
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A CASE STUDY OF AD HOC QUERY

LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/78

7 September 1990

A CASE STUDY OF AD HOC QUERY

LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/78

7 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A CASE STUDY OF AD HOC QUERY

LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/78

7 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Case Study ofAd Hoc Query Languages to Databases*

John E. Bell
Lawrence A. Rowe

Computer Science DMslon-EECS
University of California

Berkeley, CA 94720

ABSTRACT

Thispaperdescribes a casestudyperformed to compare three different Interface
styles for ad hoc query to a database. Subjects with wide ranging computer experience
performed queries ofvarying difficulty using either an artificial, graphical, or natural
language interface. AH three interfaces were commercial products. The study showed
that the artificial language was best for novices and Interface experts, the graphical
language wasbest forprogrammers, and the natural language was best forend users.

1. Introduction

Increasing computer powerand decreasing costs are causing radical changes in user
interfaces. Graphical and natural language interfaces are now practical alternatives to
alphanumeric Interfaces.This paper describes a case study that compared three
different interface styles for database query: 1)artificial language, 2) graphical
language, and 3) natural language.

Other researchers have compared different interfaces to query languages with
varyingsuccess. Reisner, Boyce, and Chamberlin compared a relational algebra query
language (SQUARE) and a relational calculus querylanguage (SQL) and found that the
relational calculus was easier for non-programmers to learn [23].

Greenblatt and Waxman [131 and Boyle, Bury and Evey (7] performed experiments
comparing SQLand Query-by-Example (QBE). QBEallows its users to fill-in blanks in a
two-dimensional table that is similar to the output format of the query [31]. Greenblatt
and Waxman concluded that QBE was better but they did not use actual systems. Boyle.
Bury and Evey used actualsystems and they found that subjects took longer to learn
QBEand that SQLwas better for sometypes of querieswhileQBEwas better forothers.

Shneiderman [24] and Small and Weldon [25] performed experiments that
comparedSQLand natural language. Their results were inconclusivebecause the
experimentswerelimitedby experimental designproblems(e.g.. limited query language
functionality) and by the lack of a workingnatural language interface.

Jarke. et aL [14] performed a field study that also compared SQL and natural
language, but again with inconclusive results. SQL appeared better than natural

t Research supported in partby a grant from BPAmerica and fay the National Science
Foundation under grant MIP 87-15557.

language because users achieved ahigher success rate onqueries. However, there were
very few subjects and little control of the experimental conditions.

Other experiments have been performed which studied only one interface (QBE [28]
orNL [21], (12), [22], [15], [11]) orwere designed to answer different questions(e.g..
procedural versusnon-procedural [29], different data models 117], [8], or programming
using natural language [6]).

This paper describes a case study comparing full function query languages with
sixtysubjects working on actual interfaces in a controlled environment. Subjects
ranged in computer experience finom none at all to experienced database userswith
programming experience. The tasks included simple queries (e.g., single table) to
complex queries (e.g.. multiple table and aggregate counting). Subject performance was
analyzed across interfaces and across tasktypes giving arich and broad picture ofthe
usability of these interfaces.

A case study was chosen astheresearch method for this studybecause oftheneed to
gain an understanding of how thesedifferent Interfaces compare as a prerequisite to
finding the result ofsucha comparison. Acase study, like ethnographic research,
allows us to rely on a variety of means of observation, to discover what questions
should be asked in a comparison of suchinterfaces, andto recognize the complexity of
comparing the use ofthese interfaces by actual users [30]. Theneed to emphasize
qualitative aspects ofresearch hasbeen recognized aswell by other researchers in
computer science (e.g., [19] and [26]).

This researchstands out fromthe previous researchbecause: 1) it is the first to
include a graphical interface for database query. 2) it is a controlled experiment that
used actual products, and3) It emphasizes the qualitative along with the quantitative
aspects to help understand the results we find.

The remainder of this paper describes the study and the results. Section 2 describes
the sample database and the three interfaces. Section 3 describes the details ofthe
experiment, including its design, the subjects involved, andthe treatment. Section 4
presents the quantitative results and section 5 presents the qualitative results. Section
6 describes a smallexpertsexperiment andthose results compared to the results
presentedin section4. Finally, section7 containsour conclusions.

2. The Experimental Database and Interfaces

The experimental database included information aboutstudents, teachers, classes
and activities for a high school. Figure 1 showsan entity-relationship diagram for the
database. Entities arerepresented by boxes, andrelationships arerepresented by
diamonds.

The high school database was chosen because itwould be familiar to an subjects and
it Is easy to understand. In addition, it has sufficient entities and relationships to allow
a varietyof simple and complexquestions to be asked.

Figure 1: ER diagram ofhigh school database.

A fundamental problem encountered when comparing different interfaces for the
same task is to find a fair method to present the task to the experimental subject. For
example, a natural language description of the task is inappropriate for this research
because one of the interfaces being compared Is a natural language interface which
could lead to biased results. In addition, a single task presentation method was needed
so that differences could be eliminated in how subjects using different interfaces
understood the task.

Other researchers have tried other task presentation methods Including: problem
solving [24], showing the answerwhichsubjects areto get [25], and missingdata [21]. We
chose a pictorial representation of the tasks because it causes minimal bias towardany
of the interfaces, it can represent all ofthe desired tasks, and it was readily
understandable by subjects.

