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ABSTRACT

This paper describes a case study performed to compare three different interface
styles for ad hoc query to a database. Subjects with wide ranging computer experience
performed queries of varying difficulty using either an artificial, graphical, or natural
language interface. All three interfaces were commercial products. The study showed
that the artificial language was best for novices and interface experts, the graphical
language was best for programmers, and the natural language was best for end users.

1. Introduction

Increasing computer power and decreasing costs are causing radical changes in user
interfaces. Graphical and natural language interfaces are now practical alternatives to
alphanumeric interfaces. This paper describes a case study that compared three
different interface styles for database query: 1) artificial language, 2) graphical

language, and 3) natural language.

Other researchers have compared different interfaces to query languages with
varying success. Refsner, Boyce, and Chamberlin compared a relational algebra query
language (SQUARE) and a relational calculus query language (SQL) and found that the
relational calculus was easier for non-programmers to learn [23].

Greenblatt and Waxman [13] and Boyle, Bury and Evey [7] performed experiments
comparing SQL and Query-by-Example (QBE). QBE allows its users to fill-in blanks in a
two-dimensional table that is similar to the output format of the query [31]. Greenblatt
and Waxman concluded that @BE was better but they did not use actual systems. Boyle,
Bury and Evey used actual systems and they found that subjects took longer to learn
QOBE and that SQL was better for some types of queries while @BE was better for others.

Shneiderman [24] and Small and Weldon [25] performed experiments that
compared SQL and natural language. Their results were inconclusive because the
experiments were limited by experimental design problems (e.g., limited query language
functionality) and by the lack of a working natural language interface.

Jarke, et al. [14] performed a field study that also compared SQL and natural
language, but again with inconclusive results. SQL appeared better than natural
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Foundation under grant MIP 87-16557.



language because users achieved a higher success rate on queries. However, there were
very few subjects and little control of the experimental conditions.

Other experiments have been performed which studied only one interface (QBE [28]
or NL [21], [12]. [22]. [15], [11)) or were designed to answer different questions (e.g..
procedural versus non-procedural [29), different data models [17]). [8]. or programming
using natural language [6]).

This paper describes a case study comparing full function query languages with
sixty subjects working on actual interfaces in a controlled environment. Subjects
ranged in computer experience from none at all to experienced database users with
programming experience. The tasks included simple queries (e.g., single table) to
complex queries (e.g.. multiple table and aggregate counting). Subject performance was
analyzed across interfaces and across task types giving a rich and broad picture of the
usability of these interfaces.

A case study was chosen as the research method for this study because of the need to
gain an understanding of how these different interfaces compare as a prerequisite to
finding the result of such a comparison. A case study, like ethnographic research,
allows us to rely on a variety of means of observation, to discover what questions
should be asked in a comparison of such interfaces, and to recognize the complexity of
comparing the use of these interfaces by actual users [30]. The need to emphasize
qualitative aspects of research has been recognized as well by other researchers in
computer science (e.g.. [19] and [26]).

This research stands out from the previous research because: 1) it is the first to
include a graphical interface for database query, 2) it is a controlled experiment that
used actual products, and 3) it emphasizes the qualitative along with the quantitative
aspects to help understand the results we find.

The remainder of this paper describes the study and the results. Section 2 describes
the sample database and the three interfaces. Section 3 describes the detalls of the
experiment, including its design, the subjects involved, and the treatment. Section 4
presents the quantitative results and section 5 presents the qualitative results. Section
6 describes a small experts experiment and those results compared to the results
presented in section 4. Finally, section 7 contains our conclusions.

2. The Experimental Database and Interfaces

The experimental database included information about students, teachers, classes
and activities for a high school. Figure 1 shows an entity-relationship diagram for the
database. Entities are represented by baxes, and relationships are represented by
diamonds.

The high school database was chosen because it would be familiar to all subjects and
it is easy to understand. In addition, it has sufficient entities and relationships to allow
a variety of simple and complex questions to be asked.



Figure 1: ER diagram of high school database.

A fundamental problem encountered when comparing different interfaces for the
same task is to find a fair method to present the task to the experimental subject. For
example, a natural language description of the task is inappropriate for this research
because one of the interfaces being compared is a natural language interface which
could lead to biased results. In addition, a single task presentation method was needed
so that differences could be eliminated in how subjects using different interfaces
understood the task. .-

Other researchers have tried other task presentation methods including: problem
solving [24], showing the answer which subjects are to get [25), and missing data [21]. We
chose a pictorial representation of the tasks because it causes minimal bias toward any
of the interfaces, it can represent all of the destred tasks, and it was readily
understandable by subjects.

