
Copyright © 1990, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PICASSO WIDGET WRITER'S GUIDE

by

Steve Seitz and Patricia Schank

Memorandum No. UCB/ERL M90/80

11 September 1990

PICASSO WIDGET WRITER'S GUIDE

by

Steve Seitz and Patricia Schank

Memorandum No. UCB/ERL M90/80

11 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PICASSO WIDGET WRITER'S GUIDE

by

Steve Seitz and Patricia Schank

Memorandum No. UCB/ERL M90/80

11 September 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PICASSO Widget Writer's Guide^
(Version 1.0 August 24,1990)

Steve Seitz and Patricia Schank

Computer Science Division - EECS
University of California

Berkeley, CA 94720

Abstract

PICASSO is an object-oriented graphical user interface development system. This
manual describes how to write new widgets thatcanbe used in the system.

*This research was supported by the National Science Foundation (Giants DCR-8507256 and MIP-
8715557), 3MCorporation, and Siemens Corporation.

1

INTRODUCTION

INTRODUCTION

Overview Almost all input and output behavior of PICASSO is implemented
through two interface abstractions: gadgets and widgets. A gadget
is an abstraction for output behavior (e.g., text-gadget). A widget
is the abstraction for input behavior. Many interface objects in
PICASSO need both output and input behavior. To accomplish this
in PlCASSO, we factor the output code into a gadget and the input
code into a widget, and combine the two classes into an interface
object which "inherits" the behavior of both the gadget and the
widget. More specifically, PICASSO has a pre-defined class named
"gadget" and another class named "widget". Suppose we wanted
to implement a text-editor widget. We might first implement a
text-gadget to simply draw a specified text-string. Then we could
write a text-widget that handles input Finally, we could write a
text-editor-widget that inherits from text-gadget and text-widget as
shown below:

widget

\

\

gadget

/

/

text-widget

\

\

text-gadget

/

/

text-editor-widget

This scheme works but it is cumbersome to implement The prob
lem involves duplication and coordination of code; the text-
widget and text-gadget abstractions are not truly independent-the
programmer must make sure that attributes in text-widget have the
same names and definitions as those in text-gadget Furthermore,
the text-widget class is useless by itself. A better scheme that is
used in most PICASSO interface abstraction is to eliminate the
text-widget class altogether (without eliminating text-gadget,
which is useful in itself), as shownin the following diagram:

Widget Writer's Guide 1-2

INTRODUCTION

widget gadget

\ /

\ text-gadget
\ /

\ /

text-editor-widget

This example illustrates the standard method in which widgets are
implemented. In special cases, particularly if the widget is very
simple, all intermediate classes (e.g., text-gadget) can be elim
inated altogether by inheriting directly from widget (see
buttonxl). For convenience, we replace the term "interface object"
with "widget" so from now on a widget can have both input and
output behavior (this fits with the model suggested by diagram 2).

This document should be read in conjunction with the PICASSO
Reference Manual. The remainder is organized as follows.
Chapter 2 describes widgets. Chapter 3 describes how to write a
widget It includes a full definition of sample widget and a short
discussion of the functions that implement the widget abstraction.
Chapter 4 describes the predefined methods that are used to write
widgets. Chapter5 describes the attributes common to all widgets
(i.e., inherited slots in widget objects). Chapter 6 describes how
widgets receive and process events. Chapter 7 describes the basic
utilities available to do graphic output with widgets. And lastly,
chapter 7 describes how to make complex widgets (i.e., collection
widgets).

Widget Writer's Guide 1-3

Overview

Widgets

WHAT'S A WIDGET

WHAT'S A WIDGET

This chapter describes what a widget is and how it is used in
PICASSO.

Widgets provide the interface between the user and the program.
All interaction (input and output) is performed through widgets.
To make the job easier on the programmer, PICASSO provides
more than 30 predefined widgets & gadgets for a variety of pur
poses. Different types of widgets are needed for different types of
input/output behavior. Generally, some combination of these exist
ing widgets will produce a reasonable interface for any PICASSO
application.

