
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PICASSO REFERENCE MANUAL

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, and Brian Smith

Memorandum No. UCB/ERL M90/79

11 September 1990

PICASSO REFERENCE MANUAL

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, and Brian Smith

Memorandum No. UCB/ERL M90/79

11 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PICASSO REFERENCE MANUAL

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, and Brian Smith

Memorandum No. UCB/ERL M90/79

11 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

+

PICASSO Reference Manual'

(Version 1.0 My 15,1990)

Patricia Schank, Joe Konstan, Chung Liu
Lawrence A. Rowe, Steve Seitz, and Brian Smith

Computer Science Division - EECS
University of California

Berkeley, CA 94720

Abstract

PICASSO is an object-oriented graphical user interface development system. The system
includes an application framework, an interface toolkit, a constraint system, and a per
sistent object interface to a relational database system.

The application framework includes high-level abstract objects (i.e„ frames, forms, dia
log boxes, and panels) that simplify the construction of graphical applications which use
multiple windows, pulldown menus, dialogboxes, andelectronic forms. The toolkit con
tains a library of predefined interface widgets (e.g., buttons, menus, text fields, table
fields, graphics fields, image fields, etc.) and geometry managers with which sophisti
cated interface abstractions can be built The constraint system is usedto bindvariables
to widgets and to implement triggered behaviors. The persistent object database inter
face provides an easy-to-use database interface.

PICASSO is written in Common Lisp and the Common Lisp Object System and runs on
the X Window System.

This research was supported by the National Science Foundation (Grants DCR-8507256 and MTP-
8715557), 3MCorporation, and Siemens Corporation.

Table of Contents

Chapter 1: INTRODUCTION
Overview 1-2

What is Picasso? 1-2

Why Use PICASSO 1-3
About this manual 1-4

Chapter* WINDOWS
Overview 2-6

Windows 2-7

Window Management 2-18
X-windows 2-23

Opaque Windows 2-27
Chapter 3: RESOURCES

Overview 3-29

Colors and Colormaps 3-31
Images 3-34
Cursors ; 3-35

Tiles 3-36

Icons 3-38

Fonts 3-39

Displays 3-41
Screen 3-41

Graphics Contexts 3-42
Chapter 4: APPLICATION FRAMEWORK

Overview 4.43

PO Persistence and Naming 4-44
Argument Passing 4.47
Tools 4-49
Forms 4.55
Callable PO's 4-60
Frames 4-61
Dialog Boxes 4-64
Panels 4-67

Chapter 5: PICASSO DATA MODEL
Overview 5-70
Variables 5-70
Constants 5-71
Referencing Variables and Constants 5-72
Databases 5.74

PICASSO Reference Manual i

TABLE OF CONTENTS

Chapter 6: PROPAGATION AND TRIGGERS
Overview 6-80
Bindings 6-80
Triggers 6-91

Lazy Evaluation 6-93

Chapter 7: COLLECTIONS
Overview 7-96

Collections 7-96

Anchor-GM 7-101

Packed-GM 7-104

Stacked-GM 7-106

Matrix-GM 7-107

Null-GM and Root-GM 7-108

Chapter 8: WIDGETS AND GADGETS
Overview 8-110

Gadgets 8-110
Widgets 8-111
Synthetic Gadgets 8-111
Borders 8-113

Labels 8-115

Chapter 9: TEXT
Overview 9-118

Text Gadget 9-118
Buffer 9-120

Text Buffer Gadget 9-122
Text Widget 9-127
Scrolling Text Widget 9-128
Entry Widget 9-129
Num Entry 9-129

Chapter 10: BUTTONS

Overview 10-131

Buttons 10-131

Gray Buttons 10-134
Pop Buttons 10-135
Gray Pop Buttons 10-137
Click Buttons 10-137

Button Groups 10-138
Radio Button Groups 10-140
Check Button Groups 10-141
Implicit Buttons 10-142

PICASSO Reference Manual ii

TABLE OF CONTENTS

Chapter 11: CONTROLS
Overview 11-143

Scroll Bars 11-143

Chapter 12: IMAGES
Overview 12-151

Image Gadget 12-151
Chapter 13: MENUS

Overview 13-155

Menu Bars 13-155

Menu Entries 13-156

Menu Panes 13-159

Menu Buttons 13-160

Menu Interaction 13-161

Implicit Menus 13-162

Chapter 14: TABLES
Overview 14-164

Browse Widgets 14-164
Matrix-Field 14-167

Table-Field 14-185

List-Box 14-190

Chapter 15: GRAPHICS
Overview 15-193

Graphic Gadgets 15-193
Graphic Browsers 15-214

Chapter 16: APPLICATION-SPECIFIC WIDGETS
Overview 16-218
Meter Widget 16-218
Qual Widget 16-220
Plot Widget 16-222

Chapter 17: LIBRARY PICASSO OBJECTS
Overview 17-226
library Panels and Dialogs 17-226
Facility Manager Tool 17-228
Tool Editor 17-228
Robbie the Robot Tool 17-229
Widgets at an Exhibition Tool 17-229
Employee/ Department Browser 17-230

Chapter 18: DEFAULTS
Overview 18-232
Selecting Defaults 18-232

PICASSO Reference Manual iii

TABLE OF CONTENTS

Requesting Defaults 18-235
Utilities 18-237

Chapter 19: REFERENCES
Function Index: index-1

PICASSO Reference Manual iv

INTRODUCTION

INTRODUCTION

Overview PICASSO is a graphical user interface (GUI) development system
for application programmers. The PICASSO application frame
work provides high-level abstractions including modal dialog
boxes and non-modal frames and panels that can be used to define
an application. These abstractions are similar to procedures and
co-routines in a conventional programming language procedures
and co-routines. Local variables can be defined, and they can be
called with parameters.

The toolkit contains a library of predefined high-level abstractions
(e.g. buttons, scrollbars, menus, forms, etc.), geometry managers,
and a constraint system. The constraint system is used to bind pro
gram variables to widgets, to implement triggered behaviors, and
to implement multiple views of data.

The system is implemented in Common Lisp using the Common
Lisp Object System [Kee88] and the CLX interface [ScL89] to the
X Window System [ScG86].

This chapter is organized as follows:

• What is Picasso?

• Why use Picasso?

• About this manual

What is

PICASSO?
PICASSO is a graphical user interface (GUI) development system
that includes an interface toolkit and an application framework.
The application framework provides high-level abstractions and
other infrastructure to support the development of GUI applica
tions.

The PICASSO framework includes five object types: tools (or
applications), forms, frames, dialog boxes, and panels. An appli
cation is composed of a collection of frames, dialog boxes, and
panels. A form contains fields through which data can be
displayed, entered, or editedby the user. A frame specifies the pri
mary application interface. It contains a form and a menu of
operations the user can execute. A dialog box is a modal interface
that solicits additional arguments for an operation or user
confirmation before executing a possibly dangerous operation
(e.g., deleting a file). A panel is a nonmodal dialog box that

PICASSO Reference Manual 1-2

INTRODUCTION

typically presents an alternative view of data in a frame or another
panel.

The PICASSO toolkit contains a library of predefined interface
abstractions (e.g., buttons, scrollbars, menus, forms, etc.),
geometry managers, and a constraint system.

PICASSO is an object-oriented system implemented in Common
Lisp using the X Window System [ScG86]. The toolkit, frame
work, and user applications are implemented as Common Lisp
Object System (CLOS) objects [Kee88]. A CLOS class is defined
for each type of framework object (e.g., application, frame, form,
dialog box, and panel). Instances of these classes are called
PICASSO objects (PO's). Each PO type has a different visualiza
tion and control regime. The toolkit widgets that implement the
visualization and control (e.g., title bars, buttons and menus) are
automatically generated when a PO is created. Examples of a
number of library PO's, as well as several complete PICASSO
applications, are given in Chapter 18.

PO's are stored in an external database and loaded into the applica
tion when needed. They are shared by different applications
because the database is shared. Commonly used PO's (e.g., a file
directory browser and an errormessage dialog box) are provided to
maintain interface consistency between different applications.

A direct manipulation interface builder for defining POs is
currently being developed to help application programmers create
and modify applications. Forms will be defined by selecting widg
ets from a palette and placing them, with the mouse, at the desired
location in a window. Field attributes (e.g. border, default values,
etc.) will be changed interactively. Similar interfaces will be pro
vided to define other PO types and code. The toolkit and interface
builder will be extensible so that developers can add new interface
abstractions to the system.

Why Use PICASSO provides capabilities that are similar toother application
PICASSO frameworks including Garnet [Mye89], Interviews [Lin89],

MacApp [Sch86], and Smalltalk [Gol83].

PICASSO provides a rich library of predefined interface widgets
and gadgets for creating abstractions such as buttons, menus,
scrollbars, forms, tables, images, etc., as described in Chapters 9
through 17 of this manual. These predefined widgets and gadgets
simplify coding because they can be reused. PICASSO also pro
vides a high-level framework for constructing applications, which
simplifies application building by providing application templates

Picasso Reference Manual 1-3

About this

manual

NOTATION

INTRODUCTION

that can be filled in by developers.

This reference manual describes the PICASSO toolkit, framework,
and programming model. The programming constructs described
are shown as extensions to Lisp. Most users will not see these tex
tual specifications because a direct manipulation interface builder
is being developed to create and modify applications. Additional
information about the application framework [RKS90] and creat
ing widgets [Sei90] is also available.

The remainder of this reference manual is organized in 3 sections.
The first section describes lower level details of the PICASSO sys
tem. This section discusses the window system (Chapter 2), the
PICASSO abstractions for commonly used X resources (Chapter 3),
and the event handling mechanism as implemented in PICASSO
(Chapter 4).

The second section describes higher level abstractions used in the
PICASSO system. This section describes the high-level abstrac
tions provided by the PICASSO Application Framework (Chapter
5), the PICASSO data model (Chapter 6), the data management
facilities (Chapter 7), and grouping PICASSO objects into collec
tions, using a geometry manager to control their display attributes
(Chapter 8).

The third section manual describes the PICASSO toolkit and the
widgets and gadgets implemented in it In particular, the section
discusses widgets and gadgets (Chapter 9), displaying and editing
text (Chapter 10), button types (Chapter 11), controlling the view
of PO's (Chapter 12), displaying images (Chapter 13), menus
(Chapter 14), displaying tables (Chapter 15), advanced graphics
(Chapter 16), miscellaneous widgets (Chapter 17) library PO's and
examples of completed applications (Chapter 18).

The following notation conventions are used in this manual:

macro-name

{argument }*
[Macro]

The macro macro-name is called with each argument listed.

function-name [Function]
{argument }*
&key
{ (keyword default) }*
&allow-other-keys

PICASSO Reference Manual 1-4

INTRODUCTION

The function function-name is called with each argument
listed. Keyword arguments may also be specified (the default value
of the key is default), and &allow-other-keys indicates that
additional keys (i.e., unlisted inherited keys) will be accepted by
the function.

method-name [Method]
I argument I(argument argument-type) }*

The method method-name is called with each argument listed.
The argument-type should not be explicitly specified in the call.

attribute-name [Reader/Writer/Accessor]
[argument I(argument argument-type)]*

A special case of the method-name notation. Attributes may
have Reader, Writer, or Accessor methods. You can use
attribute-name to query a Reader attribute for the value
associated with it, but you cannot change the value ofReaderattri
butes. Writer attributes can be set f'd; i.e., use

(setf (attribute-name <object» <value>)

to change the attribute value. However, you can not query a Writer
attribute for the value associated with it Accessor attributes can
be both read and set

PICASSO Reference Manual 1-5

2

WINDOWS

WINDOWS

Overview Windows are CLOS objects that represent an area of the screen. In
PICASSO, unlike some other toolkits, there is not a one-to-one
correspondence between windows in the toolkit and X windows in
the server. The various window manipulation functions provided
by most windowing systems, such as changing the size of a win
dow, the background and the window border, are implemented as
methods in the PICASSO toolkit When appropriate, subclasses
forward the request to the X server.

Gadgets are a subclass of windows that, by definition, have no X
server representation. They can still be manipulated as windows,
however, and the appropriate X server calls are automatically gen
erated. Gadgets are typically used as flexible, lightweight win
dows for output only.

Synthetic gadgets, sometimes called "synths", are even lighter
weight abstractions for output purposes. Unlike windows and
gadgets, synthetic gadgets are not a defined class. As a result, they
are not quite as flexible as gadgets, but are considerably faster and
smaller.

Windows, gadgets, and synthetic gadgets form the base on which
all PICASSO widgets are created. Widgets are input/output
abstractions, and are defined as a direct subclass of opaque win
dows. The class hierarchy at this point looks like this:

window

/ 1

gadget x-window

1

opaque-window

1

widget

All widgets and gadgets share some common behavior. See
Chapter 9 on widgets and gadgets for more detail about the crea
tion, manipulation, and common behaviors of widgets and gadgets.
This chapter is organized as follows:

• Windows

PICASSO Reference Manual 2-6

• Window Management

• X-windows

• Opaque windows

WINDOWS

Windows The window class isthe top-level class in PICASSO, and therefore
does not inherit any of its keywords from any other PICASSO
classes. The following function can be used to create windows.

make-window [Function]
&key
(docnn)
(name "A Window")
(value nil)
(status : exposed)
(mf-selectable-widget t)
;; Information to support the windowhierarchy
(parent nil)
(display (current__display))
(screen (current_screen))
(lexical-parent nil)
;; Information about window geometry
(x-offset 0)
(y-offset 0)
(width 1)
(height 1)
(location nil)
(size nil)
(region nil)
;; Information about window resizing
(base-width 1)
(base-height 1)
(width-increment 1)
(height-increment 1)
(width-height-ratio nil)
(increment-size nil)
(base-size nil)
(resize-hint nil)
(geom-spec nil)
;; Drawing information about a window
(font nil)
(background "white")
(inverted-background "black")
(dimmed-background "white")
(foreground "black")
(dimmed-foreground "gray50")

PICASSO Reference Manual 2-7

ATTRIBUTES

WINDOWS

(inverted-foreground "white")
(dimmed nil)
(inverted nil)
(colormap (colormap (root-window screen)))
(repaint-fiag t)
;; Label information
(label nil)
(label-type :left)
(7afc?/-x 0)
(7afo?/-y 0)
(label-font nil)
(label-attributes nil)
;; Border information
(border-width 0)
(border-type nil)
(border-attributes nil)

doc [Accessor]
(selfwindow)

A documentation string associated with the window.

name [Accessor]
(selfwindow)

A name string associated with the window. Used primarily for
debugging.

value [Accessor]
(selfwindow)

The value of the window, of type t.

status [Accessor]
(selfwindow)

The current window state, of type symbolP. One of : con
cealed, :exposed, or :pending, default
:exposed.

mf-selectable-widget [Accessor]
(selfwindow)

Whether not the window can be "selected" in a table (t or nil).

PICASSO Reference Manual 2-8

hierarchy

attributes

GEOMETRY

ATTRIBUTES

WINDOWS

Of type atom, default t.

Every attached window is associated with exactly one window in
the server, called the server-window. Each server window is
associated with a particular screen, which in turn is associated with
a particular display in the server.

display
(self window)

[Reader]

The PICASSO display of the window. Of type display, default
(current_display).

lexical-parent
(self window)

[Accessor]

The lexical parent of the window. Of type window, default
nil.

parent
(self window)

res

screen

(self window)

[Accessor]

The parent of the window. Of type window, default nil.

[Reader]
(self window)

The CLX resource representing the server representation of the
window (n i 1 if not attached). Of type vector, default nil.

[Reader]

The PICASSO screen of the window. Of type screen, default
(current screen)

x-offset

(self window)
[Accessor]

The x-coordinate (in pixels) of the window relative to the top-left
corner of the window's parent Of type integer, default 0.

y-ofTset
(self window)

[Accessor]

The y-coordinate (in pixels) of the window relative to the top-left

PICASSO Reference Manual 2-9

RESIZE ATTRI

BUTES

WINDOWS

corner of the window's parent. Of type integer, default 0.

location [Accessor]
(selfwindow)

A list (x-offset y-offset) of the window's x-offset and y-offset

width [Accessor]
(selfwindow)

The width of the window in pixels. Of type integer, default 1.

height [Accessor]
(self window)

The height of the window in pixels. Of type integer, default 1.

size [Accessor]
(selfwindow)

A list (width height) of the window's width and height.

region [Accessor]
(selfwindow)

A list (x-offset y-offset width height) of the window's x-offset,
y-offset, width and height.

geom-spec [Accessor]
(selfwindow)

Various instructions concerning the geometry of the window that
the window's geometry manager should look at (geom-spec and
the geometry manager are discussed in the Collections chapter).
Any type, default nil.

base-width [Accessor]
(selfwindow)

The smallest desirable width of the window. Of type integer,
default 1.

base-height [Accessor]
(selfwindow)

The smallest desirable height of the window. Of type integer,

PICASSO Reference Manual 2-10

WINDOWS

default 1.

base-size [Accessor]
(self window)

A list (base-width base-height) of the smallest desirable size
of the window.

width-increment [Accessor]
(self window)

The best amount by which to increment the width of a window. Of
type integer, default 1.

height-increment [Accessor]
(selfwindow)

The best amount by which to increment the height of a window.
Of type integer, default 1.

increment-size [Accessor]
(selfwindow)

A list (width-increment height-increment) of size increments
for the window.

width-height-ratio [Accessor]
(selfwindow)

The best ratio for the width/height of the window. Of type float,
default nil.

resize-hint [Accessor]
(selfwindow)

A list of the base-width, base-height, width-increment, height-
increment, and width-height-ratio. Default nil.

DRAWING

attributes inverted [Accessor]
(selfwindow)

When a window is inverted, its background and inverted-
background are swapped, and its foreground and inverted-
foreground are swapped Of type (t or nil), default nil.

dimmed [Accessor]
(selfwindow)

When a window is dimmed, its background and dimmed-

PiCASSO Reference Manual 2-11

WINDOWS

background are swapped, and its foreground and dimmed-
foreground are swapped. Of type (tor nil), default nil.

background [Accessor]
(selfwindow)

The background paint of the window, of type (member
(string paint tile :parent-relative nil)). In
general the server automatically fills in exposed areas of the win
dow with the window's background when they are made visi
ble after being occluded or concealed. If background is nil, the
server will not modify exposed areas. If background is
:parent-relative, the exposed areas are filled in, but with
the color/pixmap of the window's parent The paint resource is
automatically created (if a string is specified) and/or attached
as necessary.

inverted-background [Accessor]
(selfwindow)

The background to use when the window is inverted. Of type
(member (string paint tile nil)). The paint

resource is automatically created (if a string is specified)
and/or attached as necessary.

dimmed-background [Accessor]
(selfwindow)

The background to use when the window is dimmed. Of type
(member (string paint tile nil)). The paint

resource is automatically created (if a string is specified)
and/or attached as necessary.

foreground [Accessor]
(selfwindow)

The foreground to use in graphic operations when the window is
inverted. Of type (member (paint string tile
nil)). The paint resource is automatically created (if a
string is specified) and/or attached as necessary.

inverted-foreground [Accessor]
(selfwindow)

The foreground to use in graphic operations when the window is
inverted. Of type (member (paint string tile
nil)). The paint resource is automatically created (if a

PICASSO Reference Manual 2-12

WINDOWS

string is specified) and/orattached as necessary.

dimmed-foreground [Accessor]
(selfwindow)

The foreground to use in graphic operations when the window is
dimmed. Of type (member (paint string tile
nil)). The paint resource is automatically created (if a
string is specified) and/or attached as necessary.

font [Accessor]
(selfwindow)

The font of the window. Every window has a font which may be
used in graphic operations. Of type (member * (string
font nil)). The resource is automatically created (if a
string is specified) and/or attached (if font) as necessary.

repaint-flag [Accessor]
(selfwindow)

If set to t, the window will not be automatically drawn as a result
of either internal events or a call to repaint

colormap [Accessor]
(selfwindow)

All windows have a colormap which can be read, of type color-
map,default (colormap (root-window screen)).

LABEL

ATTOBUTES label [Accessor]
(selfwindow)

The label to draw for the window. Any type, default nil.

label-type [Accessor]
(self window)

The type of label to use for the window. The predefined label-
types include nil, :left, ibottom, and : frame. Of type
keyword, default rleft.

label-x [Accessor]
(selfwindow)

The x-coordinate of the label relative to an origin. The origin is
dependent on the label-type of the window. Of type integer,

PICASSO Reference Manual 2-13

WINDOWS

default 0.

label-y [Accessor]
(selfwindow)

The y-coordinate of the label relative to an origin. The origin is
dependent on the label-type of the window. Of type integer,
default 0.

label-position [Accessor]
(self window)

The position of the window label, which is a list of (label-x
label-y). Of type list, default nil.

label-attributes [Accessor]
(selfwindow)

A list of attributes concerning the label, for example

(:foreground "red" :font "SxlS" :italicized t)

Which label-attributes to specify, if any, is dependent on the
label-type of the window. Of type list, default nil.

label-font [Accessor]
(selfwindow)

The font to use in drawing the label of the window.

BORDER

attributes border-type [Accessor]
(selfwindow)

The type of border to use for the window. The predefined border-
types include (nil :box : frame :black-frame
: inset : standout : shadow). Of type keyword,
default nil.

border-attributes [Accessor]
(selfwindow)

A list of attributes concerning the border (e.g. (: foreground
"red"). Which border-attributes to specify, if any, is dependent

PICASSO Reference Manual 2-14

WINDOWS

on the border-type of the window.

border-width [Accessor]
(selfwindow)

The dimensions of the border to be drawn. Some border-types
allow borders to have non-uniform dimensions. Therefore,
border-width may be either a list with four elements or an integer
value (e.g., a shadow-border may have border width (0 0 10
10)). Of type integer or 4 element list, default 0.

gray [Accessor]
(selfwindow)

If t, sets the border-type to : frame and label-type
to : frame.

WINDOW

OPERATION c|ear [Method]
(selfwindow)
&key
(ignore nil)
&allow-other-keys

Repaint window with background of window.

clear-region [Method]
(selfwindow)
x

y
width

height

Clear the region of the window specified by width and height and
beginning at the x and y offsets of window.

destroy [Method]
(selfwindow)

Destroy window.

dim [Method]
(selfwindow)

Toggle dim of window.

invert [Method]
(selfwindow)

PICASSO Reference Manual 2-15

WINDOWS

Toggle inversion of window.

move [Method]
(selfwindow)
x-offset
y-offset

Set the x and y offsets of the window.

reshape [Method]
(selfwindow)
x-offset
y-offset
width

height

Set the x and y offsets, and width and height of the window.

resize [Method]
(selfwindow)
width

height

Set the width and height of the window.

repaint [Function]
window

&key
(clear t)

Redraw contents of window.

do-repaint [Method]
(selfwindow)

Redraw contents of window.

repaint-region [Function]
window

x

y
w

h
&key
(clear t)

PICASSO Reference Manual 2-16

DEBUGGING

WINDOW SUM

MARY

Pt

Redraw the specified region of the window.

root

&optional
(level 0)

WINDOWS

[Function]

Prints out the geometry information about the window and its chil
dren.

locate-window

&optional
(display (current-display))

[Function]

Waits for the user to click the mouse and returns the PICASSO

x-window in which the mouse was clicked.

Reader Methods Setf Methods Misc

background background clear

base-height base-height clear-region
base-size base-size destroy
base-width base-width dim

border-attributes border-attributes invert

border-type border-font move

border-width border-width Pt
colormap colormap resize

dimmed dimmed repaint, do-repaint
dimmed-background dimmed-background repaint-region
dimmed-foreground dimmed-foreground
display
doc doc

font font

foreground foreground
geom-spec geom-spec

continued

Picasso Reference Manual 2-17

Window

Manage
ment

WINDOWS

Reader Methods Setf Methods Misc

gray

height
height-increment

gray

height
height-increment

increment-size increment-size

inverted inverted

inverted-background
inverted-foreground
label

inverted-background
inverted-foreground
label

label-attributes label-attributes

label-font label-font

label-position
label-type
label-x

label-position
label-type
label-x

label-y label-y
lexical-parent
location

lexical-parent
location

mf-selectable-widget mf-selectable-widget
name name

parent parent
region
repaint-flag

region
repaint-flag

res

resize-hint resize-hint
screen

size size

status status

width width

width-height-ratio
width-increment

width-height-ratio
width-increment

value value

x-offset x-offset
y-offset y-offset

A window can be in one of three states: exposed, concealed, or
pending. A window's current state can be discovered by calling
the status method, which returns one of :concealed,
:exposed, or :pending. If a window is pending, it can be for
one of three reasons:

(1) It is not attached

(2) It has been shrunk to zero size by a geometry manager
("pending").

(3) Its parent is not visible.

PICASSO Reference Manual 2-18

ATTACHED

WINDOWS

DETACHED

WINDOWS

WINDOWS

These three states are orthogonal states-they can be caused by the
server, the geometry manager, or the application, respectively.
The macros exposed-p, concealed-p, pending-p,
attached-p, pended-p, and invisible-p can be used
to determine the status of a window.

attach

window

Attach window to the server if it is not attached.

do-attach

(selfwindow)

[Function]

[Method]

Attach window to the server without checking if it is already
attached.

attach-when-possible
(selfwindow)

[Accessor]

Specifies whether or not to automatically attach the window when
its status is concealed and its parent becomes attached, (t or
nil).

attached-of

window-list
[Macro]

A list of children windows that are attached. Return t if object is
attached (has an X server representation)

attached-p
object

[Macro]

Return t if object is attached (has an X server representation).

detach

window

Detach window from the server if it is attached.

do-detach

(selfwindow)

[Function]

[Method]

PICASSO Reference Manual 2-19

PENDED

WINDOWS

Detach window from the server without checking if it is attached.

detached-of [Macro]
window-list

A list of children windows that are not attached.

detached-p [Macro]
object

Return t if objectis not attached (has no X server representation)

STATE pend [Function]
window

Pend window (if it is not already pended), update status, and set
the window state to 2.

do-pend [Method]
(selfwindow)

Pend windowwithout checking if it is already pended.

pended-p [Macro]
window

Retums whether the window has been pended (is the state of the
window 2?).

pending-of [Macro]
window-list

Returns a list of children windows that are not on the screen, but
exposed.

pending-p [Macro]
window

Returns t if window wants to be visible, but is not for some rea
son (is the window pending?).

unpend [Function]
window

PICASSO Reference Manual 2-20

INVISIBLE

WINDOWS

CONCEALED

STATE

Unpend window if it is pended.

invisible-of
window-list

A list of children windows that are invisible.

invisible-p
window

WINDOWS

[Macro]

[Macro]

Returns whether the window is invisible (exposed, but parent not).

make-invisible [Function]
window

&key
(x-unmap t)

Pend the window, update status, and set the window state to 1.

do-make-invisible [Method]
(selfwindow)
&key
(x-unmap t)

Pend the window, update status, and set the window state to 1.

make-uninvisible [Function]
window

if window is invisible, and the parent of window is exposed, then
make window uninvisible.

do-make-uninvisible

(selfwindow)
[Method]

Same as make-uninvisible, but doesn't first check if win
dow is invisible.

conceal

window

&key
(transparent nil)
(x-unmap t)

[Function]

Picasso Reference Manual 2-21

exposed

state

WINDOWS

Conceal window if it is not already concealed, and update status.

do-conceal [Method]
(selfwindow)
&key
(transparent nil)
&allow-other-keysA

Conceal window without checking if it is already concealed.

concealed-p [Macro]
window

Retums whether the window is concealed (not visible on screen).

concealed-of [Macro]
window-list

Retums a list of children windows that are concealed.

expose [Function]
window
&key
(xmapt)

Expose window unless it is already exposed and viewable, and
update status.

do-expose [Method]
(selfwindow)
&key
(ignore nil)
&allow-other-keys

Expose window without checking if it is already exposed and
viewable.

exposed-of [Macro]
window-list

Retums a list of exposed children windows.

exposed-p [Macro]
window

PICASSO Reference Manual 2-22

MISC

METHODS

X-windows

WINDOWS

Returns whether the window is exposed (visible on screen).

active-p
window

Retums whether the window is active (had a parent).

managed-p
window

[Macro]

[Macro]

Retums whether the window's geometry is being managed.

managed-of [Macro]
window-list

Retums a list of managed children windows.

gadgets-of [Macro]
window-list

Returns a list of children windows that are gadgets.

exposed-gadgets-of [Macro]
window-list

Retums a list of children windows that are gadgets and exposed.

viewable-p [Macro]
window

Returns t if window is viewable on the screen and can be
occluded (the window is attached and the map-state of window is
: viewable)

X-windows are a subclass of the window class, and therefore
inherit window keys and methods.

The following function can be used to create X windows.

make-x-window

&key
(cursor nil,)
(event-mask ' (: no-event))
;; defaults overridden from superclasses
(name "An X-window")
;; Plus keys inherited from windows
&allow-other-keys

[Function]

PICASSO Reference Manual 2-23

WINDOWS

attributes X windows inherit all of the attributes discussed under windows.

In addition, the following attributes are defined for x-windows.

cursor [Accessor]
(selfx-window)

The cursor for the x-window. Of type cursor, default nil.

event-mask [Accessor]
(selfx-window)

Any window can choose to receive various types of events, and
only events that are "requested" by the window will be "sent" to
the window. An event is requested by inserting the request-name
of the event type into the event-mask list The type of events
that the window can handle include keyboard, pointer, exposure,
input focus, and client events, and the default value is ' (: no-
event). For more information on the types of events and how
they are handled, see Events (Chapter 4) or the "Widget Writer's
Guide" [Sei90].

X-WINDOW

GEOMETRY
In addition to the inherited window Geometry methods, the fol
lowing are defined on x-windows:

configure [Method]
(selfx-window)
&key
(x-offset 0 x-offset-p;
(y-offset 0 y-offset-p)
&allow-other-keys

If x-window is attached, set its x and y offset

fix-location [Method]
(selfx-window)
&key
x

y

Fix the location (x and y offsets) of the x window.

fix-region [Method]
(selfx-window)
&key

PICASSO Reference Manual 2-24

WINDOWS

y
width

height

Fix the region (x, y, width, and height) of the x window.

fix-size [Method]
(selfx-window)
&key
width

height

Fix the size (width and height) of the x window.

query-region [Function]
self

Query the server for the actual coordinates of the window, and
cache the results.

server-x-offset [Function]
self

Query the server for the actual x coordinate of the window, and
cache the results.

server-y-offset [Function]
self

Query the server for the actual y coordinate of the window, and
cache the results.

METHODS in addition to the inherited window methods, the following are
defined on x-windows.

circle-down [Method]
(selfx-window)

Lower the highest child of window that partially or completely
occludes another child to the bottom of the window stack.

circle-up [Method]
(selfx-window)

Raises the lowest child of window that partially or completely

PICASSO Reference Manual 2-25

WINDOWS

occludes another child to the top of the window stack.

conceal-inferiors [Method]
(selfx-window)

Conceal children windows.

expose-inferiors [Method]
(selfx-window)

Expose children windows.

grab-mouse [Method]
(selfx-window)
&key
(cursor nil cursor-pj
(event-mask nil)

Grab control of the mouse pointer. Events specified in event-mask
are sent to x-window rather than to the client to which the events
would normally have been sent

ungrab-mouse [Function]
&optional
(display (current-display) displaypj

Release control of the mouse pointer.

lower [Method]
(selfx-window)

Lower the specified window instance to the bottom of the window
stack.

raise [Method]
(selfx-window)

Raise the specified window instance to the top of the window
stack.

related-p [Method]
(selfx-window)
(parent x-window)

Determine if two window are children of the same root-window.

warp-mouse [Method]
(selfx-window)
&key
(xO)
(yo)

PICASSO Reference Manual 2-26

WINDOWS

(location nil)

If location is specified, move mouse to specified location (list of x
and y offsets). Otherwise, move mouseto specified x andy.

warp-mouse-if [Method]
(selfx-window)
&key
(xO)
(yo)
(location nil)
(in-window nil)
(in-region nil)

If the in-region isn't specified, get the in-window region, and only
warp the mouse if in-window or in-region is non-nil. If location
is specified, move mouse to specified location (list of x and y
offsets). Otherwise, move mouse to specified x and y.

Opaque Opaque windows are a subclass of the x-window class, and there-
Windows fore inherit window and x-window keys and methods. The follow

ing function can be used to create opaque windows.

make-opaque-window [Function]
&key
(icon nil)
(icon-name nil)
;; defaults overridden from superclasses
(name "An Opaque Window")
(event-mask ' (:exposure))
(border-type :box)
(border-width 2)
;; Plus keys inherited from x-windows
&allow-other-keys

ATTRIBUTES In addition to the inherited window and x-window attributes and

methods, the following are defined on opaque-windows.

icon [Accessor]
(selfopaque-window)

The icon associated with the window. Of type icon, default

PICASSO Reference Manual 2-27

WINDOWS

nil.

icon-name [Accessor]
(selfopaque-window)

A name string associated with the icon for the window.

PICASSO Reference Manual 2-28

Overview

RES SLOT

RESOURCES

RESOURCES

PICASSO provides CLOS abstractions for many of the commonly
used X resources. The advantage of this is three-fold: first, it
allows for sharing of the resources; second, it makes many of these
resources easier to create and manipulate; and finally, the
resources can be "attached" to and "detached" from a given X
server, allowing resources to be implemented as persistent objects.

PICASSO provides CLOS classes for the following CLX abstrac
tions:

Colors and colormaps

Images

Cursors

Tiles

Icons

Fonts

Displays

Screens

Graphics Contexts

In addition to defining CLOS classes for the corresponding CLX
structures, PICASSO provides some degree of management for
these resources. All resources have name and res attributes.

Since all PICASSO resources correspond directly to CLX resources,
PICASSO resources share a common interface for accessing the
CLX resources. All PICASSO resources can be attached to or
detached from the server. When a resource is attached, its res slot
contains the CLX structure which corresponds to its representation
in the server. When a resource is not attached, its res slot is nil.
Since resources are typically shared between widgets andapplica
tions, they all have internal reference-counters so that the resource
is automatically detached from the server when it is no longer
being used.

The following operations exist for attaching and detaching

PICASSO Reference Manual 3-29

NAME SLOT

RESOURCES

resources to and from the server:

attached-p [Macro]
resource

t if the resource is attached to the window server, else nil.

attach [Function]
resource

do-attach [Method]
resource

<resource-type>-2tt2LCh [Macro]
resource

increment the reference count for resource and attach the resource
to the server if the reference count was 0 before the operation was
invoked.

detach [Function]
resource

do-detach [Method]
resource

<resource-type>-tetSLCh [Macro]
resource

decrement the reference count for resource. If the new reference

count is not positive, detach the resource from the server.

Since resources are shared, they all have names. The resources are
named so that they can be conveniently referred to without keep
ing track of the actualCLOS object The lexical extent of the name
for a particular resource varies depending on the type of resource.
Each resource type has its own dictionary and its own functions to
create and retrieve the resource. For creation the make-

<resource-type> function is provided. The arguments make-
<resource-type> depend on the type of the resource. The get-
<resource-type> function is used to retrieve a named resource
from the resource dictionary. The format of get -<resource-

PlCASSO Reference Manual 3-30

Colors and

Colormaps

COLOR DEFIN

ITION

typo is as follows:

get-<resource-type>
&optional
name

source

RESOURCES

[Function]

name is a string which usually defaults to (default-
<resource-type>). source is an object which specifies the loca
tion of the dictionary in which the resource is to be found, source
defaults to a reasonable object (usually (current-
display)). Note that (get-<resource-type>) returns the
"default" instance of <resource-type>.

Getting the default instance of a resource.

In PICASSO, a color is defined by a name and a set of three
numeric values, representing intensities of red, green, and blue. A
colormap is conceptually a table which maps from colors to pixel
values. Each PICASSO window has a corresponding colormap.
Raster graphics displays store pixel values in a special screen
hardware memory. As the screen hardware scans this memory, it
reads each pixel value, looks up the color in the corresponding
colormap, and displays the color on the screen. For more on
colors and colormaps, see the relevant CLX documentation. The
lexical context of a color's name is the color's colormap. Hence,
the color "red" could be different in different colormaps.

In widgets that use many colors profusely and in a very transient
fashion, it is usually desirable to avoid the overhead of using
PICASSOcolors. In this case, the programmer would be advised to
use the corresponding CLX operations directly (eg. use
clx:make-color). The CLX structures can always be obtained
by means of the res accessor method for colors, colormaps, and
any other PICASSOresource.

All colors are defined in the context of a particular colormap. The
actual number of colors that can be allocated in a particularcolor-
map is limited (the actual number depends on the hardware and the
version of CLX). Defined colors are only available to windows
which use the same colormap in which the color is defined.

A color is represented by a CLOS class, with the following acces-

PiCASSO Reference Manual 3-31

RESOURCES

sors:

res [Reader]
CLX representation of the color.

name [Reader]
identifier by which the color can be accessed.

colormap [Reader]
PICASSO colormap associated with the color.

pixel [Reader]
pixel value of the color in the color's colormap.

red [Reader]
intensity of the red hue. Must be a floating-point number between
0.0 (minimum intensity) and 1.0 (maximum-intensity).

green [Reader]
intensity of the green hue. Must be a floating-point number
between 0.0 (minimum intensity) and 1.0 (maximum-intensity).

blue [Reader]
intensity of the blue hue. Must be a floating-point number
between 0.0 (minimum intensity) and 1.0 (maximum-intensity).

The make-color function can be used to create a new color. If
a PICASSO color already exists with the same name, the existing
color will be returned and no new color will be made.

make-color [Function]
&key
(name nilj
(colormap (de f au11-co1o rmap))
(red 0)
(green 0)
(blue 0)
(lookup-p t)
&allow-other-keys

name, colormap, red, green, and blue are as described above. The
X window-server maintains a dictionary of common predefined
color names and their associated color objects, lookup-p indicates
whether or not name is to be looked up in the server color diction
ary. If lookup-p is non-nil and the lookup is successful, the

PICASSO Reference Manual 3-32

RESOURCES

corresponding PICASSOcolor is returned.

COLORMAP

DEFINITION ^ colormaps are defined in the context of a particular screen. All
windows have exactly one colormap at a given time. Usually,
windows all share the same colormap which defaults to
(default-col ormap). A colormap can have a number of

colors defined within it (the actual number depends on the
hardware and the version of CLX). Colors defined on a colormap
are available only to windows that use that particular colormap. A
colormap is only effective if it is installed on a particular screen.
Most current hardwares allow only one installed colormap per
screen.

A colormap is represented by a CLOS class, with the following
accessors:

res [Reader]
CLX representation of the colormap.

name [Reader]
identifier by which the colormap can be accessed.

visual [Reader]
type of visual supported by colormap (member (: direct-
color :gray-scale :pseudo-color :static-
color :static-gray :true-color)).

screen [Reader]
screen on which the colormap is defined. Default is
(current-screen).

