). BPFL is a programming lan-
guage that can be used to specify the information needed to manufacture an
IC (e.8., masks, materials, equipment, operations, &nd tests).

The following goals influenced the design of BPFL:

(1) Allow all manufacturing operations to be specified including lot
splits and merges, conditional tests, feed-forward and feed-back-
ward control, rework, timing constraints, equipment and operator
communication, and exception handling.

(2) Separate the facility specific information from the process specifi-
cation to make it easier to change equipment in a fab orto move a
process to another fab.

(3) Allow a process specification to be used as input to other programs
(e.., process simulators and checkers and factory scheduling sys-
tems) to reduce the time required to design a process and manufac-
ture product.

A program written in BPFL, called a process-flow, is read by other pro-
grams that execute or simulate the process. An example of a program that
executes a process-flow is a8 work-in-progress (WIP) system. Statements in
the process-flow canse commands to be sent to equipment conmected to the
CIM system or to people who operate the equipment (¢.g., Joad and run a
pasticular furnace recipe).

1 This research was supported by the Nationa) Science Foundation (Grant
MIP-8715557) and the Semiconductor Research Corporation, Philips/Signetics
Corporation, Harris Corporation, Texas Instruments, National Samiconductor, Intel
Corporation, Rockwell International, Motorola, Inc., and Siemens Corponation with
& matching grant from the State of California’s MICRO program.
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A program that simulates ¢. process-flow can check the program for er-
m(&g..mmmmlnaﬁmmembe)wmmtfw
other programs (e.g., a process simulator or a schedaling system). State-
ments in the process-flow change the state of the program that is simulating
the process (c.g., keeping track of the matezial on a wafer) or cause simula-
tor commands to be output. Figure 1 depicts the information flow in a pro-
mmwmmmmmmmm«[sl.
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Figure 1: Information flow in a process simulation input gencrator.

Most WIP systems are either paper-based or run-sheet systems. Paper-
based systems use an informal textual language to specify the process. The
process-flow contains operator instructions that specify equipment recipes
and what should be done for each step. A printed copy of the process-flow
is taped to the lot and passed along with it asthe lot is moved around the fab.

Arun-sheet system uses a formal language 1o specify the process-flow.
The process-flow language in these systems includes commands to commu-
nicate with an operator through a form displayed on a terminal and, in some
cases, communicate with equipment. However, these languages are not full-
function programming languages 80 data structures (¢.g., aIrays, fecords,
etc.) and contro! structures (¢.g., conditional statements, looping state-
ments, exception handling, etc.) are not provided?. Data and conrol struc-
tures are needed in a process-flow language in arder to specify conditional
processing (¢.g-, if it has been a long time since preventative maintenance
was done on a piece of equipment, tweak the recipe parameters to compen-
sate for the change in equipment performance) and feed-forward and feed-
backward control. More importantly, exception handling mechanisms ase
needed to allow the CIM system to respond to unanticipated events (¢.g.,
equipment failures).

Several research groups are working on process-flow representations
that have the power of a modem programming language [2,3,6,7]. Two dif-
ferent representations are being explored: knowledge-based and program-
mmmwmemmammwﬁmmw
differences are the abstractions being developed to sepresent processing en-
tities (e.g., equipment, materials, profiles, etc.) and operations (¢.g., proce-
dures, parameter passing, object-oriented programming, etc.). BPFL uses a
pxommmhgwwﬁmmadvmdemion
is that a full complement of control and data structures can be provided
which allows sophisticated decision making to be incorporated into the pro-
cess-flow. Moreover, 1t emphasizes both the correct and incorrect dehavior
of the process.

1 The most widely used commercial run-shect systems sre WORKSTREAM,
formerly called COMETS, from Consilium Inc., Mountain View, California end
PROMIS from Promis Systems Inc., Toronto, Canada.

