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Preface

This document contains the final reports of the projects that were completed during the first run of
EECS 290W ("Special Issues in Semiconductor Manufacturing") in the fall semester of 1989. In this
semester we covered a wide areaof basic manufacturing topics, including statistical processcontrol, design
of experiments, and circuit design for manufacturability. The diversity of these subjects is reflected in the
projects that are included in this report

The first seven projects focus on Statistical Process Control (SPQ. The application of SPC in sem
iconductor manufacturing is meant to ensure that the parameters of the equipment, as well as the product,
remain on targetduring long productionruns.This is accomplished by the early identificationof damaging
deviations in critical preformance measures. From the many SPC schemes that are available, chapters 1 and
2 address the evaluation of Shewhart control chartswith arbitrary "runs rules", i.e. rules that characterize
normal production.Chapter 3 is a short study on establishingnon-parametric rules of deviation, by teaching
some of the abnormal production patterns to simulated neural nets.Chapter 4 describes the implementation
of a simulator,written to evaluate the generalcharacteristics of Cumulative Sum (CUSUM) charts.

The next SPC subject is the variable sampling interval (VSI) chart This chart has good sensitivity,
yet it is more economical than comparable control schemes, since it requires fewer measurements. This
property makes the VSI chart a promising candidate for applications such as photolithography control,
where measurements can be very expensive. The potential economicalbenefits and other characteristics of
thischartareexamined in chapters 5 and6.

Modern sensor technologies, combined with the proliferation of hardware communication protocols
on the factory floor, greatly facilitate the collection of multiple real-time diagnostic readings. These read
ings contain valuable information about the process, yetdueto their strong cross-correlation, their interpre
tation is not straightforward. Chapter 7 focuses on the application of a multivariate control scheme for the
reliable generation of alarms from cross-correlated data. This scheme wasused for theanalysis of real-time
data collected from a plasma etcher. Also in the context of equipment control, chapter 8 describes the
implementation of anadaptive regression strategy for modeling equipment thatchange overtime.This stra
tegy has been built around the concept of the regression control chart and it has been applied on sample
data froma Low Pressure Chemical Vapor Deposition reactor.

The next two topics focus on the application of statistical experimental designs in semiconductor
production. The objective is the generation of empirical models of products and production equipment.
Chapter 9 describes theapplication of non-linear transformation techniques in theanalysis of oxidereliabil
ity data from oxides that have been grown on off-axis silicon substrates. The subject discussed in chapter
10 is the design and implementation of a two-staged statistical experiment This two staged experiment
was employed for theextraction of empirical models of several critical performance measures of a plasma
etcher.

Finally, chapter 11 is a circuit manufacturability study that analyzes and compares two EPROM
designs. The manufacturability of each design is evaluated with the help of formal statistical techniques,
that predict thespread of parametric performances under given variations of the fabrication process.

The analysis of some of these topics required the development of special routines written in C and
Fortran, and also procedures developed within special statistical analysis packages such as BLSS and RS/1.
Some of the experimental design topics involved the collection of sizableamountsof raw data. This infor
mation is not included in thisdocument butit is available from C. Spanos.

I want to thank the students whose names appear in this report, and the others who,by contributing
their helpfulcomments, madethiscourse a valuable experience.

Costas J. Spanos

January, 1990
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Simulation of Shewhart Control Charts
with Supplementary Runs Rules

Tom L. Luan

Abstract

This report describes a program for the evaluation of the performance of Shewhart control charts
with supplementary runs rules. This program was implemented in Fortran.

1. Introduction

The Shewhart Control Charts are often used with supplementary runs rules to detect small shifts
and trends. These supplementary rules increase the sensitivity of the Shewhart control charts, while
reducing their Average Run Lengths (ARLs) Various runs rules have been postulated and practically
used since the 1950s [1], and, among them, a particularly popular set is known as the "Western Electric
Rules". In general, the runs rules may be stated as follows: An out-of-control signal is given if k of the
last m standardized sample means fall in the interval (a, b), where k £ m and a < b.

Champ and Woodall [1] have suggested an algorithm in which a Markov chain approach is
adopted to evaluate _the ARL of the Shewhart control charts. Although they have only applied the
method to Shewhart X control charts, the method is general and can be applied to other types of control
charts such as the R and p charts.

The objective of this project is to test and implement this algorithm. I have picked up two rela
tively simple run rules to test this method. A FORTRAN program is written for this purpose. However,
I would like to point out that, with some effort, this code can be generalized to all runs rules presented
in Champ andWoodalTs paper, as well as to other runs rules if people choose to define theirown.

2. Methodology

2.1. Runs Rules and Probability Distributions

A combination C12 of the following two runs rules has been considered in this project report

Rulel: Ci = T(l,l,-«,-3), T(l,l,3,~)

Rule2: C2= T(23-3,-2), T(2,3,2,3)

For example, Rule 2 signals an alarm if two of the last three samples fall into (-3, -2) or if two
out of the last three fall into (2, 3). Cl2 = Q u C2 is the combination of these two rules. There are 5
critical regions for the C12 runs rule: Rj^-oo-S), R2=(-3,-2), R3 = (-2,2), R4 = (2,3), and
R5 = (3,«>), as shown in Fig. 1. The probabilities in each region arc represented by pi, P2, D3, D4 and p5,
respectively. If the mean n„ shifts, ft (i=l,...,5) changes accordingly. I have calculated the probability in
each region as a function of the shift of m,, the results are listed in Table 1.

22. The Markov chain Representation

The states of the Markov chain indicate the status of the chart with respect to each runs rule.
There is one absorbing state that corresponds to the out-of control signal. The 8 states required in the
Markov chain representation for chart C12 are listed in Table 2. The first two coordinates of each vector
representing a particular state correspond to the rule T(23,-3,-2) and the next two correspond to the
rule T(2,3,2,3). For example, state 5, represented by (01 10), tells us that the past two observations are
in the intervals (2, 3) and (-2, -3), respectively. If the next observation is in either of the two intervals,
or in (-«»,-3) or (3,«»), according to the rule C!2, an out-of-control alarm will be signaled.

The Markov chain transition matrix P is defined as P= [Py], where Py is the probability of the
transition of state i to state j. The set of required transient states can be determined iteratively. For a
given initial state, one can determine the state resulting from each of the region possibly containing the
first sample point This process is repeated for each new transient state until no new states can be gen
erated [1]. To illustrate this, let's consider state 5, represented by (01 10),as an example. If this state is



occupied and the next observation is in R3=(-2,2), the resulting state is (00 01), which is state 6. If,
instead, the observation is in any other region, the resulting state is the absorbing state. We can then do
the same thing for state 6, the resulting new states arc state 2 and state 1, represented by (10 00) and
(00 00) respectively. This process can thus be repeated iteratively until no new states can be generated.
In practice, state 1, represented by (00 00) is usually used as the initial state. The transition matrix P
can be deduced from Table 2.

3. Implementation

First we define the run length probability vector

L,, = [PrC^ = h) Pr(N^ = h)]T (1)

where Ni is the run length of the chart with initial state i. To calculate the run length probabilities, the
following recursive numerical method is used [2]

L,=(I-Q)1

Lh = Lh.,Q, h= 1,2,3,-•• (2)

where 1is a column vector of Is and Q is the matrix obtained by deleting the last row and column from
the transition matrix P. This method of calculating the run-length probability gives simple recursive for
mulas to calculate the run length probabilities. For the control chart C12 considered in this report, the
recursive formulas are:

Pr(N! = h) = pa Pr(N! = h-1) + fc Pr(N2= h-1) + p4 Pr(N4 = h-1)

Pr(N2 = h) a pa Pr(N3 = h-1) + p4 Pr(N5 = h-1)

Pr(N3= h) = p3 Pr(N! = h-1) + p4 Pr(N4 = h-1)

Pr(N4 = h) = p3 Pr(N6= h-1) + pj Pr(N7 = h-1)

Pr(N5 = h) = p3Pr(N6 = h-l)

Pr(N6= h) = p3Pr(N1 = h-l) + p2Pr(N2 = h-l)

Pr(N7 = h) = p3Pr(N3 = h-l) (3)

When the run length probabilities are calculated using these formulas, the average run length
(ARL) can be calculated using the formula given by Woodall and Reynolds [3]:

ARL =E(N) =tPr(N =h) +XPr(N^)[-^ +—^-j] (4)
where

[l-tpr(N =h)]
*=-^£ (5)

[l-2P«N = h)]

and N, n are the run length and the number of steps required to converge, respectively. For the control
chart C12, n = 10 is sufficient

4. Results

4.1. ARL as a Function of Mean Shift

The results of ARL calculation as a function of the shift (d) of Mo are plotted in Fig. 2, for the
control chart C12. And the numerical values are listed in Table 3. The result shows that the supplemen
tary runs rule increases the sensitivity of the Shewhart control chart, especially at small shifts. The Sup
plementary runs rule also reduces the ARL at the target value |i = JV Although any desired ARL at the
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target value could be obtained by changing the control limits, however, the increased sensitivity,
obtained by using supplementary runs rules to identify small shifts and trends, cannot be obtained by
simply narrowing the control limits of the original Shewhart control chart

4.2. Comparison with Champ and Woodall's Results

My Fortran Program calculation results are almost exacdy the same as the results obtained by
Champ and Woodall (compare with Table 1 of their paper), essentially at all shifts (d). Therefore,
independent numerical implementations confirm the correcmess of the Markov chain approach and the
efficiency of the numerical approximation of Eq. (4) described above.

5. Example

The program calculates the run length probabilities and ARL for given probability in each regions
Ri (i = 1,...,5). the following example is for the shift d = 0.0 and d = 3.0 cases.



-8

argon% a.out
read in pl,p2,p3,p4,p5 and nr from prob d?.dat
INPUT FILE NAME:

prob_d0.dat

********The Run Length Probabilities Are:***********
2.70E-03 2.41E-02 2.41E-02

3.61E-03 2.40E-02 3.09E-03

4.48E-03 3.45E-03 3.96E-03 3.45E-03 2.95E-03
4.42E-03 3.85E-03 4.35E-03 3.85E-03 3.78E-03
4.39E-03 4.23E-03 4.30E-03 4.23E-03 4.15E-03
437E-03 4.20E-03 4.28E-03 4.20E-03 4.11E-03
4.35E-03 4.17E-03 4.26E-03 4.17E-03 4.08E-03
4.33E-03 4.15E-03 4.24E-03 4.15E-03 4.06E-03
4.31E-03 4.13E-03 4.22E-03 4.13E-03 4.05E-03
4.29E-03 4.11E-03 4.20E-03 4.11E-03 4.03E-03

******** JJjg L^j Jjjj^ ARLs y^g. ******************

8 2.250E+02

9 2.250E+02

10 2.250E+02

FORTRAN STOP

argon%
argon% a.out
read in pl,p2,p3,p4,p5 and nr from prob_d7.dat
INPUT FILE NAME:

prob_dl5.dat

********The Run Length Probabilities Are:***********
5.00E-01 5.00E-01 5.00E-01 8.41E-01 8.41E-01 8.41E-01
3.66E-01 3.66E-01 3.66E-01 1.34E-01 1.34E-01 7.94E-02
1.04E-01 1.04E-01 1.04E-01 U6E-02 1.26E-02 5.82E-02

2.08E-02 2.08E-02 2.08E-02 9.23E-03 9.23E-03 1.65E-02
6.44E-03 6.44E-03 6.44E-03 2.61E-03 2.61E-03 3.29E-03
1.91E-03 1.91E-03 1.91E-03 5.23E-04 5.23E-04 1.02E-03
4.82E-04 4.82E-04 4.82E-04 1.62E-04 1.62E-04 3.04E-04

1.32E-04 1.32E-04 1.32E-04 4.82E-05 4.82E-05 7.65E-05

3.74E-05 3.74E-05 3.74E-05 1.21E-05 1.21E-05 2.09E-05

1.01E-05 1.01E-05 1.01E-05 332E-06 3.32E-06 5.93E-06
******** The Last Three ARLs Are: ******************

8 1.676E+00

9 1.676E+00

10 1.676E+00

FORTRAN STOP

argon%

2.42E-02 4.56E-02

2.40E-02 2.30E-02

2.42E-02

3.09E-03

3.96E-03

4.35E-03

4.30E-03

4.28E-03

4.26E-03

4.24E-03

4.22E-03

4.20E-03

4.56E-02

2.30E-02

2.95E-03

3.78E-03

4.15E-03

4.11E-03

4.08E-03

4.06E-03

4.05E-03

4.03E-03

8.41E-01

7.94E-02

5.82E-02

1.65E-02

3.29E-03

1.02E-03

3.04E-04

7.65E-05

2.09E-05

5.93E-06

6. Conclusions

The Markov chain approach proposed by Champ and Woodall [1] can be used to model supple
mentary runs rule used with Shewhart control chart Independent numerical implementation of this
method in this project confirm that supplementary runs rules cause the Shewhart chart to be more sensi
tive to small shifts than the original.
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TABLE 1 SHIFTS AND PROBABILITY DISTRIBUTION

Shift Probabilities
d Pi P2 P3 P< p5

0.0 .0013 .0214 .9544 .0214 .0013
0.2 .0007 .0132 .9502 .0333 .0026
0.4 .0003 .0079 .9370 .0501 .0047
0.6 .0002 .0045 .9145 .0726 .0082
0.8 .0001 .0025 .8823 .1012 .0139
1.0 .0000 .0013 .8400 .1359 .0226
1.2 .0000 .0007 .7874 .1760 .0359
1.4 .0000 .0003 .7254 .2195 .0548
1.6 .0000 .0002 .6552 .2638 .0808
1.8 .0000 .0001 .5792 .3056 .1151
2.0 .0000 .0000 .5000 .3413 .1587
2.2 0000 .0000 .4207 .3674 .2119
2.4 .0000 .0000 .3446 .3811 .2743
2.6 .0000 .0000 .2743 .3811 .3446
2.8 .0000 .0000 .2119 .3674 .4207
3.0 .0000 .0000 .1587 .3413 .5000

TABLE 2 MARCOV-CHAIN REPRESENTATION

' Present state Next state

NO representation Rl R2 R3 R4 R5

1 (00 00) 8 2 14 8
2 (10 00) 8 8 3 5 8
3 (01 00) 8 8 14 8
4 (00 10) 8 7 6 8 8
5 (01 10) 8 8 6 8 8
6 (00 01) 8 2 18 8
7 (10 01) 8 8 3 8 8
8 absorbing 8 8 8 8 8

TABLE 3 CALCULATION OF ARL

shift ARL

d CI C12

0.0 370.4 225.0
0.2 308.4 176.1
0.4 200.0 104.5
0.6 118.7 57.8
0.8 71.5 33.1
1.0 43.9 20.0
1.2 27.8 12.8
1.4 18.3 8.69
1.6 12.4 6.21
1.6 8.69 4.66
2.0 6.30 3.65
2.2 4.72 2.96
2.4 3.65 2.48
2.6 2.90 2.17
2.8 2.38 1.87
3.0 2.00 1.68
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Average Run-Lengths of Shewhart Control Charts
with Supplementary Runs Rules

Yupin K. Fong

Abstract

A C program which determines the average run-lengths (ARL) of Shewhart control charts with
supplementary runs rules has been developed. By representing the supplementary runs rules with a Mar
kov chain, the exact ARL can be easily determined [1]. This program reduces the number of initial
states in the Markov chain (as compared to [1]) resulting in a significant saving of computing time for
most supplementary runs rules. The ARL's calculated using Markov chains agrees with ARL's simu
lated using a normally distributed random number generator.

1. Introduction

Shewhart control charts with supplementary runs rules (SCC/SRR) not only determine if the
measured parameter of a process is out-of-control by 3a, they can also signal trends or shifts in the pro
cess. For example, if the last eight measurements are all larger than the expected value, this might sig
nify a shift which requires further investigation. With each additional runs rule, the average number of
measurements before a Type I [2] error (average run-length, ARL) will decrease. A Type I error is
when a signal is generated due to the inherent randomness of the measured parameter and not due to a
shift in the process. Thus the trade-off is between the number of trends or shifts that can be monitored
versus the ARL.

Recently, Champ and Woodall [1] proposed a simple and efficient method to determine the
ARL's of SCC/SRR using Markov chains. This method is significant because it allows the calculation
of the ARL when many runs rules are used simultaneously. The implementation of Champ and
Woodall's method in a C program is the subject of this project. Section II of this report will describe
the use of Markov chains to determine the ARL's of SCC/SRR. Section in discusses the specifics of
the C program including the algorithms used to 1) reduce the number of initial states in the Markov
chain and 2) generate normally distributed random numbers. Finally, Section IV demonstrates the func
tionality of this ARL C program including the simulation of ARL's using a normally distributed random
number generator. Insight into the factors which determine the ARL computation time are also dis
cussed in this section.

2. Markov Chain Representation of SCC/SRR

The purpose of this section is to give a short description on what is a Markov chain representa
tion of SCC/SRR and how the ARL's can becalculated from this Markov chain. A clear understanding
of this topic is required to follow the specifics of the C program discussed in the next section. A more
general and mathematical treatment of this problem can be found in [1,3].

Fig. la shows an example of a SCC/SRR. Each rule (k,m,a,b) consists of four parameters. If m
of the last k measurements fall within a and b, then an out-of-control signal is generated, a and b are
in terms of normalized o's. Rules 1 and 2 describe the usual Shewhart 3a control chart. Rules 3 and 4
are the supplementary runs rules. Rule 3 states that if 2 of the last 3 measurements are within (-3,-2)
then a signal should occur. Similarly, Rule 4 is for 2 of the last 3 measurements being within (2,3).
The state table for the Markov chain representation of this SCC/SRR is shown in Fig. lb. Each row is
a different state of the Markov chain while each column corresponds to a different region which the
measurement can be within. In this example, the regions are (-oo,-3), (-3,-2), (-2,2), (23), and (3,«»)
corresponding to all possible measurement values between -oo and +<». The entries in the table point to
the next state for a given present state and a measurement within a particular region.

The initial state represented by (0/0/00/00) is the first state. Each section in (0/0/00/00)
corresponds to one of the four rules, the first section corresponds to rule 1, the second corresponds to
rule 2, and soon. For any k=m rule, the section will contain one digit representing how many consecu
tive measurements have been in (a,b) for that rule. For any kom rule, the section will contain m-1
ones and zeros representing the time evolution of the measurements and how they correspond to that
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rule. For example, 10 represents that the last measurement was within (a,b) while the next to last
measurement was not. Similarly, 01 represents that the next to last measurement was within (a,b) while
the last measurement was not Additional states are created when a new state representation is gen
erated. State 0 is the "absorbing" [1] or signal state. For example, if a new measurement is within
(-3,-2) and the present state is state 2, 4, 5, or6, then the next state will be state 0 (a signal generating
state) because 2 of the last 3 measurements were widiin (-3,-2).

The ARL is the expectation value of the number of measurements before an out-of-control signal
is generated,

ARL =E(N) =f)hPr(N=h), (1)

where Pr(N = h) is the probability that the numberof measurements is h. This probability can be deter
mined recursively with the use of the state table (Fig. lb). For h > 1,

Pr(NSi = h) = PR2 Pr(NS2 = h - 1) + p^ Pr(Nsl = h - 1) + Pr4 Pr(NS3 = h - 1), (2)

Pr(NS2 = h) = pus Pr(Ns4 = h - 1) + i>r4 Pr(Ns5 = h - 1), (3)

and similarly for Pr(NS3 =h), Pr(Ns4 =h),..., where NS{ is the run length of the chart with initial state i
and Prj is the probability that the measurement is within region j. Note that N = NS1 since the initial
state is the first state. For h = 1,

Pr(Nsi = 1) = 1 - Pr2- PR3 - PR4- (4)

Pt(Ns2=1)=1-Pr3-Pr4. (5)

and similarly for Pr(Ns3= 1), Pr(Ns4 = 1), ...

The ARL in Eq.(l) can be approximated for run-length probabilities which are geometrically lim
ited [1] by,

X
n ny>j = n; + —

h=l

where

ARL=S>Pr(N =h) +—^Pr(N =n*)[n*(l-X)+l], (6)

[l-£Pr(N=h)]

X= ^ (7)
[l-2Pr(N = h)]

and n* is expected to be less than 25 for most SCC/SRR. Fig. lc shows how n* affects the calculated
ARL for the rules of Fig. la. The ARL converges to 225.4384 for n* =9.

3. Specifics of C Program for ARL Calculation

The method described in Section II to determine the ARL of SCC/SRR was implemented in C
because C is the standard programming language for TJNDC environments in addition to being easily
portable to other computers. This section will discuss the specifics of this C program. The ARL pro
gram consists of four main sections as shown in Fig. 2. They are 1) Input processing, 2) Initialization
of parameters, 3) Creation of states, and 4) ARL calculation.

Input processing is handled in the procedure "Get_rules" which scans the input deck (Fig. 3a) for
key words. Runs rules are signify by the word 'rule' followed by the parameters k,m,a,b. 'nstar' is the
number used for n* in Eq. (6) and (7). 'shift' is the amount of shift (normalized to a) of the normal
distribution, 'combine' and 'print' are flags to combine certain states in the initial state table and to
print out the final state table, respectively, 'random' is the number of ARL simulations used to deter
mine the simulated ARL. 'end* is required for the last line of the input deck.

Initialization of parameters includes three procedures which do most of the bookkeeping of the
program. "Regions" determines the different regions by calling a pick sort routine with all the values
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of a's and b's. Pick sort is the fastest sorting algorithm for sorting less than 50 numbers (i.e., less than
25 rules). The probability for the measurement to be in each region is calculated using the C math
library erf function. A shift in the normal distribution will affect this probability by shifting the limits
of the regions. "In_rule" determines which rules correspond to each region while "State_rep" deter
mines the length required for the state representation.

Creation of states includes both the generation of new states and also the user option of combin
ing certain states. New states generation takes place in the procedures "Create.states" and "Next.state".
The procedure "Combine.states" combines all states with identical rows to a single state resulting in a
smaller state table.

The method to determine if a new state is generated follows that described in Section II. Given a
present state and a new measurement within a particular region, "In_rule" is used to determine which
rules correspond to this region. A check is first made to see if an out-of-control signal should be gen
erated; otherwise, the state representation is updated. This new state representation is reduced, if possi
ble, to a basic state representation which contains all the required information as the original new state
representation. The basic state representation is then used to compare to previous state representations
to avoid duplicate states.

State representation reduction is achieved by realizing that some of the information in the state
representation can be disregarded. For example, a rule (5,6Ab) with state representations of 10011,
10010, 10001, and 10000 are all equivalent because two measurements which were not within (a,b)
have been made (the next to last measurement and the one before the next to last measurement). This
state representation reduction greatly reduces the number of initial states in the Markov chain especially
when the permutations of many rules are involved. Examples of this will be shown in the next section.
This process of creating new states and determining the entries of the state table continues until no new
states are generated.