Figure 2 showsan example. The task represented in the figure is to find the first and
lastnamesandsalary ofteacher number 101.J Theiconrepresents the entity,in this
case a teacher, and the captions represent the attributes. Attributes with values are
restrictions and attributes without values specify the information to be retrieved. Other
icons used in the pictures are shown in figure 3. Primaryicons involve a single type of
object (e.g.. students), andsecondary icons involve a combination of primary icons(e.g.,
sections involve teachers and courses). Subjects could refer to a sheet showing these
icons and their meaning during the experiment.

1The actualrepresentation used in the study was slightly different but the difference did not
affect understanding by the subjects. For more details, see [Bell, 1990#53].

Teacher Number 101
Krst Name: ___
Last Name: __

Salary:

Figure 2: An example of pictorial task presentation.

Primary

if Oh
Teachers Students

Intro
to

Courses

^3
Activities

Secondary

Involvements

Figure 3:The iconsused for pictures in the highschooldatabase.

Figure 4 shows atask description for atwo table query. The task is to list all courses
taught byeach teacher. Notice that theJoin isnot specificalry stated but is implied
because it uses attributes from different entities (Le.. teachers and section). The
remainderof this section shows howthis querycan be entered into the three interfaces.

Figure 4:Task description: List all courses taughtby each teacher.

2.1. SQL

The first interface was an artificial language (AL) interface called isql that used SQL
(3]. SQL uses English keywords (e.g., select from, and where) to make it morereadable
and easier to remember. SQL is claimed to be user friendly because it is a non
procedural language. An SQL query that solves the sample task is:

select teachers.tfnase, teochers.tInase, sect ions.dcode,
sectlons.enusber, sect Ions.speriod

froa teachers, sections
•here teachers.tnusber • sect Ions.tnuaber

2J2. Simplify

The second Interface was a graphical language (GL) called Simplify developed by Sun
Microsystems [2]. Earlierversions of Simplify were developed at Xerox PARC [9].
Simplify is essentially a graphical interface to an SQL processor. A query constructed
in Simplify is translated into an SQL query which is then run. Consequently, Simplify
and SQL users specify the same commands but they enter the commands in different
ways.

Figure 5 shows a Simplify window that contains the query for the sample task. The
query is created by the following steps:

Entity
Buttons

Figure 5; A sample Simplify screen/

2Theentityboxes in Figure 5 areshownside-by-side to enhancereadability.

Qualification
Window

Output
Format
Window

• Click on entitybuttons for the tablesin the query(te.. teachersand sections).
The entity boxes in the qualification windoware displayed when the entity is
selected.

• Click on the attributes in the entity boxes that are to be included in the query.
Selected attributes are indicated by check marks (•) and are automatically
entered into the output format window.

• Click on tnumber in teachers, select "Create a Join" in a pop-up menu, and dick
on tnumber In sections.This specifies the join between teachers and sections. A
line joining these two attributes is displayed.

The query is thenexecuted bychoosing -Execute query" in a pop-up menu. Thequery
result is displayed in another window.

23. DataTalker

The third Interface was a natural language Interface (NL). called DataTalker,
developed by Natural Language. Inc. HI. It allows usersto specify a query by entering
plain English on a keyboard.

One solution to the sample task Is the following:

Shoo the courses taught by each teacher

It is important to realize that this is onlyonesolution among many that the user can
enterto request this information. For example, another wayto ask for this
information is:

List the teachers and their courses

One objective ofa natural language intezface is to allow avariety ofquestions to access
the same data.

Allinterfaces used the Ingres DBMS to store data. The SQL interface used in the
experiment was the isql full-screen editor supplied with Ingres 5.0. The Simplify
interface used was version 1.0 (beta) released in May 1989.The DataTalkerinterface
used was version 3.0 releasedin March 1989.The experiment was performedon a Sun 3
computer. The same databasewas used forall subjects.

3. The Experiment

The experimental design is shown in figure 6. Subjects were assigned to oneof four
groups (the vertical axis) based onprior experience and were randomly assigned to one
of three treatments (the horizontal axis). Each subject worked through two phases: a
learning phase and a performance phase. The learning phase was composed oftask
levels that covered seventypes of queries. The querytypes taught in each level are
described in figure 7.The performance phase included queries to test howwell the user
learned to use the interface to which they were assigned during the experiment.

6

Novice

End-User

Programmer

Database User

Figure 6: Experimental design.

LEVEL DESCRIPTION

LI One table, no restrictions

L2 One table, one restriction

L3 One table, two restrictions

L4 One table, one or two restrictions, sorting

L5 One table, no restrictions, aggregation counting

L6 Two table Join

L7 Three table join

Figure 7: Learning phase task level definitions.

Most subjects were drawn firom students atthe University ofCalifornia at Berkeley.
Theywere allvolunteers whoresponded to announcements or advertisements
soliciting subjects. Each subject spent about two hours working with one ofthe
interfaces. The subjects were classified according to priorcomputer experience as
shown in figure 8.

GROUP

Novice

End User

Programmer

Database User

DEFINITION

less than 10 hours ofcomputer experience ever

experience with applications(e.g.. spreadsheet or word
processing), but no programming experience

programmingexperience, but no database experience

knowledgeable in SQL or QUEL

Figure 8: Subject group definitions.