2 WORKSTREAM has » scripting language with some control struchres
tat can be called from a nn-sheet command. However, these commands cannot
be executed directly in the nm-sheet, which severely limits the flexibility of the
sysem.
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This paper describes the use of BPFL by a WIP system. The WIP sys-
fem allows operators and process engineers to manage runs (€.g., stait, stop,
and suspend Tuns), to change a run in process (¢.g., modify the process-
ﬂow.nddorumovewafm.orspﬂloxmagem).mdtomalogﬂm
tracks processing history. The remainder of the paper is organized as fol-
lows. Section 2 presents an overview of the CIM system. Section 3 briefly
describes BPFL. Section 4 describes the WIP yun management system. And,
section § describes the status of the prototype system.

2. CIM System Architecture

Figure 2 shows a typical computing system in a fab. Many different
sized computers (¢.g., micros, minis, and mainframes) are connected to and
communicate through a local area network. Equipment is connected to
workeell computers, people communicate with the system through worksta-
tions and terminals, and data is stored in databases located on different ma-
chines. Ideally, programs on any computer can communicate with programs

and databases on any other computer.
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Figure 2: Typical computing system in fab.

The software architecture that runs on this distributed computing sys-
tem must be a distributed sofiware system. A key element of this software
system is a shared CIM database that contains information about the fabri-
cation facility (e.g., work areas and equipment), processes (¢.g., masks and
process-flows), WIP (e.g., lots, wafers, and processing history), equipment
(e.g., status, recipes, maintenance logs, etc.), test data, product inventory,
and orders. Applications treat this database as a centralized, single-site da-
tabase, but it is actually a distributed database (DDBMS). Moreover, it is a
heterogeneous DDBMS because data is stored in files and in different
DBMS's.

‘The software architecture of the WIP system is shown in figure 3. The
system is composed of many processes that communicate with users, equip-
ment, and the CIM database. The main process is the WIP interpreter that
executes BPFL programs. A run cosresponds (o an execution of a BPFL pro-
gram. Each run is represented by data structures that contain the run state
(e.8.. the next statement to execute, the names and valoes of local variables
created by the program, and data retrieved from the database). The WIP in-
terpreter executes many BPFL programs at the same time. In other words,
it is a server process.

The user interface process(es) support communication with operators.
Operators at different locations in the fab can communicate with eny run by
connecting to the WIP interpreter through their user interface process.
BPFL user~dialog commands are sent to the appropriate user interface pro-

cess®. The user interface process is an Application-By-Forms program in
the current prototype®.

_Figure 3: WIP system architecture.

The equipment interface process(es) support communication with
eqnipmun.“ﬁsmskmhmmof%od‘sSECSmm.Anob-
ject-oriented SECS interface is defined within BPFL. Methods are defined
for high level equipment operations (e.g., Tun recipe, monitor run, fetch
equipment status, etc.). These methods are implemented by remoie proce-
dure calls on SECS commands handled by the server.

All processes in the WIP system communicate with the CIM databasc.
The WIP interpreter checkpoints the state of runs in the database so that oth-
erusers and programs can access run information and so that active runs can
be recovered if a computer or network fails. The user interface process uscs
form definitions stored in the database and allows the user to browse the
CIM database (e.g., active runs, runlogs, equipment status, etc.). The equip-
ment inferface process accesses equipment information stored in the data-
base.

3. BPFL

The current version of BPFL is implemented as an extension to Com-
mon Lisp [5). Lisp was chosen because it is well-suited to wriling programs
that manipulate programs (¢.g., the interpreters) and because it is a good en-
vironment for experimenting with programming language designs. This
representation for BPFL is unsuitable for novice computer users so a graph-
ical user interface is being developed. Similar interfaces axre being devel-
oped by other research groups [1, 3).

A process-flow is represented by a BPFL procedure. A procedure is a
sequence of steps composed of function calls on BPFL procedures o prim-
itives or Lisp functions, Figure 4 shows a fragment of BPFL that allocates
some wafers, implants a well, and drives it in5,

Arguments can be passed to procedures either by position or by name.