PiCASSO's widget abstraction is extensible, meaning that any
newly defined widget can be completely incorporated into the sys
tem in the sense that the new widget can be used in place of any
predefined widget. Furthurmore, PICASSO makes no internal dis
tinction between widgets that are "predefined" (distributed with the
system) and those that are added on later.

PICASSO predefined widgets range from extremely simple
to relatively complex. A simple widget is one that allows
only rudimentary input behavior (if any) and is intuitive in
function. Forinstance, the most widely used widget in PI
CASSO is also the simplest: the button.

Press Me

Widget Writer's Guide 2-4

WHAT'S A WIDGET

In its simplest form, a button hasone outputvalue (a string
or image) and one device for input (a pointer click). A
complex widget is more intricate in its input/output
behavior and is generally less intuitive in function. Com
plex widgets are typically tailored to a particular type of
use so they appear in a smaller variety of applications than
do simple widgets. An example of a complex widget is a
table-field. Table-fields can be used to display data in a
tabular format (rows and columns).

Because each cell of a table can contain any type of widget, the
input behavior of a table can be infinitely complex. Tables are
extremely powerful in this respect However, tables also have the
capability to be extremely confusing from the user's point of view
so proper care must be made to ensure that tables are designed to
provide as clean an interface as possible.

At this point, the question arises: "When would I need to write a
widget?" Many PiCASSO programmers will never need to write a
widget. In general, you will need to design a new widget when
ever you wish to create an mterface which can't be done well with
any combination of predefined widgets. The need to create a new
widget generally arises in two cases: (1) you're designing a
picasso-object (form, panel, dialog, etc.) which does fancy or non
standard graphics operations (eg. animation), or. (2) you wish to
design a new type of look-and-feel that predefined widgets don't
provide.

Widget Writer's Guide 2-5

WHAT'S A WIDGET

Naturally, widgets which are simple or complex from the user's
point of view are going to be correspondingly simple or complex
from the points of view of the application writer and widget writer.
While a button can be fully specified in two attributes, tables need
between 2-20 attributes to be fully described. The burden of speci
fying all the attributes of a widget lies on the application-writer,
though this process may be simplified by PiCASSO Tool-Editor.
The task of implementing a widget belongs to the widget-writer.
This document is provided to be of use to the widget-writer. Most
aspects of application writing are covered in other parts of the
PiCASSO Reference Manual.

Widget Writer's Guide 2-6

WRITING A WIDGET

WRITING A WIDGET

Overview This chapter gives an overview of the process of writing awidget
and briefly describes each task involved. Complete descriptions of
each of these tasks can be found in the following chapters.

Widget
Definition

Probably the best way to learn how to write widgets in PiCASSO is
to dig right in and have a look at some of the existing widgets. In
this vein, we will write a complete widget (from scratch) so the
reader can not only see the widget code, but can actually witness
the process of widget-writing in a step-by-step fashion.

The first step in creating a new widget is design and representa
tion. In some cases, the design procedure can be incremental (e.g.,
incrementally adding functionality), but it is always a good idea to
have an idea of what a widget will do before you actually sit down
and start writing it The initial design should be one that allows
easy extension andmodification. For instance, if you are writing a
gadget which will be used as a widget (through inheritance), it is a
good idea to coordinate ahead of time how the interaction between
the gadget and widget components will work. This avoids the has-
tle of having to rewrite the gadget when you start working on the
widget.

Widget Writer's Guide 3-7

WRITING A WIDGET

In this chapter, we will write a "bitmap-editor". The
design and representation is as follows. Our bitmap-editor
provides a graphical interface for viewing and editing a
bitmap. The bitmap is represented internally as a two-
dimensional array of bits. A bit is either 0 or 1. The bit
map is represented on the screen as a two-dimensional
grid of squares. Each square can have one of two colors,
let's say black or white. Size is the same for all squares
and can be dynamically changed by the user, when the
user resizes the bitmap-editor window, each square is
grown or shrunk proportionately. All editing is done
through simple bit-toggling (clicking on a "bit" inverts its
color). There are many simple extensions to our design
(e.g., converting the edited bitmap into CLX format) that
can be added easily, resulting in only a few more lines of
widget code.