Over 80 people participated In the experiment ofwhich 55were used for analysis.
Some subjects were used for a pilot study and others were rejected because theyhad

experience with the particular interface to which they were assigned. There were fifteen
subjects in each user group except for database users. Since the database users knew
SQL. none ofthem were assigned tothe AL condition. Consequently, only ten database
users were included in the study.

Subjects were randomly assigned to one ofthe three treatments: AL. GL or NL.
Everything was identical about the three treatments except for the interface used and
thecontent ofthe help materials provided during thelearning phase which is described
below.

Each subject was given abriefintroduction tothe experiment, the hi^h school
database, and the pictorial taskpresentation method. The only information they were
given regarding the database Is shown in figure 9which was briefly explained
conceptually (e.g.. "For every teacher, we know his or her department code, teacher
number, name, phone number...."). The ER diagram infigure 1was not made available
to the subjects.

The subjects were told they would begetting information outofthecomputer using a
query language. After being given asample task picture, the subjects were shown how
that task could be performed with the interface to which they were assigned.

Directory of Names

Teachers

di
Students

Courses

Department Coda
Teacher Number
Knt Name
Last Name
Phone Number
Home Boom
Salary

8tudent Number
First Name
Last Name
Street
City
8ute
sap
Phone Number
Parent
Birth Date
Year

•deode
•tnumber
•tfttame
•tiname
•tphone
•isomer oom
•taalary

••number
•sfhame
•tiname
••street
•sdty

•sdp
•tphone

DepartmentCede •deode
Course Number r

I Course Name *

Activity Oode
Activity Name
Location aalocstion
Time ••time
Teacher Number •tnumber

Activities

Department
Bead

Department Code adcode
Department Name •dname
DepartmentBead •dbeadtnumber

Departments

h
Sections

DepartmentCode adcode
Course Number -number
Period •speriod

••locationLocation
Number «tnumb*r

DepartmentCede •dcoto
Course Number •number
Feted •speriod
Student Number —number
Gradem aGjifrs!'

Enrollments

^m Activity Code
8tndent Number

Involvements

Figure 9; Database attributes description sheet.

8

3.1. Learning Phase

Subjects thenworked through the learning phase based onthe procedure shown in
figure 10. Subjects were given ataskbeginning atlevel 1which theywere to perform. If
they could not solve the task, help wasprovided in the form ofwritten advice. Help was
broken down into the four levels shown in figure 11. After completing the task, another
task of similardifficultywas given. These tasks were givenuntil a task could be solved
withouthelpat which pointsubjectswere advanced to the next level. A minimum oftwo
task perlevel was required evenif subjectscouldcomplete the first task without help.

-G
I

o^*HI11I

Qjpg)
Figure 10: Treatment in Learning Phase

LEVEL DESCRIPTION

Hint A two sentence description of the essence of the solution.

Example A query used to solve a similar task.

Explained
Example

The steps followed to generate the example query.

Answer A query that would solve the current task.

Figure 11: Help level descriptions.

&2. Performance Phase

After completing all levels, subjects moved to the performance phase of the
experiment. In the performance phase, subjects were give a series oftasks that
represented query types in the learning phase as well as query types not seen before. No
help was given during the performance phase. Subjects were allowed to work until they
were successful or until they were making no progress toward the solution. The
performance phase tasks and the corresponding learning phase levels are shown in
figure 12.

The non-existence and self-referentialJoin tasks were included to see if subjects
were able to extend their knowledge ofthe interlaces to situations that had not been
explicitly taught, and to see how experts on each of the interfaces would deal with
complex tasks.

9

PERFORM. DESCRIPTION

TASK

LEARNING

LEVEL

PI One table, no restrictions LI

P2 One table, two restrictions L2&L3

P3 One table, aggregate counting L5

P4 Three table join L7

P5 Two table join, one restriction, sorting L4&L6

P6 Non-existence none

P7 Self-referential Join none

Figure 12: Performance phase task leveldefinitions.

A non-existence query asks if particular instances do not exist. For example, find
all activities that haveno student participants. A self-referential Join query has aJoin
of a table to itself.

Each subject was videotaped during the experiment. Records were also kept by the
experimenter (J. Bell) during each session. These records included the time at each step
through the procedure (e.g., when the task was given, when help was given, when the
subject moved to next level, etc.) as well as verbal comments made by the subject and
difficulties the subject encountered (e.g., forgetting todear out an old query before
creating anew query). In addition, for the AL and NL treatments, atranscript file was
recorded.

4. User Performance Results

The quantitative results ofthe performance phase ofthe study are presented in this
section. Two metrics were examined: success and average time to taskcompletion.
Success isdefined ascompleting agiven task inalevel This metric assessed how well
subjects could perform avariety of tasks after the training they received in the learning
phase.

Thesecond metric wasthe average timerequired to complete each task.Theaverage
isconsidered only when tasks were successfully completed byatleast halfofthe
subjects. This metric assessed how much work was required of subjects to complete
tasks in the performance phase.

The performance phase was divided into two groups: trained tasks (PI thru P5) and
untrained tasks (P6 and P7). These groupswillbe examinedbelow.

4.1. Trained Tusks

The first metric examined for the trained tasks was thesuccess rate. The number of
tasks completed successfully out of all of the trained tasks is shown by user group and
by interface in figure 13. Five tasks (te.. PI thru P5) were given to each of the five

10

NOVICE

END USER

PROGRAMMER

DBUSER

Figure 20: Number ofsubjects who were successful on non-existence task.

