Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



SPECIAL ISSUES IN SEMICONDUCTOR
MANUFACTURING

I

EECS 290W Class Project Reports, Fall 1989

Professor:

Costas J. Spanos

Students:

Eric D. Boskin, Yupin K. Fong, Tom Garfinkel,
Haifang Guo, Christopher J. Hegarty,

Timothy H. Hu, Sherry F. Lee, Tom L. Luan,
Gary S. May, Jaime Ramirez, Elyse Rosenbaum

Memorandum No. UCB/ERL M90/8

13 January 1990



SPECIAL ISSUES IN SEMICONDUCTOR
MANUFACTURING

I

EECS 290W Class Project Reports, Fall 1989

Professor:

Costas J. Spanos

Students:

Eric D. Boskin, Yupin K. Fong, Tom Garfinkel,
Haifang Guo, Christopher J. Hegarty,
Timothy H. Hu, Sherry F. Lee, Tom L. Luan,
Gary S. May, Jaime Ramirez, Elyse Rosenbaum

Memorandum No. UCB/ERL M90/8

13 January 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Preface

This document contains the final reports of the projects that were completed during the first run of
EECS 290W (“‘Special Issues in Semiconductor Manufacturing’’) in the fall semester of 1989. In this
semester we covered a wide area of basic manufacturing topics, including statistical process control, design
of experiments, and circuit design for manufacturability. The diversity of these subjects is reflected in the
projects that are included in this report.

The first seven projects focus on Statistical Process Control (SPC). The application of SPC in sem-
iconductor manufacturing is meant to ensure that the parameters of the equipment, as well as the product,
remain on target during long production runs. This is accomplished by the early identification of damaging
deviations in critical preformance measures. From the many SPC schemes that are available, chapters 1 and
2 address the evaluation of Shewhart control charts with arbitrary *‘runs rules’’, i.e. rules that characterize
normal production. Chapter 3 is a short study on establishing non-parametric rules of deviation, by teaching
some of the abnormal production patterns to simulated neural nets. Chapter 4 describes the implementation
of a simulator, written to evaluate the general characteristics of Cumulative Sum (CUSUM) charts.

The next SPC subject is the variable sampling interval (VSI) chart. This chart has good sensitivity,
yet it is more economical than comparable control schemes, since it requires fewer measurements. This
property makes the VSI chart a promising candidate for applications such as photolithography control,
where measurements can be very expensive. The potential economical benefits and other characteristics of
this chart are examined in chapters 5 and 6.

Modem sensor technologies, combined with the proliferation of hardware communication protocols
on the factory floor, greatly facilitate the collection of multiple real-time diagnostic readings. These read-
ings contain valuable information about the process, yet due to their strong cross-correlation, their interpre-
tation is not straightforward. Chapter 7 focuses on the application of a multivariate control scheme for the
reliable generation of alarms from cross-correlated data. This scheme was used for the analysis of real-time
data collected from a plasma etcher. Also in the context of equipment control, chapter 8 describes the
implementation of an adaptive regression strategy for modeling equipment that change over time. This stra-
tegy has been built around the concept of the regression control chart and it has been applied on sample
data from a Low Pressure Chemical Vapor Deposition reactor.

The next two topics focus on the application of statistical experimental designs in semiconductor
production. The objective is the generation of empirical models of products and production equipment.
Chapter 9 describes the application of non-linear transformation techniques in the analysis of oxide reliabil-
ity data from oxides that have been grown on off-axis silicon substrates. The subject discussed in chapter
10 is the design and implementation of a two-staged statistical experiment. This two staged experiment
was employed for the extraction of empirical models of several critical performance measures of a plasma
etcher.

Finally, chapter 11 is a circuit manufacturability study that analyzes and compares two EPROM
designs. The manufacturability of each design is evaluated with the help of formal statistical techniques,
that predict the spread of parametric performances under given variations of the fabrication process.

The analysis of some of these topics required the development of special routines written in C and
Fortran, and also procedures developed within special statistical analysis packages such as BLSS and RS/1.
Some of the experimental design topics involved the collection of sizable amounts of raw data. This infor-
mation is not included in this document but it is available from C. Spanos.

I want to thank the students whose names appear in this report, and the others who, by contributing
their helpful comments, made this course a valuable experience.

Costas J. Spanos

January, 1990
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Simulation of Shewhart Control Charts
with Supplementary Runs Rules

Tom L. Luan

Abstract

This report describes a program for the evaluation of the performance of Shewhart control charts
with supplementary runs rules. This program was implemented in Fortran.

1. Introduction

The Shewhart Control Charts are often used with supplementary runs rules to detect small shifts
and trends. These supplementary rules increase the sensitivity of the Shewhart control charts, while
reducing their Average Run Lengths (ARLs) Various runs rules have been postulated and practically
used since the 1950s [1], and, among them, a particularly popular set is known as the "Western Electric
Rules". In general, the runs rules may be stated as follows: An out-of-control signal is given if k of the
last m standardized sample means fall in the interval (a, b), where k<manda<b.

Champ and Woodall [1] have suggested an algorithm in which a Markov chain approach is
adopted to evaluate _t_hé ARL of the Shewhart control charts. Although they have only applied the
method to Shewhart X control charts, the method is general and can be applied to other types of control
charts such as the R and p charts.

The objective of this project is to test and implement this algorithm. I have picked up two rela-
tively simple run rules to test this method. A FORTRAN program is written for this purpose. However,
I would like to point out that, with some effort, this code can be generalized to all runs rules presented
in Champ and Woodall’s paper, as well as to other runs rules if people choose to define their own.

2. Methodology

2.1. Runs Rules and Probability Distributions
A combination C,; of the following two runs rules has been considered in this project report:
Rulel:  C; =T(1,1,~0,-3), T(1,1,3,%0)
Rule2: G, =T(23,-3,-2), T(232,3)

For example, Rule 2 signals an alarm if two of the last three samples fall into (-3, -2) or if two
out of the last three fall into (2, 3). C); = C; U C; is the combination of these two rules. There are 5
critical regions for the C;; muns rule: R; =(—e,-3), Ry =(-3,-2), R3=(-22), Ry =(2,3), and
Rs = (3,0), as shown in Fig. 1. The probabilities in each region are represented by p;, p2, Ps, s and ps,
respectively. If the mean p, shifts, p; (i=1,...,5) changes accordingly. I have calculated the probability in
each region as a function of the shift of p,, the results are listed in Table 1.

2.2. The Markov chain Representation

The states of the Markov chain indicate the status of the chart with respect to each runs rule.
There is one absorbing state that corresponds to the out-of control signal. The 8 states required in the
Markov chain representation for chart C;, are listed in Table 2. The first two coordinates of each vector
representing a particular state correspond to the rule T(2,3,~3,-2) and the next two correspond to the
rule T(2,3,2,3). For example, state 5, represented by (01 10), tells us that the past two observations are
in the intervals (2, 3) and (-2, -3), respectively. If the next observation is in either of the two intervals,
or in (—e=,~3) or (3,0), according to the rule C,, an out-of-control alarm will be signaled.

The Markov chain transition matrix P is defined as P = [P;;), where P;; is the probability of the
transition of state i to state j. The set of required transient states can be determined iteratively. For a
given initial state, one can determine the state resulting from each of the region possibly containing the
first sample point. This process is repeated for each new transient state until no new states can be gen-
erated [1]. To illustrate this, let’s consider state 5, represented by (01 10), as an example. If this state is
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occupied and the next observation is in Ry=(-2,2), the resulting state is (00 01), which is state 6. If,
instead, the observation is in any other region, the resulting state is the absorbing state. We can then do
the same thing for state 6, the resulting new states are state 2 and state 1, represented by (10 00) and
(00 00) respectively. This process can thus be repeated iteratively until no new states can be generated.
In practice, state 1, represented by (00 00) is usually used as the initial state. The transition matrix P
can be deduced from Table 2.
3. Implementation
First we define the run length probability vector:
Ly = [PrN; = h), ..., Pr(N,, = h)]” 1

where N; is the run length of the chart with initial state i. To calculate the run length probabilities, the
following recursive numerical method is used (2]

L, =(1-Q1
Ly=L,,Q h=123,--- 2

where 1 is a column vector of 1s and Q is the matrix obtained by deleting the last row and column from
the transition matrix P. This method of calculating the run-length probability gives simple recursive for-
mulas to calculate the run length probabilities. For the control chart C,, considered in this report, the
recursive formulas are:

Pr(N; = h) = p3 Pr(N; = h-1) + p, Pr(N; = h-1) + p4 Pr(N, = h-1)

Pr(N; = h) = p; Pr(N; = h~1) + ps Pr(Ns = h-1)

Pr(N; = h) = p3 Pr(N; = h-1) + p4 Pr(N4 = h-1)

Pr(N, = h) = p; Pr(Ng = h-1) + p, Pr(N; = h-1)

Pr(Ns = h) = p; Pr(Ng = h-1)

Pr(Ng = h) = p3 Pr(N; = h-1) + p, Pr(N; = h-1)

Pr(N; = h) = py Pr(N; = h-1) ?3)

When the run length probabilities are calculated using these formulas, the average run length
(ARL) can be calculated using the formula given by Woodall and Reynolds (3]:

3 n 1
= = = 4
ARL = E(N) lElPr(N h)+2.Pr(N=n)[(l_l)+(l_k)2] C))
where
[1-3 PrN = b))
. A= — ()

- -1
f1- z Pr(N = h))
k=l

and N, n are the run length and the number of steps required to converge, respectively. For the control
chart C;,, n = 10 is sufficient.

4. Results

4.1. ARL as a Function of Mean Shift

The results of ARL caiculation as a function of the shift (d) of u, are plotted in Fig. 2, for the
control chart C;,. And the numerical values are listed in Table 3. The result shows that the supplemen-
tary runs rule increases the sensitivity of the Shewhart control chart, especially at small shifts. The Sup-
plementary runs rule also reduces the ARL at the target value | = J,. Although any desired ARL at the
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target value could be obtained by changing the control limits, however, the increased sensitivity,
obtained by using supplementary runs rules to identify small shifts and trends, cannot be obtained by
simply narrowing the control limits of the original Shewhart control chart.

4.2. Comparison with Champ and Woodall’s Results

My Fortran Program calculation results are almost exactly the same as the results obtained by
Champ and Woodall (compare with Table 1 of their paper), essentially at all shifts (d). Therefore,
independent numerical implementations confirm the correctness of the Markov chain approach and the
efficiency of the numerical approximation of Eq. (4) described above.

S. Example

The program calculates the run length probabilities and ARL for given probability in each regions
R; (i = 1,...,5). the following example is for the shift d = 0.0 and d = 3.0 cases.



argon% a.out

read in p1,p2,p3,p4,p5 and nr from prob_d?.dat
INPUT FILE NAME:

prob_d0.dat

*tt**#*l'rhe Run Length PfObabllitieS m:****#******
2.70E-03 241E-02 241E-02 242E-02 4.56E-02 2.42E-02 4.56E-02
3.61E-03 2.40E-02 3.09E-03 240E-02 2.30E-02 3.09E-03 2.30E-02
4.48E-03 3.45E-03 3.96E-03 3.45E-03 2.95E-03 3.96E-03 2.95E-03
442E-03 3.85E-03 4.35E-03 3.85E-03 3.78E-03 4.35E-03 3.78E-03
4.39E-03 4.23E-03 4.30E-03 4.23E-03 4.15E-03 4.30E-03 4.15E-03
4.37E-03 4.20E-03 4.28E-03 4.20E-03 4.11E-03 4.28E-03 4.11E-03
4.35E-03 4.17E-03 4.26E-03 4.17E-03 4.08E-03 4.26E-03 4.08E-03
4.33E-03 4.15E-03 4.24E-03 4.15E-03 4.06E-03 4.24E-03 4.06E-03
431E-03 4.13E-03 4.22E-03 4.13E-03 4.05E-03 4.22E-03 4.05E-03
4.29E-03 4.11E-03 4.20E-03 4.11E-03 4.03E-03 4.20E-03 4.03E-03
**wexxx* The Last Three ARLs Are:
8 2.250E+02
9 2250E+02
10 2.250E+02
FORTRAN STOP
argon%
argon% a.out
read in p1,p2,p3,p4,p5 and nr from prob_d?.dat
INPUT FILE NAME:
prob_d15.dat

**#*&***T‘he Run Iﬁngth Probabilin'es Are:drnbikhikkkn

S.00E-01 5.00E-01 S5.00E-01 841E-01 841E-01 841E-01 841E-01
3.66E-01 3.66E-01 3.66E-01 1.34E-01 1.34E-01 7.94E-02 7.94E-02
1.04E-01 1.04E-01 1.04E-01 126E-02 1.26E-02 5.82E-02 5.82E-02
2.08E-02 2.08E-02 2.08E-02 9.23E-03 9.23E-03 1.65E-02 1.65E-02
6.44E-03 644E-03 644E-03 2.61E-03 2.61E-03 3.29E-03 3.29E-03
191E-03 191E-03 191E-03 5.23E-04 5.23E-04 1.02E-03 1.02E-03
4.82E-04 4.82E-04 4.82E-04 1.62E-04 1.62E-04 3.04E-04 3.04E-04
132E-04 1.32E-04 1.32E-04 4.82E-05 4.82E-05 7.65E-05 7.65E-05
3.74E-05 3.74E-05 3.74E-05 121E-05 1.21E-05 2.09E-05 2.09E-05
1.01E-05 1.01E-05 1.01E-05 3.32E-06 3.32E-06 5.93E-06 5.93E-06
**s%%%++ The Last Three ARLs Are: *

8 1.676E+00

9 1.676E+00

10 1.676E+00
FORTRAN STOP

argon%

6. Conclusions

The Markov chain approach proposed by Champ and Woodall [1] can be used to model supple-
mentary runs rule used with Shewhart control chart. Independent numerical implementation of this
method in this project confirm that supplementary runs rules cause the Shewhart chart to be more sensi-
tive to small shifts than the original.



(1]
(2]
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TABLE 1 SHIFTS AND PROBABILITY DISTRIBUTION

Shift Probabilities

d pl p2 p3 P4 PS5
0.0 .0013 .0214 .9544 .0214 .0013
0.2 .0007 .0132 . 9502 .0333 .0026
0.4 .0003 .0079 .9370 .0501 .0047
0.6 .0002 .0045 . 9145 .0726 .0082
0.8 .0001 .0025 .8823 .1012 .0139
1.0 .0000 .0013 .8400 .1359 - .02286
1.2 .0000 .0007 .7874 .1760 .0359
1.4 .0000 .0003 . 7254 .2195 .0548
1.6 .0000 .0002 .6552 .2638 .0808
1.8 .0000 .0001 .5792 .3056 .1151
2.0 .0000 .0000 .5000 .3413 .1587
2.2 0000 .0000 .4207 .3674 .2119
2.4 .0000 .0000 .3446 .3811 .2743
2.6 .0000 .0000 .2743 .3811 .3446
2.8 .0000 .0000 .2119 .3674 .4207
3.0 .0000 .0000 .1587 .3413 .5000

TABLE 2 MARCOV-CHAIN REPRESENTATION

Shifts (d)

Figure 2

' Present state Next state
No representation Rl R2 R3 R4 RS
1 (00 00) 8 2 1 4 8
2 (10 00) 8 8 3 S 8
3 (01 00) 8 8 1 4 8
4 {00 10) 8 ? 6 8 8
5 (01 10) 8 8 6 8 8
6 (00 01) 8 2 1 8 8
7 (10 01) 8 8 3 8 8
8 absorbing 8 8. 8 8 8
TABLE 3 CALCULATION OF ARL
shift ARL
d Cl Cc12
0.0 370.4 225.0
0.2 308.4 176.1
0.4 200.0 104.5
0.6 118.7 57.8
0.8 71.5 33.1
1.0 43.9 20.0
1.2 27.8 12.8
1.4 18.3 8.69
1.6 12.4 6.21
1.8 8.69 4.66
2.0 6.30 3.65
2.2 4.72 2.96
2.4 3.65 2.48
2.6 2.90 2.17
| 2.8 2.38 1.87
[ 3.0 2.00 1.68




-11-

Average Run-Lengths of Shewhart Control Charts
with Supplementary Runs Rules

Yupin K. Fong

Abstract

A C program which determines the average run-lengths (ARL) of Shewhart control charts with
supplementary runs rules has been developed. By representing the supplementary runs rules with a Mar-
kov chain, the exact ARL can be easily determined [1]. This program reduces the number of initial
states in the Markov chain (as compared to [1]) resulting in a significant saving of computing time for
most supplementary runs rules. The ARL's calculated using Markov chains agrees with ARL's simu-
lated using a normally distributed random number generator.

1. Introduction

Shewhart control charts with supplementary runs rules (SCC/SRR) not only determine if the
measured parameter of a process is out-of-control by 30, they can also signal trends or shifts in the pro-
cess. For example, if the last eight measurements are all larger than the expected value, this might sig-
nify a shift which requires further investigation. With each additional runs rule, the average number of
measurements before a Type I [2] emror (average run-length, ARL) will decrease. A Type I error is
when a signal is generated due to the inherent randomness of the measured parameter and not due to a
shift in the process. Thus the trade-off is between the number of trends or shifts that can be monitored
versus the ARL.

Recently, Champ and Woodall [1] proposed a simple and efficient method to determine the
ARL’s of SCC/SRR using Markov chains. This method is significant because it allows the calculation
of the ARL when many runs rules are used simultaneously. The implementation of Champ and
Woodall's method in a C program is the subject of this project. Section II of this report will describe
the use of Markov chains to determine the ARL’s of SCC/SRR. Section III discusses the specifics of
the C program including the algorithms used to 1) reduce the number of initial states in the Markov
chain and 2) generate normally distributed random numbers. Finally, Section IV demonstrates the func-
tionality of this ARL C program including the simulation of ARL’s using a normally distributed random
number generator. Insight into the factors which determine the ARL computation time are also dis-
cussed in this section.

2. Markov Chain Representation of SCC/SRR

The purpose of this section is to give a short description on what is a Markov chain representa-
tion of SCC/SRR and how the ARL's can be calculated from this Markov chain. A clear understanding
of this topic is required to follow the specifics of the C program discussed in the next section. A more
general and mathematical treatment of this problem can be found in [1,3].

Fig. 1a shows an example of a SCC/SRR. Each rule (k,m,a,b) consists of four parameters. If m
of the last k measurements fall within a and b, then an out-of-control signal is generated. a and b are
in terms of normalized ¢’s. Rules 1 and 2 describe the usual Shewhart 3o control chart. Rules 3 and 4
are the supplementary runs rules. Rule 3 states that if 2 of the last 3 measurements are within (-3,-2)
then a signal should occur. Similarly, Rule 4 is for 2 of the last 3 measurements being within (2,3).
The state table for the Markov chain representation of this SCC/SRR is shown in Fig. 1b. Each row is
a different state of the Markov chain while each column corresponds to a different region which the
measurement can be within. In this example, the regions are (-oo,-3), (-3,-2), (-2,2), (2.3), and (3.0)
corresponding to all possible measurement values between -co and +oo. The entries in the table point to
the next state for a given present state and a measurement within a particular region.

The initial state represented by (0/0/00/00) is the first state. Each section in (0/0/00/00)
corresponds to one of the four rules, the first section corresponds to rule 1, the second corresponds to
rule 2, and so on. For any k=m rule, the section will contain one digit representing how many consecu-
tive measurements have been in (a,b) for that rule. For any k<>m rule, the section will contain m-1
ones and zeros representing the time evolution of the measurements and how they correspond to that
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rule. For example, 10 represents that the last measurement was within (a,b) while the next to last
measurement was not. Similarly, 01 represents that the next to last measurement was within (a,b) while
the last measurement was not. Additional states are created when a new state representation is gen-
erated. State 0 is the "absorbing” [1] or signal state. For example, if a new measurement is within
(-3,-2) and the present state is state 2, 4, 5, or 6, then the next state will be state 0 (a signal generating
state) because 2 of the last 3 measurements were within (-3,-2).

The ARL is the expectation value of the number of measurements before an out-of-control signal
is generated,

ARL =EN) = 3" h Pr(N = h), (1)
h=1

where Pr(N = h) is the probability that the number of measurements is h. This probability can be deter-
mined recursively with the use of the state table (Fig. 1b). Forh > 1,

Pr(Ns; = h) = pro Pr(Ns; =h — 1) + prs Pr(Ng; = h - 1) + pre Pi(Ns3 =h - 1), 2
Pr(Ng; = h) = pgrs Pr(Ngy = h — 1) + pr¢ Pr(Ngs =h - 1), 3)

and similarly for Pr(Ng; = h), Pr(Ng4 = h), ..., where Ns, is the run length of the chart with initial state i
and py; is the probability that the measurement is within region j. Note that N = Ng, since the initial
state is the first state. Forh=1,

Pr(Ns; = 1) = 1 - prz — Pr3 — PR @

Pr(Ns; = 1) = 1 - prs - Pras )
and similarly for Pr(Ngs = 1), Pr(Ngs = 1), ...

';'h;, ARL in Eq.(1) can be approximated for run-length probabilities which are geometrically lim-

ited [1] by,

A

aoap PN = n’) (1= A) + 11, ©)

ﬂ.
ARL=ZhPr(N=h)+
=
where

[1-3 Pr(N = b))
-— o
[1- Pr(N = b)]
.25

and n’ is expected to be less than 25 for most SCC/SRR. Fig. 1c shows how n’ affects the calculated
ARL for the rules of Fig. 1a. The ARL converges to 225.4384 forn’ = 9.

3. Specifics of C Program for ARL Calculation

The method described in Section II to determine the ARL of SCC/SRR was implemented in C
because C is the standard programming language for UNIX environments in addition to being easily
portable to other computers. This section will discuss the specifics of this C program. The ARL pro-
gram consists of four main sections as shown in Fig. 2. They are 1) Input processing, 2) Initialization
of parameters, 3) Creation of states, and 4) ARL calculation.

Input processing is handled in the procedure "Get_rules” which scans the input deck (Fig. 3a) for
key words. Runs rules are signify by the word ‘rule’ followed by the parameters k,m,a,b. ‘nstar’ is the
number used for n° in Eq. (6) and (7). ‘shift’ is the amount of shift (normalized to o) of the normal
distribution. ‘combine’ and ‘print’ are flags to combine certain states in the initial state table and to
print out the final state table, respectively. ‘random’ is the number of ARL simulations used to deter-
mine the simulated ARL. - ‘end’ is required for the last line of the input deck.

Initialization of parameters includes three procedures which do most of the bookkeeping of the
program. "Regions” determines the different regions by calling a pick sort routine with all the values
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of a’s and b’s. Pick sort is the fastest sorting algorithm for sorting less than 50 numbers (i.e., less than
25 rules). The probability for the measurement to be in each region is calculated using the C math
library erf function. A shift in the normal distribution will affect this probability by shifting the limits
of the regions. "In_rule” determines which rules comrespond to each region while "State_rep” deter-
mines the length required for the state representation. :

Creation of states includes both the generation of new states and also the user option of combin-
ing certain states. New states generation 'takes place in the procedures "Create_states” and "Next_state".
The procedure "Combine_states” combines all states with identical rows to a single state resulting in a
smaller state table.