The make-colormap function can be used to create a new
colormap.

make-colormap [Function]
&key
(name nil)
(visual nil)
(screen (current-screen)^
(window nil)
&allow-other-keys

name, visual, and screen, are as described above, window is an
alternative specification to screen that specifies a window that is to

PICASSO Reference Manual 3.33

Images

RESOURCES

be on the screen of the colormap.

An image is a two-dimensional array of pixels that is used to
specify a picture that can be displayed in windows. Images are
independent of display, screen, and window. Hence, all images
are defined at a global level.

An image is represented by a CLOS class, with the following acces
sor:

res [Reader]
CLX representation of the image.

name [Reader]
identifier by which the image can be accessed.

bitmap-p [Reader]
whether or not the image is a bitmap.

width [Reader]
the width of the image in pixels.

height [Reader]
the height of the image in pixels.

height [Reader]
the depth of the image in pixels.

There are three ways of creating an image: from a file, a gif-file,
or from a region of a window.

The make- image function can be used to create a new image.

make-image [Function]
&key
(name nil)
(file nil;
(gif-file nil)
(source nil)
(src-x 0)
(src-y 0)
(width nil)
(height nil)
(attach-p t)
&allow-other-keys

name, is as described above. If the image is to be extracted from a
bitmap file, the file specification should be used to indicate the

PICASSO Reference Manual 3-34

Cursors

RESOURCES

name of the source file. If the image is to be extracted from a GIF
file, the gif-file specification should be used to indicate the name of
the source file. The format of bitmap files used in PICASSO is the
standard Xll bitmap format The format of GIF image files used
in PICASSO is the standard GIF format If the image is to be
extracted from a portion of a PICASSO window, the source argu
ment is used, and the src-x, src-y, width, and height arguments are
relevant src-x, src-y, width, and height specify the region of the
window source to make into an image. If attach-p is non-nil, the
image will be automatically attached before make-image
retums. The default directory pathname is * library-
pathname*.

A cursor is a visible shape that appears at the current position of
the pointer device (eg. mouse). The cursor shape moves with the
pointer to provide continuous feedback to the user about the
current location of the pointer. Each window can have a cursor
that defines the appearance of the pointer cursor when the pointer
position lies within the window. All cursors are defined relative to
a particulardisplay.

A cursor is represented by a CLOS class, with the following acces
sor:

res [Reader]
CLX representation of the cursor.

name [Reader]
identifier by which the cursor can be accessed.

display [Reader]
display in which the cursor is defined. Default is (current-
display) .

There are three ways of creating an cursor from a font, from a
file, or from an image window. Currendy, all cursorcreated from
a file or a font are bitmaps, which means the pixel values (colors)
are 1 or 0 (black or white).

The make-cursor function can be used to create a new cursor.

make-cursor [Function]
&key
(name *default-cursor-name*)
(file "arrow.cursor")
(mask-file "arrow_mask.cursor")
(image nil)
(font "cursor")

PICASSO Reference Manual 3-35

RESOURCES

(source-font "cursor")
(mask-font "cursor")
(index nil)
(source-index nil)
(mask-index nil)
(foreground "black")
(background "white")
(x-hot nil)
(y-hot nil)
(display (current-display))
&allow-other-keys

name and display are as describe above. If the cursor is to be
extracted from a font, the font, source-font, mask-font, index,
source-index, and mask-index arguments are relevant. Specifying
font is equivalent to specifying source-font and specifying index is
equivalent to specifying source-index. The source-font and mask-
font specify the fonts (or names of fonts) from which the cursor
glyph and mask are to extracted, source-index and mask-index
specify the indices into the source and mask fonts that determine
the particular source and mask glyph to be used for the cursor. If
mask-font is not specified, source-font is used for the mask as well.
If mask-index is not specified, source-index + 1 is used as the
value of the mask index. The minimal specification that can be
used to successfully create a cursor from a font glyph is just index.

If the cursor is to be extracted from a file, the file specification
should be used to indicate the name of the source file. If the image
is to be extracted from an image, the source argument is used and
should be an image, foreground and background are the colors
that are to be used for the colors of the cursors, x-hot and y-hot are
used to specify the hot-spot of the cursor. The default directory
pathname for cursors is * library-pathname*.

Tiles a tile consists of a CLX pixmap associated with a PICASSO win
dow. A tile is customarily used for tiling the background of a win
dow. X allows window backgrounds to be either colors or tiled
images. Since tiles are associated with a particular window, they
cannot be shared in the sense that other resources are shared.

Hence, a tile's name has little significance (two tiles can have the
same name) and there is no get-tile function defined.

A tile is represented by a CLOS class, with the following accessors:

res [Reader]

PICASSO Reference Manual 3-36

RESOURCES

CLX representation of the (a.CLXpixmap) tile.

name [Reader]
identifier by which the tile can be accessed.

width [Reader]
width in pixels of the tile.

height [Reader]
height in pixels of the tile.

depth [Reader]
depth of the tile.

image [Reader]
image used to create the tile.

foreground [Accessor]
foreground color with which to tile the image, foreground
can only be set when the tile is not attached.

background [Accessor]
background color with which to tile the image, background
can only be set when the tile is not attached.

There are four ways to create a tile; from a file, image, color, or
window. If the tile is made from an image, the tile simply creates
a CLX pixmap from the image, foreground and back
ground. If the tile is made from a file, window or color, an
image is created first (see section on "Images") and the tile is made
from the resulting image.

The make-t ile function can be used to create a new rile.

make-tile [Function]
&key
(name nil)
(window nil)
(file nil)
(image nil)
(color nil)
(source nil)
(x-offset 0)
(y-offset 0)
(width nil)
(height nil)
(depth nil)
(foreground "black")

PICASSO Reference Manual 3.37

Icons

RESOURCES

(background "white")
&allow-other-keys

name, window, width, height, depth, foreground, and background
are as described above, file should be used if the tile is to be made
from a file, image if it should be made from an image, color if it
should be made from a color, or source if it is to be made from a
region of a window, x-offset, y-offset, width, and height are only
relevant if source is specified. The tile is automatically attached
unless window is not specified.

An icon is a sort of window that pops up when a top-level window
(a window whose parent is the root-window) is concealed or
iconified. Icons are a feature of window-managers so PICASSO
icons will not work with all window-managers. PICASSO icons
work with the window-manager twin which is what we all use
here at PICASSO Inc. If the window-manager under which
PICASSO is running does not have the right type of icon-support,
PICASSO will still run but whether or not the windows have icons
is dependent on the window-manager.

PICASSO icons are implemented as a simple subclass of tile.
Hence, all icon attributes are the same as those for tile:

res [Reader]
CLX representation of the (SiCLXpixmap) icon.

name [Reader]
identifier by which the icon can be accessed.

width [Reader]
width in pixels of the icon.

height [Reader]
height in pixels of the icon.

depth [Reader]
depth of the icon.

image [Reader]
image used to create the icon.

foreground [Accessor]
foreground color with which to icon the image, foreground

PICASSO Reference Manual 3-38

Fonts

RESOURCES

can only be set when the icon is not attached.

background [Accessor]
background color with which to icon the image, background
can only be set when the icon is not attached.

The make-i con function can be used to create a new icon.

make-icon [Function]
&key
(name nil)
(window nil)
(jile nil)
(image nil)
(color nil)
(source nil)
(x-offset 0)
(y-offset 0)
(width nil)
(height nil)
(depth nil)
(foreground "black")
(background "whit e ")
&allow-other-keys

The arguments to make-icon are the same as those for
make-tile.

A font is collection of character glyphs. There are several dif
ferent types of fonts that can be used in X programs (eg.
linear/matrix encoded, fixed/variable-size, etc). The X server
maintains a set of predefined fonts that can be used in text opera
tions. Any of thesefonts can be usedin PICASSO applications, but
currently the PICASSO widgets work best with fixed-width fonts.
Fonts are defined relative to a particular display.

Afont is represented by a CLOS class, with the following acces-
sors:

res [Reader]
CLXrepresentation of the font

name [Reader]

PICASSO Reference Manual 3-39

RESOURCES

identifier by which the the font can be accessed.

display [Reader]
display in which the colormap is defined. Default is
(current-display).

width [Reader]

font-width [Reader]
the maximum width of a character in the font

height [Reader]

font-height [Reader]
the total of font-ascent + font-descent of the font

font-ascent [Reader]
the maximum ascent of a character in the font.

font-descent [Reader]
the maximum descent of a character in the font

The make- font function can be used to create a new font

make-font [Function]
&key
(name *default-font-name*)
(display (current-display))
(attach-p nil)
&allow-other-keys

name and display are as described above, if attach-p is non-nil,
the font will be automatically attached before make-font
returns.

There is a default font-path that X (and PICASSO) looks for all
requested fonts. The font-path can be accessed by the following
function and setf.

font-path [Function/Setf]
&optional
(display (current-display))

PICASSO Reference Manual 3-40

RESOURCES

default font-path in which to look for fonts.

P J Aparticular X server, together with its screens and input devices,
is called a display. In PICASSO the display object is used as a con
text or a reference point to keep track of information concerning a
particular connection to the X server. In otherwords, all windows,
screens, cursors, colors, and most other resources must be associ
ated with a display and all graphics operations must be performed
in the context of a particular display. If a display is not explicitly
specified, the context is implicidy (current-display)
which returns a display object Naturally, (current-
display is equivalent to (get-display). When you run
PICASSO, it implicitly creates a display.

A display is represented by a CLOS class, with the following acces-
sors:

res [Reader]
CLX representation of the display.

name [Reader]
name of the X display server. Typically a machine-name or just
"unix". If name is not specified, the name is extracted from the
user's DISPLAY shell environment variable using the function
default-display-name.

primary-screen [Reader]
default screen for this display.

The make-display function can be used to create a new
display.

make-display [Function]
&key
(name (default-display-name))
&allow-other-keys

Attempt to connect to the X server named name. If successful,
creates a display object

Srrppn
An X display supports graphical output to one or more screens.
each screen has itsown root window and window hierarchy. Each
window belongs to exactly one screen and cannot simultaneously
appear on another screen. Thekinds of graphics hardware used by
X screens can vary greatly in their support for color and in then-
methods for accessing raster memory. X uses the concept of a

PICASSO Reference Manual 3.41

RESOURCES

visual-type (usually referred to simply as a visual) which identifies
the hardware capabilities of a screen. See the documentation on X
or CLX for more information on screens and visuals.

A screen is represented by a CLOS class, with the following acces
sor:

res [Reader]
CLX representation of the screen.

number [Reader]
the number of the screen, in relation to the display.

display [Reader]
the display of the screen.

root [Reader]
the root-window of screen.

The make-screen function can be used to create a new screen.

make-screen [Function]
&key
(display (current-display))
&allow-other-keys

Creates a screen and a root-window for the specified display. The
number of the screen is determined by the X server and set inter
nally.

Graphics See Mdget writer,g Guide
Contexts

PICASSO Reference Manual 3-42

APPLICATION FRAMEWORK

4

APPLICATION FRAMEWORK

Overview The PICASSO Application Framework provides a set ofhigh-level
abstractions that make it easier to define applications. Each of
these abstractions is implemented as a subclass of PICASSO Object
(PO). The PICASSO framework includes five object subclass
types: tools, forms, frames, dialogs, and panels.

Tools are PO's that implement entire applications. They are, in
turn, composed of PO's called frames, dialog boxes, and panels.
Frames implement major tool modes. Dialog boxes are modal
interactors. Panels are non-modal interactors. Each of these PO's
in turn contains a form and control buttons or menus. Forms
implement an extended model of a paper form. They contain
widgets to view and edit data.

PO's are similar to subroutines and functions in conventional pro
gramming languages. They have a name, local variables, formal
arguments, and a lexical parent A PO can be called and argu
ments passed to it (as discussed below in "Argument Passing"),
causing the PO to allocate space for its local variables and to
create X resources to display the values of selected variables.

In particular, frames are similar to subroutines in that they are
called and they return. Only one frame can be active at a time;
calling a frame conceals the current frame and displays the new
frame, and returning from the called frame redisplays the calling
frame.

Dialog boxes return values, and thus correspond to functions. Cal
ling a dialog box displays it and forces the user to respond. A dia
log box returns a value to the caller when it returns (e.g., "ok").

Panels are similar to co-routines. Calling a panel displays it in a
separate window and the user can interact with it or any other
frame or panel. The location of the mouse cursor determines
which frame or panel receives the user input

This chapter is organized as follows:

• PO Persistence and Naming

• Argument Passing

• Tools

• Forms

PICASSO Reference Manual 4-43

PO Per

sistence

and Nam

ing

APPLICATION FRAMEWORK

• Callable PO's

• Frames

• Dialog Boxes

• Panels

The following notation convention

def<po-type>
;; optional clauses
{ (optional-clause spec) }*

[Macro]

is used to define the high-level objects discussed in this chapter,
where <po-type> is one of tool, frame, form, panel, or
dialog.

The design of PICASSO encourages the development of reusable
interface abstractions. Persistent objects are objects that can be
shared by more than one application. General-purpose panels and
dialog boxes (e.g., table browsers and prompters) have been
developed for reuse in multiple applications. Forms can be reused
in different panels, dialog boxes, and frames. For example, a stan
dard name and address block for a person can be reused in any
form that displays information about a person.

To encourage reuse, a PO can be declared persistent by registering
it with a unique external name. An external name is composed of
three parts, each of which is a Lisp string:

(package name. sttffix)

Each PO has a package name. A package is a set of related PO's.
Name identifies the PO and the optional suffix specifies the type of
the PO. A default package is used if the package is not specified.
An object with an empty suffix is distinct from other objects with
the same package and name and a non-empty suffix. Examples of
valid names are:

("viptt "jnain" # "frame")

("enp" . "form")

"help"

("help1 •frame")

fully-qualified name

default package name

default package and

no suffix

distinct from "help"

External names can be used to specify a PO stored in the database
or already loaded into main memory. Most PO's are referenced by
name in the definition of their lexical parent, and the parent
automatically loads the PO when it is called. A shorter internal

PICASSO Reference Manual 4-44

APPLICATION FRAMEWORK

name can be specified for the PO (as a constant) to simplify the
code. In addition, internal names facilitate changing to a different
PO between runs, since only the internal name binding has to be
changed. A function is provided that allows an application to load
a PO at run-time.

A PICASSO tool has a package search list that specifies packages
in which to look for objects that do not have an explicit package
name. For example, if a tool references a frame named help, the
system will look in each package in the package search list to find
it.

MANAGING A tool maintains a list of packages that are searched when looking
PACKAGES for partially-specified PO's. Most tools will place objects in a

package with the same name as the tool (e.g., VIP tool objects will
be defined in the * xvip'' package). Commonly used objects
can be placed in a library package. The **picasso'' package
contains predefined objects that are automatically provided for all
tools.

The default package search list contains the user's name and the
xxpicasso'' package. Most tools will prepend the tool-
specific package to the package search list when the tool is run.
For example, suppose that Brian was running PICASSO. The ini
tial package search list is

("brian" "picasso")

While executing a tool named ' 'vip'' that specified the
package-search-list clause as

("demo-tool")

the list would be

("vip" "demo-tool" "brian" "picasso")

The search list is restored to the original list when the tool exits.
See the section on Tools for more information on the
package-search-list clause.

PICASSO Reference Manual 4-45

APPLICATION FRAMEWORK

MANAGING Several functions are provided to manage packages and the pack-
PACKAGES age searcn list.

current-package [Function]

This function returns the current package. The current package is
the first package on the package search list

exclude-package [Function]
package(s)

This function removes the named package from the package search
list. It removes the package regardless of where it appears in the
list. The package argument can be a package name or a list of
package names. For example, if the package search list is:

("demo" "joe" "edit-library" "picasso")

and the function

(exclude-package "edit-library")

is executed, the search list will become

("demo" "joe" "picasso")

flnd-po-named [Function]
picasso-name

Given a picasso-name in the format (pkg name . suffix),
this function returns the named PICASSO object, if it exists, and
loads it into memory if needed. Otherwise, if the named PICASSO
object does not exist, this function returns nil.

include-package [Function]
package(s)

This function prepends the package to the package search list If
the named package already exists in the package search list, it is
removed from its old position. The argument to the function can
be a package nameor a list of packagenames. For example, if the
package search list is:

PICASSO Reference Manual 4-46

PACKAGE

SUMMARY

Argument
Passing

APPLICATION FRAMEWORK

("demo" "picasso")

and the function

(include-package "joe")

is executed, the search list will become

("joe" "demo" "picasso")

package-search-list [Function]

This function retums the package search list Packages are
represented by s CLOS strings.

reload-picasso-object-named
name-form
&optional
(destroy-old t)
Reload picasso object named name-form.

Package Functions

current-package
exclude-package
include-package
find-po-named
package-search-list
reload-picasso-object-named

[Function]

Five argument passing mechanisms are provided to pass values to
to callable PO's. The parameter passing mechanisms provided
include: value value/update value-result value-result/update and
reference. Value, value-result, and reference are the parameter
passingmechanisms foundin traditional programming languages.
Arguments passed by

PICASSO Reference Manual 4-47

APPLICATION FRAMEWORK

• value are copied into a local variable. The value is discarded
when the PO retums.

• value-result are copied into a local variable when the PO is
called and copied back to the actual argument when the PO
retums. The actual argument is evaluated only once when the
PO is called. The address of the actual argument is saved in
the called PO and used as the location in which to store the
result

• reference are bound to the actual argument so that a change
to either the actual or formal argument is propagated to the
other.

• value/update are similar to arguments passed by value except
that changes to the actual argument are propagated to the
local variable.

• value-resultlupdate are similar to value/update parameters
except the value is copied back to the calling environment
when the PO returns.

Reference and value/update argument passing are typically used
when arguments are passed to a panel so that changes made to an
object either through the panel or through the frame are propagated
to the other interface.

The default argument passing mechanism is by value. The other
argument passing mechanisms are specified in the formal argu
ment list after a lambda-list keyword (&value-result, &ref
or svalue-update) that specifies the argument passing
mechanism for the formal arguments that follow it For example,
the argument list in the frame definition

(defframe "foo" (x

(y "hi")

&ref

z

&value-update

(w "picasso"))

...)

has four formal arguments: x and y are passed by value, z is
passed by reference, and w is passed by value-update. All frame
arguments are optional so a default value can be specified. In this
example, only yand whave default values. The other arguments
have a default value of nil.

Keywords are used in the frame call to specify the formal argu
ment to which the actual argument should be bound. The follow
ing call on the frame **foo" passes arguments to x, z, and

PICASSO Reference Manual 4-48

Tools

CREATION

APPLICATION FRAMEWORK

w (see "Callable PO's" below for more information on calling
Picasso objects):

(call-frame #!foo

:x '(a list)

:z (title (current-tool))

:w (current-package))

The argument y is given the default value **hi'' since it is not
passed explicitly.

A tool is the outermost object in an application. The window
through which the tool is displayed is managed by a window
manager. Iconifying this window causes all children to be con
cealed.

A tool maintains a list of packages that are searched when looking
for partially-specified PO's. It contains built-in PO's such as dia
log boxes to prompt for a file name or to confirm a destructive
operation used by all PICASSO applications.

A macro named deftool is provided to define a tool. The syn
tax of a call to this macro is:

(deftool tool-name (arguments)
;; optional clauses
"documentation string>M
[title string)
frames po-specs)

[dialogs po-specs)
(panels po-specs)
(package-search-list string-list)
[static-variables var-spec)
[dynamic-variables var-spec)
[constants var-spec)
[start- frame po-reference)
[start-frame-args var-spec)
init-code USP-form)
[exit-code USP-form)
setup-code USP-form)
[region size-spec)
[x x-offset)
[y y-offset)
(w width)

[Macro]

PICASSO Reference Manual 4-49

APPLICATION FRAMEWORK

(h height)
(size area)
(location loc)
(autoraise t)
(autowarp t)
(icon icon-spec)
(icon-name string))

The tool-name is a PO name as discussed in the section on PO
naming. The arguments specify the name and an optional default
value for each argument to the tool. Argument names are symbols
and the default value can be an arbitrary LISP form. The docu
mentation string and the other tool definition clauses specified in
the body of the deftool macro are optional, and can be
specified in any order. Each of these clauses are described below
after the following example tool definition.

example For example, the following is a definition of a tool that that calls a
dialog to prompt the user for her name when she runs the tool, and
calls a panel to bring a goodbye message when she exits the tool.
The #! format for referencing variables is described in detail in
Chapter 6: PICASSO Data Model.

PICASSO Reference Manual 4-50

APPLICATION FRAMEWORK

(deftool ("demo-tool" "demo" . "tool") ((user nil))

"This is a simple demonstration tool"

(title "Demonstration tool")

(constants ((aak-string "What do you think")

(bye-string "Its been fun. See you later"))))

(static-variables (talk-string "")

(picture (make-graphic)))

(frames (fl ("demo" . "frame"))

(f2 ("vip" "demo" . "frame)))

(start-frame £2)

(dialogs (str-prompter ("str-prompter" . "dialog)))

(panels (msg-panel ("msg-panel" . "panel")))

(package-search-list ("demo-tool" "vip"))

(region '(300 500 100 200))

(init-code

(progn

(when (null #!user)

(setf tluser (call #!str-prompter :prompt "Name?:"))

(if (null #!user) (setf #!user "mysterious")))))

(exit-code

(call #!msg-panel :message #!talk-string))

(setup-code

(progn

(bind-var #!talk-string '(concatenate 'string

#!bye-string
n i»

F

(var #!user))))))

This tool uses two constants, two static variables, two frames (the
second of which is called as initial startup frame), one dialog box
and one panel. It alsoprepends two packages to the package search
list, specifies the tool window region, and specifies LISP-forms
that should be run before the first frame is called (init-code),
before the tool exits (exit-code), and when the tool PO is
created (setup-code).

The title clause specifies a string that is displayed in the title
CLAUSES bar of the tool. The default tide is "A Picasso Tool".

The frames, dialogs, and panels clauses specify the
PO's that are used by the tool and binds them to PICASSO constant
names. A po-spec is a list of bindings of PO's to constant names.
Each binding is a list with the name of the constant and either a PO
name or a LISP form that evaluates to a PO. For example, the
clause

PICASSO Reference Manual 4-51

APPLICATION FRAMEWORK

(frames (fl ("demo" . "frame"))

(f2 ("vip" "demo" . "frame)))

in the preceding example binds two frames to the variables f 1
and f 2, specified by name. The bindings established in these
clauses cannot be changed at runtime.

The frames, dialogs, and panels clauses do not have to
list all objects referenced in the tool, only those lexically bound to
the tool environment For example, an error message dialog that is
used in several frames should be bound to the tool environment by
listing it in the dialogs clause so that it can be shared. Operation
ally, objects listed in these clauses are loaded into the PICASSO
runtime environment when the tool is run. Tools that want to con
trol when objects are loaded or that want to vary objects dynami
cally can do so by assigning them to static or dynamic variables.
The f ind-po-named function can be used to fetch the desired
object.

The package-search-list clause lists the packages that
should be prepended to the current package search list when the
tool is run. After these packages are prepended to the list, the tool
package is prepended to it

The static-variables, dynamic-variables, and
constants clauses declare PICASSO variables, as discussed in
Chapter 6. Var-spec is a list of variable declarations that specify
the name and default value for each variable. The clause

(static-variables (talk-string "")

(picture (make-graphic <spec>)))

in the example definition defines two static variables talk-
string and picture, whose default values are " " and the
result of evaluating the LISP (make-graphic <spec»,
respectively. Variables can also be declared without specifying a
defaultvariable as shownfor uand win

(dynamic-variables u

(v ' (x y z))

w)

The start-frame clause specifies the frame to call when the
tool is run. start-frame-args specifies the arguments to be
passed to the start-frame when it is called. The frame f 2 is
specified as the start-frame in the given example. The

PICASSO Reference Manual 4-52

APPLICATION FRAMEWORK

argument to this clause must be a po-referencewhich is either a
variable to which a frame is bound or a LISP form that evaluates to

a frame. If a start frame is not specified in the deftool
definition, the first frame listed in the frames clause is called
when the tool is run. The start frame and start frame arguments
can also be set or changed when a tool is run (see the run-tool
function below)

The init-code and exit-code clauses specify LISP forms
that should be run before the first frame is called and before the

tool exits, init-code can be used to initialize variables that
are global to the tool, to open system resources (e.g., files), and to
change the start frame. In the example above, the init-code is
used to initialize the user variable to the user's name, exit-

code is often used to clean up before the tool is exited. In the
example above, the exit-code is used to call a panel which
displays a goodbye message to the user. The setup-code
clause specifies

LISP forms that should be run upon entering the tool. In the exam
ple above, the setup-code is used to initialize the talk-
string variable to a personalized goodbye message.

A region defines the origin, width, and height of the tool win
dow. The origin is the upper left comer of the window in the
screen coordinate system. The screen origin is the upper left
corner of the screen. The x-axis runs across the screen, left to
right, and the y-axis runs down the screen, top to bottom. The
region specification is a list with 4 elements: x-coordinate, y-
coordinate, width, and height For example, the region clause
in the given example defines a tool that is 100 pixels wide and 200
pixels high positioned at location (300,500):

(region '(300 500 100 200))

The x-coordinate, y-coordinate, width, and height can all be be
specified individually using the x-offset, y-offset,
width, and height clauses, respectively. For example, the
previous region specification is equivalent to

(x-offset 300)

(y-offset 500)

(width 100)

(height 200)

The location and size clauses indicate 'pieces' of regions,
where location corresponds to x and y offsets, and size

PICASSO Reference Manual 4-53

MANAGING

TOOLS

APPLICATION FRAMEWORK

corresponds to width and height. For example, the previous
region specification is also equivalent to

(location ' (300 500))

(size ' (100 200)

The tool is centered on the screen with a reasonable window size
by default if these clauses are not supplied.

The icon clause specifies the bitmap or pixmap that will be
displayed when the tool is hidden. The icon-spec is either the
name of a file that contains the bitmap or pixmap or a LISP form
that returns an icon object when executed. The icon-name
specifies the string to be displayed with the icon.

autoraise specifies whether the tool window is automatically
raised by the window manager when the mouse enters it and
autowarp specifies whether the mouse cursor is automatically
moved into the tool window (i.e., warped) when the tool is
deiconified. The default setting for both slots is true.

Tools are a subclass of collection widgets, thus they inherit the
methods defined on collection widgets. In addition, the following
are also defined on tools.

current-tool [Macro]
Return the current tool object

ret-tool [Macro]
&optional
(return-value nil)

Exit the currently running tool.

run-tool [Macro]
tool

&key
start-frame
(start-frame-args nil)

Load the named tool, if it has not already been loaded, and run it
Change the start frame of the tool to start-frame and the start
frame arguments to start-frame-args if specified when the tool is

PICASSO Reference Manual 4-54

TOOL SUM

MARY

Forms

APPLICATION FRAMEWORK

run.

run-tool-named

name

&key
start-frame
(start-frame-args nil)

Given a name in the format (pkg name . suffix), this
macro is similar to run-tool, except that it finds the PO named
name first, then loads and runs it.

tool-p
object

Return t if object is a tool object, nil otherwise.

Tool Macros

current-tool

deftool

ret-tool

run-tool

run-tool-named

tool-p

[Macro]

[Macro]

Forms are used in frames, panels, or dialog boxes. A form that can
be reused in more than one PO, called an explicit or pluggable
form, is defined using the defform construct Pluggable forms
typically have local variables and parameters and, like any PO,
they may have initialization and termination clauses that specify
code to be executed when the PO that holds the form is called and

exited, respectively.

Sometimes forms are only used in a single frame, panel, or dialog
box. It complicates the application specification if the developer
has to create a separately named form, so the developer can
specify the children and other form clauses directly in the frame,
panel or dialog box specification. These forms are called implicit
forms and they cannot have local variables or parameters. They
can, however, access variables and parameters in their lexical
parent Implicit forms are specified in the forms clause by

PICASSO Reference Manual 4-55

APPLICATION FRAMEWORK

defining the widgets and gadgets that are contained in the form.
The po-spec that specifies the forms is a list which contains a vari
able name and a form specification. Pluggable forms are specified
by their extemal name. Forms in frames, panels, and dialog box
PO's are declared either explicitly or implicitly (not both) since
these PO's each may contain at most one form.

An example of a forms specification is

(form (fl nerapn))

The variable f 1 is bound to an external pluggable form named
*xemp'' . Frame, panel, and dialog box PO's have only one

form.

CREATION The macro defform is provided to define forms. The syntax of
a call to this macro is:

(defform name (arguments) [Macro]
;; optional clauses
(chi ldren component-specs)
(gm geometry-manager-spec))
(visit-order po-spec)
(selectable po-spec)

;; clauses common with tools
"documentation string>"
(static-variables var-spec)
(dynamic-variables var-spec)
(constants var-spec)
(init-code USP-form)
(exit-code USP-form)
(setup-code USP-form)
(dialogs po-spec)
(panels po-spec))

The form name is a PO name as discussed in the section on PO
naming, arguments specify the name and an optional default value
for each argument to the form. Argument names are symbols and
the default value can be an arbitrary LISP form. The documenta
tion string and the other form definition clauses specified in the
body of the defform macroare optional, and can be specified in
any order. Each of these clauses is described below after the fol-

PlCASSO Reference Manual 4-56

APPLICATION FRAMEWORK

lowing example form definition.

TJY A XvTDT 13

The following code creates a form with a label ("Department
F0RM Information"), two entry fields (one for adepartment name, one for

a manager name), and a table field (to display the employees and
their job titles). The form has three arguments dname, mgr, and
emps that are bound to the three components in the form.

(defform ("dept" . "form") (dname mgr emps)

(children

' ((make-label

:x-offset 50

:y-offset 50

:label "Department Information"))

(dep (make-entry-field

:x-offset 5

:y-offset 75

:nchars 20

:label "Dept Name:"))

(man (make-entry-field

:x-offset 5

:y-offset 100

:nchars 20

:label "Manager:"))

(emp (make-table-field

:x-offset 5

:y-offset 125

:col-elements

' ((make-entry-field

:x-offset 0

:y-offset 0

rnchars 20)

(make-entry-field

:x-offset 0

:y-offset 0

:nchars 30))

:col-titles '("Name" "Job Title")

ilabel "Employees")))

(setup-code

(progn

(bind-slot 'value #!dep #!dname)

(bind-slot 'value #!man #!mgr)

(bind-slot 'value #!emp #!emps))))

PICASSO Reference Manual 4-57

APPLICATION FRAMEWORK

The static-variables, dynamic-variables, con-
CLAUSES stants, init-code, exit-code, dialogs and

panels clauses are the same as in tools. Components of forms
can either be specified explicitly (with the dialog or panel
clauses) or implicitly (with the children and gm clauses).
Each children component is either a gadget or a widget, and
the gadget or widget can be bound to a PICASSO variable so that
the init-code or a menu operation can access the component.
Gadgets and widgets aredescribed in laterchapters.

Components in a form are specified using the children clause.
These components can be assignedto PICASSO variables by speci
fying a symbol before the component definition. For example, the
component spec

(dep (make-entry-field

:x-offset 5

:y-offset 75

:nchars 20

:label "Dept Name:"))

in the example binds the entry field in the department form to the
variable dep. The entry field object can be accessed by the
expression !#dep, as discussedin Chapter6.

The position of a component within an enclosing form, dialog, or
panel is specified as an x-offset and y-offset from the upper-left
corner of the enclosing object These offsets specify the distance
from the upper-left corner of the component to the upper-left
corner of the enclosing object

The gm clause specifies the geometry manager which lays out the
widgets in the form. The PICASSO interface toolkit provides a
variety of geometry managers including one that repacks the com
ponents to fill the available area (packed-gm) and one that resizes
the components in proportion to the change in the tool window
(rubber-gm). Rubber-gm is the default geometry manager for
forms. Geometry managers are discussed in detail in Chapter 8 on
Collections.

The visit-order clause can be used to specify the order in
which the widgets in the order are visited in the form, the tab fN)
and shift-tab fP) keys can then be used to more forwards and
backwards, respectively, to the specified widgets. The po-spec is a
list of bindings of PO's to constant names (e.g. ' (#!widl
#! wid2 #! wid3)), the first being where the focus starts when
the form is first called.

PICASSO Reference Manual 4.58

MANAGING

FORMS

FORM SUM

MARY

APPLICATION FRAMEWORK

The selectable clause specifies the widgets (specified as a list
of bindings of PO names) that can be selected with the left button.
Buttoning a selectable widget that is not already selected selects it;
buttoning an already selected selectable widget causes the existing
selection handler to be called.

Forms are a subclass of collection widgets, thus they inherit the
methods defined on collection widgets. In addition, the following
are also defined on forms.

current-field [Accessor]
&optional
form

The current selected field or nil if no field is selected. This
value may be setf*d.

form-p [Macro]
object

Return t if object is a form object, nil otherwise.

ret-form [Macro]
&optional
(return-value nil)

Exit the current form

Form macros/methods

defform

current-field

(setf current-field)
form-p
ret-form

PICASSO Reference Manual 4-59

APPLICATION FRAMEWORK

Callable Frames, dialog boxes, and panels are callable PO's. Callable PO's
PO's have forms that can be implicit or explicit, as well as buttons and

menus. They are typically called in response to a user action (e.g.,
a menu selection or button press). The syntax of a call is as fol
lows:

(call <po> :arg-l value :arg-2 value
...)

The PO is specified by an expression that evaluates to reference to
the appropriate PICASSO object. The expression is usually the
internal PO name. Parameters are passed using Lisp
keyword/value pairs. For convenience, there are also specific
call-<p0> macros for each callable PO type (e.g. call-
frame).

The semantics of calling a PO are:

(1) Fetch the PO from the database, if it is not already in
memory.

(2) Bind the actual arguments to the formal arguments.

(3) Allocate and initialize local variables.

(4) Fetch the lexical children of the PO (e.g., forms, frames,
etc.), if they arenot alreadyin memory.

(5). Execute the init-code for the PO.

(6) Display the object on the screen.

(7) Enter an event loop.

PO's are cached in main memory to avoid the delays inherent in
accessing the database. Lexical children are fetched when the PO
is called to improve the performance of subsequent calls.
Dynamic variables are allocated on each call and static variables
are allocated when the PO is created. The event loop dispatches
all events (e.g., mouse, keyboard, redraw, etc.) to the appropriate
event handlers.

The following code is executed to return from a PO:

(ret <po> optional-return-value)

For convenience, there are also specific ret-<po> macros for
each callable PO type (e.g. ret-frame). This code is executed
in response to a user action (e.g., a menu selectionor button press)
or because a lexical parent is cleaning up its children before exit
ing. The semantics of returning from a PO are:

PICASSO Reference Manual 4-60

Frames

CREATION

APPLICATION FRAMEWORK

(1) Force active lexical children to execute a return.

(2) Execute the exit-code.

(3) Conceal the PO, erasing it from the screen.

(4) Copy any result arguments back to the actual arguments.

(5) Re-enter the event loop of the calling PO.

The remainder of this section describes how callable PO's are

defined.

A frame can specify a named form or a set of children widgets
through which data will be displayed to the user. Variables
defined in the frame, called frame variables, store the data on
which the frame operates. A frame treats the variables in its forms,
panels, and dialogs as if they were at the same lexical level. Forms,
panels, and dialog boxes in the frame can access this data by
referencing the frame variables; alternately, the frame can pass
data to them as arguments. This section describes the functions and
macros provided to create and manage frames.

The macro defframe is provided to define frames. The syntax
of a call to this macro is:

(defframe name (arguments) [Macro]
;; optional clauses
(form po-spec)
(form-args var-spec)
(menu menu-bar-spec)

;; clauses common with tools and/or forms
"documentation string>"
(static-variables var-spec)
(dynamic-variables var-spec)
(constants var-spec)
(init-code USP-form)
(exit-code USP-form)
(setup-code USP-form)
(dialogs po-spec)
(panels po-spec)
(children component-specs)
(gm geometry-manager-spec))
(visit-order po-spec)
(selectable po-spec)

The frame name is a PO name as discussed in the section on PO
naming, arguments specify the name and an optional default value

PICASSO Reference Manual 4-61

OPTIONAL

CLAUSES

MANAGING

FRAMES

APPLICATION FRAMEWORK

for each argument to the frame. Argument names are symbols and
the default value can be an arbitrary LISP form. The documenta
tion string and the other frame definition clauses specified in the
body of the defframe macro are optional, and can be specified
in any order.

The static-variables, dynamic-variables, con
stants, init-code, exit-code, setup-code,
dialogs, panels, children, gm, visit-order and
selectable clauses are the same as those defined in the def

tool and defform macros. The frames clause is not

included because a frame cannot be lexically bound to another
frame.

The form clause lists the form that is used by this frame, and the
f orm-args specifies the arguments passed to the form when it is
called.

The menu clause specifies the menus and menu entries. The
menu bar of the frame is defined by a menu-bar-spec which is a
list of menu pane specifications. Each menu pane has a name and
a list of menu entries (i.e., menu operations) that the user can exe
cute. A menu entry specifies the entry name and the code to be
executed when the user selects the entry.

For example, a menu bar specification for a simple text editor
might be

(("Edit- ("Cut" <USP-form»
("Paste- <LISP-form»
("Copy" <USP-form»
("Search" <LISP-form»)

("File" ("Load" <LISP-form»
("Save" <LISP-form»
("File List" <USP-form»))

Optional arguments can be given after the menu entry code to
specify: 1) the entry font (: font); 2) whether the entry is inactive
(: dimmed); and 3) values of the left and right components
(: left and : right). See the Menus chapter for more infor
mation on menu specifications.

Frames are a subclass of collection widgets, thus they inherit the
methods defined on collection widgets. In addition, the following

PICASSO Reference Manual 4-62

FRAME SUM

MARY

APPLICATION FRAMEWORK

methods and macros are also defined on frames.

call-frame [Macro]
frame
&rest

arguments

This function calls the named frame. The name is either a variable
or PO name. Return to the waiting caller when the called frame
closes.

current-frame [Macro]

Retums the current frame.

frame-p [Macro]
object

Return t if object is a frame object, nil otherwise.

goto-frame [Macro]
frame
&optional
arguments

Closes the current frame and goes to the frameframe.

ret-frame [Macro]
&optional
(return-value nil)

Closes the current frame, and if there is a waiting caller it is reac
tivated.

run-frame [Macro]
frame
&rest

arguments

Same as call-frame

PICASSO Reference Manual 4-63

Dialog
Boxes

CREATION

APPLICATION FRAMEWORK

Frame Macros

call-frame

current-frame

defframe

frame-p
goto-frame
ret-frame

run-frame

A dialog box is a modal interface object that solicits additional
arguments for an operation or user confirmation before executing a
possibly dangerous action. This section describes the functions
provided to create and manage dialogs.