Figure 2 shows an example. The task represented in the figure is to find the first and
last names and salary of teacher number 101.1 The icon represents the entity, in this
case a teacher, and the captions represent the attributes. Attributes with values are
restrictions and attributes without values specify the information to be retrieved. Other
icons used in the pictures are shown in figure 3. Primary icons involve a single type of
object (e.g.. students), and secondary icons involve a combination of primary icons (e.g.,
sections involve teachers and courses). Subjects could refer to a sheet showing these

icons and their meaning during the experiment.

1The actual representation used in the study was slightly different but the difference did not
affect understanding by the subjects. For more details, see [Bell, 1890 #53].
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Teacher Number: 101
& First Name: ___
Last Name: ___

q B

Figure 2: An example of pictorial task presentation.

Primary Secondafy

Xt o

Teachers Students

Activities

Involvements

Figure 3: The fcons used for pictures in the high school database.

Figure 4 shows a task description for a two table query. The task is to list all courses
taught by each teacher. Notice that the join is not specifically stated but is implied
because it uses attributes from different entities (Le., teachers and section). The
remainder of this section shows how this query can be entered into the three interfaces.

Figure 4: Task description: List all courses taught by each teacher.




21. SQL

The first interface was an artificial language (AL) interface called isql that used SQL
[3]. SQL uses English keywords (e.g., select, from, and where) to make it more readable
and easier to remember. SQL is claimed to be user friendly because it is a non-
procedural language. An SQL query that solves the sample task is:

select teachers.tfname, teachera.tiname, sections.dcode,
sections.cnusber, sections.speriod

froa teachers, sectlons

shere teachers.tnuaber = sections.tnuaber

22. Simplify

The second interface was a graphical language (GL) called Simplify developed by Sun
Microsystems [2]. Earlier versions of Simplify were developed at Xerox PARC [9].
Simplify is essentially a graphical interface to an SQL processor. A query constructed
in Simplify is translated into an SQL query which is then run. Consequently, Simplify
and SQL users specify the same commands but they enter the commands in different
ways.

Figure 5 shows a Simplify window that contains the éuery for the sample task. The
query is created by the following steps:

Graph Query Editor

Qualification
Window

Figure 5: A sample Simplify screen.2

2The entity baxes in Figure 5 are shown side-by-side to enhance readability.
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e Click on entity buttons for the tables in the query (Le., teachers and sections).
The entity boxes in the qualification window are displayed when the entity is
selected.

e Click on the attributes in the entity boxes that are to be included in the query.
Selected attributes are indicated by check marks (v) and are automatically
entered into the output format window.

e Click oh tnumber in teachers, select “Create a join” in a pop-up menu, and click
on tnumber in sections. This specifies the join between teachers and sections. A
line joining these two attributes is displayed.

The query is then executed by choosing “Execute query” in & pop-up menu. The query
result is displayed in another window.

2.3. DataTalker

The third interface was a natural language interface (NL), called DataTalker,
developed by Natural Language, Inc. [1]. It allows users to specify a query by entering
plain English on a keyboard.

One solution to the sample task is the following:

Show the courses taught by each teacher

It is important to realize that this is only one solution among many that the user can
enter to request this information. For example, another way to ask for this
information is:

List the teachers and their courses

One objective of a natural language interface is to allow a variety of questions to access
the same data.

All interfaces used the Ingres DBMS to store data. The SQL interface used in the
experiment was the isql full-screen editor supplied with Ingres 5.0. The Simplify
interface used was version 1.0 (beta) released in May 1989. The DataTalker interface
used was version 3.0 released in March 1989. The experiment was performed on a Sun 3
computer. The same database was used for all subjects.

S. The Experiment

The experimental design is shown in figure 6. Subjects were assigned to one of four
groups (the vertical axis) based on prior experience and were randomly assigned to one
of three treatments (the horizontal axis). Each subject worked through two phases: a
learning phase and a performance phase. The learning phase was composed of task
levels that covered seven types of queries. The query types taught in each level are
described in figure 7. The performance phase included queries to test how well the user
learned to use the interface to which they were assigned during the experiment.
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Figure 6: Experimental design.