3 Ina low volume fab such as the Berkeley Microlsb, & user mowes to a dif-
forent terminal and reconnects 1o the run. The WIP system sends the command to
the user interface process a1 the appropriate workoell in & high volume fab with

operstors.
4 Application-By-Forms is a product of Ingres Corporation, Alameda, Cali-

S Amodifiod notstion that is similar to a conventional algebraic languzge is
used instead of Lisp to make the programs essicr to read. Keywords sre displayed
in & bold font. Identifiers and constants are displayed in a roman font. Keywords
and identificrs may contain the dash character (*-°) to improve their readability.

-2-



defflow CMOS(masks lot-gize)
begin
step ALLOCATE-WAFERS begin

allocate-lot (size: lot-size, lot-name: °'product, spec: ...):

allocate-lot(size: 1, lot-name:
end;
step WELL-FORMATION begin
with-lot (product, well) do

‘well, spec: ...):

wet-oxide(time: (11 min), temp: {1000 degC), thickness: (100 nm});
pattern(get-mask(mask-name: °‘NWELL, mask-set: masks));

with-lot (product, well) &o

implantation(dopant: #m(phosphorus), dose: {(4el2 /cm~2)}, ...):

step WELL-DRIVE-IN begin
with-lot (product, well) do
oxide-etch()

and;

measure-oxide-thickness (wafer: pick-wafer(product), location: °*well®);

end;

end;

Figure 4: Deftmition of a BPFL proceduse.

Arguments passed by name can be passed in any order because the formal
argument name precedes the value in the call. For example, the allocate-lot
procedure in the figure uses named argument passing to pass its three argu-
ments: the number of wafers to allocate (size), the Jot in which to put the wa-
fers (lot-name), and a specification of the properties of the desired wafers
(spec).

Wafers allocated by a BPFL program are placed in lots. Built-in lot
names are provided for product, rework and scrap. In addition, a process-
flow can define new lot names (¢.g., well) that can be used to hold test wa-
fers or subsets of wafers that will receive special processing. A wafer can be
in several lots at the same time. In actuality, all wafers are stored in one car-
fier. The mapping between wafers and lots is maintained by the interpreter
(c.g., the WIP system). During processing, particular wafers are identified
by scribes on the back of the wafer. The WIP interpreter specifies operations
in terms of the wafer scribes but the process-flow uses lot variables to spec-
ify which wafers should be processed. This simplifies the coding of the pro-
cess.

The step statement specifies a process step. The statement has a name
(c.8..ALLOCATE-WAFERS or WELL-FORMATION) and a body. The body
contains the operations in the step. Notice that steps can be nested as fllus-
trated by the WELL-DRIVE-IN step in the WELL-FORMATION step.

The with-lot statement specifies the wafers that should be processed by
the operations in its body. For example, the wafers in the product and well
Jots are processed by the wez-oxide operation at the beginning of the WELL-
FORMATION siep. This construct gives the process engineer complete con-
trol over which wafers are processed.

Expressions in BPFL can include constant values, values with unit des-
ignations, and material specifications. Constant values are denoted either by
mameric literals (e.g., “32™) or by named literals that are quoted (e.g.,
“*NWELL"). Values with unit designations are denoted by two values en-
closed in set brackets. The first valueis the magnitude and the second value
fs the unit designation. For example,“ {1000 degC)" represents 1000 de-
grees Celsius. Material specifications are denoted by an escape sequence
C#n™) followed by a materiel name. For example, “#m (phosphorus)”
specifies phosphorus. Materials are represented by instances of objects
from a material class hierarchy. Material propertics are stored in fields in
each object.