The macro

this macro is:
defdialog defines dialogs. The syntax of a call to
»:

(defdialog name (arguments)
;; optional clauses
[buttons button-spec)
[attach-when-possible t)

;; clauses common with tools, forms, and/or frames
Mdocumentation string>"
static-variables var-spec)
[dynamic-variables var-spec)
[constants var-spec)
init-code USP-form)
[exit-code USP-form)
[setup-code USP-form)
[dialogs po-spec)
(panels po-spec)
form po-spec)
form-args var-spec)
[region size-spec)
[x x-offset)
[y y-offset)
(w width)
[h height)
size area)
location loc)
[autoraise t)
[children component-specs)
[gm geometry-manager-spec))

[Macro]

PICASSO Reference Manual 4-64

EXAMPLE DIA

LOG

OPTIONAL

CLAUSES

APPLICATION FRAMEWORK

(visit-order po-spec)
(selectable po-spec)

The dialog name is a PO name as discussed in the section on PO
naming, arguments specify the name and an optional default value
for each argument to the dialog. Argument names are symbols and
the default value can be an arbitrary LISP form. The documenta
tion string and the other dialog box definition clauses specified in
the body of the defdialog macro are optional, and can be
specified in any order.

The following example defines a dialog that confirms that you
want to delete a file.

(defdialog "delete file?" (filename)

"Confirm that the user wants to delete the file."

(dynamic-variables

(msg (format t "Are you sure you want to delete the file ~s*%

#!filename)))

(buttons (("OK" (ret-dialog t) :default)

("CANCEL" (ret-dialog :cancelled))))

(children (make-label

:x-offset 20

:y-offset 20

:label #!msg)))

The variable msg contains the string to be displayed. Two but
tons are defined that confirm or cancel the operation. Notice that
the code executed for either button returns from the dialog to the
caller and passes back a value (t or : cancelled) that either
confirms or cancels the operation.

The static-variables, dynamic-variables, con
stants, init-code, exit-code, setup-code,
dialogs, panels, buttons, form, form-args,
region, x, y, w, h, size, location,
autoraise, children, gm, visit-order and
selectable clauses are the same as those defined in the def
tool and deform and defframe macros.

The buttons clause specifies a list of buttons that will be
arranged down the right edge of the dialog. A button is defined by
a list that specifies the button label, the code to execute when the
button is selected, and optional button attributes. The
attach-when-possible clause specifies whether to attach X

PICASSO Reference Manual 4-65

MANAGING

DIALOGS

DIALOG SUM

MARY

APPLICATION FRAMEWORK

resources whenever possible (i.e., when the parent is called) rather
than when necessary (i.e., when the object itself is called). By
default, X resources are attached when possible.

Dialogs are a subclass of collection widgets, thus they inherit the
methods defined on collection widgets. In addition, the following
are also defined on dialogs.

call-dialog [Macro]
dialog
&rest

arguments

This function calls the specified dialog.

current-dialog [Macro]
Returns the current dialog.

dialog-p [Macro]
object

Return t if object is a dialog object, nil otherwise.

ret-dialog [Macro]
&optional
(return-value nil)

This function returns from the dialog to the caller. The caller
could be a frame operation, ink- or exit-code, or code in a button.
The optional return value is passed backto the callerif specified.

run-dialog
dialog
&rest

arguments

Same as call-dialog

[Macro]

PICASSO Reference Manual 4-66

Panels

CREATION

APPLICATION FRAMEWORK

Dialog Macros

call-dialog
current-dialog
defdialog
dialog-p
ret-dialog
run-dialog

Panels are typically used to present additional information or an
alternative view of the same information to the user. They are
non-modal so that the user can shift his or her attention between

the current frame displayed in the tool window and the panel(s)
currently visible. This section describes the functions provided to
define and operate on panels.

The macro defpanel defines a panel. The syntax of a call to
this macro is:

(defpanel name (arguments) [Macro]
;; optional clauses
(iconify-func nil)
(deiconify-func nil)
;; clauses common with tools, forms, frames, and/or dialog boxes
"<documentation string>w
(title string)
(static-variables var-spec)
(dynamic-variables var-spec)
(constants var-spec)
(init-code USP-form)
(exit-code USP-form)
(setup-code USP-form)
(attach-when-possible t)
(dialogs po-spec)
(panels po-spec)
(buttons button-spec)
(menus menu-bar-spec)
(form po-spec)
(form-args var-spec)
(region size-spec)
(x x-offset)
(y y-offset)
(w width)
(h height)

PICASSO Reference Manual 4-67

OPTIONAL

CLAUSES

MANAGING

PANELS

APPLICATION FRAMEWORK

(size area)
(location loc)
(autoraise t)
(autowarp t)
(children component-specs)
(gm geometry-manager-spec))
(visit-order po-spec)
(selectable po-spec)

The panel name is a PO name as discussed in the section on PO
naming, arguments specify the name and an optional default value
for each argument to the panel. Argument names are symbols and
the default value can be an arbitrary LISP form. The documenta
tion string and the other panel definition clauses specified in the
body of the defpanel macro are optional, and can be specified
in any order.

A panel definition similar clauses as a dialog because panels are
similar to dialogs. Panels have a different visual appearance to the
user and they are non-modal. The static-variables,
dynamic-variables, constants, init-code,
exit-code, setup-code, attach-when-possible,
dialogs, panels, buttons, menus, form,
form-args, region, x, y, w, h, size, loca
tion, autoraise, autowarp, children, gm,
visit-order and selectable clauses are the same as those
defined in the deftool, deform, def frame, and defdi
alog macros, iconify-func and deiconify-func
specify functions to be executed when the panel is iconified or
deiconified.

Panels are a subclass of collection widgets, thus they inherit the
methods defined on collection widgets. In addition, the following
are also defined on panels.

dose-panel
&optional
(panel (f ind-parent-po self))

[Macro]

This function closes a panel. The optional panel argument
specifies which panel to close. (EXPLAIN FLND-PARENT-PO)

current-panel [Macro]

PICASSO Reference Manual 4-68

PANEL SUM

MARY

APPLICATION FRAMEWORK

Returns the currently active panel.

open-panel
panel
&rest

actual-arguments

[Macro]

This function opens a panel. The actual arguments are bound to
the formal arguments specified in the panel definition.

panel-p [Macro]
object

Return t if object is a panel object, nil otherwise.

run-panel [Macro]
panel
&rest

actual-arguments

Same as open-panel

Panel Macros

close-panel
current-panel
defpanel
open-panel
panel-p
run-panel

PICASSO Reference Manual 4-69

PICASSO DATA MODEL

PICASSO DATA MODEL

Overview The Picasso data model provides variables, constants, and portal
objects for communicating with a database. Variables are gen
erally defined in PICASSO Objects as part of the framework.
These can then be associated with widgets using the propagation
mechanism described in Chapter 7. Portal objects are created by
the database interface and contain database records. This chapter
discusses the use and definition of variables, constants, and portals.
It also presents the database interface.

This chapter is organized as follows:

• Variables

• Constants

• Referencing Variables and Constants

• Portals

Variables Variables are created automatically when a PICASSO object is
created or called. All PO definitions can have clauses to define
static or dynamic variables. Static-variables are created when the
PO is created. Different invocations of the PO reference the same
variables. Dynamic-variables are created when the PO is called,
so different invocations reference different variables.

Static-variables can also be created by the application at run-time
using the add-var function. For example,

(addvar variable-name place)

creates a static-variable named variable-name in the PO specified
by place. The variable is immediately visible to lexical children of
thePO.

PICASSO Reference Manual 5-70

PICASSO DATA MODEL

A PICASSO variable can be referenced using the setf accessor
function lookup that takes the name of the variable as an argu
ment, or by the reader macros described below. Recall that
environments are lexically scoped. A variable declared in a frame
can be accessed by code in the frame's form if a variable with the
same name is not declared in the form. Variables can also be

referenced from outside the lexical scope in which they are
defined. For example, code in a menu operation can reference
variables declared local to a form in the frame that contains the

menu.

The following functions are defined to access variables and lexical
VARIABLES environments.

clear-env [Function]

Clears the current lexical environment.

lexical-environment [Macro]

This function returns the current lexical environment. The

PICASSO variable po always points at the current lexical environ
ment.

lookup [Function]
variable-name
&optional
(place (lexical-environment),)

This function returns the named variable in the specified lexical
environment.

value [Accessor]
variable

The value of the variable if it is used in an 1-value context or the
address of the variable if it is used in an r-value context.

Constants Constants behave just like variables, except the value ofaconstant
cannot be changed. Constants can be specified either implicitly or
explicitly. Named constants can be specified explicitly with the
constants clause of a de f <po>, for example

PICASSO Reference Manual 5-71

Referenc

ing Vari
ables and

Constants

PICASSO DATA MODEL

(deftool ("demo-tool" "demo" . "tool")

(title "Demonstration Tool")

(constants ((bye-string "See you later")))

creates a constant named bye-string.

Named constants can also be created implicitly in other clauses of
a PO definition. For example, all lexical children of a PO (i.e.,
PO's specified in the frames, forms, panels, or dia
logs clauses) are given names that are constants in the parent PO.
Widgets specified in the children clause of a PO can also be
bound to named constants by replacing the widget definition

(Taake-<widget-name> orgs)

with a pair

(constant-name (maike-<widget-name> orgs))

This construct creates a name that references the widget when the
PO is instantiated. The same technique can be used with buttons
specified in panels and dialog boxes and with menus specified in
frames or panels.

The following macros can be used to control the setting of con
stants.

enforce-constants [Macro]

Doe not allow the value ofconstants to be changed.

relax-constants [Macro]

Allow the value of constants to be changed. This macro is used
mainly for debugging purposes.

Variables and constants are referenced by using the Common Lisp
"#!" and "#?" macros, The reader macro # ?x is equivalent to

(lookup 'x)

and the reader macro #! x is equivalent to

PICASSO Reference Manual 5-72

PICASSO DATA MODEL

(value (lookup 'x))

In either case, the variable is looked up in the current lexical
environment, and the current environment depends on which PO is
active and the location of the mouse cursor. The setup, initializa
tion, and termination code is always executed in the context of the
defining PO.

Once the current environment is established, variable lookup
proceeds in a lexical fashion. The variable self always refers to
the current lexical environment The variables in the PO refer
enced by self are searched first, followed by the PO that is the
parent of self. Parent links are followed up to the tool. For
ease of use, #! po always refers to the closest PO. For example,
it is the PO itself if the current lexical environment (i.e., self)
points to a PO. Otherwise, it is the closest enclosing PO. The
variable #! po can be used in button or menu code to locate the
enclosing PO since self points to the button or menu entry.

An example of code that references PICASSOvariables and calls s
CLOS functions is

(setf #!x <+ #!x (f #!y)))

which adds x to the result of applying the function f to the vari
able y. The expanded code for this example is

(setf (value (lookup 'x))

(+ (value (lookup 'x))

(f (value (lookup 'y)))))

Sometimes it is necessary to specify where to look for a variable.
For example, a frame's initialization code might define bindings
between frame variables and widgets in the enclosing form. The
syntax "#! variable@place" evaluates place to find a start
ing point for the search for variable. For example, #?x@y is
equivalent to

(lookup 'x y)

and the expression #! x@y is equivalent to

(value (lookup 'x y))

PICASSO Reference Manual 5-73

PICASSO DATA MODEL

More complicated search paths can also be used to reference vari
ables in different environments. The reader macro can reference a
variable in another scope by specifying an explicit path name of a
place that contains the variable. For example, a dialog that is
defined to be global to a tool can reference a variable defined in a
frame bound to the variable f oo by the expression #! f oo/x.
Names in the path are separated by a slash (V). This expression is
equivalent to

(value (lookup 'x (value (lookup 'foo))))

Similarly, the expression #! foo@x/y/z is equivalent to

(value (lookup 'z

(value (lookup 'y

(value (lookup 'foo

x))))))

and the expression

#!start-frame@(current-tool)/x

references x in the start-frame in the current tool.

Any number of "/"-separated names may occur. The "@ " clause
can only be used on the first variable, since the other names are
located based on the value of the preceding expression. Notice
that the location specifier in the "@" clause can be any Lisp
expression, including a call, in this case, to the function
(current-tool).

Databases PICASSO tools can operate on any valid s CLOS data type, and a
reasonable external representation is used when these values are
stored in a database. Two additional data types, portals and per
sistent CLOS objects, are provided in PICASSO for communicating
with a database. The current release of Picasso works with

POSTGRES [Wen89] or commercial INGRES. The portal
abstraction is defined only for POSTGRES and the persistent
CLOS abstraction is supported either for POSTGRES or INGRES.
An embedded SQL interface is also available to access INGRES
databases [ChR89].

A portal is an array of CLOS objects that buffers a subset of tuples
in the return set of a database query. The elements in the array can
be accessed using the standard array accessor functions (e.g.,

PICASSO Reference Manual 5-74

CREATING

PORTALS

MANAGING

PORTALS

PICASSO DATA MODEL

aref) and CLOS slot accessing functions (e.g„ slot-value).
Additional functions are provided to create a portal and to fetch
tuples from the return set into the buffer.

The portal buffer is indexed by the integers 0 to n-1 where n is the
number of elements in the buffer. The portal varies in size with
each fetch command.

The following function can be used to create a portal.

make-portal [Function]
&key
(database (current-database))
(name n")
(target nil targetp)
(where nil)
&allow-other-keys

The database argument specifies the database. The name argu
ment specifies the name of the portal. The target argument
specifies the target list for the query and the where argument
specifies the where-clause for the query.

close-portal [Method]
(selfportal)

Close the portal and deallocate space associated with it.

cl-to-db-type [Function]
cltype

This function controls the mapping of internal s CLOS types to
external database types.

current-database [Function]

Return the name of the current database, or nil if no current data
base.

current-tuple [Method]
(selfportal)

A portal has a currenttuple. This method returns the CLOS object

PICASSO Reference Manual 5-75

PICASSO DATA MODEL

for the current tuple.

db-to-cl-type [Function]
dbtype

This function controls the mapping of external database types to
internal s CLOS types.

fetch-tuples [Method]
(selfportal)
&key
(direction : forward)
(count rail)
&allow-other-keys

This function fetches tuples from the database into the portal array.
The direction may be either : forward or : backward.
: forward is the default The count is a positive integer that
specifies the maximum number of tuples to fetch. If the keyword
: all is passed to count,all tuples are fetched.

next-tuple [Method]
(selfportal)

Make the next tuple in the portal the current tuple and return it

previous-tuple [Method]
(selfportal)

Make the previous tuple in the portal the current tuple and return
it.

rewind-portal [Method]
(selfportal)

Rewind the portal to the first tuple and return it

setf-current-database [Function]
name

Set the current database to name. An error is signaled if it is
already defined.

(setf portal-tuple-index) [Method]
(value integer)
(selfportal)

PICASSO Reference Manual 5-76

PICASSO DATA MODEL

This setf method changes the index of the current tuple.

PERSISTENT
Persistent CLOS objects can be defined that behave similar to local

CLASSES CLOS classes except that they are stored in the database. Per
sistent objects are created by defining a persistent class, creating an
instance of that class, and storing the instance in the database.
Both the class definition and the persistent object are stored in the
database. Persistent classes are mapped into the CLOS class
hierarchy as shown:

T

OBJECT

local classes

DBOBJECT

persistent classes

The following defdbclass macros defined to create persistent
classes. Defdbclass takes the same arguments as the CLOS
defclass macro.

defdbclass [Macro]
name

(superclasses)
(slot-definitions)
(class-options)

This macro defines the class and issues commands to the database
to create the class definition and the relation that will hold the
instances of the class, superclasses specifies a list of superclasses
for this class. The superclasses must all be persistent classes.
Slot-definitions defines the object slots and class-options specifies
options of the class (e.g., : documentation or tdefault-
initargs).

EXAMPLE The following definition createsa persistent box class:

(defdbclass box (dbobject)

((origin :type point :accessor origin)

(width :type integer :accessor width)

(height :type integer :accessor height)))

This code defines a class named box which is a subclass of the
dbobject class. Three object slots are defined for this object

PICASSO Reference Manual 5-77

PERSISTENT

OBJECTS

MANIPULAT

ING PER

SISTENT

OBJECTS

PICASSO DATA MODEL

(origin, width, and height). No options have been
specified for this class.

Instances of persistent classes are created by calling the CLOS
make-instance method and passing it a persistent class. The
persistent object is stored in the database by calling the method
store-dbobject. Slots are accessed by calling slot-
value or using the accessor functions specified in the class
definition. A persistent object is loaded from the database by cal
ling the method fetch-dbob ject. This method creates the
CLOS class object for the persistent class if it is not defined and
retrieves the specified object from the database into an object
cache in the tool.

Persistent objects are assigned a unique identifier, called an object
identifier (OBJID) when it is created. Objects can be fetched from
the database by OBJID or by giving a predicate that uniquely
specifies the desired object. Slots in persistent objects can contain
any valid PICASSO type including a pointer to a local or persistent
object. Pointers to local objects are converted to USP-forms that
will recreate the local object when the persistent object is reloaded.
Pointers to persistent objects are represented by OBJID's in the
database. They are represented by physical pointers when both
objects are in the object cache.

The following functions are provided to manipulate persistent
objects.

fetch-dbobject
(selfdbobject)
&optional
no-error-p

[Method]

This function fetches a dbobject given an OBJID. The argument
can be a single OBJID or a list of OBJID's.

fetch-dbobject
(selfdbclass)
slot-name

slot-value

^optional
no-error-p

[Method]

Picasso Reference Manual 5-78

PICASSO DATA MODEL

This function fetches a dbobject by slot value.

make-dbobject-from-database [Method]
(selfdbclass)
query

&optional
no-error-p

This function takes an arbitrary query and fetches the specified
objects into the cache.

make-instance [Function]
class
&rest

init-plist

Make an instance of a persistent object This function calls the
CLOS function make-instance to create the local instance and

assigns an OBJID.

ppi [Method]
(selfobjid)
&key
(stream *standard-output*)
(level nil)

Pretty-print the specified object on the specified output stream.

slot-type [Method]
(class dbclass)
slot-name

This function returns the type of the specified slot

slot-value [Function]
(selfdbobject)
slot

This accessor function can be used to fetch or store a value into a
slot of a persistent object

store-dbobject [Method]
(selfdbobject)

This generic function stores the object in the database. The argu
ment self can be an instance of a dbobject (i.e., a physical pointer
to a persistent object) or the OBJID of a persistent object in the
cache.

PICASSO Reference Manual 5-79

PROPAGATION AND TRIGGERS

PROPAGATION AND TRIGGERS

Overview Picasso provides facilities to automatically enforce constraints
among data values, execute code when data values change, and
cache the results of constraint computations. These data manage
ment facilities allow the programmer to state declaratively the
relationships between data values in a PICASSO application. Code
can be attached declaratively to data changes, and the programmer
can choose between immediate update and update-when-
referenced for any data slot.

The types of data constraint and trigger facilities provided by
Picasso are:

• Bindings

• Triggers

• Lazy Evaluation

Bindings Data constraints and propagation are managed in PICASSO with a
binding mechanism. Any PICASSO variable or any object slot can
be given a list of functions that determine its value. For example,
a widget displaying a last name could have its value slot bound to
a variable which holds the last name of the current employee in a
database. Similarly, a display-only gadget could display the
current pension value of an employee by computing a function
from the employee's salary and years of service.

Bindings are declarations of one-way constraints on data values.
When one of the constraining values changes, the constrained
value is changed to reflect the new value of the function. Multiple
constraints may be asserted, in which case two-way constraints can
be declared as a pairof bindings.

Bindings may be declared among three types of data value:

• PICASSO variables

• Object slots

• Virtual slots

Virtual slots are combinations of methods and set f methods that

emulate real slots. A computed value can be implemented as a vir
tual slot by having its accessor method refer to the underlying data
slots and by defining a setf method that updates the underlying

Picasso Reference Manual 6-80

DECLARING

BINDINGS

blet [Macro]
picasso-variable / (slot object)
:var ({ (varprop-value) } *)
:with ({ (var const-value)}*)
form

The blet macro is used to establish bindings to a slot of an
object or a picasso variable. More precisely, the form

(blet pvar

:var ((vari prop-valuel)
(var2 prop-valuel)

(varn prop-valuen))
: with ((wvarl const-value])

(wvar2 const-value2)

PROPAGATION AND TRIGGERS

data. For most purposes, virtual slots and real object slots can be
treated identically.

Bindings can be most easily created using the following macros:

(wvarm const-valuem))

(form))

establishes a binding xopvar from the s-expression form. Form is
evaluated in a lexical environment where vari is the value returned

by the expression prop-valuei, and wvarj is the value returned by
the expression const-valuej, similar to the Lisp let special form.
If, after the evaluation of this form, any of the values prop-valuei
are set via the set f macro, pvar will be re-evaluated; that is, the
values prop-valuei are the sources of the propagation. The pur
pose of the variables const-valuej is purely convenience, similar to
the traditional Lisp let.

EXAMPLE Suppose that we have a table sel-list that has a slot named
selection, and a button called add-button. To declare that
the add-button should be dimmed whenever the selec

tion slot of the table sel-list is nil, or when the picasso
variable no-add is non-nil, the following binding would be
used:

PICASSO Reference Manual 6-81

PROPAGATION AND TRIGGERS

(blet (dimmed #!add-button)

:var ((selected (selection #!sel-list))

(not-ok-to-add #!no-add))

(or not-ok-to-add (null selected)))

A special case of bindings is a propagation from a picasso-variable
(or slot object) to a picasso-variable (or slot object). This is com
monly used, for example, to synchronize two widgets or to bind
the value of a widget to a picasso variable. The latter example
would allow the widget to display the value of the variable. These
bindings are most conveniently established with the bind macro:

bind [Macro]
destination-variable / (destination-slotdestination-object)
source-variable / (source-slot source-object)

This macro establishes the binding from the source to the destina
tion. More precisely, the following forms are equivalent:

(bind #!a #!b)

- (blet #!a :var ((b #!b)) b)

(bind (s *!a) #!b)

- (blet (s #!a) :var ((b #!b)) b)

(bind #!a (s *!b)

- (blet #!a :var ((b (s #!b))) b)

(bind (s #!a) (s #!b)

- (blet (s #!a) :var ((b (s #!b))) b)

Bindings are declared using the following functions. These func
tions are more general purpose than blet and bind, in that
they allow certain obscure type of bindings to be performed that
blet and bind can't, but are more cryptic in their notation.

bind-slot [Function]
slot-name

object
Junction
&optional
(receipt nil)

bind-var [Macro]
picasso-variable
function
&optional

PICASSO Reference Manual 6-82

PROPAGATION AND TRIGGERS

(receipt nil)

These functions bind the specified slot, virtual slot, or variable to
the specified function. When receipt is specified, and is non-nil,
the binding function returns a handle that can be used later to
remove the binding efficiently. The function specified should be
an evaluable lisp s-expression which will execute outside of the
defining environment (no lisp variables should be used in this s-
expression, unless they are explicitly bound in the s-expression
through let, prog, or a similar construct). Within the function,
calls to the macro var are used to mark the data values which

should trigger a propagation when they are changed. There are
three forms for this macro:

(var slot-name object-reference)
(var variable-reference)
(var variable-reference :ref location)

The slot name does not need to be quoted. The object reference
should not be quoted and should evaluate to an object in the
defining context The variable reference should not be quoted and
will be resolved in the lexical environment of the object (or vari
able) being constrained. The location should not be quoted and
should evaluate to a PICASSO object in the defining context.
When the location is specified, the variable reference is resolved in
the lexical context of die location. Examples of each type of bind
ing are presented in the next section.

The rest of the function must be completely resolved before calling
the binding function. To include references to objects or variables
not placed in var macros, the function should be expressed as a
backquoted expression in Common Lisp. The backquote macro
permits individual clauses to be pre-evaluated by prefixing them
with a comma. Examples of the use of backquote and comma are
presented in the next section.

EXAMPLES OF ... «. * . „ „
This section presents a set of sample bindings. Assume the follow-

BINDINGS ing definitions:

PICASSO Reference Manual 6-83

PROPAGATION AND TRIGGERS

(defframe "frame-1" ()

"This is the only frame"

(static-variables

name age salary

years-of-service form-creator)

(dynamic-variables employee)

(form (erap-form "employee")))

(defform "employee" 0

"This is the only form"

(static-variables (creator "Picasso"))

(children

(name-field

(make-text-gadget :label "Name:"))

(salary-field

(make-text-gadget :label "Salary:"))

(pens-field

(make-text-gadget :label "Pension:"))

(author-field

(make-text-widget :label "Form Author:"))))

Also assume that the frame variable #! employee has as its
value an object with fields for name, age, salary, and years of ser
vice. For simplicity, we will assume that the employee object is
read-only, and that the only changes that will occur are the
replacement of the entire object with a new object (and a therefore
a change to #! employee as a whole. We will first set up bind
ings between the. frame static variables and the fields of the
employee object Since this code will be executed as part of the
frame's setup code, it is written in the lexical context of the frame.

(blet #!name

:var ((emp #!employee))

(name emp))

(blet #!age

:var ((emp #!employee))

(age employee))

(blet #!salary

:var ((emp #!employee))

(salary employee))

(blet #!years-of-service

:var ((emp #(employee))

(years-of-service employee))

PICASSO Reference Manual 6-84

PROPAGATION AND TRIGGERS

These bindings assume that the appropriate accessors for the
employee structure are defined. Notice that the var clause is
used for the dynamic variable #! employee. This indicates that
whenever #! employee is set to a different value (different
object), each of the static variables will be updated. If instead of
having several employee objects there were only one and that
object had its slots set whenever the data was changed, the follow
ing bindings would be more appropriate.

(blet #!name

:var ((empname (name #!employee)))

empname)

(blet #!age

:var ((empage (age #!employee)))

empage)

(blet #!salary

:var ((empsal (salary #lemployee)))

empsal)

(blet #!years-of-service

:var ((empyears (years-of-service #lemployee)))

empyears)

These bindings would be triggered when the slots inside the object
changed but would not be triggered by a change to #! employee
which would leave the object untouched. For cases where both
changes are possible (not common in PICASSO since the portal
abstraction creates new objects) a combination of triggers and
bindings must be used (this case is shown in the examples of
triggers later this chapter). Assume for this example that the inter
face supports browsing withoutediting and thus the object slots are
not bound to the variables.

Next, the form widgets should be boundto the appropriate variable
values in the frame. Thiscode willbe executed as part of the setup
code for the form and thus is written in the lexical scope of the
form.

PICASSO Reference Manual 6-85

PROPAGATION AND TRIGGERS

(blet (value #!name-field)

:var ((newname #!name))

nevmame)

(blet (value #!salary-field)

:var ((sal #!salary))

(print-to-string sal))

(blet (value #!pens-field)

:var ((salary #!salary)

(years #!years-of-service))

:with ((age #!age))

(print-to-string

(* sal (/ years age))))

The first binding binds the value slot of the text gadget
#! name- field to the string value in the frame variable
#! name. Since the frame is the lexical parent of the form, no
further qualification is necessary. Since the text gadget cannot be
edited, no binding in the other direction is necessary either. The
second binding binds the text gadget which displays the salary to a
string representation of the #! salary variable. This could be
done by using a gadget which displays a number directly, but this
example shows that Lisp functions can be included in the function.

The third binding is more complicated. The pension value at this
particular company is calculated by multiplying the employee*s
final salary by the percentage of his life that he was employed at
the company. Moreover, this recalculation is only made when the
salary changes or on the anniversary of employment (when the
years of service in the company is updated). Pensions are not
adjusted on the employee's birthday (except when this coincides
with other changes) since this would encourage employees to retire
just before their birthday. The provided function computes the
employee's pension but does not result in an update of the pension
when #! age changes, only when #! salary or #! years-
of-service change. The evaluation of #! age will occur each
time the propagation occurs. Since the function is executed in the
context of the pension field, which lexically resides at the level of
the form, #! age is resolved into the age variable in the frame. If
there were concern about the possibility of a new age variable
being introduced at the form level (by add-var) then the vari
able reference could be resolved completely at bind time by recal
ling that variables are indeed objects with a "value" slot

PICASSO Reference Manual 6-86

PROPAGATION AND TRIGGERS

(blet (value #!pens-field)

:var ((salary #!salary)

(years #!years-of-service))

:with ((age (value ',#?age)))

(print-to-string

(* sal (/ years age))))

This second version uses the comma macro inside the backquote
macro to evaluate #?age before passing the function to bind-
slot. In this case, , #?age gives us a pointer to the age vari
able object The quote before this prevents it from being re
evaluated later (since it is now the object pointer, not a Lisp
expression which evaluates to an object pointer). This can be
passed to the value accessor which extracts the variable value
from the variable object. This type of reference is only available
with PICASSO variables, since Lisp variables are not represented
as objects. This quote-comma pattern is commonly used when
resolving expressions at bind-time inside backquotes.

All that remains to bind are the variables and object slots
corresponding to the form's author. In the form, these bind com
mands will set up a two-way binding between the entry widget and
the creator variable.

(blet (value #!author-field)

:var ((creator #!creator))

creator)

(blet #!creator

:var ((author (value #!author-field)))

author)

In the frame, a non-local reference to the creator variable must be
made. This can be done in either of two ways.

(blet #!form-creator

:var ((creator #!emp-form/creator))

creator)

(blet #!form-creator

:var ((creator #!creator :ref #!emp-form))

creator)

The first form takes advantage of the path notation for PICASSO
variables. The second form uses the : ref version of the var

macro. The second form is preferred because it it generally easier
to read.

PICASSO Reference Manual 6-87

PROPAGATION AND TRIGGERS

The above examples show all combinations of binding slots and
variables. Recall that virtual slots are identical to real slots for
these purposes (i.e., it does not matter whether "value** is really a
slot or is an accessor and set f method for the gadgets and widg
ets used).

multiple More than one binding may be declared for a data item. When
CONSTRAINTS more than one binding is active, a change in data which triggers an

update will use the most recently declared binding which is
appropriate for the datum that changed. For instance, assume the
following bindings are asserted in order.

(blet #!x

:var ((a #!a)

(b #!b))

(+ a b))

(blet #!x

:var ((b #!b)

(c #!c))

(* b c))

(blet #!x

:var ((a #!a)

(b *!b)

(d #!d))

(* a b d))

(blet #!x

:var ((b #!b))

b)

After the first binding is declared, any change to #! a or #! b
will cause the variable #! x to be set to their sum. After the
second binding is declared, changes to #!bor #!c will set #!x
to the product of #! b and #! c but changes to #! a will still set
#! x to the sum of #! a and #! b. After the third binding is
declared, any change to #! a, #! b, or #! d uses the third func
tion. Only changes to #! c would use the second function. The
first binding is no longer active, and is automatically removed by
PICASSO. This first constraint is referred to as superceded since
each of the data values which propagate changes to #! x are now
taken care of by more recent bindings.

The fourth binding supercedes all of the earlier ones. This illus
trates the superset-or-subset rule used to determine when a binding
is automatically nullified (removed). This rule states that when the
set of dependees in a newly declared binding are a superset of, or a
subset of the dependees of a previous binding then the previous

PICASSO Reference Manual 6-88

PROPAGATION AND TRIGGERS

binding is nullified. The rationale behind this is clear in the case
above. If the user says that #! x should be bound to #! b then it
is clear that #! x should not be also bound to a sum or product
involving #! b since that would either impose unreasonable res
trictions on the other dependees or result in a set of asserted con
straints which do not make sense declaratively.

This use of the superset-or-subset rule also avoids most cycles of
constraints which are not mutually satisfyable. This issue is dealt
with in more detail in the Technical Notes section below.

In addition to nullifying bindings automatically, PICASSO allows
CONSTRAINTS faQ user to remove bindings explicitly. If the user has a handle for

the binding, generated with the receipt option in bind-slot
and bind-var, then he may remove the binding with the func
tion

unbind-fast [Function]
receipt

This function takes the handle and removes the binding. If no han
dle is available, then alternative forms are available to remove the
binding.

unbind-slot [Function]
slot-name

object
expression
&key
(unbind-supersets t)
(unbindsubsets t)

unbind-var [Function]
var-name

reference
expression
&key
(unbind-supersets t)
(unbind-subsets t)

Unbind-slot should be called with the same slot-name and
object used for the call to bind-slot. The expression can be
the same as the function given to bind-slot or any expression
which has the same set of var clauses. It is preferable to avoid
expressions evaluated using the comma macro since they take exe
cution time without contributing to the dependee list unbind-

PlCASSO Reference Manual 6-89

PROPAGATION AND TRIGGERS

slot removes any bindings with exactly the same dependees. In
addition, if unbind-supersets is true (the default) then any bindings
with a superset of the dependees are removed If unbind-subsets is
true (the default) then any bindings with a subset of the dependees
are removed.

Unbind-var is called with a variable name and a reference to

the location to resolve the name from. The rest of the arguments
are the same as for unbind-slot.

These two functions are very powerful. They can be used to
remove large numbers of bindings at once. At the same time, they
are very dangerous and should be avoided by inexperienced users.
The combination of receipts and automatic nullification will han
dle almost all cases.

TECHNICAL
There are a few details about the implementation of bindings of

N0TES which users should be aware because they have an impact on the
functionality in extreme cases. This section presents several of
these details. Many of these are limitations which we anticipate
removing in a later release of PICASSO or are considering chang
ing in future releases. Any such changes will be noted in the
Release Notes of such future releases.

Propagation is implemented by Common Lisp setf methods.
The dependees in any propagation have their setf method
altered to check for a change and to propagate to their dependents.
The data value being constrained is updated by using its own
setf method to give it a new value. This allows propagation to
continue through multiple bindings until values stop changing.
This implementation of propagation leads to several restrictions on
the use of bindings.

The first restriction involves the use of virtual slots. Since virtual
slots have no storage, and therefore no memory, they are unable to
determine whether they are being set to the same value they
already have. Since PICASSO relies on this technique to detect
propagation loops, no loop may be set up with only virtual slots.
A loop must contain at least one real slot or variable.

An additional consequence of the use of setf methods for pro
pagation is that some values may not wish to propagate all
changes, only changes that are "major" in some way. For
instance, a text widget only propagates changes to its data when
the user is finished editing. To allow this, the user can establish a
binding for the slot (or other value) but not use the set f method
when performing incremental updates. A function is provided for

PICASSO Reference Manual 6-90

Triggers

SETTING

TRIGGERS

PROPAGATION AND TRIGGERS

triggering a propagation by hand.

do-propagate
variable

do-propagate
slot-name

object

[Function]

[Function]

Either form triggers a propagation just as though the variable, slot,
or virtual slot had been changed by use of a set f method.

A final consequence of this implementation is seen when dealing
with objects which have components. As shown in die example,
the binding mechanism can be used to detect when a variable
points to a new object, or when a slot in an existing object
changes, but not both. This is the result of an optimization which
resolves all references into hard pointers. A technique for han
dling the problem case is shown in the section on triggers.

Triggers are code attachments which are executed whenever the
data value they are attached to changes. They are similar to bind
ings but do not necessarily propagate a new value to a data object.
Instead, they may take actions including, if needed, calling a dia
log box or performing a database query.

A trigger can be set on any slot, PICASSO variable, or virtual slot
The following forms can be used to set triggers.

set-trigger
slot-name

object
code

set-trigger
picasso-variable
code

[Macro]

[Macro]

Both forms accept code in a form ready to evaluate without any
specific lexical context Any resolution of lisp or PICASSO vari
ables should be done in advance using the backquote macro and, if
necessary, the comma macro as well. When a trigger is set, the
code attached is automaticallyexecuted once. This corresponds to
the fact that the trigger cannot know whether the variable or slot
value is new or original.

PICASSO Reference Manual 6-91

PROPAGATION AND TRIGGERS

Once a trigger is set, any change to the value of the slot or variable
causes the code to be executed. The changes must occur through
the use of the lisp setf form. Changes made in other ways do
not trigger the code. The code does not execute when the value set
is not different from the previous value except in the case of vir
tual slots which trigger the code with every set f.

EXAMPLE The typical trigger is set to handle a condition which can only
occur when a certain value changes. The following trigger would
call a lisp function whenever the PICASSO variable age exceeds
65.

(set-trigger #!age

'(if (> (value ',#?age) 65)

(force-retirement)))

Note that the use of backquote and comma are necessary here
because the trigger code is executed in an empty lexical environ
ment. A similar example will alert the user when a text field con
tains inappropriate language:

(set-trigger 'value #!text-area

*(if (bad-words-in (value ',#!text-area))

(call ',#!alert-dialog)))

In this case, the quote and comma are used to evaluate
#! text-area to get a pointer to the specific text widget. When
quoted, this can be used later by the value method to get the actual
text Similarly, the variable alert-dialog is resolved at the
time the trigger is set.

We have seen that bindings alone are unable to handle the case
where both an object and its slots may be changed externally. By
combining bindings with triggers we can develop a solution to this
problem. Assume we have a PICASSO variable employee which
points to an object The object has a slot name which holds the
employee's name. We have a second PICASSOvariable emp-name
which would like to be bound to the employee's name regardless
of whether the object changes (and #!employee points to a new
object) or the slot value changes within the same object This fol
lowing code sets up precisely that binding. Assume, for simpli
city, that both PICASSO variables are defined in the current lexical
environment

PICASSO Reference Manual 6-92

REMOVING

TRIGGERS

Lazy
Evaluation

PROPAGATION AND TRIGGERS

(let ((trigger-code

'(let ((emp-object (value ',#?employee))

(name-loc ',#?emp-name))

(eval '(bind-slot 'value \name-loc

(list 'var

'name

',emp-object))))))

(eval '(set-trigger #lemployee ',trigger-code)))

This is a rather complex example. The outer let statement
creates the code for the trigger and then evaluates a set-trigger call
with that code on the employee variable. Thus, whenever
#! employee points to a new object, this code will be executed.
The code itself is a let which takes advantage to the backquote
macro twice to plug in both trigger-set-time and bind-time con
stants. This let sets up two local variables with the location of
the employee name and with a pointer to the employee record
(both generated from trigger-set-time values, though die pointer
itself is resolved at bind time) and then binds the employee name
variable to the name slot in the employee object A more efficient
implementation could also remove old bindings by generating
receipts (or by using unbind functions).

This last example is about as complicated as triggers and binding
can get. The code illustrates that triggers are implemented on top
of bindings. As such, the var structure is synthesized at bind
time so as not to be misinterpreted by the trigger handler.

There is no explicit function for removing triggers. Instead, set a
trigger with nil as the function. Each trigger on a data location
replaces the previous one and therefore setting the code to nil
effectively removes the trigger.

PICASSO supports slots which serve as caches for computed
values. A slot is referred to as lazy when it recomputes its value
only when the value is read. Lazy slots only mark the cache as
invalid when a setf operation is performed on them. Lazy slots
are most useful when the computation needed to update the slot is
expensive and the slot is written to many more times than it is read

PICASSO Reference Manual 6-93

PROPAGATION AND TRIGGERS

from.

Two functions exist for making slots lazy. To make a slot lazy for
SLOTS LAZY every instance inan entire class, use:

make-slot-lazy-for-class [Function]
slot-name

class-name

computation

Slot-name and class-name are the names of the respective slot and
class. They should typically be quoted, although they can be
expressions that evaluate to slot and class names. The computa
tion should be an expression which can be evaluated to yield the
appropriate value for the slot It is evaluated whenever the cache
needs to be updated.