LEVEL DESCRIPTION

-
)

One table, no restrictions

One table, one restriction

One table, two restrictions

One table, one or two restrictions, sorting

One table, no restrictions, aggregation counting

RIS

Two table join

L7 Three table join

Figure 7: Learning phase task level deﬁnmons.

Most subjects were drawn from students at the University of California at Berkeley.
They were all volunteers who responded to announcements or advertisements
soliciting subjects. Each subject spent about two hours working with one of the
interfaces. The subjects were classified according to prior computer experience as
shown in figure 8.

GROUP DEFINITION

Novice less than 10 hours of computer experience ever

End User experience with applications (e.g., spreadsheet or word
processing), but no programming experience

Programmer programming experience, but no database experience

Database User knowledgeable in SQL or QUEL

Figure 8: Subject group definitions.

Over 80 people participated in the experiment of which 55 were used for analysis.
Some subjects were used for a pilot study and others were rejected because they had



experience with the particular interface to which they were assigned. There were fifteen
subjects in each user group except for database users. Since the database users knew
SQL, none of them were assigned to the AL condition. Consequently, only ten database
users were included in the study.

Subjects were randomly assigned to one of the three treatments: AL, GL or NL.
Everything was identical about the three treatments except for the interface used and
the content of the help materials provided during the learning phase which is described
below.

Each subject was given a brief introduction to the experiment, the high school
database, and the pictorial task presentation method. The only information they were
given regarding the database is shown in figure 9 which was briefly explained
conceptually (e.g., “For every teacher, we know his or her department code, teacher
number, name, phone number, ..."). The ER diagram in figure 1 was not made available
to the subjects. - -

The subjects were told they would be getting information out of the computer using a
query language. After being given a sample task picture, the subjects were shown how
that task could be performed with the interface to which they were assigned.

Directory of Names
D.gfmt
Rovuge ek, ™ g ctes
$g Bl i e N e

o anzbe: ot
Teachers  Hochoom.  stbemerom
Balary stsalary

Student Number  msnumber
sgfname

First Name

Last Name ssiname

Btreot =gstrest

City =acity

g =

P P

Students Phons Number sgphone

Parent

Birth Date

Year

CaH e
Activities Involvements

Figure 9: Database attributes description sheet.




38.1. Learning Phase

Subjects then worked through the learning phase based on the procedure shown in
figure 10. Subjects were given a task beginning at level 1 which they were to perform. If
~ they could not solve the task, help was provided in the form of written advice. Help was
broken down into the four levels shown in figure 11. After completing the task, another
task of similar difficulty was given. These tasks were given until a task could be solved
without help at which point subjects were advanced to the next level. A minimum of two
task per level was required even if subjects could complete the first task without help.

Figure 10: Treatment in Leammgihase

LEVEL DESCRIPTION
Hint A two sentence description of the essence of the solution.
Example A query used to solve a similar task.

Explained | The steps followed to generate the example query. -
Example

Answer A query that would solve the current task.

Figure 11: Help level descriptions.

8.2. Performance Phase

After completing all levels, subjects moved to the performance phase of the
experiment. In the performance phase, subjects were give a series of tasks that
represented query types in the learning phase as well as query types not seen before. No
help was given during the performance phase. Subjects were allowed to work until they
were successful or until they were making no progress toward the solution. The
performance phase tasks and the corresponding learning phase levels are shown in
figure 12.

The non-existence and self-referential join tasks were included to see if subjects
were able to extend their knowledge of the interfaces to situations that had not been
explicitly taught, and to see how experts on each of the interfaces would deal with
complex tasks.



PERFORM. DESCRIPTION LEARNING

TASK LEVEL
P1 One table, no restrictions L1
P2 { One table, two restrictions 12 &L3
P3 One table, aggregate counting L5
P4 Three table join L7
PS5 Two table join, one restriction, sorting 14 &L6
P6 Non-existence none
P7 Self-referential join none

Figure 12: Performance phase task level definitions.

A non-existence query asks if particular instances do not exist. For example, find
all activities that have no student participants. A self-referential join query has a join
of a table to itself.

Each subject was videotaped during the experiment. Records were also kept by the
experimenter (J. Bell) during each session. These records included the time at each step
through the procedure (e.g., when the task was given, when help was given, when the
subject moved to next level, etc.) as well as verbal comments made by the subject and
difficulties the subject encountered (e.g., forgetting to clear out an old query before
creating a new query). In addition, for the AL and NL treatments, a transcript file was
recorded.