The method to determine if a new state is generated follows that described in Section II. Given a
present state and a new measurement within a particular region, "In_rule" is used to determine which
rules correspond to this region. A check is first made to see if an out-of-control signal should be gen-
erated; otherwise, the state representation is updated. This new state representation is reduced, if possi-
ble, to a basic state representation which contains all the required information as the original new state
representation. The basic state representation is then used to compare to previous state representations
to avoid duplicate states.

State representation reduction is achieved by realizing that some of the information in the state
representation can be disregarded. For example, a rule (5,6,a,b) with state representations of 10011,
10010, 10001, and 10000 are all equivalent because two measurements which were not within (a,b)
have been made (the next to last measurement and the one before the next to last measurement). This
state representation reduction greatly reduces the number of initial states in the Markov chain especially
when the permutations of many rules are involved. Examples of this will be shown in the next section.
This process of creating new states and determining the entries of the state table continues until no new
states are generated.

Combining states with identical rows is not required to determine the ARL. It does reduce the
size of the state table which reduces the amount of computing time needed to calculate the recursive
run-length probabilities. However, this time saved might be offset by the time spent combining the
states in the first place because of the extensive amount of bookkeeping needed. Entries in the state
table will have to be updated to point to the the new combined states. Also whenever states are com-
bined, the entire new state table has to be checked again to see if any identical rows were generated
during this process. Again, examples of this will be shown in the next section including the fact that
for runs rules which do not overlap (rules (k1,m1,1,3) and (k2,m2,2,3) do overlap), the state representa-
tion reduction algorithm generates a state table with no identical rows.

The calculation of the ARL takes place in the procedure "Find_ARL". "Prob_table" is first called
to determine the pg; Ng’s of Egs. (2)«(5). The ARL is then calculated for n°, n"-1, and n°-2 using Egs.
(6) and (7). Comparing the ARL’s can determine if a larger n'is required for a more accurate ARL.

The procedure "Random_ARL" determines the ARL using a normally distributed random number gen-
erator.

Normally distributed random numbers can be generated [4] using a uniform random number gen-
erator available in the C math library. Two random numbers, R; and R,, which are betws=en 0 and 1
(i.e., normalized to the maximum number that can be generated) are used to calculate 6 = 2rR, and R
= (-2 nRY)*2. A pair of nommally distributed random numbers N; = Rcos(0) and N, = Rsin(6) can
then be generated. Any shift in the normal distribution is added to N; and N,. The state table is used

to determine when an out-of-control signal should be generated due to a sequence of these random
numbers.

4. ARL Examples and Analysis

The SCC/SRR input deck of Fig. 3a is used to demonstrate the functionality of the ARL C pro-
gram. Fig. 3b shows the output generated using this input deck. 29 states, not including the O state,
are created. The calculated ARL is 166.05 while the simulated ARL is 166.82 showing good agreement
between the two results. Fig. 3c is a table comparing the ARL of this SCC/SRR against the ARL of
just the first two rules in Fig. 3a, i.e., a regular Shewhart control chart. The table shows that a shift in
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the distribution is detected much more quickly for the SCC/SRR as expected. This advamage decreases
for larger shifts because an out-of-control due to the regular Shewhart controls is more likely. Of
course, the drawback of using SCC/SRR is the shorter ARL for a zero shift in the distribution.

The SCC/SRR in Fig. 3a is an example of runs rules which do not have overlapping regions. The
state representation reduction algorithm generated a state table with no identical rows, i.e., a state table
which do not have any states to combine. This is always true for SCC/SRR which do not have overlap-
ping regions. Fig. 3d shows that 79 initial states are generated when this algorithm is not used. These
79 states are combined to form 39 states and then further combined to form the final 29 states.
Remember even after the 29 states are determined, one last check had to be performed to make sure no
new identical rows were generated. The ARL computing time is also shown in Fig. 3d. Combining
identical states did not reduce the computation time as compared to the case when all 79 initial states
were used. Note that these computation times do not include the time needed to calculate the simulated
ARL.

The amount of computing time required to calculate the ARL depends on the number of rules in
the SCC/SRR, the k of each rule, and if the rules have overlapping regions. More rules, larger k, and
more overlapping regions all increase the number of initial states in the Markov chain rcsulting in an
increase in the ARL computation time. By adding two rules to the SCC/SRR of Fig. 3a. the computing
time for the SCC/SRR of Fig. 4a increases from 57 msec to 260 msec (Fig. 4b). If the state reduction
algorithm is used, the number of initial states increases to 95; otherwise there will be 845 initial states
and an ARL computation time of 12,803 msec.

5. Conclusions

A C program which determines the ARL of SCC/SRR using a Markov chain has been developed.
This program includes an algorithm which reduces the number of initial states in the Markov chain thus
significantly reducing the ARL computation time for most SCC/SRR. The ARL's calculated using this
program agrees well with ARL’s simulated using a normally distributed random number generator.
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(@ rulel (1,1,-00,-3)
rule 2 (1,1,3,4<0)
rule 3 (2,3,-3,-2)
rule 4 (2,3,2,3)
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0/0/00/10
0/0/01/00
0/0/01/10
0/0/10/01
0/0/00/01

NN AW —
cocoocoococooA
— = b= A
coccoococooX

(c) nstar=12: ARL=2.254384e+02
nstar=11: ARL=2.254384¢e+02
nstar=10: ARL=2.254384e+02
nstar= 9: ARI=2.254384¢+02
nstar= 8: ARL=2.254382¢+02
nstar= 7: ARL=2.254368e+02
nstar= 6: ARL=2.254527e+02
nstar= §5: ARL=2.255061e+02
nstar= 4: ARL=2.246600e+02
nstar= 3: ARL=2.228728e+02
nstar= 2: ARL=2.766332¢+02
nstar= 1: ARL=3.703983e+02

Figure 1: Sample runs rules (a), states (b) and ARL as a function of nstar (c)

) Input processing
a) Get_rules

II) Initialization of parameters
a) Regions
b) In_rule
¢) State_rep

IIT) Creation of states
a) Create_states
b) Next_state
¢) Combine_states

IV) ARL calculation
a) Find_ARL
b) Prob_table
¢) Random_ARL

Figure 2: The structure of the ARL program
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* -100 and 100 were used instead of - and +o

ruell 3 100
ruled5 -3 -1
rueds5 1 3
nstar 20
shift 0.0
combine
print
random 1000
end

() 1 00/0000/0000 0 2 1 3 0 16 0/0/0000/1010 0 7 8 25 O
2 0/0/1000/0000 0 4 5 6 O 17 0/0/10000110 0 4 S5 26 O
3 0/0/0000/1000 0 7 8 9 0 18 0/0/00000110 0 2 1 27 O
4 0/0/1100/0000 0 1011 12 O 19 0/0/0000/1110 0 2829 0 O
5 0/0/0100/0000 0 13 1 3 0 20 0/001110000 0 0 1 3 O
6 0/0/0100/1000 0 14 8 9 O 21 0/00111/1000 0 0 8 9 O
7 0/0/1000/0100 0 4 5 15 O 22 0/0/10110000 O O 5 6 O
8 0/0/0000/0100 0 2 1 16 O 23 0/0/10110100 0 O 5 15 O
9 0/0/0000/1100 0 17 18 19 O 24 0/0/1101/0000 0 O 11 12 O
10 0/0/1110/0000 0 020 21 O 25 0/0/0000/1101 O 17 18 0 O
11 0/0/0110/0000 0 22 1 3 0 26 0/00100/1011 0 14 8 O O
12 0/0/0110/1000 0 23 8 9 0 27 0/0/0000/1011 O 7 8 0 O
13 0/0/1010/0000 0 24 5 6 O 28 0/0/10000111 0 4 5 0 O
14 0/0/1010/0100 0 24 5 15 O 29 0/000000111 0 2 1 0 O
15 0/0/0100/1010 0 14 8 25 O
nstar=20: ARL=1.660545¢+02 random ARL=1.668210e+02
nstar=19: ARL=1.660545e+02
nstar=18: ARL=1.660545¢+02

(c) Rules 1,2 Rules 1,2,3,4
shift ARL SIM ARL ARL SIM ARL
00 37040 36220 166.05 166.82
04 200.08 189.80 63.88 65.67
0.8 71.55 74.09 19.78 20.22
1.2 27.82 28.30 8.84 8.64
1.6 12.38 12.39 5.24 5.36
20 6.30 6.29 3.68 3.72
24 3.65 3.55 2.78 2.1
2.8 2.38 235 2.14 2.12

(d) (@ with staie representation reduction algorithm

(II) without algorithm, but combine states
(IIT) without algorithm, do not combine states

4y an am
states 29 79 t0 39 t0 29 79
computation time 57 msec 153 msec 148 msec
(DECstation 3100)

Figure 3: Simple Chart specification (a), states (b), performance (c) and simulation cost (d).
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(@) rule11-100-3
rulell 3 100
rule4 5-3 -1
ruleds5 1 3
rule56-1 0
nuesS56 0 1
nstar 20
shift 0.0
combine
end

(b) (I) with state representation reduction algorithm
(II) without algorithm, but combine states
(III) without algorithm, do not combine states

0y I {m
states 95 8451025310121 1095 845
computation time 260 msec 13,380 msec 12,803 msec

(DECstation 3100)

Figure 4: Complex Chart specification (a) and simulation cost (b).



Using Neural Nets to Reconize Non-random Patterns
in Control Charts

Timothy H. Hu

Abstract

Often, statistical process control depends on the recognition of special non-random patterns in the
data. Since it is not practical to have a trained statistician to inspect all charts for non-randomness, it
has been proposed to apply an automated pattern recognition procedure to this task. In this report, a
simulated "neural net” that can be trained to identity special non-random patterns is used to recognize
shifts and trends in a noisy univariate control chart. The method is compared to the Shewhart Control
Chart with Western Electric Rules.

1. Introduction

Often, statistical process control depends on the recognition of special non-random patterns in the
data. An example is shown in fig.1 where the process is well within the control limits but clearly there
exists a cyclic pattern from data 10 to data 50. Since it is not practical to have a trained statistician to
inspect all charts for non-randomness, it has been proposed to apply an automated pattern recognition
procedure to this task.

The Shewhart Control Chart has been used by the industry for a long time together with the
Western Electric Rules to detect non-random patterns on the control chart. The rule concluding that the
process is out-of-control if either;

1. One point plots outside the 3-sigma control limits.

2. Two out of three consecutive points plot beyond the 2-sigma waming limits.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from the center line.
4.  Eight consecutive points plot on one side of the center line.

Those rules apply to one side of the center line at a time.

The problem with this approach is that while it can detect large shifts and runs effectively, it is
completely useless for detecting small variations within 1-sigma. While statistically this may not be
significant, but early detection of runs with small increments is useful in modern robust process control.
The average run length (ARL) for small incremental changes is usually too large (> 10).

A simulated "neural net” that can be trained to identify special non-random patterns is used to
recognize shifts and trends in a noisy univariate control chart. This method is then compared to the
Shewhart Control Chart with Western Electric Rules to see the advantages and disadvantages. The

ARL for the neural net is bounded above by the window size (W) which is 7 in this report and is much
more sensitive than the Shewhart Charts with run rules.

2. Methodology

2.1. Neural Net

A neural net can be trained to reconize non-random patterns. Given a set of input patterns and
the corresponding outputs as training set, the neural net can be trained to adapt to this "mode” of think-
ing by adjusting the weights of its nodes. When it is given a new pattern, the net will then look at the
patterns that it leamed and try to adjust the output values to give a best fit of the new patterns to the
patterns it leamed.

2.2. Training Set and Windowing

Using this property of neural network, we can give a set of artificially generated patterns for the
net to learn and then give outputs to reflect the input pattern. it would also be nice if one pattemn is
reconized, the other pattern should be suppressed. With this in mind, the following patterns are used.
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Pattern

In Control
Increasing with different slopes and starting point
Decreasing with different slopes and starting point
Shift Up with different step sizes and starting point
Shift Down with different step sizes and starting point

Since number of inputs in the training set is fixed, we have to do the same for the control chart.
A running window of size W is opened to sampled the process data for testing. Here an immediate tra-
deoff is what value of W one should use. Using a long window, the net is more immune to noise but
the response will be delayed.

Once the window size is determined, the training set is of great importance. For example, choos-
ing too small a slope to train will make it too susceptible to noise while choosing too large will make it
insensitive to small changes.

23. Determination of Alarm

With the above training set, there can be four different indicators (I;’s), namely the four outputs.
It is obvious that a full detection of a particular pattern will give a value closed to 1 while the others
will be suppressed. Should an alarm be sounded for a certain output greater than a certain threshold
value? What about false alarm? Also it is tedious to look at 4 outputs, is there a way to combine the
outputs and give one combined output? There is no best answer to the above problems.

The method used in this report is filtering the different indicators and pooling the filtered outputs
to give a combined warning signal X. Low pass filtering is used for smoothing the four outputs and
eliminates false alarm triggered by pulses. The pooled output is a combined information to give an
indication of in-control or out-of-control. Alarm is sounded if X passes through some threshold region.

3. Implementation

3.1. Neural Net

A neural net simulator written by Fariborz Nadi is used to simulate the "neural net”. The program
takes in input patterns and corresponding outputs and generate a multi-layer "neural net” with structure
specified by the user. The number of input is the same as the window size and the number of output is
four in this case. The less degree of freedom the neural net is given, provided the training patterns con-
verge to the desired output, the better. Since using just the input and output layer didn’t give a con-
verging output, a three layers structure is used with the minimum hidden nodes just enough for conver-
gence.

3.2. Training Data and Neural Net Specification

A window size (W) of 7 is chosen to balance the tradeoff between response time and noise
immunity. The network thus is specified to be three layers with 7 input nodes, 10 hidden nodes as a
second layer and 4 output nodes. The parameters file used is shown in fig.2.

The training set used is shown in fig.3 and the corresponding output in fig.4. Set 1 is for in-
control operation; set 2 to 7 is for increasing slopes; 8 to 13 is for decreasing slopes; 14 to 22 is for
step up and 23 to 31 is for step down.

From the above data, one may suggest that if we take the differentials between successive data
points, then we should eliminate the use of different starting points and for each slope it will be a
different constant level for training. Also, for the step data, it will become an impulse. There are
several drawbacks of this approach. First, the above method is like taking derivatives from a noisy data
and is very susceptible to noise. Also the neural net is not so good in recognizing different constant lev-
els as it is trying to fit the input pattern to some reference pattern and every constant patterns look the
same to the neural net and will confuse the net.
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3.3. Input and Test Data

The input data (D;’s) has a mean (m) of 0.5 and a sigma (o) of 0.05. The net takes in inputs
from O to 1, therefore the samples in the window (S;’s) are scaled according to the following

Di -m
ko

k is a design parameter for the sensitivity of control chart. In this report, a value of 3 is used for k to
give full scale data when the input is 3 sigma form the mean.

S;= x05+05

3.4. Filtering of Output and Warning Generation

A running average is an equivalent of low passing the indicators. A running size of 3 is chosen
for smoothing out the indicators. The waming signal (X) is the combination of the filtered indicators.

X = FINC + FSUP - FDEC - FSDW
where:

FINC = filtered increasing indicator
FDEC = filtered decreasing indicator
FSUP = filtered step up indicator
FSDW = filtered step down indicator

If X is too positive, the process is out-of-control and is increasing. If X is too negative, the data
is out-of-control and is decreasing. A value of + 0.4 is chosen as the threshold. This is reasonable as if
there is a strong indication of a trend, the indicator will be a full 1 and the filtered value will be closed
to 0.33 while the others are suppressed, so a value of 0.4 is right above the noise level but sensitive
enough for significant small changes.

3.5. Input Generation and Experiment

The Input is generated by BLSS and two sets of data are generated and compared with the perfor-
mance of Shewhart Chart with Western Electric Rules. One set contains 180 data points with large vari-
ation of the mean. The second is generated with 60 data points and small variations of the mean. The

_ sigma is controlled to be constant throughout the experiment.

4. Examples and Results

4.1. Small Variations

In fig.5, the data with small variations is shown and the warning signal with the alarm of the
Westemn Electric Rules are shown. In fig. 6 are the pattern indicators. A 1 on the WE line means alarm
by the WE rules and a value larger than 0.4 on the FOUT line indicates an alarm by the neural net.
The data is set up such that it is random from 1 to 10 and then the mean changes as a sine wave of
period 10 and amplitude sigma (0.05). The last 10 data is also random with mean back to 0.5.

The weakness of WE rules is completely exposed in this case. Since the process is varying in a
small amount around the mean, the WE rules failed to detect most of the variations while the neural net
picked up all the changes and made alarm in 17, 28, 36 and 47 while the WE rules can only detect it at
50. The pattern indicator can explain the reason for alarm and the X values shows which way the pro-
cess is out of control right away.

Note in here, the net can reconize the small changes only after it moves the full window into the
increasing data. Since the window size is 7, that explains why it sounds alarm around nx10+7. For
large changes, there is no need for the window to fall completely on the increasing data as shown in the
next example.
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4.2. Large Variations

A large example, with 180 data points are generated with some large shifts and trends, is shown
in fig.7 together with its warning signals. It is expanded into subsequent figures.

In fig.8 are data points 1 to 30 and fig.9 its indicators. The pattern is completely random here.
WE gives no alarm at all but the net gives an alarm at 21. By looking at the indicator, there is a strong
indication of step up shown in 21 which indicates a step up in 21 - 3 = 18. The stepping is a special
indicator. It is delayed by about half of the window size (W) and in this case it is 3. This is so because
in the training set the step point is approximately in the middle of the window. Several attempts has
been made to shift the step to the front of the window to remove the delay. One experiment was tried
by putting different weights on the sampled data within the window. This was not successful becasue
by putting more weights on the new samples, one can ensure the early detection of the step but it also
gives a lot of false alarm or wrong indications. As a result, the step has to be around the middle of the
window and a delay of about W/2 is the biggest draw back of this approach.

Fig 10 and 11 are for data from 31 to 60. Here a big step up occurred at 32 and WE picked it up
immediately while the net picked it up at 34. Note that because of the big step, the net should reconize
it as a step in 35 but the indication of increasing is strong, an early alarm due to increasing mean will
be sound a data point earlier! After 47, the process is back to normal again.

Fig 12 and 13 are for data from 61 to 90. A gradual increase of the mean occurred in here. The
net picked it up at 66 for a single alarm and then alarm from 75 on while the WE rules sounded alarm
from 78 on. The net is doing a lot better than the WE rules if the change is gradual even if the change
of mean is big. .

Fig 14 and 15 are for data from 91 to 120. A gradual decrease of the mean occurred. The net
picked it up in 109 and then on. The WE rules sounded alarm from 110 on. Again the net is doing
better.

Fig 16 and 17 are for data from 121 to 150. The mean kept on falling till 130 and then rise again
from that point on. The net picked it up in 146 while the WE rules in 150. The net is doing better
again.

Fig 18 and 19 are for data from 151 to 180. The mean kept on increasing and then immediately
dropped with a sharp transition from increasing to decreasing and then back to normal. the net picked it
up at 161 while the WE rules picked up in 162. The net is a step earlier again.

43. Average Run Length

Though a formal calculation of the ARL is hard to calculate, it is obvious that the ARL is
bounded above by the window size (W) as for the small variations, the net can detect it once it moves
the whole window within the runs. With large variations, the ARL is going to be less than W becasue
the net will ry to fit the large variation with the corresponding trained pattemns when enough data
points with the large variation moved into the window. Therefore, the ARL is approximately bounded
by W/2 and by W.

5. Conclusions

The neural net approach is much better than the traditional approach of Shewhart Chart with
Western Electric Rules in several ways. it is more sensitive to small changes while the WE rules failed
to detect. The ARL is much shorter for small variations except for a step across the 3-sigma line. When
the data jumped across the 3-sigma line, the WE rules sounds an alarm immediately while the net is
delayed by half the window width. That is one reason for choosing a small window size and use filter-
ing to eliminate the noise problem. The neural net also gives information of what kind of change occurs
as it reconizes the trained patterns while the WE rules can only give indication of out-of-control. Also
to avoide the above problem, one can combine the run rules with the "neural net" to give the best per-
formance.

The results we have achieved so far show a huge potential for developing the "neural net” control
chart. Further experiments should be done to include other patterns. e.g. cyclic pattern. The net can use
running data to train itself adaptively for recognizing cyclic patterns instead of using some pre-
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determined training patterns. Optimal size of filtering window and the window size should be found. A
better training set may even give better semsitivity. Varying k, the scaling parameter adaptively to
change the sensitivity for small changes and large changes of mean should be interesting.
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Investigation of CUSUM Control Chart Run-Length Distributions
Christopher J. Hegarty

Abstract

The method of Brook and Evans (I] is implemented and used to evaluate the run-length distribu-
tion of cusum control charts. The method is shown to give accurate results and appears capable of gen-
erating the run-length distribution of any desired cusum chart.

1. Introduction

While CUSUM charts can be designed by reference to tables, occasionally it is valuable to evalu-
ate the actual probability distribution of their run lengths. This might be important when interpolation or
extrapolation from tabulated values cannot be relied upon, or when non-standard limits or violation
rules must be investigated. Brooks and Evans (1) have described a procedure that can be used for the
evaluation of this probability distribution. The objective of this project is the implementation of and
experimentation with this algorithm.

2. Methodology
The original definition of the cusum chart from Page [2] is the following: Plot

&=$@-m) )

against the number of samples, where D; is the i® sample value, K, is the reference value and n is the
number of samples. If S, exceeds the value H, known as the decision interval, the process is considered
to be out of control. If the value S, ever drops below zero it is reset to zero. This is a one-sided test,
but a two-sided test can be conducted by running two one-sided tests in parallel, choosing (for exam-
ple), the second test sum to be

n
Sn. = Z X2-D) @
i=l
A description of the state of the process is the following: if S,” > H, and S, < Hj, the process is in con-
trol, otherwise the process is out of control.