The function make-slot-lazy-for-instance is used to
make a slot lazy only for a single instance of the class.

make-slot-lazy-for-instance [Function]
slot-name

object
computation

The only difference between this function and make-slot-
lazy-for-class is that this function takes an object instead of
a class name.

Once a slot is lazy, set f of any value into that slot merely marks
it invalid. The macro invalid-p can be used to check whether
a slot value is invalid.

invalid-p [Macro]
value

This macro can be used to check whether the slot value value is

invalid. For example,

(invalid-p (value entry-widget))

is used to check whether the value slot of the specified entry
widget is invalid. In addition, the function lazy-p can be used
to tell whether a slot in a particular object is lazy or not

lazy-p [Function]
slot-name

object

PICASSO Reference Manual 6-94

PROPAGATION AND TRIGGERS

This Function can be used to tell whether the slot slot-name in the

object object is lazy or not

SUBCLASSES When a class has bemade lazy with make-slot-lazy-for-
FROMLAZI- class, all subclasses also inherit the laziness. To specify that a
NESS subclass should not treat the slot as lazy, use the function make-

slot-unlazy-for-subclass.

make-slot-unlazy-for-subclass [Function]
slot-name

class-name

This function will make a subclass, and all of its subclasses, unlazy
for that slot

For most purposes, the programmer can set lazy slots and ignore
N0TES them. When they are written to, they become invalid, but when

they are read from they automatically re-cache the computed
value. Of course, it does not make sense to propagate from a lazy
slot (since that would automatically generate a read for every
write) and it does not make sense to make slots lazy when they
have visible side effects (such as displaying data on the screen).

Lazy evaluation slots should be used very carefully. They can
improve performance dramatically, but only when the computation
or side effect being avoided is expensive enough to support the
caching overhead. The implementation of setf for lazy slots
merely shoves a marker into the slot to mark it invalid. The acces
sor method will check the cache and read it, if it is up-to-date, or
refresh it from the computation. Lazy slots can be bound to other
slots, since this merely serves to cut off the propagation chain
early. They cannot be bound to, since this would completely
defeat lazy evaluation.

PICASSO Reference Manual 6-95

Overview

Collections

COLLECTIONS

COLLECTIONS

Widgets in PICASSO are grouped into collections which arrange
them on the screen and control their display attributes. Forms are
a type of collection used in the framework. Each collection uses a
geometry manager to specify the layout of the widgets it contains.
PICASSO has several predefined geometry managers as well as the
facilities for defining new ones.

This chapter documents the following:

Collections

Anchor-GM

Packed-GM

Stacked-GM

Matrix-GM

Root-GM

Null-GM

PICASSO windows are organized in a hierarchy, with ancestors
enclosing their descendents. However, many windows do not have
children. For example, most widgets that appear on the screen
(i.e., buttons) do not have children. Collections, which are
comprised of the collection-gadget class and its subclasses, most
notably collection-widget, are the PIC4SSO abstractions for win
dows mat have children.

A question all collections must answer is, what happens when the
collection changes size (is "resized")? Do the children just stay
the same size, or are they, too, resized? Consider, for example, a
collection with a title bar, a scroll-bar, and a text-editor as chil
dren. When this collection is resized, we'd like the tide-bar to
span left to right along the top of the collection, the scroll-bar to
remain on the right side, spanning top to bottom in the remaining
space, and the text-editor to fill in whatever space is left Other
tools will behave differently when the are resized. The problem of
resizing the children of a collection when the collection is resized
is called geometry management, and the action of resizing and
moving the children of a collection is call repacking.

PICASSO Reference Manual 7-96

CREATING

COLLECTION-

GADGETS

CREATING

COLLECTION-

WIDGETS

COLLECTIONS

A collection in PICASSO is responsible for managing the layout of
its children. The child's geometry is stored in x, y, width and
height slots, combinations of which form the child's location (x,
y), size (width, height) and region (x, y, width, height).

Collection gadgets are a subclass of gadgets. As a subclass, they
inherit keys and methods from gadgets.

make-collection-gadget
&key
(name "A Collection")
(value "Collection")
(gm 'null-gin)
(children nil)
(repack-flag nil)
(repack-needed nil)
(conform : grow-shrink)
(repack-count 0)
(min-size nil)
(gm-data nil)
;; Defaults inherited from gadgets:
(status : exposed)
(font *default-font-name*)
(background nil)
(dimmed-background nil)
(inverted-background nil)
;; Plus keys inherited from window
&allow-other-keys

[Function]

Collection widgets are a subclass of both widgets and collection
gadgets. As a subclass, collection widgets inherit the keys and
methods specified for widgets and collection gadgets.

make-collection-widget
&key
(event-mask ' (:exposure))
(background "white")
(inverted-background "black")
(dimmed-background "whit e ")
(foreground "black")
(dimmed-foreground "black")
(inverted-foreground "white")
;; Defaults inherited from widgets:

[Function]

PICASSO Reference Manual 7-97

COLLECTIONS

(name "A Widget")
(status : exposed)
;; Defaults inherited from collection gadgets:
(value "Collection")
(gm 'null-gm)
(children nil)
(repack-flag nil)
(repack-needed nil)
(conform :grow-shrink)
(repack-count 0)
(min-size nil)
(gm-data nil)
;; Defaults inherited from gadget:
(font *default-font-name*)
;; Plus keys inherited from window, opaque window and x-window
&allow-other-keys

COLLECTION

attributes Most of me mterestmS attributes of collections are used in
geometry management Attributes fall into two major classes.
One is used to determine the base-size of the collection, and the
other specifies how the collections children are resized when the
collection is resized.

Since collection widgets are a subclass of collection gadgets, these
attributes are inherited by collection widgets.

children [Reader]
(selfcollection-gadget)

This method returns a list of the child windows of the collection-
gadget self. This value should not be setfd by an application
program; use the add-child macro to add a subwindow
instead.

conform [Accessor]
(self collection-gadget)

This method returns the conformity specification of the
collection-gadget self. It will be one of the values : grow-only,
:grow-shrink or :dont-conform, each of which will be
described below. This value may be set f *d.

Recall that the base-size of a window is the minimum width and

height the window should be sized to in order to reasonably
display its data. For example, a window mat displays the string
"Hello" would set it's base-size to the size needed to display
those characters in its current font

PICASSO Reference Manual 7-98

COLLECTIONS

The base-size for a collection is, in general, a function of the
base-sizes of the children. This conformity specification defines
how to map from the base-sizes of the children to the base-size of
the collection-gadget in the following way. If the conformity
specification is :dont-con form, then the base-size of the
collection-gadget is simply composed from the value stored in the
base-width and base-height slots. If the conformity specification is
:grow-shrink, then the base-width of the collection-gadget is
the minimum of the value stored in the base-width slot and the

smallest width needed to fit all the children on the screen such that

none of the children has a width smaller than its own base-width.

The base-height is computed similarly. Finally, if the conformity
specification is : grow-only, then the base-width of the
collection-gadget is computed the same as in the :grow-
shrink case, except that the value is never decremented.

gm [Accessor]
(self collection-gadget)

This method returns a symbol that identifies the type of geometry-
manager used to repack the children of the collection-gadget self.
Currently, PICASSO supports the following geometry-managers:
anchor-gm, matrix-gm, packed-gm, root-gm,
stacked-gm and nil, the "null-gm". Specifics about each
type of geometry-manager are given in the following sections.
This value may be setf'd.

gm-data [Accessor]
(self collection-gadget)

This method returns the gm-data used by the geometry-manager of
the collection-gadget self. The gm-data is extra data used by
specificgeometry-managers in repacking theirchildren. Currently,
the only PICASSO geometry-managers that use gm-data are the
matrix-gm and the stacked-gm. Specifics about what goes
into this slot are given in the following sections on each
geometry-manager. This value may be setf'd.

min-size [Accessor]
(self collection-gadget)

repack-flag [Accessor]
(self collection-gadget)

This method returns the repack-flag of the collection-gadget self.
This flag, if nil, prevents a collection from being repacked. This
is useful when many changes will be made on a collection, and it
would be wasteful to repack before all the changes are finished.

PICASSO Reference Manual 7-99

COLLECTIONS

For example, when initially creating the collection-gadget, chil
dren are being added and if a repack were performed each time a
child was added, the running time of creating the collection-gadget
would be proportional to the square of the number of children. If
the repack-flag is set to nil while the children are being created,
then only one repack need be done after all the children are in
place, resulting in a run time proportional to the number of chil
dren. This value is normally changed via the repack-off and
repack-on macros, though it may also be set f d.

COLLECTION

MACROS add-child [Macro]
collection

child

This macro adds child to the list of children of collection, and
informs the geometry-manager of collection of the change by cal
ling the gm-add-child method. This has the side-effect of
repacking and repainting collection as necessary.

delete-child [Macro]
collection

child

This macro removes child from the list of children of collection,
and informs the geometry-manager of collection of the change by
calling the gm-delete-child method. This has the side-
effect of repacking and repainting collection as necessary.

force-repack [Macro]
collection

This macro forces a repack of a collection-gadget, regardless of the
value of the repack-flag or whether the window is exposed, con
cealed or pending. The min-size of the collection is also recalcu
lated. This macro is rarely used by the user, except interactively in
debugging or designing.

just-repack [Macro]
collection

This macro forces a repack of a collection-gadget, regardless of the
value of the repack-flag or whether the window is exposed, con
cealed or pending. Its function is the same as the force-
repack macro, except that the min-size of the collection is not
recalculated. This macro is rarely used by the user, except interac-

PlCASSO Reference Manual 7-100

COLLECTION

SUMMARY

Anchor-

GM

tively.

repack
collection

COLLECTIONS

[Macro]

This macro repacks a collection-gadget if the collection is
exposed, the repack-flag is on, and a repack is needed. If no recent
changes have been made that may have effected the children, then
this macro has no effect It is rarely used by the user, except
interactively.

repack-off
collection

[Macro]

This macro sets the repack-flag of the collection-gadget to nil,
i.e., it turns repacking off for a collection. See the documentation
for the repack-flag method for further details.

repack-on
collection

[Macro]

This macro sets the repack-flag of the collection-gadget to t, i.e.,
it turns repacking on for a collection and repacks the collection if
necessary. See the documentation for the repack-flag
method for further details.

Reader Methods Setf Methods Macros

children

conform

gm

gm-data
repack-flag

conform

gm

gm-data
repack-flag

add-child

delete-child

force-repack
just-repack
repack
repack-off
repack-on

Anchor-gm handles reshaping of children according to the place
ment of figurative "anchors" and "arrows". Arrows are used to
specify that a window can be stretched. Anchors can be thought of
as thumbtacks on the side of a window — they specify that the
given side should be pinned down at a specified distance from the
side of the parent

The geom-spec of the child of an anchor-gm is a list of (%x %y
%width %height <anchors><arrows> (:borders nil)

PICASSO Reference Manual 7-101

COLLECTIONS

(: label nil)) where arrows, anchors, (: border nil)
and (: label nil) are optional. %x, %y, %width and
%height are numbers between 0.0 and 1.0, inclusive, and specify
the location and percent of the region the child will occupy within
the parent, with the origin in the upper left comer of the parent
For example, specifying a %width of 0.75 would imply that the
child should always be 75% of the width of the parent If %x is
0.1 and the parent is 100 pixels wide, then the child will be placed
at an x-offset of 10 pixels. Specifying percentages implies that
arrows should be specified as well, since specifying percentages
only makes sense if things can grow and shrink.

There are two types of arrows, vertical & horizontal, which specify
the directions in which a given child should be resized. Arrows
always imply proportional reshaping, as though the child were on a
sheet of rubber, for example, if the parent doubles in size, so will
the child. If arrows are omitted, the child is not resized, but rather
moved to the center of the area which the child would occupy if it
were resized.

In the geom-spec, arrows are specified by the keyword : arrow
followed by an unquoted list of arrow types, which can be either
:horiz or :vert.

Four types of anchors, left, right, top, & bottom, specify the side of
the collection to which the child should be anchored. Anchors

imply absolute reshaping. Associated with each anchor is an
integer which specifies the gap (in pixels) between the given side
of the child and the given side of the collection. For instance, a
child can have its upper left comer anchored at coordinates (20 35)
by putting a left anchor at 20 and a top anchor 35. Anchor-gm
takes into account border-width in repacking so that a window
with border-width 5 will be positioned 5 pixels in from its
specified position (x and y) and will be 10 pixels shorter and
thinner than specified, overriding base-width and base-
height if necessary. Border-width is ignored if (: border
nil) occurs in the geom-spec. Similarly, labels are ignored in
repacking if (: label nil) occurs in the geom-spec.

In the geom-spec, anchors are specified by the keyword
: anchor followed by a property list of side offset pairs, where
side is one of the keywords :left, : right, :top or
: bottom and offset is an integer specifying the gap, in pixels.

PICASSO Reference Manual 7-102

COLLECTIONS

EXAMPLE The following geom-spec specifies a window which sticks to the
bottom, grows upward, but remains centered horizontally within
its parent and always takes up 1/2 of the width and 3/4 of the
height of the parent:

(1/4 1/4 1/2 3/4 :anchor (:bottom 0) :arrow (:vert))

EXAMPLE The following specifies a scrolling text-widget of initial dimen
sions 100 x 100, with a vertical scroll bar along the left edge and a
horizontal scroll bar along the bottom. The first make-
scroil-bar specifies the left vertical scroll bar; the second
make-scroll-bar specifies the bottom horizontal scroll bar,
and the the third make-text-widget specifies a text widget
for the remaining (majority) upper right region.

PICASSO Reference Manual 7-103

COLLECTIONS

(make-collection-widget

:gm 'anchor-gm

:size ' (100 100)

:parent (root-window)

:children '((make-scroll-bar

:orientation :vertical

:base-width 20

:geom-spec '(ranchor

(:left 0

:top 0

:bottom 0)))

(make-scroll-bar

:orientation :horizontal

:base-height 20

:geom-spec '(:anchor

(:left 20

:bottom 0

:right 0))

:height 20)

(make-text-widget

:region '(20 0 80 80)

:geom-spec '(:anchor

(:left 20

:bottom 20

:right 0

:top 0)

:arrow (:vert rhoriz)))))

Packed- Packed-gm is a geometry manager that allows for perpendicular
GM packing of subwindows in a style much like that of the SX toolkit

Consider a simple text editor, with a tide-bar, scroll-bar and win
dow for editing. You can use packed-gm to specify, for instance,
that the title-bar should be along the top of the window, span the
window left to right and be tall enough to display the text in what
ever font it's using, that the scroll-bar should be on the left side of
the window with a width of 20 pixels, and that the text window
should fill in the remaining space.

To calculate the region occupied by a child window within a
parent, packed-gm uses the following algorithm: Start with the
first child in the list of children, and place it along the side of the
collection specified in the geom-spec of that child spanning that
side. The region remaining unoccupied is a (smaller) rectangular
region. Go on to the next child and place it within this region

PICASSO Reference Manual 7-104

COLLECTIONS

along the side specified by its geom-spec, spanning that side in the
remaining region, leaving yet another smaller rectangular region.
Go on with the rest of the children until you either a) run out of
children, or b) the leftover region is so small that no more children
can be placed within it In the latter case, pend all the remaining
children since there is nowhere to put them; this effectively makes
them invisible.

The geom-spec of a child under packed-gm determines the side on
which the child will reside, and its size in the direction perpendicu
lar to that side. It can be one of the keywords :left, : right,
:top, :bottom or : fill, it can be nil, or it can be a list
consisting of one of the keywords : 1e f t, : r i ght, : t op or
:bottom followed by an integer that specifies the size of the
child, in pixels, in the direction perpendicular to the specified side.
Examples of the geom-spec are:

:left

(:top 20)

:fill

nil

Place the child on the left side
of the parent, with the width determined
by the base-size of the child.
Place the child along the top of the
parent, with a height of 20 pixels.
Place the child in the remaining
unoccupied region of the parent.
Treat as : top for tall windows,
: left for wide windows.

(wide windows have width > 3*height)

In addition, the geom-spec of a child can contain the
keyword/value pairs (:before window) and (: after window),
which specify where to place this child in the list of children. The
child is placed before (or after) window in the list of children. If
window is omitted, the window is placedat the beginning or end or
the list, as appropriate. This feature is particularly useful when
adding children to a window after the window has been created.

Finally, the geom-spec of a childcan contain keyword/value pairs
that specify padding on the left, right, top or bottom sides of the
child. This padding serves as a visual "gully" to separatetwo chil
dren. The keywords recognized are:

PICASSO Reference Manual 7-105

EXAMPLE

Stacked-

GM

COLLECTIONS

(: left -pad size)
(: right-pad size)
(: top-pad size)
(: bottom-pad size)
(: hori z -pad size)
(: vert-pad size)
(:pad size)

Pad the left side with size pixels
Pad the right side with size pixels
Pad the top side with size pixels
Pad the bottom side with size pixels
Pad the left and right sides with size pixels
Pad the top and bottom side with size pixels
Pad all sides with size pixels

Another version of the example given for anchor-gm: the follow
ing specifies a scrolling text-widget of initial dimensions 100 x
100, with a vertical scroll bar along the left edge and a horizontal
scroll bar along the bottom. The text-widget is surrounded by a
gully of 4 pixels. The first make-scroll-bar specifies the
left vertical scroll bar, the second make-scroll-bar specifies
the bottom horizontal scroll bar, and the the third make-text-
widget specifies a text widget for the remaining region.

(make-collection-widget

:gm 'packed-gm

:size ' (100 100)

:parent (root-window)

:children '((make-scroll-bar

:orientation :vertical

:geom-spec :left)

(make-scroll-bar

:orientation :horizontal

:geom-spec :bottom)

(make-text-widget

:geom-spec '(:fill :pad 4))))

Stacked-gm is a very simple geometry manager that places as
many children as will fit left to right across the collection, then
overflows into the next row. This process is continued until either
there is no more space for another row or all children have been
packed in.

The geom-specs of the children are ignored. The children are
given a size equal to their base size. The gm-data of the collec
tion, however, is used to determine the gap between the children.
Gm-data is a list of (inter-row-gap inter-column-
gap), where inter-row-gap specifies how many pixels to
place between each child in a row, and inter-column-gap

PICASSO Reference Manual 7-106

EXAMPLE

Matrix-GM

COLLECTIONS

specifies how many pixels to place between the rows of children,

A stack of 5 buttons, with a gap of 4 pixels between each:

(make-collection-widget

:gm 'stacked-gm

:gm-data '(4 4)

:parent (root-window)

:children '((make-gray-button :value wAddw)

(make-gray-button :value "Delete")

(make-gray-button :value "Cancel")

(make-gray-button rvalue "Reset")

(make-gray-button rvalue "Close")))

Matrix-gm is the geometry-manager used by table-fields, matrix-
fields, and list-boxes. It manages an array-style organization of
windows. The geom-specs of the children contains a list which
specifies the row and column of the child, and the gm-data of the
collection contains a structure which holds data private to the
matrix.

Most of the parameters of the matrix-gm are set at initialization,
which is performed by calling the gm-matrix-init function
(see below). This function sets the number ofrows and columns in
the matrix, the maximum number of rows and columns visible at
any one time, the row and column defining the upper left comer,
and the minimum and maximum size a row/column can shrink or
grow to. By default, the maximum number of rows an columns
visible are the number of rows and columns in the matrix, the
upper left comer is (0 0), and the minimum size of rows and
columns are set such that each row will be at least as tall as
required by the tallest window in that row and each column will be
at least as wide as needed to display the widest window.

gm-matrix-init
self
&key
(rows (rows self))
(cols (cols self))
(max-visible-rows rows)
(max-visible-cols cols)
(row-mins nil)
(col-mins nil)

[Function]

Picasso Reference Manual 7-107

COLLECTIONS

(row-maxs nil)
(col-maxs nil)
(row-index 0)
(col-index 0)
(inter-row-pad 0)
(inter-col-pad 0)
(conform nil)

This function initializes the matrix-gm associated with the collec
tion self. Rows and cols specifies the number of rows and columns
in the matrix. Max-visible-rows and max-visible-cols specify the
maximum number of rows and columns visible at one time. Row-

mins, col-mins, row-maxs and col-maxs are sequences of length
rows or cols that specify the minimum and maximum size for a
row or column. By default these are set such that each row will be
at least as tall as required by the tallest window in that row and
each column will be at least as wide as needed to display the wid
est window. Row-index and col-index specify the element to be
displayed in the upper left comer of the matrix. Inter-row-padand
inter-col-pad specify the number of pixels to appear between two
items in a given row or column, respectively. Finally, if conform
is t, the base-size of the matrix is set to display max-visible-rows
and max-visible-cols of windows.

Null-GM PICASSO has two other built-in geometry-managers, which are
and Root- used internally. The functionality contained in these geometry-
GM managers is occasionally useful for widget writers and writers of

new geometry-managers. This section briefly documents the fol
lowing geometry-managers:

• root-gm, the geometry-manager which manages all children
of the root-window.

• null-gm, the geometry-manager which defines the default
behavior of geometry-managers.

Root-gm is the geometry-manager used by the root-window, the
collection-widget that is at the top of the x-window instance
hierarchy. Root-gm sets a widget's size based on the following
logic, ignoring the geom-spec of the child: if the width-increment
of the window is zero, implying that the window's width cannot be
changed, then the window's width is set to its base-width; other
wise, the width-increment is non-zero, and the window's width is
chosen such that a) it fits within the confines of the root-window,
b) that it is no smaller than the base-width and c) that the
window's width isn't decreased if it's currently greater than the
base-width. The last rule prevents the root-gm from resizing a
window to its base size after the user enlarges the window. A

PICASSO Reference Manual 7-108

GEOMETRY
MANAGER

SUMMARY

COLLECTIONS

similar logic is used to determine the window's height.

Null-gm defines the default behavior of all geometry-managers. It
honors all requests for a widget's placement, and it sets a widget's
size based on the same logic as root-gm; see the above description
of root-gm for details. The minimum size for a collection with a
null geometry-manager is the size the collection must be in order
for all of its subwindows to be visible.

The following table summarizes the use of the geom-spec and
gm-data slots for the various geometry managers. For anchor-gm
and packed-gm, pos is one of the keywords : left, : right,
: top or : bottom. For anchor-gm, x, y, wand h are all in
the range 0.0.. 1.0.

Geometry Manager em-data ceom-spec

anchor-gm unused

(%x %y %w %h :anchor ({pos pixels}*)
:arrow (dir)
where dir is :horiz or :vert or both

packed-gm unused pos\:GM\(pos pixels)
stacked-gm (row-gap column-gap) unused

matrix-gm used internally (row-num column-num)
null-gm unused unused

root-gm unused unused

PICASSO Reference Manual 7-109

Overview

WIDGETS AND GADGETS

8

WIDGETS AND GADGETS

Almost all input and output behavior of PICASSO is implemented
through two interface abstractions: gadgets and widgets. Gadgets
are abstractions for output behavior, and widgets are abstractions
for input/output behavior. The rest of this manual describes the
PICASSO toolkit and the more than 30 predefined widgets and
gadgets implemented in it All widgets and gadgets share some
common behavior. For instance, all widgets and gadgets can have
borders and labels defined for them. In addition, many of the slots
and methods are common to all widgets and gadgets. This chapter
presents all of the common behaviors of widgets and gadgets.

This chapter is organized as follows:

Gadgets

Widgets

Synthetic Gadgets

Borders

Labels

Gadgets The gadgets class is a subclass ofwindows, and therefore inherits
keys and methods via the window class. Although most develop
ers are unlikely to need to use make-gadget directly, the fol
lowing function is available to define gadgets.

make-gadget [Function]
&key
;; defaults overridden from superclasses
(name nA Gadget",)
(status : exposed)
(font *default-font-name*)
(background nil)
(dimmed-background nil)
(inverted-backgroundnil)
;; Plus keys inherited from windows
&allow-other-keys

Each of the attributes listed for make-gadget is described in
Chapter 2 under windows. Since gadgets are a subclass of win
dows, the additional attributes, methods and macros given for win
dows also apply to gadgets. In addition, the following are also

PICASSO Reference Manual 8-110

WIDGETS AND GADGETS

defined on gadgets:

determine-class [Method]
(selfgadget)
value

Returns what class gadget is a member of. Possible values include
(null-gadget text-gadget bitmap-gadget
image-gadget paint-gadget arrow-gadget). If
gadget is not a member of any of these classes, a warning is issued
and ' null-gadget is returned.

repaint-x [Method]
(selfgadget)

Returns the x offset of the gadget from the enclosing window. If
the gadget itself is a window, the x offset is 0).

repaint-y [Method]
(selfgadget)

Returns the y offset of the gadget from the enclosing window. If
the gadget itself is a window, the y offset is 0).

Widgets The widgets class is defined as a subclass ofopaque windows, and
therefore inherits keys and methods via the opaque window class.
Although developers are unlikely to use make-widget directly,
the following function is provided to define widgets.

make-widget [Function]
&key
;; defaults overridden from superclasses
(name "A Widget")
(status : exposed)
;; Plus keys inherited from opaque windows
&allow-other-keys

As a subclass of opaque windows, widgets inherit all of the
methodsdefinedon opaquewindows, described in Chapter 2.

* , Creating complex widgets and gadgets can become expensive, and
Gadgets some 0f this expense can be avoided by using synthetic gadgets.

Synthetic gadgets, sometimes called synths, are very light-weight
abstractions for output purposes only. Unlike widgets and gadgets,
synthetic gadgets are not a defined class. As a result, they are not
quite as flexible as gadgets, but are considerably faster and

PICASSO Reference Manual 8-111

WIDGETS AND GADGETS

smaller. Many of the widgets/gadgets in PICASSO that were origi
nally implemented using collections have since been rewritten
using synths instead. In complicated widgets like tables or menus,
using synths results in a dramatic speed increase.

A synth is simply a LISP list consisting the arguments to a put
method, as described in [Sei90]. Applying the put method to a
synth will draw the synth on the screen. The synth list format is:

«string> { (key value))*)

The following keys are standardly used in creating synths:

Key Default

window nil

gc
font

(gc-res self)
nil

X 0

y
height
width

mask

0

(height self)
(width self)
nil

dimmed nil

inverted nil

horiz-just reenter

vert-just xenter

Synthetic gadget keyword values can be queried by using get f,
and can be set by using set f. For example, if we have the syn
thetic gadget my-synth specified as

("hello" :window <win> :gc <my-gc>)

then

(getf (cdr my-synth) :window)

will return <win>, and

(setf (getf (cdr my-synth) :window) <my-window»

will set the window of my-synth to <my-window>, and

PICASSO Reference Manual 8-112

WIDGETS AND GADGETS

(apply #'put my-synth)

will draw the synth my-synth on the screen.

The following macro is also defined on synthetic gadgets:

synth-p [Macro]
object

Return t if object is a synthetic-gadget, nil otherwise.

Borders The border of a window can be set to any of six predefined
PICASSO border types, and can have various widths. The three
keys of interest for specifying the border of a window are
: border-type, : border-width, and border-
attributes.

Six types of predefined border types exist in PICASSO. These
border types are box, stand out, inset, drop shadow, frame,, and
null. The desired border type for a window can be specified with
the : border-type key, and the default border is the null
border.

A box border is simply a black rectangle around a window, and
can be created by specifying : border-type :box when
creating a window. The default border-width of box borders is 1.

Stand out borders look like the border used for gray buttons (see
gray buttons in Chapter 11) in that the upper and left-most edges
are filled with "white" paint and the lower and right-most
edges are filled with "black" paint as the following diagram
illustrates:

white **|
—_- -___ ** |

I 1**1

I 1**1

I 1**1

I 1**1
_______________ ** |

Standout borders are created by specifying : border-type
: standout when creating a window, and the default border
width for standout borders is 2.

PICASSO Reference Manual 8-113

WIDGETS AND GADGETS

Inset borders are inverted standout borders, i.e., the upper and left
most edges are filled with "black paint, and the lower and
right-most edges are filled with "black paint Inset borders are
created by specifying : border-type : inset, and the
default border width for inset borders is also 2.

A frame border is a combination of an inset border drawn inside of
a standout border, and looks somewhat like a picture frame. In
addition, the area between the inset and standout border can be
filled with a designated color by using the :border-
attributes key, as the following diagram illustrates:

white *

**

**

I**

I**

I**

i**

**

I**

I**

I**

I**

**

**

**

I/////// fill ////////////////|**|

I/////// fill II11111II1111111
,// //

I//|black******************|//

1**1

//I**

//l**l

//l**l

//l**l

//l**l

//l**l

//l**l

//I**

//I*

//

II

II

II

Ml

Ml

Ml

Ml

II

white Ml

//

l//l**l

l//l**l

1**1

1**1

** I
******************************black|

Frame borders have a default border-width of 7, and can be
created using the following specification:

:border-type :frame

: border-width <width>

:border-attribute ' (:background <paint»

Shadow borders have a drop-shadow filled with the paint
"gray25". Shadow borders can be created by specifying
:border-type : shadow, and have default border-width of
' (0 0 7 7) (where each list element corresponds to: left top
right bottom).

Picasso Reference Manual 8-114

MANAGING

BORDERS

BORDER SUM

MARY

Labels

WIDGETS AND GADGETS

Null borders are no border (i.e., border-width is 0). Null
borders are the default border type, and can be explicitly created
by specifying a border-type of t, or any border type that doesn't
exist

The following methods are defined on borders:

border-clear

border

self

Clears the border of self

border-init

border

(self)

Initializes the border of self, with default border width.

border-repaint
border

self

Redraws the border of self.

[Method]

[Method]

[Method]

default

border-tvne border-width comments

:box 1 black rectangle
:stand-out 2 look like gray buttons
rinset 2 inverted standout buttons
:frame 7 inset inside standout

rshadow '(007 7) drop filled shadow 1
null 0 no border (default)

The label of a window can be set to any of four predefined
PICASSO label types, and can have various widths. Keys of
interest for specifying the label of a window are : label,
:label-font, :label-type, :label-x, :label-y,
and label-attributes. : label-attributes can be
used to specify various attributes of the label, such as the color of
the label.

PICASSO Reference Manual 8-115

MANAGING

LABELS

WIDGETS AND GADGETS

The four of predefined label types are left, bottom,frame, and null.
The desired label type for a window can be specified with the
: label-type key, and the default label is the null label.

Left labels are created by specifying : label-type :left,
and go just above the window. The x and y offset of a left label
(: label-x and label-y) are relative to the upper left comer
of the window.

Bottom labels are created by specifying : 1 abe1-type : bot-
torn, and go just below the window. The x and y offset of a bot
tom label (: label-x and label-y) are relative to the lower
left comer of the window.

Frame labels are designed to fit inside a frame border. They are
created by specifying : label-type : frame, and are
displayed in thefill portion between the framed border of the win
dow (see the section on frame borders above). The x and y offset
of a frame label (: label-x and label-y) are relative to the
inner left comer of the frame of the window, and default to 10 and
0, respectively.

Null labels are basically no label, and are the default

For example, the following specification creates a red left label, in
the default "8x13" font:

:label-type :left

:label-font M8xl3n

:label-attributes '(:paint nredw)

The following function and methods are defined on labels.

make-label [Function]
&key
x-offset
y-offset
label

&optional
(font (make-font))

This function creates a label. The label suing is displayed at the
specified x-offset and y-offsetin the specified/onr.

label-clear [Method]
label

self

PICASSO Reference Manual 8-116

LABEL SUM

MARY

Clears the label of self.

label-init

label

self

Initializes the label of self.

label-repaint
label

self

Redraws the label of self.

WIDGETS AND GADGETS

[Method]

[Method]

label-tyne comments

:left

:bottom

:frame

null

just above and left of window
just below window
fit inside frame border

no label (default)

PICASSO Reference Manual 8-117

Overview

Text

Gadget

CREATION

9

TEXT

TEXT

The many types of text gadgets and widgets provide the user with
a variety of options for displaying, entering and editing text data.
The main classes of text gadgets and widgets are:

text-gadget - used for displaying small amounts of text

text-buffer-gadget - used for viewing a potentially large
buffer of text

text-widget - used for editing a text-buffer-gadget

scrolling-text-widget - a text-widget with a scroll-bar

entry-widget - a one-line text-widget

num-entry - a numeric entry-field

Also, instances of the buffer class are used by text-buffer-gadgets
to store their text information. In practice, instances of buffer and
text-buffer-gadget arealmost neverusedwithout a text-widget

A text-gadget allows the user to display uneditable text informa
tion. The textcan have one or many lines, and is displayed all at
once. Only one font is allowed per text-gadget but there are no
restrictions on the type of font chosen. The text may be horizon
tally and vertically justified, repaints may be masked or non-
masked, and the base-size of a text-gadget can be self-adjusting.
These attributes are explained in more detail below.

make-text-gadget
&key
(value nn)
(font (make-font))
(horiz-just: center)
(vert-just reenter)
(maskt)
(self-adjusting nil)
&allow-other-keys

[Function]

Picasso Reference Manual 9-118

TEXT

ATTRIBUTES

dimmed [Accessor]
(self text-gadget)

Returns if self is dimmed. A setf method is also defined.

font [Accessor]
(self text-gadget)

Returns the font of self. Each text-gadget has only one font. A
set f method is also defined.

horiz-just [Accessor]
(self text-gadget)

Returns the horizontal justification of self, which will be one of
:left, reenter or :right. A setf method is also
defined.

mask [Accessor]
(self text-gadget)

Returns t or nil, indicating if self is repainted with a mask. If
mask is t, self is repainted directly onto its repaint region. If
mask is nil, self is repainted on top of a rectangular area of the
color indicated by (inverted-foreground self). The default mask is
nil for monochrome displays, and t for color displays. A
setf method is also defined.

self-adjusting [Accessor]
(self text-gadget)

Returns t or nil, indicating if self automatically readjusts its
base-size on calls to (setf font) or (setf value). A
setf method is also defined.

(setf value) [Writer]
(self text-gadget)
(value string)

Sets the text displayed by self to value. Automatically repaintsself
in order to update the text displayed.

(setf value) [Writer]
(self text-gadget)
(value list)

Sets the text displayed by self to value, which must be a list of

PICASSO Reference Manual 9-119

TEXT GADGET

SUMMARY

Buffer

ATTRIBUTES

TEXT

strings. Each string in value corresponds to a line of text in self.
Automatically repaints selfin order to update the text displayed.

value

(self text-gadget)
[Reader]

Returns a list of strings, with each string corresponding to a line of
text in self.

vert-just
(self text-gadget)

[Accessor]

Returns the vertical justification of self, which will be one of
:top, reenter or :bottom. A setf method is also
defined.

Reader Methods Setf Methods

dimmed dimmed

font font

horiz-just horiz-just
mask mask

self-adjusting self-adjusting
value value

vert-just vert-just

A buffer stores text in an array of strings. The maximum number
of lines of text that can be stored in a buffer is system-dependent,
and determined by the constant array-total-size-limit.
The main role of buffers is to store text for text-buffer-gadgets.

columns

(selfbuffer)
row

[Reader]

Returns the number of columns in row row of self The default
value of row is 0.

new [Reader]
(selfbuffer)

Clears all the contents of self. Instead of actually erasing the old

PICASSO Reference Manual 9-120

TEXT

array of strings, this method just creates a new array and lets the
old one be garbage-collected.

rows [Reader]
(selfbuffer)

Returns the number of rows in self.

(setf value) [Writer]
(selfbuffer)
vol

Sets the contents of buffer to val, which must be an adjustable vec
tor of strings.

value [Reader]
(selfbuffer)
&key
(row 0)
(column 0)

Returns a string with the contents of row row of self, starting at
column column. Rows and columns are numbered starting with
zero. If row and column are not specified, then the entire array of
strings is returned.

LINKING WITH ,™ A. . .. , A r „
These methods are provided to facilitate the interaction of buffers

SCROLL BARS ^^ controllers, such asscroll-bars.

data [Accessor]
(selfbuffer)

This slot may be used in any way. There is also a corresponding
setf method.

rows-changed-function [Accessor]
(selfbuffer)

Returns the rows-changed-function, which is a hook for
other widgets and gadgets to know when the number of rows in the
buffer changes. A setf method is also defined. Thefunc used
must be either a function or nil. If/wncisnot nil, then, when
ever the number of rows in se//changes,/M/ic is called with

(funcall func (data self) nil)

PICASSO Reference Manual 9-121

BUFFER SUM-

MARY

Text Buffer

Gadget

ACCESSING

THE TEXT

MODIFYING

THE TEXT

TEXT

Reader Methods Setf Methods

data

columns

new

rows

rows-changed-function
value

data

rows-changed-function
value

A text-buffer-gadget displays a variable subset of the text stored in
its buffer (of class buffer). This contrasts with the text-gadget
class, in which all the text is displayed at once. Only fixed-width
fonts are supported.

buffer

(self text-buffer-gadget)

Returns the buffer containing the text data of self.

value

(self text-buffer-gadget)

[Accessor]

[Reader]

Returns an array of strings corresponding to the lines of self. This
is the same as (value (buffer self)).

new [Method]
(self text-buffer-gadget)

Deletes all text in self, and places the cursor at the home position.

put [Method]
(self text-buffer-gadget)
str

&key
(overwrite nil)
(repaint t)

Insert string str into self at row and column. Update row and
column. If overwrite is nil, insert in insert mode. If overwrite

PICASSO Reference Manual 9-122

TEXT

is t, insert in overwrite mode. If repaint is t, repaint new text.

(setf value) [Writer]
(self text-buffer-gadget)
value

Set the text data of self to value, which can be a string, a vector of
strings, a list of strings or a number.

THE TEXT
Often a text-widget is not big enough to display all the text in it.

WIND0W When this happens, only a portion of the text gets displayed. The
following methods indicate and determine what part of the text is
displayed.

columns [Reader]
(self text-buffer-gadget)

Returns the number of visible columns of text of self. This is cal
culated from the font-size and the height of self. There is no
corresponding setf method.

left-of-screen [Accessor]
(self text-buffer-gadget)

Returns the number of the leftmost column of text displayed in the
text window. A corresponding set f method is also defined.

rows [Reader]
(self text-buffer-gadget)

Returns the number of visible rows of text of self. This is calcu
lated from the font-size and the width of self. There is no
corresponding setf method.

top-of-screen [Accessor]
(self text-buffer-gadget)

Returns the number of the row of text that appears on the top of
the text window. A corresponding setf method is also defined.

THE CURSOR

column [Accessor]
(selftext-buffer-gadget)

Returns the current column of the cursor of self. This value is
offset from the first column of text in the buffer of self, not the
left-of-screen. A corresponding setf method is also

PICASSO Reference Manual 9-123

MARKING

TEXT

TEXT

defined.

cursor-mode [Method]
(self text-buffer-gadget)

Returns : overwrite, : insert, or nil, corresponding to
the cursor being a solid block, a vertical bar, or invisible.

row [Accessor]
(self text-buffer-gadget)

Returns the current row of the cursor of self. This value is offset
from the first row of text in the buffer of self, not the top-of-
screen. A corresponding setf method is also defined.