4. User Performance Results .-

The quantitative results of the performance phase of the study are presented in this
section. Two metrics were examined: success and average time to task completion.
Success is defined as completing a given task in a level. This metric assessed how well
subjects could perform a variety of tasks after the training they received in the learning
phase.

The second metric was the average time required to complete each task. The average
is considered only when tasks were successfully completed by at least half of the
subjects. This metric assessed how much work was required of subjects to complete
tasks in the performance phase.

The performance phase was divided into two groups: trained tasks (P1 thru P5) and
untrained tasks (P6 and P7). These groups will be examined below.

4.1. Trained Tasks

The first metric examined for the trained tasks was the success rate. The number of
tasks completed successfully out of all of the trained tasks is shown by user group and
by interface in figure 13. Five tasks (Le., P1 thru P5) were given to each of the five
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sSgQL SIMPLIFY DATATALKER
NOVICE 0 0 3
END USER 0] 0 S
PROGRAMMER 0 0 5
DB USER U 0 5

Figure 20: Number of subjects who were successful on non-existence task.

The number of subjects who were successful on the self-referential join query is
shown in figure 21. Only one subject, a database user using Simplify, was able to
perform this task. Hence, Simplify is capable of performing self-referential joins, but
most subjects were unable to discover how to do it. Furthermore, no SQL subjects were
successful because self-referential joins tn SQL are hard to figure out if you've never
done one before. No DataTalker subjects were able to perform the self-referential join.
This result does not mean that DataTalker cannot solve the task but that no one was
able to discover how to do it. We were somewhat surprised by these results since we
thought more subjects would get this query. This result suggests that subjects did not
really understand the join concept and/or the way joins are specified in the three
interfaces. Further study of this issue is needed.

sgL SIMPLIFY DATATALKER
NOVICE 0 0 0
END USER 0 0 0
PROGRAMMER o o ~ o
DB USER . 1 0

Figure 21: Number of subjects who were successful on self-referential task.

The timing data on the untrained tasks did not reveal any obvious patterns.

5. Qualitative Results

In a case study, qualitative data is a rich source of information which helps the
researcher understand more about the object of study. Subject comments both during
and after the experiment, common mistakes and usage patterns, and experimenter
observations all provided insight concerning what was easy and hard about each of
these interfaces for the different types of tasks in this study. This section contains a
discussion of the qualitative results as they relate to the following topics: 1) single and
multiple restriction tasks, 2) join tasks, 3) counting tasks, 4) unknowingly getting the
wrong answer, 5) compounded uncertainty, and 6) the natural language connection.
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. Single and Multiple Restrictions

For end users, the comparison between single and multiple restrictions highlights
some of the differences between S@QL, Simplify, and DataTalker. The number of tasks
needed to complete the single restriction level (level L2) during the learning phase was
the same on all interfaces. The number needed to complete multiple restrictions level
(level L3), however, varied widely. Simplify subjects required fewer tasks, while SQL
subjects required more tasks, and DataTalker subjects required even more tasks.

In Simplify, multiple restrictions are specified by repeatedly forming single
restrictions. A conjunction {i.e., ‘and’) is the implied connection between these
restrictions. Consequently, all that subjects had to do for multiple restrictions was
repeatedly apply what they learned for single restrictions. Multiple restriction queries
involved almost no learning beyond single restriction queries.

In SQL, multiple restrictions must be connected with the appropriate operator (‘and’
or ‘or). Few end users were able to figure this out without help, so the use of ‘and’ for
these queries had to be learned. Hence, multiple restriction queries involved some
learning beyond single restriction queries. The most common guess by subjects was the
use of a comma (). The use of the comma is very reasonable given that it is used for
conjunction in the select phrase.

In DataTalker, multiple restrictions are stated in standard English. Because of that,
they can be specified in a variety of ways. For example, the restriction “city="Berkeley’
and age>15" on students can be specified by any of the following phrases:

o which students live in Berkeley and are older than 15?

o of students who live in Berkeley, which are older than 15?

o which students live in Berkeley? which of them are older than 15?
e which students who live in Berkeley are older than 15?

Of these various statements subjects had to learn which would work with
DataTalker. Furthermore, these statements were very different from, and more
complex than, statements with only one restriction. Consequently, DataTalker users
had more to learn when beginning to work with multiple restrictions than users of SQL
or Simplify.