The choice of values for K, and H; (and K, and Hj for a two-sided test) determines the properties
of the test. Consider, for example, a test to determine whether the mean of a process has shifted from
Ho to ;. A sensible choice for K will lie between |14 and p,;, because if the average value of the sam-
ples Di becomes larger than K, ultimately the value of S, will exceed H; and the process will be con-
sidered to be out of control. The value of H; determines the probabilities of type I and type I errors: a
small value of H; will result in many false alarms due to random fluctuations of the value of S, exceed-
ing Hy, and a large value of H, will result in large type II error and a long run-length to detect the out
of control condition. The most common criterion for choosing H; and K, in practice is to try and
achieve certain average run lengths (ARL, the average number of points plotted before the value H; is
exceeded); we require ARL(j1g) to be large and ARL(i,) to be small,

An alternative approach to determining whether a cusum chart is out of control is the V-mask

proposed by Barnard [3]. The approach consists of placing the V-mask on the cusum control chart with
the origin O on the last value S, and plotting points

&=$m-m 3

If all the previous plotted values S, - - - S, lie within the two V-mask lines at an angle of 6,
then the process is in control. This is a two-sided test: if any point lies above the upper arm, a down-
ward shift in the mean is indicated, whereas if any point lies below the lower arm an upward shift is
indicated. It can be shown [4] that the V-mask with parameters d and 0 is equivalent to two one-sided



tests with:
K; = 4o + w tan(6) (4a)
H; = d tan(6) (4b)
K3 = Ho — w tan() (o)
H, = —d tan(0) @d)

where w is the scale factor defined as the ratio of horizontal distance between points to unit distance on
the vertical scale. A one-sided test can be conducted with a V-mask by just using one arm of the V-
mask. Note that the average run length using two one-sided test can easily be calculated from the ARL
~of each test (ARL, and ARL,) using the formula:

1 1 1

ARL ~ ARL, @ ARL, ©)
The parameters d and 0 of the V-mask can be calculated by using
=2na-8
d=Sin(l - £ ©
- S
8 = arctan( 2W) )

where J is the shift in process mean we desire to detect, in units of sample standard deviation, and o
and B are the desired probabilities of type I and type II errors.

Brooks and Evans’ technique is described in detail in [1], but a brief overview is as follows:
Given a continuous variable D; and two positive real numbers K and H, divide the region between K

and H into T discrete regions each of width ¢ =(H - K)—T. Let each region be considered as
corresponding to a state E;, where the cusum chart is in state E; if the cumulative sum S, satisfies

K+¢i<S,<K+¢3(+]) if 05i<T (8a)

Sa>T if i=T (8b)

There are T+1 states, Eg E,, * - - Er. The sum S, will change value and cause the system to move
between these states, and the state Ey corresponds to the out of control condition and is therefore a ter-
minal state. This system forms a Markov chain, and the transition probabilities between states are
determined by the distribution of D;, and are given by:

Pr(E;—Eo) = pr(D; < K + (i+1/2) ¢) (%)
pr(E;—E,)) = pr((-i-1/2) ¢ < D; < (-i+1/2) ¢) (9b)
pr(E—E) = pr(D; 2 K + (T--112) ¢) (%)

: These values can be used to' form the Markov chain transition probability matrix. Letting
P, = pr((r-1/2) ¢ < D; S (r+1/2) ¢), and F, = pr(D; < K + (r+1/2) ¢), the transition probability matrix is

.Fo P ... B ... Py I-Fp, ‘
F, P, ... Py ... Pro I-Fry

P=|F; Py --- P;-. +e+ Praq 1-Froq (10)

Fist Pou Pj-.B-(-l P, 1-F,
0 0 0 o 1 |

If we form a matrix by removing the final row and column of P, the matrix R so formed has
some very useful properties. In particular, the solution p® to the equation

@ - R)p® = sRu®*» N ¢3))
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is the s factorial moment of the run length distribution. The i® element of p® is the s* factorial
moment for state E;, p®. The factorial moments are defined as

MO = E(X{) = E(X, (X-1) *** (Xms+D)) 12

where X is the number of steps required to reach state Et from state E;. In particular, X, is the number
of steps required to reach state Et from the starting state. From (12), it is clear that pé" = E{X;), which
is the average run length.

The factorial moments are not particularly useful in statistics (except for the moments of some
discontinuous binomial distributions), but it is easy to calculate the central moments from the factorial
moments [5]. This means that not only are we able to calculate the ARL, but also the higher-order
moments of the run length and so determine the variance, skewness and kurtosis of the run length dis-
tribution, but in this paper only mean and variance shall be calculated.

Note that we can calculate the parameters of the distribution of the run length for each state E;,
s0 it is possible to discover what the behavior of the chart will be for any desired value of S,. For the
purposes of this paper we chose only to examine the ARL starting at S = 0. It is also possible to calcu-
late the cumulative probability function of the run length. If we set

L,=d-R)1 (13)
then the first element of L, is the probability that the run length is one. Similarly if we define
Ln e RLn—l = R'-ILI (14)

the first element of L, is the probability that the run length is n. While (14) gives us a way to calculate
the distribution of run length as accurately as we desire, for normal applications the average run length
can be several hundred, and it may necessary to work with values of n up to several times the ARL.
While such calculations are certainly not beyond the capabilities of a modem workstation, it is possible
to obtain approximations to the upper percentage points of the distribution much more easily. An
approximation for L, is’

Xy

L, = (1 = DA™Y Sxy )X (15a)

= (1 - WA~y (15b)

where A is the maximum real eigenvalue of R, x and y are the right- and left-hand eigenvectors
corresponding to A respectively. It may be shown that because of the properties of R, A < 1. Similarly
an approximation to the probability that the run length will be greater than n may be found from

1-F, =AY zz;':; x (16)

It is also possible, given a probability «, to calculate the approximate value of the upper-c percentage
point of the distribution of run length. Let
X2y

= == 1
Sy a”n

Note that an approximation to ARL is ARL = co(1 — A). The upper-o percentage point of the run length
starting from state i is

o) =1+ (lllogl.)log(%) (18)
For large run length, a better approximation is
o =1+ (l/log).)log(%) (19)

It is clear that this technique promises to reveal a great deal about the distribution of run lengths. One
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important point about the above analysis is that the accuracy of the result depends on the value of T
chosen, since the approach discretizes a continous function. In this paper, the probability distribution is
always taken as Gaussian, but any distribution can be chosen, and exact answers can be obtained for
discrete distributions of D. Since calculation involves inversion of TXT matrices, it is obviously impor-
tant to keep T relatively small, and so T = 20 was used for all calculations other than accuracy checks
carried out at T = 25 and T = 50.

3. Implementation

The implementation of the above algorithms is fairly straightforward, requiring nothing more than
matrix multiplication, inversion, evaluation of eigenvalues and eigenvectors, and the ability to accu-
rately and quickly estimate the cumulative probability distribution of the Gaussian. Matrix inversion
and eigenvalue algorithms were taken directly from [6], with only minor modifications in detail. Solu-
tion for eigenvectors was via inverse iteration. Calculation of the central moments from the factorial
moments was carried out using the equations in [5], and a rational polynomial expansion was used for
the Gaussian cumulative distribution function [7).

4. Results

The results of this project were the output of the algorithm and analysis of that output. It was
discovered that the algorithm performed very well, with good agreement between results calculated with
it and those available from tables and approximations. Test calculations were carried out for a wide
variety of examples, including discrete distribution functions, and verified with tables and numerical
approximation. The next section will give some examples of plots of the probability density function of
run length.

§. Examples

Consider the following example: Our process has mean g = 4, and sample mean o, =0.25. It
will produce useable output for 1 < pg + 20; = 4.5. Set up a cusum chart to detect this shift and deter-
mine the run length distribution. Using (7), § =2 and let w=1, so 0 =45°. Chose & =0.01, and
B=001, so that d=230. It then follows that K, =p,+ wtan(®) = o+ &2 =4.5.
H; =d wan() = 2.30. From tables of cusum chart values of wtan(@) and d, ARL(yg) = 500,
ARL(, + 20;) = 3.06.

Using the technique outlined in section III above, we can find the ARL and the standard deviation
of ARL for both nominal i = p, and at the operating limit . = py + 20;. These values appear in Table
1 for different values of T.

1=l 1= o + 205
T ARL O(RL) ARL | o®L)

5 463.1 461.3 3.059 1.55
10 4737 4720 3.047 1.53
20 476.1 4744 3.045 1.53
25 4764 474.7 3.044 1.53
50 476.8 475.0 3.044 1.53
100 4769 475.1 3.043 1.53

Table 1: Mean and variance of run length for normal operation
and at the operating limit for different values of T.

Note that there is little change in the values in the table for T > 20 and consequently this value
was chosen for subsequent analysis. The values of ARL from the table agree with those interpolated
from standard tables. We can also evaluate the distribution of run length using Eqs. (13) and (14). The
results of the analysis appear in figure 1(a) and (b). Note that in figure 1(b) the eigenvalue approxima-
tion to the run length distribution has been calculated, and give fair agreement for run lengths greater
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than 4. The eigenvalue approximation is not shown in figure 1(a) because it is so close to the matrix
calculations as to be indistinguishable. From (18), we can also calculate approximations to the upper
percentage points of the distribution. For the case of W = o, the matrix calculation gives r;(0.05) =
1421, and the approximation in (18) yields r;(0.05) = 1416. For the case of p = g + 203, the matrix
calculation gives r;(0.05) = 7, and (18) gives r; = 6.5.

We can also plot the distribution of run length as a function of the value of L, as in figure 2.
This type of data could be very useful in practice for the comparison of different cusum chart designs
with the same values of ARL(j) and ARL(l, + 265).

Figure 3 contains a plot of the ratio of the average run length to the standard deviation of the run
length as a function of average run length. Note that for large run lengths, ARL and the standard devi-
ation of the run length are nearly equal. Furthermore, the very good agreement between the predictions
of (15) and the matrix calculations for Fig. 1(a) means that for the case of large ARL, a reasonable
approximation to the distribution of run length can be obtained from (15) and we are justified in saying
that the ARL is well-approximated by a geometric distribution with parameter A, but with a multiplying
constant x’. For small ARL, the geometric approximation is not very accurate.

As a final example, consider a two-sided test based on the earlier one: i.e., design a cusum chart
to test UL = Yo + 20;. So K; = 3.5 and H, = -2.30. Fig. 4 contains a plot of ARL as a function of mean
deviation. Note that the average run length for nominal conditions is half the value of the one-sided
test (since the two tests have the same ARL at p = ), but that the curve asymptotically approaches
that of the one-sided case, since the ARL of the other test when the mean is close the one of the con-
trol limits will be very large. For example, ARL(j - 20;) = 16.7x10° for the test with K = o + 20;.
Note that evaluation of the moments of the run-length distribution for the two-sided test is more
difficult than for the one-sided case; it is necessary to use the definitions of the moments. For exam-
ple, the variance of the two-sided run length distribution may be calculaied using

Variance = Zl (x = ARLY? [£,(i)(1 - F;()) + £26)(1 - Fy(i))] (20
i=

where f; and f, are the probability density functions of the two run length distributions, and F, and F,
are the cumulative probabilities. Using this formula to calculate variance and plotting the ratio of ARL
- to standard deviation for the two-sided case, we arrive at Fig. 5. Except for near 5 = 50 , the variance
of the two-sided cusum chart run length distribution may be approximated by choosing the smallest of
the two variances given by the central moment calculations, so ordinarily the calculation of (20) is

unnecessary.

6. Conclusions

This technique is very powerful and permits rapid evaluation of the distribution of run length for
a cusum chart. The matrix calculations in (13) and (14) are capable of accurately determining the run
length distribution for any values of K and H desired, although for values leading to large ARL the
much faster eigenvalue approximation of (15) is quite accurate. This technique could readily be used in
a control chart design package for rapid evaluation of cusum charts. Although the technique was origi-
nally intended for use with one-sided cusum charts, extension to two-sided charts in straightforward.
Calculation of the moments of the two-sided distribution is more time consuming than the one-sided
case, but is computationally feasible.

References
(1] D. Brooks and D. A. Evans, "An approach to the probability distribution of cusum run length",
Biometrika., vol. 59, no. 3, pp. 539Q549, 1972,
[2] E. S. Page, "Continous inspection schemes”, Biometrika, vol. 41, pp. 100Q115, 1954.

31 G. A. Bamard, "Sampling inspection and statistical decisions”, J. Royal Stat. Soc. (B), vol 21, no.
2, pp 239Q257, 1959.



(4]
(5]
(6]

(7

-138 -

K. W. Kemp, "The use of cumulative sums for sampling inspection schemes”, Appl. Stat., vol 11,
pp 16-31, 1962,

S. M. Kendall and A. Stuart, "Distribution theory”, in The Advanced Theory of Statistics, Volume
1, pp 65Q68, 4th edition, 1977.

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, "Numerical recipes in C",
Cambridge University Press, Cambridge, 1988.

Formula 26.2.17, p 932, Handbook of Mathematical Functions, M. Abramowitz andl. Stegun Ed.,
National Bureau of Standards Applied Mathematics Series, 10th printing, 1972.



Probability

2.5 10"

Probability

2.0 1073 -
1.5 1073
1.0 10°3 -
5.0 10
0.0 10° , . . .
0 500 1000 1500 2000

Flgure 1a. Run length probability density function at i = pg.

0.5 -

0.4 -

X
O
0.3 X  Eigenvalue Approximation
= O Matrix Calculation
0.2
X
(]
0.1 -
]
= =
0 T N % 8 %% 8=
() 5 10 15
Run Length

Figure 1b. Run length probability distribution at the operating limit. The value of A used
for the eigenvalue approximation was 0.468733.



Average Run Length

ARL/s(RL)

500 T

400 -

300 -

200

100

0 T T T T 1
0 0.4 0.8 1.2 1.6 2

Mean shift (s)

Flgure 2. Average run length as a function of the mean shift for the one-sided
case.

1.5 -

0.5

0 I I |
o 100 200 300 400 500

Average run length

Figure 3. Ratio of average run length to the standard deviation of the run length
distribution as a function of run length, for the one-sided case.



Average Run Length

ARL/s(RL)

250 -

200 —

150 —

100 —

50 —

Y I i | T |
0.4 0.8 1.2 1.6 2

(=]

Mean Shift (s)
Figure 4. Average run length as a function of mean shift for the two-sided case.
The curve is symmetric about x = 0.

2

1.5 -

0.5

0 50 100 150 200 250
ARL

Figure 5. Average run length as a function of the mean shift, for the two-sided
case



-43 -

A Variable Sampling Interval Control Chart Using Runs Rules
Tom Garfinkel

Abstract

Variable sampling interval charts offer significant advantages for processes with costly in-line
measurements. However, in order to compete with traditional, fixed sampling interval charts, one must
consider control strategies that incorporate a number of runs rules. Here, a program is presented for the
simulation of VSI charts with runs rules and it is shown that their sensitivity compares favorably to the
equivalent FSI charts,

1. Introduction

Process control charts for variables are widely used throughout industry to maintain product qual-
ity standards.This paper discusses the use of a variable sampling interval (VSI) X control chart [1] to
minimize the average run length (ARL) of a process that has shifted outside acceptable specifications
limits. The standard X control chart samples at constant intervals, i.e, has a fixed sample interval (FSI).
The VSI chart, however, samples at an interval which is dependent on the most recent X measurement.
Fig. 1 displays the control chart configuration of the VSI chart utilized. An X sample which lands
within the d, interval, on either side of the mean, would produce a sampling interval (SIp) different
from the interval (SI;) which would occur if the X value fell outside d, but within the signal limits. The
corresponding probability of each sampling interval are abbreviated P, and P;. When the process shifts
away from the desired mean, P; increases and SI;, occurs more frequently. Thus the out of control VSI
ARL can be reduced, relative to the FSI, by making SI; less than the sampling time interval associated
with the FSI chart.

There are several additional considerations necessary to design an optimal VSI chart for a given
manufacturing application. Knowledge about process yield, loss in revenue due to machine down time,
actual sampling costs, and other economic implications will all effect the process control implemented.
Finally, to minimize the ARL of a VSI chart, one can apply runs rules. Instead of identifying an out of
control process by a single X reading beyond the upper or lower control limits (UCL,LCL), a
combination(s) of measurements exceeding set limits, .e.g., three consecutive X values larger than UCL
can be used. An optimal runs rules VSI chart can thus be developed for a specific process control situa-
tion.

2. Description

The_situations studied here are FSI and VSI charts with shifts in the process mean. The most
common X chart, ARL=1/B, is for a FSI chart where the probability of exceeding UCL is B. This paper
uses a closed form approximation to the normal distribution to calculate these probabilities [2]:

P(x) = 0.5 + 0.5(1 — e*%)12 1)

This apporoximation applies for all x and is quite accurate (see Fig. 2). The FSI ARL can_therefore
easily be characterized as a function of the mean shift. The ARL of a VSI chart, where one X beyond
UCL is used as a signal, can be calculated from the following equation [1]:

ARL = 3" (P()p @

where t = time, and P(t) is the probability of sampling at time t. With the FSI chart the sampling times
are constant and known in advance. VSI charts, due to SI; and SI;, can sample at any time which is an
integral combination of the SI; and SI, intervals. Physically P(t) is therefore just a permutation of the
number of ways the time t can be reached, multiplied by the probability of each occurrence. It is for-
mulated below:

P@) =

(t~(SI- l)r)/SIl] (h?h)ISI‘P, 3)

= M
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where r refers to the number of SI, steps that could have occurred prior to the sample in question. The
algorithm used to implement these equations is shown in the program section (#1).

A plot of the ARL versus shift in mean (measured in standard deviations ¢ from an in control X)
is shown in Fig. 3. The details of the control charts are displayed in the upper right of the plot. "Con-
sec” describes the number of readings beyond the UCL necessary to indicate the process is out of con-
trol. All of the symbols except for the one followed by FSI correspond to VSI data. The two numbers
describing each VSI symbol are SI, and SI; respectively. The data is plotted on a semi-logarithmic
scale in order to include all points, not to downplay the significance of small shifts. Normally distri-
buted data, using P(x), was subjected to the process control limits and agreed reasonably well with
theoretical calculations. The program to generate and test the normal data is also included (#2).
Although the VSI shows a significant ARL advantage over the FSI, the VSI chart can still be improved
upon by applying runs rules.

The algorithms to perform FSI runs rules are just extensions of the simple Bernoulli summation
used to derive the relationship ARL = 1/B. A generalized program (#3) performs different runs rules
calculations based on these summations. To illustrate this algorithm the runs rule where n of n-1 meas-
urements must exceed UCL to signal a problem is briefly discussed. At each sample, starting with sam-
ple n-1, the number of ways of getting at least n-1 readings beyond UCL, multiplied by the probability
of each, will give the probability of a signal occurring at a sample. Each term is then weighted by the
cumulative probability that none of the previous samples produced the signal. The VSI chart can again
be approximated, and the results are discussed in the following section. One additional program (#4)
was written to study a situation not previously mentioned.

All of the cases discussed assume that the process shift occurs at a known time. A more accurate
model depicts the process at the appropriate mean until, randomly, a shift takes place. A modification to
the summations outlined was performed to account for this effect. A more rigorous derivation is per-
formed in [1]).

3. Results

In Figs. 4-8 the FSI and VSI plots of ARL vs X shift are shown for different runs rules. Each of
these plots has the ARL(in control) matched to 370, the FSI result when UCL=3, Thus the number of
false alarms, on average, is no larger for the in control VSI charts. The plots were reproduced for the
case where the process is initially in control before shifting No significant change was observed for any
of the VSI charts. This disagrees with the result in [1] for very large Sl, and is attributed to the less
complex algorithm implemented here. Both the values of SI, and SI; vary within a given plot, but Fig.
9 can be used to help distinguish their effects. The effect of increasing SI, is shown to saturate quickly;
Fig. 4-8 are therefore dominated by the SI; value. Since, ultimately, generating the minimal ARL is of
interest, Fig. 10 re-plots the lowest ARL curves. Note that a smaller SI; could have been chosen to
reduce the ARL even more.

In Fig. 10 it is immediately apparent that different runs rules prevail, or possess the lowest ARL,
in different shift regions. Recall that VSI's are matched when the process is in control, and therefore,
with identical SI, and SI; in all curves, have variable UCL values. The 8/8 curve is clearly superior for
small shifts, and offers the largest possible improvement. As the shift reaches 30, however, the ARL,
like all the other VSI curves, approaches the product of its SI;, value and the number of consecutive
samples required (0.8). Changing the desired ARL(in control) will move the "crossover” points at which
the different runs rules prevail (Fig. 11). Thus, for a specific process where the economic implications
as a function of process shift are known, it is possible to select a runs rules scheme which is most suit-
able. A linear combination could, of course, be utilized to balance the strengths of different runs rules.
One trivial example might incorporate both the 8/8 and 2/2 consecutive rules while maintaining a satis-
factory alarm rate. Thus, if either runs rule condition were reached, the process would be considered out
of control. This compromise would decrease the advantage obtained by using the 8/3 alone for small
shifts, but in a case where larger shifts are unacceptable financially it would improve the chart.
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4. Conclusions

The VSI X control chart can significantly reduce the average run length for a process that shifts
beyond acceptable limits. Minimizing SI; will produce the most dramatic decrease in ARL, without
raising the probability of false signals. The application of runs rules may optimize a VSI chart for a
well characterized operation by selecting the most suitable curve of ARL vs X shift. A combination of
these rules may best satisfy the process control demands for production.
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X Chart with Variable Sampling Interval for the Control
of a Photolithography Process

Jaime Ramirez

Abstract

A variable sampling interval chart has the advantage of increasing its sampling rate in anticipa-
tion of an out of control condition, while it regularly maintains a slower, more economical sampling
rate when the process appears to be operating properly. Given the costs associated with routine, in-line
wafer testing in VLSI manufacturing, it is shown here that a VSI scheme applied on a photolithogrphic
operation can offer significant advantages over a traditional, fixed sampling interval control strategy.

1. Introduction

Control charts are used to monitor processes, and many different types and variations exist [1-6].
The Shewhart X control charts are very common in the U.S., and several modifications to the original
chart have been suggested to improve its performance; some of these are: warning limits [1,2], supple-
mentary runs rules (3], and variable sampling intervals [4-6]. By incorporating the variable sampling
interval (VSI) which was proposed by M. R. Reynolds (4], the efficiency of the chart is greatly
increased.

The basic principle behind the VSI chart is that if the process seems to be in control, then sam-
pling should be done at.a lower frequency, but if the process seems to be running out of control, then
the sampling rate should be increased in order to detect with greater accuracy when the process runs out
of control. By detecting with greater accuracy when the process runs out of control, the amount of
material that needs to be tested in order to ensure its quality (ie.- that between the previous sample and
the one that produced the signal) is smaller, and since less testing is needed, the operating costs are
reduced. The cost advantages of using the VSI X control chart for monitoring a process have not been
pointed out, and this is what is investigated in this paper. In particular, an example of a photolithogra-
phy process is taken, and some numerical values have been calculated for the costs involved at a first
order. The cost of implementing a VSI scheme is compared to that of implementing a FSI one.

2. Methodology

It is necessary to have a thorough anderstanding of how the VSI scheme applied to the X chart
works. After reviewing the available articles which are related to this subject, an attempt to replicate
some of the important published results will be made. The software package BLSS will be used to
compute all of the probabilities and statistics necessary to obtain some of the results which have been
published by Reynolds. These results will be used to promote the improvements which result by varying
the sampling time. Once an understanding of the concept behind the VSI X chart is obtained, the cost
factor will be integrated. A general cost equation will be formulated and compared to that of the FSI X
chart. Several factors need to be considered in this cost equation, and an analysis to determine the most
important ones will be followed. Finally, some values representative of the costs involved in a lithogra-
phy process will be incorporated into these equations, and the cost for several cases for both FSI and
VSI X charts will be compared.