The number of subjects who were successful on the self-referential join query is
shown in figure 21. Only one subject, a database user using Simplify, was able to
perform this task. Hence, Simplify is capable of performing self-referential Joins, but
most subjects were unable to discover how to do it Furthermore, no SQL subjects were
successful because self-referential joins in SQL are hard to figure out if youve never
done one before. No DataTalker subjects were able to perform the self-referential join.
This result does not mean that DataTalker cannot solve the task but that no one was

able to discover how to do it. We were somewhat surprised by these results since we

thought more subjects would get this query. This result suggests that subjects did not
really understand the join concept and/or the way joins are specified in the three
interfaces. Further study ofthis issue is needed.

NOVICE

END USER

PROGRAMMER

DBUSER

Figure 21: Number ofsubjects who were successful onself-referential task.

The timing data on the untrained tasks did not reveal any obvious patterns.

5. Qualitative Results

In a case study, qualitative data is a rich source of information which helps the
researcher understand more about the object of study. Subject comments both during
and after the experiment, common mistakes and usage patterns, and experimenter
observations all provided insight concerning what was easy and hard about each of
these interfaces for the different types oftasks in this study. This section contains a
discussion of the qualitative results as they relate to the following topics: 1) single and
multiple restriction tasks, 2) join tasks. 3) counting tasks, 4) unknowingly getting the
wrong answer. 5) compounded uncertainty, and 6) the natural language connection.

SQL SIMPLIFY DATATALKER

0 0 3

0 0 3

0 0 5

1 0 5

SSL SIMPLIFY DATATALKER

0 0 0
_ - J}

o o ~ 6
- : 0

15

5.1. Single and Mwltiple Restrictions

For end users, the comparison between single and multiple restrictions highlights
some ofthe differences between SQL. Simplify, andDataTalker. The number oftasks
needed tocomplete the single restriction level (level L2) during thelearning phase was
the same on all interfaces. The number needed to complete multiple restrictions level
(level L3). however, varied widely. Simplify subjects required fewer tasks, while SQL
subjects required more tasks, and DataTalker subjects required even more tasks.

In Simplify, multiple restrictions are specified by repeated*/ forming single
restrictions. A conjunction (Le.. 'and') is theimplied connection between these
restrictions. Consequently, allthat subjects had to do for multiple restrictions was
repeatedly apply what they learned for single restrictions. Multiple restriction queries
involved almost no learning beyond single restriction queries.

In SQL. multiple restrictions mustbeconnected with the appropriate operator ('and*
or'of). Few endusers were able to figure thisoutwithout help, sothe use of'and* for
these queries hadto be learned. Hence, multiple restriction queries involved some
learning beyond single restriction queries. The most common guess bysubjects was the
use ofa comma(•/). The use of the comma is veryreasonable given that it is used for
conjunction in the select phrase.

In DataTalker. multiple restrictions are stated in standard English. Because ofthat,
they can be specified in avariety ofways. For example, therestriction •city=,Berkeley*
andago15" on students canbe specified by anyofthe following phrases:

• which students live in Berkeley and are older than 15?

• of students who live in Berkeley, which are older than 15?

• which students five in Berkeley? which of them are older than 15?

• which students who live in Berkeley are older than 15?

Ofthese various statements subjects had to learnwhich would work with
DataTalker. Furthermore, these statements were very different from, and more
complex than, statements with only one restriction. Consequently. DataTalker users
had more to learn when beginning to workwithmultiple restrictions than users of SQL
or Simplify.

&2. Joins

Joins between tables form a class of very difficult queries. In order to specify a join,
usersmust understand howaJoin operatorworksandthey must understandthe
structure ofthe tables they are toJoin.

InSQL. the method for specifyingJoins is generally easy to understand. All ofthe
tables tobejoined are listed in thefrom phrase, andtheJoins are stated as restrictions

16

in the where phrase in the form of relationl.attribute «= relation2.attribute. Assuming
the user understands the join operation, the hard part is In knowing what to join. SQL
provides no help to the user so specifying a queryis not easy. Some subjects expressed
the desire to write out the join on paper and then translate that into SQL.

Joins are easier to specify In Simplify than in SQL. After the appropriate tables
have been selected, lines are drawn between the attributes to beJoined. The hard part
again Is in determining what to Join. However. Slmplifys graphical display of the join
seems to be helpful in thinking about it. Subjects could look at the display and quickly
verifytheirJoins. In contrast, subjects using SQLhad a harder time re-reading their
SQL join to see if it was right.

A problemwith Simplify occurred when three table joins were attempted. Simplify
did not allowsubjects to reposition tables in the window, and the default position was
in a singlecolumn. The result was that the windowhad to be scrolledup and down to see
all of the tables. The problem was especially bad when both ends of a particular join
line could not be seen on the screen at one time. It was not possible in such cases to look
at the screen and immediately understand what the command was. Rather, the screen
had to be scrolled back and forth In order to see the entire command.

Specifyingjoins was an area in which DataTalker was clearly superior because
users did not have to specify Joins at all All potentialJoins in the database had to be
described to DataTalker in the connection process. When users asked a question that
involved attributes in separate tables. DataTalker automatically included the Join
terms between the tables. Subjects who used DataTalkerwere unaware that joins ever
took place. In fact, some subjects thought that some of the two table join tasks had been
givenbefore since they were so much like the earlier tasks to other respects.