8.2. Joins

Joins between tables form a class of very difficult queries. In order to specify a join,
users must understand how a join operator works and they must understand the
structure of the tables they are to join.

In SQL, the method for specifying joins is generally easy to understand. All of the
tables to be joined are listed in the from phrase, and the joins are stated as restrictions
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in the where phrase in the form of relationl.attribute = relation2.attribute. Assuming
the user understands the join operation, the hard part is in knowing what to join. SQL

provides no help to the user so specifying a query is not easy. Some subjects expressed
the desire to write out the join on paper and then translate that into SQL.

Joins are easier to specify in Simplify than in SQL. After the appropriate tables
have been selected, lines are drawn between the attributes to be joined. The hard part
again is in determining what to join. However, Simplify’s graphical display of the join
seems to be helpful in thinking about it. Subjects could look at the display and quickly
verify their joins. In contrast, subjects using SQL had a harder time re-reading their
SQL join to see if it was right.

A problem with Simplify occurred when three table joins were attempted. Simplify
did not allow subjects to reposition tables in the window, and the default position was
1n a single column. The result was that the window had to be scrolled up and down to see
all of the tables. The problem was especially bad when both ends of a particular join
line could not be seen on the screen at one time. It was not possible in such cases to look
at the screen and immediately understand what the command was. Rather, the screen
had to be scrolled back and forth in order to see the entire command.

Specifying joins was an area in which DataTalker was clearly superior because
users did not have to specify joins at all. All potential joins in the database had to be
described to DataTalker in the connection process. When users asked a question that
nvolved attributes in separate tables, DataTalker automatically included the join
terms between the tables. Subjects who used DataTalker were unaware that joins ever
took place. In fact, some subjects thought that some of the two table join tasks had been
given before since they were so much like the earlier tasks in other respects.

This power of DataTalker is similar to the universal relation interface as described
by Mater, et al. [18]. A universal relation is a single relation that represents the entire
database. Hence, instead of having separate tables for teachers, students, courses and so
on, all attributes are in a single table. Users are freed from having to decide which table
to include and from having to specify any joins. They just need to specify which
attributes they want without reference to tables. Consequently, universal relation
interfaces have the potential of giving this power of DataTalker to an artificial or
graphical language interface.

Like DataTalker, however, the universal relation model has a problem with
ambiguity which needs to be resolved. A system based on the untversal relation model
must decide which underlying relations to join and what the join terms should be for
each query. The queries, however, may be ambiguous. For example, the query to list the
teachers and their courses could mean the teachers who teach each course or the
teachers who are the head of the department of each course. A universal relation
system, like DataTalker, must determine which interpretation the user intended since
the query itself did not uniquely identify the intended meaning.

17



SQL provides a similar though more limited functionality with views. Views are
pre-formed queries that can be treated by the user as if they were actual relations.
Moreover, views can be defined so as to provide a single relation for every potential
join. Users would only need to determine which view to use as opposed to determining
the right join terms. For example, one view would be the combination of teachers and
the courses they teach and another view would be the combination of teachers and the
courses in their department. The user only needs to decide which view is wanted. In
Simplify or in SQL without the views defined, users would have to decide which
relations to join and which join terms to use. In DataTalker or in a universal relation
interface, the system must try to determine which join is intended.

The disadvantage of using views is that the burden is on users to determine which
views to use. In this experiment, subjects were sometimes uncertain about which
relation to use. If views were defined for all possible joins, there would be more
‘relations’ to choose from, and the differences between them would be more subtle.
Choosing which relation to use, however, is undoubtedly much easier than figuring out
the join terms. More research is needed to determine how using views compares with
natural language and universal relation interfaces.

5.3. Counting

Counting was a very simple concept for subjects to understand, but it met with
varying difficulty in each of the interfaces. Subjects quickly realized what they were to
do, but they often had difficulty in doing it. Figure 22 contains the picture for a counting
task. This task asks for the number of students involved in each activity.

.-

A2y

_Figure 22: Oounu:gthask picture.

Figure 23 contains the SQL query that solves this task. In SQL, counting queries
involve two changes to the retrieval tasks. First, the phrase count(*) is added to the
select phrase. The asterisk (*) can be replaced with an attribute that identifies the
groups of objects to be counted. For example, count{acode) could be used for the example
task instead. The asterisk method was taught because it was believed to be easier to
learn. Second, a group by phrase was added after the from phrase. In the group by
phrase, attributes were entered to identify the groups of records to be treated together. In
the example, group by acode means that all involvements that have the same activity
code should be grouped and counted together.