Adhering to the policy described in the previous chapter, we will
create a gadget along the way which handles the internal represen
tation and viewing of the bitmap. When we're finished, the class
inheritance will look like this:

Widget Writer's Guide 3-8

Class

Definition

WRITING A WIDGET

widget

\

\

\

gadget

/

bitmap-gadget

bitmap-editor

The responsibilities of bitmap-gadget are:

(1) Initialize the bitmap (get internal representation correct)

(2) Draw graphicalrepresentation of the bitmap

(3) Handle simple requests (eg. new bitmap, resize) One should
keep in mind that bitmap-gadget will be used by bitmap-
editor and hence should be written in such a way that allows
simple extensions to editing. This issue will resurface fre
quently.

After the most important aspects of design and representation are
pretty much established, the widget-writing can begin. To begin
the widget-writing process, we define the new widget class.

(defclass bitmap-gadget (gadget)

((dimensions

•type list

:initform nil

:initarg :dimensions

:reader dimensions)

(bit-size

itype integer

:initform 1)

(gc-dotted ;

:type vector

:initform nil)

(gc-spec ;,

:initform '((gc-res "default")

(gc-dotted (:paint

inherits from gadget class

(<bits-wide> <bits-high>)

User-specifiable

in instantiation

Implicitly defines

reader method

Size of each square

on the screen

Graphic-context

for drawing grid

Graphic-context specs

•gray50"))))))

A widget is defined using a standard s CLOSs defclass. No other
registration is required. Bitmap-gadget inherits all slots from

Widget Writer's Guide 3-9

WRITING A WIDGET

eadget and, in addition, defines the following four slots: dimen-%L, bit-she, gc-dotted, and gcspec. Of these, only J~«
is intended for the application-writer to access. The other three
si"are tmer^al Tte dimensions slot is used to store the dunen-
Ss tf the bitmap (in pixels). Since we intend to,**, *e
application-writer access to the dimensions of a bitmap the
•initarg and :reader arguments are specified. :ini-
;arg Ses that :dimensions can be used as an instanua-
tion argSt to initialize the dimensions slot (initiallyisdis-
cnssed later) :reader implicidy creates a method (calleddimfnsiSs) ^returns thlslot-value of the dimensions slot
tuS£ *S toused to cache the size of one «l«;te»
to speed up redrawing. The last two slots are used for graphic-
££? (see chapter on V**»«^J£2S•reader dimensions implicitly creates a reader-accessor
M for the dimensions slot. Because me «*« three Jo««re
internal (not accessible to the application-wnter), we do not define
reader-methods for them.

Accessor An accessor method is any method defined on asCLOSsxlassthat

•reader :writer, or -.accessor argument ui a siotSSonin a Jlass-definition (see above). Specifying
/reader myslot is the same as explicitly defining

(defxnethod myslot ((self myclass))
(slot-value self 'myslot))

Specifying -.writer myslot is the same as explicitly defining

(defmethod (setf *yslot> <val (self mydass))
(setf (slot-value self 'myslot) val))

Specifying :accessor myslot is the same as defining both
of these methods.
Sometimes it is desirable to produce cemin side-eflecu whenever
aslot is accessed by either aread or awnte. In ft"^**"**citiy defined accessors are not sufficient, so we need to explicitly
define accessors.

3-10
Widget Writer's Guide

WRITING A WIDGET

For example, suppose we want to provide write access to the
dimensions slot. First we must decide what the semantics of set
ting the dimensions should be. This issue is somewhat prob
lematic because it is not always clear what the semantics should
be. In this case, we will arbitrarily decide that setting the dimen
sions will create a new "blank" bitmap with the specified dimen
sions. It is important to do some error checking too so we define
the following method to provide write-access.

(defmethod (setf dimensions) (val (self bitmap-gadget))

(if (not (and (pos-intp (car val))

(pos-intp (cadr val))))

(warn

"bitmap-gadget.setf.dimensions: invalid dims: ~S"%" val)

(setf (value self)

(make-array val

:initial-element 0

.•element-type 'bit))))

This definition relies on the fact that there is a value writer-method
already defined (you must always define a setf-method before it is
referenced). It turnsout that thereis a value writer-method already
defined (see the chapter on accessors), so we don't have to worry
about it here.