3. Implementation

The basic idea behind the VSI chart is t!,iat one should sample with a high frequency when the
process is close to being out of control, and if the process seems to be in control then the sampling fre-
quency should be low. It has been determined by several authors that the optimal number of sampling
intervals is two, which helps maintain the complexity of the chart at a low level. It has also been
proved that the best choice is to have one interval be as large as possible and one as small as possible.
When comparing the FSI and VSI charts, it is necessary to normalize them by picking one unit of time
as the base, and having it be the expected value of the sampling interval when p=p. for both charts. In
reality, since both charts have the same control limits, the average number of samples to signal (ANSS)
is always the same, so the expected value of the sampling interval is the one that determines the
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average time to signal (ATS), which is the parameter used to compare both types of charts.

Although the average number of samples to signal is the same, this does not mean that the sam-
pling costs will not play a role in the cost equation. This is because even though both charts test the
same number of samples, the VSI method tests them in a shorter period of time because it detects the
out of control signal quicker. Therefore, for a large fixed interval of time, the VSI method takes more
samples. The advantage however is that since the out of control signal is detected quicker, less low
quality products will be shipped or will need to be tested; therefore a reduction in sample testing is
obtained together with an increase in quality, both of which are good.

4. Results

BLSS was used to calculate the probabilities corresponding to the particular intervals that were
chosen setting the condition that E(Ri)=1 when p=|i in order to normalize all the information so that a
true comparison may be made. From these probabilities, the g-value (gamma’) was obtained. This is
the value where an imaginary line is drawn on the X chart to indicate the separation between the
regions where the different sampling rates will occur. In a way, this is like having a wamning line
which tell us to sample in a quicker fashion because it is more probable that the process is running out
of control due to a shift in the process mean. After this "waming line" is found, we divide the region
into sections corresponding to those of the sampling intervals, and the probability of being in these sec-
tions for given shifts in the mean is calculated. Then we have a table with the ATS values for the
different shifts in the process mean and for different choices of sampling intervals. A few more calcu-
lations are necessary in order to calculate the adjusted ATS, which correspond to the case when the
change in the mean occurs between two samples.

The BLSS input files and output files are found in Appendix A. The first output listing replicates
the results found in [4], and the second listing investigates the effects of having a fixed long sampling
interval and various short sampling intervals (asymmetric cases), and the effects of very small intervals
with very large ones while maintaining symmetry. The results agree with what was postulated by Rey-
nolds in [4], and the best choice of sampling intervals is to have them as far apart as possible (ie.- a
very short interval and a very long one).

5. Examples

In applying the VSI X chart to a photolithography process, some information regarding the cost
of the equipment, testing time, type of testing to be done, wait time, etc. need to be investigated. When
working in a photolithography process, one must be aware that there are many parameters which need
to be monitored, and each one will be affected only by certain equipment, chemicals, processing, etc.

Consider the case of monitoring the thickness of the photoresist prior to exposure. The resist
thickness plays an extremely crucial part in the resolution of a system because of the linewidth varia-
tions which result. There are many ways to monitor the thickness of the resist after it has been spined
on: the resist thickness can be measured using and ellipsometer, or it can be measured after exposure
by measuring the reflectivity (ie.- indirectly measuring the amount of bleach present in the resist), etc.
The reflectivity measurement can be done in situ, and an autoexposure may be possible. I will assume
an ellipsometer is used, and assuming it takes approximately 3 minutes to measure a wafer, the testing
cost is roughly $1 (assuming an equipment cost of $100K run continuously during 3 shifts, and the cost
of labor is $10/hr).

If the resist thickness is too large, then it may be possible to bake the resist to remove some of
the material (although some of its photo-chemical properties will be slightly altered), or the resist can
be removed and re-deposited. I will assume that the resist is removed and re-deposited. The cost of
re-working a wafer can be calculated to be about $4 if the cost for processing a 4" wafer is about
$400-$500 and 120 processing steps are needed (15-20 lithography steps), and I assume the cost is dis-
tributed proportionately. (The costs are all estimates, and are intended to be used just for the purpose
of illustration.)

There are usually 20-24 wafers per batch. If 1000 wafers per week are processed in batches of
20 wafers, then at least 4 wafer steppers would be needed. If 4 wafer steppers are used, then 250
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wafers pass through each, or the equivalent of about 13 batches in a week, or 2 batches per day, run-
ning the 20 processing steps on each. It is clear that in reality all of the equipment is synchronized so
as to have the wafers "flow" through them, in this case, the equivalent of 40 batches run per day on
each stepper. I will assume that the standard sampling interval is one sample every S batches. If we
set the VSI chart to have the following two sampling intervals: d1=0.2 (ie.- sample each batch), and
d2=1.6 (ie.- sample one batch for every 8), then we will obtain ATS values which are slightly better
than those found for (0.2,1.5) in the second sample of intervals in Appendix A.

If the process is in control, but we get a false alarm: in the FSI method, we need to inspect the
last 5 batches and rework the necessary wafers. If we assume that half the wafers need to be reworked,
then the cost for inspecting and reworking these wafers is $300 (3100 from inspection and $200 form
rework); in the VSI method, we would detect the error with a small sampling interval, and therefore
only one batch would need to be inspected and half of those wafers would need to be reworked, at an
expense of only $60. Since the process is in control, the ATS is equal for both, and therefore in the
same period of time they both only detect one error.

If a shift of 1.0 occurs, then for the FSI method, it would take on the average 43.89 standard time
units to signal (ie.- after 43.89*5 batches are processed). For the VSI method, it would only take on
the average about 30 (<31.53) std. time units to signal. In that period of time, the same number of
samples would have been taken on the average for both methods, therefore in a period of 43.89 stan-
dard time units, the VSI method would have sampled at most 1.463 times as many batches. In a period
of 43.89 std. time units, 43.89 samples were taken on the average, at a cost of $43.89. Multiplying
$43.89 by 1.463 roughly give us 64.21 samples, or approximately $64.21. Therefore the total expense
for the FSI method on one time period when a shift of 1.0 occurs is roughly $344, whereas for the VSI
method it is only $125 (60+65) (assuming the problem which caused the process to go out of control
was fixed, otherwise the cost would have been 1.463(60+44) = 152. The advantages of the VSI method
are clear,

Since the cost of re-processing a wafer is larger than testing it, and since the batches contain
many wafers, the VSI method proves to be very good from an economic, as well as statistical, stand-
point.

6. Conclusions

The VSI X control chart is much more effective than its FSI counterpart in both detecting the
shifts in a shorter period of time, and reducing the cost which is incurred when the process is out of
control. It is very important to accompany this chart with an R chart which monitors the variance of
the process; an X chart alone does not serve its purpose.

The cost incurred when the process is out of control is the following:

For the FSI chart:
COST = (ATS) x (sampling cost) + (batch size) X ‘°W—°’;‘-°-‘lsl
For the VSI chart:
- sampling cost . rework cost
COST = (ATSfixed® x —Lg-——AT Svarabie (batch size) x —

As can be observed, the cost is composed of two costs: a fixed cost (second term), and a variable
cost. This equation can be maximized for any given costs.
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BLSS output which contains both input commands and output.
have been added to simplify the understanding of the data, and to make it

consistent with (4].

. d1=-0.0,.5,.3,.1,.1,.1,.1,.1

. dl=dl’

Appendix A

. d2-1.0,1.5,1.7,1.9,1,1,1.3,1.5,4.0

. . d2=d2°
. q0-.0027

.
e e e e e

p0l={d2-1)*(1-q0)/ (d2-d1)
p02=(1-dl1) * (1-q0) / (d2-d1)
p=(1-p02) /2+p02
qgau p > gamma

show dl,d2,p01,p02,gamma

Some comments

dl d2 Pol Po2 gamma’
A 0.000 1.000 0.000 0.9973 3.000
B 0.5000 1.500 0.4987 0.4987 0.6724
Cc 0.3000 1.700 0.4986 0.4986 0.6724
D 0.1000 1.900 0.4987 0.4987 0.6724
E 0.1000 1.100 0.09973 0.8976 1.633
F 0.1000 1.300 0.2493 0.7480 1,145
G 0.1000 1.500 0.3562 0.6411 0.9175
H 0.1000 4.000 0.7672 0.2301 0.2926
. x1-0.0,0.2,0.5,0.7,1.0,1.2,1.5,2.0,2.5,3.0,4.0
. qup=gamma-x1
. glow=-gamma-xl
. . up=3-xl
.+ low=-3-x1
. . pgau up > pupl
. . pgau gup > pup2
. pgau glow > pdown2
. . pgau low > pdownl
. . p2=pup2-pdown2
. . pl=pupl-pdownl-p2
. . percente=(dl*pl+d2+*p2)/(pl+p2)
. . ats=percent/(1-pl-p2)
. . ats=ats’ ATS
. . show {shape) ats . — D
Fs1 Sywhweraic asymter7:C
- ~
‘hsk d=1 .5,1.9 (.3,1.7) (.1,1.9) {Tl,l.l) (.1,1.3) (.1,1.5) (.1,4.0)
0 370.39 370.39 370.39 370.39 370.39 370.39 370.39 370.39
.2 308.43 305.89 304.87 303.85 306.46 305.08 304.44 303.24
.5 155,22 147.59 144.53 141.48 149.10 145.02 143.19 139.71
.1 92,32 83.07 80.48 77.10 85.28 80.86 78.90 75.25
1 43.89 36.52 33.57 30.62 37.29 33.60 32.03 29.19
1.2 27.82 21.65 19.19 16.72 21.98 19.01 17.80 15.65
1. 14.97 10.52 8.735 6.954 10.35 8.375 7.611 6.320
2 6.303 3.814 2.818 1.822 3.303 2.388 2.075 1.593
2.5 3.241 1.775 1.189 0.6029 1.229 0.8171 0.6946 0.5257
k) 2.000 1.039 0.6551 0.2709 0.5434 0.3527 0.3042 0.2451
4 1.189 0.5976 0.3611 0.1247 0.1861 0.1382 0.1296 0.1217
A B c o E F 6 H

.

. first=(dl*dl1*p01+d2*d2+p02)/(2* (d1*p01+d2+p02))

. first=first’

. show {shape) first

0.5000

0.6250

0.7450

E(Y)

0.9050

. second=(d1*pl+d2+*p2)/(1-pl-p2)
. second=gecond’
. show {shape} second

369.39
307.43
154.22
91.32
42.89
26.82
13.97
5.303
2.241
1.000
0.1886

369.39
304.90
146.64
82.96
35.69
20.88
9.813
3.209
1.228
0.5197
0.09481

369.39
303.88
143.60
79.61
32.80
18.50
8.151
2.3711
0.8223
0.3276
0.05730

. total=first+second
. show {shape) total

A

369.89
307.93
154.72
91.82
43.39
27.32
14.47
5.803
2.741
1.500
0.6886

370.02
305.52
147.26
83.58
36.31
21.50
10.44
3.834
1.853
1.145
0.7198

4
370.14
304.63
144.35

80.36
33.55
19.24

8.896

3.116

1.567

1.073

0.8023

0.5450

(E(N)~1) (E(Ri))

369.39
302.87
140.57
76.27
29.92
16.12
6.489
1.533
0.4169
0.1354
0.01979

369.39
305.46
148.14
84.36
36.44
21.19
9.661

2,779.

0.8497
0.2717
0.02952

Adjusted ATS

[4
370.30
303.77
141.47

77.17
30.82
17.02

7.394

2.438

1.322 -

1.040
0.9248

E
369.94
306.01
148.68

84.90
36.99
21.74
10.21
3.324
1.395
0.8167
0.5745

0.6350

369.39
304.09
- 144.09
79.98
32.83
18.33
7.816
2.009
0.5650
0.1764
0.02193

F
370.03
304.72
144.72

80.61 .
33.47
18.97

8.451

2.644

1.200

0.8114
0.6569

0.7250

369.39
303.46
142.26
78.05
31.30
17.16
7.103
1.746
0.4803
0.1521
0.02056

370.12
304.10
142.99
78.77
32.03
17.88
7.828
2.471
1.205
0.8771
0.7456

1.850

369.39
302.25
138.81
74.44
28.52
15.09
5.898
1.340
0.3635
0.1226
0.01930

371.24
304.10
140.66
76.29
30.37
16.94
7.748
3.190
2.213
1.973
1.869



For this BLSS file, I have tried different intervals, and the results
follow. It is clear that these additional runs are not necessary for
obtaining an idea of what the best combination of intervals will be.

. « first=(dl*dl*p01+d2+d2+p02)/(2*(d1*p01+d2+p02))
. . first=first’

. . d1=0.0,.05,.01,.02,.05,.2,.3,.5 . . show {shape] first

. . dl=dl’ E(Y)

. . d2=1.0,1.95,1.99,1.5,1.5,1.5,1.5,1.5

. . d2=d2’

. . q0=.0027 0.5000 0.9513 0.9900 0.7450 0.7375 0.7000 0.6750 0.6250
+ « p0l={d2-1)*(1-q0)/ (d2-d1)

« + p02=(1-d1)*(1-q0)/(d2-d1) . . second={dl*pl+d2+p2)/(1-pl-p2)

+ « p=(1-p02) /2+p02 . . second=second’

+ + ggau p > gamma ’ . . show (shape} second

. . show dl,d2,p01,p02, garma (E(N)-1) (E(R1))

dl d2 Pol Po2 ganmma’
A’ .00 .0 . .997 . 369.39 369.39 369.39 369.39 369.39 369.39 369.39 369.39
B’ 0.85003 i,ggg 0?4883 8,23,2 0?5222 307.43 302.62 302.41 303.21 303.30  303.78 304.13 304.90
C’ 0.01000 1.990 0.4987 0.4987 0.6724 154.22 139.81 139.20 141.51 141.79 143.25 144.31 146.64
D’ 0.02000 1.500 0.3369 0.6604 0.9549 91.32 75.43 74.76 77.20 77.51 19.17 80.35 82.96
E’' 0.05000 1.500 0.3439 0.6534 0.9412 42.89 29.20 28,62 30.53 30.81 32.31 33.n 35.69
F' 0.2000 1.500 0.3836 0.6137 0.8664 26.82 15.52 15.05 16.50 16.74 18.02 18.92 20.88
G’ 0.3000 1.500 0.4155 0.56818 0.8095 13.97 6.074 5.742 6.610 6.793 7.739 8.402 9.813
H  0.5000 1.500 0.4987 0.4987 0.6724 5.303 1.324 1.156 1,472 1.574 2.096 2.456 3.209
2.241 0.3156 0.2345 0.3369 o.3zg; g.g:gz g.g;z: o’5f§3
. . %1=0,0,0.2,0.5,0.7,1.0,1.2,1.5,2.0,2.5,3.0,4. 1.000 0.08741 0.04899 0.08034 0.1 - -0. . .
.. ;ipgggé:aEQg 500-7.1.0.1.2,1.5,2.0,2.5,3.0,4.0 0.1886 0.01041 0.002913 0.005617 0.01134 0.03905 0.05758 0.09481
. .+ glow=-gamma-x1
+ « up=3-x1 . . total=firat+second
¢ « lowm=3-x1 . . show {shape} total
. o au up > pupl
. :gau gzp >Pp5p2 Adjusted ATS
. « pgau glow > pdown2 , , , , , , ,
. . pgau low > pdownl N »
. . p2=pup2-pdown2 $’l 0“ 4 B 4 4 E } F 6 70"02
. . pl=pupl-pdownl-p2 00 369.89 370.34 370.38 370.14 370.13 370.09 370.07 370.
. . percent=(d1*pl+d2+p2)/ (pl+p2) ol 307.93 303.57 303.40 303.96 304.04 304.48 304.80 305.52
. . ats=percent/ (1-pl-p2) 05 154.72 140.76 140.19 142.26 142.53 143.95 144.98 147.26
. . ats=ats’ ATS 07 91.82 76.38 75.75 77.94 78.25 79.87 81.03 83.58
. . show {shape} ats . — . 10 43.39 30.15 29.61 31.27 31.55 33.01 34.05 36.31
symNeeNe _asymecTic 12 27.32 16.47 16.04 17.24 17.48 18.72 19.60 21.50
il FsL - N — ~ 15 14.47 7.025 6.732 7.355 ;.gi; g.;g: g.g;; lg.;;‘
- 20 5.803 2,275 2.146 2.217 . . . .
syt a-1  (.05,1.95)(.01,1.99)(.02,1.5) (.05,1.5) (.2,1.5) (.3,1.5) (.5,1.5) %i; 2701 1,267 1,228 1.082 16123 015332 1'353 i'?ii
0 370.39 70.3 370.39 70. 70. 370. 70. 70.39 1.500 1.039 1.039 0.8253 0.84 . : :
.2 308.43 gos.sg 303.40 302.23 gog.gg 302.33 gog.gg gog.gs 49 0.6886  0.9617  0.9930  0.7508  0.7488  0.7390  0.7326  0.7198
.5 155.22 140.72 140.10 142.43 142.71 144.18 145.24 147.59
.1 92,32 76.26 75.58 78.04 78.36 80.03 81.23 83.87
1 43.89 29.88 29.29 31.24 31.53 33.06 34.15 36.52
1.2 27.82 16.10 15.61 17.11 17.37 18.69 19.63 21.65
1.5 14,97 6.509 6.153 7.084 7.280 8.294 9.003 10.52
2 6.303 1.573 1.374 1.750 1.871 2.492 2.920 3.814
2,5 3.241 0.4564 0.3391 0.4872 0.5646 0.9577 1.225 1.775
3 2.000 0.1748  0.09798 0.1607 0.2144 0.4852 0.6680 1.039
4 1.189 0.06564 0.01836 0.03666 0.07149 0.2461 0.3629 0.5976

’
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Multivariate Statistical Process Control for a Plasma Etcher
Hai-Fang Guo

Abstract

A set of Remote Procedure Language (RPL) procedures has been developed for the RS/1 statistical
package. These procedures take raw real-time data collected off a plasma etcher and will calculate the
Hotelling’s T? statistic. The resulting T2 values have been analyzed and used on a multivariate SPC scheme
for plasma etch control.

1. Introduction

While the size of IC devices is shrinking, the complexity of the IC process increases. In order to get
high yield and high quality of the products, tight control of the process is critical. Plasma etching plays a
fairly important role in the whole process. The objective of this project is to develop a reliable multiavriate
SPC methodology for real-time control of the plasma eching process.

There are many control variables which will effect the performance of a plasma etcher. These are gas
flows, RF power, pressures and other parameters. With the proliferation of modern equipment communica-
tion protocols like the Semiconductor Equipment Communication System II (SECSII), it is fairly easy to
collect real time readings of these parameters at a reasonable sampling frequency. As a matter of fact,
many processing equipment now have an array of sensors and enough on-board intelligence to accomplish
the task. The challenge however remains on how to make the best use of this information in a formal,
robust (SPC) scheme. In the past, univariate SPC methods have been applied. These methods treat each
variable separately by plotting one control chart per variable. Unfortunately, the critical variables tend to
be highly cross correlated, so°these methods might give misleading information by means of false as well
as missing alarms. In fact, it has been shown that as the number of variables increases, the distortion in the
joint control procedure can be severe. One way to avoid this is by using a multivariate SPC scheme. This
can be accomplished by using Hotelling’s T? statistic to convert multivariate information to a single vari-
able.

The objectives of this project is to apply the Hotelling’s T2 statistic to the real-time data that has been
collected from the Lam Reseach 490 Plasma Etcher at UCB, and draw some conclusions about the applica-
bility of the control scheme and the stability of the equipment.

2. Methodology

The Hotelling’s T2 is a method that can be used to solve the multivariate SPC problem. The T2
parameter is defined below:

T?=n(X-My S (X-M) (1)

where .
X'=[X1,X2,..Xp)

! M=M;,M,. ,M,,{

Sl 81
sz S; p

slp 529 Sg

X; isthe average of the ith parameter

M; is the target value of the ith parameter

S s the covariance matrix of the outcome variables
n is the sample size

p is the number of variables
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T2 is the square of the maximum possible univariate t computed on any linear combination of the
various outcome measures. It has been shown that when multipled by (n-P)/P(n-1), the new statistic obeys
an F-distribution with p and n-p degrees of freedom. That is,

Tezt.p.n-l = ﬂnn___pl—)' F(&p.n-l 2

where o is the P(type I error}, an n, p as defined in Eq. (1). The T2 control chart can be constructed by
using the T2 values with upper control limit at T&p -1, which can be calculated by Eq. (2) According to
this control scheme, an alarm will be initiated if the sample mean results in a T2 value that exceeds the crit-
ical value at the chosen level of significance.

3. Implementation

The implementation of this experiment can be divided into four steps as follows:
Step 1: Data Collection

In this experiment we etched polysilicon off 32 wafers, and we have collected the raw sensor data gen-
erated during the etch processes. In total, we have monitored seventeen parameters at a rate of one sample
per second. Among the seventeen, there are five parameters which can be adjusted for different recipes.
These are the gas flows of O,, He and CCl, the RF power of the process and the pressure inside the reac-
tion chamber. The data has been collected during the entire process, including the initialization step, etch-
ing step, and over etching step. Although all the steps are important to the outcome of the process, here we
only consider the main etching step. To manipulate the data, we cluster the samples from the etching step
into groups of size 10 and then calculate the average of each group. These averages, calculated from sam-
ples collected during the main etch process, form the data that we will use in this study.

Step 2: Choosing a "good” process run as standard.

Since we do not know when the etcher is actually in statistical control, we have to choose a "good” process
run and use it as a standard. In this sense, our definition of a "good” process is relative. We assume that a
process is in control if all of its parameters are close to their measured averages. So, we calculate the
parameter averages for each of the 32 wafers. The results have been plotted on a chart from which we
select the "good" process. In this experiment, the run for wafer pe8 is chosen as the standard. Once the
standard process has been identified, we can construct the variance-covariance matrix and calculate the
grand average of the parameters. Note that our initial assumption about the standard process has to be
checked and validated, much in the way one checks and validates the original control limits in a new
Shewhart control chart. Specifically, we use the calculated variance-covariance matrix and target means, in
order to calculate the T2 for wafer pe8 as described in step 3 below. We then drop the samples with a T?
higher than the control limit. We subsequently use the rest of the sample averages to re-calculate the
variance-covariance matrix and the target means. A new limit is set and this procedure continues until all
the T2 values for wafer pe8 all below the limit.

Step 3: Calculate T? values and plot T2 chart.

Under the assumption that the autocorrelation within each of the parameters is negligible, we apply
Hotelling’s T2 method using the calculated variance-covariance matrix and the grand average for each of
the 32 wafers. We then create the T2 charts, from which the conclusions about whether the process is in
stadstical control can be drawn. The upper control limit of the T2 control chart is determined according to

"~ Eq. (2) as follows:
Tousso= 2210 1) RByocss=0x5.05 =4545

There is no lower control limit for this chart.
Step 4: Analyze the out-of-control points in the T2 chart and investigate the causes.