Combining states with identical rows is not required to determine the ARL. It does reduce the
size of the state table which reduces the amount of computing time needed to calculate the recursive
run-length probabilities. However, this time saved might be offset by the time spent combining the
states in the first place because of the extensive amount of bookkeeping needed. Entries in the state
table will have to be updated to point to the the new combined states. Also whenever states are com
bined, the entire new state table has to be checked again to see if any identical rows were generated
during this process. Again, examples of this will be shown in the next section including the fact that
for runs rules which do not overlap (rules (kl,ml,13) and (k2,m2,2,3) do overlap), the state representa
tion reduction algorithm generates a state table with no identical rows.

The calculation of the ARL takes place in the procedure "Find_ARL". "Prob.table" is firstcalled
to determine the pRj NSi*s of Eqs. (2>(5). The ARL is then calculated for n*. n*-l, and n*-2 using Eqs.
(6) and (7). Comparing the ARL's can determine if a larger n* is required for a more accurate ARL.
The procedure "Random_ARL" determines the ARL using a normally distributed random number gen
erator.

Normally distributed random numbers can be generated [4] using a uniform random number gen
erator available in the C math library. Two random numbers, Ri and R2, which are between 0 and 1
(i.e., normalized to the maximum number that can be generated) are used to calculate 6 = 2nRi and R
=3 (-2 ln^)172. Apair of normally distributed random numbers ty =Rcos(0) and N2 =Rsin(8) can
then be generated. Any shift in the normal distribution is added to ty and N2. The state table is used
to determine when an out-of-control signal should be generated due to a sequence of these random
numbers.

4. ARL Examples and Analysis

The SCC/SRR input deck of Fig. 3a is used to demonstrate the functionality of the ARL C pro
gram. Fig. 3b shows the output generated using this input deck. 29 states, not including the 0 state,
arecreated. Thecalculated ARL is 166.05 while the simulated ARL is 166.82 showing good agreement
between the two results. Fig. 3c is a table comparing the ARL of this SCC/SRR against the ARL of
just the first two rules in Fig. 3a, i.e., a regular Shewhart control chart. The table shows that a shift in
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the distribution is detected much more quickly for the SCC/SRR as expected. This advantage decreases
for larger shifts because an out-of-control due to the regular Shewhart controls is more likely. Of
course, the drawback of using SCC/SRR is the shorter ARL for a zero shift in the distribution.

The SCC/SRR in Fig. 3a is an example of runs rules which do not have overlapping regions. The
state representation reduction algorithm generated a state table with no identical rows, i.e., a state table
which do not have any states to combine. This isalways true for SCC/SRR which do not have overlap
ping regions. Fig. 3d shows that 79 initial states are generated when this algorithm is not used. These
79 states are combined to form 39 states and then further combined to form the final 29 states.
Remember even after the 29 states are determined, one last check had to be performed to make sure no
new identical rows were generated. The ARL computing time is also shown in Fig. 3d. Combining
identical states did not reduce the computation time as compared to the case when all 79 initial states
were used. Note that these computation times do not include the time needed to calculate the simulated
ARL.

The amount of computing time required to calculate the ARL depends on the number of rules in
the SCC/SRR, the k of each rule, and if the rules have overlapping regions. More rules, larger k, and
more overlapping regions all increase the number of initial states in the Markov chain resulting in an
increase in the ARL computation time. By adding two rules to the SCC/SRR of Fig. 3a. the computing
time for the SCC/SRR of Fig. 4a increases from 57 msec to 260 msec (Fig. 4b). If the state reduction
algorithm is used, the number of initial states increases to 95; otherwise there will be 845 initial states
and an ARL computation time of 12,803 msec.

5. Conclusions

A C program which determines the ARL of SCC/SRR using a Markov chain has been developed.
This program includes an algorithm which reduces the number of initial states in the Markov chain thus
significandy reducing the ARL computation time for most SCC/SRR. The ARL's calculated using this
program agrees well with ARL's simulated using a normally distributed random number generator.

References

[1] C.W. Champ and W.H. Woodall, "Exact Results for Shewhart Control Charts with Supplementary
Runs Rules," Technometrics, Vol. 29, No. 4, pp. 393-399,1987.

[2] D.C. Montgomery, "Introduction to Statistical Quality Control," John Wiley & Sons, New York,
1985.

[3] W.H. Woodall and M.R. Rynolds, Jr., "A Discrete Markov Chain Representation of the Sequential
Probability," Communications in Statistics, Vol. 2, No. 1, pp. 27-44,1983.

[4] W.H. Press et al., "Numerical Recipes in C," Cambridge University Press,Cambridge, 1988.



- 15

(a) rule 1 (l,l,-oo,-3)
rule 2 (l,l,3,+oo)
rule 3 (2,3,-3,-2)
rule 4 (23,2,3)

(b) Rl R2 R3 R4 R5
1 0/0/00/00 0 2 13 0
2 0/0/10/00 0 0 4 5 0
3 0/0/00/10 0 6 7 0 0
4 0/0/01/00 0 0 13 0
5 0/0/01/10 0 0 7 0 0
6 0/0/10/01 0 0 4 0 0
7 0/0/00/01 0 2 10 0

(c) nstar=12: ARL=2.254384e+02
nstar=ll: ARk=2.254384e+02

nstar=10: ARI^2.254384e+02

nstar=9: ARL=2.254384e+02

nstar=8: ARL=2.254382e+02

nstar=7: ARL=2.254368e+02

nstar=6: ARL=2.254527e+02
nstar=5: ARL=2.255061e+02

nstar=4: ARL=2.246600e+02

nstar=3: ARL=2.228728e+02
nstar=2: ARL=2.766332e+02

nstar= 1: ARL=3.703983e+02

Figure 1: Sample runs rules (a), states (b) and ARL as a function of nstar (c)

I) Input processing
a) Get_rules

II) Initialization of parameters
a) Regions
b) In_rule
c) State_rep

m) Creation of states
a) Create.states
b) Next.state
c) Combine_states

IV) ARL calculation
a) Find_ARL
b) Prob.table
c) Random_ARL

Figure 2: The structure of the ARL program
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(a) rule 1 1 -100 -3 * -100 and 100i were used instead of -<» and +<»

rule 1 1 3 100

rule 4 5 -3 -1

rule 4 5 1 3

nstar 20

shift 0.0

combine

print
random 1000

end

(b) 1 0/0/0000/0000 0 2 1 3 0 16 0/0/0000/1010 0 7 8 25 0

2 0/0/1000/0000 0 4 5 6 0 17 0/0/1000/0110 0 4 5 26 0

3 0/0/0000/1000 0 7 8 9 0 18 0/0/0000/0110 0 2 1 27 0

4 0/0/1100/0000 0 10 11 12 0 19 0/0/0000/1110 0 28 29 0 0

5 0/0/0100/0000 0 13 1 3 0 20 0/0/0111/0000 0 0 1 3 0

6 0/0/0100/1000 0 14 8 9 0 21 0/0/0111/1000 0 0 8 9 0

7 0/0/1000/0100 0 4 5 15 0 22 0/0/1011/0000 0 0 5 6 0

8 0/0/0000/0100 0 2 1 16 0 23 0/0/1011/0100 0 0 5 15 0

9 0/0/0000/1100 0 17 18 19 0 24 0/0/1101/0000 0 0 11 12 0

10 0/0/1110/0000 0 0 20 21 0 25 0/0/0000/1101 0 17 18 0 0

11 0/0/0110/0000 0 22 1 3 0 26 0/0/0100/1011 0 14 8 0 0

12 0/0/0110/1000 0 23 8 9 0 27 0/0/0000/1011 0 7 8 0 0

13 0/0/1010/0000 0 24 5 6 0 28 0/0/1000/0111 0 4 5 0 0

14 0/0/1010/0100 0 24 5 15 0 29 0/0/0000/0111 0 2 1 0 0

15 0/0/0100/1010 0 14 8 25 0

(c)

nstar=20: ARL=1.660545e+02

nstar=19: ARL=1.660545e+02

nstar=18: ARL=1.660545e+02

random ARL=1.668210e+02

Rules 1,2 Rules 1,23,4
shift ARL SIM ARL ARL SIM A

0.0 370.40 362.20 166.05 166.82

0.4 200.08 189.80 63.88 65.67

0.8 71.55 74.09 19.78 2022

1.2 27.82 28.30 8.84 8.64

1.6 12.38 12.39 5.24 5.36

2.0 6.30 6.29 3.68 3.72

2.4 3.65 3.55 2.78 2.77

2.8 2.38 235 2.14 2.12

(d) (I) with state representation reduction algorithm
(II) without algorithm, but combine states
(in) without algorithm, do not combine states

(D (TO OH)
states 29 79 to 39 to 29 79

computation time 57 msec 153 msec 148 msec
(DECstation 3100)

Figure 3: Simple Chart specification (a), states (b), performance (c) and simulation cost (d).
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(a) rule 1 1 -100 -3
rule 1 1 3 100

rule 4 5-3 -1

rale 4 5 1 3

rule 5 6-1 0

rule 5 6 0 1

nstar 20

shift 0.0

combine

end

(b) (I) with state representation reduction algorithm
(II) without algorithm, but combine states
(III) without algorithm, do not combine states

(I) (II) (HI)
states 95 845 to 253 to 121 to 95 845

computation time 260 msec 13,380 msec 12,803 msec
(DECstation 3100)

Figure 4: Complex Chart specification (a) and simulation cost (b).



Using Neural Nets to Reconize Non-random Patterns
in Control Charts

Timothy H. Hu

Abstract

Often, statistical process control depends on the recognition of special non-random patterns in the
data. Since it is not practical to have a trained statistician to inspect all charts for non-randomness, it
has been proposed to apply an automated pattern recognition procedure to this task. In this report, a
simulated "neural net" that can be trained to identity special non-random patterns is used to recognize
shifts and trends in a noisy univariate control chart The method is compared to the Shewhart Control
Chart with Western Electric Rules.

1. Introduction

Often, statistical process control depends on the recognition of special non-random patterns in the
data. An example is shown in fig.l where the process is well within the control limits but clearly there
exists a cyclic pattern from data 10 to data 50. Since it is not practical to have a trained statistician to
inspect all charts for non-randomness, it has been proposed to apply an automated pattern recognition
procedure to this task.

The Shewhart Control Chart has been used by the industry for a long time together with the
Western Electric Rules to detect non-random patterns on the control chart. Therule concluding that the
process is out-of-control if either;

1. One point plots outside the 3-sigmacontrol limits.

2. Twoout of three consecutive points plotbeyond the 2-sigma warning limits.
3. Fourout of five consecutive points plotat a distance of 1-sigma or beyond from the center line.
4. Eight consecutive points plot on one side of the center line.

Those rules apply to one side of the center line at a time.

The problem with this approach is that while it can detect large shifts and runs effectively, it is
completely useless for detecting small variations within 1-sigma While statistically this may not be
significant, but early detection of runs with small increments is useful in modem robust process control.
The average run length (ARL) forsmall incremental changes is usually too large (> 10).

A simulated "neural net" that can be trained to identify special non-random patterns is used to
recognize shifts and trends in a noisy univariate control chart. This method is then compared to the
Shewhart Control Chart with Western Electric Rules to see the advantages and disadvantages. The
ARL for the neural net is bounded above by the window size (W) which is 7 in this report and is much
more sensitive than the Shewhart Charts with run rules.

2. Methodology

2.1. Neural Net

A neural net can be trained to reconize non-random patterns. Given a set of input patterns and
the corresponding outputs as training set, the neural net can be trained to adapt to this "mode" of think
ing by adjusting the weights of its nodes. When it is given a new pattern, the net will then look at the
patterns that it learned and try to adjust the output values to give a best fit of the new patterns to the
patterns it learned.

12. Training Set and Windowing

Using this property of neural network, we can give a set of artificially generated patterns for the
net to learn and then give outputs to reflect the input pattern, it would also be nice if one pattern is
reconized, the otherpattern should be suppressed. With this in mind, the following patterns are used.
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Pattern

In Control

Increasing with different slopes and starting point
Decreasing with different slopes and starting point
Shift Up with different step sizes and starting point
Shift Down with different step sizes and starting point

Output

0000

1000

0100

0010

0001

Since number of inputs in the training set is fixed, we have to do the same for the control chart.
A running window of size W is opened to sampled the process data for testing. Here an immediate tra
deoff is what value of W one should use. Using a long window, the net is more immune to noise but
the response will be delayed.

Once the window size is determined, the training set is of great importance. For example, choos
ing too small a slope to train will make it too susceptible to noise while choosing too large will make it
insensitive to small changes.

23. Determination of Alarm

With the above training set, there can be four different indicators (Vs), namely the four outputs.
It is obvious that a full detection of a particular pattern will give a value closed to 1 while the others
will be suppressed. Should an alarm be sounded for a certain output greater than a certain threshold
value? What about false alarm? Also it is tedious to look at 4 outputs, is there a way to combine the
outputs and give one combined output? There is no best answer to the above problems.

The method used in this report is filtering the different indicators and pooling the filtered outputs
to give a combined warning signal X. Low pass filtering is used for smoothing the four outputs and
eliminates false alarm triggered by pulses. The pooled output is a combined information to give an
indication of in-control or out-of-control. Alarm is sounded if X passes through some threshold region.

3. Implementation

3.1. Neural Net

A neural net simulator written by Fariborz Nadi is used to simulate the "neural net". The program
takes in input patterns and corresponding outputs and generate a multi-layer "neural net" with structure
specified by the user. The number of input is the same as the window size and the number of output is
four in this case. The less degree of freedom the neural net is given, provided the training patterns con
verge to the desired output, the better. Since using just the input and output layer didn't give a con
verging output, a three layers structure is used with the minimum hidden nodes just enough for conver
gence.

32. Training Data and Neural Net Specification

A window size (W) of 7 is chosen to balance the tradeoff between response time and noise
immunity. The network thus is specified to be three layers with 7 input nodes, 10 hidden nodes as a
second layer and 4 output nodes. The parameters file used is shown in fig.2.

The training set used is shown in fig.3 and the corresponding output in fig.4. Set 1 is for in-
control operation; set 2 to 7 is for increasing slopes; 8 to 13 is for decreasing slopes; 14 to 22 is for
step up and 23 to 31 is for step down.

From the above data, one may suggest that if we take the differentials between successive data
points, then we should eliminate the use of different starting points and for each slope it will be a
different constant level for training. Also, for the step data, it will become an impulse. There are
several drawbacks of this approach. First, the above method is like taking derivatives from a noisy data
and is very susceptible to noise. Also the neural net is not so good in recognizing different constant lev
els as it is trying to fit the input pattern to some reference pattern and every constant patterns look the
same to the neural net and will confuse the net
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33. Input and Test Data

The input data (Di's) has a mean (m) of 0.5 and a sigma (a) of 0.05. The net takes in inputs
from 0 to 1, therefore the samples in the window (Si's) are scaled according to the following

D;-m
Si= -i- x 0.5 +0.5

ka

k is a design parameter for the sensitivity of control chart In this report, a value of 3 is used for k to
give full scale data when the input is 3 sigma form the mean.

3.4. Filtering of Output and Warning Generation

A running average is an equivalent of low passing the indicators. A running size of 3 is chosen
for smoothing out the indicators. The warning signal (X) is the combination of the filtered indicators.

X = FDSTC + FSUP - FDEC - FSDW

where:

FTNC = filtered increasing indicator
FDEC = filtered decreasing indicator
FSUP = filtered step up indicator
FSDW = filtered step down indicator

If X is too positive, the process is out-of-control and is increasing. If X is too negative, the data
is out-of-control and is decreasing. A value of ± 0.4 is chosen as the threshold. This is reasonable as if
there is a strong indication of a trend, the indicator will be a full 1 and the filtered value will be closed
to 0.33 while the others are suppressed, so a value of 0.4 is right above the noise level but sensitive
enough for significant small changes.

3.5. Input Generation and Experiment

The Input is generated by BLSS and two sets of data are generated and compared with the perfor
mance of Shewhart Chart with Western Electric Rules. One set contains 180data points with large vari
ation of the mean. The second is generated with 60 data points and small variations of the mean. The
sigma is controlled to be constant throughout the experiment.

4. Examples and Results

4.1. Small Variations

In fig.5, the data with small variations is shown and the warning signal with the alarm of the
Western Electric Rules are shown. In fig. 6 are the pattern indicators. A 1 on the WE line means alarm
by the WE rules and a value larger than 0.4 on the FOUT line indicates an alarm by the neural net
The data is set up such that it is random from 1 to 10 and then the mean changes as a sine wave of
period 10 and amplitude sigma (0.05). The last 10 data is also random with mean back to 0.5.

The weakness of WE rules is completely exposed in this case. Since the process is varying in a
small amount around the mean, the WE rules failed to detect most of the variations while the neural net
picked up all the changes and made alarm in 17,28,36and 47 while theWE rules can only detect it at
50. The pattern indicator can explain the reason for alarm and the X values shows which way the pro
cess is out of control right away.

Note in here, the net can reconize the small changes only after it moves the full window into the
increasing data. Since the window size is 7, that explains why it sounds alarm around nxlO+7. For
large changes, there is no need for the window to fall completely on the increasing data as shown in the
next example.
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4.2. Large Variations

A large example, with 180 data points are generated with some large shifts and trends, is shown
in fig.7 together with its warning signals. It is expanded into subsequent figures.

In fig.8 are data points 1 to 30 and fig.9 its indicators. The pattern is completely random here.
WE gives no alarm at all but the net gives an alarm at 21. By looking at the indicator, there is a strong
indication of step up shown in 21 which indicates a step up in 21 - 3 = 18. The stepping is a special
indicator. It is delayed by about half of the window size (W) and in this case it is 3. This is so because
in the training set the step point is approximately in the middle of the window. Several attempts has
been made to shift the step to the front of the window to remove the delay. One experiment was tried
by putting different weights on the sampled data within the window. This was not successful becasue
by putting more weights on the new samples, one can ensure the early detection of the step but it also
gives a lot of false alarm or wrong indications. As a result, the step has to be around the middle of the
window and a delay of about W/2 is the biggest draw back of this approach.

Fig 10 and 11 are for data from 31 to 60. Here a big step up occurred at 32 and WE picked it up
immediately while the net picked it up at 34. Note that because of the big step, the net should reconize
it as a step in 35 but the indication of increasing is strong, an early alarm due to increasing mean will
be sound a data point earlier! After 47, the process is back to normal again.

Fig 12 and 13 are for data from 61 to 90. A gradual increase of the mean occurred in here. The
net picked it up at 66 for a single alarm and then alarm from 75 on while the WE rules sounded alarm
from 78 on. The net is doing a lot better than the WE rules if the change is gradual even if the change
of mean is big.

Fig 14 and 15 are for data from 91 to 120. A gradual decrease of the mean occurred. The net
picked it up in 109 and then on. The WE rules sounded alarm from 110 on. Again the net is doing
better.

Fig 16 and 17 are for data from 121 to 150. The mean kept on falling till 130 and then rise again
from that point on. The net picked it up in 146 while the WE rules in 150. The net is doing better
again.

Fig 18 and 19 are for data from 151 to 180. The mean kept on increasing and then immediately
dropped with a sharp transition from increasing to decreasing and then back to normal, the net picked it
up at 161 while the WE rules picked up in 162. The net is a step earlier again.

43. Average Run Length

Though a formal calculation of the ARL is hard to calculate, it is obvious that the ARL is
bounded above by the window size (W) as for the small variations, the net can detect it once it moves
the whole window within the runs. With large variations, the ARL is going to be less than W becasue
the net will try to fit the large variation with the corresponding trained patterns when enough data
points with the large variation moved into the window. Therefore, the ARL is approximately bounded
by W/2 and by W.

5. Conclusions

The neural net approach is much better than the traditional approach of Shewhart Chart with
Western Electric Rules in several ways, it is more sensitive to small changes while the WE rules failed
to detect The ARL is much shorter for small variations except for a step across the 3-sigma line. When
the data jumped across the 3-sigma line, the WE rules sounds an alarm immediately while the net is
delayed by half the window width. That is one reason for choosing a small window size and use filter
ing to eliminate the noise problem. The neural net also gives information of what kind of change occurs
as it reconizes the trained patterns while the WE rules can only give indication of out-of-control. Also
to avoide the above problem, one can combine the run rules with the "neural net" to give the best per
formance.

The results we have achieved so far show a huge potential for developing the "neural net" control
chart Further experiments should be done to include other patterns, e.g. cyclic pattern. The net can use
running data to train itself adaptively for recognizing cyclic patterns instead of using some pre-
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determined training patterns. Optimal size of filtering window and the window size should be found. A
better training set may even give better sensitivity. Varying k, the scaling parameter adaptively to
change the sensitivity for small changes and large changes of mean should be interesting.
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train.in
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train.out

actout6
weight86
error6

Figure 2

train.in

1 0.50 0.50 0.50 0.50 0.50 0.50 0.50

2 0.40 0.50 0.60 0.70 0.80 0.90 1.00

3 0.40 0.48 0.57 0.65 0.73 0.82 0.90

4 0.40 0.47 0.53 0.60 0.67 0.73 0.80

5 0.50 0.58 0.67 0.75 0.83 0.92 1.00

6 0.50 0.57 0.63 0.70 0.77 0.83 0.90

7 0.60 0.67 0.73 0.80 0.87 0.93 1.00

8 0.60 0.50 0.40 0.30 0.20 0.10 0.00

9 0.60 0.52 0.43 0.35 0.27 0.18 0.10

10 0.60 0.53 0.47 0.40 0.33 0.27 0.20

11 0.50 0.42 0.33 0.25 0.17 0.08 -0.00

12 0.50 0.43 0.37 0.30 0.23 0.17 0.10

13 0.40 0.33 0.27 0.20 0.13 0.07 -0.00

14 0.40 0.40 0.40 1.00 1.00 1.00 1.00

15 0.40 0.40 0.40 0.90 0.90 0.90 0.90

16 0.40 0.40 0.40 0.80 0.80 0.80 0.80

17 0.40 0.40 0.40 0.70 0.70 0.70 0.70

18 0.50 0.50 0.50 1.00 1.00 1.00 1.00

19 0.50 0.50 0.50 0.90 0.90 0.90 0.90

20 0.50 0.50 0.50 0.80 0.80 0.80 0.80

21 0.60 0.60 0.60 1.00 1.00 1.00 1.00

22 0.60 0.60 0.60 0.90 0.90 0.90 0.90

23 0.60 0.60 0.60 0.00 0.00 0.00 0.00

24 0.60 0.60 0.60 0.10 0.10 0.10 0.10

25 0.60 0.60 0.60 0.20 0.20 0.20 0.20

26 0.60 0.60 0.60 0.30 0.30 0.30 0.30

27 0.50 0.50 0.50 0.00 0.00 0.00 0.00

28 0.50 0.50 0.50 0.10 0.10 0.10 0.10

29 0.50 0.50 0.50 0.20 0.20 0.20 0.20

30 0.40 0.40 0.40 0.00 0.00 0.00 0.00

31 0.40 0.40 0.40 0.10 0.10 0.10 0.10
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Investigation of CUSUM Control Chart Run-Length Distributions

Christopher J. Hegarty

Abstract

The method of Brook and Evans [1*1 is implemented and used to evaluate the run-length distribu
tion of cusum control charts. The method is shown to give accurate results and appears capable of gen
erating the run-length distribution of any desired cusum chart

1. Introduction

While CUSUM charts can be designed by reference to tables, occasionally it is valuable to evalu
ate theactual probability distribution of their run lengths. This might be important when interpolation or
extrapolation from tabulated values cannot be relied upon, or when non-standard limits or violation
rules must be investigated. Brooks and Evans [1] have described a procedure that can be used for the
evaluation of this probability distribution. The objective of this project is the implementation of and
experimentation with this algorithm.