This powerof DataTalker is similar to the universal relation interface as described
by Maier. et al. 118). A universal relation is a single relation that represents the entire
database. Hence, instead of having separate tables for teachers, students, courses and so
on, all attributes are in a single table. Users are freed from having to decide which table
to include and from having to specify any joins. They Just need to specify which
attributes they want without reference to tables. Consequently, universal relation
interfaces have the potential of giving this power of DataTalker to an artificial or
graphical language interface.

Like DataTalker. however, the universal relation model has a problem with
ambiguity which needs to be resolved. A system based on the universalrelation model
must decidewhich underlying relationsto join and what the Join terms should be for
each query.The queries,however, may be ambiguous. Forexample, the query to list the
teachers and their courses could mean the teachers who teach each course or the

teachers who are the head of the department of each course. A universal relation
system, like DataTalker. must determine which interpretation the user intended since
the query itself did not uniquely Identify the Intended meaning.

17

SQL provides a similar though more limited functionality with views. Views are
pre-formed queries that can be treated bythe user as ifthey were actual relations.
Moreover, views canbe defined so as to provide a stogie relation for every potential
join. Users would only need todetermine which view touse as opposed todetermining
the right join terms. For example, one view would be the combination ofteachers and
thecourses they teach and another view would bethecombination ofteachers and the
courses to their department. The user only needs to decide which view iswanted. In
Simplify or to SQL without the views defined, users would have todecide which
relations toJoto and which Join terms touse. In DataTalker or toauniversal relation
interface, the systemmust try to determine which Join is intended.

The disadvantage ofusingviews isthat theburden is onusers to determine which
views to use. Inthis experiment, subjects were sometimes uncertain about which
relation to use. If views were defined for all possibleJoins, there would be more
•relations* to choose from, and the differences betweenthem would be more subtle.
Choosing which relation touse. however, isundoubtedly much easier than figuring out
the join terms. More research isneeded to determine how using views compares with
natural language and universal relation toterfaces.

53. Counting

Counting was avery simple concept for subjects tounderstand, butitmet with
varying difficulty toeach ofthe toterfaces. Subjects quickly realized what they were to
do. but they often had difficulty todoing it. Figure 22 contains thepicture for acounting
task. This task asks for the number of students Involved to each activity.

Figure 22: Counting task picture.

Figure 23contains theSQL query thatsolves thistask. InSQL, counting queries
involve two changes totheretrieval tasks. First, thephrase countf*j is added to the
select phrase. The asterisk f*0 can bereplaced with anattribute that identifies the
groups ofobjects to be counted. For example, oountfacode) could be used for the example
task instead. The asterisk method was taught because it was believed to be easier to
learn. Second, a group byphrase was added after thtfrom phrase. Inthe group by
phrase, attributes were entered to identify the groups tfrecords tobe treated together. In
the example, group byacode means that all involvements thathave the same activity
code should be grouped and counted together.

18

•elect ocode, count(*)
froi inuoluesents

group by ocode

Figure 23: SQL query tosolve thecounting task.

Programmers had an especially hardtime learning countingto SQL. They couldnot
seethe logic in the use ofthe count andgroup by phrases. Consequently, they refused to
believe it had been designed as it appeared. Oncethey learnedhow it worked, however,
they were able to perform counting tasks relatively quickly. Onedatabase user noted
that he had to think about the data differently to order to understand counting tasks.
For the simpleselectcommandsnot involvtog counting, he couldthink of the data as
simple lists. However, to order to dothe counting commands, he had to think of the
data as relational tables. Given this change to thinking, counting was not a problem for
him.

End users did not have this difficultywith counting to SQL. Some end users had the
attitude that it did not make much sense, but it worked, so they would go with it The
programmers, onthe otherhand, wanted it to be more reasonable. The end userswere
not as concerned about why things were they way they were. If it worked, they were
satisfied.

In Simplify, countingis specified by creating a computation on an attribute
representing the data to be counted. This language construct is equivalent to the
counUattribute) phrase to SQL. Simplify does not require a direct specification of the
oroup by phrase as to SQL. Rather, all attributes that are selected to be displayed are
included to the group by phrase.

Subjects had little trouble to Simplify once they found the pop-up menu containing
the create computation menu.There is a sub-menu under create computation that
allows differenttypes of computation (e.g.. max. mm, and average). However, since
countingwas the default, most subjectsneverused the sub-menu.

In DataTalker. counting tasks canbe performed by telling the computerto count the
data, orby asking the computer how manyrecords thereare. Most subjectsinitially
asked the computer to show thenumber ofstudents ineachdoss. This sentence was
interpreted asreferring to studentnumbers. Instead ofthe numberofstudents. Once
subjects read the first help given atthis level suggesting the count and how many
phrases, however, they had almostno trouble at all.

5.4. Unknowingly Getting Wrong Answer

Weexpected to find that subjects usingDataTalkerwould unknowingly getthe
wrong answer more often thanwhen using SQL orSimplify. However, this behavior
happenedwith about the same frequency on all systems.