We will need special processing to occur when a bitmap-gadget's
value is changed. Let's examine what needs to be done when
somebody wants to set the value of a bitmap-gadget

(1) Check the new value to make sure that it's valid.

(2) Set the slot-value of the "value" slot.

(3) Update the "dimensions" slot

(4) Adjust the internal representation of the bitmap to reflect the
changes in dimension.

(5) Redraw the representation of the bitmap on the screen.
The following method does the trick.

Widget Writer's Guide 3-11

WRITING A WIDGET

(defmethod (setf value) (val (self bitmap-gadget))

(if (not (arrayp val))

(warn "bitmap-gadget.setf.value: bad array: "*s*%" val)

(progn

(setf (slot-value self 'value)

val

(slot-value self 'dimensions)

(array-dimensions val))

(resize-window-handler self)

(repaint self))))

There are three important things to note from this section.

First: accessor code should be concise and straightforward.
Instead of writing the value writer-method to explicitly adjust ALL
related data-structures and redraw the screen, the code is factored
out into appropriately named functions and methods (like
resize-window-handler and do-repaint).

Second: accessors can be interdependent The dimensions writer-
method uses the value writer-method to handle almost everything.
This avoids duplication of code. However, it is important to
understand the nature of the interdependencies. In complex cases,
it may be difficult to trace exactly what happens when a slot is
accessed. The widget writer should make sure that interdependent
slot accesses don't call functions twice!

Third: the order of definition matters, s CLOSs requires that all
serf-methods (writer-methods) are defined before they are refer
enced. For instance, the value-writer MUST be defined before the
dimensions writer because the value is set within the dimensions
method. We just happened to luck out that the value writer was
inherited from a super-class. In the general case, if two writer-
methods are dependent on one another, one must be defined impli
citly in the class-definition (use : writer or : accessor) and
redefined later.

Initializa- At this pomt we're ready tomstantiate a new bitmap-gadget This
tion can be done by use of the make-instance method in s CLOSs

However, it is usuallyhelpful to definea function to simplify this.

Widget Writer's Guide 3-12

WRITING A WIDGET

(defun make-bitmap-gadget (firest keys)

(apply #'make-instance

'bitmap-gadget

:allow-other-keys t

keys))

The arguments to make-bitmap-gadget are keyword-value
pairs that correspond to slots and initial values in the new instance.
Only slots defined with : initarg specified can be initialized in
this fashion. For example, I may want to say:

(make-bitmap-gadget :dimensions '(16 16)

:background "green")

Specifying slots and initial-values in this manner should be
roughly equivalent to setting the same slots dynamically via writer
methods. Hence, it is often desirable to do some extra initializa
tion when a widget is instantiated. Such initialization includes
things like argument-checking and creating relevant data-
structures. PICASSO provides a method called new-instance
for just this purpose. In the case of bitmap-gadget, we need to
worry about the slots "dimensions" and "value" and we can let
super-classes worry about all other slots. Since we defined writer
methods to do error checking and initialization, we can invoke
those directly in the new-instance method. The call-
next-method is used to let super-classes initialize inherited
slots.

(defmethod new-instance ((self bitmap-gadget)
fckey

value

dimensions

fiallow-other-keys)

(call-next-method)

(if value

(setf (value self) value)

(if dimensions

(setf (dimensions self) dimensions))))

It is customary to invoke call-next-method before anything
else in the new-instance method. This way the child class

Widget Writer's Guide 3-13

WRITING A WIDGET

can override any initialization done in the parent class.

Interface At this point, we have enough to create and initialize a bitmap-
gadget instance and we have the tools to access it from the level of
the application-writer (via accessor methods). However, the
bitmap-gadget is still just a bunch of data structures, so we need to
provide routines to handle interactions with the user. At the
gadget level, the interaction is relatively simple. A gadget is basi
cally an output-only device. The only type of user-level input that
a gadget may choose to handle is resizing. PiCASSO provides two
methods for output and one for resizing.