Marking means highlighting a portion of text for a special purpose,
such as deleting or copying. All text between the cursor position
and the mark position is marked.

copy-mark [Method]
(self text-buffer-gadget)

Copy marked text into cut-buffer number 0 (cut-buffer is a tem
porary holding buffer [ScL89], and is compatible with xterm).

delete-mark [Method]
(self text-buffer-gadget)

Zap marked text into non-existence.

mark [Method]
(self text-buffer-gadget)
&key
(mark-row (mark-row self))
(mark-column (mark-column self))

Mark all text between the cursor position and mark-row and
mark-column.

unmark [Method]
(selftext-buffer-gadget)

Unmark any marked text and set mark-row and mark-

PlCASSO Reference Manual 9-124

TEXT

column of selfto nil.

FILEVO

append-to-file [Method]
(self text-buffer-gadget)
filename

Append the contents of self to the end offilename.

load-file [Method]
(self text-buffer-gadget)
filename
&key
(count-1)

Replace the contents of self with the first count lines of filename.
If count is -1, then use all of the lines of filename.

put-file [Method]
(self text-buffer-gadget)
filename
&key
(count -1)

Insert file the first count lines of filename into self at the current
cursor position. If count is -1, then insert all of the lines of
filename.

save-file [Method]
(self text-buffer-gadget)
filename

Save the contents of self intofilename.

SEARCHING

TEXT search-backward [Method]
(self text-buffer-gadget)
pattern

Search for first backward occurrence of pattern. If found, return
t and position cursor at the first letter of the occurrence. If the
pattern cannot be matched, or if the pattern is the empty string,

PICASSO Reference Manual 9-125

OTHER ATTRI

BUTES

TEXT BUFFER

GADGET SUM

MARY

TEXT

return nil.

search-forward

(self text-buffer-gadget)
pattern

[Method]

Search for first forward occurrence of pattern. If found, return t
and position cursor one position past the last letter of the
occurrence. If the pattern cannot be matched, or if the pattern is
the empty string, return nil.

font

(self text-buffer-gadget)

Returns the current font of self. There is a corresponding setf
method, but only fixed-width fonts are supported.

[Accessor]

invert

(self text-buffer-gadget)
[Accessor]

Returns t or nil, indicating if self is in invert mode (where
background and foreground are swapped.) A setf method is
defined for this attribute.

Reader Methods Setf Methods Misc

buffer buffer append-to-file
column column copy-mark
columns cursor-mode

font font delete-mark
invert invert load-file
left-of-screen left-of-screen mark
row row new

rows put
top-of-screen top-of-screen put-file
value value save-file

search-backward
search-forward

unmark

PICASSO Reference Manual 9-126

TEXT

Text A text-widget allows the user toedit the contents of a text-buffer-
Widget gadget. Actually, text-widget is a combined subclass of text-

buffer-gadget and widgets. This means in effect that text-widget is
a text-buffer-gadget with an X window and event handling capa
bilities.

creation Since text-widget is a subclass of text-buffer-gadget, it accepts all
of the keyword arguments of text-buffer-gadget

make-text-widget [Function]
(editable nil)
(insert-mode nil)
(tab-step 8)
(scroll-right-at nil)
(horizontal-scroll-up nil)
(vertical-scroll-up nil)
;; Plus keys inherited from text-buffer-gadget
&allow-other-keys

ATTRIBUTES

editable [Accessor]
(self text-widget)

Returns t or nil, indicating if the text contents of self can be
modified through the keyboard. A set f method is also defined.

horizontal-scroll-step [Accessor]
(self text-widget)

Returns the number of columns to scroll at a time when scrolling
to the right or to the left. If nil, a whole screen width is scrolled
at a time. A setf method is defined for this attribute.

insert-mode [Accessor]
(selftext-widget)

Returns t or nil, indicating whether self is in insert or
overwrite mode, respectively. In insert mode, when text is typed
into the text-widget the characters to the right of the cursor are
pushed over and preserved. In overwrite mode, they are overwrit-

PlCASSO Reference Manual 9-127

TEXT

ten. A setf method is also defined.

scroll-right-at [Accessor]
(self text-widget)

Returns the number of columns to the right of left-of-
screen at which self will automatically scroll right by the
number of columns specified by horizontal-scroll-step.
A set f method is defined for this attribute.

tab-step [Accessor]
Returns the number of columns between tab stops. In text-widgets,
tabs are actually simulated with spaces. A corresponding setf
method is also defined.

vertical-scroll-step [Accessor]
(self text-widget)

Returns the number of rows to scroll at a time when scrolling up or
down, if nil, a whole screen height is scrolled at a time. A
set f method is defined for this attribute.

Scrolling Ascrolling-text-widget isacollection containing a text-widget and
Text a scroll-bar which are linked together.
Widget

CREATION Scrolling text widget is a subclass of collection gadget so
scrolling-text-widget accepts all of the keyword arguments of
collection-gadgets.

make-scrolling-text-widget [Function]
(scroll-bar nil)
(text-widget nil)
(gm' packed-gm)
(conform : grow-only)
;; Plus keys inherited from collection-gadget
&allow-other-keys

ATTRIBUTES

scroll-bar [Accessor]
(selfscrolling-text-widget)

Returns the scroll-bar of self. There is also a setf method

PICASSO Reference Manual 9-128

Entry
Widget

CREATION

ATTRIBUTES

Num Entry

CREATION

defined.

text-widget
(selfscrolling-text-widget)

TEXT

[Accessor]

Returns the text-widget of self. There is also a setf method
defined.

An entry-widget is a one-line text-widget with a slot to store a
function to be called whenever the return key is pressed.

Entry widgets are a subclass of text widgets, so they accept all of
the keyword arguments of text widgets.

make-entry-widget
(return-function nil)
;; Plus keys inherited from text-widget
&allow-other-keys

[Function]

return-func [Accessor]
(selfentry-widget)

The (return) function to be executed after the user presses return.

setf return-func

(selfentry-widget)
fitnc

[Accessor]

Sets the function to be executed after the user presses return to
func. Iffunds nil, no function is executed.

A num-entry is an entry-widget that only accepts numeric input
from the keyboard. A scrollable option is available which creates a
num-entry with two scrolling buttons that increment and decre
ment the numeric value of the num-entry.

Num entries are a subclass of entry widgets, so they accept all of

PICASSO Reference Manual 9-129

TEXT

the keyword arguments of entry widgets.

make-num-entry [Function]
(scrollable nil)
;; Plus keys inherited from entry-widget
&allow-other-keys

Returns a num-entry. If scrollable is t, the num-entry is associ
ated with two buttons which increment or decrement the value of

the num-entry.

PICASSO Reference Manual 9-130

10

BUTTONS

BUTTONS

Overview Buttons are used to allow the user a convenient way to specify an
action. Buttons can contain any text or image and execute code
either when pressed or released. PICASSO provides several
predefined button types:

Button

Gray Button

Pop Button

Gray Pop Button

Click Button

Button Groups

Radio Buttons Groups

Check Buttons Groups

Implicit Buttons in Panels and Dialogs

Buttons The button class isa subclass ofthe widget class. As a subclass of
widget buttons inherit keys and methods from the widget class.
The following function can be used to create buttons.

make-button [Function]
&key
(default nil)
(pause-seconds nil)
(press-func nil)
(release-func nil)
(pushed t)
(flagt)
(data nil)
(mask color-display-p)
;; defaults overridden from superclasses
(name "A Button")
(geom-spec : center)
(border-width 1)
(event-mask ' ('.exposure :button-press

:button-release :leave-window

:enter-window))
(base-width 0)

PICASSO Reference Manual 10-131

BUTTONS

(base-height 0)
(#wf M-b&h*bold-r*14*")
;; Defaults inherited from widgets:
(status : exposed)
;; Plus keys inherited from opaque window, x-window and window
&allow-other-keys

This function creates a button at the specified location.

ATTRIBUTES

default [Accessor]
(selfbutton)

Indicates whether the button is the default button. The LISP-form
bound to the default button is evaluated if the user enters a return
character and there is no input component in the interface object
Default buttons are commonly used in dialogs. They allow the
user to exit the dialog without having to move his or her hands
from the keyboard.

pause-seconds [Accessor]
(selfbutton)

The time to leave the button pushed, after being selected and
before calling the function (can be fractional).

press-func [Accessor]
(selfbutton)

A LISP-form that will be evaluated when the user selects the but
ton. The LISP-form is evaluated in a lexical environment that
binds the COMMON LISP symbol self to the buttonobject and the
event to the X event that triggered the call.

pushed [Accessor]
(selfbutton)

Indicates whether buttonis currentlypushed or not.

release-func [Accessor]
(selfbutton)

A LISP-form that will be evaluated when the user releases the but
ton. The LISP-form is evaluated in a lexical environment that
binds the COMMON LISPsymbol self to the buttonobject and the

PICASSO Reference Manual 10-132

MANAGE

MENT

BUTTON SUM

MARY

BUTTONS

event to the X event that triggered the call.

value [Accessor]

flag

(self button)

Specifies the label on the button, and shouldbe a string.

[Accessor]
(self button)

If flag is t, call the press-func when the button is selected.

data [Accessor]
(self button)

mask

(self button)
[Accessor]

button-p
self

[Macro]

Returns t if selfis a button, nil otherwise.

(self button)

The release function on the button.

func [Accessor]

Reader Methods Setf Methods Misc

data data button-p
default default
flag flag
func func
maslr mask

pause-seconds pause-seconds
press-func press-func
pushed pushed
release-func release-func
value value

PICASSO Reference Manual 10-133

BUTTONS

Gray But- Gray buttons are a subclass of the button class and thus inherits
tons keys and methods via buttons. The following function can be used

to create gray buttons.

make-gray-button [Function]
&key
(depress t)
(drawn-border-width 2)
(invert-width 4)
(gray t)
(old-attributes nil)
;; defaults overridden from superclasses
(name "A Gray Button")
(border-width 0)
;; Plus keys inherited from button
&allow-other-keys

ATTRIBUTES

depress [Accessor]
(selfgray-button)

When set the gray-button looks "depressed" when selected.

drawn-border-width [Accessor]
(selfgray-button)

Gray buttons are drawn with a standout border (see Borders in
Chapter 8), and drawn-border-width refers to the width of the stan
dout border.

gray [Accessor]
(selfbutton)

Returns whether or not the button is a gray button. This value may
be setf'd; setting a button gray changes its class from button to
gray-button. Setting a graybutton to gray-nil (i.e.

(setf (gray <gray-button>) nil)

changes its class from gray-button to button.

invert-width [Accessor]
(selfgray-button)

Inverted gray buttons are drawn with a frame border (see Borders

PICASSO Reference Manual 10-134

BUTTONS

in Chapter 8) and inverted-width refers to the width of the
enclosed inset border.

old-attributes [Accessor]
(selfgray-button)

Keeps track of prior backgrounds (background and :border-width)
before button was changed from button class to gray button class.
If the button is made ungray, the prior backgrounds are restored.

MANAGE

MENT gray-button-p [Macro]
self

Returns t if self is a gray button, nil otherwise.

inverted [Accessor]
(selfgray-button)

Whether or not gray-button is currently inverted.

make-gray [Method]
(selfbutton)
&key
(border-width 2)
(background ngray75 ")
(invert-width (invert-width self))

Make a button a gray button (creates a gray border).

make-ungray [Method]
(old gray-button)
self

Make a gray button a regular button (gets rid of a gray border).

Pop But- A pop-button is a button except that when selected, pops up a
tons menu pane which has a user-specified behavior. By default the

selection of a menu-item just sets the value of the button to the
selected value.

Pop buttons are a subclass of buttons, thus they inherit keys and
methods from the button class. The following function can be

PICASSO Reference Manual 10-135

ATTRIBUTES

BUTTONS

used to create pop buttons.

make-pop-button [Function]
&key
(menu nil)
(items nil)
(items-font nil)
;; defaults overridden from superclasses
(event-mask ' (:exposure :button-press

rbutton-release))
;; Plus keys inherited from button
&allow-other-keys

items [Accessor]
(selfpop-button)

Pop buttons take a list of menu entries, for example

litems '("red" "blue" ...)

and a font along with all the other button arguments. Optionally,
the : items may be a list of lists where each list has an object
and an expression to eval (the code for the menu-entry). For
example:

litems '((nhellon '(print "This is Great"))

("good-bye" Mprint ',val))

"welcome"

("cancel" nil))

Alternately, the :menu key can be used to specify menu pane
entries.

items-font [Accessor]
(selfpop-button)

The font of the menu entry items.

menu [Accessor]
(selfpop-button)

The :menu key can be used to specify menu pane entries. The
difference between litems and :menu is that :menu takes

PICASSO Reference Manual 10-136

BUTTONS

an object of type menu-pane.

"MANAGE

MENT" pop-button-p [Macro]
object

Returns t if object is a pop button, nil otherwise.

Gray Pop a gray-pop-button is a gray button that when selected, pops up a
Buttons menu which has a user-specified behavior. By default the selec

tion of a menu item just sets the value of the button to the selected
value, the menu-items just set the value of the button to their
value.

Gray pop buttons are a subclass of gray buttons, thus they inherit
keys and methods via gray buttons. The following function can be
used to create gray pop pop buttons.

make-gray-pop-button [Function]
&key
(menu nil)
(items-font nil)
(event-mask ' (:exposure :button-press

:button-release))
;; Plus keys inherited from gray-buttons
&allow-other-keys

Gray button attributes and methods are described under pop but
tons and gray buttons (see above). The following macro can be
used to determine whether an object is a gray pop button.

gray-pop-button-p [Macro]
object

Returns t ifobject is a gray pop button, nil otherwise.

Click But- A click button is a button that has one function for each mouse
tons button fleft, middle, and right).

Click buttons are a subclass of buttons, thus they inherit keywords
and methods via the button class.

make-click-button [Function]
&key
(name "A Click Button")
(left-func nil)

PICASSO Reference Manual 10-137

ATTRIBUTES

MANAGE

MENT

(middle-func nil)
(right-func nil)
;; Plus keys inherited from buttons
&allow-other-keys

left-func

(self click-button)

BUTTONS

[Accessor]

The function to be executed when the user presses the left mouse
button.

middle-func

(self click-button)
[Accessor]

The function to be executed when the user presses the middle
mouse button.

right-func
(self click-button)

[Accessor]

The function to be executed when the user presses the right mouse
button.

click-button-p
self

Returns t if self is a click button, nil otherwise.

[Macro]

Button Abutton group isa group ofindicator "buttons", where each indi-
GroupS catorhasa label image, and clicking the indicator toggles the label

image. Button groups are a subclass of widgets, thus they inherit
keys and methods from widgets.

make-button-group [Function]
&key
(active-image nil)
(inactive-image nil)
(items' (""))
(orientation :vertical)
;; defaults overridden from superclasses
(name "A Button Group")
(event-mask ' (:exposure :button-press))
(font "8x13")

PICASSO Reference Manual 10-138

ATTRIBUTES

MANAGE

MENT

BUTTONS

;; Defaults inherited from widgets:
(status : exposed)
;; Plus keys inherited from opaque windows
&allow-other-keys

For example, the following code creates a button-group with 3
items, oriented horizontally, with the label displayed below the
button images.

(make-button-group

:items '("Equipment" "Utilities"

:orientation :horizontal

:label-just :bottom)

active-image
(selfbutton-group)

•Lots")

[Accessor]

The image to display when a button indicator is toggled on.

inactive-image [Accessor]
(selfbutton-group)

The image to display when a button indicator is toggled off.

items [Writer]
A list of specs, one per button, that can be passed to make-
button-group, but cannot be setfd or read after creation.
A spec is either a label or a property list for example

orientation

(selfbutton-group)
[Accessor]

The orientation of the group of buttons, either : vertical or
:horizontal. Vertical groups display their images to the left
of each label, and horizontal groups display their images above
each label.

dim-item

(selfbutton-group)
item

[Method]

PICASSO Reference Manual 10-139

BUTTONS

Dim item item of button-group.

update-value [Method]
(self button-group)

Force an update of the value of the button-group.

vertical [Method]
(self buttongroup)

Returns true if selfs orientation is :vertical.

Radio But- -Radio buttons display a small box that looks like a (pressed or
ton Groups depressed) radio dial, andbuttoning them toggles theirstate.

Radio-groups are a subclass of button-groups, thus they inherit
keys and methods from button-groups.

make-radio-group [Function]
&key
(name "A Radio-Button Group";
(value 0)
(active-image (make-image

:name "ra'dio-select"

:file "radio-selected.bitmap",)
(inactive-image (make-image

:name "radio-deselect"

:file "radio-normal.bitmap")
;; Plus keys inherited from button-groups
&allow-other-keys

SINGLERADIO c. , ,. . ^ . . , * ..Smgle radio buttons are a special case, and are a subclass of widg-
BUTTONS ets As asubclass mev inherit keys and methods from widgets.

make-radio-button [Function]
&key
(select-image nil)
(deselect-image nil)
;; defaults overridden from superclasses
(value nil)
(border-width 0)
(base-width 25)
(base-height 20)
(event-mask y(: exposure :button-press))
;; Plus keys inherited from widgets
&allow-other-keys

PICASSO Reference Manual 10-140

ATTRIBUTES

BUTTONS

deselect-image [Accessor]
(self radio-button)

The image to displaywhenthe radio buttonis toggled off.

select-image [Accessor]
(self radio-button)

The image to display when the radio button is toggled on.

Check But- Check buttons display a small box that is either checked or not
ton Groups andbuttoning on them toggles their state.

Check button groups are a subclass of button-groups, thus they
inherit keys and methodsvia button-groups.

make-check-group [Function]
&key
(active-image (make - image

:name "check-select"

:file "check-true.bitmap"))
(inactive-image (make-image

:name "check-deselect"

:file "check-false.bitmap"))
;; defaults overridden from superclasses
(name "Check-Box Group")
;; Plus keys inherited from button-group"
&allow-other-keys

SINGLE CHECK
Single check buttons area special case, andare a subclass of widg-

BUTTONS ets as asubclass, they inherit keys and methods from widgets.

make-check-button [Function]
&key
(select-image nil)
(deselect-image nil)
;; defaults overridden from superclasses
(value nil)
(border-width 0)
(base-width 25)
(base-height 20)
(event-mask '(:exposure :button-press))

PICASSO Reference Manual 10-141

Implicit
Buttons

IMPLICIT

BUTTONS

;; Plus keys inherited from widgets
&allow-other-keys

The check buttons attributes deselect-image and
select-image are the same as those listed under radio buttons.

Implicit buttons can be defined in dialogs and panels by using the
optional button clause. The button of the dialog or panel is
defined by a button-spec, which is a list of button specifications.
Each button specification has a name, an optional documentation
string, an optional documentation string, and optional list of con
trol arguments (any of those you would pass to make-button), and
a function to be executed when the button is selected.

Optional control arguments (discussed under buttons) can be
specified to control the look and behavior of implicit buttons. If
the button is declared inactive, the name of the button is dimmed
to provide feedback to the user that the button is inactive; more
over, the button will not respond when selected with the mouse.

The following specification might be used for a save-cancel-ok
dialog that prompts users as to whether they want to quit a tool
without saving their files. This dialog contains three buttons,
"Save", "Cancel", and "Ok". Clicking on "Save" returns t to the
caller, clicking "Cancel" returns : cancelled, and clicking
"OK"returns nil.

(defdialog ("picasso" "save-cancel-ok" . "dialog")

"example of implicit button specification"

(buttons ("Save"

(ret-dialog) t)

("Cancel"

(ret-dialog :cancelled))

("OK"

(ret-dialog nil)})

PICASSO Reference Manual 10-142

11

CONTROLS

CONTROLS

Overview Controls are interface abstractions that allow a user to modify her
view of an object Scroll-bars are a good example of a control.
Controls are typically used in conjunction with other widgets
rather than as stand-alone widgets, and use the PICASSO binding
mechanism to communicate with the widgets they control.

The types of controls implemented in PICASSO are:

• Scroll-bars

• Sliders

• Rover-widgets - allow two-dimensional scrolling

Scroll Bars PICASSO applications use scroll-bars to allow the user to adjust her
view of another object that is too big to fit on the screen. A good
example of such an application is a text editor, where the
document's length is unlimited. In this application, vertical
scroll-bars are placed alongside the editor to allow the user to
easily change the editor position within the document The widget
that the scroll-bar is controlling is called the client of the scroll
bar.

A scroll-bar is a widget conceptually containing two buttons and a
slider. It may be either horizontal or vertical. The buttons may be
placed at either the top or bottom of the scroll-bar (left or right for
horizontal scroll-bars). The slider has an indicator that typically
reflects the current offset within the viewed object and what por
tion of the object they are viewing. For efficiency, scroll-bars are
implemented as a single window rather than a collection.

It is typically desirable for the clients of a scroll-bar to use a coor
dinate system convenient for them in positioning the scroll-bar.
For example, for a text widget it is desirable that the coordinate of
the top of the scroll-bar be "1", and the position at the bottom of
the scroll-bar be the number of lines in the text editor.

Using the normal PICASSO binding mechanism to propagate
updates from the scroll-bar to the client (e.g., a text-widget) would
lead to unacceptably poor performance in the dynamic drag mode.
Therefore, a hand-tuned propagation mechanism is used to achieve
higher performance synchronization with clients. Scroll-bars com
municate with their clients (eg, a text-editor widget) by executing

PICASSO Reference Manual 11-143

CONTROLS

s-expressions held in slots of the scroll-bar. See the description of
the execute function for details of this mechanism. Typically,
the expression causes the client to adjust its data structures and
then update the position of the indicator in the scroll-bar.

The interaction of a scroll-bar is as follows. Buttoning within the
prev-line button causes the s-expression held in the prev-line-func
slot of the scroll-bar to be executed. By pressing and holding the
button, this s-expression is executed repetitively. Since this can
cause some applications to scroll too fast repetitive executions are
delayed by an amount held in the pause-seconds slot of the scroll
bar. Buttoning within the next-line button acts in a similar fashion.

Buttoning in the area above the slider indicator causes the s-
expression held in the prev-page-func slot of the scroll-bar to be
executed; similarly, buttoning in the area below the indicator
causes the s-expression held in the next-page-func slot of the
scroll-bar to be executed. Finally, if the user buttons within the
area of the indicator, the s-expression held in the moved-func slot
of the scroll-bar is executed. This is typically used for dynamic
drag.

The programming of the dynamic drag function is a bit tricky, and
deserves some discussion. When the moved-func is executed, it
usually sets up any internal structures in the client needed for fast
scrolling, and calls the drag-scroll-bar function, passing it the
scroll-bar instance (sb), a function (func), and the arguments of the
event that triggered this sequence. When the mouse moves, func is
called with two parameters: the scroll-bar instance (sb) and the
value of the data slot in that instance. At the time of the call, the
slider-location of the scroll-bar instance contains the new position
of the slider.

A picture of a typical scroll-bar is shown below:

PICASSO Reference Manual 11-144

CREATING A

SCROLLBAR

CONTROLS

make-scroll-bar [Function]
&key
(buttons :bottom-right)
(data nil)
(lower-limit 0.0)
(moved-func see below)
(next-line-func see below)
(next-page-func see below)
(orientation :vertical)
(prev-line-func see below)
(prev-page-func see below)
(slider-location 0.0)
(slider-size 25.0)
(upper-limit 100.0)
&allow-other-keys

Creates and returns a scroll-bar. Buttons specifies the position of
the buttons and is one of (:left : right :top :bottom
:bottom-right :bottom-left :top-right : top-
left). This argument has the following interpretation in vertical
and horizontal scroll-bars:

Argument Vertical Horizontal

:left bottom left

:right bottom right
:top top left

:bottom top right
:bottom-right bottom right
:bottom-left bottom left

:top-right top right
:top-left top left

Data is stored in the scroll-bar's data slot and is typically filled in
by scroll-bar clients to hold their own data structures. Lower-limit
and upper-limit gives the coordinates of the top and bottom (left
and right) of the the scroll-bar, respectively. Slider-location
specifies the position of the indicator, and slider-size specifies the
length of the indicator, relative to lower-limit and upper-limit.
Finally, moved-func, next-line-func, next-page-func, prev-line-func
and prev-page-func are s-expressions which are executed (using

PICASSO Reference Manual 11-145

SCROLLBAR

ATTRIBUTES

CONTROLS

the execute function) and default to expressions which adjust
the position of the indicator.

Scroll-bars are implemented in a very flexible way in PICASSO,
which allows the client to communicate with the scroll-bar in coor

dinates convenient for the client The scroll-bar does almost no

error checking on these coordinates. It is the client's responsibility
to ensure that all values are in range; otherwise strange effects on
the screen may occur.

button-pos [Reader]
(selfscroll-bar)

Returns the position of the buttons within the scroll-bar self This
value will be one of :bottom-right, :bottom-left,
: top-right or :top-left. The setf buttons should be used to
change this value.

(setf buttons)
(selfscroll-bar)
value

[Writer]

This function sets the position of the buttons within the scroll-bar
self. Value should be one of the keywords : left, : right,
:top, :bottom, :bottom-right, :bottom-left,
:top-right or :top-left. If :left, :right,
:top or : bottom are given, they are mapped into
:bottom-right, : bottom-left, :top-right or
:top-left and stored into the button-pos slot of the scroll-bar
as shown:

Argument Stored value

:top
deft

night
:bottom

:top-left
:top-left
:bottom-right
:bottom-right

The scroll-bar is repainted as a side-effect The value stored is
returned.

lower-limit

(setfscroll-bar)
[Accessor]

This function returns the lower-limit of the scroll-bar, i.e., the
client coordinate corresponding to the top or left of the scroll-bar.

PICASSO Reference Manual 11-146

CONTROLS

This value may be setf'd.

orientation [Accessor]
(selfscroll-bar)

This function returns the orientation of the scroll-bar, either
:horizontalor :vertical. This value may be setf'd.

slider-location [Accessor]
(selfscroll-bar)

This function returns the position of the indicator in client coordi
nates. This value may be setf'd.

slider-size [Accessor]
(selfscroll-bar)

This function returns the length of the indicator in client coordi
nates. This value may be setf'd.

upper-limit [Accessor]
(selfscroll-bar)

This function returns the uprjer-limit of the scroll-bar, i.e., the
client coordinate corresponding to the bottom or right of the
scroll-bar. This value may be setf'd.

SCROLLBAR

SYNCHRONI-
7ATfAM data [Accessor]
ZATION / ,- ,, , .

(selfscroll-bar)

This slot is used by scroll-bar clients to store client information.
Typical applications will store a pointer to the client instance in
this slot but the actual storedvalue is completelyup to the client

moved-func [Accessor]
(selfscroll-bar)

This slot holds a form that is executed when a mouse button is
pressed within the slider. The form will be eval'd in a lexical
environmentwhere self evaluates to the scroll-bar instance. Typi
cal applications will use the drag-scroll-bar function to aid in
implementing dynamic drag. See the description of dynamic
scrolling earlier in this section for details. The default value for
this slot is:

PICASSO Reference Manual 11-147

CONTROLS

(drag-scroll-bar self nil event)

next-line-func [Accessor]
(setf scroll-bar)

This slot holds a form that is executed when a mouse button is
pressed in the down or right button in a scroll-bar. The form will
be eval'd in a lexical environment where self evaluates to the
scroll-bar instance. If the button is held down, the form will be
executed repetitively until the button is released. See the text near
the beginning of this section for details. The default value for this
slot is the following form:

(if «- (+ (slider-location self) 1 (slider-size self))

(upper-limit self))

(incf (slider-location self)))

next-page-func [Accessor]
(self scroll-bar)

This slot holds a form that is executed when a mouse button is
pressed in the area below or to the right of the indicator in a
scroll-bar. The form will be eval'd in a lexical environment where
self evaluates to the scroll-bar instance. See the text near the
beginning of this section for details. The default value for this slot
is the following form:

(if (<- (+ (slider-location self) (slider-size self)

(slider-size self))

(upper-limit self))

(incf (slider-location self) (slider-size self))

(setf (slider-location self) (- (upper-limit self)

(slider-size self))))

pause-seconds [Accessor]
(setfscroll-bar)

When users press and hold the prev-line-button and next-line-
buttons in a scroll-bar, the forms associated with those actions are
executed repetitively. In very high performance applications, this
can lead to a scrolling rate that is too fast. The value returned by
this function sets the delay, in seconds, between successive

PICASSO Reference Manual 11-148

CONTROLS

executions of the form. This value may be setf'd. A good
value seems to be about 0.1 for high-speedapplications.

prev-line-func [Accessor]
(setf scroll-bar)

This slot holds a form that is executed when a mouse button is
pressed in the up or left button in a scroll-bar. The form will be
eval'd in a lexical environment where -reevaluates to the scroll
bar instance. If the button is held down, the form will be executed
repetitively until the button is released. See the text near the
beginning of this section for details. The default value for this slot
is the following form:

(if (>- (1- (slider-location self)) (lower-limit self))

(decf (slider-location self)))

prev-page-func [Accessor]
(self scroll-bar)

This slot holds a form that is executed when a mouse button is
pressed in the area above or to the left of the indicator in a scroll
bar. The form will be eval'd in a lexical environment where self
evaluates to the scroll-bar instance. See the text near the begin
ning of this section for details. The default value for this slot is the
following form:

(if (>» (- (slider-location self) (slider-size self))

(lower-limit self))

(decf (slider-location self) (slider-size self))

(setf (slider-location self) (lower-limit self)))

SCROLLBAR

MISC drag-scroll-bar [Function]
(scroll-barfunc orgs)

This function is typically called by the code stored in the moved-
func slot of the scroll-bar for use with dynamic drag. Scroll-bar is
a scroll-bar instance, func is a function to be called whenever the
scroll-bar changes position, and orgs are the args of the event that
triggered the function. When the mouse moves, the display of
scroll-bar is updated and func is called with two parameters: the
scroll-bar and the value stored in the data slot of scroll-bar. At the

PICASSO Reference Manual 11-149

SCROLLBAR

SUMMARY

CONTROLS

time of the call, the slider-location of scroll-bar contains the new
position of the slider. This function returns nil.

vertical-p
(scroll-bar)

[Macro]

This macro returns t if the orientation of scroll-bar is : ver t i -

cal, otherwise it returns nil.

Reader Methods Setf Methods Misc Methods

button-pos buttons drag-scroll-bar
data data vertical-p
lower-limit lower-limit

moved-func moved-func

next-line-func next-line-func

next-page-func next-page-func
orientation orientation

pause-seconds pause-seconds
prev-line-func prev-line-func
prev-page-func prev-page-func
slider-location slider-location

slider-size slider-size

upper-limit upper-limit

PICASSO Reference Manual 11-150

12

IMAGES

IMAGES

Overview Images are color or black-and-white rectangular representations of
pictures. PICASSO Displays images through the image-gadget
Chapter 3 describes image resources in detail.

PICASSO displays images using the following widgets:

• Image Gadget

Image An image gadget allows the user to display bitmap images. Image
Gadget gadgets are a subclass of gadgets, and thus inherit gadgets keys

and methods. The following function can be used to create and
return an image gadget:

make-image-gadget [Function]
&key
(src-x 0)
(src-y 0)
(src-width nil)
(src-height nil)
(bitmap-pnil,)
(horiz-just: center)
(vert-just: center)
;; defaults overridden from superclasses
(name "A Gadgetn)
(status : exposed)
;; Plus keys inherited from windows
&allow-other-keys

Image gadgets inherit several other keys of interest from the win
dows class, all of which are described in Chapter 2 on Windows.
Some of the more notable keys include value x-offset, y-offset,
width, height, and geom-spec. The image displayed by the image-
gadget can specified by the valuekey. x-offsetand y-offsetspecify
the x and y offsets, respectively, of the image-gadget from the
upper left comer of its parent width and height specify the width
and height of the image gadget geom-spec is discussed in more

PICASSO Reference Manual 12-151

IMAGES

detail in the Collections chapter.

ATTRIBUTES

src-x [Accessor]
(self image-gadget)

Specifies the x coordinate of the origin of the image. Of type
integer, default 0 (left edge of image).

src-y [Accessor]
(self image-gadget)

Specifies the y coordinate of the origin of the image. Of type
integer, default 0 (upper edge of image), and src-y is used to
specify the origin of the image,

src-width [Accessor]
(self image-gadget)

The width of the image in pixels. Of type integer, default
nil. If src-height and src-width are not set then the
entire image below and to the right of the origin is used; otherwise
the portion src-height below and src-width across the image is
used.

src-height [Accessor]
(self image-gadget)

The height of the image in pixels. Of type integer, default
nil. If src-height and src-width are not set then the
entire image below and to the right of the origin is used; otherwise
the portion src-height below and src-width across the image is
used.

bitmap-p [Reader]
(self image-gadget)

Specifies if the image is a bitmap (vs. pixmap) image, default
nil.

horiz-just [Accessor]
(setf image-gadget)

The horizontal justification of the image, and is one of : center,
: left, or : right. Of type keyword, default reenter.

vert-just [Accessor]
(self image-gadget)

PICASSO Reference Manual 12-152

IMAGES

The vertical justification of the image, and is one of : center,
: top, or : bottom. Of type keyword, default : center.

value [Accessor]
(self image-gadget)

Sets the image displayed by self to value. Automatically repaints
selfin order to update the image displayed.

EXAMPLE The following specifies the display of the upper-right quarter of a
100 pixel-square image next to the lower-right quarter of another
100 pixel-square image.

(children

' ((picture

(make-collection-gadget

:size ' (100 100)

:gm 'rubber-gm

:children

'((shown-on-the-left

; upper-right quarter of image

(make-image-gadget

rvalue (make-image :file "image.bitmap")

:src-x 50

rsrc-height 50

:geom-spec '(.05 0 .40 .75 reenter)))

(shown-on-the-right

; lower-right quarter of image

(make-image-gadget

rvalue (make-image rfile nimage.bitmap")

rsre-x 50

rsre-y 50

rgeom-spec '(.55 0 .4 .75 reenter))))))))

In this example, the image displayed is taken from the file
image .bitmap. The portion of the image displayed on the left
is centered at an x-offsetof 5 pixels and a y-offset of 0 pixels from
the upper left corner of its 100 pixel-wide parent, and occupies
40% of the widthand 75%of the heightof the parent The portion
of the image displayed on the right is centered at an x-offset of 55
pixels and a y-offset of 0 pixels from the upper left corner of its
parent, and occupies 40% of the width and 75% of the height of

PICASSO Reference Manual 12-153

IMAGE

GADGET SUM

MARY

the parent

Picasso Reference Manual

IMAGES

Reader Methods Setf Methods

bitmap-p
src-x src-x

src-y src-y

src-width src-width

src-height src-height
horiz-just horiz-just
vert-just vert-just
x-offset x-offset

y-offset y-offset
width width

height height
geom-spec geom-spec

value value

12-154

13

MENUS

MENUS

Overview PICASSO supports pull-down and pop-up menus as well as tear-off
menu panes. This chapter describes the use of the PICASSO menu
system.

The chapter is organized as follows:

• Menu bars

• Menu entries

• Menu panes

• Menu buttons

• Menu interaction techniques: pull-down, pop-up, and tear-off
menus.

• Implicit menus: defining menus in frame, panels, and pop-
buttons

Menu Bars Menu bars are a subclass of collection gadgets, thus they inherit
keys and methods from collection gadgets. The following function
can be used to create and return a menu bar.

make-menu-bar [Function]
&key
;; defaults overridden from superclasses
(base-height 40)
(geom-spec :top)
(gm ' just-pack-gm)
;; Defaults inherited from collection-gadgets:
(name "A Collection")
(value "Collection")
(children nil)
(repack-flag nil)
(repack-needed nil)
(conform :grow-shrink)
;; Plus keys inherited from gadgets
&allow-other-keys

Menu bars inherit their attributes from collection gadgets (see
Chapter 7 on Collections). No new attributes are defined for menu
bars.

PICASSO Reference Manual 13-155

MENUS

The following macro can be used to determine if an object is a
menu-bar object

menu-bar-p [Macro]
object

Returns true if object is a menu-bar object, nil otherwise.

Menu Menu entries are implemented as synthetic gadgets. The following
Entries can be used to create a and return a menu entry:

make-menu-entry [Function]
&key
(left nil)
(center nil)
(right nil)
(left-font nil)
(center-font nil)
(right-font nil)
(font (get-font))
(code nil)
(dimmed nil)
(status nil)
(left-status nil)
(center-status nil)
(right-status nil)
(parent nil)
&allow-other-keys

A menu entry has a left, center, and right component The entry
name is displayed in the center component The left and right
components can be used to display additional information about
the entry. For example, a menu entry might represent an option
that is selected or not selected, and a check mark can be displayed
in the left component of the menu entry to indicate that it is
selected. Another example might be a walking menu, which could
be indicated by an arrow in the right component of the menu entry.

Optional arguments can be given after the menu entry code to
specify: 1) the entry font (: font); 2) whether the entry is inactive
(: dimmed); and 3) values for the left and right components
(:left and : right). The font for the left and right com
ponents can be different than the font for the center component by
overriding the :font argument with : left-font and
: right-font arguments. : status is one of :con-

PlCASSO Reference Manual 13-156

MENU ENTRY

EXAMPIJE

MANAGING

MENU

ENTRIES

MENUS

cealedor : exposed.

For example, the following specification describes a font menu for
a simple text editor that displays font names, font sizes, and type
faces:

("Font"

("Times" (set-font #!timeslO)

:font #!tixnesl2

:right "10"

:right-font #!helvl2)

("Helvetica" (set-font #!helvl2)

:font #!helvl2

:right "10")

("Normal" (set-typeface 'normal)

:left #!check-mark

:font #!helvl2)

("Bold" (set-typeface 'bold)

:font #!helvl2))

Assuming that the PICASSO variables #!timesl0,
#!timesl2, #!helvl2, and #!check-mark exist and are
bound correctly, this menu entry specification defines four menu
items: two font names and their sizes (Times and Helvetica),
and two type faces (Normal and Bold). The font names are
displayed in the font itself, and the font size is displayed in the
right component in a standard font (helvetica 12). The type faces
are displayed as entries with a check mark for the selected type
face (initially Normal).

The functions set-font and set-typeface change the font
and typeface, respectively, set-typeface turns off the check
mark in the current menu entry and turns on the check mark in the
selected menu entry.

Notice that the : right- font did not have to be set to helvetica
12 for the "He1vet i can entry because the : font argument is
already set to helvetica 12.

Menu entries are implemented as synthetic gadgets. The following
are provided to manage menu entries:

menu-entry-p
self

[Macro]

PICASSO Reference Manual 13-157

MENUS

Returns t if self is a menu entry.

set-me-parent [Function]
self
pane

(setf me-parent) [Function]
pane

(self list)

Adds self to menu pant pane.

me-left [Function]
self

The : le f t component of self This value can be set f'd, or use
(set-me-left selfpane).

me-center [Function]
self

The : center component of self This value can be set f'd, or
use (set-me-centerselfpane).

me-right [Function]
self

The : right component of self. This value can be setf'd, or
use (set-me-right selfpane).

me-font [Function]
self

The : font of self This value can be setf'd, or use (set-
me-font selfpane).

me-dimmed [Function]
self

The : dimmed of self This value can be setf'd, or use
(set-me-dimmed selfpane).

show-menu-item [Function]
self

Sets the : exposed ofselfto t.

hide-menu-item [Function]
self

Sets the : exposed of self to nil.