19

In DataTalker, the most common mistake Involved teachers. Subjects would get a
list ofcourses and need to add the names of the teachers ofthe courses to that list. The
simplest approach wasto say'Include teachers/ However, to somesituations, this
command resulted to addingthe teacherswho were department heads of the department
of that course Instead of the teachers who taught the course. If subjects had been paying
close attention, they might have been suspiciouswhen allcourses to each department
weretaught by just one person, but noneofthem did. This task wasnot especially
complex, andthe problem didnot occur because of lackof knowledge by the user, though
greater knowledge might havemadethe users moreaware of the possibility.

In SQL and Simplify, unknowingly gettingthe wrong answer occurred on the Join,
non-existence, and self-referential join tasks. In each of these cases, subjects managed
to get an answerthat had the right structurewhichthey assumed was rightbut was not
Forexample, to getting a list of students who were enrolled to MTH 110 second period,
some subjectsgota list that Included students of any MTH course, or students of any 110
course such as French or Art. or students to any course offered second period. All of
these problemsresulted from using incorrect Join terms. The result looked like a list of
students to MTH 110 second period, but the data were incorrect For tasks to SQL and
Simplify that subjects knew more about, this problem did not occur at all.

Generally speaking, the wrongansweroccurred unexpectedly only at the fringes of a
subject's knowledge of the database and the interface they were using.

5.5. Compounded Uncertainty

Each part of a query that is uncertain to the user's mind dramatically Increases the
difficulty of completingthe query. All combinationsmay have to be tried before finding
an appropriate way to write each part ofthe query.

This compounded uncertainty is most apparent to DataTalker. For example,
consider the query list the departments with code MTH alphabetically.* This task does
not work in DataTalker. so a user would have to determine what was wrong and fix it.
There are at least three different components to the query: the list* component, the
math department component, and the sorting component There could be problems
with any of these components or with the interactionbetween components. To fix the
query, subjects often experimented with each individual component until they were
successful. Users were fairly confident to list* since they used it lor many queries, but
'show' and Include* are possible alternatives. *Departments with code MTH* could be
phrased manyways. For example, perhaps'department code* should be used instead of
just 'code.'Or perhaps *MTH* should be to quotes or should not be capitalized. The
correct phrasing is the MTH department' The sorting phrase 'alphabetically* was used
by subjects as they were first learning sorting to DataTalker. Other possible phrasmgs
include 'in sorted order.* *bydepartment name.* or In alphabetical order.* The correct
approach is not to sort until after the data has been retrieved. Consequently, three
versions of the list component, four versions of the departments component, and four

20

versions of the sorting component give at least 48 possible phrastogs of this query.
Partial success on queries may help users narrowthe search, but many possibilities
remato to be tried, and none ofthese queries will be successful until sorting is put into a

separate query.

This problem highlights the need for a good connection with a natural language
interface. Any weakness to the connection compounds these problems.

In SQL, compounded uncertainty was less likely because subjects were more
confident to the standard parts of the query structure. Once they learned the basic
structure of select,fromand where, they rarely calledthem into question. Instead, they
focused primarilyon the new aspects ofthe current task level.

In Simplify, compoundeduncertaintywas the least likelybecause there was
Immediate feedback. When a table was displayed on the screen, the subjects generally
knew very quicklywhether ornot it was the righttable. Subjects did not have to worry
about syntax, so therewas no uncertainty about forgetting a commaorusing the wrong
word. The greatest uncertaintyto Simplify, as in SQL, was foundwith joins. For
example, subjectswere uncertain aboutwhetherornot they hadjoinedthe appropriate
attributes.

5.6. Natural Language Connection

Ogden hasnoted that the quality oftheconnection must be considered when
evaluating natural language toterfaces [201. Aninadequate connection can make a good
natural language system unusable. Furthermore, it is unreasonable to expect that
actual users will be able to develop as consistently good connections as the authorsofa
natural language system. In practice, such connections often take along time to
produce, and they require repeated iterations ofexamining inputs thatthe system
cannotunderstand and modifying the knowledge base. Expertsclaimthat this process
may take as long as 9 months. [16]

We spent several weeks working ontheknowledge base. Then, a pilot studywas run
with several usersto debug the experimental design andthe connection. Problem areas
were discussed withNU andthe changes theysuggested were made. Nonetheless, not all
problems were fixed.

For example. DataTalker hadtrouble with the use ofthe words location androom
for the place ofmeeting for classes and activities. Classes can only meet to classrooms
whereas activities can meet in classrooms or to any other location. During the
experiment, references to locations were interpreted asreferring to activities while
references to rooms were interpretedas referring to classes. Consequently, when
subjects asked about thelocation ofclasses. DataTalker attempted to form aJoin
between classes and activities. The closestJoin was to combine classes and activities
who were led bythe same teacher. This join, however, was unrelated to the subjects'
queries.

21

Itmaybe possible for some ofthe problems encountered with theconnection tobe
fixed. Furthermore, new releasesof DataTalker may alsohelp. If these problems can be
resolved, weexpect that subject performance onDataTalker will be better. How much
better, however, can only be determined by further experimentation.

6. Experts Experiment

This section describes the results of a small scale experiment that was performed
using expert users ofeach oftheinterfaces. This experiment serves asabenchmark to
compare withthe performance ofsubjects to the performance phase. Only twoexperts
on each interfacewere included since the experts themselves were not to be studied.

This experiment was performed to exactly the same manner as the other
experiment. Subjects worked through the learning phase sotheycould learn about the
databaseto the same way that the other subjects did.Their performance to the
performance phase is presented here.