2. Methodology

The original definition of the cusum chart from Page [2] is the following: Plot

So-tcDt-Kj) (1)
i=l

against the number of samples, where ty is the i* sample value, K! is the reference value and n is the
number of samples. If Sn exceeds the value H, known as the decision interval, the process is considered
to be out of control. If the value Sn ever drops below zero it is reset to zero. This is a one-sided test,
but a two-sided test can be conducted by running two one-sided tests in parallel, choosing (for exam
ple), the second test sum to be

Sn^icKj-Di) (2)
i=l

A description of the state of the process is the following: if Sn* >H2 and Sn <HIt the process is in con
trol, otherwise the process is out of control.

The choice of values for Kt and Hi (and K2 and H2 for a two-sided test) determines the properties
of the test Consider, for example, a test to determine whether the mean of a process has shifted from
Mo to u.!. A sensible choice for K will lie between Mo and Mi» because if the average value of the sam
ples Di becomes larger than Klf ultimately the value of Sn will exceed Hj and the process will be con
sidered to be out of control. The value of fy determines the probabilities of type I and type II errors: a
small value of Hx will result in many false alarms due to random fluctuations of the value of Sn exceed
ing Hlt and a large value of Ht will result in large type n error and a long run-length to detect the out
of control condition. The most common criterion for choosing H{ and Kj in practice is to try and
achieve certain average run lengths (ARL, the average number of points plotted before the value Hj is
exceeded); we require ARL(Mo) to be large and ARL^) to be small.

An alternative approach to determining whether a cusum chart is out of control is the V-mask
proposed by Barnard [3]. The approach consists of placing the V-mask on the cusum control chart with
the origin 0 on the last value S„ and plotting points

Sn =i(Di-Mo) (3)

If all the previous plotted values Slt • • • Sa-i lie within the two V-mask lines at an angle of 6,
then the process is in control. This is a two-sided test if any point lies above the upper arm, a down
ward shift in the mean is indicated, whereas if any point lies below the lower arm an upward shift is
indicated. It can be shown [4] that the V-mask with parameters d and 6 is equivalent to two one-sided



tests with:

Ki = Mo + w tan(6)

H! = d tan(6)

K2 = Mo - w tan(0)

H2 = -d tan(G)
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(4a)

(4b)

(4c)

(4d)

where w is the scale factor defined as the ratio of horizontal distance between points to unit distance on
the vertical scale. A one-sided test can be conducted with a V-mask by just using one arm of the V-
mask. Note that the average run length using two one-sided test can easily be calculated from the ARL
of each test (ARL! and ARI^) using the formula:

ARL, +ARL^ (5)ARL

The parameters d and9 of the V-mask can be calculated by using

8 = arctan(-r-)
2w

(6)

(7)

where 8 is the shift in process mean we desire to detect, in units of sample standard deviation, and a
and P are the desired probabilities of type I and type II errors.

Brooks and Evans* technique is described in detail in [1], but a brief overview is as follows:
Given a continuous variable D£ and two positive real numbers K and H, divide the region between K

and H into T discrete regions each of width <f> = (H - K)-T. Let each region be considered as

corresponding to a state Ei, where the cusum chart is in state Ei if the cumulative sum Sn satisfies

K + <|>i£Sn<K + <|> (i+1) if 0 £ i < T (8a)

Sn > T if i = T (8b)

There are T+l states, Eo, Ei, • • • Ex. The sum Sn will change value and cause the system to move
between these states, and the state Ef corresponds to the out of control condition and is therefore a ter
minal state. This system forms a Markov chain, and the transition probabilities between states are
determined by the distribution of Dit andare given by:

pr(Ei-»Eo) = prCDi £ K + (if1/2) <J>)

pr(Ei->Ej) = pr((H-l/2) c) £ Dj £ (j-i+1/2) <fr)

prfo-^Et) = prODi £ K + (T-i-1/2) <»

(9a)

(9b)

(9c)

These values can be used to* form the Markov chain transition probability matrix. Letting
Pr = pr((r-l/2) $ £ Dj£ (r+1/2) <J>), and Fr = pr(Di £ K + (r+1/2) <J>), the transition probability matrix is

P =

F0
F-i

Pi
Po

Fli Pw

Fl-H
0

P2-H
0

Pi

j-Hfl

Pr-i
Pt-2

1-Fr-i
l-Fr-2

Pt-w l-"Fr_i_i

Po
0

1-F0
1

(10)

If we form a matrix by removing the final row and column of P, the matrix R so formed has
some very useful properties. In particular, the solution M(f) to the equation

a - R)MW =sRM^" » (11)
I
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is the s* factorial moment of the run length distribution. The Ith element of m(s> is the s* factorial
moment for state Ei, MiW. The factorial moments are defined as

Miw = E(*«} = E{Xi(XrD ' • • (X-s+1)} (12)

where Xx is the number of steps required to reach state ET from state Ei. In particular, Xo is the number
of steps required to reach state ET from the starting state. From (12), it is clear that \i&l) = EfX,}, which
is the average run length.

The factorial moments are not particularly useful in statistics (except for the moments of some
discontinuous binomial distributions), but it is easy to calculate the central moments from the factorial
moments [5]. This means that not only are we able to calculate the ARL, but also the higher-order
moments of the run length and so determine the variance, skewness and kurtosis of the run length dis
tribution, but in this paper only mean and variance shall be calculated.

Note that we can calculate the parameters of the distribution of the run length for each state Ei,
so it is possible to discover what the behavior of the chart will be for any desired value of Sn. For the
purposes of this paper we chose only to examine the ARL starting at S = 0. It is also possible to calcu
late the cumulative probability function of the run length. If we set

Li = a-R)l (13)

then the first element of Li is the probability that the run length is one. Similarly if we define

Ln = RLn_1 = Rr-1L1 (14)

the first element of Ln is the probability that the run length is n. While (14) gives us a way to calculate
the distribution of run length as accurately as we desire, for normal applications the average run length
can be several hundred, and it may necessary to work with values of n up to several times the ARL.
While such calculations are certainly not beyond the capabilities of a modem workstation, it is possible
to obtain approximations to the upper percentage points of the distribution much more easily. An
approximation for Ln is

TyLn =(1 - X)\^(-gL)x (15a)

=(1 - WMx' (15b)

where X is the maximum real eigenvalue of R, x and y are the right- and left-hand eigenvectors
corresponding to X respectively. It may be shown that because of the properties of R, X< 1. Similarly
an approximation to the probability that the run length will be greater than n may be found from

l-Fn =XM(-|^)x (16)
It is also possible, given a probability a, to calculate the approximate value of the upper-a percentage
point of the distribution of run length. Let

*"T5" (17)
Note that an approximation to ARL is ARL =Co(l - X). The upper-a percentage point of the run length
starting from state i is

rj(a) = 1 + (l/logX)log(-) (18)

For large run length, a better approximation is

rj(a) =

It is clear that this technique promises to reveal a great deal about the distribution of run lengths. One

rj(a) =1+(l/logX)log(-2.) (19)
Cq
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important point about the above analysis is that the accuracy of the result depends on the value of T
chosen, since the approach discretizes a continous function. In this paper, the probability distribution is
always taken as Gaussian, but any distribution can be chosen, and exact answers can be obtained for
discrete distributions of D. Since calculation involves inversion of TXT matrices, it is obviously impor
tant to keep T relatively small, and so T = 20 was used for all calculations other than accuracy checks
carried out at T = 25 and T = 50.

3. Implementation

The implementation of the above algorithms is fairly straightforward, requiring nothing more than
matrix multiplication, inversion, evaluation of eigenvalues and eigenvectors, and the ability to accu
rately and quickly estimate the cumulative probability distribution of the Gaussian. Matrix inversion
and eigenvalue algorithms were taken direcdy from [6], with only minor modifications in detail. Solu
tion for eigenvectors was via inverse iteration. Calculation of the central moments from the factorial
moments was carried out using the equations in [5], and a rational polynomial expansion was used for
the Gaussian cumulative distribution function [7].

4. Results

The results of this project were the output of the algorithm and analysis of that output. It was
discovered that the algorithm performed very well, with good agreement between results calculated with
it and those available from tables and approximations. Test calculations were carried out for a wide
variety of examples, including discrete distribution functions, and verified with tables and numerical
approximation. The next section will give some examples of plots of the probability density function of
run length.

5. Examples

Consider the following example: Our process has mean Mo = 4, and sample mean o\ = 0.25. It
will produce useable output for m£ Mo + 2o\ = 4.5. Set up a cusum chart to detect this shift anddeter
mine the run length distribution. Using (7), 5 = 2 and let w = 1, so 9 = 45°. Chose a = 0.01, and
P = 0.01, so that d = 2.30. It then follows that Kx = Mo + w tan(9) = Mo + 5/2 = 4.5.
Hi = d tan(9) = 2.30. From tables of cusum chart values of w tan(8) and d, ARL(mo) = 500,
ARL(lio + 2<j-) = 3.06.

Using the technique outlined in section III above, we can find the ARL and the standard deviation
of ARL for both nominal m= Mo and at the operating limit M= Mo + 2Cj. These values appear inTable
1 for different values of T.

H:= Mo H = Mo + 2o~

T ARL o(RL) ARL o(RL)

5 463.1 461.3 3.059 1.55

10 473.7 472.0 3.047 1.53

20 476.1 474.4 3.045 1.53

25 476.4 474.7 3.044 1.53

50 476.8 475.0 3.044 1.53

100 476.9 475.1 3.043 1.53

Table 1: Mean and variance of run length for normal operation
and at the operating limit for different values of T.

Note that there is little change in the values in the table for T > 20 and consequendy this value
was chosen for subsequent analysis. The values of ARL from the table agree with those interpolated
from standard tables. We can also evaluate the distribution of run length using Eqs. (13) and (14). The
results of the analysis appear in figure 1(a) and (b). Note that in figure 1(b) the eigenvalue approxima
tion to the run length distribution has been calculated, and give fair agreement for run lengths greater
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than 4. The eigenvalue approximation is not shown in figure 1(a) because it is so close to the matrix
calculations as to be indistinguishable. From (18), we can also calculate approximations to the upper
percentage points of the distribution. For the case of m= Mo. the matrix calculation gives ^(0.05) =
1421, and the approximation in (18) yields ^(0.05) = 1416. For the case of m= Mo + 2o\, the matrix
calculation gives ri(0.05) = 7, and (18) gives rL = 6.5.

We can also plot the distribution of run length as a function of the value of m* as in figure 2.
This type of data could be very useful in practice for the comparison of different cusum chart designs
with the samevalues of ARLQio) and ARLQio + 2o\).

Figure 3 contains a plot of the ratio of the average run length to the standard deviation of the run
length as a function of average run length. Note that for large run lengths, ARL and the standard devi
ation of the run length are nearly equal. Furthermore, the very good agreement between the predictions
of (15) and the matrix calculations for Fig. 1(a) means that for the case of large ARL, a reasonable
approximation to the distribution of run length can be obtained from (15) and we are justified in saying
that the ARL is well-approximated by a geometric distribution with parameter X, but with a multiplying
constant x'. For small ARL, the geometric approximation is not very accurate.

As a final example, consider a two-sided test based on the earlier one: i.e., design a cusum chart
to test m= Mo ± 2o\. So K2= 3.5 and H2= -2.30. Fig. 4 contains a plot of ARL as a function of mean
deviation. Note that the average run length for nominal conditions is half the value of the one-sided
test (since the two tests have the same ARL at M= Mo)> but that the curve asymptotically approaches
that of the one-sided case, since the ARL of the other test when the mean is close the one of the con
trol limits will be very large. For example, ARLQio - 2o~) = 16.7xl06 for the test with Ki = Mo + 2Cy.
Note that evaluation of the moments of the run-length distribution for the two-sided test is more
difficult than for the one-sided case; it is necessary to use the definitions of the moments. For exam
ple, the variance of the two-sided run length distribution may be calculated using

Variance =£ (x - ARL)2 [fi(i)(l - F^i)) +f2(i)(l - F,(i))] (20)
i=l

where fi and f2 are the probability density functions of the two run length distributions, and Fi and F2
are the cumulative probabilities. Using this formula to calculate variance and plotting the ratio of ARL
to standard deviation for the two-sided case, we arrive at Fig. 5. Except for near 5 = 50 , the variance
of the two-sided cusum chart run length distribution may be approximated by choosing the smallest of
the two variances given by the central moment calculations, so ordinarily the calculation of (20) is
unnecessary.

6. Conclusions

This technique is very powerful and permits rapid evaluation of the distribution of run length for
a cusum chart The matrix calculations in (13) and (14) are capable of accurately determining the run
length distribution for any values of K and H desired, although for values leading to large ARL the
much faster eigenvalue approximation of (15) is quite accurate. This technique could readily be used in
a control chartdesign package for rapid evaluation of cusum charts. Although the technique was origi
nally intended for use with one-sided cusum charts, extension to two-sided charts in straightforward.
Calculation of the moments of the two-sided distribution is more time consuming than the one-sided
case, but is computationally feasible.
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A Variable Sampling Interval Control Chart Using Runs Rules

Tom Garfinkel

Abstract

Variable sampling interval charts offer significant advantages for processes with costly in-line
measurements. However, in order to compete with traditional, fixed sampling interval charts, one must
consider control strategies that incorporate a number of runs rules. Here, a program is presented for the
simulation of VSI charts with runs rules and it is shown that their sensitivity compares favorably to the
equivalent FSI charts.

1. Introduction

Process control charts for variables are widely used throughout industry to maintain product qual
ity standards/This paper discusses the use of a variable sampling interval (VSI) X control chart [1] to
minimize the average_run length (ARL) of a process that has shifted outside acceptable specifications
limits. The standard X control chart samples at constant intervals, i.e, has a fixed sample interval (FSI).
The VSI chart, however, samples at an interval which is dependent on the most recent X measurement.
Fig. 1 displays the control chart configuration of the VSI chart utilized. An X sample which lands
within the d2 interval, on either side of the mean, would produce a sampling interval (SI2) different
from the interval (SIi) which would occur if theX value fell outside d2 but within the signal limits. The
corresponding probability of each sampling interval are abbreviated P2 and Pi. When the process shifts
away from the desired mean, Pi increases and Six occurs more fiequendy. Thus the out of control VSI
ARL can be reduced, relative to the FSI, by making SIt less than the sampling time interval associated
with the FSI chart.

There are several additional considerations necessary to design an optimal VSI chart for a given
manufacturing application. Knowledge about process yield, loss in revenue due to machine down time,
actual sampling costs, and other economic implications will all effect the process control implemented.
Finally, to minimize the ARL of a VSI chart, one can apply runs rules. Instead of identifying an out of
control process by a single X reading beyond the upper or lower control limits (UCLJLCL), a
combinations) of measurements exceeding set limits, .e.g., three consecutive X values larger than UCL
can be used. An optimal runs rules VSI chart can thus be developed for a specific process control situa
tion.

2. Description

The_situations studied here are FSI and VSI charts with shifts in the process mean. The most
common X chart, ARL=l/p, is for a FSI chartwhere the probability of exceeding UCLis p. This paper
uses a closed form approximation to the normal distribution to calculate theseprobabilities [2]:

P(x) = 0.5+ 0.5(1 - e2**)1'2 (1)

This approximation applies for all x and is quite accurate (see Fig. 2). The FSI ARL canjherefore
easily be characterized as a function of the mean shift The ARL of a VSI chart, where one X beyond
UCL is used as a signal, can be calculated from the following equation [1]:

ARL = £tP(t)p (2)

where t = time, and P(t) is the probability of sampling at time L With the FSI chart the sampling times
are constant and known in advance. VSI charts, due to SIi and SI* can sample at any time which is an
integral combination of the SIt and SI2 intervals. Physically P(t) is therefore just a permutation of the
number of ways the time t can be reached, multiplied by the probability of each occurrence. It is for
mulated below:

P(0= l
(1-P)

(KSI2-l)r)/SIi ft-SIrVSL
PI (3)
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where r refers to the number of SI2 steps that could have occurred prior to the sample in question. The
algorithm used to implement these equations is shown in the program section (#1).

A plot of the ARL versus shift in mean (measured in standard deviations a from an in control X)
is shown in Fig. 3. The details of the control charts are displayed in the upper right of the plot "Con-
sec" describes the number of readings beyond the UCL necessary to indicate the process is out of con
trol. All of the symbols except for the one followed by FSI correspond to VSI data. The two numbers
describing each VSI symbol are SI2 and SIi respectively. The data is plotted on a semi-logarithmic
scale in order to include all points, not to downplay the significance of small shifts. Normally distri
buted data, using P(x), was subjected to the process control limits and agreed reasonably well with
theoretical calculations. The program to generate and test the normal data is also included (#2).
Although the VSI shows a significant ARL advantage over the FSI, the VSI chart can still be improved
upon by applying runs rules.

The algorithms to perform FSI runs rules are just extensions of the simple Bernoulli summation
used to derive the relationship ARL = 1/p. A generalized program (#3) performs different runs rules
calculations based on these summations. To illustrate this algorithm the runs rule where n of n-1 meas
urements must exceed UCL to signal a problem is briefly discussed. At each sample, starting with sam
ple n-1, the number of ways of getting at least n-1 readings beyond UCL, multiplied by the probability
of each, will give the probability of a signal occurring at a sample. Each term is then weighted by the
cumulative probability that none of the previous samples produced the signal. The VSI chart can again
be approximated, and the results are discussed in the following section. One additional program (#4)
was written to study a situation not previously mentioned.

All of the cases discussed assume that the process shift occurs at a known time. A more accurate
model depicts the process at the appropriate mean until, randomly, a shift takes place. A modification to
the summations outlined was performed to account for this effect A more rigorous derivation is per
formed in [1].

3. Results

In Figs. 4-8 the FSI and VSI plots of ARL vs X shift are shown for different runs rules. Each of
these plots has the ARL(in control) matched to 370, the FSI result when UCL=3. Thus the number of
false alarms, on average, is no larger for the in control VSI charts. The plots were reproduced for the
case where the process is initially in control before shifting No significant change was observed for any
of the VSI charts. This disagrees with the result in [1] for very large SI2, and is attributed to the less
complex algorithm implemented here. Both the valuesof SI2 and SIi vary within a given plot, but Fig.
9 can be used to help distinguish their effects. The effect of increasing SI2 is shown to saturate quickly;
Fig. 4-8 are therefore dominated by the SIi value. Since, ultimately, generating the minimal ARL is of
interest, Fig. 10 re-plots the lowest ARL curves. Note that a smaller SI} could have been chosen to
reduce the ARL even more.

In Fig. 10 it is immediately apparent that different runs rules prevail, or possess the lowest ARL,
in different shift regions. Recall that VSI's are matched when the process is in control, and therefore,
with identical SI2 and SIi in all curves, have variable UCL values. The 8/8 curve is clearly superior for
small shifts, and offers the largest possible improvement. As the shift reaches 3a, however, the ARL,
like all the other VSI curves, approaches the product of its SIi value and the number of consecutive
samples required (0.8). Changing the desired ARL(in control) will move the "crossover" points at which
the different runs rules prevail (Fig. 11). Thus, for a specific process where the economic implications
as a function of process shift are known, it is possible to select a runs rules scheme which is most suit
able. A linear combination could, of course, be utilized to balance the strengths of different runs rules.
One trivial example might incorporate both the 8/8 and 2/2 consecutive rules while maintaining a satis
factory alarm rate. Thus, if either runs rule condition were reached, the process would be considered out
of control. This compromise would decrease the advantage obtained by using the 8/8 alone for small
shifts, but in a case where larger shifts are unacceptable financially it would improve the chart
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4. Conclusions

The VSI X control chart can significantly reduce the average run length for a process that shifts
beyond acceptable limits. Minimizing SIt will produce the most dramatic decrease in ARL, without
raising the probability of false signals. The application of runs rules may optimize a VSI chart for a
well characterized operation by selecting the most suitable curve of ARL vs X shift. A combination of
these rules may best satisfy the process control demands for production.
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% Chart with Variable Sampling Interval for the Control
of a Photolithography Process

Jaime Ramirez

Abstract

A variable sampling interval chart has the advantage of increasing its sampling rate in anticipa
tion of an out of control condition, while it regularly maintains a slower, more economical sampling
rate when the process appears to be operating properly. Given the costs associated with routine, in-line
wafer testing in VLSI manufacturing, it is shown here that a VSI scheme applied on a photolithogrphic
operation can offer significant advantages over a traditional, fixed sampling interval control strategy.

1. Introduction

Control charts are used to monitor processes, and many different types and variations exist [1-6].
The Shewhart X control charts are very common in the U.S., and several modifications to the original
chart have been suggested to improve its performance; some of these are: warning limits [1,2], supple
mentary runs rules [3], and variable sampling intervals [4-6]. By incorporating the variable sampling
interval (VSI) which was proposed by M. R. Reynolds [4], the efficiency of the chart is greatly
increased.

The basic principle behind the VSI chart is that if the process seems to be in control, then sam
pling should be done at a lower frequency, but if the process seems to be running out of control, then
the sampling rate should be increased in order to detect with greater accuracy when the process runs out
of control. By detecting with greater accuracy when the process runs out of control, the amount of
material that needs to be tested in order to ensure its quality (ie.- that between the previous sample and
the one that produced the signal) is smaller, and since less testing is needed, the operating costs are
reduced. The cost advantages of using the VSI X control chart for monitoring a process have not been
pointed out, and this is what is investigated in this paper. In particular, an example of a photolithogra
phy process is taken, and some numerical values have been calculated for the costs involved at a first
order. The cost of implementing a VSI scheme is compared to that of implementing a FSI one.

2. Methodology

It is necessary to have a thorough understanding of how the VSI scheme applied to the X chart
works. After reviewing the available articles which are related to this subject, an attempt to replicate
some of the important published results will be made. The software package BLSS will be used to
compute all of the probabilities and statistics necessary to obtain some of the results which have been
published by Reynolds. These results will be used to promote the improvements which result by varying
the sampling time. Once an understanding of the concept behind the VSI X chart is obtained, the cost
factor will be integrated. A general costequation will be formulated and compared to that of the FSI X
chart Several factors need to be considered in this cost equation, and an analysis to determine the most
important ones will be followed. Finally, some values representative of the costs involved in a lithogra
phy process will be incorporated into these equations, and the cost for several cases for both FSI and
VSI X charts will be compared.