This step involves the discovery of the physical cause for the abnormal behavior of the equipment. Beyond
some simple, intuitive explanations, this investigation is beyond the scope of this project.
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4. Results

Listed in the order of the steps outlined above, the results are:
For stepl:

A set of RPL procedures has been written to manipulate the raw data and read the resulting average values
into RS/1 tables.
For step 2:

The overall averages and standard deviations for each of the 32 wafers have been calculated and presented
in Table 1. The respective charts are shown in Fig. 1. Based on these charts, the run for wafer pe8 has been
chosen as the standard. The variance-covariance matrix and grand-average of wafer pe8 have been calcu-
lated and presented in Table 2.

For step 3:

A procedure has been written for the calculation of the T2 values. The T2 values are summarized in Table
3. As we can see in this table, the T2 values are rather large at the beginning of the etching step. This indi-
cates a persistent process stabilization problem.

For step 4:

The out of control point during the processing of wafer pel has been investigated by comparing the param-
eter averages with the standards. The deviation might have been caused by unusually high pressure varia-
bility. The large T2 values for the wafers following pel18 might be related to the fact that all these wafers
have been processed inividually. i.e. as separate lots of one wafer each. This indicates that our plasma
etcher suffers from a chronic recipe stabilization problem at the beginning of each lot. Indeed, it is typically
after the first wafer of the lot (in a cassette to cassette mode of operation) that the process stabilizes.
Further investigation is needed to evaluate the impact of this instability to product quality.

5. Conclusions

Using the T? statistic to analyze data from the Lam etcher gives us valuable information about the
process. We found a number of instances in our data where the individual charts either missed a true alarm
or generated false alarms. Further, the T2 value varies with the changing of the group sample size. This
suggests that our assumption that there is no auto-correlation within each parameter might false. A remedy
to this will be to filter the data before applying T? statistic. The Box-Jenkins autoregressive models might
be useful in this respect.

The conclusions about the stability of our plasma etcher ticular control scheme are as follows: First,
the tendency that the T2 values are higher that the upper control limit at the beginning of the process sug-
gests that there might be a stablization problem for the Lam etcher at the beginning of the etching step.
Second, the T2 values for wafers that have been processed individually (single wafer process) tend to be
higher than the wafers been processed together in a cassette to cassette mode. This suggests that the first
wafer run in each lot is not very stable.
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130.181543
130.408595
130.207096

15.041701
15.033154
15.034624
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15.030402
15.030141
15.033676
15.03243)
15.028074
15.027306
15.036676
15.030424
15.031674
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15.029249
15.032360
15.0313591
15.031712
15.037434
15.039872
15.040026
15.036747
15.030683
15.025244
15.035503
15.025650
15.029470
15.018022
15.026704
15.031440
15.041077
15.059565

129.549027
129.552436
129.535110
129.547140
129.563619
129.547266
129.540394
129.542038
129.540502
129.558630
129.539904
129.540147
129.540097
129.951291
129.532061
129.543696
129.547544
129.533521
129.537919
129.545615
129.522007
129.554216
129.572394
129.530271
129.566056
129.548043
129.561550
129.554168
129.532708
129.559523
129.544597
129.5215M

299.320738
299.065569
299.722376
299.542103
299.926204
299.977257
299.000742
299.972208
300.051068
300.009168
299.837455
299.920506
299.747749
299.6708557
299.816389
299.900430
299.771492
299.573084
299.440051
300.023440
299.927259
299.997430
299.653211
299.956587
300.105206
300.087743
299.816642
299.020165
299.706277
299.978046
300.043029
2$9.955547

Table 1 overall means of the 32 process

0.27311
0.273246
0.273097
0.273147
0.272653
0.27320%
0.273151
0.273253
0.273245
0.273305
0.273056
0.272598
0.273145
0.272503
0.273043
0.273138
0.273057
0.273176
0.272030
0.272693
0.272603
0.27316%
0.273057
0.272614
0.272498
0.272409
0.2731Nn
0.27242%
0.272608
0.273193
0.273127
0.273152

0 1 2 3 4

1 130.215345 15.019339 129.568652 299.668535 0.273436

Tablc 2 (a) targes means

PEB_C SR x 5C

0 1 2 3 4

Ve WN -

Table 2 (b) targes varianco-covasiance matrix

PES_COR SR x 5C

0.037793  0.000848 0.000565 -0.028818 0.000021
0.000848 0.006876 0.001483 0.011008 -0.000018
0.000565 0.001483 0.011538 0.044855 -0.000049
-0.028618 0.011008 0.044855 1.899715 <-0.001832
0.000021 ~0.000018 <-0.000045 =-0.001632 0.000002

° 1 2 3 ] 5

1 1.000000 0.408248 ~2.467162e-17 -0.198574 0.097720

2 ©0.400248  1.000000 0.456435  0,298936 -0.407564

3 -2.467162¢-17 0.456435 1.000000 J0.749292] ~-0.755916

4 -0.198574  0.298936 0.749292  '1.000000 -0.936041]

5 0.097720 ~-0.407564 -0.755918 -0.936041  1.000000
Table 2 (c) target comelation matrix



[ 1 pel_a 2 pe2_s 3 pe3a 4 peda S peS_a 6 pe6_a 7 pel_s 0 1S pel7_a 16 pel8_a 17 pel9 a 18 pe20_a 19 tpS_a 20 tp6_a 21 tp7_a
b §756.19135 240.08694 66.78265 1300.00241 208.30671 139.05253 117.30744 1 1430.07320 1430.07320 940.65396 1360.04672 5005.17863 149.91262 307.14370
2 161.33546 66.98479  3.53566  121.34801 173.53503 151.57213 176.62329 2 126.95215  126.95215 108.15574 167.31664 437.90649 66.14574 114.99537
3 132.43264 166.941%0 4.86700 66.05341 109.47761 105.36021 5$1.51504 3 176.14734 176.14734 176.96570 72.16503  211.67149 41.64165 194.568629
4 118.01211 8.72403 10.67143 18.96807 13.05616 8.94767 6.56957 4 8.26048 8.26048 $.31533 22,01809 34.20553 56.80194 51.26024
S 64.27761  33.34526 19.27623 17.56244  26.90750 8.05831 15.46376 H 5.65506 5.65506 4.39061 13.06459 56.83681 3.56482 178.00999
6 $.06263 13.71105 17.91328 8.56989 36.87851 6.27301 7.62067 6 11.53211 11.53211 6.097€61 14.39385 39.12915 123.81182 27.66459
7 0.13416 27.93749% 17.15171 10.43061 24.5566) 21.53777 $.45323 7 6.09761 6.09761 9.92633 10.47265 23.49375 19.90803 ©.03925
[ ] 12,22774 5.66717 0.05831 15.46376 20.98066 7.72085 14.51348 [} 6.93444 6.93444 9.13327 9.95989 72.55255 52.34253  54.37850
9 $§5.00347 $.27272 0.16658 8.15767 19.50634 13.44193 11,.64322 9 19.54540 19.54540 7.31679 7.60660 23.67273 15.00494 91.21816

10 5.69374 12.86221 14.43746 6.40771  11.05727  21.93987 $.89251 10 15.02735 15.02735 6.14638 5.93806 5.72547 6.95772 44.57909

1n 4.50784 13.90736 15.98514 15.39117 16.25604 5.54150 14.52776 11 37.71166 37.71168 15.72254 9.69986 19.43256 5.06283 48.89140

12 6.42496 6.06943 26.10856 7.34942 16.65082 35.50369 8.96910 12 8.46370 8.48370  46.92124 12.59024 16.86998 £85.89010 54.61601

13 7.02293 8.27301 27.16992 13.06459 12.74986 5.02194 13.43660 13 16.27350 16.27350 12,35951 14.39365 18.46445  41.27451 2.14761

14 9.67623 11.53211 20.35666 8.56965 19.33507 11.16923 24.71235 14 13.90736 13.90736 19.85850 16.14822 13.45589 4.24411 5.70595

15 7.36313 14.09410 13.75604 14.71295 24.71235 $.917%96 14.51348 15 10.08669 10.08665 13.93283 18.7%200 2,05533 34.89661 47.44064

16 10.29417 20.59735  6.34956 24.14013 23.74543 8.08301 12.40078 16 12,.59024 12.59024 10.7329S 21.94076 42.72021 26.24413 44.52044

17 4.03980 21.21364 19.67944 21.49987 11.10923 13.3%9110 17 15.69578 15.69578 26.57987 10.26144 6.09273

1 7.04068 10.51386 18.71334 16.91675 18.50885 18 23.97610 23.97810 15.07905 115.36012 8.36453

19 7.60986 16.49059 16.73246 19 11.53865 14.00942 32.70687 9.61783

20 7.92130 7.94148 13.49928 20 7.09910 6.38223

(] 8 pel_a 9 ped-a 10 pel0_a 11 pell _a 12 pel2 s 13 pelda 14 pelds ] 22 tp8_a 23 tp9_a 24 tpl0_a 25 tpll_a 26 tpl2_a 27 tpl3d_a 28 tpld a
1 305.91520 259.68037 376.76656 59.99021 990.40537 1932.28288 1602.94093 1 473.07415 $1.30946 204.04251 04.07442 233.50076 332.65348 1438.86556
2 196.41730 271.12324 265.93567 50.99616 255.45637 121.58823  118.57456 2 §6.63346 20.51357 169.75833 52.27576 €9.16665 112.80646 143.35%42
3 103.06010 108.02405 $7.4680S 10.54673 105.28927 64.06816 174.11259 3 40.68370 45.56510 46.12414  26.32508 125.94738 $9.51179 241.47362
4 14.51134 13.5712%9 9.53374 8.63933  15.12392 15.64299 15.95451 4 086.89661 24.26614 47.60528 10.14714 78.76734 10.72869 13.85640
] 16.04591 9.51679 7.00223 15.17766 21.41191 14.39365 18.63258 S 2.57938 4.36552 17.40896 36.71416 20.13331 15.370%1 27.50644
[ 6.67195 14.21650 6.41902 20.74724 11.70356 11.26197 168.56006 [ 36.75601 10.24314 62.52525 48.21961 16.04706 4.39166 42.49022
7 7.52280 6.08622 7.39569 11.95223  11.89249 11,3531 14.56761 7 10.97000 16.15435 19.24455 26.51114 19.81670 13.08465 27.71356
[} 13.20355 23.87947 13.57516 9.13327 25.71047 23.49125 14.02027 L} 18.66085 13.51019 17.53508 21.53586 16.77203 16.29776 44.06569
9 9.21662 23.86743 10.43062 9.63765 7.76801 20.1670S 20.08535 9 46.89375 32.23089 24.04999 11.47073 38.95592 25.81641 23.60045

10 9.34190 18.77429 6.60411 16.73246 14.53995 19.97739 21.49615 10 39.21270 96.55226 36.22489 40.11208 56.69595 11.666686 8.96655
11 15.48320 20.44500° 6.09761 25.10228 23.37163 13.39110 34.28591 1n 38.36873 19.68059 67.96370 40.91217 20.98066 27.20S562 15.53504
12 10.36636 10.16539 13.61706 9.21977 16.53870 14.51348 29.33566 12 20.91118 9.49403 45.05288 16.87932 37.81602 6.77182 19.01477
13 11.53211 10.08669 10.08669 13.44193 7.31679 14.54208 16.25604 13 6.61466 26.14905 63.92630 35.05405 34.02392 10.99553 31.90308
14 15.82009 9.34190 10.16539 13.67166 14.99187 9.10990 19.70300 14 13.40719 6.97399 37.35664 23.28155 26.43592 28.58535 4.60002
15 10.15864 15.46376 18.13502 26.76402 21.31115 11.80434 22.73976 15 3.06651 19.687699 10.65332 23.85334 55.46203 35.21916 42,26916
16 10.26144 26.65162 11.15622 11,53211 8.10562 27.18992 16 8.31025 9.70491 16.15889 63.55608 34.97882 13.57516 20.91874
1 15.62009 0.15767 11.66886 20.98066 13.59326 18.36586 17 29.87208 80.71983 19.25212 15.83301 21.99581
10 6.08813 17.18832 30.84424 11.35878 36.49989 18 9.06694 15.39117
19 14.39365 7.62067 ;:

20

Tabdle 3 The T"2 values of the 32 processed wafers,
calculated every ten readings

Table 3 The T2 values of the 32 proceased wafers,

calculaied cvery ten readings



[} 29 tpl5S_a 30 tpl7_a 31 tpll_a 32 tplh a

1 744.208093 271.77910 255.10034 326.19128
2 120.09459 146.77548 15.00738 221.22236
3 50.86479 174.19987 31.46249 110.43668
4 66.24057 7.66364  94.04347  24.33590
s 20.70335 6.79298 36.61293 12.50735
[} 23.29762 11.13%09 27.608211 24.640880
7 22.97733 10.87000 24.56823 6.71590
0 22.54737 9.70156 25.53662 16.00726
9 12.52175  11.16923  30.61521 8.30557
10 30.46499 15.63164 110.12755 9.8205%
11 16.29496 11.53211 2.53309 6.93444
12 32.19813 6.62447 20.02022 27.14403
13 20.55429 12.31913 15.37860 16.00726
14 9.02550 16.45059 17.05793 11.17729
15 16.64331  15.72254¢  36.11031 12.339%1
16 40.65790 16.27350 19.29121

17 21.58312 8.08301 16.596351

18 42.95374 5.69374

19 25.73997

20 24.41181

Tadle 3 The T°2 values of the 32 processod walers,
calculated overy ten readings
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A Strategy for Adaptive Regression Modeling of LPCVD Reactors
Sherry F. Lee

Abstract

Since VLSI fabrication equipment often change in time, there is an interest in creating equipment
models that can update themselves accordingly. In this report we present a ‘‘smart’’ regression model that
can decide whether it should be refitted for better predictive performance, or for new parameter values if
the equipment has changed. These decisions are based on formal statistical tests. Safeguards to prevent
overcorrection and extensive equipment wear are also incorporated to this adaptive strategy.

1. Introduction

With the development of fields such as computer-aided manufacturing (CAM) and computer-
integrated manufacturing (CIM), statistical equipment modeling has become important. An effective
model should provide the capability to periodically check the fit between the model and the equipment pro-
cess, and update the model automatically when necessary.

A systematic method of building and calibrating equipment specific process models has been
developed and sucessfully applied [1] to the modeling of a low pressure chemical vapor deposition
(LPCVD) furnace for undoped polysilicon. The goal of this project is to develop an algorithm to systemat-
ically update the previously developed linear model for the LPCVD process.

2, Methodology

The algorithm to update the equipment model uses three distinct statistical tools. The first is the
regression control chart [2], which pin-points out of control data. A second useful method to check for out
of control conditions is the cumulative sum of the difference between the actual and model predicted rates.
By looking at the control chart and the cumulative sum, and by using scientific judgement, the user can
determine whether to update the model or to check the equipment. Should the decision be to update the
model, regression analysis will be performed to determine the new coefficients of the revised model.

2.1. Regression Control Chart

The regression control chart is similar to a conventional Shewart control chart in that they both con-
sist of a center line with upper and lower control limits. When the points fall outside of the control limits,
the process is considered to be out of control. However, while the center line and control limits of the
Shewart control charts are parallel to the horizontal axis, indicating control over a single fixed average, the
control limits of the regression control chart follow the regression line, thereby controlling a varying aver-
age. The control limits of the regression control chart are based on the standard deviation of the residuals
(difference between the actual value and the predicted value).

The regression control chart is used in the first step of the analysis. Out of control data points can be
observed easily, informing the user either that there is a problem in the equipment or that the model needs
to be updated. Thus, the regression control chart enables the user to quickly pinpoint those data that do not
follow the model within a specified limit.

2.2. Cumulative sum

The cumulative sum method also alerts the user that the data is moving out of the desired range. It is
based on the sum of the difference between the actual and predicted values (residuals). Therefore the
CUSUM, unlike the regression control chart which indicates a point-by-point deviation, indicates that as a



-70 -

whole the deviations from the model are significant. In some cases, when most but not all of the data
points are in control on the regression control chart, the cumulative sum shows no significant difference.
This is because the cumulative sum is based on a summation of the residuals, and not on each residual
alone. So although the single point may be out of control, the model as a whole still holds. The cumulative
sum of the residuals can be tested for significance, by using a student-t test, which indicates whether or not
a revision of the model and the regression control chart limits is necessary. Residual plots are also useful
in detecting runs or trends in time. :

2.3. Regression analysis

Since both the regression control chart and the cumulative sum only indicate that the predicted value
is significantly different from the actual value, a regression analysis is used to determine which coefficients
need to be revised.

3. Implementation

In this project, we would like to update the model that describes the rate of deposition of the polysili-
con in an LPCVD fumnace. The deposition rate R(z) depends on the rate R , the deposition rate at the first
wafer position (zo) in the furnace.

1-const* Ry

R@ = [T5comst R, IR

Since Ry can be described by a linear model, it is easier to do the analysis on Ro and apply the results to the
full deposition rate R(z). From K.K. Lin’s results [1], the linear model of the deposition rate Rg is known:

In(Ro) = A + BIn(P) + C(/T) + D(1/Q)

where P is the pressure (mtorr), T is the temperature (K), Q is the silane flow (sccm), and A, B, C, and D
are the coefficients to be determined. To make notation easier, set Y = In(Rg), Xg = In(P), Xc = I/T, Xp =
1/Q. Thus, the final equation is:

Y = A+ Bxg + Cxc+ Dxp

The first step is to determine the coefficients of the linear model. By using the 23 data points that
K.K. Lin observed, the coefficients can be obtained. I found slightly different coefficients than were
reported in that paper, probably because I used BLSS instead of RS-1. For consistency with my resuls, I
used the coefficients that I generated in BLSS.

Next, the variances of both the residuals and the sum of the residuals must be calculated. The vari-
ance of the residuals is used to generate the control limits for the regression control chart, while the vari-
ance of the sum of the residuals is used to test for significance of the sum of residuals. Calculations for
each of these values are in Appendix A. The final result for the variance of the sum of the residuals is:

2
var lg i -y)= EZEZ— + nsyz + varB[ g (xgi — Xp)]2 + varC[ ; (xci — X2+ varD[ ; (XD: %)

where

x; = new data

Y; = predicted value based on new data

yi = actual value that corresponds to the new data

x; = data used to generate the model

X; = average of the x; samples

N = the number of x; samples

n= the number of x;” samples

sy = the standard error of the estimate of the regression based on original data
If n=1, we obtain the standard error of each residual, which is used to determine the control limits in the
regression control chart.

var(Y; - yi)= Hﬁ—l-syz + varB(xp; — Xg)? + varC(xci’ - Xc)? + varD(xp, - Xp)*
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Using s;2 = var(Y; - y), the regression control chart can be constructed. With 20 degrees of freedom,
the 95% student t statistic is 2.086, which results in control limits at (Y; +/- (2.086 s;)).

To test the significance level of the sum of the residuals,

f; (i -¥)
lﬂ 3 p—_
var ?:‘ (Y5 - y)
N+n—4 degrees of freedom

The comparison of this calculated t with the student-t that corresponds to 95% confidence levels indicates
whether the model is in agreement with the new observation. If the calculated value is greater than the
given value, then the data point is considered to be out of control. The user must then decide whether to
check the fumace or change the model. If the decision is to readjust the model, regression analysis must be
performed to determine which coefficient needs to be revised. Several approaches can be implemented.

a)  Recalculate the linear regression using solely the new data.

b)  Recalculate the linear regression using the weighted method, giving more weight to the later data
points.

c)  Use regression to re-estimate one coefficient while holding the other three fixed. If the new
coefficient differs from the old ore by more than the standard deviation of the new value, the old
value is replaced by the new value. This is continued until no further changes in coefficients will
result in a linear model that better fits the data.

The first approach will only be valid if there are enough new data points to justify a new regression
analysis. At first, there will not be enough new data points to implement this method. Also, there may not
be enough "spread” in the runs to obtain an accurate linear regression. For example, users tend to use the
same silane flow run after run (100 sccm). If all the data points contain the same flow rate, the linear
regression will eliminate flow as an important parameter, which would result in an incorrect model. How-
ever, for large shifts, this approach may be the best.

The second approach can be used effectively for small changes in the deposition rate. For example,
as a coat of polysilicon builds up on the furnace walls, the deposition rate may decrease in a steady fashion.
‘In cases such as these, the weighted linear regression would be effective. However, this method is not
recommended for data involving large shifts.

I chose to use the third approach for several reasons. First, by adjusting one parameter at a time, the
model changes minimally. This may be important if the user is doing several runs that are supposed to be
based on the same model. Varying the model significantly in the middle of the runs may alter the condi-
tions too drastically. Small, gradual changes of the model are best in this case, assuming that the equip-
ment did not change significantly.

Second, with the initial base of 23 points, the variance of the model decreases every time the model
coefficients are adjusted (assuming that the shift is not too big). Essentially, the model simply fine-tunes
itself as more runs are performed.

After the regression has been adjusted, the regression control chart limits should be recalculated.
Then the entire process begins again for the next data point.

4. Results

Fig. 1 shows the calculated coefficients for the deposition model, using the reported 23 runs. Twelve
sample runs were then generated, with three separate sets of possible "actual’ values. The first set consists
of in control points, the second consists of in-control points, and the third consists of some in-control points
and some out of control points. The 'actual’ values for the in control deposition rates were generated by
using a Gaussian random number generator.

The resulting regression control charts are found in Fig. 2. As expected, the points in the first set of
in-control points are well within the control limits, while the points in the second set of out of control
points are all outside the control limits (Fig. 2(a)). The third set of points results in nine points that are in
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control, and three (run #3, 11, and 12) that are out of control (Fig. 2(b)).

The t-statistic computation for the cumulative sum in BLSS is found in Appendix B. The resulting
values of t, of the twelve points for each of the three sets of *actual’ values are in Figs. 3, 4, and 5. As
expected, the first set of in control points shows a t-statistic that is well within the required limits. Also as
predicted, the second set of out of control points shows that the cumulative sum catches trends that are
obviously out of control. In this case, where there is such a large shift and all twelve points are outside of
the regression chart control limits, a new model based on the last twelve points should be developed. The
third set of data is more interesting. Although the regression control chart showed that points correspond-
ing to runs #3, 11, and 12 are out of control, the cumulative sum shows no significant difference in the
model for runs 1 through 10. This indicates that the error in sample #3 was not large enough to change the
model significantly. However, runs #11 and 12 do result in a significant change.

The results of the regression analysis for data set three (Figure 6) show that after run #11, the
coefficients C and D should be changed. (A change in coefficients occurs when the difference between the
old and new values of the coefficients is greater than the standard error of the new value.) The regression is
done on the 23 points that were used to generate the model plus the last 11 new points. When both C and
D are changed to their new values, the cumulative t-statistic shows that the ’actual’ data points are once
again in control (Figure 7). In addition, the variance of each of the coefficients corresponding to the new
model has decreased substantially. For example, in the original model, the standard error of the coefficient
C was 520.8. In the revised model, the standard error is only 13.838. Thus, the model improves over time.
Using the new model, run #12 is also now in control.