18



select acode, count(*®)
fromn Iinvolveaents
group by acode

Figure 23: SQL query to solve the counting task.

Programmers had an especially hard time learning counting in SQL. They could not
see the logic in the use of the count and group by phrases. Consequently, they refused to
believe it had been designed as it appeared. Once they learned how it worked, however,
they were able to perform counting tasks relatively quickly. One database user noted
that he had to think about the data differently in order to understand counting tasks.
For the simple select commands not involving counting, he could think of the data as
stmple lists. However, in order to do the counting commands, he had to think of the
data as relational tables. Given this change in thinking, counting was not a problem for
him. ’

End users did not have this difficulty with counting in SQL. Some end users had the
attitude that it did not make much sense, but it worked, so they would go with it. The
programmers, on the other hand, wanted it to be more reasonable. The end users were
not as concerned about why things were they way they were. If it worked, they were
satisfied.

In Simplify, counting is specified by creating a computation on an attribute
representing the data to be counted. This language construct is equivalent to the
countfattribute) phrase in SQL. Simplify does not require a direct specification of the
group by phrase as in SQL. Rather, all attributes that are selected to be displayed are
included in the group by phrase. .-

Subjects had little trouble in Simplify once they found the pop-up menu containing
the create computation menu. There is a sub-menu under create computation that
allows different types of computation (e.g., max, min, and average). However, since
counting was the default, most subjects never used the sub-menu.

In DataTalker, counting tasks can be performed by telling the computer to count the
data, or by asking the computer how many records there are. Most subjects initially
asked the computer to show the number ¢f students tn each class. This sentence was
interpreted as referring to student numbers, instead of the number of students. Once
subjects read the first help given at this level suggesting the count and how many
phrases, however, they had almost no trouble at all.

8.4. Unknowingly Getting Wrong Answer

We expected to find that subjects using DataTalker would unknowingly get the
wrong answer more often than when using SQL or Simplify. However, this behavior
happened with about the same frequency on all systems.
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In DataTalker, the most common mistake involved teachers. Subjects would get a
list of courses and need to add the names of the teachers of the courses to that list. The
simplest approach was to say ‘include teachers.’ However, in some situations, this
command resulted in adding the teachers who were department heads of the department
of that course instead of the teachers who taught the course. If subjects had been paying
close attention, they might have been suspicious when all courses in each department
were taught by just one person, but none of them did. This task was not especially
complex, and the problem did not occur because of lack of knowledge by the user, though
greater knowledge might have made the users more aware of the possibility.

In SQL and Simplify, unknowingly getting the wrong answer occurred on the join,
non-existence, and self-referential join tasks, In each of these cases, subjects managed
to get an answer that had the right structure which they assumed was right but was not.
For example, in getting a list of students who were enrolled in MTH 110 second period,
some subjects got a list that included students of any MTH course, or students of any 110
course such as French or Art, or students in any course offered second period. All of
these problems resulted from using incorrect join terms. The result looked like a list of
students tn MTH 110 second period, but the data were incorrect. For tasks in SQL and
Simplify that subjects knew more about, this problem did not occur at all.

Generally speaking, the wrong answer occurred unexpectedly only at the fringes of a
subject's knowledge of the database and the interface they were using.

8.5. Compounded Uncertainty

Each part of a query that is uncertain in the user’s mind dramatically increases the
difficulty of completing the query. All combinations may have to be tried before finding
an appropriate way to write each part of the query.

This compounded uncertainty is most apparent in DataTalker. For example,
consider the query ‘List the departments with code MTH alphabetically.’ This task does
not work in DataTalker, so a user would have to determine what was wrong and fix it.
There are at least three different components to the query: the ‘list' component, the
math department component, and the sorting component. There could be problems
with any of these components or with the interaction between components. To fix the
query, subjects often experimented with each individual component until they were
successful. Users were fairly confident in ‘list’ since they used it for many queries, but
‘show’ and ‘include’ are possible alternatives. ‘Departments with code MTH’ could be
phrased many ways. For example, perhaps ‘department code’ should be used instead of
just ‘code.’ Or perhaps ‘MTH' should be in quotes or should not be capitalized. The
correct phrasing is ‘the MTH department.’ The sorting phrase ‘alphabetically’ was used
by subjects as they were first learning sorting in DataTalker. Other possible phrasings
include ‘in sorted order,’ ‘by department name,’ or ‘in alphabetical order.’ The correct
approach is not to sort until after the data has been retrieved. Consequently, three
versions of the list component, four versions of the departments component, and four
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versions of the sorting component give at least 48 possible phrasings of this query.
Partial success on queries may help users narrow the search, but many possibilities
remain to be tried, and none of these queries will be successful until sorting is put into a
separate query.