3. Implementation

The basic idea behind the VSI chart is that one should sample with a high frequency when the
process is close to being out of control, and if the process seems to be in control then the sampling fre
quency should be low. It has been determined by several authors that the optimal number of sampling
intervals is two, which helps maintain the complexity of the chart at a low level. It has also been
proved that the best choice is to have one interval be as large as possible and one as small as possible.
When comparing the FSI and VSI charts, it is necessary to normalize them by picking one unitof time
as thebase, and having it be the expected value of the sampling interval when |i=|io for both charts. In
reality, since both charts have the same control limits, the average number of samples to signal (ANSS)
is always the same, so the expected value of the sampling interval is the one that determines the
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average time to signal (ATS), which is the parameter usedto compare both types of charts.

Although the average number of samples to signal is the same, this does not mean that the sam
pling costs will not play a role in the cost equation. This is because even though both charts test the
same number of samples, the VSI method tests them in a shorter period of time because it detects the
out of control signal quicker. Therefore, for a large fixed interval of time, the VSI method takes more
samples. The advantage however is that since the out of control signal is detected quicker, less low
quality products will be shipped or will need to be tested; therefore a reduction in sample testing is
obtained together with an increase in quality, bothof which are good.

4. Results

BLSS was used to calculate the probabilities corresponding to the particular intervals that were
chosen setting the condition that E(Ri)=l when \i^\io in order to normalize all the information so that a
true comparison may be made. From these probabilities, the q-value (gamma') was obtained. This is
the value where an imaginary line is drawn on the X chart to indicate the separation between the
regions where the different sampling rates will occur. In a way, this is like having a warning line
which tell us to sample in a quicker fashion because it is more probable that the process is running out
of control due to a shift in the process mean. After this "warning line" is found, we divide the region
into sections corresponding to those of the sampling intervals, and the probability of being in these sec
tions for given shifts in the mean is calculated. Then we have a table with the ATS values for the
different shifts in the process mean and for different choices of sampling intervals. A few more calcu
lations are necessary in order to calculate the adjusted ATS, which correspond to the case when the
change in the mean occurs between two samples.

The BLSS input files and output files are found in Appendix A. The first output listing replicates
the results found in [4], and the second listing investigates the effects of having a fixed long sampling
interval and various short sampling intervals (asymmetric cases), and the effects of very small intervals
with very large ones while maintaining symmetry. The results agree with what was postulated by Rey
nolds in [4], and the best choice of sampling intervals is to have them as far apart as possible (ie.- a
very short interval and a very long one).

5. Examples

In applying the VSI X chart to a photolithography process, some information regarding the cost
of the equipment, testing time, type of testing to be done, wait time, etc. needto be investigated. When
working in a photolithography process, one must be aware that there are many parameters which need
to be monitored, andeach one will be affected only by certain equipment, chemicals, processing, etc.

Consider the case of monitoring the thickness of the photoresist prior to exposure. The resist
thickness plays an extremely crucial part in the resolution of a system because of the linewidth varia
tions which result There are many ways to monitor the thickness of the resist after it has been spined
on: the resist thickness can be measured using and ellipsometer, or it can be measured after exposure
by measuring the reflectivity (ie.- indirectly measuring the amount of bleach present in the resist), etc.
The reflectivity measurement can be done in situ, and an autoexposure may be possible. I will assume
an ellipsometer is used, and assuming it takes approximately 3 minutes to measure a wafer, the testing
cost is roughly $1 (assuming an equipment cost of $100K run continuously during 3 shifts, and the cost
of labor is $10/hr).

If the resist thickness is too large, then it may be possible to bake the resist to remove some of
the material (although some of its photo-chemical properties will be slighdy altered), or the resist can
be removed and re-deposited. I will assume that die resist is removed and re-deposited. The cost of
re-working a wafer can be calculated to be about $4 if the cost for processing a 4" wafer is about
$400-$500 and 120 processing steps are needed (15-20 lithography steps), and I assume the cost is dis
tributed proportionately. (The costs are all estimates, and are intended to be used just for the purpose
of illustration.)

There are usually 20-24 wafers per batch. If 1000 wafers per week are processed in batches of
20 wafers, then at least 4 wafer steppers would be needed. If 4 wafer steppers are used, then 250
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wafers pass through each, or the equivalent of about 13 batches in a week, or 2 batches per day, run
ning the 20 processing steps on each. It is clear that in reality all of the equipment is synchronized so
as to have the wafers "flow" through them, in this case, the equivalent of 40 batches run per day on
each stepper. I will assume that the standard sampling interval is one sample every 5 batches. If we
set the VSI chart to have the following two sampling intervals: dl=02 (ie.- sample each batch), and
d2=1.6 (ie.- sample one batch for every 8), then we will obtain ATS values which are slighdy better
than those found for (0.2,1.5) in the second sample of intervals in Appendix A.

If the process is in control, but we get a false alarm: in the FSI method, we need to inspect the
last 5 batches and rework the necessary wafers. If we assume that half the wafers need to be reworked,
then the cost for inspecting and reworking these wafers is $300 ($100 from inspection and $200 form
rework); in the VSI method, we would detect the error with a small sampling interval, and therefore
only one batch would need to be inspected and half of those wafers would need to be reworked, at an
expense of only $60. Since the process is in control, the ATS is equal for both, and therefore in the
same period of time they both only detect one error.

If a shift of 1.0 occurs, then for the FSI method, it would take on the average 43.89 standard time
units to signal (ie.- after 43.89*5 batches are processed). For the VSI method, it would only take on
the average about 30 (<31.53) std. time units to signal. In that period of time, the same number of
samples would have been taken on the average for both methods, therefore in a period of 43.89 stan
dard time units, the VSI method would have sampled at most 1.463 times as many batches. In a period
of 43.89 std. time units, 43.89 samples were taken on the average, at a cost of $43.89. Multiplying
$43.89 by 1.463 roughly give us 64.21 samples, or approximately $64.21. Therefore the total expense
for the FSI method on one time period when a shiftof 1.0occurs is roughly $344, whereas for the VSI
method it is only $125 (60+65) (assuming the problem which caused the process to go out of control
was fixed, otherwise the cost would have been 1.463(60+44) = 152. The advantages of the VSI method
are clear.

Since the cost of re-processing a wafer is larger than testing it, and since the batches contain
many wafers, the VSI method proves to be very good from an economic, as well as statistical, stand
point

6. Conclusions

The VSI X control chart is much more effective than its FSI counterpart in both detecting the
shifts in a shorter period of time, and reducing the cost which is incurred when the process is out of
control. It is very important to accompany this chart with an R chart which monitors the variance of
theprocess; an X chartalone does not serve its purpose.

The cost incurred when the process is out of control is the following:
For the FSI chart:

COST - (ATS) x(sampling cost) +(batch size) xrewor^ cost
For the VSI chart

COST =(ATSfixed*) x *™P""g «*t +^ sh&) x rework cost
AiwvanaDie £

As can be observed, the cost is composed of two costs: a fixed cost (second term), and a variable
cost This equation can be maximized for any given costs.
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Appendix A

BLSS output which contains both input commands and output. Some comments
have been added to simplify the understanding of the data, and to make it
consistent with (4).

dl-O.O,.5,.3,-l,.l,.1,-1,.1
dl-dl'

d2-l.0,1.5,1.7,1.9,1.1,1.3,1.5,4.0
d2-d2'
q0-.0027
p01-(d2-l)*(1-qO)/(d2-dl)
p02-(1-dl)*(1-qO)/(d2-dl)
p-(l-p02)/2+p02
qgau p > gamma
9how dl,d2,p01,p02,gamma

dl d2 Pol Po2 gamma'

A 0.000 1.000 0.000 0.9973 3.000

B 0.5000 1.500 0.4987 0.4987 0.6724

C 0.3000 1.700 0.4986 0.4986 0.6724
D 0.1000 1.900 0.4987 0.4987 0.6724

E 0.1000 1.100 0.09973 0.8976 1.633

F 0.1000 1.300 0.2493 0.7480 1.145

G 0.1000 1.500 0.3562 0.6411 0.9175

H 0.1000 4.000 0.7672 0.2301 0.2926

xl-0.0,0.2,0.5,0.7,1.0,1.2,1.5,2.0,2.5,3.0,4.0
gup-gamma-x1
glow—gamma-xl
up-3-xl
low—3-xl

pgau up > pupl
pgau gup > pup2
pgau glow > pdown2
pgau low > pdownl
p2-pup2-pdown2
pl-pupl-pdownl-p2
percent-<dl*pl+d2*p2)/(pl+p2)
ats-percent/(l-pl-p2)
ats-ats' ATi
show (shape) ats ——~

Fix
d-l t.5,1.5) (.3,1.7) (.1,1.9) (.1,1.1)ihift

0

.2

.5

.7

1

1.2

l.S

2

2.5

3

4

370.39
308.43
155.22

92.32

43.89
27.82
14.97

6.303
3.241
2.000
1.189

370.39

304.87

144.53
80.48

33.57

19.19

8.735

2.818

1.189

0.6551

0.3611

370.39
303.85

141.48

77.10

30.62

16.72

6.954

1.822

0.6029

0.2709

0.1247

370.39

306.46
149.10

85.28

37.29

21.98

10.35

3.303

1.229

0.5434

0.1861

£

asymetitt

(.1,1.3) (.1,1.5) (.1,4.0)

370.39

305.08
145.02

80.86

33.60
19.01

8.375
2.388

0.8171

0.3527

0.1382

f

370.39

304.44

143.19

78.90

32.03
17.80

7.611

2.075

0.6946
0.3042

0.1296

6

370.39
303.24

139.71

75.25
29.19

15.65
6.320

1.593
0.5257

0.2451

0.1217

H

00
ox
05

°l
1.0
I.X

1.5
10
15
1.0
w

first-(dl*dl*p01+d2*d2*p02)/(2*(dl*p01+d2*p02))
firat-first'
show (shape) first

E(Y)

0.5000 0.6250 0.7450 0.9050 0.5450

second-(dl*pl+d2*p2)/(l-pl-p2)
second-second'

show (shape) second
(E(N)-D(E(Ri))

0.6350 0.7250 1.850

369.39 369.39 369.39 369.39 369.39 369.39 369.39 369.39
307.43 304.90 303.88 302.87 305.46 304.09 303.46 302.25
154.22 146.64 143.60 140.57 148.14 -144.09 142.26 138.81
91.32 82.96 79.61 76.27 84.36 79.98 78.05 74.44
42.89 35.69 32.80 29.92 36.44 32.83 31.30 28.52
26.82 20.88 18.50 16.12 21.19 18.33 17.16 15.09
13.97 9.813 8.151 6.489 9.661 7.816 7.103 5.898
5.303 3.209 2.371 1.533 2.779. 2.009 1.746 1.340
2.241 1.228 0.8223 0.4169 0.8497 0.5650 0.4803 0.3635
1.000 0.5197 0.3276 0.1354 0.2717 0.1764 0.1521 0.1226

0.1886 0.09481 0.05730 0.01979 0.02952 0.02193 0.02056 0.01930

. total-•first+second

. show (shape) total

Adjusted ATS

A 0 6 P I F 0 ri
369.89 370.02 370.14 370.30 369.94 370.03 370.12 371.24

307.93 305.52 304.63 303.77 306.01 304.72 304.18 304.10
154.72 147.26 144.35 141.47 148.68 144.72 142.99 140.66
91.82 83.58 80.36 77.17 84.90 80.61. 78.77 76.29
43.39 36.31 33.55 30.82 36.99 33.47 32.03 30.37

27.32 21.50 19.24 17.02 21.74 18.97 17.88 16.94
14.47 10.44 8.896 7.394 10.21 8.451 7.828 7.748

5.803 3.834 3.116 2.438 3.324 2.644 2.471 3.190
2.741 1.853 1.567 1.322 1.395 1.200 1.205 2.213

1.500 1.145 1.073 1.040 0.8167 0.8114 0.8771 1.973
0.6886 0.7198 0.8023 0.9248 0.5745 0.6569 0.7456 1.869



For this BLSS file, I have tried different intervals, and the results
follow. It is clear that these additional runs are not necessary for
obtaining an idea of what the best combination of intervals will be.

dl-0.0,.05,.01,.02,.05,.2,.3,.5
dl-dl'

d2-l.0,1.95,1.99,1.5,1.5,1.5,1.5,1.5
d2-d2'

q0-.0027
p01-(d2-l)*(1-qO)/(d2-dl)
p02-(l-dl)*(l-q0)/(d2-dl)
p-(l-p02)/2+p02
qgau p > gamma

show dl,d2,p01,p02,gamma

dl d2 Pol Po2 gamma'

A' 0.000 1.000 0.000 0.9973 3.000
B' 0.05000 1.950 0.4987 0.4986 0.6724
C 0.01000 1.990 0.4987 0.4987 0.6724
D' 0.02000 1.500 0.3369 0.6604 0.9549
E' 0.05000 1.500 0.3439 0.6534 0.9412
F' 0.2000 1.500 0.3836 0.6137 0.8664
G' 0.3000 1.500 0.4155 0.5818 0.8095
H' 0.5000 1.500 0.4987 0.4987 0.6724

xl-0.0,0.2,0.5,0.7,1.0,1.2,1.5,2.0,2.5,3.0,4.0
gup-gamma-xl
glow—gamma-xl
up-3-xl
low—3-xl

pgau up > pupl
pgau gup > pup2
pgau glow > pdown2
pgau low > pdownl
p2-pup2-pdown2
pl-pupl-pdownl-p2
percent-(dl*pl+d2*p2)/(pl+p2)
ats-percent/(l-pl-p2)
ata-ats' yf T5
show (shape) ats "~"*

psi t L* *
d-l (.05,1.95)(.01,1.99)(.02,1.5) (.05,1.5)stik (.2,1.5) (.3,1.5) (.5,1.5)

0

.2

.5

.7

1

1.2

1.5
2

2.5
3

4

370.39
308.43
155.22

92.32

43.89
27.82
14.97

6.303
3.241
2.000

1.189

4'

370.39
303.60
140.72

76.26

29.88

16.10

6.509
1.573

0.4564
0.1748

0.06564

370.39

303.40

140.10

75.58

29.29
15.61

6.153
1.374

0.3391

0.09798
0.01836

c'

370.39

304.20

142.43
78.04

31.24
17.11

7.084

1.750

0.4872
0.1607

0.03666

P'

370.39
304.29
142.71

78.36

31.53
17.37

7.280
1.871

0.5646
0.2144

0.07149

370.39
304.77

144.18

80.03

33.06

18.69

8.294

2.492
0.9577

0.4852
0.2461

F'

370.39

305.12

145.24

81.23

34.15
19.63

9.003

2.920

1.225

0.6680

0.3629

6'

370.39

305.89
147.59
83.87

36.52

21.65
10.52

3.814

1.775

1.039

0.5976

ox
0*
0.7
1.0
II
15
Z-€
2.5
%P
<r.0

first-(dl*dl*p01+d2*d2*p02)/(2*(dl*p01+d2*p02))
first-first'

show (shape) first
E(Y)

0.5000 0.9513 0.9900 0.7450

. second-(dl*pl+d2*p2)/(l-pl-p2)

. second-second'

. show (shape) second

0.7375

(E(H)-D(E(Rl))

0.7000 0.6750 0.6250

369.39 369.39 369.39 369.39 369.39 369.39 369.39 369.39
307.43 302.62 302.41 303.21 303.30 303.78 304.13 304.90
154.22 139.81 139.20 141.51 141.79 143.25 144.31 146.64

91.32 75.43 74.76 77.20 77.51 79.17 80.35 82.96
42.89 29.20 28.62 30.53 30.81 32.31 33.37 35.69
26.82 15.52 15.05 16.50 16.74 18.02 18.92 20.88
13.97 6.074 5.742 6.610 6.793 7.739 8.402 9.813

5.303 1.324 1.156 1.472 1.574 2.096 2.456 3.209
2.241 0.3156 0.2345 0.3369 0.3904 0.6622 0.8473 1.228

1.000 0.08741 0.04899 0.08034 0.1072 - -0.2426 0.3340 0.5197

0.1886 0.01041 0.002913 0.005817 0.01134 0.03905 0.05758 0.09481

total-firat+second

show (shape) total

4'
369.89
307.93
154.72

91.82
43.39
27.32
14.47

5.803
2.741

1.500

0.6886

$•
370.34
303.57

140.76

76.38
30.15
16.47

7.025
2.275
1.267

1.039
0.9617

370.38

303.40
140.19

75.75
29.61

16.04
6.732

2.146

1.225
1.039

0.9930

Adjusted ATS

P'
370.14
303.96
142.26

77.94
31.27

17.24
7.355
2.217
1.082

0.8253
0.7508

B'
370.13

304.04

142.53

78.25
31.55

17.48
7.531
2.312

1.128
0.8447

0.7488

370.09

304.48

143.95

79.87
33.01
18.72
8.439

2.796
1.362

0.9426
0.7390

370.07

304.80
144.98

81.03
34.05

19.60
9.077

3.131
1.522
1.009

0.7326

370.02

305.52

147.26
83.58
36.31

21.50

10.44

3.834

1.853

1.145

0.7198
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Multivariate Statistical Process Control for a Plasma Etcher

Hai-Fang Guo

Abstract

A set of Remote Procedure Language (RPL) procedures has been developed for the RS/1 statistical
package. These procedures take raw real-time data collected off a plasma etcher and will calculate the
Hotelling's T2 statistic. The resulting T2 values havebeen analyzed and usedon a multivariate SPC scheme
for plasma etch control.

1. Introduction

While the size of IC devices is shrinking, the complexity of the IC processincreases. In order to get
high yield and high quality of the products, tight control of the process is critical. Plasma etching plays a
fairly important rolein the whole process. The objective of this project is to developa reliable multiavriate
SPCmethodology forreal-time control of the plasma echingprocess.

There are many control variableswhich will effect the performance of a plasmaetcher. These are gas
flows, RF power, pressures and other parameters. With the proliferation of modernequipment communica
tion protocols like the Semiconductor Equipment Communication System II (SECSII), it is fairly easy to
collect real time readings of these parameters at a reasonable sampling frequency. As a matter of fact,
many processing equipment now have an array of sensors and enoughon-board intelligence to accomplish
the task. The challenge however remains on how to make the best use of this information in a formal,
robust (SPC) scheme. In the past, univariate SPC methods have been applied. These methods treat each
variable separately by plottingone control chartper variable. Unfortunately, the critical variables tend to
be highly cross correlated, so these methods might give misleading information by means of false as well
as missing alarms. In fact, it has been shown that as the number of variables increases, the distortion in the
joint control procedure can be severe. One way to avoidthis is by usinga multivariate SPC scheme. This
can be accomplished by using Hotelling's T2 statistic to convert multivariate information to a single vari
able.

The objectivesof this project is to apply the Hotelling's T2 statistic to the real-time data thathasbeen
collected from the Lam Reseach 490 Plasma Etcher atUCB,and draw someconclusions about theapplica
bilityof the control schemeandthe stability of theequipment

2. Methodology

The Hotelling's T2 is a method that can be used to solve the multivariate SPC problem. The T2
parameter is defined below:

T2=n(X-M)'S-1(X-M) (1)

where

X* =[Xi, X2, ...,Xp]

M>[Ml,M2,...,MP1

S? S12 ... Sip
Sl2 Sf ... S2p

s=

Sip Szp ••* Sp2

Xi is the average of the ith parameter
Mi is the targetvalue of the ith parameter
S is the covariance matrix of the outcome variables
n is the sample size
p is the number of variables
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T2 is the square of the maximum possible univariate t computed on any linear combination of the
various outcome measures. It has been shown that when multipled by (n-P)/P(n-l), the new statistic obeys
an F-distribution with p and n-p degrees of freedom. That is,

Tolp.n-1 = 'nn_~p ' Fa*.n-1 (2)
where a is the Pftype I error}, an n, p as defined in Eq. (1). The T2 control chartcan be constructed by
using theT2 values with upper control limitat T^Pttt_i, which can be calculated by Eq. (2) According to
thiscontrol scheme,an alarm will be initiated if the sample mean results in a T2 valuethatexceeds thecrit
ical value at the chosen level of significance.

3. Implementation

The implementation of this experiment can be divided into four steps as follows:
Step 1: Data Collection

In this experiment we etched polysilicon off 32 wafers, and we have collected the raw sensor data gen
eratedduring the etch processes. In total, we have monitoredseventeen parameters at a rate of one sample
per second. Among the seventeen, there are five parameters which can be adjusted for different recipes.
These are the gas flows of 02, He and CCU, the RF power of the processand the pressure inside the reac
tion chamber. The data has been collected during the entire process, including the initialization step, etch
ing step, and over etching step. Although all the stepsareimportant to the outcomeof the process, herewe
only consider the main etching step. To manipulate the data, we cluster the samples from the etching step
into groupsof size 10 and then calculate the average of each group. These averages, calculated from sam
ples collected during the main etch process, form the data thatwe will use in this study.
Step 2: Choosing a "good" processrunas standard.

Since we do not know when the etcher is actuallyin statistical control,we have to choose a "good" process
run and use it as a standard. In this sense, our definition of a "good" process is relative. We assume that a
process is in control if all of its parameters are close to their measured averages. So, we calculate the
parameter averages for each of the 32 wafers. The results have been plotted on a chart from which we
select the "good" process. In this experiment, the run for wafer pe8 is chosen as the standard. Once the
standard process has been identified, we can construct the variance-covariance matrix and calculate the
grand average of the parameters. Note that our initial assumption about the standard process has to be
checked and validated, much in the way one checks and validates the original control limits in a new
Shewhartcontrol chart Specifically, we use the calculated variance-covariance matrix and targetmeans, in
order to calculate the T2 for wafer pe8 asdescribed in step 3 below. We then drop the samples witha T2
higher than the control limit We subsequendy use the rest of the sample averages to re-calculate the
variance-covariance matrix and the targetmeans. A new limit is set and this procedure continues until all
theT2values for waferpe8 allbelowthe limit
Step 3: Calculate T2 values andplotT2chart
Under the assumption that the autocorrelation within each of the parameters is negligible, we apply
Hotelling's T2 method using the calculated variance-covariance matrix and the grand average for eachof
the 32 wafers. We then create the T2 charts, from which the conclusions about whether the process is in
statistical control can be drawn. The upper control limit of the T2 controlchart is determined according to
Eq. (2) as follows:

ToW=5Xi^J1) Faow =9x 5.05 =45.45
There is no lower control limit for this chart

Step 4: Analyze theout-of-controlpoints in the T2chart andinvestigate the causes.
This step involves the discovery of the physical cause for the abnormal behaviorof the equipment Beyond
some simple, intuitive explanations,this investigation is beyond the scopeof this project
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4. Results

Listed in the orderof the steps outlined above, the results are:
For stepl:

A set of RPL procedures has been written to manipulate the raw data and read the resultingaverage values
into RS/1 tables.
For step 2:

The overallaverages and standard deviations for each of the 32 wafers have been calculated and presented
inTable 1. The respective charts areshownin Fig. 1. Based on thesecharts, the run forwaferpe8hasbeen
chosen as the standard. The variance-covariance matrix and grand-average of wafer pe8 have been calcu
lated and presented in Table 2.
For step 3:

A procedure has been written for the calculation of the T2 values. The T2 values are summarized in Table
3. As we can see in this table, the T2 valuesare rather large at the beginning of the etching step.This indi
cates a persistent process stabilization problem.
For step 4:

The out of control pointduring the processing of wafer pel hasbeen investigated by comparing the param
eter averages with the standards. The deviation might have been caused by unusually high pressure varia
bility. The large T2 values for the wafers following pel8 might be related to the fact that all these wafers
have been processed inividually. i.e. as separate lots of one wafer each. This indicates that our plasma
etcher suffers from a chronic recipe stabilization problem at thebeginning of each lot Indeed, it is typically
after the first wafer of the lot (in a cassette to cassette mode of operation) that the process stabilizes.
Further investigation is neededto evaluate the impact of thisinstability to product quality.