PICASSO Reference Manual 13-158

MENUS

Menu Menu panes are made up ofmenu entries. Menu panes are a sub-
Panes class of collection widgets, thus they inherit keys and methods

from the collection widget class.

MENU PANE

CREATION make-menu-pane [Function]
&key
(tearable t)
(center-left-justified nil)
(ptab nil)
(menu nil)
(synths nil)
;; defaults overridden from superclasses
(name "A Menu Pane")
(parent (root-window))
(status : concealed)
(gm ' menu-gm)
(width-increment 0)
(height-increment 0)
(conform :grow-shrink)
(event-mask

' (renter-window :leave-window

:button-press :button-release
:pointer-motion :visibility-change))

(attach-when-possible t)
(backgroundnil)
(border-width 0)
;; Plus keys inherited from collection-widgets
&allow-other-keys

ATITUBUTES

ptab [Accessor]
(selfmenu-pane)

Used to specify a pixel table that maps a screen position to a menu
entry. Of type vectorP, default nil.

center-left-justified [Accessor]
(selfmenu-pane)

Specifies whether the menu centercolumn is left justified. Of type

PICASSO Reference Manual 13-159

MENUS

atom, default nil.

menu [Accessor]
(selfmenu-pane)

The pointer from menu-pane back to its parent menu-button. Of
type menu, default nil.

synths
(selfmenu-pane

[Reader]

Menu pane entries, which are implemented as synthetic gadgets.

tearable [Accessor]
(selfmenu-pane)
Whetheror not the menu-pane is a tearable menu. Tearable
menus are described below under "Menu Interaction Techniques". Of
type atom, default t.

MANAGE

MENT menu-pane-p [Macro]
object

Returns true if object is a menu-pane object, nil otherwise.

num-cells [Method]
(selfmenu-pane)

The number of menu entries in menu-pane.

Menu But

tons

Menu buttons implement pull down menus automatically. Menu
buttons are a subclass of gray buttons, thus they inherit keys and
methods from gray buttons. The following function creates and
returns a menu button.

make-menu-button

&key
(menu nil)
(bring-back nil)
;; defaults overridden from superclasses
(font "8x13")
(border-width 1)
(invert-width 3)
;; Plus keys inherited from gray-buttons
&allow-other-keys

[Function]

PICASSO Reference Manual 13-160

ATTRIBUTES

MANAGE

MENT

Menu

Interaction

MENUS

menu [Accessor]
(selfmenu-button)

The pointer from menu-button to its child menu-pane. Of type
menu-pane, default nil.

bring-back
(selfmenu-button)

[Accessor]

Whether menu-button is invisible or not Of type atom, default
nil.

menu-button-p
object

[Macro]

Returns true if object is a menu-button object, nil otherwise.

Three menu interaction techniques are provided in PICASSO,
includingtear-off, pull-down menus, and pop-up menus.
A menu pane can be specified as tearable by setting : tear
able to t when it is created. Right buttoning on a tearable menu
causes it to tear off.

A menu pane can be activate as a pull-down menu by using the
following function:

activate-pull-down-menu
pane

menu-button

event

[Function]

Activate pull down menu pane when menu-button receives event
event.

A menu pane can be activated as a pop-up menu by using the fol
lowing function:

activate-pop-up-menu
pane

event

[Function]

Activate pop up menu pane when menu-button receives event

PICASSO Reference Manual 13-161

Implicit
Menus

MENU EXAM

PLE

MENUS

event.

Implicit menus can be defined in frames and panels by using the
optional menu clause, and in pop-buttons by using the :menu
key. The menu bar of the frame, panel, or pop-button is defined by
a menu-bar-spec which is a list of menu pane specifications. Each
menu pane has a name, an optional documentation string, an
optional list of control arguments, and a list of menu entries (i.e.,
menu operations) that the user can execute. A menu entry
specifies the entry name and the code to be executed when the user
selects the entry.

Optional arguments can be specified to control the look and
behavior of menu panes and entries. Arguments to the pane are
specified before the list of menu entries. Pane arguments can
specify options such as the font to use for the name, whether the
pane is active (i.e., responsive to user selection), and whether the
pane can be torn off.

If a pane is declared inactive, the name of the inactive pane is
dimmed to provide feedback to the user that the pane is inactive;
moreover, the pane will not pop-up when selected with the mouse.
Tear off menus can be retained on the screen by right buttoning,
and menu panes behave like any other window.

For example, a menu pane specification for a simple text editor in
an edit frame might be:

PICASSO Reference Manual 13-162

MENUS

(defframe ("editor" "demo" . "frame")

"example of implicit menu pane specification"
(menu (("Edit" "Edit Selection"

:tear-off

("Cut" USP-form)
("Paste" USP-form)
("Copy" USP-form)
("Search" USP-form))

(("File" "File operations"

: dimmed

("Load" USP-form)
("Save" USP-form)

("File List" USP-form))))

and a similar specification in a pop-button might be:

(make-pop-button

:items '(("Edit" "Edit Selection"

:tear-off

("Cut" USP-form)
("Paste" USP-form)
("Copy" USP-form)
("Search" USP-form))

(("File" "File operations"

: dimmed

("Load" USP-form)
("Save" USP-form)
("File List" USP-form)))

These menu pane specifications both define two menu panes. The
Edit menu pane is a tear-off menu that contains menu entries to
cut, paste, copy, or search for text The File menu pane is
currently dimmed, and contains entries to load, save, or list files.

PICASSO Reference Manual 13-163

Overview

Browse

Widgets

14

TABLES

TABLES

It is often desirable to display data in a tabular format. For exam
ple, a developer who creates a tool that uses a relational database
might want to provide an interface abstraction for a relation as a
table. At other times, users want to browse through large amount
of data that is hierarchically organized. The widgets described in
this chapter are used to display data in tabular format They vary
in power and ease of use - table-fields have the greatest flexibilty,
but they also require the user to specify the most options. In con
trast, list-boxes are less flexible, but are very easy to use.

The types of controls implemented in PICASSO are:

• Browse-Widgets - used for browsing hierarchical data.

• Matrix-Fields - used for displaying and editing an array of
data with arbitrary elements

• Table-Fields - a matrix field with optional labels and scroll
bars.

• List-Boxes - used for displaying a single row or column of
data.

Browse-widgets allow the user to browse through a list of objects
in a hierarchical manner. For example, consider browsing a list of
objects that have department, course and section slots. A browse
widget for this list would contain three tables, arranged left to
right. Initially, the first table would contain a sorted list of all the
departments, the second and third tables would be blank. When
the user selects a department by buttoning with the left mouse but
ton, the second table fills in with a list of all the course names
within that department. If the user selects a course, the third table
lists all the sectionsof that course. In this way, a user may browse
a hierarchal data structure.

The user may also view the contents of more than one subtree of
the hierarchy at a time. In the example above, the user can view
all the courses in both the "math" and "english" departments at
one time. To extend the selected courses, the user uses the right
mouse button. For example, if the user were already looking at all
the courses in the "math" department, by selecting the "english"
department with the right mouse button, the courses table would

PICASSO Reference Manual 14-164

CREATION

TABLES

contain a list of all the courses in both the "math" and "english"
departments.

Browse widgets communicate with other widgets by using the
selection slot in the browse widget. At any time, this slot (which is
initially nil) contains the subset of objects that the user is view
ing. In the example above, this slot would contain a list of all
courses in the math and english departments.

Browse-widgets also have a notion of the current-selection, which
is a list of items that have been fully specified by the user. The
user selects these when they button in the rightmost table of the
browse-widget.

Below is a picture of a browse-widget:

Class

Annealer

Bonder

Developer

Etcher

Evaporator

Furnace

Measuring

Misc

Sink

Spinner

Make

Lam

Plasmatherm

Semigroup

is

Instance

microstrip

technics-c

P
w
m....
w

Browse widgets are a subclass of collection widgets, thus they
inherit keys and methods from collection widgets. The following
function creates and returns a browse widget:

make-browse-widget
&key
(title-font (make-font))
(col-widths nil)
(font (make-font) J
(sort-keys nil)
(data nil)
;; defaults overridden from superclasses
(event-mask ' (:exposure :button-press))
(gm ' rubber-gin)

[Function]

PICASSO Reference Manual 14-165

ATTRIBUTES

(name "A Browser")
;; Plus keys inherited from collection-widgets
&allow-other-keys

Creates and returns a browse widget.

TABLES

data [Accessor]
(selfbrowse-widget)

The list of objects currently viewable within the browse-widget

sort-keys [Accessor]
(selfbrowse-widget)

A list of cons cells, one cons cell per column in the browse-
widget The car of each cons cell is a string label for its
column, and the cdr is a reader function for the object which
should return a string. In the example given at the beginning of
this section, the value of the sort-keys argument should be:

(list (cons "Department" #'dept)

(cons "Course" #'course)

(cons "Section" #'section))

column-widths [Accessor]
(selfbrowse-widget)

A list of numbers giving the relative widths of the columns. If not
supplied, the relative widths of the columns will be determined the
same as the relative lengths of the labels of each column.

font [Accessor]
(selfbrowse-widget)

The font to use in displaying the items in the table

title-font [Accessor]
(selfbrowse-widget)

The font to be used for displaying the column labels. These should

PICASSO Reference Manual 14-166

BROWSE

WIDGET SYN

CHRONIZA

TION

BROWSE

WIDGET SUM

MARY

Matrix-

Field

be fixed-width fonts.

selection

(selfbrowse-widget)

TABLES

[Method]

This method returns the list of objects currently selected by the
user. This list contains all objects that match the users
specification, including partial matches. In the department-
course-section example, if the user has selected the "math**
department, this slot would contain a list of all courses in the data
slot that were in the "math" department

current-selection

(selfbrowse-widget)
[Method]

This method returns the list of objects currently fully specified by
the user. Only those objects for which the user has specified a
value in the last column will be part of this list.

Attributes Methods

data current-selection

col-width selection

sort-keys
font

title-font

Table-fields (or just tables) and matrix-fields (or just matrices) are
designed to display data which is intrinsically tabular (ie. can be
organized into rows and columns) in structure. Matrix-fields (or
just matrices) are the "bare-bones" of the PICASSO table-field. A
table in PICASSO is merely a container for a matrix, so most of
learning how to use tables is figuring out matrices. Matrix-fields
are very powerful and versatile, but they can be rather complex
and creating/managing them can be difficult at first The key reali
zation is that, though there are so many options, sufficiently
powerful matrices can be created/managed employing only a small

PICASSO Reference Manual 14-167

DISPLAY FOR

MAT

CREATION

TABLES

subset of the options.

The matrix-field displays a 2-dimensional array of data in a 2-
dimensional array of fields. The mapping between data and fields
need not be one-to-one, as there may be more data objects than
fields.

Note: Matrix-fields do not support dynamically changing the
number of rows or columns displayed. However, the data
displayed in the matrix field can easily be changed (see section on
data management).

On instantiation, a matrix-field creates

(1) an array of data (if the data is not already in an array format)
(2) an array of fields

(3) a matrix-field forcolumn titles (optional)

(4) a matrix-field for row titles (optional)

(5) a cache of scrolling functions (for optimization)

(6) other stuff (to be discussed later)

The first two of these have already been discussed. Items (3) & (4)
may or may not be used (even if they are created). The columns
titles are of dimension (1 rows) and the row-tides are of dimension
(1 columns), where the whole matrix (without titles) has dimen
sion (rows columns). The column and row title matrices can be
accessed through the methods row-title-matrix and
col-title-matrix described above. Item (5) is just a cache
of functions to use for scrolling up, down, left, andright Depend
ing on whether the rows/columns of fields are of
uniform height/width (respectively), different scrolling func
tions are more efficient than others. The decision and cache is
made at instantiation and both are updated if necessary whenever
the base-size of a field in the matrix changes.

The creation options to matrix-field are somewhat intricate, but
they allow for a range of different types of matrices to be created
(many quite easily). The tricky part is specifying what types of
fields are to be displayed in the matrix. The default field-type is
the synthetic gadget which is just an un-editable displayer of an
arbitrary data item (eg. string, image, etc.). In the default case, the
col-widths and row-heights may be used to tailor the
sizes of the fields in the matrix. Synthetic gadgets areused unless
unless either : row-elements or : col-elements is
specified. Following is a brief description of the non-standard

PICASSO Reference Manual 14-168

TABLES

creation options.

make-matrix-field [Function]
&key
(inter-row-pad 3)
(inter-col-pad 3)
(row-index 0)
(col-index 0)
(data nil)
(data-rows 0)
(data-cols 0)
(rows nil)
(cols nil)
(data-rows rows)
(data-cols cols)
(data-array-size (list (num-rows data) (num-cols data)))
(overflow-increment 5)
(grid-lines t)
(row-elements nil)
(col-elements nil)
(row-heights 40)
(col-widths 100)
(initial-rows nil)
(initial-cols nil)
(font (default-font))
(titles nil)
(col-titles nil)
(rowrtitles nil)
(default-titles t)
(row-title-width 10 0)
(col-title-height 40)
(row-title-elements nil)
(col-title-elements nil)
(row-title-font (de fault - font))
(col-title-font (default-font))
(self-adjustable nil)
(selection : entry)
(current-indices nil)
(select-func nil)
(unselect-func nil)
(unique-selection nil)
(row-title-selectable nil)
(col-title-selectable nil)
(editable nil)
(editable-row-titles nil)
(editable-col-titles nil)
(return-func nil)

PICASSO Reference Manual 14-169

ATTRIBUTES

TABLES

(just : center)
(horiz-just: center)
(vert-just : center)
(field-table nil)
(free-nomad nil)
;; Plus keys inherited from collection-widgets
&allow-other-keys

Creates and returns a matrix field. Matrix fields are a subclass of

collection widgets, and thus inherit keys and methods from collec
tion gadgets.

inter-row-pad [Accessor]
(selfmatrix-field)

The space (in pixels) between each row. Default 3.

inter-col-pad [Accessor]
(selfmatrix-field)

The space (in pixels) between each column. Default 3.

row-index [Argument]
(selfmatrix-field)

The index into the data that should be displayed in the top visible
row of the matrix. See above note on display format of a matrix.
Default 0.

col-index [Accessor]
(selfmatrix-field)

The index into the data that should be displayed in the top visible
column of the matrix. See above note on display format of a
matrix. Default 0.

data [Accessor]
(selfmatrix-field)

The data to be displayed in the fields of the matrix. Data may be
specified in either one of two ways:

(<rowl> <row2> <row3> . . .)

where each row is a list of data items. This can also be seen as

PICASSO Reference Manual 14-170

TABLES

(<rowl>

<row2>

<row3>

• • .)

(2) A two dimensional array, in which the first dimension is the
rows, the second is the columns.
(3) A pgclos portal.

The default is an array (rows cols) of nil.

data-rows [Accessor]
(selfmatrix-field)

The number of rows of data from the data-table to be used in the

matrix.

data-cols [Accessor]
(selfmatrix-field)

The number of columns of data from the data-table to be used in

the matrix.

rows [Reader]
(selfmatrix-field)

The total number of rows of fields (not all are necessarily
displayed at the same time). The default is determined dynami
cally based on others args.

cols [Reader]
(selfmatrix-field)

The total number of columns of fields (not all are necessarily
displayed at the same time). The default is determined dynami
cally based on others args.

data-rows [Accessor]
(selfmatrix-field)

The number of rows of data from the data table to be used in the

matrix. The default is all rows.

data-cols [Accessor]
(selfmatrix-field)

The number of columns of data from the data table to be used in

PICASSO Reference Manual 14-171

TABLES

the matrix. The default is all columns.

data-array-size [Argument]
An initial argument only. If specified, a list (rows columns) speci
fying how large the initial data-array should be. : data-
array-size is useful if an initial :data is specified and the
data is expected to grow. The default is the size of data.

overflow-increment [Accessor]
(selfmatrix-field)

The increment by which to "grow" the data-table if it should over
flow (by means of insert-row/col operations). If nil, table can't
grow. The default is 5.

grid-lines [Accessor]
(selfmatrix-field)

Draw dotted lines between rows & columns if non-nil.

row-elements, col-elements [Argument]
Initial arguments only. A list of expressions which may be
evaluated individually to actually create the fields that should con
stitute the elements of each row/column of the matrix.

Only one of row-elements or col-elements should be
specified, or one will be ignored.

For example:,

:row-elements

(:base-height 20 :font "8x13" :editable t)

(make-check-widget :background "green")

(:base-height 50 :unselectable t)

(make-gray-button :base-height 20))

creates a matrix in which the first row is all meter- widgets, the
second row consists of synthetic widgets, the third row of check-
widgets, the fourth of synthetic gadgets, and the fifth of gray-
buttons. The first and fourth rows of the matrix are unselectable.

An unselectable field cannot become a current-field of the matrix.
The :value should generally not be specified by any of these
expressions as the value will only be overrided in the matrix. A
non-editable matrix row/column is typically made by specifying
one of the row/col-elements to be a gadget of some sort (either real
or synthetic). All fields in a matrix are selectable by default, unless
either the mf-selectable slot of the widget is nil, or the key
word : unselectable is specified with value t in any of the
fields of the row/ col-elements (see above example).

PICASSO Reference Manual 14-172

/

TABLES

If used in association with :rows or : row-heights, the
matrix will create how ever many rows are specified and reuse the
last row-element for any remaining rows not specified by a
: row-elements. This allows creation of a table of unselect
able synthetic gadgets by means of:

(maJce-matrix-field

:row-elements '((:unselectable t))

:row-heights '(30 60 10 20 30 40 50 29)

:font "8x13")

Creation, scrolling, and resizing time become major bottlenecks
with large matrices. Hence, we have invented things called syn
thetic fields which mimic real fields (widgets and gadgets) but with
real time behavior. Timings indicate that a table can be speeded
up by between 1000 and 2000 percent by using synthetic fields
instead of "real" ones. A synthetic widget can be created using the
: editable keyword in either the : col-elements or
: row-elements. Basically, a synthetic field is a synthetic
widget if it's editable, a synthetic gadget if it's not Synthetic
widgets have the property that whenever you select one, a real
widget jumps to replace it on the screen (and disappears when it is
no longer current). Thus, instead of creating widget for every
place in the matrix (225 entries for a 15x15 table) we are now
creating only one (called a nomad-widget). This explains the
enhanced performance of matrices with synthetic fields. Synthetic
widgets and gadgets can display (and edit) simple data-items con
siderably faster than any real widget/gadget. Users are strongly
urged to use synthetic fields in place of text widgets and gadgets.
The default is synthetic gadgets.

row-heights, col-widths [Argument]
Initial arguments only, an integer or list specifying the
heights/widths of each row/column in the matrix. The defaults are
100 for rows, 40 for columns.

initial-rows, initial-cols [Argument]
Initial arguments only, the number of rows/columns of fields to be
displayed initially in the matrix. The defaults are the total number
of rows/columns that fit.

font [Accessor]
(selfmatrix-field)

PICASSO Reference Manual 14-173

TABLES

The font of all synthetic widgets/gadgets in the matrix.

titles [Argument]
Initial argument only, used to specify a list of data to display in the
column-titles.

col-titles [Accessor]
(selfmatrix-field)

A list of data to display in the column-titles, default nil.
Column titles are displayed adjacent to every column, in separate
matrix fields that scroll synchronously with the matrix. This value
can be set f d only if the matrix-field is created with a col-title.

row-titles [Accessor]
(selfmatrix-field)

A list of data to display in the row-titles, default nil. Row titles
are displayed adjacent to every row, in separate matrix fields that
scroll synchronously with the matrix. This value can be setfd
only if the matrix-field is created with a row-title.

default-titles [Argument]
Initial argument only, If t, :col-titles are not specified,
and : data is a portal, then default column titles will be created
consisting of the names of all the fields of the relation (designated
by the portal). The default is t.

row-title-width, col-title-height [Argument]
Initial arguments only. The widths/heights of all fields in the
row/col-titles.

row-title-elements, col-title-elements [Argument]
Initial arguments only. Can be used to specify the types of fields
to be used in the row/column titles. Format is the same as for
: row/col-elements. The default is synthetic gadgets.

row-title-font, col-title-font [Argument]
Initial arguments only, may be used to set the font of the row/col-
titles. The default is "8xl3bold".

self-adjustable [Argument]
Initial argument only. If t, the fields will automatically adjust to
meet their base-sizes. This can be nice, but it slows things down
somewhat and it makes the table change considerably whenever
the values displayed change considerably (ie. if a long string is

PICASSO Reference Manual 14-174

TABLES

suddenly scrolled into view). The default is nil.

selection [Accessor]
(selfmatrix-field)

Determines what type of selection protocol to use. Possible values
include : entry (select any data-item), : row (select any row),
:col or : column (select any column), and nil (selection is
disabled).

The default is : entry.

unique-selection [Argument]
Initial argument only. If passed with a value of t, all button
clicks will invoke the handler select-unique and multiple
field selections will be disabled. The default is nil.

row-title-selectable, col-title-selectable [Argument]
Initial arguments only. If non-nil, row/column titles can be
selected (marked current). The default is nil.

editable [Argument]
Initial argument only. The default editable attribute for synthetic
fields specified in : row/col-elements. For example,

(make-matrix-field

:rows 5

:cols 2

:editable t)

creates a matrix consisting entirely of synthetic widgets (each field
can be independently edited). The default is nil.

editable-row-titles, editable-col-titles [Argument]
Initial arguments only; same as '.editable but for row/column titles.
The default is nil.

current-indices [Accessor]
(selfmatrix-field)

A list of all the indices of the data-items that are currently selected.
When s e 1 e ct i on is : entry, the format of current-indices is:
([row column]*), where each row and column are the row and
column offsets of the data-item into the data-array, for example:

PICASSO Reference Manual 14-175

TABLES

(setf (current-indices mf)
'(<3 0) (52 37)))

The data-item itself can be obtained by passing row and column to
mref.

In the case of row-selection or column-selection, current-indices
has the form: ([index]*) where each index corresponds to one row
or column of data, for example:

(setf (current-indices mf)
' (0 7 3 87 24))

(setf (current-indices mf)
'(2))

The current-indices accessor should be used whenever the
list of current items needs to be changed.

return-func [Accessor]
(selfmatrix-field)

An expression to be executed whenever the return key is pressed in
a synthetic widget; actually the return-func of the nomad-
widget. The default is nil.

select-func [Accessor]
(self matrix-field)

The expression to execute whenever current-indices has
been changed and the current-fields have been updated. The
expression is executed with the following lexical environment: self
is the matrix-field, and event is the new current-indices.

unselect-func [Accessor]
(selfmatrix-field)

The expression to execute whenever current-indices has
been changed but before the current-fields have been updated. The
expression is executed with the following lexical environment: self
is the matrix-field, and event is the new current-indices.

just [Argument]
Initial argument only. Specifies the default justification (horizon
tal and vertical) of every synthetic gadget in the matrix. The

PICASSO Reference Manual 14-176

TABLES

default is : center.

horiz-just, vert-just [Argument]
Initial arguments only. Specifies the default horizontaVvertical
justification of every synthetic gadget in the matrix. The defaults
are reenter.

field-table [Accessor]
(selfmatrix-field)

The table of fields to display in the matrix. Usually not specified
(do not specify unless you know exactly what you're doing) Any
type of PICASSO gadget or widget can be a field in a matrix. In
addition, synthetic gadgets or synths can be used as fields in a
matrix. It is usually a good idea to use synths instead of real
widgets/gadgets because matrices are highly optimized in the use
of synths. See the section on creation for more information on
fields. The default is constructed at run-time.

free-nomad [Accessor]
(selfmatrix-field)

If non-nil, the nomad-widget is set to be a child of the root-
window. The nomad-widget is the editable widget that pops up
whenever an editable synthetic gadget (a synthetic widget) is
edited.

DISPLAY

MANAGE-
»^v^ visible-rows [Accessor]
MENT / ir *-i n ij\(self matrix-field)

The number of rows of fields that are currently visible. Unless
explicitly set, visible-rows will be the maximum that fit into the
area occupied by the matrix (see matrix-gm for more information).

visible-cols [Accessor]
(selfmatrix-field)

The number of columns of fields that are currently visible. Unless
explicidy set, visible-cols will be the maximum that fit into the
area occupied by the matrix (see matrix-gm for more information).

row-title-matrix [Reader]
(selfmatrix-field)

PICASSO Reference Manual 14-177

DATA

MANAGE

MENT

TABLES

A matrix-field through which row-titles are displayed.

col-title-matrix [Reader]
(selfmatrix-field)

matrix-field through which col-tides are displayed.

As previously mentioned, matrices coordinate two tables: the
field-table and the data-table. The following additional
accessors can be used to set and retrieve attributes concerning the
data-table.

mref

matrix-field
row

column

[Function]

Used in a manner similar to aref to access data elements from the
matrix a-mathx-field, and is settable. The expression:

(mref matrix-field row col)

is equivalent to the expression:

(aref (data matrix-field) row col)

However, the expression:

(setf (mref matrix-fieldrow col) new-val)

Does the corresponding aref in addition to updating the output of
the matrix to reflect the new data value. This function and setf

should be used whenever individual data objects need to be
altered. Updating the output of the matrix can be disabled by turn
ing off the repaint-flag of the matrix (but make sure you
turn it on again when you're through). For example,

(mref mf (row-index mf) (col-index mf))

returns the data object displayed in the upper left corner of the
matrix.

There are two methods which indicate how much data from the

table should be used.

PICASSO Reference Manual 14-178

TABLES

There are a few other utilities to handle keeping the data consistent
with the fields:

mf-sync-data [Method]
(selfmatrix-field)
row

column

Update the field (if any) corresponding to the specified row and
column of the data. This function is notneeded if mref is used.

mf-sync-row [Method]
(selfmatrix-field)
row

Update the fields (if any) corresponding to the specified row of
data. This function is not needed if mref is used.

mf-sync-col [Method]
(selfmatrix-field)
column

Update the fields (ifany) corresponding to the specified column of
data. This function is not needed if mref is used.

mf-sync-field [Method]
(selfmatrix-field)
field

Update the field with the data-item (if any) at the corresponding
index into the data.

mf-propagate-field [Method]
(selfmatrix-field)
field

Update the data-item corresponding to the field with the
current value of the field.

mf-propagate [Method]
(selfmatrix-field)

Update all fields in the matrix with their corresponding data-items.

CURRENT Any number of data-items in a matrix can be selected or made
INDICES current. If a current data-item is currendy viewable through a field

in the matrix, that field will be marked with a dark border to indi
cate that it is displaying a current data-item. Notice that it is not
the field that is marked, but the data item (a particular data-item

PICASSO Reference Manual 14-179

TABLES

may be displayable through any one of several fields in the
matrix). Matrix-fields are set up such that only one field can
receive input-events (except exposures) at a time. The field, if
any, that is currently receiving input events may be accessed by
the current-field method in the matrix.

Matrices can be configured to select based on entry, row, or
column. By default, a matrix selects by entry. With entry-
selection, any individual data-item can be selected. With row-
selection or column-selection, a whole row or column is selected at
a time. Fields can only be edited in entry-selection mode.

A matrix will not allow the selection of a field which does not have
a corresponding data-item. For instance, if a matrix is created
without any data, the matrix will be unselectable. It is possible to
make the matrix believe that it has data by setting the data-
rows and data-cols of the matrix to positive values (eg. the
number ofrows & and columns of the matrix).

The following are relevant methods:

current-value [Reader]
(selfmatrix-field)

The data-object corresponding to current-indices. Only applicable
when current-indices has only one entry and selec
tion is :entry.

current-values [Reader]
(selfmatrix-field)

The data-objects corresponding to current-indices. Only applica
ble when selection is : entry.

current-fields [Reader]
(setfmatrix-field)

Lists of fields currendy displaying data-items (may include
synths).

current-field [Reader]
(selfmatrix-field)

Field currendy active. If a field is receiving input, it is
current-field.

add-current [Function]
index-spec
matrix-field

Adds index-spec to current-indices and selects the
corresponding field (if any), index-spec should be list of (row col)

PICASSO Reference Manual 14-180

TABLES

if selection is :entry, else a number indicating the row or
column to be made current

delete-current [Function]
index-spec
matrix-field

Removes index-spec from current-indices and deselects
the corresponding field (if any), index-spec should be list of (row
col) if selection is :entry, else a number indicating the row or
column to be made not current

changed-indices [Reader]
(selfmatrix-field)

A list of indices corresponding to data-objects that have been
changedvia usereditingoperations.
It is often useful for the application to be notified when the
current-indices of a matrix have been changed. Hence, the
following accessoris useful:
In addition to being accessible from the level of programmer, the
current-indices are accessible to the user via the following
handlers:

Handler Default MaoDinc

select-unique
select-multiple

(:button-press :detail deft)
(:button-press rdetail sight)

SCROLLING Matrices support scrolling through both rows and columns of data.
Functionally, Scrolling entails nothing more than changing the
row-index or col-index of the matrix and the tide matrices
(if they exist). If a matrix-field has tides, the tides will scroll syn
chronously with the matrix. For each direction Qeft, right, up, and
down), there are two different types of matrix scrolling functions.
When the matrix has uniform row-types (:row-elements,
:row-heights not specified) or uniform column-types (:col-
elements, :col-widths not specified) scrolling can be optimized. In
these cases, the scrolling functions mf-uni-scroll-up,
mf-uni-scroll-down, mf-uni-scroll-left, and
mf-uni-scroll-right are optimal. Otherwise, the some
what slower versions for variable row/column-types must be used;
mf-var-scroll-up, mf-var-scroll-down, mf-
var-scroll-left, and mf-var-scroll-right must be
used (or the programmer can use his/her own scrolling algorithm if

PICASSO Reference Manual 14-181

TABLES

he/she is really ambitious). The "best" scrolling algorithm is deter
mined automatically when the matrix-field is created and cached
away in the slots up-func, down-func, right-func,
and left-func. The following utilities are useful:

mf-scroll-up [Macro]
matrix-field
n

scroll matrix-field up n rows. If there are less than n rows left to
scroll, mf-scroll-up scrolls the maximum number of rows
possible. Uses cached optimal scrolling function.

mf-scroll-down [Macro]
matrix-field
n

scroll matrix-field down n rows. If there are less than n rows left to
scroll, mf-scroll-up scrolls the maximum number of rows
possible. Uses cached optimal scrolling function.

mf-scroll-Ieft [Macro]
matrix-field
n

scroll matrix-field left n columns. If there are less than n columns
left to scroll, mf-scroll-up scrolls the maximum number of
columns possible. Uses cached optimal scrolling function.

mf-scroll-right [Macro]
matrix-field
n

scroll matrix-field right n columns. If there are less than n columns
left to scroll, mf-scroll-up scrolls the maximum number of
columns possible. Uses cached optimal scrolling function.

uniform-rows [Accessor]
if t, matrix treats all rows of fields the same way and optimal scrol
ling algorithm is cached.

uniform-rows [Accessor]
if t, matrix treats all columns of fields the same way and optimal
scrolling algorithm is cached.

up-func [Accessor]
the cached scrolling function to use for scrolling upwards. Default

PICASSO Reference Manual 14-182

TABLES

is determined once when the matrix is created.

down-func [Accessor]
the cached scrolling function to use for scrolling downwards.
Default is determined once when the matrix is created.

left-func [Accessor]
the cached scrolling function to use for scrolling left Default is
determined once when the matrix is created.

right-func [Accessor]
the cached scrolling function to use for scrolling right Default is
determined once when the matrix is created.

unLITIES There are several utilities for matrix-fields that may be of use for
sometypes of applications. These are as follows:

current-fields-by-row [Function]
matrix-field

a list of the current-indices (increasing) sorted by row.

current-fields-by-col [Function]
matrix-field

a list of the current-indices (increasing) sorted by column.

uncurrent-fields-by-row [Macro]
matrix-field

a list of all data indices that are not current (increasing) sorted by
row.

uncurrent-fields-by-col [Macro]
matrix-field

a list of the data indices that are not current (increasing) sorted by
column.

all-fields-by-row [Function]
matrix-field

a list of all data indices (increasing) sorted by row.

all-fields-by-col [Function]
matrix-field

PICASSO Reference Manual 14-183

TABLES

a list of all data indices (increasing) sorted by column.

enumerate-row [Function]
matrix-field
row

a list of the data indices for all items in the row numbered row.

enumerate-col [Function]
matrix-field
column

a list of the data indices for all items in the column numbered
col.

make-row-current [Method]
matrix-field
row

make all data-items in the specified row current (use only if
selection is : entry).

make-col-current [Method]
matrix-field
row

make all data-items in the specified column current (use only if
selection is : entry).

make-row-uncurrent [Method]
matrix-field
row

make all data-items in the specified row not current (use only if
selection is : entry).

make-ool-uncurrent [Method]
matrix-field
row

make all data-items in the specified column not current (use only if
selection is : entry).

insert-row [Method]
matrix-field
row

make all data-items in the specified row not current (use only if

PICASSO Reference Manual 14-184

MATRIX-FIELD

SUMMARY

Table-Field

selection is : entry).

insert-col
matrix-field
row

TABLES

[Method]

make alldata-items in the specified column not current (use only if
Selection is : entry).

Reader Methods

rows

cols

visible-rows

visible-cols
inter-row-pad
inter-col-pad
grid-lines
field-table

row-tides

col-tides

row-tide-matrix
col-tide-matrix

data

row-index

col-index

data-rows

data-cols

selection

current-indices

current-value

current-values
current-field

current-fields
changed-indices
select-func

unselect-func

Setf Methods

visible-rows

visible-cols
inter-row-pad
inter-col-pad
grid-lines
field-table
row-tides

col-tides
row-tide-matrix
col-tide-matrix

data

row-index

col-index

data-rows

data-cols
selection

current-indices

select-func

unselect-func

While matrix-fields are powerful and versatile, they are somewhat
lacking in the area of user-interface. A matrix by itself provides
no interface for scrolling, displaying row or column tides, or per
forming any of the operations discussed in the last section. There
fore, it is rare that a matrix-field is used alone, without a table-

PlCASSO Reference Manual 14-185

TABLES

field.

The primary purpose of the table-field is just to piece together a
matrix-field, scroll-bars, tides, and controls into a coherent user
interface. The table-field consists of a primary matrix-field, zero,
one, or two tides, one or two scroll-bars, and a "tf-button". The
tf-button is a pop-button which can be used to make standard
matrix-operations available to the user (eg. deselea-matrix and
add/delete rows/columns). The operations of the tf-button arecus
tomizable.

col-titles /' <— tf-button

, /

1 r I

t o I

1 w |

I t 1

1

s|

c|

r|

o|

1 i 1 Primary Matrix 11

1 t 1 11

1 1 1 -1

1 e 1 b|

1 s 1 a|

1 r|

1

1 —1 scroll-bar

1

1

CREATION

make-table-field [Function]
&key
(tf-button nil)
(tf-items nil)
(tf-image "swap.bitmap")
(horizontal-scroll-bar-p nil)
(vertical-scroll-bar-p nil)
;; Defaults inherited from matrix-field:
(inter-row-pad 3)
(inter-col-pad 3)
(row-index 0)
(col-index 0)
(data nil)
(rows nil)
(cols nil)

PICASSO Reference Manual 14-186

ATTRIBUTES

TABLES

(data-rows rows)
(data-cols cols)
(data-array-size (list (num-rows data) (num-cols data)))
(overflow-increment 5)
(row-elements nil)
(col-elements nil)
(row-heights 40)
(col-widths 10 Q)
(initial-rows nil)
(initial-cols nil)
(font (default-font))
(titles nil)
(col-titles nil)
(row-tides nil)
(default-titles t)
(row-title-width 100)
(coZ-rir/e-teigfo 40)
(row-title-elements nil)
(col-title-elements nil)
(row-title-font (default-font))
(col-title-font (default-font))
(self-adjustable nil)
(selection : entry)

. (unique-selection nil)
(row-title-selectable nil)
(col-title-selectable nil)
(editable nil)
(editable-row-titles nil)
(editable-col-titles nil)
(return-func nil)
(/utf : center)
(horiz-just: center)
(vert-just: center)
(field-table nil)
;; Pluskeys inherited from collection-widgets
&allow-other-keys

horiz-scroll-bar-p [Ar^umeref]
Initial argument only, if non-nil and the primary-matrix is more
than one row, the table-field will contain a horizontal scroll-bar.

vert-scroll-bar-p [ArgMmertr]
Initial argument only, if non-nil and the primary-matrix is more

PICASSO Reference Manual 14-187

TABLES

than one column, the table-field will contain a vertical scroll-bar.

tf-button [Argument]
Initial argument only. If non-nil, the table-field will contain a tf-
button if there is room (if mere are column tides and a vertical-
scroll-bar)

tf-items [Argument]
Initial argument only. The menu-items for the tf-button (see pop-
button). The default items are:

deselect
set current-indices ofprimary-matrix to nil.

add insert a row at the selected row position of the primary-
matrix.

delete

delete the current row of the ramiary-matrix.

free-nomad
tree the nomad widget of the primary-matrix.

tf-image [Argument]
the image to display in the tf-button.

ADDITIONAL Most ^on^on abQUt fog table concerns the primary matrix of
ACCESSORS the table. Hence, it is often necessary to extract theprimary matrix

and use the matrix-field accessors defined above. However, a few
accessors are redefined at the table-field level for convenience.

matrix-field [Accessor]
the primary-matrix for the table

horiz-scroll-bar [Accessor]
the horizontal scroll-bar for the table.

vert-scroll-bar [Accessor]
the vertical scroll-bar for the table.

current-indices [Accessor]
current-indices of me tmmary-matrix.

current-value [Reader]

PICASSO Reference Manual 14-188

TABLE-FIELD

SUMMARY

current-value of the r^imary-matrix

select-func
select-ftine of the primarymatrix.

data

dat a of the primary matrix.

value

data of the primarymatrix.

rows

rows of the primarymatrix.

cols

cols of the primary matrix.

visible-rows.
visible-rows of the primary matrix.

visible-cols.

visible-cols of the primary matrix.

row-titles

row-titles of the primary matrix.

col-titles
col-titles of the primary matrix.

row-title-matrix
row-title-matrix of the primary matrix.

col-title-matrix
col-title-matrix of the primary matrix.

Since a table-field creates its primary matrix-field (unless expli
cidy passed in), all the matrix-field instantiation keywords should
be passed to the table-field. The table-field passes allof its instan
tiation arguments to the matrix-field.