After the regression chart control limits are changed according to the rew linear model (Figure 2(b)),
we observe that although the runs #3, 11, and 12 are still out of control, the amount that they differ from
the control limits has decreased. This shows that the second, revised model better predicts the deposition
rate.

§. Conclusion

The analysis shows that the regression control chart in conjuction with the cumulative sum student-t
are effective tools in reevaluating the model when a significant change is observed. Areas for future work
include investigating cases in which the model slowly evolves until the final model is so significantly dif-
ferent from the original model that the user should be alerted. Another case in which an alarm should be
sounded is when the data points are so far out of control that the furnace should be examined for problems.
In the present analysis this situation is only detected by the regression control charts seen by the operator.
More specifically, if all the points (as in data set #2) are out of control, the operator will know that some-
thing has gone wrong with the furnace.

Another area of interest is to implement the strategy presented while several recipes are being used
and updated simultaneously.
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APPENDIX A
Calculation for the variance of the sum of the residuals:
var (Yi -y 1

We begin with the deposition rate equation
InRg = A + BInP + C(I/T) + D(1/Q).

A change of variables Y = InP, xg = InP, x¢ = (1/T), xp = (1/Q) results in more simple notation. The
deposition rate equation becomes:

Y = A + Bxg + Cxc + Dxp 2
and
Y = A + BXp + Cxc + DXp 3)
Let
X; = new data
Y; = predicted value based on new data
yi = actual value that corresponds to the new data
Xij = data used to generate the model
X; = average of the x; values
N = the number of x; values
n = the number of x; values
Sy = the standard error of the estimate of the regression based on original data
Substituting (2) into (1),

z (Y1 =y1)=(A+Bxg +Cxcy' + Dxp '~ y1) + *** + (A +Bxg, + Cxcy + Dxpy — ¥n) )]
Substituting (3) into (4) for constant A,
g (Y - y) =Y - y1' +B(xa)’ - Xg) + C(xc1 - Xc) + D(xps — Fp)] +

+[Y - y/'+ B(xgo - %8) + Clxca — Xc) + D(xpn — %)]
Grouping terms,
30 -yid=n§ - 3y +B § (e - %) + C § (x/ - %)+ D 3, (xo; - o) ©)
Let the standard error of the estimate of the regression based on original data be denoted by sy . Sub-

stituting this value into (5), we obtain

var 3, % - yi) = B3+ nsy? + varfB 3 (xai' ~ %)) + variC 3 (x = %) + var(D 3} (xo) - o).
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Thus,

) .
var $ (V7 - )= S + ns2+ varB 3, (xnf - Tl + varC 3, i = X + varDl 31 (xo) ~ B2

and the t-statistic based on the cumulative sum of the residuals is
) ; i -y)
var g Yi'-y)
with N+n—4 degrees of freedom.

If n=1, we obtain the standard error of each residual, which is used to determine the control limits in
the regression control chart.

var(Y; - yi)= Mk Ls2 4 varB(xpi -~ %a)? + varC(xes’ — %c)? + varD(xp) - %p)?



. datla = datl - means ;
' APPENDIX B
-~ - . : . . ltri {dims=12) > uppertri
uppertri = uppertri’
datlb = datlad#*uppertri ;
datlb=datlb’ ;
show datlb {shape)

BLSS computation of the cumulative sum student-t statistic
on 12 sample data points.

e o o o

t = (Y1-Ylact)/s

(x - x) x - x) (x = x )
The ’actual’ values were generated with a random number -0.3049 -7.29e-07 98.82e-04
generator (Gaussian distribution) ~0.2023 -7.60e-06 0.001069

-0.04832 4.16e-06 -0.001030
-0.4952 -2.89e-05 0.001157 °
-0.9454 -6.20e-05 0.003344

. A=20.695 ; -0.9351 -4.14e-05 3.62¢-04
. B=0,.29346 ; -1.243 ~3.59%e-05 -0.001737
o C==1.524e4 ; <1.091 -3.54e-05 4.49e-04
. D= -48.584 ; -0.9765 -3.86e-05 6.36e-04

~1.413 -3.93e-05 0.002823
« Y1 = A + B*(log(P1)) + C*(1/T1) + D*(1/Ql1) ; -1.791  -4.49%e-05 0.005010

-1.868 -2.17e-05 0.002197

. Ylres = Ylact - ¥l k=1:12:1 ;
. temptab = k,P1,T1,01,Y¥Y1,Ylact,Y1lres . k=k’ ;
. varY=0.05808~2 ;

5.826 0.001117 0.005714
6.286 0.001112 0.01000
6.248 0.001109 0.008000
5.697 0.001111 0.01000
5.756 0.001106 0.01000

: 6.057 0.001135 0.005000 .
o . datle = constl + datild(1) + datld(2) + datld{3] :

rund P T Q Y Yact Yres
. naq=k*2 ;
1 340.00 900.00 115.00 5.050 5.041 -0.008758 . constl = nag*varY/23 ;
2 511,00 905.00 125.00 5.297 5.339 0.04233 . constl = constl + k*varY ;
3 538.00 890.00 175.00 5.139 5.184 0.04472 . datlcedatib*2 ;
4 295.00 927.00 100.00 5.438 5.326 -0.1121 . datlc=datlc’ ;
S5 294.00 927.00 100.00 5.437 5.453 0.01606 . vars
6 466.00 883.00 207.00 5.004 $.033 0.028980
7 339.00 895.00 175.00 5.099 5.124 0.02486 0.003008 2.71e+05 27.76
8 537.00 899.00 100.00 5.102 $.013 -0.08868
9 517.00 902.00 125.00 5.244 5.281 0.03691 . datld = vars * datlc ;
10 298.00 900.00 100.00 4.948 4.920 -0.02769 . datld = datld’ ;
11 316.00 904.00 100.00 5.040 5.040 1.67e-04 . show datld (shape)
12  427.00 881,00 200.00 4.931 4.977 0.04602
2.80e-04 1.44e-07 2.16e-05
. datl = log(temptab(2]),1/(temptab{3]),1/(temptab(4]) ; 1.23e-04 1.57-05 3.17e-05
- . show datl {shape) 7.02e-06 4.69e-06 2.94e-05
L 7.37e-04 2.27e-04 3.72e-05
e 1n(P) 1/7 1/Q 0.002688 0.001043 3.10e-04
3 0.002630 4.646-04 3.63e-06
3 5.629 0.001111 0.008696 0.004646 3.49e-04 8.38e-05
s 6.236 0.001103 0.008000 0.003578 3.39e-04 5.61e-06
i 6.2886 0.001124 0.005714 0.002868 4.03e-04 1.12e-05
jg 5.687 0,001079 0.01000 0.006007 4.19e-04 2.21e-04
T 5.684 0.001079 0.01000 0.009651 5.48e-04 6.97e-04
j} 6.144 0.001133 0.004831 0.01050 1.28e-04 1.34e-04

caden

. datl=datl’ ; . datle (shape}
‘ 0.003821
o 0.007504
. . means 0.01148
! v 0.01684 .
i 6.134 0.001112 0.007813 0.02458 .

0.02862



0.03588
0.04030
0.04552
0.05505
0.06575
0.07236

. datlf = gqrt(datle)

res = res’

e o o o o

tn = res/datlf
restab = res,datlf,tn,studt
restab {shape}

res = temptab(7)’ #* uppertri

{res) S tn studt df
-0.008758 0.06182 -0.1417 2.074 22
0.03357 0.08662 0.3875 2.069 23
0.07829 0.1071 0.7307 2.064 24 .
-0.03377 0.1298 -0.2602 2.060 25
-0.01770 0.1568 -0.1129 2.056 26
0.01127 0.1692 0.06663 2.052 27
0.03613 0.1894 0.1907 2.048 28
-0.05255 0.2007 -0.2618 2.045 29
-0.01564 0.2134 -0.07332 2.042 30
-0.04334 0.2346 -0.1847 2.040 31
-0.04317 0.2564 ~0.1684 2.037 32
0.002850 0.2690 0.01059 2.035 33

ORIGINAL RUNS

runé P T Q Y Yact Yact-Y
(mtorr) (K) {(sccm) lg(A/min) In(A/min) 1ln(A/min)
1 339 882 125 4.734 4.696 -0.03845
2 318 926 100 5.438 5.553 0.1147
3 549 881 125 4.855 4.796 -0.05871
4 548 897 250 5.354 5.321 -0.03259
5 427 882 175 4.911 4.919 0.007974
6 548 888 250 5.182 .5.157 -0.02497
7 538 882 100 4.772 4.727 -0.04545
8 366 926 125 5.575 5.617 0.04203
9 517 927 175 5.6802 5.751 ~0.05148
10 296 882 100 4.599 4.560 -0.03918
11 547 927 100 5.613 5.568 -0.04525
12 547 927 125 5.709 5.693 -0.01619
13 548 879 100 4.719 4.810 0.09098
14 295 883 100 4.618 4.576 -0.04170
15 537 927 225 5.874 5.872 -0.002398
16 548 927 100 5.614 5.620 0.006221
17 552 883 250 5.087 5.234 0.1468
18 294 881 100 4.578 4.564 -0.01366
19 546 881 100 4.757 4.79%4 0.03682
20 466 900 200 5.315 5.336 0.02094
21 546 907 100 5.251 5.247 -0.004409
22 465 897 207 5.266 5.247 -0.01911
23 545 904 100 5.195 5.209 0.01370
REGRESSION ON THE LINEAR MODEL
TO OBTAIN THE FOUR COEFFICIENTS
Dependent variable: treg($5)
Independent variables: treg(l 2 3)
Observations 23 Parameters ¢
Parameter Estimate SE t-Ratio P-Value
20.695 0.73134 28.2969 0.0000
B 0.29346 0.054841 5.3510 0.0000
C =1.524e+04 520.80 -29.2672 0.0000
D -48.584 5.2689 -9.2208 0.0000
Residual SD 0.058084 Residual Variance 0:0033737

Multiple R 0.99168

Multiple R-squared

0.98342

Figure 1
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BLSS computation of the cumulative sum student-t statistic A large shift in deposition rate --
on 12 sample data points. .

The ’'actual’ values were generated with a random number A=20.695
generator (Gaussian distribution) B=0.29346
C=-1.524e4
D = -48.584
Y = A + B*(log(P)) + C*(1/T) + D*(1/Q)
A=20.695
B=0.29346
C=-1.524e4
D = -48,.584
runé P T Q Ymod Yact res
Y1l = A + B*(log(P1)) + C*(1/T1) + D*(1/Ql)
1.000 340.00 900.00 115.00 5.050 5.473 0.4232
2.000 511.00 905.00 125.00 5.297 5.908 0.6113
Ylzes = Ylact - Y1 3.000 538.00 890.00 175.00 $.139 5.400 0.2610
: . 4.000 295.00 927.00 100.00 5.438 5.902 0.4641
. 5.000 294.00 927.00 100.00 5.437 5.906 0.4691
runé P T Q - b Yact Yres 6.000 466.00 883.00 207.00 5.004 5.407 0.4032
. 7.000 339,00 895.00 175.00 5.099 5.611 0.5119
1 340.00 $00.00 115.00 5.050 5.041 -0.008758 8.000 §37.00 899.00 100.00 5.102 5.873 0.7713
2 511.00 905.00 125.00 5.297 5.339 0.04233 9.000 517.00 902.00 125.00 5.244 5.325 0.08091
3 538.00 890.00 175.00 5.139 5.184 0.04472 10.00 298.00 900.00 100.00 4.948 5.639 0.6913
4 295.00 927.00 100.00 5.438 5.326 ~0.1121 11.00 316.00 904.00 100.00 5.040 5.421 0.3812
5 294.00 927.00 100.00 5.437 5.453 0.01606 12.00 427.00 881.00 200.00 4.931 5.321 0.3900
6 466.00 883.00 207.00 5.004 5.033 0.02898
7  339.00 895.00 175.00 5.099 5.124 0.02486
8 537.00 899.00 100.00 5.102 5.013 -0.08868
9 517.00 902.00 125.00 5.244 5.281 0.03691
10 298.00 900.00 100.00 4.948 4.920 -0.02769
11 316.00 904.00 100.00 5.040 5,040 1.67e-04
12 427.00 881.00 200.00 4.931 4.97 0.04602 (res) s tn studt df
0.4232 0.06182 6.847 2.086 20
1.035 0.08662 11.94 2.080 21
1.296 0.1071 12.09 2.074 22
1.760 0.1298 13.56 2,069 23
- 2.229 0.1568 14.22 2,068 24
(res) [} tn studt de 2.632 0.1692 15.56 2,060 25
3.144 0.1694 16.60 2.056 26
-0.008758 0.06182 -0.1417 2.086 20 3.915 0.2007 19.50 2.052 27
0.03357 0.08662 0.3875 2.080 21 3.996 0.2134 18.73 2.048 28
0.07829 0.1071 0.7307 2.074 22 4.687 0.2346 19.96 2.045 29
-0.03377 0.1298 -0.2602 2.069 23 5.068 0.2564 19.77 2.042 30
-0.01770 0.1568 -0.1129 2.064 24 5.458 0.2690 20.29 2.040 31
0.01127 0.1692 0.06663 2.060 25
0.03613 0.1894 0.1907 2.056 26
-0.05255 0.2007 ~0.2618 2.052 27
-0.01564 0.2134 -0.07332 2.048 28
-0.04334 0.2346 -0.1847 2.045 29
-0.04317 0.2564 =-0.1684 2.042 30
0.002850 0.2690 0.01059 2.040 31
Figure 4

Figure 3



Sample data points

On the 11lth sample, the student-t statiatic is
exceeded.

A=20.695
B=0.29346
C=-1.524e4
D = -48.564

Y1l = A + B*(log(P1)) + C*(1/T1) # D*(1/Ql1) :
Yires = Ylact - Y1

Yact Ymod zes

5.041 5.050 -0.008758
5.339 5.297 0.04233
5.201 5.139 0.06198

5.526 $5.438 0.08807
5.389 5.437 -0.04794
4.890 5.004 -0.1140
5.048 5.099 -0.05084
5.178 5.102 0.07632
5.567 5.244 0.3229
$.045 4.948 0.09731
5.289 5.040 0.2492
5.286 4,931 0.3550
(xes) S tn studt df

-0.008758 0.06182 ~-0.1417 2.086 20
0.03357 0.08662 0.3875 2.080 21
0.09555 0.1071 0.8918 2.074 22

0.1836 0.1298 1.415 2.069 23
0.1357 0.1568 0.8655 2.064 24
0.02166 0.1692 0.1280 2.060 25

-0.02918 0.1894 -0.1541 2.056 26

0.04714 0.2007 0.2348 2.052 27

0.3700 . 0.2134 1.734 2,048 28

0.4674 0.2346 1.992 2.045 29

0.7165 0.2564 2.794 2.042 30

1.072 0.2690 3.983 2.040 31
Figure 5

DETERMINE THE NEW COEFFICIENTS

REGRESSION WITH B,C,and D BELD FIXED, VARY A

Dependent variable: Yprimel

Independent variable: a

Observations 34 Parameters 1

Parameter Estimate SE t-Ratio P-Value
A 20.714 0.015365 1.3481e+03 0.0000

Residual SD 0.089595 Residual Variance 0.0080273

Multiple R 0.99999 Multiple R-aquared 0.99998

REGRESSION WITH A,C,and D HELD FIXED, VARY B

Dependent variable: Yprimel

Independent variable: b

Obgservations 34 Parameters 1

Parameter Estimate t-Ratio P-Value
B 0.29656 0. 00252§9 117.4100 0.0000

Residual SD 0.089642 Residual Variance 0.0080357
Multiple R 0.99881 Multiple R-squared 0.99761
\

REGRESSION WITH A,B, and D HELD FIXED, VARY C

Dependent variable: Yprimel

Independent variable: datlprime(2)

Observations 34 Parameters 1

Parameter Estimate SE . t-Ratio P-Value
c -1.522e+04 13.838 -1.1000e+03 0.0000

Residual SD 0.089626 Residual Variance 0.0080328

Multiple R 0.99999 Multiple R-squared 0.99997

REGRESSION WITH A,B, and C HELD FIXED, VARY D

Dependent variable: Yprimel

Independent variable: d

Observations 34 Parameters 1

Parameter Estimate SE t-Ratio P-Value
D -45.811 1.8368 -24.9405 0.0000

Residual SD 0.088656 Residual Variance 0.0078598
Multiple R 0.97448 Multiple R-squared 0.94962

Figure 6



Calculated student~t for the twelve sample
data points (in set #3), after changing
the coefficients.

A=20.695
B=0.29346
C=-1.522e4
D = -45.811

Yl = A + B*(log(P1l)) + C*(1/7T1) + D*(1/Q1) ;
Ylres = Ylact - Y1

Yact Ymod res

5.041 $.096 -0.05509
5.339 5.341 ~0.001959
5.201 §.177 0.02367
5.526 5.487 0.03876
5.389 5.486 -0.09724
4.6890 5.040 -0.1501
5.048 $.137 ~-0.08903

5.178 5.152 0.02634
5.567 5.288 0.2786
5.045 4,998 0.04735
5.289 $.090 0.1993
5.286 4.968 0.3185
(res) S tn studt df

-0.05509 0.06182 -0.8912 2.086 20
-0.05705 0.08662 -0.6586 2.080 21
-0.03339 0.1071 -0.3116 2.074 22
0.005378 0.1298 0.04144 2.069 23
-0.09186 0.1568 ~0.5860 2.064 24
-0.2419 0.1692 -1.430 2.060 25
-0.3310 0.1894 -1.747 2.056 26
-0.3046 0.2007 -1.518 2.052 27

-0.02607 0.2134 -0.1222 2,048 28
0.02128 0.2346 0.0907 2.045 29
0.2206 0.2564 0.8603 2,042 30

0.5390 0.2690 2.004 2.040 3

Figure 7
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The Effects of Wafer Orientation on Oxide Breakdown
Elyse Rosenbaum

Abstract

Circuits that integrate silicon with compound semiconductor devices have some distinct performance
advantages over traditional IC families. These technologies might require the growth of high quality oxides
on off-axis silicon substrates. To study the reliability of these oxides, an experimental study has been com-
pleted and the results are reported here.

1. Introduction

MOS circuits are typically fabricated on silicon wafers which have been cut along the (100) plane.
Recently, there has be interest in evaluating the effect of using wafers which are not cut along one of the
major crystallographic planes. If reliable circuits can be fabricated on "off-axis” substrates, integration of
silicon and gallium arsenide devices will be possible as quality GaAs films may be grown on off-axis Si
substrates.

This study reports the effect of substrate rotation on oxide breakdown of large-area capacitors (.01
cm?). The capacitors were fabricated on substrates which were rotated at various angles off the (100) plane
around the <011> axis. Two different processes were used to grow the capacitor oxides; an 8 minute 850°
steam oxidation and a 100 minute 850° dry oxidation. The post-oxidation process flows were identical (that
of a 4 mask NMOS process). It was discovered that increasing the angle of rotation increased the probabil-
ity of oxide breakdown at low electric fields while the choice of oxidizing ambient did not have a
significant effect.

2. Effects of treatments on breakdown voltage
A summary of the experiment [1] follows:

Run Oxide Angle of rotation Oxide thickness
oc2 [ wet | o0 170 nm
0C3 dry 0 15.5nm
4C1 wet 40 17.5 nm
5C1 dry 50 15.7 nm
6C1 wet 6° 18.2 nm
7C1 dry 70 16.0 nm
8Cl1 wet 8 18.8 nm

The non-constant oxide thickness values indicate that oxidation rate increases with offset angle; this
variation in oxide thickness will necessitate the use of breakdown electric field rather than breakdown vol-
tage as the parameter of interest.

Ramp voltage breakdown statistics were collected for .01 cm? capacitors from each wafer. The ramp
rate was .4 V/sec and the resolution was .2 V. The raw data is included in Appendix A. The data was
characterized by the median value of breakdown electric field and standard deviation [2]. The choice of
median rather than mean is somewhat arbitrary when one is using an empirical data distribution. The
median has the advantage of being "robust” against values at either tail of the distribution; that is, it more
accurately represents the "typical” devices.
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l Run Median breakdown field standard deviation # of devices tested
0C2 12.35 MV/cm 2.62 81
0C3 9.68 1.98 50
4C1 10.97 2.13 104
5C1 9.94 2.87 43
6C1 8.46 1.53 59
7C1 5.88 1.33 50
8C1 7.77 1.10 52

Fig. 1 illustrates that the magnitudes of the standard deviation and median are correlated. This indi-
cates that the values of breakdown field are not distributed in an IIND manner around each treatment mean.
(Recall that mean and median are equal for normal distributions.)

However, an ANOVA analysis to evaluate the effects of the various treatments can be performed
when a variance stabilizing transformation is used [3]. The standard deviation is roughly proportional to the
3/2 power of the median (Fig. 2). This indicates that the data points should be transformed to the -1/2
power. Parameters derived from the transformed data sets follow.

Run [E”l'lso standard deviation
0C2 285 041
0C3 321 .038
4C1 302 .029
5C1 317 066
6C1 34 032
7C1 413 040
8Cl1 359 021

Fig. 3 shows no apparent relationship between the transformed medians and standard deviations. An
estimate of the within-treatment variance is obtained by calculating Y'vio;2 / ivi. The variance is
estimated to be .0015 and the standard deviation .038. The oxide process effect (wet vs dry) is

0oCc2 +4C12- 6C1+8C1 _ OC3+5C1+7Cl1 +-SD. Q)

The oxide process effect is calculated to be -.028 +/-.038. This effect is not significant when compared to
the within-treatment standard deviation.

The off-axis effect is evaluated by comparing the 0° and 7° treatments (for the wet oxides, an aver-
age of the 6° and 8° values is used). The off-axis effect is

6C1 + 8C1

2

The off-axis effect is calculated to be -.079 +/-.038. This effect is a bit larger than 2 S.D. and is thus
judged to be significant. It should be noted that since the treatment medians are only separated by about 2
S.D., there is to be expected a fair amount of overlap between 0° and 7° breakdown field values.

00250‘33 - +/~S.D., )

3. Spatial distribution of oxide defects

The experimental finding that all of the capacitors on one wafer do not short circuit at the same vol-
tage indicates that there are defects of various severities present. The simplest model for the spatial distri-
bution of defects is the Poisson model. Each value of breakdown field is associated with a particular defect
severity. Using the Poisson model, the probability of a capacitor containing an 8 MV/cm type defect is
independent of the probability of its containing a 9 MV/cm type defect. The probability that a capacitor
contains an 8 MV/cm type defect OR a 9 MV/cm type defect (or both) may be found by convolving the
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defects’ probability mass functions (pmf) to obtain the joint pmf. The joint pmf for two (or more) poisson
random variables is a poisson pmf with parameter equal to the sum of the individual pmf parameters.

The Poisson parameter needed to evaluate the probability that a capacitor fails at a specific break-
down field ("ebd") may be derived as follows.