5. Conclusions

Using the T2 statistic to analyze data from the Lam etcher gives us valuable information about the
process. We found a number of instances in our data where the individual charts either missed a true alarm
or generated false alarms. Further, the T2 value varies with the changing of the group sample size. This
suggests that our assumption that there is no auto-correlation within each parametermight false. A remedy
to this will be to filter the data before applying T2 statistic. The Box-Jenkins autoregressive models might
be useful in this respect.

The conclusions about the stability of our plasma etcherticular control scheme areas follows: First,
the tendency that theT2 values are higher that the upper control limitat the beginning of the process sug
gests that there might be a stablization problem for the Lam etcher at the beginning of the etching step.
Second, theT2 values for wafers that have been processed individually (single wafer process) tend to be
higher than the wafers been processed together in a cassette to cassette mode. This suggests that the first
waferrun in each lot is not very stable.
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P«l
p.2

P«3
P««
p«a
p*6

&
P«9
P«9

10 polO
11 p*ll
12 p«12
13 p*13
14 pal4
15 p«17
16 p«18
17 pal9
16 p«20
19 tp5
20 tp6
21 tp7
22 tp6
23 tp9
24 tplO
25 tpll
26 tpl2
27 tpl3
26 tpl4
29 tpl5
30 tpl7
31 tpl8
32 tp!9

1 CC14

130.25

130.13

130.06
130.12

130.14

130.12

130.11
130.13
130.11

130.14

130.06

130.11

130.09
130.12

130.11

130.13:
130.12

130.11

130.35
130.37

130.41

130.36

130.32
130.41

130.33
130.23

130.13
130.21

130.17

130.16

130.40
130.20

2 02

15.041701
15.033154
15.034424

15.031322
15.030482
15.030141
15.033474

15.032431
15.026074
15.027304

15.03CC7C
15.030424
15.031474

15.029104
15.029249
15.032340

15.031591
15.031712
15.037434
15.039672
15.04002C
15.036747

1S.030C83
15.025244

15.035503

15.025690
15.029470
15.016022

15.026764
15.031440

15.041077

15.059565

3 am

129.549027
129.552456

129.535110
129.547140
129.563619

129.S472CC
129.540394
229.542036
129.540562
129.556630
129.539904
129.540147
129.540697

129.551291
129.532161

129.543C9C
129.547544

129.535521
129.537919
129.545615
129.522687

129.S5421C
129.572394
129.530271

129.5CC05C
129.548043

129.561550

129.554166

129.532708

129.559523

129.544597

129.521571

4 AT

299.320736
299.6655C9
299.72237C
299.542103
299.92C204
299.977257
299.860742

299.972208
300.051668

300.009168
299.837455

299.92B50C
299.747749
299.476557

299.616389
299.908430
299.771492

299.573084
299.440051

300.023440
299.927259
299.997430
299.653211
299.95CS67

300.10526C
300.067743
299.816641
299.620145

299.706277

299.978846

300.043829
299.955547

Table 1overall means ofne 32process

5 fna

0.273171
0.273246
0.273097
0.273147

0.272C53
0.273203
0.273151

0.273253
0.273245

0.273305
0.273056

0.272596

0.273145
0.272583
0.273043
0.273138
0.273057

0.273176

0.272630

0.272693
0.272603

0.273165

0.273057

0.272614
0.272498

0.272469
0.273171

0.272425

0.272608

0.273193

0.273127

0.273152

0 1 2 3 « 5

1 130.215345 15.019339 129.566652 299.666535 0.273438

Table2 (a) target

PE8_C SRiSC

0 1 2

1 0.037793 0.000848 0.000565 -0.026616 0.000021
2 0.000848 0.006676 0.001463 0.011006 -0.000018
i 0.000565 0.001463 0.011536 0.044855 -0.000049
4 •0.028618 0.011008 0.044855 1.899715 -0.001832
5 0.000021 -0.000016 -0.000049 -0.001632 0.000002

Table2 (b) targetvariance-oovariance matrix

PE8_COA SR s 5C

0 1 2

1 1.000000 0.406246 -2.4C71C2a-17
2 0.406248 1.000000 0.45C435
3 -2.467162o-17 0.456435 1.000000
4 -0.198574 0.298936 0.749292
5 0.097720 -0.407564 -0.755918

Table2 (c) target oorrdatioo matrix

-0.198574
0.298936
[677492921
1.000000

-0.936041

0.097720

-0.407564
-0.755916

-JO. 936041]
1.000000



1 p.i_. 2 |»2_a 3 pa3_a 4 pa4_a 5 p«5_a 6 p«6_a 7 p«7_a

1 5756.19135 240.08694 66.78265 1300.60241 208.30671 139.05253 117.30744

2 161.33546 66.98479 3.53986 121.34801 173.53903 151.57213 176.62329

3 132.43264 168.94190 4.86700 68.05341 109.47781 105.38021 51.51504

4 118.01211 0.72403 10.67143 18.96607 13.05616 8.94767 6.56957

5 64.27761 33.34526 19.27623 17.56244 26.90750 8.05631 15.46376

« 5.06283 13.71105 17.91328 6.56989 36.87851 6.27301 7.62067

7 6.13416 27.93749 17.15171 10.43061 24.55663 21.53777 9.45323

6 12.22774 5.66717 6.05631 15.46376 20.98066 7.72665 14.51348

9 55.08347 5.27272 6.16656 8.15767 19.50634 13.44193 11.84322

10 5.69374 12.66221 14.43746 6.40771 11.05727 21.93967 5.69251

11 4.56784 13.90736 15.96514 15.39117 16.25604 5.94150 14.52776

12 6.42496 6.06943 26.10856 7.34942 16.65082 35.50369 8.96910

13 7.62293 6.27301 27.16992 13.06459 12.74986 5.82194 13.43660

14 9.67623 11.53211 20.35866 8.58965 19.33507 11.18923 24.71235

IS 7.36313 14.09410 13.75804 14.71295 24.71235 9.91798 14.51348

16 10.29417 20.59735 6.34956 24.14013 23.74943 8.08301 12.40876

17 4.03960 21.21364 19.67944 21.49967 11.16923 13.39110

16 7.04068 10.51368 18.71334 16.91675 18.50885

19 7.60966 16.49059 16.73246

20 7.92130 7.94148 13.49928

0 IS p«17_a 16 pel6_a 17 p«19_a 16 pa20_a 19 tp5_a 20 tp6_a 21 t P?_*

1 1430.07320 1430.07320 940.65396 1360.84672 5009.17863 149.91262 307 14370

2 126.95215 126.95215 108.15574 167.31664 437.90649 66.14574 114 99537

3 176.14734 176.14734 176.96578 72.16903 211.67149 41.64165 194 58629

4 8.26048 8.26048 5.31533 22.01809 34.20553 56.80194 51 26624

5 5.65506 5.6SS06 4.39061 13.06459 56.83681 3.58482 176 00999

6 11.53211 11.53211 6.09761 14.39365 39.12915 123.81162 27 66459

7 6.09761 6.09761 9.92633 10.47265 23.49375 19.90663 e 03925

6 6.93444 6.93444 9.13327 9.95989 72.55255 52.34253 54 37650

9 19.54546 19.54548 7.31679 7.80660 23.67273 15.00494 91 21616

10 15.02735 15.02735 6.14636 5.93606 5.72547 6.95772 44 .57909

11 37.71168 37.71168 15.72254 9.69966 19.43256 5.06263 46 .89140

12 8.46370 8.46370 46.92124 12.59024 16.66998 65.69010 54 .61601

13 16.27350 16.27350 12.35951 14.39365 18.48445 41.27451 2 .14761

14 13.90736 13.90736 19.65850 16.14622 13.45569 4.24411 5 .76595

15 10.08669 10.08669 13.93283 18.79200 2.05533 34.69661 47.44064

16 12.59024 12.59024 10.73295 21.94076 42.72021 26.24413 44.52044

17 15.69578 15.69576 26.57987 10.26144 6.09273

16 23.97810 23.97810 19.07905 115.36012 8.36453

19 11.53865 14.00942 32.70687 9.81783

20 7.09910 6.38223

0 • !»>_• 9 p«9-a 10 p*io.« 11 p«11jb 12 p«12_a 13 p«13_a 14 p«14_a () 22 tpB_a 23 tp9_a 24 tpl0_a 25 tpll_« 26 tpl2_a 27 tpl3_« 28 ti>14_a

1 305.91520 259.66037 376.78656 59.99021 990.40537 1932.26268 1602.94093 1 473.07415 91.30946 204.04251 64.07442 233.90076 332.65346 1438 86556

2 196.41730 271.12324 265.93567 50.99616 255.45837 121.58623 118.57456 2 56.63346 20.51357 169.75833 52.27576 69.16665 112.80646 143 35942

3 103.06010 106.02405 57.46605 10.54673 105.26927 64.06816 174.11259 3 40.66370 45.56510 46.12414 26.32508 125.94738 59.51179 241 47361

4 14.51134 13.57129 9.53374 8.63933 15.12392 15.64299 15.95451 4 86.89661 24.26614 47.60528 10.14714 76.76734 10.72669 13 85640

5 16.04591 9.51679 7.00223 15.17766 21.41191 14.39385 18.63258 5 2.57938 4.36552 17.40896 36.71416 20.13331 15.37091 27 50644

6 6.87195 14.21650 6.41902 20.74724 11.70358 11.26197 18.56006 6 36.75801 10.24314 62.52525 48.21961 16.04706 4.39168 42 49022

7 7.52280 6.06822 7.39569 11.95223 11.69249 11.35371 14.56761 7 10.97008 16.15435 19.24455 26.51114 19.61670 13.06465 27 71356

6 13.28355 23.87947 13.57516 9.13327 25.71047 23.49125 14.02027 6 18.66085 13.51019 17.53508 21.53586 16.77203 16.29776 44 06569

9 9.21662 23.86743 10.43061 9.63765 7.76601 28.16705 26.06535 9 46.89375 32.23089 24.04999 11.47073 36.95592 25.81641 23 60045

10 9.34190 18.77429 6.66411 16.73246 14.53995 19.97739 21.49615 1L0 39.21270 96.55226 36.22469 40.11208 56.89595 11.66886 6 96655

11 15.46320 20.44900' 6.09761 29.10228 23.37163 13.39110 34.26591 :11 36.36873 19.68059 67.96370 40.91217 20.98066 27.20S62 15 53504

12 10.36638 10.16539 13.61706 9.21977 16.53870 14.51348 29.33566 ]12 20.91118 9.49403 45.05265 18.67932 37.61602 6.77162 19 01477

13 11.53211 10.06669 10.08669 13.44193 7.31679 14.54208 16.25604 1L3 6.61466 26.14905 83.92630 35.05405 34.02392 10.99553 31 90309

14 15.82009 9.34190 10.16539 13.67166 14.99187 9.10990 19.70300 :14 13.40719 6.97399 37.35864 23.28155 26.43592 28.58535 4 60002

15 10.15664 15.46376 18.13502 26.78402 21.31115 11.80434 22.73976 J15 3.06651 19.87899 16.65332 23.65334 55.46203 35.21916 42 26916

16 10.26144 26.65162 11.15822 11.53211 8.10562 27.16992 1L6 6.31025 9.70491 16.15889 63.55608 34.97882 13.57516 20 91674

17 15.82009 6.15767 11.66886 20.98066 13.59326 18.36566 :L7 29.67208 80.71963 19.25212 15.83301 21 99SB1

16 6.08813 17.18832 30.64424 11.35878 36.49989 ]L8 9.06694 15.39117

19

20

14.39365 7.62067
20

Table3The T*2vibesofthe32 processed wafers,
calculated every len readings

Table3TheT*2values of the32 processed wafers,
calculatedevery teo readings



0 29 tp!5ja 30 tpl7_a 31 tpl6_a 32 tp!9_a

1 744.28093 271.77910 255.18034 326.19126

2 120.09459 146.77548 19.60738 221.22236

3 50.86479 174.19967 31.46249 110.43660

4 66.24057 7.66364 94.04347 24.33590

S 20.70335 6.79298 36.61293 12.50735

6 23.29762 11.13969 27.66211 24.64880

7 22.97733 10.87000 24.56823 6.71590

8 22.54737 9.70156 25.53682 16.00726
9 12.92175 11.18923 30.61521 6.30557

10 30.46499 15.63164 110.12755 9.82055
11 16.29496 11.53211 2.53309 C.93444
12 32.19813 6.62447 20.02022 27.14483

13 26.55429 12.31913 15.37568 16.00726

14 9.02550 16.49059 17.05793 11.17729
15 16.84331 15.72254 36.11031 12.35951
16 40.65790 16.27350 19.29121
17 21.58312 8.08301 16.59651

18 42.95374 5.69374

19 25.73997

20 24.41181

Table3TheT*2 vibes of the32processed wafers,
ralnitsffdeveryno readings
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A Strategy for Adaptive Regression Modeling of LPCVD Reactors

Sherry F. Lee

Abstract

Since VLSI fabrication equipment often change in time, there is an interest in creating equipment
models that can update themselves accordingly. In this report we present a "smart" regression model that
can decide whether it should be refitted for better predictive performance, or for new parameter values if
the equipment has changed. These decisions are based on formal statistical tests. Safeguards to prevent
overcorrection and extensive equipment wear arealso incorporated to this adaptive strategy.

1. Introduction

With the development of fields such as computer-aided manufacturing (CAM) and computer-
integrated manufacturing (CIM), statistical equipment modeling has become important. An effective
model shouldprovidethe capability to periodically check the fitbetween the model and the equipment pro
cess, and update the model automatically when necessary.

A systematic method of building and calibrating equipment specific process models has been
developed and sucessrully applied [1] to the modeling of a low pressure chemical vapor deposition
(LPCVD) furnace for undoped polysilicon. The goalof this projectis to develop an algorithm to systemat
ically update the previouslydeveloped linear model for the LPCVD process.

2. Methodology

The algorithm to update the equipment model uses three distinct statistical tools. The first is the
regression control chart [2], which pin-points out of control data. A second useful method to check for out
of control conditionsis the cumulativesum of the difference between the actual and model predicted rates.
By looking at the control chart and the cumulative sum, and by using scientific judgement, the user can
determine whether to update the model or to check the equipment Should the decision be to update the
model, regression analysis will be performed to determine the new coefficients of the revised model.

2.1. Regression Control Chart

The regression control chart is similar to a conventional Shewart control chart in that they both con
sist of a center line with upperand lower control limits. When the points fall outsideof the control limits,
the process is considered to be out of control. However, while the center line and control limits of the
Shewart control charts areparallel to the horizontal axis, indicating control overa single fixed average, the
control limits of the regression control chart follow the regression line, thereby controlling a varying aver
age. The control limits of the regression control chartare based on the standard deviation of the residuals
(difference between the actualvalue and the predicted value).

The regression controlchart is used in the first step of the analysis. Out of controldata points can be
observed easily, informing the user either that there is a problem in the equipment or that the model needs
to be updated. Thus, the regression control chart enables the userto quickly pinpointthosedata thatdo not
follow the model within a specified limit.

22. Cumulative sum

The cumulative sum method also alerts the user that the data is moving out of the desired range. It is
based on the sum of the difference between the actual and predicted values (residuals). Therefore the
CUSUM, unlike the regression control chart which indicates a point-by-point deviation, indicates that as a
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whole the deviations from the model are significant. In some cases, when most but not all of the data
points are in control on the regression control chart, the cumulative sum shows no significant difference.
This is because the cumulative sum is based on a summation of the residuals, and not on each residual
alone. So although the single point may be out of control, the model as a whole still holds. The cumulative
sum of the residuals can be tested for significance, by using a student-t test, which indicates whether or not
a revision of the model and the regression control chart limits is necessary. Residual plots are also useful
in detecting runs or trends in time.

2J. Regression analysis

Since both the regression control chart and the cumulative sum only indicate that the predicted value
is significantlydifferent from the actualvalue, a regression analysis is used to determine which coefficients
need to be revised.

3. Implementation

In thisproject, we wouldlike to update themodel that describes therate of deposition of the polysili-
con in anLPCVD furnace. The deposition rate R(z) depends on therate Ro , the deposition rate at the first
wafer position (zo) in the furnace.

Rr,w 1-const»Ro1Rn
R(z)-[l +const*Ro]Ro

Since Ro canbe described by a linear model, it is easier to do theanalysis on Roandapplythe results to the
full deposition rate R(z). From K.K. Lin's results [1], the linear model of thedeposition rate Ro is known:

ln(Ro) = A + Bln(P) + C(l/D + D(l/Q)

where P is the pressure (mtorr), T is the temperature (K), Q is the silane flow (seem), and A, B, C, andD
are the coefficients to be determined. To make notation easier, set Y = ln(Ro), Xb = ln(P), Xc = 1/T, Xd =
1/Q. Thus, the final equation is:

Y = A + BxB + Cxc+DxD

The first step is to determine the coefficients of the linear model. By using the 23 data points that
K.K. Lin observed, the coefficients can be obtained. I found slightly different coefficients than were
reported in thatpaper, probably because I used BLSS instead of RS-1. For consistency with my results, I
used the coefficients that I generated in BLSS.

Next, the variances of both the residuals and the sum of the residuals must be calculated. The vari
ance of the residuals is used to generate the control limits for theregression control chart, while the vari
ance of the sum of the residuals is used to test for significance of the sum of residuals. Calculations for
each of these values are in Appendix A. The final result for thevariance of thesumof theresiduals is:

var £ <y{ - y{) =?&- +ns2+varB[ £ (xBi' - xB)]2+varC[ f. (xc/ - xd)]2 +varD[ j\ (xDi' - xD)]2
1=1 W ' £l £?I J5I

where

Xi'= new data
Yi'= predicted valuebasedon new data
yi'= actual value thatcorresponds to the new data
xi= data used to generate the model
Xi= average of the Xi samples
N= the number of X{ samples
n= the numberof x^ samples
Sy = thestandard error of theestimate of theregression based onoriginal data

If n=l, we obtain the standard error of each residual, which is used to determine the control limits in the
regression control chart

var(Yi' - y0=Nj^ *Sy2 +varB(xBi' - xB)2+varC(xa' - xcO2+varD(xD,' - xD)2
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Using Si2 =var(Yi - yO, theregression control chart can beconstructed With 20 degrees of freedom,
the 95% student t statistic is 2,086, which results in control limits at (Yi +/- (2.086 s0).

To test the significancelevel of the sum of the residuals,

t«= —

varg(xY-yd
N+n-4 degrees of freedom

The comparison of this calculated t with the student-t that corresponds to 95% confidence levels indicates
whether the model is in agreement with the new observation. If the calculated value is greater than the
given value, then the data point is considered to be out of control. The user must then decide whether to
check the furnace or change the model. If the decision is to readjust the model, regression analysis must be
performed to determine which coefficient needs to be revised. Several approaches can be implemented

a) Recalculate the linear regression using solely the new data.

b) Recalculate the linear regression using the weighted method, giving more weight to the later data
points.

c) Use regression to re-estimate one coefficient while holding the other three fixed. If the new
coefficient differs from the old one by more than the standard deviation of the new value, the old
value is replaced by the new value. This is continued until no further changes in coefficients will
result in a linear model that better fits the data.

The first approach will only be valid if there are enough new data points to justify a new regression
analysis. At first, there will not be enoughnew data points to implementthis method. Also, there may not
be enough "spread" in the runs to obtain an accurate linear regression. Forexample, users tend to use the
same silane flow run after run (100 seem). If all the data points contain the same flow rate, the linear
regression will eliminate flow as an important parameter, which would result in an incorrectmodel. How
ever, for largeshifts, this approach may be the best

The second approach can be used effectively for small changes in the deposition rate. Forexample,
as a coatof polysilicon builds up on the furnace walls, the deposition ratemay decrease in a steady fashion.
In cases such as these, the weighted linear regression would be effective. However, this method is not
recommended for data involving largeshifts.

I chose to use the third approach for several reasons. First, by adjusting one parameter at a time, the
model changes minimally. This may be important if the user is doingseveral runs thatare supposedto be
based on the same model. Varying the model significantly in the middle of the runs may alter the condi
tions too drastically. Small, gradual changes of the model are best in this case, assuming that the equip
ment did not change significantly.

Second, with the initialbase of 23 points, the variance of the model decreases every time the model
coefficients areadjusted (assuming that the shift is not too big). Essentially, the model simply fine-tunes
itself as more runs are performed.

After the regression has been adjusted, the regression control chart limits should be recalculated.
Then the entireprocess beginsagain forthe next data point

4. Results

Fig. 1 shows the calculated coefficients for the deposition model, using the reported 23 runs. Twelve
samplerunswere then generated, with three separate sets of possible 'actual' values. The first set consists
of in control points, the secondconsists of in-control points, andthe third consists of some in-control points
and some out of control points. The 'actual' values for the in control deposition rates were generated by
using a Gaussianrandom number generator.

The resulting regression control charts are found in Fig. 2. As expected, the points in the first set of
in-control points are well within the control limits, while the points in the second set of out of control
points areall outside the control limits (Fig. 2(a)). The third set of points results in nine points thatare in
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control, and three(run #3,11, and 12)thatareout of control (Fig. 2(b)).

The t-statistic computation for the cumulative sum in BLSS is found in Appendix B. The resulting
values of to of the twelve points for each of the three sets of 'actual' values arc in Figs. 3,4, and 5. As
expected, the first set of in control points showsa t-statistic that is well within the required limits. Also as
predicted, the second set of out of control points shows that the cumulative sum catches trends that are
obviously out of control. In this case, where there is sucha large shift and all twelve pointsare outsideof
the regression chart control limits, a new model based on the last twelve points should be developed. The
third set of data is more interesting. Although the regression control chart showed that pointscorrespond
ing to runs #3, 11, and 12 are out of control, the cumulative sum shows no significant difference in the
model for runs 1 through 10. This indicates that the errorin sample #3 was not large enough to change the
model significantly. However, runs #11 and 12 do result in a significantchange.

The results of the regression analysis for data set three (Figure 6) show that after run #11, the
coefficients C and D should be changed. (A change in coefficients occurs when the difference between the
old and new values of the coefficients is greater than the standard errorof the new value.) The regression is
done on the 23 points that were used to generate the model plus the last 11 new points. When both C and
D are changed to their new values, the cumulative t-statistic shows that the 'actual' data points are once
again in control (Figure 7). In addition, the variance of each of the coefficients corresponding to the new
model has decreased substantially. For example, in the original model, the standarderror of the coefficient
C was 520.8. In the revised model, the standarderror is only 13.838.Thus, the model improves over time.
Using the new model, run #12 is also now in control.