To handle the output behavior of bitmap-gadget, we use the do-
repaint method (see chapter on methods). The do-repaint
method will be invoked whenever a bitmap-agdget instance needs
to be drawn or redrawn. Our do-repaint method must draw
every bit of the bitmap and then draw a grid to visually separate all
the bits. The following definition is sufficient:

(defmethod do-repaint ((self bitmap-gadget)

taux dims bit-size bit-array gc)

(setq dims (dimensions self)

bit-size (slot-value self 'bit-size)

bit-array (value self)

gc (gc-res self))

(when bit-array

(dotimes (x (car dims))

(dotimes (y (cadr dims))

(draw-bit self bit-array bit-size gc x y)))

(draw-grid self)))

Notice that no explicit XXIB calls are made in the do-repaint
method; the calls are factored out into functions draw-bit and
draw-grid The code for these two functions is found at the
end of this chapter. This factoring out of code is done to simplify
the writing of bitmap-editor (the widget part of bitmap-gadget).
Bitmap-editor also needs to make graphicscalls since clicking on a
bit forces it to be redrawn in an inverse color. By factoring com
mon lines of code into auxiliary functions or macros (like draw-
bit), we can reduce duplication of code and make everything more
readable. It turns out that this do-repaint method is the only
place from which draw-grid will be called However, it is still use
ful to factor this code into the draw-grid function to make the do-
repaint method more readable and manageable.

Widget Writer's Guide 3-14

WRITING A WIDGET

At this point, you may be wondering how the "bit-size" slot is
used. As we see above, bit-size is used by draw-bit (and hence by
do-repaint) to specify the size of the square region that represents a
bit on the screen. Bit-size is calculated by deterrnining the max
imum size of a bit that will allow all bits to "fit" inside the space
allocated to a bitmap-gadget instance. When should this calcula
tion be performed? Since the size of a bitmap-gadget may change
dynamically, bit-size must be updated dynamically. We could do
everything in the do-repaint method However, this would
entail recalculating bit-size whenever the bitmap-gadget is
redrawn-somewhat costly. It would be better to recalculate bit-
size only when the size of the bitmap-gadget changes and cache
the new value in the bit-size slot. PiCASSO provides the
resize-window-handler method for just this purpose.

(defmethod resize-window-handler"((self bitmap-gadget)

fiaux dims)

(if (setq dims (dimensions self))

(setf (slot-value self 'bit-size)

(min (truncate (width self) (car dims))

(truncate (height self) (cadr dims))))))

Now we have completed the writing of bitmap-gadget At this
point, you could use bitmap-gadget in any PiCASSO application,
provided you load into a PiCASSO dump what we have written so
far (defclass, accessors, new-instance, do-
repaint, & resize-window-handler) and include the
functions draw-bit & draw-grid, found at the end of this
chapter.

Widget Now we can begin the task of creating the widget-part of bitmap-
gadget, the bitmap-editor. As it turns out, we are already all but
finished As with the bitmap-gadget, we begin my defining the
bitmap-editor class.

(defclass bitmap-editor (widget bitmap-gadget)
((event-mask rinitform '(:exposure :button-press))))

The bitmap-editor class inherits all slots of both the widget and
bitmap-gadget classes. Theonlyresponsibility not assumed by the
bitmap-gadget is the event-handling aspect This accounts for the
event-mask slot (see chapter on event-handling). The only events
bitmap-editor is interested in are exposure & button-press events.
The event-mask slot is inherited from the widget class and

Widget Writer's Guide 3-15

WRITING A WIDGET

specifies which types of events a widget is interested in. To actu
ally process an event, we have to define an event-handler. This is
done via the defhandler macro in PICASSO. It turns out that

the "exposure" event is handled automatically by widgets (handlers
are inherited) so we only need to worry about the "button-press"
event in the case of bitmap-editor. What does a bitmap-editor do
when the mouse is clicked inside the bitmap-editor window? It
simply figures out which bit was clicked on, updates the
corresponding bit in the internal representation of the bitmap, and
redraws the bit (in the opposite color) on the screen. All of these
are done in the following handler:

(defhandler toggle-bit ((self bitmap-editor)

&key x y

&allow-other-keys

&aux bit•••size bit-array dims

^default :button-press)

(setq bit-array (value self)

bit-size (slot-value self 'bit-size)

dims (dimensions self))

(setq x (truncate x bit-size)

y (truncate y bit-size))

(when (and (<•* x (car dims)) (<= y (cadr dims)))

(setf (aref bit-array x y)

(- (lognot (- (aref bit-array x y)))))

(draw-bit self bit-array bit-size (gc-res self) x y)))

The defhandler macro automatically registers a handler function
named bitmap-editor-toggle-bit which is called when
ever a button-pressevent occursin an instanceof the bitmap-editor
class.