BPFL also provides statements to communicate with equipment and
operators. The with-equipment statement allocates a piece of equipment,
which is represented by an equipment object fetched from the CIM data-

base, executes a sequence of equipment operations, and then deallocates the

cquipment. The following example shows an oven operation.
with-equipment an-oven: ‘oven 4o begin
set-temp (an-oven, {150 degC}):
wait (an-oven, {30 min}):
end

‘The procedures set-temp and wait are methods defined on the oven
class. This example uses a genezic equipment category (i.e., oven)to spec-
ify the desired equipment. The equipment specification can also be a partic-
ular instance of equipment (¢.g., y2-hard-bake-oven).

Operator communication is specified by the user-dialog function. For
example, the following statement allocaies an instrument that is used to
measure oxide thickmess and calls a particular frame in the user interface
process.

with-equipment Xx: ‘nanospec do

results := user-dialog(frame: ‘nanospec,
expected: (100 nm));

A frame contains a form and a menu of operations. The form contains
fields in which data can be entered by or displayed to the user. The menu of
operations is listed across the boitom of the frame. The aanospec frame
called by this code is shown in figure 5. The form in the frame contains in-
structions that describe the operation to be performed and ficlds into which
the operator can enter the results of the inspection. The operator enters the
measurements tnto the table at the bottom of the form. The system checks
that the values use the corroct units (¢.g., time values would be wrong) and
close to the expected value. When the operator finishes inspecting the wa-
fers and entering the results, he or she executes the Acknowledge operation
which causes the values entered to be retumed to the BPFL program and as-
signed to the vazisble results. .

More detzils on the design of BPFL and its interpreters is given else-
where [4).

4. WIP Run Management System

This section describes the WIP run management system. Frames are
provided that show summary information about active runs and detziled in-
formation about a particular run. Figure 6 shows detailed information about
8 run. The frame shows the process-flow being executed, the run status, the
lots in the run, and the wafers in one lot. Operations are provided that allow
the operator to browse the run log, modify the process-flow, and split or
merge runs.

-3-



r'us WIP 1.0. 15 June, 1990 NenoSpec )
nn 1D 3 R Neme! trench caps User: gian
status: waiting Process Plow: ceos-trench step: KCW/E-D

Neasure the oxide thickness at § points oo the water MMELL-1 using the
nanospec.

Type the results into the table below. (Por instruction an using the
nanospec. select the HELP memw item.)

The enticipsted thickness is {100 nm).

Thickness
(102 na)
(103 o=}
1102 om)
{10¢ na)
1102 n=)

index

e wN e

The Modify operation in the run-detail frame allows a process engineer

or operator to tweak the process (¢.g-, change equipment settings), modify
the process-flow (c.g., adding or deleting an operation), or modify the run.
anmmhamﬂmoﬂmdsymmwdwesmm
be made to the process-flow for just this run or to the process-flow used by
other runs. A permissions mechanism is provided so that changes can only
be made by people who are suthogized to do s0.

The engineer or operator can also split & run into two or more runs or

merge one or more runs into another run. In a run split, wafers can be dis-
tributed to lots in the new run(s) and new wafers can be allocated. In arun
W.vafmtmmtudm'uunmmhemedmmormlus
in the resualting run. A lot split might be used when a baich operation (¢.g.,
afmmmn)cumholdafunlotmdﬂnhbpoﬁcyistolpmnuwm

Llcb Rowork/screp Acknowledge Comsent Wnd

Figure 5: Nanospec frame.

mmhMAmmmnwmuzmwamm

ing

product wafers fells below some threshold. These operations can be ex-

ecuted by hand or they can be invoked by another program.

Figure 7 shows the frame that displays the event log that is called when

the Evens-Log operation is executed. The table in the middle of the form is
a scrollable window on all log entries written by the ran. More information
about log entries can be examined by executing the Deail operation. Other
frames are provided that allow users to browse the log entries written by
more than one run. A description of the database design for the log and ex-

ample queries are given in the previously referenced paper [4].