After the regressionchartcontrol limits arechangedaccording to the new linear model (Figure2(b)),
we observe that although the runs #3,11, and 12 are still out of control, the amount that they differ from
the control limits has decreased. This shows that the second, revised model better predicts the deposition
rate.

5. Conclusion

The analysis shows that the regression control chart in conjuction with the cumulative sum student-t
are effective tools in reevaluating the model when a significant change is observed. Areas for future work
include investigating cases in which the model slowly evolves until the final model is so significantly dif
ferent from the original model that the user should be alerted. Another case in which an alarm should be
soundedis when the datapointsare so far out of control thatthe furnace shouldbe examined for problems.
In the present analysis this situation is only detected by the regression control charts seen by the operator.
More specifically, if all the points (as in data set #2) are out of control, the operator will know that some
thing has gone wrong with the furnace.

Another area of interest is to implementthe strategy presented while several recipes are being used
and updated simultaneously.
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APPENDIX A

Calculation for the variance of the sum of the residuals:

|(Yi'-yi) (1)var

We begin with the deposition rate equation

InRo = A + BlnP + C(l/T) + D(l/Q).

A change of variables Y = InP, xb = InP, xc = (1/T), xd = (1/Q) results in more simple notation. The
deposition rate equation becomes:

Y = A + BxB + Cxc+DxD (2)

and

Y = A + BxB + Cxc + DxD (3)

Let

xi'= new data
Yj'= predicted value based on newdata
y{= actual value thatcorresponds to thenew data
Xi= data used to generate the model
Xi= average of the Xi values
N= the number of Xi values
n= the number of Xi'values
sy= the standard error of the estimate of the regression based on original data

Substituting (2) into (1),

t[ (Yi' - y{) =(A +BxBr+Cxci' +DxDl' - yO +•••+(A +BxBn' +Cxq,'+Dx '̂ - y^ (4)
Substituting (3) into (4) for constant A,

£ (Yi' - yO =[Y - yi' +B(xBi' - xB) +C(xci' - xc) +D(xDi' - xD)] + •••
pi

+ [Y- yi' + B(xBo' - xB) + C(XCn' - xc) + D(xd„' - xD)]

Grouping terms,

i(Yi'-yi')=ny- £ yi' +Bf (xBi'-xB) +Cf. (xq'- xc) +D£ (xD|'- xD) (5)
SI si SI SI Si

Letthe standard error of the estimate of the regression based onoriginal data bedenoted bysy. Sub
stituting this value into (5), we obtain

var£ (Yi'-yi')= S-+nSy2+ var[B £ (xBi'- xB)] +var[C f (xa'- xc)] +var[D £ (xD'-xD)].
SI ^ ST SI Si
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Thus,

var£ (Yi'- y{) =Sj£- +nsy2+varB[ £ (xBi'- xB)]2 +varCf £ (xq' - xc)]2 +varD[ £ (xD'-xD)]>
SI ^ ST SI Si '

and the t-statistic based on the cumulative sum of the residuals is

_ J(Yi-yO
tn= A < svarg(Yi'-^

with N+n-4 degrees of freedom.

If n=l, we obtain the standard error of each residual, which is used to determine the control limits in
the regression control chart

var(Yi' - yO =N^ Sy2 +varB(xBi' - xB)2+varC(xa' - xc)2 +varD(xDi' - xD)2
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APPENDIX B

BLSS computation of the cumulative sum student-t statistic
on 12 sample data points.

t - (Yl-Ylact)/S

The 'actual' values were generated with a random number
generator (Gaussian distribution)

A-20.69S ;
B-0.29346 ;
C—1.524e4 ;
D - -48.584 ;

YI - A + B*(log(PI)) + C*(1/T1> + DM1/Q1) /

Ylres - Ylact - YI

temptab - k,Pl,Tl,Ql,Yl,Ylact,Ylres

run* P T Q Y Yact Yres

1 340.00 900.00 115.00 5.050 5.041 -0.008758
2 511.00 905.00 125.00 5.297 5.339 0.04233
3 538.00 890.00 175.00 5.139 5.184 0.04472
4 295.00 927.00 100.00 5.438 5.326 -0.1121
5 294.00 927.00 100.00 5.437 5.453 0.01606
6 466.00 883.00 207.00 5.004 5.033 0.02898
7 339.00 895.00 175.00 5.099 5.124 0.02486
8 537.00 899.00 100.00 5.102 5.013 -0.08868
9 517.00 902.00 125.00 5.244 5.281 0.03691

10 298.00 900.00 100.00 4.948 4.920 -0.02769
11 316.00 904.00 100.00 5.040 5.040 1.67e-04
12 427.00 881.00 200.00 4.931 4.977 0.04602

datl - log(temptab|2])#l/(teaptab(3])#l/(temptab(4))
show datl (shape)

ln(P) 1/T 1/Q

5.629 0.001111 0.008696
6.236 0.001105 0.008000
6.288 0.001124 0.005714
5.687 0.001079 0.01000
5.684 0.001079 0.01000
6.144 0.001133 0.004831
5.826 0.001117 0.005714
6.286 0.001112 0.01000
6.248 0.001109 0.008000
5.697 0.001111 0.01000
5.756 0.001106 0.01000
6.057 0.001135 0.005000

datl-datl' j

means

6.134 0.001112 0.007813

datla — datl - means ;

ltri (dints-12) > uppertri
uppertri - uppertri'
datlb - datla#*uppertri ;
datlb-datlb' ;
show datlb (shape)

(ic - x
-0.3049

-0.2023

-0.04832

-0.4952

-0.9454
-0.9351

-1.243

-1.091

-0.9765

-1.413

-1.791

-1.868

(x - x )
-7.29e-07

-7.60e-06

4.16e-06

-2.89e-05

-6.20e-05

-4.14e-05

-3.59e-05
-3.54e-05

-3.86e-0S

-3.93e-05

-4.49e-05

-2.17e-05

(x - x >
8.82e-04

0.001069

-0.001030

0.001157

0.003344

3.62e-04

-0.001737,
4.49e-04

6.36e-04

0.002823

0.005010
0.002197

k-l:12:l ;
k-k* ;

varY-0.05808A2 ;

naq-kA2 ;
const1 - nsq*varY/23 ;
const1 - constl + k*varY ;
datlc-datlbA2 /
datlc-datlc' ;
vars

0.003008 2.71e+05 27.76

datld - vars * datlc ;
datld - datld' ;
show datld (shape)

2.80e-04

1.23e-04

7.02e-06
7.37e-04
0.002688

0.002630

0.004646

0.003578

0.002868
0.006007

0.009651

0.01050

1.44e-07

1.57e-05

4.69e-06
2.27e-04

0.001043
4.64e-04

3.49e-04
3.39e-04

4.03e-04

4.19e-04

5.48e-04
1.28e-04

2.16e-05

3.17e-05

2.946-05

3.72e-05

3.10e-04
3.63e-06

8.38e-05

5.61e-06

1.12e-05

2.216-04

6.97e-04

1.346-04

. datle - constl + datld(l] + datld(2] + datld(3)

. datle (shape)

0.003821

0.007504

0.01148

0.01684

0.02458

0.02862



0.03588

0.04030
0.04552

0.05505
0.06575
0.07236

datlf - aqrt(datle)

res - temptab(7]' #* uppertri
res - res'
tn - res/datlf
restab - res,datlf,tn,studt
restab (shape)

(res) tn etudt df

0.008758 0.06182 -0.1417 2.074 22

0.03357 0.08662 0.3875 2.069 23

0.07829 0.1071 0.7307 2.064 24

-0.03377 0.1296 -0.2602 2.060 25

-0.03 770 0.1568 -0.1129 2.056 26

0.01127 0.1692 0.06663 2.052 27

0.03613 0.1894 0.1907 2.048 26

-0.05255 0.2007 -0.2618 2.045 29

-0.01564 0.2134 -0.07332 2.042 30

-0.04334 0.2346 -0.1847 2.040 31

-0.04317 0.2564 -0.1684 2.037 32

0.002850 0.2690 0.01059 2.035 33

ORIGINAL RUNS

runt P T Q Y Yact Yact-Y

(mtorr) (K) (accro) ln(A/min) In (A/min) In(A/min)

1 339 882 125 4.734 4.696 -0.03845
2 318 926 100 5.438 5.553 0.1147

3 549 881 125 4.855 4.796 -0.05871
4 548 697 250 5.354 5.321 -0.03259

5 427 882 175 4.911 4.919 0.007974
6 548 888 250 5.182 .5.157 -0.02497
7 538 882 100 4.772 4.727 -0.04545
8 366 926 125 5.575 5.617 0.04203
9 517 927 175 5.802 5.751 -0.05148

10 296 882 100 4.599 4.560 -0.03918
11 547 927 100 5.613 5.568 -0.04525
12 547 927 125 5.709 5.693 -0.01619
13 548 679 100 4.719 4.810 0.09098
14 295 883 100 4.618 4.576 -0.04170
15 537 927 225 5.674 5.872 -0.002398
16 548 927 100 5.614 5.620 0.006221
17 552 883 250 5.087 5.234 0.1468
18 294 881 100 4.576 4.564 -0.01366
19 546 881 100 4.757 4.794 0.03682
20 466 900 200 5.315 5.336 0.02094
21 546 907 100 5.251 5.247 -0.004409
22 465 897 207 5.266 5.247 -0.01911
23 545 904 100 5.195 5.209 0.01370

REGRESSION ON THE LINEAR MODEL

TO OBTAIN THE FOUR COEFFICIENTS

Dependent variable:
Independent variables:
Observations 23

treg[5]
tregd 2 3)
Parameters 4

Parameter

A

B

C

D

Estimate

20.695

0.29346
-1.524e+04
-48.584

SE t-Ratio

0.73134 28.2969
0.054841 5.3510
520.80 -29.2672
5.2689 -9.2208

P-Value

0.0000

0.0000
0.0000
0.0000

Residual SD
Multiple R

0.058084

0.99168
Residual Variance
Multiple R-squared

0:0033737
0.98342

Figure 1



Regression Control Chart - In-control Data
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Regression Control Chart - Out ofControl Data
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Figure 2(a)

Regression Control Chart —Partially In-Control Data
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BLSS computation of the cumulative sum student-t statistic
on 12 sample data points.

The 'actual' values were generated with a random number
generator (Gaussian distribution)

A-20.695
B-0.29346
C—1.524e4
D - -48.584

YI - A + B*(log(PI)) + CM1/T1) + DM1/Q1)

Ylres - Ylact - YI

runt P T Q • Y Yact Yres

1 340.00 900.00 115.00 5.050 5.041 -0.008758

2 511.00 905.00 125.00 5.297 5.339 0.04233

3 538.00 890.00 175..00 5.139 5.184 0.04472

4 295.00 927.00 100.00 5.438 5.326 -0.1121

5 294.00 927.00 100.00 5.437 5.453 0.01606

6 466.00 863.00 207.00 5.004 5.033 0.02898

7 339.00 895.00 175.00 5.099 5.124 0.02486

8 537.00 899.00 100.00 5.102 5.013 -0.08868

9 517.00 902.00 125.00 5.244 5.281 0.03691

10 298.00 900.00 100.00 4.948 4.920 -0.02769

11 316.00 904.00 100.00 5.040 5.040 1.67e-04

12 427.00 861.00 200.00 4.931 4.977 0.04602

(res) S tn studt df

0.008758 0.06182 -0.1417 2.086 20

0.03357 0.08662 0.3875 2.080 21

0.07829 0.1071 0.7307 2.074 22

-0.03377 0.1298 -0.2602 2.069 23

-0.01770 0.1568 -0.1129 2.064 24

0.01127 0.1692 0.06663 2.060 25

0.03613 0.1894 0.1907 2.056 26

-0.05255 0.2007 -0.2618 2.052 27

-0.01564 0.2134 -0.07332 2.048 28

-0.04334 0.2346 -0.1847 2.045 29

-0.04317 0.2564 -0.1684 2.042 30

0.002850 0.2690 0.01059 2.040 31

Figure 3

A large shift in deposition rate —

A-20.695
B-0.29346
C—1.524e4
D - -48.584
Y - A ♦ BMlog(P)) ♦ C*(l/T) + D*(l/Q)

»—»»•——•»

runf P T Q Ymod Yact res

1.000 340.00 900.00 115.00 5.050 5.473 0.4232

2.000 511.00 905.00 125.00 5.297 5.908 0.6113

3.000 538.00 890.00 175.00 5.139 5.400 0.2610

4.000 295.00 927.00 100.00 5.438 5.902 0.4641

5.000 294.00 927.00 100.00 5.437 5.906 0.4691

6.000 466.00 883.00 207.00 5.004 5.407 0.4032

7.000 339.00 695.00 175.00 5.099 5.611 0.5119

8.000 537.00 899.00 100.00 5.102 5.873 0.7713

9.000 517.00 902.00 125.00 5.244 5.325 0.08091

10.00 298.00 900.00 100.00 4.948 5.639 0.6913

11.00 316.00 904.00 100.00 5.040 5.421 0.3812

12.00 427.00 881.00 200.00 4.931 5.321 0.3900

(res) S tn studt df

0.4232 0.06182 6.847 2.086 20

1.035 0.08662 11.94 2.080 21

1.296 0.1071 12.09 2.074 22

1.760 0.1298 13.56 2.069 23

2.229 0.1568 14.22 2.064 24

2.632 0.1692 15.56 2.060 25

3.144 0.1894 16.60 2.056 26

3.915 0.2007 19.50 2.052 27

3.996 0.2134 18.73 2.048 28

4.687 0.2346 19.96 2.045 29

5.068 0.2564 19.77 2.042 30

5.458 0.2690 20.29 2.040 31

Figure 4



Sample data points

On the 11th sample, the student-t statistic is
exceeded.

A-20.695
B-0.29346
C—1.524e4
D - -46.584

YI - A ♦ B*(log(PI)) ♦ CM1/T1) ♦ DM1/Q1) /
Ylrea - Ylact - YI

Yact Yraod res

5.041 5.050 -0.008758

5.339 5.297 0.04233

5.201 5.139 0.06198

5.526 5.438 0.08807

5.389 5.437 -0.04794

4.890 5.004 -0.1140

5.048 5.099 -0.05084

5.178 5.102 0.07632

5.567 5.244 0.3229

5.045 4.948 0.09731

5.289 5.040 0.2492

5.286 4.931 0.3550

(res) S tn atudt df

0.008758 0.06182 -0.1417 2.086 20

0.03357 0.06662 0.3875 2.080 21

0.09555 0.1071 0.8918 2.074 22

0.1836 0.1298 1.415 2.069 23

0.1357 0.1568 0.8655 2.064 24

0.02166 0.1692 0.1280 2.060 25

-0.02918 0.1694 -0.1541 2.056 26

0.04714 0.2007 0.2348 2.052 27

0.3700 . 0.2134 1.734 2.048 28

0.4674 0.2346 1.992 2.045 29

0.7165 0.2564 2.794 2.042 30

1.072 0.2690 3.983 2.040 31

Figure 5

DETERMINE THE NEW COEFFICIENTS

REGRESSION WITH B,C,and D HELD FIXED, VARY A

Dependent variable:
Independent variable:
Observations 34

Yprimel
a

Parameters 1

Parameter Estimate

A 20.714
SE t-Ratio P-Value

0.015365 1.3481O+03 0.0000

Residual SD 0.089595

Multiple R 0.99999
Residual Variance 0.0080273
Multiple R-aquared 0.99998

REGRESSION WITH A,C,and D HELD FIXED, VARY B

Dependent variable:
Independent variable:
Observations 34

Parameter

B

Residual SD

Multiple R

Estimate
0.29656

0.069642

0.99881

Yprimel
b

Parameters 1

SE t-Ratio

0.002525^9 117.4100

Residual Variance

Multiple R-aquared

P-Value

0.0000

0.0080357

0.99761

REGRESSION WITH A,B, and D HELD FIXED, VARY C

Dependent variable:
Independent variable:
Observations 34

Parameter

C

Estimate

-1.522e+04

Residual SD 0.089626

Multiple R 0.99999

Yprimel
datlprime(2)
Parameters 1

SE

13.838
t-Ratio P-Value

-1.1000e+03 0.0000

Residual Variance 0.0080328
Multiple R-squared 0.99997

REGRESSION WITH A,B, and C HELD FIXED, VARY D

Dependent variable:
Independent variable:
Observations 34

Parameter

D

Estimate
-45.811

Residual SD 0.088656

Multiple R 0.97448

Yprimel
d

Parameters

SE

1.8368

t-Ratio

-24.9405
P-Value

0.0000

Residual Variance 0.0078598

Multiple R-squared 0.94962

Figure 6



Calculated student-t for the twelve sample
data points (in set 93), after changing
the coefficients.

A-20.695
B-0.29346
C—1.522e4
D - -45.811

YI - A + B*(log(PI)) ♦ CM1/T1) ♦ D*(1/Q1) ;
Ylres - Ylact - YI

Yact Yaod rea

5.041 5.096 -0.05509
5.339 5.341 -0.001959

5.201 5.177 0.02367
5.526 5.487 0.03876

5.389 5.486 -0.09724

4.690 5.040 -0.1501

5.048 5.137 -0.08903

5.178 5.152 0.02634

5.567 5.288 0.2786

5.045 4.998 0.04735

5.289 5.090 0.1993

5.286 4.968 0.3185

(res) S tn studt df

-0.05509 0.06182 -0.8912 2.086 20

-0.05705 0.08662 -0.6586 2.080 21

-0.03339 0.1071 -0.3116 2.074 22

0.005378 0.1298 0.04144 2.069 23

-0.09186 0.1568 -0.5860 2.064 24

-0.2419 0.1692 -1.430 2.060 25

-0.3310 0.1894 -1.747 2.056 26

-0.3046 0.2007 -1.518 2.052 27

-0.02607 0.2134 -0.1222 2.048 28

0.02128 0.2346 0.09071 2.045 29

0.2206 0.2564 0.8603 2.042 30

0.5390 0.2690 2.004 2.040 31

Figure 7



81

The Effects ofWafer Orientation on Oxide Breakdown

Elyse Rosenbaum

Abstract

Circuits that integrate silicon with compound semiconductor devices have some distinct performance
advantages over traditional IC families. These technologies might require the growth of high quality oxides
on off-axis silicon substrates. To study the reliability of these oxides, an experimental study has been com
pleted and the results are reported here.

1. Introduction

MOS circuits are typically fabricated on silicon wafers which have been cut along the (100) plane.
Recently, there has be interest in evaluating the effect of using wafers which are not cut along one of the
major crystallographic planes. If reliablecircuits can be fabricated on "off-axis" substrates, integration of
silicon and gallium arsenide devices will be possible as quality GaAs films may be grown on off-axis Si
substrates.

This study reports the effect of substrate rotation on oxide breakdown of large-area capacitors (.01
cm2). The capacitors were fabricated on substrates which were rotated at various angles off the(100) plane
around the <011> axis. Two different processes were used to grow the capacitor oxides; an 8 minute 850°
steamoxidationand a 100 minute 850° dry oxidation.The post-oxidation process flows were identical(that
of a 4 mask NMOS process). It was discovered thatincreasing theangleof rotation increased the probabil
ity of oxide breakdown at low electric fields while the choice of oxidizing ambient did not have a
significant effect

2. Effects of treatments on breakdown voltage

A summary of the experiment [1] follows:

Run Oxide Angle of rotation Oxide thickness

0C2 wet 0° 17.0 nm

0C3 dry 0° 15.5 nm

4C1 wet 40 17.5 nm

5C1 dry 5° 15.7 nm

6C1 wet 6° 182 nm

7C1 dry 7° 16.0 nm

8C1 wet 8° 18.8 nm

The non-constant oxide thickness values indicate thatoxidation rate increases with offset angle; this
variation in oxide thickness will necessitate the use of breakdown electric field rather than breakdown vol
tage as the parameter of interest

Rampvoltage breakdown statistics were collected for .01 cm2 capacitors from each wafer. The ramp
rate was .4 V/sec and the resolution was .2 V. The raw data is included in Appendix A. The data was
characterized by the median value of breakdown electric field and standard deviation [2]. The choice of
median rather than mean is somewhat arbitrary when one is using an empirical data distribution. The
median has the advantage of being"robust" against values at either tail of the distribution; that is, it more
accurately represents the "typical" devices.
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Run Median breakdown field standard deviation # of devices tested

0C2 12.35 MV/cm 2.62 81

0C3 9.68 1.98 50

4C1 10.97 2.13 104

5C1 9.94 2.87 43

6C1 8.46 1.53 59

7C1 5.88 1.33 50

8C1 7.77 1.10 52

Fig. 1 illustrates that the magnitudes of the standarddeviation and median are correlated. This indi
cates that the values of breakdown field are not distributed in an IIND manner around each treatment mean.

(Recall that mean and median are equal for normal distributions.)

However, an ANOVA analysis to evaluate the effects of the various treatments can be performed
when a variancestabilizing transformation is used [3]. The standard deviation is roughly proportional to the
3/2 power of the median (Fig. 2). This indicates that the data points should be transformed to the -1/2
power. Parameters derived from the transformed data sets follow.

Run [E^lso standard deviation

0C2 .285 .041

0C3 .321 .038

4C1 .302 .029

5C1 .317 .066

6C1 .344 .032

7C1 .413 .040

8C1 .359 .021

Fig. 3 shows no apparentrelationshipbetween the transformed medians and standard deviations. An

estimate of the within-treatment variance is obtained by calculating J^Gi2 / 2^i« The variance is

estimated to be .0015and the standard deviation .038. The oxide process effect (wet vs dry) is

OC2+4C1+6C1 +8C1 _OC3+5C1 +7C1 lf sp (1)

The oxide process effect is calculated to be -.028 +/-.038. This effect is not significantwhen compared to
the within-treatment standard deviation.

The off-axis effect is evaluated by comparing the 0° and 7° treatments (for the wet oxides, an aver
age of the 6° and 8° values is used). The off-axis effect is

nr*i . 6C1 + 8C1
0C2+0C3 /l~1+ 2 +/-S.D. (2)

The off-axis effect is calculated to be -.079 +/-.038. This effect is a bit larger than 2 SJ>. and is thus
judged to be significant It should be noted that since the treatmentmedians«are only separated by about 2
S.D., there is to be expected a fair amount of overlapbetween 0° and7° breakdown fieldvalues.

3. Spatial distribution of oxide defects

The experimental finding that all of the capacitors on one wafer do not short circuit at the same vol
tage indicates that there are defects of various severities present The simplest model for the spatialdistri
bution of defects is the Poisson model. Each value of breakdown field is associated with a particulardefect
severity. Using the Poisson model, the probability of a capacitor containing an 8 MV/cm type defect is
independent of the probabilityof its containing a 9 MV/cm type defect The probability that a capacitor
contains an 8 MV/cm type defect OR a 9 MV/cm type defect (or both) may be found by convolving the
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defects' probability mass functions (pmf) to obtain the joint pmf. The joint pmf for two (or more) poisson
random variables is a poisson pmf with parameterequal to the sum of the individual pmf parameters.