P (Eva = ebd) = P (at least one ebd—type defect in oxide) * P (no defects in oxide which causeEpq 1t ebd)
P (Epq = ebd) = (1-e eV (3)

where A is the parameter for the pmf of the defect associated with ebd and A’ is the parameter for the joint
pmf of all defects which cause Epq 1t ebd.

Figs. 4-7 show the derived values of the Poisson parameter (A) at each "ebd" for the four wet oxide
wafers. Superimposed are smooth curves indicating the general effect on A(ebd) of increasing the off-axis
angle. One sees that for the 0° case, A is fairly constant at all "ebd". As the off-axis angle is increased, A
increases approximately linearly with Ewq and the slope of this line increases with off-axis angle. As the
angle of rotation is increased, a value of A can not be obtained for the highest values of breakdown field.
This does not imply that there are no defects corresponding to those values of Eyg; instead, it indicates that
there is a very high probability that each capacitor contains a severe defect which masks the effect of less
severe uefects.

By comparing breakdown statistics for capacitors of different areas, one may determine if the above
analysis, based on the assumption that the defects are uniformly distributed (Poisson model), is valid. This
type of data is available for the 0C2 and 8C1 runs. The parameter A’, defined above, is set equal to the
capacitor area multiplied by the defect density (number of defects per unit area). If the defects are clustered
rather than distributed uniformly, the defect density one derives will become smaller as the capacitor area
becomes larger. (The following defect density analysis was restricted to fields below 10 MV/cm because
above this value the relationship between breakdown field and defect severity is not as clear.)

Fig. 8 shows the derived defect densities for .01 cm2 and .04 cm? capacitors from the 0C2 wafer.
There is no evidence of clustering. In fact, the larger capacitors have a slightly higher derived defect den-
sity at most breakdown fields. One observes that the defect density curves for the capacitor types are very
similar except for a horizontal offset. This might indicate that a constant error was made in measuring the
voltage during one or the other set of measurements.

Fig. 9 shows the derived defect densities for .01 cm?2, .000625 cm? and .0001 cm? capacitors from the
8C1 wafer. There were very few occurrences of breakdown at fields lower than 10 MV/cm for the .0001
cm? capacitors; this indicates that this is too small a capacitor area to do a defect-related breakdown study
upon. The 8C1 data does show evidence of clustering. Fig. 10 compares the actual .01 cm? data with that
predicted from the .000625 cm? data using both the Poisson and modified Poisson models. The Poisson
model predicts

P (Failure at a given Vi) = 1 — ™A @)

where D, is the defect density derived for a capacitor of area A, and A is the area of the capacitor for
which predictions are being made. The modified Poisson model accounts for clustering, it is described by

Al
P (Failure at a given Vi) = 1 — exp{ —A.D, i (&)

A "b" value of .25 is found to fit this data set reasonably well.

The non-zero value of the cluster parameter (b) indicates that the analysis of defect distribution as a
function of Ew (Figs. 4-7) was overly simplistic, at least for the 8C1 wafer. Specifically, by assuming that
the defects are independently distributed, we have probably underestimated the actual value of A (the mean
number of defects for a specific ebd), particularly for the defects corresponding to high values of break-
down field (lesser severity defects). However, the modified Poisson model implies that our calculations of
A’ (the joint pmf parameter) were correct. Since the cluster parameter is fairly small, Figs. 4-7 remain
informative.



4. Conclusions

Off-axis substrates have been conclusively shown to increase the probability that a device will con-
tain a severe oxide defect. Clustering of defects is seen in the off-axis samples but not in the samples fabri-
cated on the (100) plane.
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Statistical Experimental Design in Plasma Etch Modeling

Gary S. May

Abstract

The response characterisitics of a CCly-based plasma process used to etch doped polysilicon have
been examined via a 26! fractional factorial experiment folllowed by a Box-Wilson design. The effects of
variation in RF power, pressure, electrode spacing, CCLs flow, He flow and O, flow on several output vari-
ables, including etch rate, selectivity, anisotropy, and uniformity were investigated. The screening factorial
experiment was designed to isolate the most significant input parameters. From the results of this prelim-
inary investigation, however, it was concluded that each of the six input parameters was significant enough
to be modeled. Using this information as a platform from which to proceed, the subsequent phase of the
experiment enabled the development of empirical models of etch behavior using response surface metho-
dology.

1. Introduction

Wet etching was the standard method of pattern transfer in early generations of integrated circuits.
This stemmed primarily from the fact that etchants with high selectivity to both the substrate and the mask-
ing layer were readily available. However, wet etching processes are almost invariably isotropic in nature.
Consequently, when the thickness of the film being etched becomes comparable to the minimum patter
dimension, the undesirable lateral undercut due to the etch isotropy of wet etchants is no longer tolerable.

In order to overcome the shortcomings of wet etch processes, the technique of ion assisted plasma
etching has become widely used in semiconductor manufacturing. Since this method offers the added
feature of etch anisotropy, considerable effort has been expended in recent years to develop plasma etch
processes. A large portion of this effort has been directed toward thorough characterization of the response
of process outputs to variations in input parameters. Such process characterization has necessitated the
development of precise models of etch behavior.

Plasma modeling from a fundamental physical standpoint has had limited success. The best
physically-based models currently available are capable of describing the chemical kinetics of one-
dimensional RF glow discharges {1-4]. These models attempt to derive self-consistent solutions to first-
principle equations involving continuity, momentum balance, energy balance and Poisson’s relation. This
is accomplished by means of computationally expensive numerical simulation methods which typically
produce output such as profiles of the distribution of electrons and ions within the plasma sheath. How-
ever, although detailed simulation is useful for equipment design and optimization, it is subject to many
simplifying assumptions. Due to the extremely complex nature of particle dynamics within a plasma, the
connection between these microscopic models and macroscopic parameters such as etch rate has yet to be
clearly distinguished.

Since the complexity of practical plasma processes at the equipment level is presently far ahead of
theoretical comprehension, other efforts have focused on empirical approaches to plasma modeling involv-
ing Response Surface Methods (RSM). These techniques have been used by several authors to obtain sta-
tistical models of the etch rates of various thin films. Jenkins et. al. provides a model of the etch rate of p-
doped polysilicon in a CF;Cl/Ar plasma versus pressure, rf power and CF;Cl fraction [5]. Riley and Han-
son, on the other hand, investigated silicon nitride etching in SF¢/He versus the combined SF¢/He flow rate,
pressure, power and electrode spacing [6].

However, in these studies, the characterization of many other critical process outputs such as etch
uniformity and selectivity has been somewhat overlooked. Therefore, the objective of this work is to obtain
a comprehensive set of empirical models for plasma etch rates, anisotropy, nonuniformity and selectivity.
These models accurately represent the behavior of a specific piece of equipment under a wide range of etch
recipes, thus making them ideal for manufacturing and diagnostic purposes. In particular, this study
focuses on the etch characteristics of n*-doped polysilicon in a CCL/He/O, plasma. Responses were
modeled under the variation of the following six input parameters: RF power, pressure, electrode spacing,
and the three gas flows. Etching took place in a Lam Research Autoetch 490 single-wafer plasma system.
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2. Experimental Design

A prime example of a fabrication step in which plasma etching has become essential occurs in the
definition of polysilicon features for MOS circuits. This process step often requires that a relatively thick
polysilicon gate be etched down to a thin slicon dioxide layer. Therefore, high selectivity between poly
and SiO; is necessary to use a thin gate oxide as an etch stop. In addition, it is desirable that the vertical
etch rate of the polysilicon be much greater than its horizontal rate to achieve high etch anisotropy.
Finally, good within-wafer uniformity and selectivity to photoresist are also desirable. Carbon tetra-
chloride has been reported as an anisotropic etchant with a high selectivity for polysilicon in plasma etch-
ing [7], thus making it an attractive candidate for this experiment,

The most critical control parameters in plasma etching are RF power, chamber pressure, electrode
spacing and gas flow [5-8]. Helium is often added to standard CCl, etch recipes in order to enhance etch
uniformity. In addition, oxygen is sometimes also introduced into the gas mixture to decrease polymer
deposition in the process chamber. The effects of all six process variables must be considered in plasma
recipe control. However, RSM techniques are most effective when the number of input factors is limited to
six or fewer [5,11]. As a result, it was appropriate to divide the overall experiment into an initial phase to
determine the most significant parameters followed by a second phase designed to obtain the statistical
response models.

2.1. Screening Experiment

TableI: Range of Input Factors

Parameter Range Units
RF Power 300-400 | watts
Pressure 200 -300 | mtorr
Electrode Spacing 12-18 | cm
CCl4 Flow 100- 150 | sccm
He Flow 50-200 | sccm
O, Flow 10-20 | sccm

The six factors chosen for the initial screening phase of this experiment along with their respective
ranges of variation are shown in Table I. These ranges were chosen to effectively encompass the wide
variety of etch recipes currently being utilized in the Berkeley Microfabrication Laboratory. A full fac-
torial experiment to determine all effects and interactions for six factors would require 25, or 64 experimen-
tal runs. However, in order to reduce the experimental budget, the effects of higher order interactions were
neglected and a 25! fractional factorial design requiring only 32 runs was performed. The runs were per-
formed in two blocks of 16 trials each in such a way that no main effects or first order interactions were
confounded with higher order effects. Three center points were added to the design to provide an estimate
of nonlinearity [1C]. The randomized design matrix appears in Table II.
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Table IT: Design Matrix for Screening Experiment

Run | Pressure | RF Power | CCly Flow | He Flow | O;Flow | Electrode Gap | Block
1 300 300 100 200 20 1.8 2
2 200 400 100 50 10 1.8 2
3 200 400 150 200 20 12 1
4 300 400 150 200 20 1.8 2
5 200 400 150 50 10 1.2 1
6 300 300 150 200 10 1.8 1
7 300 400 100 50 20 1.8 1
8 250 350 125 125 15 1.5 1
9 200 300 150 200 20 1.8 2

10 300 400 150 50 20 12 2
11 300 300 100 200 10 1.2 2
12 200 300 150 200 10 12 2
13 200 400 100 200 10 12 2
14 300 400 150 50 10 1.8 2
15 200 300 100 50 20 1.8 1
16 200 400 100 200 20 1.8 2
L 17 200 300 100 200 20 12 1
18 300 300 150 50 10 12 1
19 200 300 100 50 10 1.2 1
20 200 300 150 50 10 1.8 2
21 300 400 150 200 10 12 2
22 200 400 100 50 20 12 2
23 200 400 150 200 10 18 1
24 300 400 100 200 20 1.2 1
25 250 350 125 125 15 1.5 1
26 300 300 100 50 20 1.2 2
27 300 300 100 50 10 1.8 2
28 300 300 150 200 20 12 1
29 200 300 150 50 20 1.2 2
30 200 300 100 200 10 1.8 1
31 200 400 150 50 20 1.8 1
32 300 400 100 200 10 1.8 1
33 300 300 150 50 20 1.8 1
34 300 400 100 50 10 12 1
35 250 350 125 125 15 1.5 2




2.2. RSM Modeling Experiment

Analysis of the first stage of the experiment revealed significant nonlinearity in all responses, which
indicated the necessity of quadratic models. Also, none of the input factors were found to have a statisti-
cally insignificant effect on all of the responses of interest. Thus, none were omitted from the response sur-
face models derived in the subsequent phase. In order to obtain these models, it was necessary to augment
the data gathered with a second experiment which employed a Central Composite Circumscribed (CCC)
Box-Wilson design. In this design, the 2-level factorial "box" was enhanced by further replicated experi-
ments at the center (to provide a measure of error) as well as symmetrically located "star” points [10].

Table ITI: Additional "Star Point" Recipes for Box-Wilson Experiment

Run | Pressure | RFPower | CClyFlow | He Flow | O, Flow | Electrode Gap
36 250 350 125 125 3 1.5
37 250 231 125 125 15 1.5
38 250 350 125 200 15 1.5
39 250 350 125 125 15 0.8
40 369 350 125 125 15 1.5
41 250 350 125 0 15 1.5
4?2 250 350 125 125 15 1.5
43 250 350 66 125 15 1.5
44 250 350 184 125 15 1.5
45 250 350 125 125 15 1.5
46 250 350 125 125 15 1.5
47 250 350 125 125 15 22
48 250 350 125 125 15 1.5
49 250 469 125 125 15 1.5
50 131 350 125 125 15 1.5
51 250 350 125 125 27 1.5
52 250 350 125 125 15 1.5
53 250 350 125 125 15 1.5

A complete CCC design for six factors requires a total of 91 runs. Therefore, in order to reduce the
size of the experiment and make use of the results from the screening phase, a half replicate design was
again employed. The entire second phase required a total of 18 additional runs. The 18 added recipes are
shown in Table III. The circumscribed design was selected as opposed to a inscribed (CCI) design to allow
the models to accurately predict the responses over the entire range of the input factor settings [11). How-
ever, in the case of He flow for runs 39 and 41, the necessary star point required recipe settings of 303 and
-53 sccm, which are beyond the operational capabilities of the equipment. In this case, the recipe was
modified to reflect the maximum/minimum possible parameter settings of the Lam etcher (200 and 0 sccm,
respectively). A graphic description of central composite designs appears in Figure 1.

3. Experimental Apparatus and Technique

Etching was performed on a simple test structure designed to measure the vertical etch rates of
polysilicon, SiO,, and photoresist as well as the lateral etch rate of poly. The samples consisted of 4-in
diameter silicon wafers with films of thermal SiO;, phosphorous-doped polysilicon and Kodak 820 pho-
toresist. Approximately 1.2um of poly was deposited over 5000A of thermal SiO; by low-pressure chemi-
cal vapor deposition (LPCVD). The poly resistivity was measured at 86.0Q-cm. Oxide was grown in a
steam ambient at 1000 °C. One micron of photoresist was spun on and baked for 60 seconds at 120 °C.
Due to the insufficient selectivity of the polysilicon etch rate with respect to that of the photoresist, poly
lines for SEM photos were patterned with a mask consisting of low-temperature oxide (LTO) deposited at
450 °C by LPCVD. A cross section showing the critical measurement area is shown in Figure 2.

The etching apparatus consisted of a Lam Research Corporation Autoetch 490 single-wafer parallel-
plate system. The etching samples rest on the grounded lower electrode while the upper electrode is
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excited by a 13.56 MHz RF generator operating through a matching network. The anodized alumninum
electrodes are circular and equal in area. The electrode walls are also composed of aluminum. Process
gases are introduced into the chamber through nearly 1000 holes in the upper electrode in "showerhead"
fashion. Reactor pressure is monitored with a capacitance manometer and controlled automatically with a
throttle valve [12,13). The etcher was monitored via a real-time statistical process control scheme to
ensure consistency in equipment operation throughout the experiment. A schematic diagram of the etching
system appears in Figure 3.

Film thickness measurements were performed on five points per wafer (as in Figure 4) both before
and after etching using a Nanometrics Nanospec AFT system in conjunction with an Alphastep 200
Automatic Step Profiler. Etch rates were calculated by dividing the difference between the pre- and pos-
tetch thickness by the etch time. The lateral etch rate for poly was measured via SEM. Expressions for the
selectivity of the poly with respect to oxide (Sox) and with respect to resist (Sp) along with percent aniso-
tropy (A) and percent nonuniformity (U), respectively, are given below:

Se= R &)
Spn = ]{% V)]

A=[1-R’-r;] 3)
|Rpe = Ro|
U=—R"ﬁz—R"°—p, 100 @

where R? is the mean vertical poly etch rate over the five points, R, is the mean oxide etch rate, Ry, is the
mean resist eatch rate, L; is the lateral poly etch rate, Ry is the poly etch rate at the center of the wafer, and
R,. is the mean poly etch rate of the four points located about one inch from the edge [14].

4. Results and Discussion

After the initial screening experiment, a few of the input factors were found to have an insignificant
effects upon individual responses. For example, the electrode gap spacing had litde effect on the etch
selectivity with respect to oxide. However, no single factor was statistically irrelevent to all five responses
of interest. Although it did not appear to affect oxide selectmty, gap spacing did indeed have a dramatic
impact upon etch uniformity. Table IV provides an overview of the significance of each main effect result-
ing from the fractional factorial data. (Since they are extremely time-consuming, the complete set of SEM
photos for the anisotropy measurements have been delayed in order to complete the other models in a
timely manner. These photos will be taken and the anisotropy data will be analyzed at a later date. After-
wards, an anisotropy model will be similarly derived and appened to this set).

4
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Table IV: Results of Screening Experiment

Statistical Signiﬁcance

Factor R S S l U

Pressure 0.0090 | 0.0001 | 0.0001 | 0.0677
RFPower | 0.0001 | 0.0046 | 0.0001 | 0.0493
CClL 0.0032 | 0.0410 | 0.0001 | 0.0672
He 0.0001 | 0.0001 | 0.0001 | 0.0002
O 0.0043 | 0.0669 | 0.0014 | 0.9581
Gap 0.0185 | 04134 | 0.0001 | 0.0107

* Only factors with a significance < 0.05 are considered significant.

The above results indicate that all six controlled parameters have a significant effect both on etch rate
and resist selectivity. On the other hand, oxide selectivity is only impacted by pressure, power, CCl; and
helium flow. Etch uniformity depends primarily on power, helium flow and gap spacing. The additional
18 runs in the next phase of the experiemnt yielded quadratic models which indicate the precise interaction
between input factors and the four responses. These models are discussed below.

4.1. Polysilicon Etch Rate

Fitting a regression model for R;, yielded the following expression:

R, =3540 - 10.1P + 11.0Rf - 17.8CCl4 + 11.2He - 1030G - 61.40, ®
- 0.034P*He + 7.82P*G + 0.389P*O; + 0.085R*CCL, - 8.36Rf*G ~ 0.132(CCLy)?
- 0.059CCL*He + 12.4CCL*G - 0.059He?

where R, is in A/min and the units of every other parameter are given in Table I. This equation was
derived by stepwise regression [11), and it has a standard deviation of +/- 98 A/min. The Analysis of Vari-
ance (ANOVA) table for the etch rate model is shown in Table V.

Table V: ANOVA for Poly Etch Rate Model

Source DF _ SumofSquares Mean Square  F-Ratio _ Significance
Total 52 24717141 , 47532963
Regression 15 21562592 1437506 16.86 0.000
Residual 37 3154549 85258.07
. Lackof Fit | 29 2823740 97370.33 2.36 0.103
Error 8 330809 41351.11

Adjusted R2 = 0.821

The F-test for all the coefficients of the model being equal to zero indicated that this is highly unlikely,
since the probability that F(15,37) > 16.86 is negligible. In addition, the F-test for lack of fit reveals little
evidence of lack of fit since F(29,8) as large as 2.36 occurs 10.3% of the time. Therefore, most of the error
of the model is due to experimental error. The "adjusted R is a parameter between zero and one (with one
being optimal) which also measures the goodness of fit.
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The etch rate model is fairly complex, but a few interesting relationships are indicated in the contour
plots of Figures 5 and 6. In Figure 5, R, surfaces are plotted against RF power and chamber pressure with
all other parameters set at their nominal values. For high process throughput, etch rate should preferably
be as high as possible. This occurs at high power and high pressure. In Figure 6, the effects of CCLs flow
and electrode spacing are explored. Here, it is seen that the highest etch rates occur when the gap is narrow
and the flow rate is moderate.

4.2. Etch Uniformity

The uniformity regression model and corresponding ANOVA table are:

U =-11.0-0.168P + 0.094Rf + 0.714CCL - 0.415He + 11.9G

- 0.0710; + 0.009P*O - 0.002Rf*CCl4 + 0.001Rf*He

- 0.001CCls*He + (8e—4)He? - 1.39G*O,  +/-2.15(%)

Table VI: ANOVA for Etch Uniformity Model

Source DF  Sumof Squares Mean Square F-Ratio  Significance
Total 52 5896.02 113.39
Regression 12 4255.83 354.65 8.65 0.000
Residual 40 1640.19 41.01
Lack of Fit | 32 1295.73 40.49 0.94 0.588
Error 8 34446 43.06

Adjusted R%.= 0.638

©®

Tests for significance reveal that model coefficients are relevant. In addition, the F-test for fit shows
no lack of fit. The contours in Figures 7 and 8 describe some results of the uniformity model. In Figure 7,
U is plotted against pressure and power. Optimum uniformity is observed at high pressure and low power.
“Thus, good uniformity is achieved at the expense of high etch rates. The effects of He flow and electrode
spacing are observed Figure 8. This plot verifies the initial assumption that helium enhances uniformity,
but only up to an optimum value of flow rate beyond which U begins to degrade.

4.3. Oxide Selectivity

The regression model and AVOVA table for S, are given below:

Sox =-9.87 + 0.097P + 0.03Rf - 0.06CCLs + 0.03He + 0.0790; — (2e—4)P*Rf

+(2.9e—4)P*CCl; - (3e—4)P*He + (7.4e-5)Rf*He  +/-0.31

Table VII: ANOVA for Oxide Selectivity Model

Source DF _ Sumof Squares Mean Square  F-Ratio _ Significance
Total 52 248.70 4,78
Regression 9 213.26 23.70 28.76 0.000
Residual 43 3543 0.82
Lack of Fit | 35 31.35 090 1.75 0.205
Error 8 4,09 0.51

™
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Adjusted R? = 0.828

The F-test for the model possessing coefficients equal to zero indicated that this is highly unlikely,
and the F-test for fit showed no evidence that a more complex model is required. A few implications of the
oxide selectivity model appear in Figures 9 and 10. Figure 9 shows S contours versus RF power and
pressure. According to this plot, highest oxide selectivity occurs at high pressure and low power. Thus, a
trade-off exists between high etch rate and good selectivity in terms of power. The effects of CCly flow
and pressure can be visualized in Figure 10. Greatest oxide selectivity occurs when pressure and CCL4
flow are both high.

4.4. Photoresist Selectivity
The regression model and ANOVA Table for Sy, are:

Spa = 7.56 + 0.009P + 0.014Rf - 0.022CCL, + 0.006He - 2.59G - 0.0990, ®
— (5e—5)P*Rf + (1.3e—4)P*CClL, — (Te-5)P*He + (3.7e—4)P*O; + (2.7e-5)Rf?
+(3.6e-5)Rf*He - (5e-5)CCly*He + 0.757G?  +/-0.09

Table VIII: ANOVA for Photoresist Selectivity Model

Source DF Sumof Squares Mean Square F-Ratio Significance
Total 52 15.24 0.29
Regression 14 12.61 0.90 13.02 0.000
Residual 38 2.63 0.07
Lack of Fit | 30 242 0.08 3.07 0.050
Error 8 0.21 0.03

Adjusted R2 = 0.764

Statistical tests for model complexity and fit indicate no reason to doubt the adequacy of the resist
selectivity model. The model is visualized in Figures 11 and 12. Figure 11 shows Sy, contours versus
power and pressure, and Figure 12 shows the effects of CCly flow and pressure. These plots indicate that
photoresist selectivity possesses similar trends to that of oxide. This result is not surprising, since both
oxide and resist are etched mechanically rather than chemically within the plasma.