PICASSO Reference Manual

TABLES

[Accessor]

[Accessor]

[Accessor]

[Reader]

[Reader]

[Accessor]

[Accessor]

[Accessor]

[Accessor]

[Accessor]

[Accessor]

14-189

List-Box

CREATION

Reader Methods

matrix-field
horiz-scroll-bar

vert-scroll-bar

current-indices

current-value

select-func

data

value

rows

cols

visible-rows

visible-cols

row-tides
col-tides

row-tide-matrix

col-tide-matrix

TABLES

Setf Methods

matrix-field
horiz-scroll-bar

vert-scroll-bar

current-indices
current-value

select-func

data

value

visible-rows

visible-cols

row-tides

col-tides

row-tide-matrix

col-tide-matrix

A list-box is subclass of table-field with only one row or one
column. A list-box contains only synthetic widgets or gadgets (see
table-field) and therefore creation and scrolling are pretty quick.
Other than these restrictions, the only differences between list-
boxes and table-fields are the creation options and extra accessor
methods.

make-list-box

&key
(value nil)
(items nil)
(padO)
(orientation :vertical)
(col-width nil)
(col-height nil)
(max-elements nil)
(max-height nil)
(max-width nil)
(title nil)
;; Plus keys inherited from table-fields
&allow-other-keys

[Function]

PICASSO Reference Manual 14-190

TABLES

ATTRIBUTES Many of the instantiation arguments for list-boxes are different
than for table-fields:

value [Accessor]
(self list-box)

A list of data-objects (string, image, dtext, etc) that are to be the
values of the list-box.

orientation [Reader]
(self list-box)

The orientation of the list-box. Either :vertical or :hor
izontal, the default is :vertical.

items [Argument]
A list of data-objects (string, image, dtext, etc) that are to be the
values of the list-box (same as value).

row-height, col-width [Argument]
heightfwidth of rows/columns of the list-box (use srow-
height if .'orientation is :vertical, otherwise use :col-
width).

pad [Reader]
(self list-box)

Padding in pixels (in addition to inter-row/column gap) between
rows or columns. Depends on orientation, default 0.

max-elements [Argument]
The tna-rimnm amount of rows (if .'orientation is :vertical)
or columns (if .'orientation is :horizontal) which can be
viewed at once.- This is necessary since the table cannot "gain"
rows or columns dynamically.

max-height [Argument]
May be specified instead of .Tnax-elements to mean the minimum
height necessary to be able to view all rows of the table at once. If
the table can conceivable grow to be the full height of the screen,
this value could be specified as (height (root-window)). Inciden
tally, large values for .-max-elements or :max-height have litde

PICASSO Reference Manual 14-191

ADDITIONAL

ACCESSORS

LIST-BOX

SUMMARY

TABLES

noticeable effect on overall performance of the list-box.

max-width [Argument]
Used instead of :max-heightif '.orientation is :horizontal.

title [Accessor]
(self list-box)

Tide of the list-box.

title-font

Font of title of list-box.

[Argument]

font [Accessor]
(self list-box)

Font of the list-box.

row-height [Accessor]
(self list-box)

Height of the rows of the list-box (use only if '.orientation is
: vertical).

col-width [Accessor]
(self list-box)

Width of the columns of the list-box (use only if '.orientation is
:horizontal).

Reader Methods Setf Methods

tide tide

value value

font font

row-height row-height
col-width col-width

pad pad

PICASSO Reference Manual 14-192

15

GRAPHICS

GRAPHICS

Overview PICASSO has built-in support for plotting x-y graphs and display
ing two dimensional graphic objects. By building in these
advanced graphics capabilities into PICASSO, a variety of interest
ing and complex applications can be easily written.
The types of graphicwidgetsimplementedin PICASSO are:
• Graphic-gadgets - display two dimensional graphic objects.

• Graphic-browsers - display and allow the user to select two
dimensional graphic objects.

Graphic
Gadgets

PICASSO graphic-gadgets are an output-only interface abstraction
(a gadget) which allows for the display of graphic objects called
shapes. Currendy, all structures are two dimensional. Functional
ity includes the ability to set color, line-widths, line-styles, fonts
and mapping functions of the displayed graphics, programmer con
trolled pan and zoom, fast refresh, and basic shape manipulating
functions. First, the objects displayed and shaped by graphic gadg
ets will be described; then the functionality and usage of graphic
gadgets will be discussed.

In PICASSO, the objects displayed by graphic gadgets are subc
lasses of the shape class. The next several sub-sections describe
the predefined shapes in PICASSO, including:

• Annotations to display text
• Polygons.
• Boxes.

Shapes are designed to be easy to create in PICASSO, and new
subclasses can easily be created to specify new object types.

After describing shapes, some of the concepts associated with
two-dimensional graphics will be reviewed. In PICASSO, these
concepts are embodied in the 2d-mapper-mixin class. Next, utility
functions for creating and manipulating 2d-points, the fundamental
structure on which 2d-graphics is based, will be presented. Finally,

PICASSO Reference Manual 15-193

SHAPES

CREATING A

SHAPE

GRAPHICS

the creationand use of graphic gadgets will be discussed.

The basis for display of graphic objects is a shape. Shapes are
maintained in a tree structure, the branches of which are subparts
of a shape, and the leaves of which are geometric primitives. This
allows one to conveniendy create, assemble and reuse instances of
shapes. For example, a robot could be specified by creating an
object to represent the arms, legs andbody, and then assembled in
a tree as show below:

Robot

/ I \

arms body legs

/ \ / \

arm-1 arm-2 leg-1 leg-2

It is beyond the scope of this document to describe the implemen
tation of new shape types; this will (eventually) be provided in the
form of a Shape Writers Guide.

make-shape
&key
(name nn)
(sub-objs nil)
(viewers nil)

[Function]

Creates and returns a shape. Name is a string specifying the name
of the shape, which can be used later to search for the shape in a
hierarchy in much the same way that files are searched for in a
directory. Sub-objs is a list of shapes that are parts of this shape.
In the robot example above, the sub-objs of the arms shape
would be the list (arm-1 arm-2). This value can also be a list
of s-expressions that, when evaluated, return a shape; the mechan
ism is similar to the : children clause in collection creation.
See the example at the end of this section for details. Viewers
specifies a list of the graphic-gadgets, graphic-browsers and other

PICASSO Reference Manual 15-194

SHAPE ATTRI

BUTES

SHAPES FUNC

TIONS AND

METHODS

GRAPHICS

objects that will be displaying this shape.

name [Accessor]
(self scroll-bar)

Returns the name of the shape self of type string. This value may
be setf*d. The name is provided to make identification of the
shape with a hierarchy easy, in much the same way that files are
given names in a file system.

sub-objs [Accessor]
(selfscroll-bar)

Returns a list of shapes that are the sub-parts of the shape self. If
this value is setf'd, all the viewers of the shape are notified of
the change as a side effect Most viewers display all the sub-objs
of a shape when they display the shape itself, and transform all the
sub-objs of a shape when the shape itself is transformed.

viewers [Accessor]
(self scroll-bar)

Returns a list of viewers of the shape self. This value may be
setf'd. Viewers are usually graphic-gadgets and graphic-
browsers, but can be any object that is interested in being notified
when the shape changes its geometry or default graphic display
attributes.

add-object [Method]
(selfshape)
(obj shape)

Adds the object obj to the sub-objs list of the shape self and
notifies the viewers of the shape of the changes. This function is

PICASSO Reference Manual 15-195

GRAPHICS

equivalent to (pushnew obj (sub-objs self)).

add-viewer [Method]

add-viewer-recursively [Method]
(selfshape)
viewer

Add-viewer registers viewer as a viewer of the shape self. After
this function, viewer will be notified of changes to the geometry
and default display attributes of the shape. Add-viewer-
recursively registers viewer with all the ancestors ofselfas well.

copy [Method]
(selfshape)

Creates and returns a deep copy of the shape tree whose root is
self. All the ancestors of self are copied by calling copy recur
sively.

delete-object [Method]
(selfshape)
(obj shape)

Deletes the object obj from the sub-objs list of the shape self and
notifies the viewers of the shape of the changes. This function is
equivalent to

(setf (sub-objs self)

(delete objects (sub-objs self)))

delete-viewer [Method]

delete-viewer-recursively [Method]
(self shape)
viewer

Delete-viewer unregisters viewer as a viewer of the shape self.
After this function, viewer will no longer be notified of changes to
the geometry and default display attributes of the shape. Delete-
viewer-recursively unregisters viewer with all the ancestors of self
as well.

flatten [Method]
(self shape)

PICASSO Reference Manual 15-196

SHAPES SUM

MARY

2D-SHAPES

GRAPHICS

Returns a list of shapes thatconsists of self and all the ancestors of
self. This is a "flattened" version of the shape tree whose root is
self.

find-shape
root

pathname

[Function]

Searches a shape tree whose root is root for the shape instance
whose name is specified by this list of stringspathname. This is
analogous to traversing a directory tree in a file system. Using the
robotexample at the beginning of this section, the expression

(find-shape robot ' ("Robot" "arms" "arm-1"))

will return the shape arm-1. The string "*" can be used as a
wild-card pattern to match all strings.

Reader Methods Setf Methods Misc Methods

name

sub-objs
viewers

name

sub-objs
viewers

add-object
add-viewer

add-viewer-recursively
copy

delete-object
delete-viewer
delete-viewer-recursively
flatten

find-shape

2d-shapes are a subclass of shapes that implement two dimensional
graphics. 2d-shapes are described in a device independent coordi
nate system called world coordinates. This coordinate system is a
standard cartesian system,with the x axis running left to right, and
the y axis running bottom to top. Unlike the coordinate systems
found in most windowing systems, world coordinates can be frac-

PlCASSO Reference Manual 15-197

CREATING A

2D-SHAFE

GRAPHICS

tional.

make-2d-shape [Function]
&key
(ctrl-pts nil)
;; Defaults inherited from shape:
(name nn)
(sub-objs nil)
(viewers nil)

Creates and returns a 2d-shape. Ctrl-pts is a list of 2d-points
which are usedfor editing. Forconvenience, a list (x y) can be
passed instead of a Id-point, discussed later in this chapter. Each
subclass associates an appropriate meaning to this slot, but editors
can depend on its existence.

2D-SHAPE

METHODS 2d-rotate [Method]
(self shape)
theta

ox

oy

Rotates the 2d-shape self by an angle theta about an origin whose
coordinates are ox,ay. All sub-objects of selfarc rotated as well.

2d-scale [Method]
(self shape)
sf
ox

oy

Scales the 2d-shape selfby a factor sf about an origin whose coor
dinates are ox, oy. All sub-objects of self arc scaled as well.

2d-translate [Method]
(self shape)
tx

ty

PICASSO Reference Manual 15-198

SEGMENTS
AND ANNOTA

TIONS

CREATING
SEGMENTS

AND ANNOTA

TIONS

GRAPHICS

Translates the 2d-shape selfby an amount tc in the direction of the
positive x axis and by an amount ty in the direction of the positive
yaxis. All sub-objectsof selfart translated as well

Segments are a subclass of 2d-shape that implement line-
segment-oriented graphics. Annotations are a subclass of 2d-shape
that implement character oriented graphics. Both classes provide
default graphic properties appropriate for the type of graphics they
implement For example, both provide a default for the color to
display the graphic in, and segments provide a default line-width
and default line-style to use in drawing the graphic, whereas anno
tations provide a list of fonts to use.

Annotations are guaranteed to fit in a box on the screen that is
specified in the definition of the annotation, and the viewer of the
annotation will pick the largest font from a font list that fits with
that box.

make-segment [Function]
&key
(color "white n)
(line-width 0)
(line-style : solid)
;; Defaults inherited from 2d-shape:
(ctrl-pts nil)
;; Defaults inherited from shape:
(name " n)
(sub-objs nil)
(viewers nil)

Creates and returns a segment Color specifies the default color of
the line segment, and can be either a string giving the name of a
color or an instance of the color class. Line-width is the default

line-width of the line segment The special value 0 is used to indi
cate the line is "thin", Le., 1 pixel wide. Line-style is the default
line-style of the line segment, and should be one of the keywords
: solidf : dash or : double-dash.

make-annotation

&key
(color "white")

[Function]

PICASSO Reference Manual 15-199

ANNOTATION

ATTRIBUTES

GRAPHICS

(fonts <see below>)
(textntt)
(lower-left (make-2d-point :x 0.0 :y 0.0))
(width 1.0)
(height 1.0)
(just iLC)
;; Defaults inherited from 2d-shape:
(ctrl-pts nil)
;; Defaults inherited from shape:
(name nn)
(sub-objs nil)
(viewers nil)

Creates and returns an annotation. Color specifies the default
color of the annotation, and can be either a string giving the name
of a color or an instance of the color class. Fonts specifies a list of
fonts to be used to display the annotation, which should be a list of
instances of thefont class. In displaying the annotation, the largest
font that will fit into the box specified by width and height will be
used. The default value for this is a list of helvetica fonts with
point sizes 34,20,14,10,8 and the "nil2" font The fonts should be
sorted the most preferable font (usually the largest) first Text
specifies the string to display. Lower-left is a 2d-point that
specifies the position of the lower-left corner of the annotation.
Just specifies the justification of the annotation within the box
specified by lower-left, width and height. It should be one of the
keywords :LC, :LB, :LT, :CC, :CB, :CT, :RC,
:RB or : RT, which areinterpreted as follows:

Keywords Horizontal Justification Vertical Justification

:LB Left Bottom

:LC Left Centered

:LT Left Top
:CB Centered Bottom

:CC Centered Centered

:CT Centered Top
:RB Right Bottom

:RC Right Centered

:RT Right Top

PICASSO Reference Manual 15-200

GRAPHICS

color [Accessor]
(selfannotation)

Returns the default color of the annotation self which may be
either a string giving the name of a color or an instance of the
color class. This value may be setf'd. All viewers of self will
be notified of the change andcan updatetheir display accordingly.

fonts [Accessor]
(selfannotation)

Returns the default font list of the annotation self which is a list of
instances of the font class. This value may be setf'd, but the
new list of fonts should be sorted with the most preferable font
(usually the largest) first All viewersof self will be notifiedof the
change and can update their display accordingly.

text [Accessor]
(selfannotation)

Returns the string displayed by the annotation self. This value
maybe setf'd. All viewers of self will be notified of the change
and can update their display accordingly.

lower-left [Accessor]
(selfannotation)

Returns the 2d-point that specifies the position of the lower-left
comer of the annotation. This value may be setf'd. the value it
is changed to should be created using make-2d-point :xx
: y y). All viewers of self will be notified of the change and can
update their display accordingly.

width [Accessor]

height [Accessor]
(selfannotation)

Returns the width and height of the annotation in world coordi
nates. This defines the size of the box the annotation must fit

within when displayed on the screen. Either of these values may
be setf'd. All viewers ofje/jfwill be notified of the change and
can update their display accordingly.

just [Accessor]
(selfannotation)

Returns the type of justification used by the annotation self This
value may be setf'd. The new value should be one of the key
words :LC, :LB, :LT, :CC, :CB, :CT, :RC, :RB

PICASSO Reference Manual 15-201

SEGMENT

ATTRIBUTES

POLYGONS

CREATING

POLYGONS

GRAPHICS

or :RT. All viewers of selfwUL be notifiedof the change and can
update their display accordingly.

color [Accessor]
(self segment)

Returns the default color of the segment self which may be either
a string giving the name of acolor oran instance of the color class.
This value may be setf'd. Allviewers of selfwill benotified of
thechange and can update their display accordingly.

line-width
(selfsegment)

[Accessor]

Returns the default line-width of the segment self. This value may
be setf'd. All viewers of self will be notifiedof the change and
canupdatetheirdisplay accordingly.

line-style
(selfsegment)

[Accessor]

Returns the default line-style of the segment self This value may
be setf'd. The new value should be one of the keywords
:solid, :dash or sdouble-dash. All viewers of selfwill
be notifiedof the change andcanupdate theirdisplay accordingly.

Polygons are a subclass of segments that have a list of points that
are the control points of the polygon. They can be "open" or
"closed" - closed polygons implicidy contain the last vertex as
the start vertex.

Polygons also have a "hook point", a 2d-point stored in the
hoofc-pt slot whichdefaults to a pointwhose worldcoordinates are
0.0,0.0. The hook pointis used as a default anchor point forvari
ous graphic editors, e.g., for the origin for rotation and scaling
operations. The ctrl-pts of a polygon is a list of 2d-points (created
with make-2d-point) that are the vertices of the polygon.

PICASSO Reference Manual 15-202

GRAPHICS

make-polygon [Function]
&key
(closed nil)
(hook-pt (make-2d-point :x 0 :y 0))
;; Defaults inherited from segment:
(color "white")
(line-width 0)
(line-style : solid)
;; Defaults inherited from 2d-shape:
(ctrl-pts nil)
;; Defaults inherited from shape:
(name "")
(sub-objs nil)
(viewers nil)

POLYGON

ATTRIBUTES aosed [Accessor]
(selfpolygon)

Returns t if the polygon is implicidy closed (Le., the last point is
the same as the first), nil otherwise. This value may be
setf'd, causing the viewers of the polygon to update their
display, if necessary.

hook-pt [Accessor]
(selfpolygon)

Returns the hook-pt of the polygon, a 2d-point indicate the user-
defined origin of the polygon. This value may be setf'd, caus
ing the viewers of the polygon to update their display, if necessary.

BOXES

CREATING

BOXES

Boxes are a subclass of polygons that have a width and a height
and are constrained to' be orthogonal. The hook-pt of the box is
interpreted as the lower-left comer of the box.

make-box [Function]
&key
(width 1.0)
(height 1.0)

PICASSO Reference Manual 15-203

;; Defaults inherited from polygon:
(closed t)
(hook-pt (make-2d-point :x 0 :y 0))
;; Defaults inherited from segment
(color "white")
(line-width 0)
(line-style : solid)
;; Defaults inherited from 2d-shape:
(ctrl-pts nil)
;; Defaults inherited from shape:
(name "")
(sub-objs nil)
(viewers nil)

GRAPHICS

BOX ATTRI

BUTES width [Accessor]

height [Accessor]
(selfbox)

Returns width and height of the box self. These values may be
setf'd, causing the viewers of the boxto update their display, if
necessary.

2D MAPPER

MDONS
The 2d-mapper-mixin class is defined to handle the mapping and
clipping of world coordinates into X window device coordinates.
It is an abstract class - it is not intended that any 2d-mapper-
mixins instances will be created. Routines are provided to map
from world coordinates to device coordinates, from device coordi
nates to world coordinates, and to clip polygons and line segments
against the window of the mapper.
The mapping from world coordinates to device coordinates is
accomplished by specifying the width and height of the mapper,
and giving the world coordinates of the lower left and upper right
comers of the device. One otherparameter that must be specified
is whether the mapping is isotropic or anisotropic. Isotropic map
pings preserve the geometry of the displayed objects, so a square
comes out square, whereas anisotropic mappings don't preserve
the proportions. In other words, in isotropic mappings, the sizeof
one unit on the x axis is the same as the size of one unit of the y

PICASSO Reference Manual 15-204

GRAPHICS

axis,regardless of the aspect ratioof the displaydevice.

2D-MAPPER

ATTRIBUTES mapping [Accessor]
(self2d-mapper-mixin)

Type of mapping, either : isotropic or : anisotropic,
default : isotropic.

height [Accessor]

width [Accessor]
(self2d-mapper-mixin)

Returns the width and height of the 2d-mapper-mixin self. These
represent the dimensions of the output device that mapper is mixed
into. For example, graphic-gadgets inherit from the gadget class
and the 2d-mapper-mixin class, so width and height in this case are
interpreted as the size of the window. Classes that use the 2d-
mapper-mixin class should call the recache-map method
whenever these value change.

xmin [Accessor]

xmax [Accessor]

ymin [Accessor]

ymax [Accessor]
(self2d-mapper-mixin)

Returns the world coordinates of the lower-left and upper-right
comers of the mapper self In other words, the point (xmin, ymin)
will map to the lower-left comer of the device, and the point
(xmax, ymax) will map to the upper-right comer of the device.
These values may be setf'd individually, or as a group via the
set-lower-left, set-upper-right and set-world
methods, to implement zoom in, zoom out pan, etc.

MAPPER

METHODS map-dc-to-wc [Macro]
self
dx

ay

wx

PICASSO Reference Manual 15-205

GRAPHICS

wy

This macro destructively sets wx, wy to the world coordinates that
represent the device coordinates dx, dy in the mapper self. This
macro is used, for example, to find the world coordinates of a
mouse hit on the mapper.

map-wc-to-dc [Macro]
self
wx

wy

ax

dy

This macro destructively sets dx, dy to the device coordinates that
represent the world coordinates wx, wy in the mapper self This
macro is used, for example, to find die device coordinates of a
point in world coordinates.

pan [Method]
(selfld-mapper-mixin)
x-factor
y-factor

This method modifies the world coordinates of the mapper self
such that the view presented on the screen is "panned" by an
amount determined by x-factor and y-factor. The values are inter
preted as follows. Anx-factor of 1.0 pans to the right by one-half
the current size of the screen, i.e., a point that was on the right
edge of the screen would now appear in the middle of the screen.
Similarly, a y-factor of 1.0 pans down one-half screen. Negative
values can be used to pan up or left

ppu [Function]
mapper -

The function returns the number of pixels used to represent one
unitof worldcc<jrdinate space (the number of "pixels perunit").

recache-map [Method]
(selfld-mapper-mixin)

This method recalculates the internal parameters used in mapping
from world coordinates to device coordinates in the mapper self. It
is called automatically whenever the world coordinates of self
change. Subclasses that inherit from the 2d-mapper class should
call this method whenever either of the following occur.

• The size of the mapper object selfchanges.
•The world coordinates slots of self are setf*d via slot-value.

PICASSO Reference Manual 15-206

GRAPHICS

Note that slots referred to in the latter case include the mapping,
xmin, xmax, ymin and ymax slots of self

Subclasses will also typically add functionality to this method to
redraw their screen and update any internal data structures that
depend on the world coordinates to device coordinates mapping.
Since the side effects of this method are used to do the actual
world coordinate to device coordinate mapping, new methods
should first execute a call-next-method before attempting
any such mappings.

set-lower-left [Method]
(selfld-mapper-mixin)
xmin

ymin

Set the lower left comer of the mapper.

set-upper-right [Method]
(selfld-mapper-mixin)
xmax

ymax

Set the upper right corner ofthe mapper.

set-world [Method]
(selfld-mapper-mixin)
xmin

ymin
xmax

ymax

These methods change the world coordinate system of self as
specified.

zoom-factor [Method]
(selfld-mapper-mixin)
factor

This method modifies the world coordinates of the mapper self
such that the view presented on the screen is *'zoomed" in or out
by an amount determined by factor. The value offactor is inter
preted as follows. A factor of 2.0 "zooms in" around the middle
of the screen, ie, objects in the middle of the screen will be drawn
twice as big after the call. Factors less man 1.0 cause the screen to

PICASSO Reference Manual 15-207

GRAPHICS

'zoom out". It is anerror to specifyafactor less than0.

2D-POINT Id-points are the fundamental structure used by the PICASSO
FUNCTIONS graphic functions. They are defined using the Common lisp

defstruct facility, and have two attributes: x and y. 2d-
points are often used as vectors. Since their use is so widespread,
explicit allocation and freeing functions have been created.

raBE^SlD 2d-points can be created using the following function:
COPYING 2D- r_ . .POj^S make-2d-point [Function]

&key
(x0)
(yO)

This function creates and returns a fresh 2d-point with coordinates
x and y. Although this function exists, the following function is
usually used instead:

alloc-2d [Function]
x

y

This function also returns a fresh 2d-point with coordinates x and
y, but the returned 2d-point is obtained from a free list of 2d-
points. A new 2d-point is created using make-2d-point if the
free-list is empty. The return value may be placed on the free list
using the macro:

free-2d [Macro]
Id-point

This function adds Id-point to the free list of 2d-points for recy
cling.

2dv-copy [Macro]
dst
src

This macro destructively sets the x and y values of the 2d-point dst
to the x and y values of the 2d-point src.

copy-2d [Macro]
v

x

y

PICASSO Reference Manual 15-208

GRAPHICS

This macro destructively sets the x and y values of the 2d-point v
to x and y, respectively.

duplicate-2d [Function]
v

This function returns a freshly allocated 2d-point whose x and y
values are the same as those of the 2d-point v.

2D-VECTORUTILITY 2d-points are often used as vectors. This section describes the
~~,««™„, basic mathematical vector functions available on all 2d-points.
FUNCTIONS

2dv+! [Function]
vl

vl

This function destructively sets the x and y components of the 2d-
vector vl to the sum of the x and y components of the 2d-vectors
vl and vl.

2dv+ [Function]
vl

vl

This is the non-destructive version of 2dv+!. It returns a 2d-

point whose x and y components are the sum of the x and y com
ponents of the 2d-vectors vl and vl.

2dv-! [Function]
vl

vl

This function destructively sets the x and y components of the 2d-
vector vl to the difference of the x and y components of the 2d-
vectors vl and vl.

2dv- [Function]
vl

vl

This is the non-destructive version of 2dv-!. It returns a 2d-
point whose x and y components are the difference of the x and y
components of the 2d-vectors vl and vl.

2dv-dot-product [Function]
vl

vl

PICASSO Reference Manual 15-209

GRAPHICS

This function returns the dot-productof the 2d-vectors vl and vl.

2dv-length [Function]
vl

This function returns a floatingpoint value that is the length of the
2d-vectorvi.

2dv-negate! [Function]
vl

This function destructively negates the 2d-vector vl. That is, the x
and y components of this vector are set to the negative of their
current values.

2dv-negate [Function]
vl

This is the non-destructive version of 2dv-negatel. A new
vector is created that is the vector resulting from negating the 2d-
vectorvi. VI is left unchanged.

2dv-normalize! [Function]
vl

This function destructively scales the 2d-vector vl so that it is nor
malized.

2dv-normalize [Function]
vl

This is the non-destructive version of 2dv-normalize!. A
new vector is created that is the vector resulting from normalizing
the 2d-vector vl. VI is left unchanged.

2dv-scale! [Function]
vlsf.

This function destructively scales the 2d-vector vl by the scale
factor sf.

2dv-scale [Function]
vl

sf

This is the non-destructive version of 2dv-scale!. A new vec

tor is created that is the vector resulting from scaling the 2d-vector

PICASSO Reference Manual 15-210

2D-VECTOR

SUMMARY

UNESTRING

UTELTTY

FUNCTIONS

vl by the scale factor sf. VI is left unchanged.

2dv-zerop
vl

GRAPHICS

[Macro]

This function returns t if the 2d-vector vl is the zero vector,
nil otherwise.

Allocation Destructive Non-Destructive Misc

alloc-2d

duplicate-2d
free-2d

make-2d-point

2dv-!
2dv+l

2dv-negate!
2dv-normalize!

2dv-scale!

copy-2d
2dv-copy

2dv-

2dv+

2dv-negate
2dv-normalize

2dv-scale

2dv-dot-product
2dv-length
2dv-zerop

Lists of 2d-points are used to create linestrings. ConcepmaUy, a
linestring is like a polygon, but can be either open or closed. A
"closed" linestring implicitly has its last point connected to its
first

dopoints
(pi pi linestr closed)
&rest

body

[Macro]

This macro iterates through all the points of a line string. If closed
is non-nil, linestris treated as a closed linestring.

First dopoints evaluates linestr (which should be a list of 2d-
points), and closed. During the first iteration, pi is assigned the
first point in the line-string, and pi is assigned the second. During
subsequent iterations, pi and pi are assigned successive points.
After all successive pairs of points have been exhausted, pi is
assigned the last point in the line-string, and pi is assigned the first
point in the line-string if closed is non-nil.

linestr-gravity-pt
linestr

closed

do-midpt

[Function]

Linestr-gravity-pt finds the gravity points for the line

PICASSO Reference Manual 15-211

GRAPHICS

string passed. It returns a list of parametric values that describe
the gravity points of the line string that may be used in the
linestr-normal, linestr-point and linestr-pt-
normal functions. If do-midpt is t, the midpoints are included
as gravity points. If closed is non-nil, linestr is treated as a
closed linestring.

linestr-normal [Function]
linestr

closed

value

Returns the 2d-vector (of type 2d-point) that is the vector normal
•— to the linestring linestr at the parametric value value. If closed is

non-nil, linestr is treated as a closed linestring. This point
should be freed with f ree-2d when it is no longer needed.

linestr-point [Function]
linestr

closed
value

Returns the 2d-vector (of type 2d-point) that is the point on the
linestring linestr at the parametric value value. If closed is non-

- nil, linestr is treated as a closed linestring. This point should be
freed with free-2d when it is no longer needed.

linestr-pt-normal [Function]
linestr

closed

value

This function returns a list of 2d-vectors (of type 2d-point) that are
the point on the linestring linestr at the parametricvalue value and
the normal vector to the linestring linestr at that point If closed is
non-nil, linestr is treated as a closed linestring. Both these points
should be free'd with free-2d when they are no longer needed.

nearest-pt-to-linestr [Function]
linestr

closed

pt

This function finds the nearest point on the linestring linestr to the
2d-point pt. It returns a list whose first element is the parametric
value corresponding to this nearest point and whose second value

PICASSO Reference Manual 15-212

LINESTRING

SUMMARY

CREATING A

GRAPHIC

GADGET

GRAPHIC

GADGETS

METHODS

GRAPHICS

is the distance from that point to the 2d-pointpf.

Macros Functions

dopoints linestr-gravity-pt
linestr-normal

linestr-point
linestr-pt-normal
nearest-pt-to-linestr

Graphic-gadgets are used for output-only display of two dimen
sional graphic data, i.e., 2d-shapes. They inherit attributes from
the 2d-mapper-mixin class as well as the gadget class.

make-graphic-gadget [Function]
&key
(value nil)
(zoom-extent t)
;; Defaults inherited from 2d-rnapper-mixin:
(xmin 0.0)
(ymin 0.0)
(xmax 1.0)
(ymax 1.0)
(mapping : isotropic)

Creates and returns a graphic-gadget If zoom-extent is non-nil,
the initial world coordinate to device coordinate mapping is set so
all of value is visible. Otherwise, the initial world coordinate to
device coordinate mapping is determined by the parameters map
ping, xmin, xmax, ymin and ymax. The value supplied should be a
tree of shapes. The graphic-gadget automatically registers itself as
a viewer of the shape value, and any changes made to value are
therefore automatically synchronized with the graphic-gadget
returned.

PICASSO Reference Manual 15-213

GRAPHICS

set-color-recursively [Function]
self
shape
color

This function sets is used to set the color of the graphic object
shape within the graphic-gadget self. All sub-objects of shape will
also have their color changed. The screen is updateddynamically.

set-visibility-recursively [Function]
self
shape
visible

This function sets is used to set the visibility of the graphic object
shape within the graphic-gadget setf. Shape will not be displayed
if visible in nil, otherwise it will be drawn. All sub-objects of
shape will also have their visibility changed. The screen is
updated dynamically.

zoom-extent [Method]
(selfgraphic-gadget)

This method resets the world coordinate system of self to a size
sufficient to display the entire object represented in the value slot
ofself.

Graphic The PICASSO graphic-browser is an interactive form of the
Browsers graphic-gadget that allows for the display and selection of shapes.

Functionality includes basic browsing facilities, such as pan and
zoom, and selection features which allow the user to select an
object by mousing near it or dragging a box around a group of
objects. Graphic-browsers inherit attributes from the graphic-
gadget class as well as the widget class.

make-graphic-browser [Function]
&key
(selection nil)
(selectables nil)
(search-rod 50)
(highlight-font-list see below)
;; Defaults inherited from graphic-gadget:
(value nil)
y, Defaults inherited from 2d-mapper-mixin:
(xmin 0.0)
(ymin 0.0)
(xmax 1.0)

PICASSO Reference Manual 15-214

GRAPHIC
BROWSER

METHODS

GRAPHIC

BROWSER

INTERACTION

GRAPHICS

(ymax 1.0)
(mapping : isotropic)

Creates and returns a graphic-browser. Selection is a list of the
selectable objects currendy selected. Search-rad is the radius, in
pixels, which will be searched around a mouse button event to find
objects. Finally, highlight-font-list is a list of fonts that areused to
display selected annotations. This value defaults to a list of bold,
oblique helvetica fonts ranging in size from 34 to 10 points. A
typical graphic-browser would have selectables eq to (flat
ten value).

(setf selection)
new-selection

(self graphic-browser)

[Method]

This method changes the selection of the graphic-browser self to
new-selection. Objects are highlighted or unhighlighted from the
screen as necessary.

The graphic-browser allows selection of individual objects and
groups of objects. The current list of selected objects is stored in
the selection slot of the graphic-browser. To make a single object
the (unique) element of the selected list left button within search-
rad pixels of the intended object The graphic-browser will find
the closest object that is in the selectables list within search-rad
pixels of the mouse (called the hit object), and that object will
become the selection and be highlighted on the screen. All other
objects previously selected will be unhighlighted.

To add or remove a single object from the selected list right but
ton within search-rad pixels of the intended object If the hit
object is currendy selected, it will be removed from the selection
and become unhighlighted on the screen, otherwise it will be
added to the selection and become highlighted on the screen.

To make a group of objects the selection, use the middle mouse
button to drag a box around the group of objects. All objects
wholly contained within that box will become the next selection.
To add or remove a group of objects to or from the selection, use
the middle mouse button in combination with the shift key to drag
a box around the group of objects. For any object wholly within

PICASSO Reference Manual 15-215

EXAMPLE

GRAPHICS

that box, its stams in the selection will be toggled: if it was a
member of the selection before, it will be removed, otherwise it
will be added. The graphics screen is updated dynamically at all
times.

Dynamic zoom and pan are also supported by the PICASSO
graphic-browser. To zoom in on aregion of the screen, click-and-
drag a box around the desired region by using the left mouse but
ton while holding down the control key. If the box drawn is too
small (Less than 5 pixels on a side), then the bell is is sounded and
no effect takes place. This prevents "getting lost" if the mouse
button is accidentally released too early. To pan the screen
dynamically, use the control/middle-button combination to
"drag" the image to the desiredposition.

In this section we presenta simple browserof a graphic data struc
ture that consists a containerobject to hold two parts: a box and a
triangle. The box has a label. All objects are named. Below is a
picture of this data structure:

parts-list

/ . \

triangle box

\

box-label

The box is in red, the label in blue, and the triangle in green if
we're on a color display, otherwise everything is in white. The
box and the triangle are selectable, but the label is not

;;; Make colors

(if (black-and-white-display-p)

(setq red "white1*

green "white"

blue "white")

(setq red (make-color :name "red" :attach-p t)

green (raake-color :name "green" :attach-p t)

blue (make-color :name "blue" :attach-p t)))

PICASSO Reference Manual 15-216

GRAPHICS

;;; Make parts-list

(setq parts-list

(make-2d-shape

:name "parts-list"

:sub-objs '((make-box

rname "box"

:color red

:hook-pt (alloc-2d 0 0)

:width 30

:height 30

:sub-objs '((make-annotation

:name "box-label"

:color blue

:lower-left (alloc-2d 0 0)

:just :CC

:text "a-box"

:width 30

:height 30)))

(make-polygon

rname "triangle"

:hook-pt (alloc-2d 10 10)

:color green

:ctrl-pts '((10 10) (20 10) (15 25))

:closed t))))

;;; Make a browser, attach it, and zoom all the way out

(setq selectables

(list (find-shape parts-list '("parts-list" "box"))

(find-shape parts-list '("parts-list" "triangle"))))

(setq gb (make-graphic-browser rvalue parts-list

:selectables selectables

rwidth 200

rheight 200

rparent (root-window)))

(attach gb)

PICASSO Reference Manual 15-217

APPLICATION-SPECIFIC WIDGETS

16

APPLICATION-SPECIFIC WIDGETS

Overview In developing applications for PICASSO, we have defined several
widgets which do not easily fit into the categories already covered.
In this chapter we present the rest of the widgets defined in the
PICASSO toolkit

The following additional widgets are defined in PICASSO:

• Meter Widget

• Qual Widget

• Plot Widget

Meter

Widget

CREATION

A meter widget consists of a meter-slider and three numeric fields.
Meter widgets are used as one-dimensional indicators, similar to
the indicator (slider-bar) of a scroll-bar. The indicator is the
meter-slider, which consists of a diamond-shaped locator and a
horizontal grid. The three numeric-fields specify the lower and
upper bounds and the current position of the locator.

The lower and upper bounds may be edited by clicking on them,
typing in the new value, and pressing return. The current-value
can only be set by the programmer.

make-meter-slider [Function]
&key
(low 0)
(high 0)
(increment 5)
(value 0)
(update-flag t)
;; Plus keys inherited from widget
&allow-other-keys

Creates and returns a meter slider. Meter sliders are a subclass of
widgets, and thus inherit additional keys and methods from widg-

PlCASSO Reference Manual 16-218

ATTRIBUTES

MANAGE

MENT

APPLICATION-SPECIFIC WIDGETS

ets.

low [Accessor]
(selfmeter-slider)

The lower bound of the indicator. Of type number, default 0

high [Accessor]
(selfmeter-slider)

The upper bound of theindicator. Of type number, default 0

increment [Accessor]
(selfmeter-slider)

The grid increment Of type number, default 5.

value [Accessor]
(selfmeter-slider)

The current position of the locator relative to low and high. Of
type number, default 0.

update-flag [Accessor]
(selfmeter-slider)

Used when more than one of low, high, value, or
increment is set at once (for optimization) .
For example,

(setf update-flag rov) nil)
(setf (low mw) 0

(high mw) 100

(value nw) 25)

(setf (update-flag nw) t)

meter-slider-p
object

[Macro]

PICASSO Reference Manual 16-219

Qual
Widget

CREATION

APPLICATION-SPECIFIC WIDGETS

Whether or not object is a meter slider.

A qual-widget is effectively two labels, one of which pops up a
menu when buttoned upon (see pop-button for details). It looks
something like the following:

Goal: 75% Result: 50%

All fields are customizable at instantiation, and the data fields
("75%" and "50%" in the above example) can be accessed dynami
cally as well, by means of the goal and result accessor
methods.

When the user clicks on '75%" above, the goal field is inverted
and a list of menu options pops up. If a menu item is selected, the
menu goes away and the goal field is replaced by the chosen item.
The process is aborted if the mouse is released outside of the
menu-pane. The menu items can be set dynamically and/or at
instantiation by means of the items accessor.