As a final touch, we define a function called make-bitmap-
editor, analogous in to the make-bitmap-gadget function
we defined earlier.

(defun make-bitmap-editor (&rest args)

(apply #'make-instance

' bitmap-editor

:allow-other-keys t

args))

Here is sample code for draw-grid, draw-bit, and pos-
intp.

Widget Writer's Guide 3-16

WRITING A WIDGET

(defun pos-intp (val)

(and (integerp val) (plusp val)))

(defun draw-bit (self bit-array bit-size gc i j

&aux w x y)

(setq x (1+ (* i bit-size))

y (1+ (* j bit-size))

w (- bit-size 1))

(if (zerop (aref bit-array i j))

(clear-region self x y w w)

(xlib:draw-rectangle (res self) gc x y w w t)))

(defun draw-grid (self

&aux gc res dims bit-size rx ry w h)

(setq res (res self)

rx (repaint-x self)

ry (repaint-y self)

gc (gc-dotted self)

dims (dimensions self)

bit-size (slot-value self 'bit-size))

(setq w (* bit-size (car dims))

h (* bit-size (cadr dims)))

(do ((x (+ rx bit-size) (+ x bit-size)))

(Ox (+ rx w)))

(xlib:draw-line res gc rx 0 x h))

(do ((y (+ ry bit-size) (+ y bit-size)))

((> y (+ ry h)))

(xlib:draw-line res gc 0 ry w y)))

Widget Writer's Guide 3-17

Standard Methods

Standard Methods

Overview There are several standard methods supplied in PICASSO to supply
a for different areasof widget writing. All these methods discrim
inate on a type of widget so their first argument is a widget.
Therese methods can be broken down into three basic categories:
Initialization, event-handling, and connections. A widget may have
all, some, or none of these methods definied. Any methods which
is not defined for a particularclass of widget is implicitly inherited
from the widget's super class. Inheritance can also be used expli
citly with a call to call-next-method.

Initializa

tion
Initialization routines are called only once in the lifetime of a
widget. Initialization routmes have three primary uses: setting
defaults, checking instantiation arguments, and creating local data
structures. There are two types of initialization routines: new-
instance and update-instance-for-different-
class.

new-instance

(self class-name)
Scresxargs

[Method}

CONTEXT:

new-instance is called once when a new widget is instan
tiated. Self is the newly instantiated widget and args consists
of all the keyword arguments passed to make-instance (e.g.,
:width, rheight, rbackground, ifont, etc.).

INHERITANCE:

All new-instance methods must contain a call to call-next-
method. This insures that inherited attributes will be
correctly initialized Preferably, the call-next-method occurs
near the beginning of the new-instance method to ensure mat
later references to inherited attributes are correct

update-instance-for-different-dass rafter
(old class-name)
(new class-name)

[Method]

Widget Writer's Guide 4-18

Event-

handling
Methods

Repainting

Standard Methods

CONTEXT:

update-instance-for-different-class is called
after a change- c 1a s s operation occurs. This method can
specified to d'saiminate on either or both of its arguments.

Event-handling methods are generally called either automatically,
in response to incoming X events, or manually, by interal PiCASSO
or widget code. Because of the asyncronous nature of X events,
calls of the former type occur asyncronously. Therefore, all
event-handling methods should be designed and written to execute
asnycronously (e.g. an event-handler cannot assume that it will
execute a particular time or in a particular context [footnote:
Exception: all event-handlers may assume that the associated
widget has already been attached (has a representation in the
server)]. Event-handling methods, unlike user-defined handlers
[sec 6], enable inherited event-handling behavior to take place (via
call-next-method). For instance, suppose there exists a class
named text-gadget which displays text The do-repaint method for
text-gadget draws the text Now suppose we define a class named
text-widget which inherits from text-gadget and allows input as
well as output Since drawing the text is already handled by text-
gadget, the do-repaint method for text-widget need only contain a
call-next-method and code to draw the cursor at its current posi
tion. If the text-widget is implemented without a cursor, we can
eliminate the do-repaint method for text-widget altogether since
the method will be implicitly inherited from text-gadget

There are two types of repaint routines: do-repaint and
do-repaint-region

do-repaint
(self class-name)

USE:

[Method]

The do-repaint method is used to redraw the widget in its
current position specified by repaint-x, repaint-y, and size.