This problem highlights the need for a good connection with a natural language
interface. Any weakness in the connection compounds these problems.

In SQL, compounded uncertainty was less likely because subjects were more
confident in the standard parts of the query structure. Once they learned the basic
structure of select, from and where, they rarely called them into question. Instead, they
focused primarily on the new aspects of the current task level.

In Simplify, compounded uncertainty was the least likely because there was
fmmediate feedback. When a table was displayed on the screen, the subjects generally
knew very quickly whether or not it was the right table. Subjects did not have to worry
about syntax, so there was no uncertainty about forgetting a comma or using the wrong
word. The greatest uncertainty in Stmplify, as in SQL, was found with joins. For
example, subjects were uncertain about whether or not they had joined the appropriate
attributes.

8.6. Natural Language Connection

Ogden has noted that the quality of the connection must be considered when
evaluating natural language interfaces [20]. An inadequate connection can make a good
natural language system unusable. Furthermore, it is unreasonable to expect that
actual users will be able to develop as consistently good connections as the authors of a
natural language system. In practice, such connections cften take a long time to
produce, and they require repeated iterations of examining inputs that the system
cannot understand and modifying the knowledge base. Experts claim that this process
may take as long as 9 months. [16]

We spent several weeks working on the knowledge base. Then, a pilot study was run
with several users to debug the experimental design and the connection. Problem areas
were discussed with NLI and the changes they suggested were made. Nonetheless, not all
problems were fixed.

For example, DataTalker had trouble with the use of the words location and room
for the place of meeting for classes and activities. Classes can only meet in classrooms
whereas activities can meet in classrooms or in any other location. During the
experiment, references to locations were interpreted as referring to activities while
references to rooms were interpreted as referring to classes. Consequently, when
subjects asked about the location of classes, DataTalker attempted to form a join
between classes and activities. The closest join was to combine classes and activities
who were led by the same teacher. This join, however, was unrelated to the subjects’
queries.
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It may be possible for some of the problems encountered with the connection to be
fixed. Furthermore, new releases of DataTalker may also help. If these problems can be
resolved, we expect that subject performance on DataTalker will be better. How much
better, however, can only be determined by further experimentation.

6. Experts Experiment

This section describes the results of a small scale experiment that was performed
using expert users of each of the interfaces. This experiment serves as a benchmark to
compare with the performance of subjects in the performance phase. Only two experts
on each interface were included since the experts themselves were not to be studied.

This experiment was performed in exactly the same manner as the other
experiment. Subjects worked through the learning phase so they could learn about the
database in the same way that the other subjects did. Their performance in the
performance phase is presented here.

The same two metrics used in the performance phase of the other experiment were
also recorded for the experts. That is, we recorded their success and the amount of time
required to complete the queries.

The details of the performance of these experts can be found in [5]. Only the results
will be discussed here.

On all systems, experts did better than the best non-experts (programmers and
database users) but not by a wide margin. The experts were cften faster and more
successful though not always. -

The biggest difference between experts and non-experts was for subjects using SQL
on the untrained tasks. One or both of the SQL experts were able to complete these tasks
while no other subjects using SQL could complete them. This result is not surprising
since SQL has a great deal of power using features that are hard to learn. And, these
tasks are common problems that database users learn to solve. So what is probably
happening is that expertise implies being able to solve these types of problems.

Stmplify experts did not do much better than non-experts. This result was expected
because most of the functionality of Simplify is easy to find. All Simplify features that
the experts used were immediately available to non-experts in the menus on the screen.
This transparency is in sharp contrast to SQL where the more complex features cannot
be discovered without explicit teaching. This result supports the conventional wisdom
that graphical user interfaces are easy to learn and use.