Status and Conclusions
The WIP system described above is almost complete. The interpreter

hasbealimplemunedmdwaedmdlhenwmufacebmoﬂlymm
functions that yemain to be implemented are the version contro} system for
process-flows and the operations to modify process-flows and runs. The
WIP interpreter is spproximately 10,000 lines of Lisp. We have coded a
CMOS process used in the Berkeley Microlab. The process-flow is approx-

imately 650 lines of code and it uses spproximately 75 frames. Many pro-

LIS WIP (V 1.3, 13 July 1990} Sun Detail )
Am ID: 3 =m Neme: trench caps Owoer: gian
Status: waiting Process Plow: cmoe-trench Step: 4nit-ox

Step Peth: start/init-ox

Waters in lot MO8

1D Name ID |Scribe
1 SCRAF 4 o©s-1
2 PSC L) C0s-2
3 NCH 6 ©Oos-3
4 NWZLL 7 CHos-4
1 3 axs 8 s-5
¢ RODUCT 9 Rs-6

10 jows-7

cedures in the process-flow belong to a library that we expect will be used

by many other process-flows.
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Figure 6: Run-detail frame.
(15 wIP (v 1.1, 13 Quly 19%0) vent Log )
B ID: 3 2D MName: trench cape Oser: gisn
Status: a Plow: cmoe A Step: locoe
Bvent Log
R {Event Type Stop Tag Time
———————
3 CREATE_RUN 06738790 32134
3 ALLOCATR_LOT START 06728790 12.38
3 jsoeocace | START *bulk® 06728790 12:28
3 WET_OXIDATION | INIT-CX>MWELL>START 06720790 12133
3 | RANCSPEC INIT-OX>NUELL>START 06710790 14403
3 SPIN_SOPT_BAKE | LITHO»ELL>START 08720790 09133
3 - LTTROMELLAFTRRT? 06730700 80133
3 DEVELOP LITHOMELL> START 06/20/90 1127
3 DESCUN LITHO>MAELL>START 06/20/90 12:02
3 BARD_BAKE LITHO>MMELL>START *std-hard-bexe J06/20/80 13122
3 INPLINT LITHO>MELL>STAKS *well* 106720730 13130
3 ARNEAL LITHO>MKELL>START 06/26790 08148
| Belp Detail Restrict End )

Figure 7: Event-Log frame.

gl

7.

-l -

R Hartzell, Personal Communication, Texas Instruments, Dallas TX,
Jan. 1989.

M. B. McErath and D.S. Boaing, “Integrating Process Design and
Manufacture,” Proc. 1989 SRC IFM-IC Workshop, College Station,
TX, Nov. 1989.

). Y. Pan, JM. Tenenbaum and J. Glicksman, “A Framework for
Knowledge-Based Computer-Integrated Manufacturing,” JEEE Trans.
on Semiconductor Mansufacturing 2, 2 (May 1989).

L. A. Rowe, C. B. Williams and C. J. Hegarty, “The Design of the
Berkeley Process-Flow Language,” Electronics Research Lab. Memo
90/62, U.C. Berkeley, August 1990,

G. L. Steele, Common Lisp - The Language, Digital Press, 1984.

E M Voothees, “A Work-In-Progress Tracking System for
Experimental Manufacturing,” Proc. 2ad Ind Conf. on Data and
Knowledge Sys. for Manyf. and Eng., Gaithesburg MD, Oct. 1989.

). S. Wenstrand, 1. Hiroshi and R. W. Dutton, “A Manufacturing-
Oriented Environment for Synthesis of Fabrication Processes,” Proc.
1989 ICCAD, Nov. 1989.

A. S. Wong, “An Integrated Graphical Environment for Opemting IC
Process Simulators,” Electronics Research Lab. Memo 89/67, U.C.
Betkeley, May 1989.

E. J. Wood, H. Schenck and J. Wijaya, “Networking and Object-
Oriented Coding for SECS Communications,” Proc. Automated IC
Manufaceuring Symposium, Fall Electrochemical Society Meeting, Oct.
1987.