The same two metrics used in the performance phase ofthe other experiment were
alsorecorded for the experts. That Is. we recorded their success and the amount of time
required to complete the queries.

The details of the performance of these expertscan be found to [5]. Onlythe results
will be discussed here.

On allsystems, expertsdidbetterthan the best non-experts (programmers and
database users) but not by a wide margin.The experts were often faster and more
successful though not always.

The biggest difference between experts andnon-experts was for subjectsusing SQL
on the untrained tasks. One or both ofthe SQL experts were able to complete these tasks
while no other subjects using SQLcould complete them. This result is not surprising
since SQLhas a greatdealof power using features that arehard to learn.And, these
tasks are common problems that database users learn to solve. So what is probably
happening is that expertise Implies being ableto solvethese types of problems.

Simplify expertsdid not domuch better than non-experts. This result was expected
because most of the functionality of Simplify is easy to find. AH Simplify features that
the experts used were immediately available to non-experts in the menus on the screen.
This transparency is to sharp contrast to SQLwhere the more complex features cannot
be discovered without explicit teaching. This result supports the conventional wisdom
that graphicaluser interfaces are easy to learn and use.

DataTalker experts did no better overall than non-experts. Probably the most
importantexperience for DataTalker users is experience on the actual database to be
used. Experience using DataTalker to other situations may be helpful, but performance
Is more dependent on knowledge of the specificwords and phrases that work with a
specific connection rather than general experience with the interface.

22

7. Conclusions

The following conclusions can be drawn from this experiment.

7.2. No Interface is Best, Yet

It comes as no surprise that none of these toterfaces outperforms the others in all

cases. Each does better under certain conditions. Furthermore, each interface can be

improved.

7J2. SQL BestjbrExperts and Novices

It also comes as no surprise that SQL is very effective for those with SQL expertise. If
users have the time and ability to learn it. SQL is the best all-around tool. However,
both Simplify and DataTalker have shown that they may be able to out do SQL even
among experts. For example, three table joins were performed by experts on Simplify
and DataTalker much faster than experts on SQL.

The surprise for SQL is that novices did very well on simple tasks. In the
performance phase, the success rate was about the same on SQL and Simplify, and the
time required to complete a task was slightly greater on SQL than on either Simplify or
DataTalker. However, the learning phase and the quahtative data showed that SQL was
less complex for these users than either Simplify or DataTalker. Because of this
simplicity, novices were able to learn how to use SQL and how to recover from their
mistakes relatively well.

Simplify had a simple basic structure, but the use ofa three button mouse was
difficult throughout the study for the novices.

The basic idea ofDataTalker was easy to grasp for the novices, but they had a hard
time learning how to adjust to Its idiosyncrasies. Consequently, they were less
consistent, though they could perform a broader range of tasks.

73. Simplify Bestfor Programmers When It Works

Simplify was very strong in general on the trained tasks, but was best for
programmers. These subjects learned Simplify quickly, and were very consistent to
their success. Simplify was also very good for end users, but DataTalker was better to
that category. One of SlmpUfy'sgreatest strengths was its ability to help users with the
structure ofthe database. By seeing the list oftables on the screen, subjects could more
quickly choose the desired table, and they could verify that they got the right table by
checking the attributes that were displayed. Furthermore, subjects could think through
their joins by looking at the Simplify query. Subjects could verify their query directly
by reading It, instead of having to interpret the query and then verify that
interpretation as to SQL.

23

In contrast. Simplify did very poorly onthe untrained tasks. Simplify was
incapable ofperforming one ofthese tasks, and the other did not fit within the users'
understanding ofwhat Simplify queries meant. Furthermore. Simplify did not support
disjunctions (i.e.. 'or*) for multiple restrictions. The greatest need of Simplify isthe
ability toperform more types ofqueries. What it does, it does well, butitslimits are too
narrow.

7.4. DataTalkerBestjbrEnd IXsers, OtherwiseVarM

DataTalker was strongest for end users. These subjects were able to perform a
greatervariety oftasks, and they did as well as or better than end users on the other
toterfaces throughout thetasks (aside from level P2). They did nothave to concentrate
on the structure of the database orthe relational operators ofthe tasks. Tasks that are
conceptually similar were similar from the subject's point ofview. In contrast.
conceptually similar tasks to SQL sometimes had tobesolved with very different
queries.

DataTalker wasgenerally powerful but inconsistent Subjects sometimes did very
well, but they also did poorly at times. Thisinconsistency wasoverlooked by some
subjects, but it led to great aggravation for others.

We conclude that both the graphical andnatural language toterfaces tested show
promise as a betterinterface overall than the artificial language interface. Today,
however, the artificial language still has the best general applicability.

As our conclusions state, these results apply specificallyto the toterfaces tested.
However, to the extent that other query interfaces are like these interfaces,the same
results canbe expected to apply [101. For example, for other graphical languages that
follow a model similar to Simplify (e.g.. VQL from Sybase [4)). and for othernatural
language toterfaces that have a similar coverage ofEnglish and allow a similar dialog
as to DataTalker. the same results can be expected to occur. Actual experimentation is
needed, however, to explore the similarity of otherinterfaces to these systems, and
consequently, the applicability of these results.