DataTalker experts did no better overall than non-experts. Probably the most
tmportant experience for DataTalker users is experience on the actual database to be
used. Experience using DataTalker in other situations may be helpful, but performance
1s more dependent on knowledge of the specific words and phrases that work with a
specific connection rather than general experience with the interface.



7. Conclusions
The following conclusions can be drawn from this experiment.

7.1. No Interface is Best, Yet

It comes as no surprise that none of these interfaces outperforms the others in all
cases. Each does better under certain conditions. Furthermore, each interface can be
improved.

7.2. SQL Best for Experts and Novices

It also comes as no surprise that SQL is very effective for those with SQL expertise. If
users have the time and ability to learn it, SQL is the best all-around tool. However,
both Simplify and DataTalker have shown that they may be able to out do SQL even
among experts. For example, three table joins were performed by experts on Simplify
and DataTalker much faster than experts on SQL.

The surprise for SQL is that novices did very well on simple tasks. In the
performance phase, the success rate was about the same on SQL and Simplify, and the
time required to complete a task was slightly greater on S@QL than on either Simplify or
DataTalker. However, the learning phase and the qualitative data showed that SQL was
less complex for these users than either Simplify or DataTalker. Because of this
simplicity, novices were able to learn how to use SQL and how to recover from their
mistakes relatively well.

Simplify had a simple basic structure, but the use of a three button mouse was
difficult throughout the study for the novices.

The basic idea of DataTalker was easy to grasp for the novices, but they had a hard
time learning how to adjust to its idiosyncrasies. Consequently, they were less
consistent, though they could perform a broader range of tasks.

7.3. Simplify Best for Programmers When it Works

Simplify was very strong in general on the trained tasks, but was best for
programmers. These subjects learned Simplify quickly, and were very consistent in
their success. Simplify was also very good for end users, but DataTalker was better in
that category. One of Simplify’s greatest strengths was its ablity to help users with the
structure of the database. By seeing the list of tables on the screen, subjects could more
quickly choose the desired table, and they could verify that they got the right table by
checking the attributes that were displayed. Furthermore, subjects could think through
their joins by looking at the Stmplify query. Subjects could verify their query directly
by reading it, instead of having to interpret the query and then verify that -
interpretation as in SQL.



In contrast, Simplify did very poorly on the untrained tasks. Simplify was
incapable of performing one of these tasks, and the other did not fit within the users’
understanding of what Simplify queries meant. Furthermore, Stmplify did not support
disjunctions (i.e., ‘or’) for multiple restrictions. The greatest need of Simplify is the
ability to perform more types of queries. What it does, it does well, but its limits are too
narrow.

7.4. DataTalker Best for End Users, Otherwise Varied

DataTalker was strongest for end users. These subjects were able to perform a
greater variety of tasks, and they did as well as or better than end users on the other
interfaces throughout the tasks (aside from level P2). They did not have to concentrate
on the structure of the database or the relational operators of the tasks. Tasks that are
conceptually similar were similar from the subject’s point of view. In contrast,
conceptually similar tasks in SQL sometimes had to be solved with very different
queries.

DataTalker was generally powerful but inconsistent. Subjects sometimes did very
well, but they also did poorly at times. This inconsistency was overlooked by some
subjects, but it led to great aggravation for others.

We conclude that both the graphical and natural language interfaces tested show
promise as a better interface overall than the artificial language interface. Today,
however, the artificial language still has the best general applicability.

As our conclusions state, these results apply specifically to the interfaces tested.
However, to the extent that other query interfaces are like these interfaces, the same
results can be expected to apply [10]. For example, for other graphical languages that
follow a model similar to Simplify (e.g., VQL from Sybase [4]), and for other natural
language interfaces that have a similar coverage of English and allow a similar dialog
as in DataTalker, the same results can be expected to occur. Actual experimentation is
needed, however, to explore the similarity of other interfaces to these systems, and
consequently, the applicability of these results.

Many other topics for research in the comparison of interfaces for ad hoc database
query also remain. A focused study on each of the user groups, especially end-users,
needs to be performed in order to determine a specific and reliable comparison of the
three interface styles. Research should also be performed which focuses more on the
qualitative aspects such as evaluating user strategy when working with natural
language interfaces or developing a model of user knowledge and behavior when
working with query interfaces in general. Research should also consider other
interfaces such as NLMenu which is a menu-based interface to a natural language
system [27]. Finally, similar research should be performed as enhancements are made
to these interfaces in order to determine how relative user performance is affected.
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