The Poisson parameter needed to evaluate the probability that a capacitor fails at a specific break
down field ("ebd") may be derived as follows.

P (Ebd = ebd) = P (at least one ebd-type defect in oxide) * P (no defects in oxide which causeE^ It ebd)

P(EM=ebd)=(l-e-x)e-v (3)

where X is the parameter for the pmf of the defect associated with ebd and V is the parameter for the joint
pmf of all defects which cause Ebd It ebd.

Figs. 4-7 show the derived values of the Poisson parameter (X) at each "ebd" for the four wet oxide
wafers. Superimposed are smooth curves indicating the general effect on X(ebd) of increasing the off-axis
angle. One sees that for the 0° case, X is fairly constant at all "ebd". As the off-axis angle is increased, X
increases approximately linearly with Ebd and the slope of this line increases with off-axis angle. As the
angle of rotation is increased, a value of X can not be obtained for the highest values of breakdown field.
This does not imply that there are no defects corresponding to those values of Ebd; instead, it indicates that
there is a very high probability that each capacitorcontains a severe defect which masks the effect of less
severe Jefects.

By comparing breakdown statistics for capacitors of different areas, one may determine if the above
analysis, based on the assumption that the defects are uniformly distributed (Poisson model), is valid. This
type of data is available for the 0C2 and 8C1 runs. The parameter V, defined above, is set equal to the
capacitor area multiplied by the defect density (number of defects perunit area). If the defects areclustered
rather than distributed uniformly, the defect density one derives will become smalleras the capacitor area
becomes larger. (The following defect density analysis was restricted to fields below 10 MV/cm because
above this value the relationship between breakdown field and defect severity is not as clear.)

Fig. 8 shows the derived defect densities for .01 cm2 and .04 cm2 capacitors from the 0C2 wafer.
There is no evidence of clustering. In fact the larger capacitors have a slightly higherderived defect den
sity at most breakdown fields. One observes that the defect density curves for the capacitor types are very
similar except for a horizontal offset This might indicate thata constant error was made in measuring the
voltage during one or the other set of measurements.

Fig. 9 showsthederived defect densities for .01 cm2, .000625 cm2 and.0001 cm2 capacitors from the
8C1 wafer. There were very few occurrences of breakdown at fields lower than 10 MV/cm for the .0001
cm2 capacitors; this indicates that this is too small acapacitor area todoadefect-related breakdown study
upon. The 8C1 data does show evidence of clustering. Fig. 10 compares the actual .01 cm2 data with that
predicted from the .000625 cm2 data using both the Poisson and modified Poisson models. The Poisson
model predicts

P(Failure at agiven VM) =1- e"*0* (4)

where D0 is the defect density derived for a capacitor of area Ao and A is the area of the capacitor for
whichpredictions arebeing made. The modified Poisson modelaccounts for clustering, it is described by

l-b

P(Failure atagiven Vbd) = 1- expj -AoD,=1- expj -J A

IS (5)

A "b"valueof .25is found to fit thisdata set reasonably well.

The non-zerovalue of the clusterparameter (b) indicates that the analysis of defect distribution as a
function of Ebd (Figs. 4-7) was overly simplistic, at least for the 8C1 wafer. Specifically, by assuming that
the defects areindependently distributed, we have probably underestimated the actual value of X(the mean
numberof defects for a specific ebd), particularly for the defects corresponding to high values of break
down field (lesser severitydefects). However, the modified Poisson model implies thatourcalculations of
V (the joint pmf parameter) were correct Since the cluster parameter is fairly small, Figs. 4-7 remain
informative.
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4. Conclusions

Off-axis substrates havebeen conclusively shown to increase the probability that a device will con
tain a severe oxidedefect Clustering of defects is seen in theoff-axis samples butnotin thesamples fabri
cated on the (100) plane.
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Statistical Experimental Design in Plasma Etch Modeling

Gary S. May

Abstract

The response characterisitics of a CCU-based plasma process used to etch doped polysilicon have
been examined viaa 26-1 fractional factorial experiment folllowed bya Box-Wilson design. The effects of
variation in RF power, pressure, electrode spacing, CCI4 flow, He flow and O2 flow on several outputvari
ables, including etchrate, selectivity, anisotropy, and uniformity wereinvestigated. The screening factorial
experiment was designed to isolate the mostsignificant input parameters. From the results of this prelim
inary investigation, however, it wasconcluded thateach of thesix input parameters was significant enough
to be modeled. Using this information as a platform from which to proceed, the subsequent phase of the
experiment enabled the development of empirical models of etch behavior using response surface metho
dology.

1. Introduction

Wet etching was the standard method of pattern transfer in early generations of integrated circuits.
This stemmedprimarily from the fact that etchants with high selectivity to both the substrate and the mask
inglayer were readily available. However, wetetching processes are almost invariably isotropic in nature.
Consequently, when the thickness of the film being etched becomes comparable to the minimum patter
dimension, the undesirable lateral undercut due to theetch isotropy of wetetchants is no longer tolerable.

In order to overcome the shortcomings of wet etch processes, the technique of ion assisted plasma
etching has become widely used in semiconductor manufacturing. Since this method offers the added
feature of etch anisotropy, considerable effort has been expended in recent years to develop plasma etch
processes. A largeportion of thisefforthasbeendirected toward thorough characterization of the response
of process outputs to variations in input parameters. Such process characterization has necessitated the
developmentof precise models of etch behavior.

Plasma modeling from a fundamental physical standpoint has had limited success. The best
physically-based models currently available are capable of describing the chemical kinetics of one-
dimensional RF glow discharges [1-4]. These models attempt to derive self-consistent solutions to first-
principle equations involving continuity, momentum balance, energy balance and Poisson's relation. This
is accomplished by means of computationally expensive numerical simulation methods which typically
produce output such as profiles of the distribution of electrons and ions within the plasma sheath. How
ever, although detailed simulation is useful for equipment design and optimization, it is subject to many
simplifying assumptions. Due to theextremely complex nature of particle dynamics within a plasma, the
connection between these microscopic models andmacroscopic parameters such as etchratehas yet tobe
clearly distinguished.

Since the complexity of practical plasma processes at the equipment level is presently far ahead of
theoretical comprehension, other efforts have focused onempirical approaches toplasma modeling involv
ingResponse Surface Methods (RSM). These techniques have been used by several authors to obtain sta
tistical models of theetchrates of various thin films. Jenkins et. al. provides a model of theetchrateof p-
doped polysilicon in a CF3C1/Ar plasma versus pressure, rf power andCF3CI fraction [5]. Riley and Han
son,on theotherhand, investigated silicon nitride etching in SF«/He versus thecombined SFg/He flow rate,
pressure, power and electrode spacing [6].

However, in these studies, the characterization of many other critical process outputs such as etch
uniformity andselectivity hasbeen somewhat overlooked. Therefore, theobjective of thiswork is to obtain
a comprehensive set of empirical models for plasma etchrates, anisotropy, nonuniformity and selectivity.
These models accurately represent thebehavior ofa specific piece ofequipment under a wide range ofetch
recipes, thus making them ideal for manufacturing and diagnostic purposes. In particular, this study
focuses on the etch characteristics of n+-doped polysilicon in a CCWHe/02 plasma. Responses were
modeled under the variation of the following six input parameters: RFpower, pressure, electrode spacing,
andthethree gas flows. Etching tookplaceina Lam Research Autoetch 490single-wafer plasma system.
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2. Experimental Design

A prime example of a fabrication step in which plasmaetching has become essential occurs in the
definition of polysilicon features for MOS circuits. Thisprocess stepoften requires that a relatively thick
polysilicon gate be etched down to a thin slicon dioxide layer. Therefore, high selectivity between poly
and Si02 is necessary to use a thin gate oxide as an etch stop. In addition, it is desirable that the vertical
etch rate of the polysilicon be much greater than its horizontal rate to achieve high etch anisotropy.
Finally, good within-wafer uniformity and selectivity to photoresist are also desirable. Carbon tetra
chloride has been reported as an anisotropic etchant with a high selectivity for polysilicon in plasma etch
ing[7],thus making it an attractive candidate for this experiment

The mostcritical control parameters in plasma etching are RF power, chamber pressure, electrode
spacing and gas flow [5-8]. Helium is often added to standard CCU etch recipes in order to enhance etch
uniformity. In addition, oxygen is sometimes also introduced into the gas mixture to decrease polymer
deposition in the process chamber. The effects of all six process variables must be considered in plasma
recipe control. However, RSM techniques are most effective when thenumber of inputfactors is limited to
sixor fewer [5,11]. Asa result, it was appropriate todivide the overall experiment into an initial phase to
determine the most significant parameters followed by a second phase designed to obtain the statistical
response models.

2.1. Screening Experiment

Table I: Range of Input Factors

Parameter Range Units

RF Power 300-400 watts

Pressure 200-300 m ton-

Electrode Spacing 1.2-1.8 cm

CCI4 Flow 100-150 seem

He Flow 50-200 seem

O2FI0W 10-20 seem

The six factors chosen for the initial screening phase of thisexperiment along with theirrespective
ranges of variation are shown in Table I. These ranges were chosen to effectively encompass the wide
variety of etch recipes currently being utilized in the Berkeley Microfabrication Laboratory. A full fac
torial experiment to determine alleffects andinteractions forsixfactors would require 26, or64experimen
talruns. However, in order to reduce theexperimental budget, theeffects of higher order interactions were
neglected and a 26"1 fractional factorial design requiring only 32runs was performed. The runs were per
formed in two blocks of 16 trialseach in sucha way thatno main effects or first order interactions were
confounded withhigher ordereffects. Three center points were added to thedesign to provide an estimate
of nonlinearity [10]. Therandomized design matrix appears inTable n.
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Table II: Design Matrix for Screening Experiment

Run Pressure RF Power CCU Flow He Row O2FI0W Electrode Gap Block

1 300 300 100 200 20 1.8 2

2 200 400 100 50 10 1.8 2

3 200 400 150 200 20 \2 1

4 300 400 150 200 20 1.8 2

5 200 400 150 50 10 U 1

6 300 300 150 200 10 1.8 1

7 300 400 100 50 20 1.8 1

8 250 350 125 125 15 1.5 1

9 200 300 150 200 20 1.8 2

10 300 400 150 50 20 1.2 2

11 300 300 100 200 10 1.2 2

12 200 300 150 200 10 \2 2

13 200 400 100 200 10 1.2 2

14 300 400 150 50 10 1.8 2

15 200 300 100 50 20 1.8 1

16 200 400 100 200 20 1.8 2

17 200 300 100 200 20 \2 1

18 300 300 150 50 10 12 1

19 200 300 100 50 10 1.2 1

20 200 300 150 50 10 1.8 2

21 300 400 150 200 10 12 2

22 200 400 100 50 20 \2 2

23 200 400 150 200 10 1.8 1

24 300 400 100 200 20 1.2 1

25 250 350 125 125 15 1.5 1

26 300 300 100 50 20 1.2 2

27 300 300 100 50 10 1.8 2

28 300 300 150 200 20 1.2 1

29 200 300 150 50 20 1.2 2

30 200 300 100 200 10 1.8 1

31 200 400 150 50 20 1.8 1

32 300 400 100 200 10 1.8 1

33 300 300 150 50 20 1.8 1

34 300 400 100 50 10 1.2 1

35 250 350 125 125 15 1.5 2
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22. RSM Modeling Experiment

Analysis of the first .stage of the experimentrevealed significant nonlinearity in all responses, which
indicated the necessity of quadratic models. Also, none of the input factors were found to have a statisti
callyinsignificant effect on allof theresponses of interest Thus, none were omitted from theresponse sur
face models derived in the subsequent phase. Inorder to obtain these models, it was necessary to augment
the data gathered with a second experiment which employed a Central Composite Circumscribed (CCQ
Box-Wilson design. In this design, the 2-level factorial "box" was enhanced by further replicated experi
ments at the center (to provide a measureof error) as well as symmetricallylocated"star" points [10].

Table HI: Additional "Star Point" Recipes for Box-Wilson Experiment

Run Pressure RF Power CCU Flow He Flow O2FI0W Electrode Gap

36 250 350 125 125 3 1.5

37 250 231 125 125 15 1.5

38 250 350 125 200 15 1.5

39 250 350 125 125 15 0.8

40 369 350 125 125 15 1.5
41 250 350 125 0 15 1.5

42 250 350 125 125 15 1.5

43 250 350 66 125 15 1.5

44 250 350 184 125 15 1.5

45 250 350 125 125 15 1.5
46 250 350 125 125 15 1.5

47 250 350 125 125 15 22
48 250 350 125 125 15 1.5

49 250 469 125 125 15 1.5

50 131 350 125 125 15 1.5

51 250 350 125 125 27 1.5

52 250 350 125 125 15 1.5

53 250 350 125 125 15 1.5

A complete CCC design for six factors requires a total of 91 runs. Therefore, in order to reduce the
size of the experiment and make use of the results from the screening phase, a half replicate design was
again employed. The entire second phase required a total of 18 additional runs. The 18added recipes are
shownin Tablem. The circumscribed design wasselected asopposed to a inscribed (CCI) design to allow
the models to accurately predict theresponses overtheentire range of the inputfactor settings [11]. How
ever, in the caseof He flow forruns39 and41, the necessary star pointrequired recipe settings of 303 and
-53 seem, which are beyond the operational capabilities of the equipment In this case, the recipe was
modified to reflect the rrmximum/minimum possible parameter settings of theLametcher (200 and0 seem,
respectively). A graphic description ofcentral composite designs appears in Figure 1.

3. Experimental Apparatus and Technique

Etching was performed on a simple test structure designed to measure the vertical etch rates of
polysilicon, SiCb. and photoresist as well as the lateral etch rate of poly. The samples consistedof 4-in
diameter silicon wafers with films of thermal Sip2, phosphorous-doped polysilicon and Kodak 820 pho
toresist Approximately 1.2|imof poly was deposited over 5000A of thermal S1O2 by low-pressure chemi
cal vapor deposition (LPCVD). The poly resistivity was measured at 86.0Q-cm. Oxide was grown in a
steam ambient at 1000°C. One micron of photoresist was spun on and baked for 60 seconds at 120°C.
Due to the insufficient selectivity of the polysilicon etch rate with respect to that of the photoresist poly
lines for SEM photos were patterned with a mask consisting of low-temperature oxide (LTO) deposited at
450 °C by LPCVD. A cross section showing the criticalmeasurementareais shown in Figure 2.

The etching apparatus consisted of a Lam ResearchCorporation Autoetch 490 single-wafer parallel-
plate system. The etching samples rest on the grounded lower electrode while the upper electrode is
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excited by a 13.56 MHz RF generator operating through a matching network. The anodized alumninum
electrodes are circular and equal in area. The electrode walls are also composed of aluminum. Process
gases are introduced into the chamber through nearly 1000 holes in the upper electrode in "showerhead"
fashion. Reactor pressure is monitored with a capacitance manometer and controlled automatically witha
throttle valve [12,13]. The etcher was monitored via a real-time statistical process control scheme to
ensure consistency in equipment operation throughout theexperiment A schematic diagram of the etching
system appears in Figure 3.

Film thickness measurements were performed on five points per wafer (as in Figure 4) both before
and after etching using a Nanometrics Nanospec AFT system in conjunction with an Alphastep 200
Automatic Step Profiler. Etch rates were calculated by dividing thedifference between the pre- and pos-
tetch thickness by the etch time. The lateral etchrate forpoly wasmeasured via SEM. Expressions for the
selectivity of the poly with respect tooxide (S0«) and with respect toresist (Sph) along with percent aniso
tropy(A) and percentnonuniformity (U), respectively, are givenbelow:

A = -i?

(1)

(2)

(3)

U= IRpcR-V *ioo (4)
*pc

where Rp is the mean vertical poly etch rate over the five points, Ro, is the mean oxide etch rate, Rph isthe
mean resist eatch rate, Lp is the lateral poly etch rate, Rpc is the poly etch rate at the center of the wafer, and
R^ is themean poly etchrateof thefour points located about oneinch from theedge [14].

4. Results and Discussion

After the initial screening experiment, a few of the input factors were found to have an insignificant
effects upon individual responses. For example, the electrode gap spacing had little effect on the etch
selectivity with respect tooxide. However, nosingle factor was statistically irrelevent toall five responses
of interest Although it didnotappear to affect oxide selectivity, gap spacing didindeed have a dramatic
impact upon etch uniformity. Table IVprovides anoverview of the significance ofeach main effect result
ing from the fractional factorial data. (Since they are extremely time-consuming, the complete setof SEM
photos for the anisotropy measurements have been delayed in order to complete the other models in a
timely manner. These photos willbe taken and theanisotropy data will be analyzed at a laterdate. After
wards, an anisotropy model willbesimilarly derived andappened to thisset).
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Table IV: Results of Screening Experiment

Factor
Statistical Significance

Rp s« S* u

Pressure

RF Power

ecu
He

O2
Gap

0.0090

0.0001

0.0032

0.0001

0.0043

0.0185

0.0001

0.0046

0.0410

0.0001

0.0669

0.4134

0.0001

0.0001

0.0001

0.0001

0.0014

0.0001

0.0677

0.0493

0.0672

0.0002

0.9581

0.0107

Only factorswitha significance < 0.05areconsidered significant.

The aboveresults indicate thatall sixcontrolled parameters havea significant effectbothon etchrate
andresist selectivity. On the other hand, oxide selectivity is only impacted by pressure, power, CCU and
helium flow. Etch uniformity depends primarily on power, helium flow and gap spacing. The additional
18runs in the nextphase of theexperiemnt yielded quadratic models which indicate theprecise interaction
between input factors and the four responses. These modelsare discussedbelow.

4.1. Polysilicon Etch Rate

Fitting a regression model for Rp yielded the following expression:

Rp= 3540- 10.1P+ ll.ORf- 17.8CCU+112He- 1030G-61.4O2 (5)

- 0.034P*He+ 7.82P*G+ 0.389P*O2+0.085Rf*CCU - 8.36RFG - 0.132(CCU)2

- 0.059CCU*He + 12.4CCU*G - 0.059He2

where Rp is in AAnin and the units of every other parameter are given in Table I. This equation was
derived by stepwise regression [11],and it has a standard deviation of +/- 98 A/min. The Analysis of Vari
ance (ANOVA) table for the etch rate model is shown in Table V.

Table V: ANOVA for Poly Etch Rate Model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 52 24717141 475329.63
Regression 15 21562592 ' 1437506 16.86 0.000

Residual 37 3154549 85258.07
Lack of Fit 29 2823740 97370.33 2.36 0.103
Error 8 330809 41351.11

Adjusted R2= 0.821

The F-test for all the coefficients of the model beingequal to zero indicated that this is highly unlikely,
since the probability that F(15,37) > 16.86 is negligible. In addition, theF-test for lackof fit reveals litde
evidenceof lack of fit since F(29,8)as large as 2.36occurs 10.3% of the time.Therefore,mostof the error
of the model is due to experimental error. The "adjusted R2 is a parameter between zeroandone (with one
being optimal) which also measures the goodnessof fit
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The etch rate model is fairly complex, but a few interesting relationships are indicated in the contour
plots ofFigures 5 and 6. InFigure 5,Rp surfaces areplotted against RFpower and chamber pressure with
all other parameters set at theirnominal values. For high process throughput etch rate should preferably
be as high as possible. Thisoccurs at high power and high pressure. In Figure 6, theeffects of CCU flow
andelectrode spacingare explored. Here, it is seenthat the highestetch ratesoccur when the gap is narrow
and the flow rate is moderate.

4.2. Etch Uniformity

The uniformity regression model and corresponding ANOVA table are:

U = -11.0 - 0.168P + 0.094Rf + 0.714CCU - 0.415He + 11.9G

- 0.071O2 + 0.009P*O2 - 0.002RPCCU + O.OOlRPHe

- 0.001CCU*He + (8e-4)He2 - 1.39G*C>2 +/- 2.15(%)

Table VI: ANOVA for Etch Uniformity Model

Source DF Sum of Squares Mean Square F-Ratio Significance

Total 52 5896.02 113.39

Regression 12 4255.83 354.65 8.65 0.000

Residual 40 1640.19 41.01

Lack of Fit 32 1295.73 40.49 0.94 0.588

Error 8 344.46 43.06

AdjustedR2= 0.638

(6)

Tests for significance reveal that model coefficients are relevant In addition, the F-test for fit shows
no lackof fit The contours in Figures 7 and 8 describe someresults of the uniformity model. In Figure 7,
U is plotted against pressure and power. Optimum uniformity is observed at highpressure and low power.
Thus, good uniformity is achieved at the expense of high etch rates. The effects of He flow and electrode
spacing are observed Figure 8. This plot verifies the initial assumption that helium enhances uniformity,
butonlyup to an optimum valueof flow ratebeyond which U begins todegrade.

4.3. Oxide Selectivity

The regression model and AVOVA tablefor S<« are givenbelow:

S„ = -9.87 + 0.097P+ 0.03Rf- 0.06CCU + 0.03He+ 0.079O2 - (2e-4)P*Rf

+ (2.9e-4)P*CCU - (3e-4)P*He + (7.4e-5)Rf*He +/- 0.31

Table VII: ANOVA for Oxide Selectivity Model

Source DF Sum of Squares Mean Square F-Ratio Significance

Total 52 248.70 4.78

Regression 9 213.26 23.70 28.76 0.000

Residual 43 35.43 0.82

Lack of Fit 35 31.35 0.90 1.75 0.205

Error 8 4.09 0.51

(7)
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Adjusted R2 = 0.828

TheF-test for the model possessing coefficients equal to zero indicated that this is highly unlikely,
and the F-test for fit showed noevidence that a more complex model isrequired. Afew implications of the
oxide selectivity model appear in Figures 9 and 10. Figure 9 shows S<» contours versus RF power and
pressure. According to thisplot, highest oxide selectivity occurs at high pressure and lowpower. Thus, a
trade-off exists between high etch rate and good selectivity in terms of power. The effects of CCU flow
and pressure can be visualized in Figure 10. Greatest oxide selectivity occurs when pressure and CCL4
floware both high.

4.4. Photoresist Selectivity

Theregression model andANOVA Table for Sph are:

Sph = 7.56+ 0.009P+ 0.014Rf- 0.022CCU + 0.006He - 2.59G- 0.099O2 (8)

- (5e-5)P*Rf+ (1.3e-4)P*CCU - (7e-5)P*He + (3.7e-^)P*02 + (2.7e-5)Rf2

+ (3.6e-5)Rf*He - (5e-5)CCU*He + 0.757G2 +/- 0.09

Table VTH: ANOVA for Photoresist Selectivity Model

Source DF Sum of Squares Mean Square F-Ratio Significance

Total 52 15.24 0.29

Regression 14 12.61 0.90 13.02 0.000

Residual 38 2.63 0.07

Lack of Fit 30 2.42 0.08 3.07 0.050

Error 8 0.21 0.03

Adjusted R2= 0.764

Statistical tests for model complexity and fit indicate no reason to doubt the adequacy of the resist
selectivity model. The model is visualized in Figures 11 and 12. Figure 11 shows Sph contours versus
power and pressure, and Figure 12 shows the effects of CCU flow and pressure. These plots indicate that
photoresist selectivity possesses similar trends to that of oxide. This result is not surprising, since both
oxideand resist are etched mechanically rather thanchemically withinthe plasma.