Many other topics for research to the comparison oftoterfaces for adhoc database
query also remain. A focused studyoneach ofthe usergroups, especially end-users,
needsto be performed to order to determine a specific andreliable comparison ofthe
threeinterface styles. Research should also be performed whichfocuses moreon the
qualitative aspects such as evaluating userstrategywhenworking with natural
language interfaces ordeveloping amodel ofuserknowledge andbehaviorwhen
working with query interfaces to general. Research shouldalsoconsider other
toterfaces such as NLMenu which is a menu-based interface to a natural language
system [271. Finally, similar research should beperformed asenhancements are made
to these Interfaces to order to determine how relative user performance Is affected.

24

References

1. "Natural Language™ Database Retrieval System User Manual." 1988.

2. "SunSimpllfy™ 2.0 Reference Manual." 1989.

3. "Using INGRES Through Form and Menus." 1989.

4. "VQL." 1989.

5. Ben. J. E. "ACase Study of Ad Hoc Query Interfaces to Databases." Ph.D.
Dissertation. University of California. Berkeley. 1990.

6. Bierman, A W.. B. W. Ballard and A H. Sigmon. "An experimental study ofnatural
language programming." International Journal of Man-Machine Studies. 18: 71-
87.1983.

7. Boyle. J. M.. K. F. Bury and R J. Evey. "Two studies evaluating learning and use of
QBE and SQL." Proceedings of the Human Factors Society 27th Annual Meeting.
1983. Santa Monica, CA Human Factors Society.

8. Brosey, M. and B. Shneiderman. "Two experimental comparisons of relational and
hierarchical database models." International Journal of Man-Machine Studies.

10: 625-637.1978.

9. Cattell. R G. G. "An Entity-based Database User Interface." ACM SIGMOD. 144-150.
1980.

10. Cornfield, J. and J. W. Tukey. "Average values of mean squares to factorials."
Annals of Mathematical Statistics. 27: 907-949.1956."

11. Damerau. F. J. "Operating statistics for the transformational question answering
system." American Journal of Computational Linguistics. 7: 30-42. 1981.

12. Fink, P. K.,A H. Sigmon and A W. Blermann. "Computer control via limited
natural language." IEEETransactions on Systems, Man, and Cybernetics. 15: 54-
68,1985.

13. Greenblatt D. and J. Waxman. "Astudy ofthree database query languages."
Databases: Improving Usability and Responsiveness. Shneiderman ed. 1978.
Academic Press, Inc. New York.

14. Jarke, M„ J. A Turner. E. A Stohr. Y. Vasslllous. N. W. White and K. Michielsen. "A
field evaluation of natural language for data retrieval." IEEE TSE. SE-ll(l): 97-
114.1985.

15. Krause. J. "Natural language access to informationsystems. An evaluation study of
its acceptance by end users." Information Systems. 5:297-319.1980.

16. Limperis, E. Personal communication. 1990.

25

17. Lochovsky. G. H. "Data base management system user performance." Ph.D.
Dissertation. University of Toronto. Canada. 1978.

18. Maier. D.. D. Rozenshteln, S.C. Sarveter. J. Steto andD. S.Warren. Toward logical
data independence: Arelational query language without relations." ACM SIGMOD
Conference. 1982.

19. Moher. T. G. "Estimating the distribution ofsoftware complexity within a
program." CHI '85 Proceedings. 61-64.1985.

20. Qgden. W. C. "Using Natural Language Interfaces." Handbook ofHuman-Computer
Interaction. Helander ed. 1988. Elsevier Science Publishers.

21. Qgden. W. C. and S. R Brooks. 'Query Languages for the Casual User Exploring the
Middle Ground betweenFormaland NaturalLanguages." CHT83. 161-165.1983.

22. Ogden. W. C. andA Sorknes. "What do userssayto theirnaturallanguage
Interface?" Proceedings ofInteract '87 - 2nd IFIP conference on Human-Computer
Interaction. 1987. Amsterdam. Elsevier Science.

23. Relsner. P., R F.Boyce andD. D. Chamberlto. "Human factors evaluation oftwo
database query languages - Square andSequel." National Computer Conference.
1975. Anaheim, CA AFIPS.

24. Shneiderman, B. "Improving the humanfactors aspectofdata base interactions."
ACM TODS. 8(4): 417-439.1978.

25. Small. D.W. and L. J. Weldon. "An experimental comparisonofnatural and
structured querylanguages." HumanFactors. 25:253-263,1983.

26. Soloway. E., K. Ehrlich andJ. B. Black. "Beyond Numbers: Dont Ask *How
Many*..Ask "Why'." Proceedings ofthe Conference on Human Factors to
Computing Systems. 1983. Boston, MA

27. Tennant. H. R. K. M. Ross and C.W.Thompson. "Usable natural language
toterfaces throughmenu basednatural language underetanding." CHI 1983
Conference on Human Factors to Computer Systems. 1983. Boston, MA North-

Holland.

28. Thomas, J. C. and J. C. Gould. "Apsychological study of query by example."
National Computer Conference. 1975. Anaheim, CA AFIPS.

29. Welty. C. and D. W. Stemple. "HumanFactors Comparison ofa Procedural and a
Nonprocedural QueryLanguage." ACM TODS. 6:626-649,1981.

30. Wolcott, H. F. "Ethnographic research to education." Complementary methods for
research to education. Jaeger ed. 1988.AmericanEducational Research
Association. Washington, DC.

31. Zloof, M. M. "Query by Example." National Computer Conference. 1975. Anaheim.
CA. AFIPS.

26