NOTE: the result field ("50%" in above example) can be bound
dynamically to some function on goal by using a bind-slot;
for example:

(bind-slot

' result

<qual widget>
* (let ((goal (var goal ,qw)))

(cond ((string- goal n75%w) w50%")

((string- goal "SC^") w25%w)
(t "0%"))))

See the documentation on bindings (Chapter 6) for more informa
tion.

make-qual-widget
(goal nil)
(result nil)
(first-title "Goal:";
(second-title "Result:")

[Function]

PICASSO Reference Manual 16-220

ATTRIBUTES

APPLICATION-SPECIFIC WIDGETS

(first-value nn)
(second-value nn)
(first-font (make-font))
(second-font (make-font))
(items nil)
(orientation :left)
;; defaults overridden from superclasses
(gm' rubber-gm)
;; Pluskeys inherited from collection-widget
&allow-other-keys

Creates and returns a qual widget Qual widgets are a subclass of
collection widgets, and thus inherit additional keys and methods
from collection widgets.

goal [Accessor]
(selfqual-widget)

result [Accessor]
(selfqual-widget)

first-title [Argument]
Initial argument only.The tide of the first field, default "Goal".

second-title [Argument]
Initial argument only. The tide of the second field, default
"Result".

first-value " [Argument]
Initial argument only. The valueof the first field, default " n.

second-value [Argument]
Tnitial argument only. The valueof the second field, default " n.

first-font [Argument]
Initial argument only. The font of the first field.

second-font [Argument]
Initial argument only. The font of the second field.

items [Argument]
The pop button list of menu entries (see pop buttons for more

PICASSO Reference Manual 16-221

APPLICATION-SPECIFIC WIDGETS

information).

orientation [Argument]
The orientation of the pop button label, one of : left, :bot
tom, : frame, or nil. The default is :left.

MANAGE

MENT qual-widget-p [Macro]
object

Whether or not object is a qual widget

Plot Widget Aplot-widget displays XY plots ofmultiple curves, and optionally
attaches a label to each curve. Each curve consists of an array of
points. A plot-widget automatically scales its X and Y axis in
order to make visible all the specified points. However, each plot-
widget also has optional interactive pan and zoom controls which
allow the user to examine any part of the plot in detail.

CREATION

make-plot-widget [Function]
&key
(value nil)
(x-labelnn)
(y-labelnn)
(x-pad 5)
(y-pad5)
(font (get-font))
(mark-font (get-font))
(paints nil)
(range nil)
(domain nil)
(x-increment 5)
(y-increment 5)
(mark-points t)
(curve-labels nil)
(x-axis t)
(y-axis t)
;; Plus keys inherited from collection-widget
&allow-other-keys

Creates and returns a plot-widget. Here is an example:

PICASSO Reference Manual 16-222

ATTRIBUTES

APPLICATION-SPECIFIC WIDGETS

(setcl Pts

(list (make-array 5 :initial-•contents

'((10 . 10) (20 .. 30) (50 . 15)

(60 . 70) (90 .. 40)))

(make-array 8 :initial-contents

'((5 ., 60) (15 . 30) (30 . 15)

(35 . 12) (38 .. 10) (45 . 8)

(65 . 40) (90 .. 80)))))

(make-plot-widget :base-•size '' (200 200)

:x-label *'Hello1r»

:y-label "•There'rt

:value pts

:paints (list w<jreen'• "red"))

See below for more information.

update-flag [Accessor]
(selfplot-widget)

Either t or nil, indicating whetherupdate is on or off. This slot
works like repaint-flag or repack-flag. Use when
changing more than one attribute at once to avoid wasting time
with multiple updates.

value [Accessor]
(selfplot-widget)

The curve or curves to be plotted. Each curve is an array of dotted
pairs, witheach dotted pair representing a point on the curve. This
slot can contain either one array (when only one curve is to be
displayed) or a list of arrays.

x-Iabel [Accessor]
(selfplot-widget)

The label of the x-axis of the plot-widget This slot can contain a
string, an image, or anything with a put method.

y-Iabel [Accessor]
(selfplot-widget)

The label of the y-axis of the plot-widget This slot can contain a

PICASSO Reference Manual 16-223

APPLICATION-SPECIFIC WIDGETS

string, an image, or anything with a put method.

x-pad [Accessor]
(selfplot-widget).

The empty space to leave on the left and right, in pixels.

y-pad [Accessor]
(selfplot-widget)

The empty space to leave on the top and bottom, in pixels.

font [Accessor]
(selfplot-widget)

The font used for x-label, y-label and curve labels.

mark-font [Accessor]
(selfplot-widget)

The font used for the numbers associated with the tick marks.

paints [Accessor]
(selfplot-widget)

A list of colors or paints corresponding to the desired color of each
of the curves in value. If this slot is nil, the curves are drawn
in black. If this slot is not nil, there should be as many paints as
curves. If there are not enough paints, the plot-widget will pad the
list with the last paint on the list

range [Accessor]
(selfplot-widget)

A dotted pair indicating the range to be displayed. This attribute
overrides the automatic scaling which normally occurs.

domain [Accessor]
(selfplot-widget)

A dotted pair indicating the domain to be displayed. This attribute
overrides the automatic scaling which normally occurs.

x-increment [Accessor]
(selfplot-widget)

The increment between tick marks on the x-axis.

y-increment [Accessor]
(selfplot-widget)

PICASSO Reference Manual 16-224

APPLICATION-SPECIFIC WIDGETS

The increment between tick marks on the y-axis.

mark-points [Accessor]
(selfplot-widget)

Either t or nil, specifies if each point on the plot should be
marked with a little square. If not, only lines between points are
drawn.

curve-labels [Accessor]
(selfplot-widget)

A list of string labels, each corresponding to a curve in value.
The labels are drawn by the curves. If this slot is not nil, there
should be as many labels as curves.

x-axis [Accessor]
(selfplot-widget)

Either tor nil, specifiesif the x-axis should be drawn.

y-axis [Accessor]
(selfplot-widget)

Either t or nil, specifies if the y-axis should be drawn.

PICASSO Reference Manual 16-225

Overview

Library
Panels and

Dialogs

LIBRARY PICASSO OBJECTS

17

LIBRARY PICASSO OBJECTS

A number of library PO's are provided with PICASSO. The
PICASSO package contains a set of general-purpose dialogs and
panels which can be called from any application. In addition,
several complete applications are provided as examples of toolkit
use.

This chapter describes the following groups ofprovided objects:

Library Panels and Dialogs

Facility Manager Tool

Tool Editor

Robbie the Robot Tool

Widgets at an Exhibition Tool

Employee/Department Browser

Recipe Generator Tool

The PICASSO package contains a number of predefined general-
purpose dialogs which can be called from any application. There
are predefined dialogs for

confirming or cancelling actions

exiting tools

displaying messages (notifying)

opening files

quitting without saving files

saving files

prompting for input strings

These PICASSO objects are in the
"picasso/lib/po/picasso directory, and are described in
the following sections.

The confirmer dialog (confirmer.dialog) takes one argu
ment, msg, and displays the message bound to the msg variable.
The dialog also displays two response buttons, "OK" and "Cancel";
buttoning the "OK" button will return t to the calling PO, and
buttoning "Cancel" will return nil.

PICASSO Reference Manual 17-226

LIBRARY PICASSO OBJECTS

The exit dialog (exit .dialog) displays the message "Are you
sure you want toquit?", as well as two response buttons, "OK" and
"CANCEL". Selecting the "OK" buttonwill exit the currendy run
ning tool withareturn value of t. Selecting the "CANCEL" but
ton will return :cancelled to the calling PO. This dialog is
automatically in the PICASSO menu.

The notifier dialog (notifier.dialog) takes one argument,
msg, and displays the message bound to the msg variable. The
dialog also displays an "OK" button, and clicking onthe"OK" but
ton will return t to the caller.

The open file dialog (open-file.dialog) takes an initial
directory path dir, prompts for a file name, and returns the full
pathname (in string form) of the file to be opened. It displays three
buttons, "Open", "Cancel", and "Change-Dir", as well as a list of
current directory files.

The save-cancel-ok dialog (save-cancel-ok. dialog)
prompts users as to whether theywant to quita toolwithout saving
their files. Specifically, it displays the message "Do you want to do
so without saving your files(s)". It also displays three buttons,
"Save", "Cancel", and "OK". Clicking on "Save" returns t to the
caller, clicking "Cancel" returns :cancelled, and clicking
"OK" returns nil.

The file saving dialog (save-file.dialog) takes an initial
directory path dir, prompts for a file name, and returns the full
pathname of a file to be saved to. It has three buttons, "Save",
"Cancel" and "Change-Dir", as well as a list of current directory
files.

The string prompter dialog (str-prompter.dialog) takes
and displays a variable prompt, prompts the user for a string,
and returns the stringif the userclicks the "OK" button. If the user
clicks the "CANCEL" button, the dialog returns nil to the caller.

The following table summarizes the predefined picasso PICASSO
panels and dialogs in the "picasso/lib/po/picasso
directory:

PICASSO Reference Manual 17-227

Facility
Manager
Tool

Tool Editor

LIBRARY PICASSO OBJECTS

File Picasso Name

confirmer.dialog
exitdialog
notifier.dialog
open-file.dialog
save-cancel-ok.dialog
save-file.dialog
str-prompter.dialog

("picasso" "confirmer". "dialog")
("picasso" "exit". "dialog")
("picasso" "notifier". "dialog")
("picasso" "open-file". "dialog")
("picasso" "save-cancel-ok". "dialog")
("picasso" "save-file". "dialog")
("picasso" "str-prompter". "dialog")

The Facility Manager Tool (FM Tool) is a sample application of
the PICASSO GUI development system. Li particular, FM Tool is
a browsing tool for spatial and production-lot manufacturing data.
A novel end user interface to a geometric database, FM Tool was
developed to help facility managers in an IC fabrication facility.

TorunFMTool:

% picasso
%<pkasso> (run-tool-named ' ("fratool" "tool"))

The key binding for pan and zoom, as well as selection, on the
graphic screen is as follows:

Action Key Binding

Select single object: Left Button

Extend selection by a single object: Right Button
Select within region: Middle Button

Extend selection within region: Shift/Middle Button

Zoom by click-and-drag: Ctrl/Left Button

Pan by click-and-drag: Ctrl/Middle Button

The PICASSO Tool Editor, a tool for building PICASSO applica
tions, is currendy under development and is being written entirely
using PICASSO. The Tool Editor is being designed for ease of use
and extensibility, so that 1) users do not need to use textual infor
mation, 2) custom widgets can be manipulated by the editor, and
3) widget writers do not need to change the editor. In particular,
the Tool Editor will allow users to:

• specify the contents of frames, panels, and dialog boxes

• specify variables by pointing/clicking/typing a name

PICASSO Reference Manual 17-228

Robbie the
Robot Tool

Widgets at
an Exhibi

tion Tool

LIBRARY PICASSO OBJECTS

utilize separate panels for building menus and setting
geometry

specify anyattributes for eachwidget
take advantage of direct manipulation editing and textual
representations.

Robbie the Robot is a PICASSO tool developed for teaching LISP
programming to beginning programmers, giving a gradual intro
duction to LISP control and data structures. This tool presents a
graphic display of a robot world, and using this tool, students learn
to write and call their own functions to control the robot Robbie
the Robot is comprised of a Tool window and three panels; the
Editor panel, the Lesson panel, and the Stepper/Debugger panel.
TheToolwindow presents a graphic display of therobotworld, as
well as a textual representation of the world information. It also
displays the controls andmenus for the tool.
The Editor panel displays a formatted test window that highlights
executing code, a LISP customized type-in window, a browser for
functions and command names, as well as controls for file
input/output

-TheLesson panel handles administrative details, such as giving the
studenta lesson text and displaying a list of data files. The lesson
manager facilitates teacher control of lesson content and sample
solutions, and allows the student to control the pace of learning.
The Stepper/Debugger panel allows the student to set breakpoints
and to continue operations. Stepper functions and a dynamic
tracer with zoom facilities are also provided.

To run Robbie: .

% picasso
% <pkasso> (run-too1-named ' ("robbie" "tool"))

The Widgets at an Exhibition Tool is a demonstration of the
PICASSO toolkit widgets, including buttons, button groups, tables,
graphics, and text widgets. The following table summarizes the
toolkit widgets demonstrated in this tool:

PICASSO Reference Manual 17-229

Employee/
Depart
ment

Browser

LIBRARY PICASSO OBJECTS

Button

Text Tables Buttons Groups Graphics

text-gadget list-box button check plot-widget
entry-widget table-field gray radio

num-entry browse-widget pop

scroUable-num-entry
text-widget
scroUing-text-widget

These PICASSO objects are
"picasso/lib/po/gallery directory.

To run the Widgets at an Exhibition Tool:

m

% picasso
%<pkasso> (run-tool-named '("gallery" "tool"))

the

The Employee/Department Browser is a PICASSO application that
displays information about employees and departments, and con
sists of a tool window, a department panel, and a search dialog.
The tool window displays information about an employee. It con
sists of a frame containing a form which describes the employee
(e.g., name, age, etc.), and a menu bar with pull-down menus that
contain operations the user can execute. Buttons at the bottom of
the frame allow the user to step through the employees in the data
base.

The department panel displays information about the department
to which the employee belongs. At the top of the panel is a hierar
chy browser that lists departments and the employees in a selected
department Information about the department that the current
employee belongs to is shown below the browser. The department
information includes the manager and a graphics field that shows a
floor plan with the selected employee and his or her manager's
office highlighted. If the user selects a button at the bottom of the
frame to display the previous or next employee and that employee
is in a different department, the department information in the
panel is automatically updated.

The user can search for an employee on any attribute (e.g., age or
department). For example, selecting the By Age... menu operation
from the tool window calls the search dialog box. The user can
then enter the desired age in the type-in field and press the Ok but
ton, which returns from the search dialog box and changes the
display to the employee closest in age to the value entered.

PICASSO Reference Manual 17-230

LIBRARY PICASSO OBJECTS

To run the Employee/Department Browser.

% picasso
%<picasso> (run-tool-named '("paper" "demo" . "tool"))

PICASSO Reference Manual 17-231

Overview

Selecting
Defaults

18

DEFAULTS

DEFAULTS

In any toolkit, it is essential to have some sort of method for
defaulting unspecified attributes of the various objects that make
up the toolkit For instance, complex widgets like table-
fields and text-widgets have a huge number of options,
any number of which can be specified when the widget is created.
However, it is not expected that the user specify very many of
these options. All unspecified options will default to some reason
able value, determined by the widget either statically (applicable
to all instances) or dynamically (deduced from some combination
of other attributes on a per-instance basis).

In PICASSO, there is a three-level defaults hierarchy:

• user-level

• system-level

• widget-level

User-level defaults apply only to applications run by a particular
user. System-leveldefaults are global to a particular installation of
PICASSO; they apply to all applications run using that particular
installation of PICASSO. Widget-level defaults are custom coded in
the actual widget-code; they apply to every PICASSO application
(on earth). User-level defaults override system-level defaults
which, in turn, override widget-level defaults. Any default which
is not found at the user-level is looked for in the system level and
then the widget-level so it is possible to combine defaults between
the levels.

User-level and system-level defaults are specified in two files hav
ing the same format The user-level defaults should be in a file
named

".picasso-defaults"
in the user's home directory. The system-level defaults (if present)
are in a file with the path

PICASSO Reference Manual 18-232

FORMAT OF
USER/SYSTEM

DEFAULTS

DEFAULTS

w"picasso/lib/picasso-defaultsM

A default is specified by a class, optional fields, an attribute, and a
value. The collection of (class fields attribute) is called the
default-spec. Any member of the default-spec can be a wildcard
(specified as *). The algorithm for lookmg-up defaults returns the
value for the default whose default-spec is the closest match to a
specified default-request. The definition of default-request is
described in a subsequent section. The definition of closestmatch
takes into account the top-down, parent-child hierarchy of the
default-spec. A wildcard matches anything.
class is used to specify the global name which identifies theobject
to whichthedefault applies. Typically, class the name of a widget
oraPO (a particular tool, frame, form, panel, ordialog). If awild
card, class matches any object

fields is afieldorlistoffields that partially qualifies thedefault in a
hierarchical manner. Eachjieldis an attribute that is more specific
than the last and can be viewed as a hierarchical child of the last
fieldand parent of thenext field. AM fields are hierarchical parents
of the attribute specification.

attribute is the specific attribute of thedefault that is to be set
Perhaps an example would best illustrate how defaults are
specified.

Here is a sample set of defaults:

Class Fields Attribute Value

*

text-gadget
demo-tool

demo-tool

framel, panel2, entry3
frame2, *, *

font

font

background
font

8x13

6x10

PukeGreen

-b&h*bold-r*14*

This is the corresponding picasso-defaults file for the
preceding set of defaults:

*.font: 8x13

text-gadget.font: 6x10

* defaults for demo-tool

demo-tool.framel.panel2.entry3: BrightGreen

demo-tool.frame2.*.font: -b&h*bold-r*14*

PICASSO Reference Manual 18-233

BLACK &

WHITE VS.

COLOR

EVENT

DEFAULTS

DEFAULTS

Because PICASSO supports both monochrome & color displays,
PICASSO applications often need to be customized in different
ways, depending on whether the current-display is color or mono
chrome. Hence, PICASSO allows specifications of defaults that are
interpreted automatically as specifically applicable to a certain
type ofdisplay.

Any default-spec that is postpended by the string nb&wn is
treated as a default exclusively for black-and-white (monochrome)
displays.

For example:

*.background: blue

a global default for monochrome

*.background.b&w: gray75

demo-tool.frame2.*.background:

demo-tool.frame2.*.background.b&w:

button.background:

BrightGreen

White

black

In the above example, for a

monochrome-display:
default background is gray75 (an image/tile), default
background for widgets in frame2 of demo-tool is White.
default background for buttons is black.

color-display:
default background is blue, default background for widg
ets in frame2 of demo-tool is BrightGreen. default back
ground for buttons is black.

In addition so specifying defaults for attributes of objects,
PICASSO also allows a way of specifying defaults for class-level
event-mappings. The user should consult the chapter on Events
in the Widget Writer's Guide to get an understanding of event-
mappings, but a brief overview will be given in this section.

When an event is sent to a widget, what acmally happens is that
PICASSO looks for and invokes a handler for the event. PICASSO

consults a table of event-mappings to find this handler, event-
mappings can be either fully qualified or partially qualified.

PICASSO Reference Manual 18-234

Requesting
Defaults

DEFAULTS

PICASSO always invokes the handler most-specific to the widget
and the event

An event-mapping is specified by five fields: class, event-type,
state, detail, and handler. These fields can be specified in a
picasso-defaults file like anyother default
Hereis a sample set of event-defaults:

Class Event-Type State Detail Handler

text-widget
text-widget
matrix-field

matrix-field

key-press
key-press
button-press
button-press
button-press

control

control K

*

(meta shift)

k

kill-line

right-button
middle

kill-line

select-unique
select-unique
help

This is the corresponding picasso-defaults file for the
preceding set of event-defaults:

text-widget.key-press.control.k: kill-line
text-widget.key-press.control.K: kill-line
matrix-field.button-press.*: select-unique
matrix-field.button-press.*.right-button: select-multiple

global help facility (same for all widgets)
*.button-press.(meta shift) :middle-button: help

Notice that the handler kill-line maps to two different types
of events. Specifying multiple mappings with the same handler is
fine. However, specifying the same mapping twice (with a dif
ferent handler) hasunpredictable results. For the two mappings on
matrix-field, the more specific mapping has precedence.
Hence, if the right-button is clicked on a matrix-field, the
select-multiple handlerwill be called. If any other button
is clicked in the matrix, select-unique will be called.

While both the user and system can select defaults, the requests
will only by honored if the widget itself requests the default
Currendy, defaults thatare requested from the widget code include
background, foreground, and font for all windows.
Also, all event defaults are automatically requested.

PICASSO Reference Manual 18-235

DEFAULTS

To request a default, the following function is used.

get-default [Function]
object
attribute

&key
bw-p

gets the default from the resource-database that most closely
matches object and attribute. Defaults are retrieved in a hierarchi
cal fashion, as described in the last section, object is of type
(member (pel::object pel::class stringable
nil)). If object is an object, it is converted into the class-name of
the object If object is a class, it is converted into the name of the
class. If nil, object matches any class in the database, attribute
is either a single field (stringable) or a list of fields. The, object
and attribute are appended to form the default-request. Finally,
get-de fault looks up the default-request and returns the value
corresponding to the closest matching default-spec, get-
de fault takes into account if it is a color or monochrome

display. If it is a monochrome display, get-de fault looks for
the specified default with the "b&w" suffix in the defaults data
base. If there is no corresponding default, the regular default
(without the suffix) is looked-up and returned. If bw-p is non-nil,
get-de fault forces a monochrome display lookup. In this
case, if no default was found, get-de fault returns nil (it
does not lookup the color default).

Following is an example of the way defaults are requested.

picasso-defaults file:

*.font: 8x13

text-gadget.font: 6x10

*.background.b&w: White

*.background: Orange

defaults for demo-tool

demo-tool.framel.panel2.entry3.background.b&w: Black

demo-tool.framel.pane12.entry3.background: BrightGreen

demo-tool.framel.*.background: Purple

sample requests:

PICASSO Reference Manual 18-236

—> (get-default a-button "font")
"8xl3w

—> (get-default "button" "font")

"8x13"

—> (get-default a-text-widget "font")
"6x10"

DEFAULTS

—> (color-display-p)

T

—> (get-default "demo-tool"
'("framel" "pane!2" "entry3" "background"))

"BrightGreen"

—> (get-default "demo-tool"
'("framel" "panel2" "entry4" "background"))

"Purple"

—> (get-default "demo-tool"
'("frame2" "panel2" "entry4" "background"))

"Orange"

—> (color-display-p)

NIL

—> (get-default "demo-tool"
'("framel" "panel2" "entry3" "background"))

"Black"

—> (get-default "demo-tool"
'("framel" "panel2" "entry4" "background"))

"Purple"

—> (get-default "demo-tool"
'("frame2" "panel2" "entry4" "background"))

"White"

Utilities Here are a couple useful utilides formanaging defaults:

load-defaults [Function]
&key
(erase-old t)

reload all system and user-level defaults from the appropriate files.
The system-level default-file is specified by the variable
*picasso-defaults -path (defaults to
"picasso/lib/picasso-defaults). The user-level

PICASSO Reference Manual 18-237

DEFAULTS

defaults file is specified by the variable *user-defaults-
path* (defaults to "/.picasso-defaults). When erase-
old is non-nil, the current defaults that were previously loaded in
are discarded. Otherwise, the new defaults are added to the previ
ous ones.

clean-event-mapping [Function]
&key
(widgets nil)

clear default event-mappings for specified widgets. This function
should only be called if there is a default event-mapping (previ
ously loaded in) that needs to be removed. Usually, load-
defaults is called following a call to clean-event-
mapping, widgets is either nil, a symbol, or a list of symbols.
When widgets is nil, the entire set of default event-mappings for
the toolkit are cleared. When widgets is a symbol (eg. ' text-
widget), the default event-mappings for the widget correspond
ing to that symbol are cleared. When widgets is a list of symbols,
the default event-mappings for the widgets corresponding to each
of the symbols in the list are cleared. Clearing default event-
mappings has no effect on the current event-mappings. To change
the current event-mappings, use make-class-event-map.

make-class-event-map [Function]
window

recreate the class level event-mappings for the specified window
from the default event-mappings, window should be an instance of
an x-window (or subclass).

PICASSO Reference Manual 18-238

REFERENCES

19

REFERENCES

D. Chamess and L. Rowe, CUNG/SQL - Common USP to
INGRES/SQL Interface, Computer Science Division - EECS,
U.C. Berkeley, Dec. 1989.

A. Goldberg, Smalltalk-80: The Interactive Programming
Environment, Addison Wesley, Reading, MA, May 1983.

S. Keene, Object-Oriented Programming in Common Lisp,
Addison-Wesley, 1988.

M. A. Linton, "Composing User Interfaces with
Interviews",/£££ Computer, Feb. 1989.

B. Myers and et al., The Garnet Toolkit Reference Manuals:
Support for Highly Interactive, Graphical User Interfaces in
Lisp, Technical Report CMU, Pittsburgh, PA-CS-89-196,
Carnegie-Mellon University, Nov. 1989.

L. A. Rowe, J. Konstan, B. Smith, S. Seitz and C. Liu, The
PICASSO Application Framework, Computer Science
Division - EECS, U.C. Berkeley, May 1990.

R. W. Scheifler and J. Gettys, "The X Window System*\
ACM Trans, on Graphics 5,2 (Apr. 1986).

R. W. Scheifler and O. LaMott, CLX Programmer's
Reference, Texas mstruments, 1989.

K. J. Schmucker, "MacApp: An Application Framework",
Byte, Aug. 1986.

S. Seitz, Widget Writers Guide, Computer Science Division -
EECS, U.C. Berkeley, June 1990.

S. Wensel, "POSTGRES Reference Manual", Electronics
Research Lab. Technical Report M88I20 (Revised), Apr.
1989.

PICASSO Reference Manual 19-239

Function Index

(defdialog name (arguments) :4-64
(defform name (arguments) :4-56
(defframe name (arguments) :4-61
(defpanel name (arguments) :4-67
(deftool tool-name (arguments) :4-49
(setf buttons) :11-146
(setf me-parent) :13-158
(setf portal-tuple-index) :5-76
(setf selection):15-215
(setf value) :9-119,9-121,9-123

2d-rotate :15-198

2d-scale: 15-198

2d-ttanslate:15-198

2dv+! :15-209

2dv+:15-209
2dv-! :15-209

2dv-:15-209

2dv-copy:15-208
2dv-dot-product:15-209
2dv-length:15-209
2dv-negate!:15-210
2dv-negate:15-210
2dv-normalize!:15-210
2dv-nonnalize:15-210

2dv-scale!: 15-210

2dv-scale:15-210
2dv-zerop:15-210

<resource-type>-attach :3-30
<resource-type> -detach :3-30

activate-pop-up-menu:13-161
activate-pull-down-menu :13-161
active-image:10-139
active-p :2-22
add-child:7-100

add-current: 14-180

add-object: 15-195
add-viewer-recursively: 15-196
add-viewer: 15-195

all-fields-by-col :14-183

all-fields-by-row:14-183
alloc-2d:15-208
append-to-file :9-125
attach-when-possible :2-19
attach :2-19,3-30
attached-of:2-19
attached-p:2-19,3-29
attribute-name:1-5

B

background 2-12,3-37,3-38
base-height :2-10
base-size :2-10

base-width :2-10
bind-slot:6-82

bind-var :6-82
bind :6-82
bitmap-p:12-152,3-34
blet:6-81
blue:3-32
border-attributes :2-14
border-clear :8-l 15

border-init:8-115

border-repaint :8-115
border-type :2-14
border-width '2-14
bring-back :13-161
buffer :9-122

button-p:10-133
button-pos:11-146

call-dialog :4-66
call-frame :4-62

center-left-justified:13-159
changed-indices: 14-181
children :7-98

circle-down :2-25
circle-up :2-25
cl-to-db-type :5-75
clean-event-mapping :18-238
ctesr-env 5-71

clear-region :2-15
clear :2-15

click-button-p:10-138
close-panel :4-68
close-portal :5-75
closed: 15-203
col-index:14-170

cd-title-matrix :14-177,14-189
col-titles :14-174,14-189
col-width :14-192
color :15-200,15-202
colormap £-13,3-32
cols :14-171,14-189
column-widths:14-166
column :9-123
columns ^-120.9-123
conceal-inferiors :2-25
conceal £-21
concealed-of :2-22
concealed-p:2-22
configure :2-24
conform :7-98
copy-2d:15-208
copy-mark:9-124
copy :15-196
current-database :5-75
current-dialog :4-66
current-field:14-180,4-59
current-fields-by-col:14-183
current-fields-by-row:14-183
current-fields:14-180
current-frame :4-63
current-indices :14-175.14-188
current-package :446
current-panel :4-68
current-selection:14-167
current-tool :4-54
current-tuple :5-75
current-value :14-180.14-188
current-values:14-180
cursor-mode :9-124
cursor :2-24

curve-labels:16-225

D

data-cols: 14-171

data-rows :14-171
data:10-133.11-147.14-166,14-170,
db-to-cl-type 5-75
def<po-type> :4-44
default :10-132
defdbclass :5-77
delete-child :7-100
delete-current: 14-181
delete-mark .9-124

delete-object: 15-196
delete-viewer-recursively:15-196
delete-viewer :15-196
depress: 10-134
depth :3-37,3-38
deselect-image:10-141

Reference Manual

destroy :2-15
detach £-19,3-30
dctached-of£-19
detached-p :2-20
determine-class :8-lll
dialog-p :4-66
dim-item :10-139
dim :2-15
dimmed-background :2-12
dimmed-foreground :2-12
dimmed :2-ll. 9-119
display £-9,3-35,3-39.3-42
do-attach :2-19,3-30
do-conceal :2-21
do-detach £-19,3-30
do-expose £-22
do-make-invisible :2-21
do-make-uninvisibie :2-21
do-pend:2-20
do-propagate :6-90,6-91
do-repaint :2-16
doc £-8
domain:16-224
dopoints :15-211
down-func :14-182
drag-scroll-bar: 11-149
drawn-border-width: 10-134
duplicated :15-209

E

editable :9-127
enforce-constants :5-72
enumerate-col:14-184
enumerate-row:14-183
event-mask :2-24
exdude-package :4-46
expose-inferiors :2-26
expose £-22
exposed-gadgets-of :2-23
exposed-of£-22

14-189.9-121 exposed-p £-22

fetch-dbobject :5-78
fetch-tuples 3-76
field-table :14-177
find-po-named :4-46
find-shape:15-197
fix-location £-24
fix-region :2-24
fix-size :2-25
flag:10-133

Function Index

Index-2

flatten :15-196
font-ascent :3-40
font-descent :3-40
font-height :3-40
font-path :3-40
font-width :3-40

font :14-166. 14-173. 14-192.
9-126
fonts :15-201
force-repack :7-100
foreground £-12,3-37.3-38
form-p :4-59
frame-p :4-63
free-2d:15-208
free-nomad :14-177

func:10-133
function-name :l-4

inactive-image:10-139
include-package :4-46
increment-size £-11
increment :16-219
insert-col:14-184
insert-mode :9-127

16-224. 2-13. 9-1194nsert-row:14-184
inter-col-pad :14-170
inter-row-pad :14-170
invalid-p :6-94
invert-width :10-134
invert £-15.9-126
inverted-background £-12
inverted-foreground £-12
inverted:10-135,2-11
invisible-of £-21
invisible-p £-21
items-font :10-136

items :10-136.10-139

gadgets-of £-23
geom-spec £-10
glU-<resource-type> :3-30
get-default :18-235
gm-data :7-99
gm-matrix-init :7-107
gm:7-99
goal:16-221
goto-frame :4-63
grab-mouse £-26
gray-button-p:10-135
gray-pop-button-p:10-137
gray :10-134,2-15
green :3-32
grid-lines:14-172

H

height-increment £-11
height:15-201. 15-204. 15-205. %
38,3-40
hide-menu-item:13-158
high:16-219
hook-pt:15-203
horiz-just:12-152.9-119
horiz-scroll-bar :14-188
horizontal-scroll-step :9-127

icon-name :2-27

icon £-27

image :3-37,3-38

Reference Manual

just-repack :7-100
just:15-201

label-attributes £-14
label-clear :8-l16
label-font :2-14

label-init:8-117
label-position £-14
label-repaint :8-l17
label-type £-13
label-x£-13
label-y£-13
label £-13
lazy-p :6-94
left-func :10-138.14-183

10. 3-34. 3-37. 3-left-of-screen 3-123
lexical-environment :5-71
lexical-parent £-9
line-style:15-202
line-width :15-202
linestr-gravity-pt:15-211
linestr-normal:15-212
linestr-point:15-212
linestr-pt-normal:15-212
load-defaults:18-237

load-file .-9-125
locate-window £-17
location £-10

lookup :5-71
low:16-219

Function Index

Index-3

lower-left :15-201
lower-limit:11-146
lower £-26

M

macro-name :l-4
make-2d-point:15-208
make-2d-shape:15-198
make-annotation:15-199
make-box :15-203
make-browse-widget: 14-165
make-button-group :10-138
make-button :10-131
make-check-button :10-141
make-check-group :10-141
make-class-event-map:18-238
make-click-button:10-137
make-col-current:14-184
make-col-uncurrent :14-184
make-collection-gadget:7-97
make-collection-widget :7-97
make-color :3-32
make-colormap :3-33
make-cursor 3-35
make-dbobject-fjrom-database :5-78
make-display :3-41
make-entry-widget 3-129
make-font :3-40
make-gadget :8-l10
make-graphic-browser:15-214
make-graphic-gadget:15-213
make-gray-button:10-134
make-gray-pop-button:10-137
make-gray:10-135
make-icon :3-39
make-image-gadget :12-151
make-image :3-34
make-instance :5-79
make-invisible £-21

make-label :8-l 16
make-list-box:14-190
rnake-matrix-field: 14-169
make-menu-bar:13-155
make-menu-button: 13-160
make-menu-entry:13-156
make-menu-pane:13-159
make-meter-slider: 16-218
make-mun-entry :9-129
make-opaque-window £-27
make-plot-widget:16-222
make-polygon:15-202
make-pop-button: 10-135
make-portal :5-75
make-qual-widget: 16-220

Reference Manual

Function Index

make-radio-button:10-140
make-radio-group :10-140
make-row-current:14-184
make-row-uncurrent:14-184
make-screen :3-42
make-scroll-bar :11-145
make-scrolling-text-widget :9-128
make-segment:15-199
make-shape:15-194
make-slot-lazy-for-class :6-94
make-slot-lazy-for-mstance :6-94
make-slot-unlazy-for-subclass :6-95
make-table-field:14-186
make-text-gadget :9-118
make-text-widget :9-127
make-tile :3-37
make-ungray:10-135
make-uninvisible £-21
make-widget :8-l11
make-window £-7
make-x-window £-23
managed-of£-23
managed-p£-23
map-dc-to-wc:15-205
map-wc-to-dc:15-206
mapping:15-205
mark-font:16-224
mark-points: 16-224
mark:9-124
mask:10-133,9-119
matrix-field:14-188
me-center:13-158
me-dimmed :13-158
me-font :13-158
me-left:13-158
me-right:13-158
menu-bar-p :13-156
menu-button-p:13-161
menu-entry-p:13-157
menu-pane-p: 13-160
menu:10-136,13-159.13-161
meter-slider-p: 16-219
method-name:1-5
mf-propagate-field:14-179
mf-propagate:14-179
mf-scroll-down:14-182
mf-scroU-teft:14-182

mf-scroll-right: 14-182
mf-scroll-up:14-182
mf-seiectable-widget £-8
mf-sync-col :14-179
mf-sync-data:14-179
mf-sync-field:14-179
mf-sync-row:14-179
middle-func:10-138

min-size :7-99

Index-4

move £-16
moved-func:11-147
mref:14-178

N

name :15-195. 2-8. 3-32, 3-33, 3-34,
38,3-39,3^1
nearest-pt-to-linestr:15-212
new :9-120,9-122
next-line-func:11-148
next-page-func:11-148
next-tuple :5-76
num-cells:13-160
number :3-42

o

old-attributes:10-135
open-panel :4-68
orientation:10-139,11-146,14-191
overflow-increment:14-172

package-search-list :4-47
pad:14-191
paints:16-224
pan:15-206
panel-p :4-69
parent £-9
pause-seconds:10-132,11-148
pend £-20
pended-p £-20
pending-of £-20
pending-p £-20
pixel :3-32
pop-button-p :10-137
ppi :5-79
ppu:15-206
press-func:10-132
prev-line-func:11-149
prev-page-func :11-149
previous-tuple :5-76
primary-screen :3-41
pt£-17
ptab:13-159
pushed:10-132
put-file :9-125
put:9-122

Reference Manual

qual-widget-p :16-222
query-region £-25

R

Function Index

raise £-26
3-35. 3-36. 3-range :16-224

recache-map:15-206
red:3-32
region £-10
related-p £-26
relax-constants :5-72

retease-func :10-132
reload-picasso-object-named :4-47
repack-flag:7-99
repack-off :7-101
repack-on :7-101
repack :7-100
repaint-flag £-13
repaint-region £-16
repaint-x :8-lll
repaint-y :8-lll
repaint £-16
res £-9.3-31. 3-33. 3-34.3-35. 3-36. 3-38. 3-39. 3-
41.3-42
reshape £-16
resize-hint:2-ll

resize £-16
result: 16-221
ret-dialog :4-66
ret-form :4-59

ret-rrame :4-63
ret-tool :4-54

return-func:14-176,9-129
rewind-portal :5-76
right-fane :10-138,14-183
root:3-42
row-height:14-192
row-title-matrix :14-177,14-189
row-titles :14-174,14-189
row :9-124
rows-changed-function :9-121
rows :14-171,14-189,9-121,9-123
run-dialog :4-66
run-frame :4-63
run-panel :4-69
run-tool-named :4-54
run-tool :4-54

save-file :9-125
screen £-9,3-33
scroll-bar :9-128

Index-5

scroU-right-at :9-127
search-backward :9-125
search-forward :9-125
select-func :14-176.14-188
select-image: 10-141
selection :14-167.14-174
self-adjusting:9-119
server-x-oflset £-25
server-y-offset £-25
set-color-recursiveiy :15-213
set-lower-left:15-207
set-me-parent :13-158
set-trigger:6-91
set-upper-right:15-207
set-visibility-recursively:15-214
set-world:15-207
setf return-func :9-129
setf-cmrent-database :5-76
show-menu-item:13-158
size £-10
slider-location:11-147
slider-size:11-147

slot-type :5-79
slot-value :5-79
sort-keys :14-166
src-height :12-152
src-width:12-152
src-x :12-152
src-y :12-152
status £-8

store-dbobject :5-79
sub-objs :15-195
synth-p:8-113
synths :13-160

tab-step :9-128
tearable: 13-160

text-widget :9-128
text: 15-201
title-font: 14-166

title: 14-192

tool-p :4-55
top-of-screen :9-123

u

unbind-fast :6-89

unbind-slot :6-89
unbind-var :6-89

uncurrent-fields-by-col:14-183
uncurrent-fields-by-row: 14-183
ungrab-mouse £-26

Reference Manual

uniform-rows:14-182
unmark :9-124
impend£-20
unselect-func :14-176
up-func :14-182
update-flag :16-219.16-223
update-value :10-139
upper-limit:11-147

Function Index

value :10-132, 12-153, 14-189, 14-191. 16-219, 16-
223,2-8,5-71.9-120.9-121.9-122
vert-just :12-152,9-120
vert-scroll-bar:14-188
vertkal-p:11-150
vertical-scroll-step:9-128
vertical:10-140
viewable-p £-23
viewers :15-195
visible-cols. :14-189
visible-cols :14-177
visible-rows. :14-189
visible-rows:14-177
visual :3-33

w

warp-mouse-if£-27
warp-mouse £-26
width-height-ratio£-11
width-increment £-11
width :15-201. 15-204. 15-205. 2-10. 3-34. 3-37. 3-
38.3-40

x-axis :16-225
x-increment :16-224
x-label :16-223

x-oflfeet£-9
x-pad:16-223
xmax:15-205

xmin:15-205

y-axis: 16-225
y-increment: 16-224
y-label:16-223
y-offset £-9
y-pad:16-224

Index-6

ymax:15-205
ymin :15-205

zoom-extent:15-214

zoom-factor:15-207

Function Index

Reference Manual Index-7

	ERL-90-79 (1 of 3)
	ERL-90-79 (2 of 3)
	ERL-90-79 (3 of 3)