5. Conclusion

An economical two-phaseexperiment has been designedand conducted to characterize the etch rate,
uniformity, and selectivity to Si02 and photoresist of n+-doped polysilicon versusa comprehensive set of
controlling parameters. These parameters were fit to quadratic response surface models. The models can
be used for a variety of manufacturing purposes, including recipe generation, process control, and diag
nosis.

6. Future Work

SEM photos for anisotropy measurements are still pending. Therefore, the complete set of models is
presently unavailable. However, this data will be compiled, analyzed and added to this study in the near
future.
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Parametric Yield Analysis of CMOS EPROMs

Eric D. Boskin

Abstract

This report describes the statistical comparison of two EPROM designs. This comparison is based on
the geometrical representation of their respective yield bodies. Spice3 was used to evaluate the sensitivities
of the two circuits to some of the most prominent process variations.

1. Introduction

The performance yield loss of analog integrated circuits due to variation of the fabrication parame
ters is of significant concern in the semiconductor industry. Statistically based methods have been
developed to understand and quantify the variation of these parameters, and their effect on circuit perfor
mance. This project applies many of these techniques in the study of the design and performance yield of a
CMOS EPROM. Specifically, the design trade-off between a static pullup and the use of precharging on
the bit lines will be investigated.

2. Methodology

The Spice circuit simulator will be used to study the effect of parametervariation on performance.
The MOS transistor model in Spice containscertain parameters which are directly related to physical dev
ice parameters. These model parameters can be varied, in repeated runs of the simulator,with the distribu
tion seen in the manufacturing environment (Monte Carlo analysis). Each simulation run represents one
manufactured die. The range of performance seen in the simulationresults will be very close to the perfor
mance spread of manufactured parts, so the simulation results can be used to analyze and predict perfor
mance yield.

Statistical methods will also be used to determine the sensitivity of the circuits to fabrication parame
ter variation. The most significant parameters will be used to create a model for the yield body of the cir
cuit through linear regression.

2.1. Statistical Model for Fabrication Variation

Three fabrication parameters will be varied. These are the change in channel length (Ld), the oxide
thickness (Tox) and the substrate doping level, (Sub). The three parameters were varied for both the n-
channel and the p-channel transistors (i.e. Ntox and Ptox). One value for each of these six parameters will
be generated for each run. This variation will simulate global variation between die, wafers and lots.
Further, a local variation (intradie) will be introduced by a small variation in these parameters between the
matchedtransistors in the sense amplifiercircuitry. One local value foreach parameter was also generated
foreachsimulation run, fora totalof twelve varying parameters.

Gaussian distributions will be used for the probability density functions of the fab parameters. The
statistical model will take into account parameters with global variation and parameters with local varia
tion. Further, the correlation between parameters will alsobe accounted for. A random number generator
with a gaussian distribution is the basis for creating values for each of the parameters for each simulation.
The random number generator takes the mean and standard deviationof a distributionas input parameters,
and generatesa random number from that gaussiandistribution.

Global variation is represented by one call to the random number generator with the global standard
deviation of the parameter, to establish a value for that die. Then, local variation is modeled with a second
call to the random number generator using the first value as the mean, and a smaller, local standarddevia
tion.

The localstandard deviationwas estimated to be twenty-fivepercent of the global standard deviation. This
method was used to generate global and local values for the variables Nsub and Psub, which are indepen
dent from any other parameter. It was also used to generate the four values related to oxide thickness on
one die, as the oxide thickness for n and p-channel transistors on any die show only small, local variation.
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Figure 1 - Model of Statistical Variation

Parameters which exhibit correlation, such as the line width variation between n-channel and p-
channel transistors, require a more sophisticated model. In this case the mean, standard deviation and
correlation for the parameters is known. The method for generating these parameters is based on the mul
tivariate statistical technique of principal component analysis. More specifically, in order to generate two
correlated variables, X andY, with given means (ji) andglobal standard deviations (a), we usedthe formu
las:

X=axV"i2TF-(aV+bW)+̂x
Y=clY V^br(cV +dZ) +HY

where V,W, andZ areunit normal, random gaussian numbers, and a.b.c andd area function of the correla
tion (p). This resulted in a correlation coefficient:

ft ac
Px,y= W +b^^+d2)

The values fora,b and c were chosen accordingly. A correlation coefficient of 0.75 between Nld and Pld
was used. There is a high correlation between these parameters because their value is determined mostly
by a shared process step,polysilicon etch. After finding theglobal values for Nld andPld, these equations
can be applied recursively to find the local values by using the local standard deviations, and the global
valuesas the new means,as depictedin Figure 1.

Recently, work has been done characterizing the local variation of transistor parameters. Variation
of threshold voltage, drain current (Spice parameter KP) andthe bodyeffect coefficient (Spice parameter
BETA) have been modeled in terms of the size of transistors and their distance from each other. The varia
tion in thecircuit parameters corresponds to variation inthe fabrication parameters postulated here.

Experimental work is necessary to establish relevant statistics aboutlocal parameter variation. Pel-
grom [8] provides an interesting framework forthatwork. The statistical results couldbe used to generate
better estimates of local variation for a specific fabrication line. This result could be used direcdy in the
generation of the input parameter distribution for the MonteCarloanalysis.

2.1.1. Input Parameter Space

The input parameter space is the range of values each inputparameter is allowed to take in any simu
lation. For gaussian distributions, each inputparameter is described by a givenmeananda global andlocal
standard deviation. The values used in this projectare given in Table I. These are typical values for a 1.2
micronCMOS process,which is currentlyused in high volume EPROM manufacturing.
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Parameter Mean Global Std. Dev. Local Std. Dev. Units

Oxide thickness 40.0 1.67 0.42 nm

NMOS linewidth variation 0.3 0.1 0.025 microns

PMOS linewidth variation 0.25 0.083 0.02 microns

Doping 5.5 x 1017 1.67 x 1017 0.42 x 1017 cm-3

Table I: Input Parameter Space

2.2. Calculation of Performance Yield

Monte Carlosimulationtechniquesareused to evaluate the performance yield of two possiblecircuit
designs. Given the performance specifications, the Spice results can be checked to see if each circuitsuc
ceeded or failed to meet all the specifications. The performance yield is

Perft yjaIh - (# of passing circuits)
-x lcia " (total # of simulations)

2.2.1. Use of the Yield Body in Binning Parts

Normally, each performance specification hasa value,which defines the acceptable limit fora partto
meet that specification. For example, a 25 nsec EPROM would have the value of 25 nsec for the Read
Access Time specification. The manufacturer might also sell parts with 30 and 35 nsec maximum access
times. These specification ranges, or bins, are used by manufacturers because fabricated ICs exhibit per
formance spread.

The performance yield prediction technique developed herecan also be used to predict the number
of parts a manufacturer will have in each bin. The percentage of parts in each bin can be calculated from
the Monte Carlo simulation results. The yield bodies foradjacent bins will be adjacent regions in perfor
mance space.

13. Calculation of EPROM Sensitivity to Fab Parameters

The first order sensitivity of a circuit can be estimated from the change in performance for a unit
change in an input parameter. The sensitivity is the percent change in performance from nominal per the
given input parameter change.

2.4. Linear Model for Yield Body

The yield body is the area in inputParameter space where the resultant circuit will pass all the per
formance criteria. The yieldbodyin thisanalysis willbea polytope in thetwelve dimensional input space.
Itcan be examined graphically through theused of projections ontothe plane of twoinputparameters.

An estimate of the yield body can be generated by first assuming each performance specification
generates one surface of the polytope in input space. If we postulate that the surfacecan be describedas a
linear combination of the input parameters, we can generate a linear model for the yield body of the
EPROM. The model has the form:

Performance = A + B(Nld) +C(Ntox) + D(Nsub)+ E(Pld)+ • • •

There willbe oneequation for each specification. This model has been successful in theanalysis of digital
circuits [2], however here it is being applied in an analog circuit Although it is possible that a quadratic
modelis necessary, the linear modelwill be used for its simplicity.

3. Implementation

This analysis is based on the circuit model for an EPROM shown in Figure 2, which is a simplified
schematic of the model used for Spice simulation. Figure 2 includes the static pullup on the bit line. The
p-channel transistor with W/L=4/2, pullingup on node (11), is the static pullup. The static pulluptransistor
brings the bit line to a logic one when the EPROMcell is off. Figure 3 shows a diagram of the precharging
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scheme. This circuit includes Address Transition Detection to generate a precharge pulse which aids bit-
line precharging. The precharge pulse is about 5 nsec wide after any address transition.

The 500 point Monte Carlo simulation was generated andrun on a Decstation 3100. Shell scripts, utilizing
awk and the C language pre-processor, generated 500 Spice decks with varying transistormodels according
to the statistical model described in section 2.1. The Monte Carlo required approximately 5 CPU hours to
complete.

3.1. Linear Model for the Yield Body

The analysis was done for the static and precharge circuits. The six fabrication parameters which
had the greatest on performance were chosen for the analysis. (The sensitivity of the circuit performance
to fabrication parameter variation will be discussed in section 4.2.) These are Nld, Ntox, Nsub, Pld, Psub
and Nldjocal. These six variableswere normalizedand then put throughPrincipal Component Analysis to
form independent variables for linear regression. Five principal components were enough to account for
96 percentof the total internalvariation. The EPROM performance specifications used are shown in Table
II. These specifications apply to the 1 bit EPROM model used for simulation.

Specification Upper Limit

Power

Read 0 Access Time

Read 1 Access Time

11 mW

23.4 nsec

23.4 nsec

Table II: Performance Specifications

4. Results

The main results of the analysis will be discussed. These include the performance yield of the two
circuits, the circuits' sensitivity to parameter variation, the model for the yield body and the results of the
circuit optimization.

4.1. Prediction of the Monte Carlo Simulation for Performance Yield

Appendices A and B show the access time resultsof the Monte Carlosimulationsof the static pullup
and precharge circuits, respectively. The two circuits were simulated 500 times, with the same set of
parameter variation. Read 0 is the time it takes to read a programmed cell, that is, with the memory cell
pulling down the bit line. Read 1 is the time when the bit line is high. The read access time specification
on a part would be the larger of the two times.

The interesting result is that the static design produces a slighdy higher performance yield given a
fast access time specification, but the precharge design produces a higher performance yield at a slower
access time specification. This can be seen in Appendix C, which shows the simulation results in histo
gram form. Specifically, the static pullup has a performance yield of 18.2 percent at 21 ns access time and
76.6 percentat 25 ns. The precharge circuit has yields of 16.2 percentand 78.4 percentat the two speeds.
This performance yield prediction is an importantresult of this analysistechnique, although here the result
is not statisticallysignificant

Also note that the precharge design is more sensitive to processvariation, as seen in the wider distri
bution of performances for the same parameter variation. However, the circuit performance criteria which
varies the most, Read 1 delay, is never the limiting value for the speedof the precharge circuit, where Read
0 is slower. So, one benefit of the precharge circuit is that one of the performance specificationsdoes not
effect the yield. This will potentially simplify the testing procedure of the product
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Figure 2 - EPROM Circuit Model with Static Pullup
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42. 4.2 Circuit Sensitivity to Fabrication Variation

Table m quantifies the performance sensitivity of the two circuits to the twelve fabrication parame
ters. It shows the percent change from nominal delay for Read 0 andRead 1 AccessTimes for three sigma
changes in all inputparameters. There are two entries for each parameter, onecorresponding to a change
to it's plus three sigma limit (denoted 'hi' in Table IH), and one corresponding to a change to the minus
three sigma limit (denoted 'lo'). In other words:

Sensitivity =^Jy""1*""*"1. *100 %
Huminal

It nowbecomes clear how the six input parameters for Principal Component Analysis were chosen. They
are the parameters which havethehighest sensitivities inboth designs.

The most important result, in addition to the selection of the parameters for Principal Component
Analysis, is theincreased sensitivity of the precharge circuit for Read 1. Alsonotice thelarge sensitivities
of some of the local variation,such as nld.local.

43. Yield Body Equations and Projections

The result of the Principal Component Analysis is shown in Table IV. The Principal Components
are linear combinations of the input parameters. These linear combinations are uncorrelated with each
other, andare used for linear regression. A linear regression was done for each performance constraint for
both the static pullup and precharge circuits. An example of the regression results is shown in Tables V
and VI. Table V shows the coefficients generated for Read 0 delay for the static pullup circuit andTable
VI shows the Analysis ofVariance Table.
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Static Circuit PrechargeCircuit

Variable Sens of Read 0 Sens of Read 1 Sens of Read 0 Sens of Read 1

(in % change from nominalIdelay)

Nominal Delay 22.2 22.4 23.0 15.0

nld hi -14.946846 -15.683648 -15.093441 -27.891643

nldlo 15.891987 16.627216 19.129866 56.642769

ntox hi 7.520718 3.296313 9.867941 30.101246

ntoxlo -8.272898 -4.109828 -7.362490 -13.071564

nsub hi 5.062577 -1.171403 7.351490 27.601801

nsub lo -6.931844 10.051883 -5.718565 -21.953356

pld hi -9.385125 -17.485166 -5.020423 6.183117

pldlo 15.675400 21.700668 16.591416 12.606497

ptox hi -0.343937 1.530004 -1.239726 6.666775

ptoxlo 1.045132 -1.638262 1.945563 -0.876574

psub hi 0.089686 5.697237 2.368283 -4.474786

psub lo -1.314953 -7.616061 2.052906 14.541392

nldj hi -0.199531 -1.217042 1.428413 -2.922239

nldj lo ^.015016 9.960784 -3.803739 38.448105

ntoxj hi -2.519746 5.416097 -2.740701 25.924131

ntoxj lo 2.885328 -5.506483 3.275720 -12.822298

nsubj hi -2.476546 4.284182 -2.628619 25.744210

nsub_l lo 2.986489 -5.570484 4.057728 -13.692478

pldjhi 0.483303 0.084503 -0.191948 -1.360167

pldjlo -1.193363 0.633947 -0.434502 2.765803

ptoxJ hi 0.111286 -0.128091 -0.003652 1.650075

ptoxj lo 0.021150 0.186432 -0.021912 0.189314

psubj hi -0.889431 0.275792 -0.054345 2.370735

psubj lo 0.136126 0.175066 -0.145037 -0.216061

Table m - First Order Sensitivities

Parameter Coeffl Coeff2 CoefB Coeff4 Coeff5

nld

ntox

nsub

pld
psub
nldjocal

0.69453

0.062938

0.079627

0.697986

0.14145

-0.011624

-0.02964

0.189548

0.908271

-0.026514

-0.301527

0.215907

-0.053303

-0.796532

0.254647

0.005215

0.46987

0.27757

-0.122391

0.502942

0.190265

-0.112795

0.815682

-0.133448

0.018589

0.267476

-0.259428

-0.007503

0.048916

0.926477

Variance

% of total var

Cumulative %

0.187657

27.811492

27.811492

0.128945

19.11007

46.921561

0.118086

17.50075

64.422312

0.11196

16.592803

81.015115

0.101417

15.030285

96.0454

Table IV - Principal Component Coefficients

Parameter Coeff Std. Err T. Value Sig
CONSTANT 22.090711 0.020703 1067.01795 0.0001

pcol -4265672 0.047735 -89.361343 0.0001

pco2 2.053502 0.057586 35.659593 0.0001

pco3 -0.384407 0.060176 -6.388076 0.0001

pco4 1.960178 0.0618 31.717967 0.0001

pco5 0.675375 0.064933 10.401083 0.0001

Table V - Least Squares Regression for Read 0 Delay, Static Pullup
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Source Sum of Squares df Mean Square F Value Signif. level

Regression
Error

2221.6685

105.4068

5

494

444.3337

0.2133

2082.4151 2.2204e-16

R-Squared
Adjusted R-Squared

0.9547

0.9542

Table VI - Analysis of Variance Table

During the residuals check, it was seen that the residuals for the power equation for the static pullup were
not randomly distributed. Therefore, a quadratic model was fittedand the results are shown in Table VII.

Parameter Coefficient Standard error T value Signif. level

CONSTANT 1.976475 0.000390 5066.137744 0.000100

pcol 0.150232 0.000472 318233116 0.000100
pco2 -0.087723 0.000583 -150.480379 0.000100

pco3 0.024678 0.000603 40.941383 0.000100
pco4 -0.164328 0.000616 -266.889315 0.000100

pco5 -0.003553 0.000649 -5.476820 0.000100

pcol**2 0.032975 0.000767 43.012301 0.000100

pcol*pco2 -0.010978 0.001307 -8.400517 0.000100

pcol*pco3 0.006947 0.001473 4.716252 0.000100

pcol*pco4 -0.022612 0.001445 -15.651587 0.000100

pcol*pco5 -0.001416 0.001516 -0.933862 0.350845
pco2**2 0.024284 0.001108 21.922794 0.000100

pco2*pco3 0.009427 0.001628 5.790682 0.000100

pco2*pco4 0.006959 0.001728 4.026329 0.000100

pco2*pco5 -0.013881 0.001796 -7.730116 0.000100

pco3**2 0.012940 0.001336 9.684334 0.000100
pco3*pco4 0.010109 0.001846 5.476969 0.000100

pco3*pco5 -0.009267 0.001927 -4.810113 0.000100

pco4**2 0.020986 0.001375 15258998 0.000100

pco4*pco5 -0.003049 0.001803 -1.691058 0.091476

pco5**2 0.003514 0.001472 2386623 0.017391

Table VII - Regression of the Power Equation Using a Quadratic Fit

Appendices D through G show theresults of the Monte Carlo simulation projected ontoplanes of two input
variables. Both circuit results areshownprojected ontotwo planes, Nld andNtox, and Nld andPld. Each
pointrepresents one run of the simulator, at that point in inputspace. The pointwill be a solid square if
that circuit passed all performance specifications, and an outlined square if the circuit failed any
specification.

These regression results are plottedas lines on these figures. Note that the regression generated an
expression for delay or power in terms of principal componentsof the normalized values for the varying
parameters, Nld, Ntox, Nsub, etc. By setting the delay equal to the performance limit (i.e. Read 0 access
time to 23.4 ns), and setting the ten other variables to their mean (which is zero, due to the normalization),
andexpanding out the principal components backinto inputparameter space, the lines shownin the figures
aregenerated. The lines shown are projections of the yield body into a two dimensionalspace. The regres
sion was done on normalized data, so the axes were labeled in terms of the distance from the mean
expressed in number of standard deviations.

The linesgenerated by theaccess time specification generally fall on a sharp division forpassing and
failing circuits. This is less true for the powerconstraint Certainly, the simplified analysis generates an
interesting projection of the yield body. The quadratic regression for poweris also plottedon Figure 10. It
is not significandy different from the linear model.
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These linesshowthe projection of the twelvedimensional yield body intotwo dimensions. This pro
jection is done as if all other (ten) variables were simulated at their mean value. Since this was not the
case, the inaccuracy of the linear model is due to boththeinaccuracy of the model,andour simplified pro
jection, ignoring the variation of the other parameters. Nevertheless, this simplification allows us to get a
graphical view of the importance of various fabrication parameters.

Note that the yield body for the precharge model is slightly smaller than that for the static pullup.
This is another sign of its increased sensitivity. It is also clear that one specification for the precharge
model, Read 1 delay, has no effect on yield, and that the yield body is not centered around the process
mean (Nld of 300 nm, Pldof 250 nm and ntox of 40 nm). If it were possible to move the center pointof
the fab parameters to thecenter point of the yield body, yield could be increased. This technique is known
as DesignCentering.

*

4.3.1. Alternative Projections of the Yield Body

The projection of the yield body as done abovegives an interesting, but slightly incomplete picture
of how well the linear model has established the boundary of the true yield body. This measure can be
improved by projecting the yield body onto a plane perpendicular to the constraints. Projection onto this
plane would give a better picture of which side of the constraint plane the simulation results were on. The
projection as done above suffers from a 'shadowing' problem sincethe constraint plane is hittingthe pro
jection planeat an angle.

For eachconstraint expressedas a linear combination of the principal components:

Performance = A + B(pcol) + C(pco2) + D(pco3) +E(pco4)+ F(pco5)

the vector [A3.C.DJEJF] is normal to the plane definedby the constraint and becomes a basis vector for
the desired plane of projection. For a space of dimension m, m-1 basis vectors are needed to uniquely
define a plane. In thiscase, three constraints are not enough to define a unique plane in our 5 dimensional
component space. Further, each basis vector must be independent to define the plane. Here, we are in an
underdetermined situation, and must create additional constraints to define the projection plane. This
analysis was not done for this project

4.4. Performance Yield Optimization

The modeling of performance yield allows it to be added as a criterion for optimization. One
interesting direction would be to express performance yield as a function of the circuit and fabrication
parameters,and use that as an optimization constraint

Another, graphical technique, is based on the normal to the constraint planes. For each constraint
plane, the normal to that plane establishes the direction of maximum sensitivity of the circuit to the input
parameters. Relating the principal component space back into inputparameter space would allow the cal
culation of the sharpest yieldderivatives of the inputparameters. This information canbe used forperfor
mance yield optimization.

5. Conclusions

This analysis clearly showed the power of statistical design tools to explore many performance
related features of a design whicharenotnormally considered whiledoing worstcasedesign. However, in
thiscase, there was not a particularly significant difference in these two circuits. The lack of sensitivity to
input parameters of the static pullup makes it a more manufacturable circuit regardless of the slight perfor
mance yield disadvantage at slower access times.

5.1. Ideas for Current Research

This project is part of an ongoing research project in statistical circuit design. Two extensions of this
work are currently being pursued. First, theEPROM circuit model is being enhanced to better represent a
commercial EPROM design. Secondly, formal mathematical techniques forgenerating the yieldbody, the
planes of projection parallel to the constraints and the normals to the yieldbody planes are being investi
gated. The information contained in a circuit's yield body canbe used to understand why the circuitwill
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fail to meet performance specifications in a varying manufacturing environment. This information will be
used to generatea test patternto monitor the performance yield of the circuit

52. Ideas for Further Research

An extension of this analysis technique would be to characterize the effect of fab parameter variation
on the variation of high level circuit parameters for small analogcircuit blocks. Instead of doing a worst
case design for a small circuit block, characterization could predict the spread of analog circuit perfor
mance for a given manufacturing variation. Macromodels could be developed for use in the Spice simula
tor.
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Appendix A - Access Time with Static Pullup
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Appendix D - Monte Carlo Result, Yield Body,Nld vs Ntox, Static
Ntox. inmeters x 10*9
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Appendix E - Monte Carlo Result, Yield Body, Nld vs Ntox, Precharge
Ntox, In meters x 10~9
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AppendixF - MonteCarlo Result,Yield Body,Nld vs Pld,Static
PH. inmeters xl0~9
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Appendix G - Monte Carlo Result, Yield Body, Nld vs Pld, Precharge
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