5. Conclusion

An economical two-phase experiment has been designed and conducted to characterize the etch rate,
uniformity, and selectivity to SiO, and photoresist of n*-doped polysilicon versus a comprehensive set of
controlling parameters. These parameters were fit to quadratic response surface models. The models can
be used for a variety of manufacturing purposes, including recipe generation, process control, and diag-
nosis. S

6. Future Work

SEM photos for anisotropy measurements are still pending. Therefore, the complete set of models is
presently unavailable. However, this data will be compiled, analyzed and added to this study in the near
future.
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Figure 1: Central Composite Box-Wilson experimental designs [11].
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Figure 3: Schematic diagram of Lam Autoetch 490 plasma etching system [13].
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Figure 5: Contour plot of polysilicon etch rate versus RF power and pressure. Figure 6: Contour plot of polysilicon etch rate versus CCl, flow and electrode spacing.
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Parametric Yield Analysis of CMOS EPROMs
Eric D. Boskin

Abstract

This report describes the statistical comparison of two EPROM designs. This comparison is based on
the geometrical representation of their respective yield bodies. Spice3 was used to evaluate the sensitivities
of the two circuits to some of the most prominent process variations.

1. Introduction

The performance yield loss of analog integrated circuits due to variation of the fabrication parame-
ters is of significant concern in the semiconductor industry. Statistically based methods have been
. developed to understand and quantify the variation of these parameters, and their effect on circuit perfor-
mance. This project applies many of these techniques in the study of the design and performance yield of a
CMOS EPROM. Specifically, the design trade-off between a static pullup and the use of precharging on
the bit lines will be investigated.

2. Methodology

The Spice circuit simulator will be used to study the effect of parameter variation on performance.
The MOS transistor model in Spice contains certain parameters which are directly related to physical dev-
ice parameters. These model parameters can be varied, in repeated runs of the simulator, with the distribu-
tion seen in the manufacturing environment (Monte Carlo analysis). Each simulation run represents one
manufactured die. The range of performance seen in the simulation results will be very close to the perfor-
mance spread of manufactured parts, so the simulation results can be used to analyze and predict perfor-
mance yield.

Statistical methods will also be used to determine the sensitivity of the circuits to fabrication parame-
ter variation. The most significant parameters will be used to create a model for the yield body of the cir-
cuit through linear regression.

2.1. Statistical Model for Fabrication Variation

Three fabrication parameters will be varied. These are the change in channel length (Ld), the oxide
thickness (Tox) and the substrate doping level, (Sub). The three parameters were varied for both the n-
channel and the p-channel transistors (i.e. Ntox and Ptox). One value for each of these six parameters will
be generated for each run. This variation will simulate global variation between die, wafers and lots.
Further, a local variation (intradie) will be introduced by a small variation in these parameters between the
matched transistors in the sense amplifier circuitry. One local value for each parameter was also generated
for each simulation run, for a total of twelve varying parameters.

Gaussian distributions will be used for the probability density functions of the fab parameters. The
statistical model will take into account parameters with global variation and parameters with local varia-
tion. Further, the correlation between parameters will also be accounted for. A random number generator
with a gaussian distribution is the basis for creating values for each of the parameters for each simulation.
The random number generator takes the mean and standard deviation of a distribution as input parameters,
and generates a random number from that gaussian distribution.

Global variation is represented by one call to the random number generator with the global standard
deviation of the parameter, to establish a value for that die. Then, local variation is modeled with a second
call to the random number generator using the first value as the mean, and a smaller, local standard devia-
tion,

The local standard deviation was estimated to be twenty-five percent of the global standard deviation. This
method was used to generate global and local values for the variables Nsub and Psub, which are indepen-
dent from any other parameter. It was also used to generate the four values related to oxide thickness on
one die, as the oxide thickness for n and p-channel transistors on any die show only small, local variation.
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Figure 1 - Model of Statistical Variation

Parameters which exhibit correlation, such as the line width variation between n-channel and p-
channel transistors, require a more sophisticated model. In this case the mean, standard deviation and
correlation for the parameters is known. The method for generating these parameters is based on the mul-
tivariate statistical technique of principal component analysis. More specifically, in order to generate two
correlated variables, X and Y, with given means (i) and global standard deviations (G), we used the formu-
las:

X=0x "\ o7z @V +bW) +px

Y=cy\j—;—¢c 7 CV+d2) +py

where V,W, and Z are unit normal, random gaussian numbers, and a,b,c and d are a function of the correla-
tion (p). This resulted in a correlation coefficient:

Pry= =
M7 N@2+ ) (2 +d?)

The values for a,b and ¢ were chosen accordingly. A correlation coefficient of 0.75 between NId and Pld
was used. There is a high correlation between these parameters because their value is determined mostly
by a shared process step, polysilicon etch. After finding the global values for Nid and Pld, these equations
can be applied recursively to find the local values by using the local standard deviations, and the global
values as the new means, as depicted in Figure 1.

Recently, work has been done characterizing the local variation of transistor parameters. Variation
of threshold voltage, drain current (Spice parameter KP) and the body effect coefficient (Spice parameter
BETA) have been modeled in terms of the size of transistors and their distance from each other. The varia-
tion in the circuit parameters corresponds to variation in the fabrication parameters postulated here.

Experimental work is necessary to establish relevant statistics about local parameter variation, Pel-
grom [8] provides an interesting framework for that work. The statistical results could be used to generate
better estimates of local variation for a specific fabrication line. This result could be used directly in the
generation of the input parameter distribution for the Monte Carlo analysis.

2.1.1. Input Parameter Space

The input parameter space is the range of values each input parameter is allowed to take in any simu-
lation. For gaussian distributions, each input parameter is described by a given mean and a global and local
standard deviation. The values used in this project are given in Table I. These are typical values for a 1.2
micron CMOS process, which is currently used in high volume EPROM manufacturing.
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Parameter Mean Global Std. Dev. | Local Std. Dev. Units
Oxide thickness 40.0 1.67 0.42 nm
NMOS linewidth variation 0.3 0.1 0.025 microns
PMOS linewidth variation 0.25 0.083 0.02 microns
Doping 5.5 x 10'7 1.67 x 10'7 0.42 x 1017 cm™?

Table I: Input Parameter Space

2.2. Calculation of Performance Yield

Monte Carlo simulation techniques are used to evaluate the performance yield of two possible circuit
designs. Given the performance specifications, the Spice results can be checked to see if each circuit suc-
ceeded or failed to meet all the specifications. The performance yield is

. 14 (# of passing circuits
Perf_Yield = toi of simulations

2.2.1, Use of the Yield Body in Binning Parts

Normally, each performance specification has a value, which defines the acceptable limit for a part to
meet that specification. For example, a 25 nsec EPROM would have the value of 25 nsec for the Read
Access Time specification. The manufacturer might also sell parts with 30 and 35 nsec maximum access
times. These specification ranges, or bins, are used by manufacturers because fabricated ICs exhibit per-
formance spread.

The performance yield prediction technique developed here can also be used to predict the number
of parts a manufacturer will have in each bin. The percentage of parts in each bin can be calculated from
the Monte Carlo simulation results. The yield bodies for adjacent bins will be adjacent regions in perfor-
mance space.

2.3. Calculation of EPROM Sensitivity to Fab Parameters

The first order sensitivity of a circuit can be estimated from the change in performance for a unit
change in an input parameter. The sensitivity is the percent change in performance from nominal per the
given input parameter change.

2.4. Linear Model for Yield Body

The yield body is the area in input Parameter space where the resultant circuit will pass all the per-
formance criteria. The yield body in this analysis will be a polytope in the twelve dimensional input space.
It can be examined graphically through the used of projections onto the plane of two input parameters.

An estimate of the yield body can be generated by first assuming each performance specification
generates one surface of the polytope in input space. If we postulate that the surface can be described as a
linear combination of the input parameters, we can generate a linear model for the yield body of the
EPROM. The model has the form:

Performance = A + B(N1d) + C(Ntox) + D(Nsub) + EPId) + - - -

There will be one equation for each specification. This model has been successful in the analysis of digital
circuits (2], however here it is being applied in an analog circuit. Although it is possible that a quadratic
model is necessary, the linear model will be used for its simplicity.

3. Implementation

This analysis is based on the circuit model for an EPROM shown in Figure 2, which is a simplified
schematic of the model used for Spice simulation. Figure 2 includes the static pullup on the bit line. The
p-channel transistor with W/L=4/2, pulling up on node (11), is the static pullup. The static pullup transistor
brings the bit line to a logic one when the EPROM cell is off. Figure 3 shows a diagram of the precharging
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scheme. This circuit includes Address Transition Detection to generate a precharge pulse which aids bit-
line precharging. The precharge pulse is about 5 nsec wide after any address transition.

The 500 point Monte Carlo simulation was generated and run on a Decstation 3100. Shell scripts, utilizing
awk and the C language pre-processor, generated 500 Spice decks with varying transistor models according
to the statistical model described in section 2.1. The Monte Carlo required approximately 5 CPU hours to
complete.

3.1. Linear Model for the Yield Body

The analysis was done for the static and precharge circuits. The six fabrication parameters which
had the greatest on performance were chosen for the analysis. (The sensitivity of the circuit performance
to fabrication parameter variation will be discussed in section 4.2.) These are Nld, Ntox, Nsub, Pld, Psub
and Nld_local. These six variables were normalized and then put through Principal Component Analysis to
form independent variables for linear regression. Five principal components were enough to account for
96 percent of the total internal variation. The EPROM performance specifications used are shown in Table
II. These specifications apply to the 1 bit EPROM model used for simulation.

Specification Upper Limit
Power 2.1 mw
Read 0 Access Time 23.4 nsec
Read 1 Access Time 23.4 nsec

Table II: Performance Specifications

4. Results

The main results of the analysis will be discussed. These include the performance yield of the two
circuits, the circuits’ sensitivity to parameter variation, the model for the yield body and the results of the
circuit optimization.

4.1. Prediction of the Monte Carlo Simulation for Performance Yield

Appendices A and B show the access time results of the Monte Carlo simulations of the static pullup
and precharge circuits, respectively. The two circuits were simulated 500 times, with the same set of
parameter variation. Read O is the time it takes to read a programmed cell, that is, with the memory cell
pulling down the bit line. Read 1 is the time when the bit line is high. The read access time specification
on a part would be the larger of the two times.

The interesting result is that the static design produces a slightly higher performance yield given a
fast access time specification, but the precharge design produces a higher performance yield at a slower
access time specification. This can be seen in Appendix C, which shows the simulation results in histo-
gram form. Specifically, the static pullup has a performance yield of 18.2 percent at 21 ns access time and
76.6 percent at 25 ns. The precharge circuit has yields of 16.2 percent and 78.4 percent at the two speeds.
This performance yield prediction is an important result of this analysis technique, although here the result
is not statistically significant.

Also note that the precharge design is more sensitive to process variation, as seen in the wider distri-
bution of performances for the same parameter variation. However, the circuit performance criteria which
varies the most, Read 1 delay, is never the limiting value for the speed of the precharge circuit, where Read
0 is slower. So, one benefit of the precharge circuit, is that one of the performance specifications does not
effect the yield. This will potentially simplify the testing procedure of the product.
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Figure 2 - EPROM Circuit Model with Static Pullup
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Figure 3 - Bit Line Precharge Circuitry

4.2. 4.2 Circuit Sensitivity to Fabrication Variation

Table III quantifies the performance sensitivity of the two circuits to the twelve fabrication parame-
ters. It shows the percent change from nominal delay for Read 0 and Read 1 Access Times for three sigma
changes in all input parameters. There are two entries for each parameter, one corresponding to a change
to it's plus three sigma limit (denoted ’hi’ in Table III), and one corresponding to a change to the minus
three sigma limit (denoted '10’). In other words:

Sensitivity = B¢imputoominal x 10 g
taominal

It now becomes clear how the six input parameters for Principal Component Analysis were chosen. They

are the parameters which have the highest sensitivities in both designs.

The most important result, in addition to the selection of the parameters for Principal Component
Analysis, is the increased sensitivity of the precharge circuit for Read 1. Also notice the large sensitivities
of some of the local variation, such as nld_local.

4.3. Yield Body Equations and Projections

The result of the Principal Component Analysis is shown in Table IV. The Principal Components
are linear combinations of the input parameters. These linear combinations are uncorrelated with each
other, and are used for linear regression. A linear regression was done for each performance constraint for
both the static pullup and precharge circuits. An example of the regression results is shown in Tables V
and V1. Table V shows the coefficients generated for Read 0 delay for the static pullup circuit, and Table
VI shows the Analysis of Variance Table.
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Static Circuit Precharge Circuit
Variable I Sens of Read 0 [ Sensof Read 1 | Sens of Read 0 -| Sens of Read 1
(in % change from nominal delay)
Nominal Delay 2.2 224 23.0 15.0
nid hi -14.946846 -15.683648 -15.093441 -27.891643
nid lo 15.891987 16.627216 19.129866 56.642769
ntox hi 7.520718 3.296313 9.867941 30.101246
ntox lo -8.272898 -4.100828 -7.362490 -13.071564
nsub hi 5.062577 -1.171403 7.351490 27.601801
nsub lo -6.931844 10.051883 -5.718565 -21.953356
pld hi -9.385125 -17.485166 -5.020423 6.183117
pldlo 15.675400 21.700668 16.591416 12.606497
ptox hi -0.343937 1.530004 -1.239726 6.666775
ptox lo 1.045132 -1.638262 1.945563 -0.876574
psub hi 0.089686 5.697237 2.368283 -4.474786
psub lo -1.314953 -7.616061 2.052906 14.541392
nld_l hi -0.199531 -1.217042 1.428413 -2.922239
nid_llo -4.015016 9.960784 -3.803739 38.448105
ntox_l hi -2.519746 5.416097 -2.740701 25.924131
ntox_l lo 2.885328 -5.506483 3.275720 -12.822298
nsub_l hi -2.476546 4284182 -2.628619 25.744210
nsub_l lo 2.986489 -5.570484 4.057728 -13.692478
pld_l hi 0.483303 0.084503 -0.191948 -1.360167
pid_llo -1.193363 0.633947 -0.434502 2.765803
ptox_l hi 0.111286 -0.128091 -0.003652 1.650075
ptox_l1lo 0.021150 0.186432 -0.021912 0.189314
psub_l hi -0.889431 0.275792 -0.054345 2.370735
psub_l lo 0.136126 0.175066 -0.145037 -0.216061
Table III - First Order Sensitivities
Parameter Coeffl Coeff2 Coeff3 Coeff4 Coeff5
nid 0.69453 -0.02964 -0.053303 | -0.122391 0.018589
ntox 0.062938 0.189548 | -0.796532 0.502942 0.267476
nsub 0.079627 0.908271 0.254647 0.190265 | -0.259428
pld 0.697986 | -0.026514 0.005215 | -0.112795 -| -0.007503
psub 0.14145 -0.301527 0.46987 0.815682 0.048916
nld_local -0.011624 0.215907 0.27757 -0.133448 0.926477
Variance 0.187657 0.128945 0.118086 0.11196 0.101417
% of total var | 27.811492 | 19.11007 17.50075 16.592803 | 15.030285
Cumulative % | 27.811492 | 46.921561 | 64.422312 | 81.015115 | 96.0454
Table IV - Principal Component Coefficients
Parameter Coeff Std. Err T. Value Sig |
CONSTANT | 22.090711 | 0.020703 | 1067.01795 0.0001
peol 4.265672 | 0.047735 -89.361343 | 0.0001
pco2 2.053502 | 0.057586 35.659593 | 0.0001
pco3 -0.384407 | 0.060176 -6.388076 | 0.0001
pcod 1.960178 | 0.0618 31.717967 | 0.0001
pcoS 0.675375 | 0.064933 10.401083 | 0.0001

Table V - Least Squares Regression for Read 0 Delay, Static Pullup
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Source Sumof Squares df Mean Square  F Value Signif. level
Regression : 2221.6685 5 444,3337 20824151  2.2204e-16
Error 105.4068 494 0.2133
R-Squared 0.9547
Adjusted R-Squared 0.9542

Table VI - Analysis of Variance Table

During the residuals check, it was seen that the residuals for the power equation for the static pullup were
not randomly distributed. Therefore, a quadratic model was fitted and the results are shown in Table VII.

Parameter Coefficient | Standard error T value Signif. level
CONSTANT 1.976475 0.000390 5066.137744 0.000100
peol 0.150232 0.000472 318.233116 0.000100
pco2 -0.087723 0.000583 -150.480379 0.000100
pco3 0.024678 0.000603 40.941383 0.000100
pcod -0.164328 0.000616 -266.889315 0.000100
pcoS -0.003553 0.000649 -5.476820 0.000100
pcol**2 0.032975 0.000767 43.012301 0.000100
pcol*pco2 -0.010978 0.001307 -8.400517 0.000100
pcol*pco3 0.006947 0.001473 4.716252 0.000100
pcol*pcod -0.022612 0.001445 -15.651587 0.000100
pcol*pcos -0.001416 0.001516 -0.933862 0.350845
pco2**2 0.024284 0.001108 21.922794 0.000100
pco2*pco3 0.009427 0.001628 5.790682 0.000100
pco2*pcod 0.006959 0.001728 4026329 0.000100
pco2*pcos -0.013881 0.001796 -1.730116 0.000100
pco3**2 0.012940 0.001336 9.684334 0.000100
pco3*pcod 0.010109 0.001846 5.476969 0.000100
pco3*pcos -0.009267 0.001927 -4.810113 0.000100
pcod**2 0.020986 0.001375 15.258998 0.000100
pcod*pcos -0.003049 0.001803 -1.691058 0.091476
pcoS**2 0.003514 0.001472 2.386623 0.017391

Table VII - Regression of the Power Equation Using a Quadratic Fit

Appendices D through G show the results of the Monte Carlo simulation projected onto planes of two input
variables. Both circuit results are shown projected onto two planes, Nid and Ntox, and N1d and Pld. Each
point represents one run of the simulator, at that point in input space. The point will be a solid square if
that circuit passed all performance specifications, and an outlined square if the circuit failed any
specification.

These regression results are plotted as lines on these figures. Note that the regression generated an
expression for delay or power in terms of principal components of the normalized values for the varying
parameters, Nld, Ntox, Nsub, etc. By setting the delay equal to the performance limit (i.e. Read 0 access
time to 23.4 ns), and setting the ten other variables to their mean (which is zero, due to the normalization),
and expanding out the principal components back into input parameter space, the lines shown in the figures
are generated. The lines shown are projections of the yield body into a two dimensional space. The regres-
sion was done on normalized data, so the axes were labeled in terms of the distance from the mean
expressed in number of standard deviations.

The lines generated by the access time specification generally fall on a sharp division for passing and
failing circuits. This is less true for the power constraint. Certainly, the simplified analysis generates an
interesting projection of the yield body. The quadratic regression for power is also plotted on Figure 10. It
is not significantly different from the linear model.
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These lines show the projection of the twelve dimensional yield body into two dimensions. This pro-
jection is done as if all other (ten) variables were simulated at their mean value. Since this was not the
case, the inaccuracy of the linear model is due to both the inaccuracy of the model, and our simplified pro-
jection, ignoring the variation of the other parameters. Nevertheless, this simplification allows us to get a
graphical view of the importance of various fabrication parameters.

Note that the yield body for the precharge model is slightly smaller than that for the static pullup.
This is another sign of its increased sensitivity. It is also clear that one specification for the precharge
model, Read 1 delay, has no effect on yield, and that the yield body is not centered around the process
.mean (N1d of 300 nm, Pld of 250 nm and ntox of 40 nm). If it were possible to move the center point of
the fab parameters to the center point of the yield body, yield could be increased. This technique is known
as Design Centering. )

rd

43.1. Alternative Projections of the Yield Body

The projection of the yield body as done above gives an interesting, but slightly incomplete picture
of how well the linear model has established the boundary of the true yield body. This measure can be
improved by projecting the yield body onto a plane perpendicular to the constraints. Projection onto this
plane would give a better picture of which side of the constraint plane the simulation results were on. The
projection as done above suffers from a *shadowing’ problem since the constraint plane is hitting the pro-
jection plane at an angle.

For each constraint, expressed as a linear combination of the principal components:
Performance = A + B(pcol) + C(pco2) + D(pco3) + E(pcod) + F(pco5)

the vector [A,B,C,D,EF] is normal to the plane defined by the constraint, and becomes a basis vector for
the desired plane of projection. For a space of dimension m, m-1 basis vectors are needed to uniquely
define a plane. In this case, three constraints are not enough to define a unique plane in our 5 dimensional
component space. Further, each basis vector must be independent to define the plane. Here, we are in an
underdetermined situation, and must create additional constraints to define the projection plane. This
analysis was not done for this project.

.

4.4. Performance Yield Optimization

The modeling of performance yield allows it to be added as a criterion for optimization. One
interesting direction would be to express performance yield as a function of the circuit and fabrication
parameters, and use that as an optimization constraint.

Another, graphical technique, is based on the normal to the constraint planes. For each constraint
plane, the normal to that plane establishes the direction of maximum sensitivity of the circuit to the input
parameters. Relating the principal component space back into input parameter space would allow the cal-
culation of the sharpest yield derivatives of the input parameters. This information can be used for perfor-
mance yield optimization.

5. Conclusions

This analysis clearly showed the power of statistical design tools to explore many performance
related features of a design which are not normally considered while doing worst case design. However, in
this case, there was not a particularly significant difference in these two circuits. The lack of sensitivity to
input parameters of the static pullup-makes it a more manufacturable circuit, regardless of the slight perfor-
mance yield disadvantage at slower access times.

5.1. Ideas for Current Research

This project is part of an ongoing research project in statistical circuit design. Two extensions of this
work are currently being pursued. First, the EPROM circuit model is being enhanced to better represent a
commercial EPROM design. Secondly, formal mathematical techniques for generating the yield body, the
planes of projection parallel to the constraints and the normals to the yield body planes are being investi-
gated. The information contained in a circuit’s yield body can be used to understand why the circuit will

]
"
v
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fail to meet performance specifications in a varying manufacturing environment. This information will be
used to generate a test pattern to monitor the performance yield of the circuit.

§5.2. Ideas for Further Research

An extension of this analysis technique would be to characterize the effect of fab parameter variation
on the variation of high level circuit parameters for small analog circuit blocks. Instead of doing a worst
case design for a small circuit block, characterization could predict the spread of analog circuit perfor-
mance for a given manufacturing variation. Macromodels could be developed for use in the Spice simula-
tor.
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Appendix C - Access Time Histogram, Static Pullup
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Appendix D - Monte Carlo Result, Yield Body, Nid vs Ntox, Static ~ Appendix E - Monte Carlo Result, Yield Body, Nid vs Ntox, Precharge
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Appendix F - Monte Carlo Result, Yield Body, Nid vs Pld, Static ~ Appendix G - Monte Carlo Result, Yield Body, Nid vs Pld, Precharge
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