CONTEXT:

do-repaint is called as a result of an expose event in a window
which does not handle expose-region. Do-repaint may also
be called as a side-effect of a call to repaint

INHERITANCE:

A do-repaint method for any widget inheriting from the
collection-gadget class must include a call to call-next-

Widget Writer's Guide 4-19

Standard Methods

method.

do-repaint-region [Method]
(self class-name)
x

y
width

height

USE/CONTEXT:
The do-repaint-region method is used and called similarly as
do-repaint, except that windows handling expose-region
events will almost alwaysreceive calls to do-repaint-region in
place of calls to do-repaint. The x and y arguments are in
respect to the repaint-x and repaint-y positions of the win
dow.

INHERITANCE:

A do-repaint-region method for any widget inheriting from
the collection-gadget class must include a call to call-next-
method.

NOTE:

Since widgets may need to be repainted frequently, it is a
good idea to do as little computation as possible in the do-
repaint and do-repaint-region methods. Typically, these
methods should access values which have been updated and
cached away by other means (e.g., resize-window-handler
[sec 3.2.2] is often used purely to update caches).

xposmg All windows can be exposed and concealed. PiCASSO provides
the method do-expose which is executed whenever a window
needs to be exposed.

do-expose [Method]
(self class-name)

USE:

The do-expose method can be used to do miscellaneous pro
cessingwhich needs to be done when the widget is exposed.

CONTEXT:

The do-expose method may be invoked from a call to expose.
Expose can be called from any level in PiCASSO. The do-
expose method is rarely needed for widgets because do-
repaint is almost always sufficient.

Widget Writer's Guide 4-20

Standard Methods

INHERITANCE:

A do-expose should call call-next-method unless it wishes to
override the standard exposure behavior for windows (not
very often).

esa& mg A window can be configured by setting the x-offset, y-offset,
width, or height of a window directly, or indirectly through any of
the accessors described in sec ***. Whenever a configure alters
the width or height of a window, resize-window-handler is called.

resize-window-handler [Method]
(self class-name)

USE:

Typically, the resize-window-handler method is used to
update local data-structures called "caches" which need
updating when a widget is resized.

CONTEXT:

Configure can be called from any of three levels in PiCASSO:
(1) from a geometry manager or a widget (system level)
(2) from an application
(3) from a window-manager (user level).
Therefore, resize-window-handler can be activated from any
of these levels.

INHERITANCE:

A resize-window-handler may optionally call call-next-
method. Any collection which doesn't call call-next-method
in its resize-window-handler will not get repacked [sec 7].

NOTE:

resize-window-handler need not call repaint or repaint-region
because this will be done automatically after the resize-
window-handler completes. The resize-window-handler
method is provided purely for notification purposes, not for
actually resizing. Therefore, a widget should never attempt
to resize itself directly within a resize-window-handler
method. In fact all self resizing at the widget-level should be
done through resize-hints [sec 8.2].

Connec- PICASSO widgets are implemented in such away as to allow con-
tions nection or disconnection to or from the server at any time. What

this means is that it should be possible to store the full state of a
widget, independent of its particular representation in the server.
This notion of connecting and disconnecting has some important

Widget Writer's Guide 4-21

Standard Methods

reprecussions including:

(1) Enabling a widget to be saved in a database or out to a file.
Enabling a widget to be loaded in from a database or from a
file.

(2) Enabling a widget to free its server representation when the
widget is inactive for a lengthy period.

(3) Enabling relatively painless porting of PiCASSO to different
window-servers.

There are four methods concerned with connections and discon
nections to and from the window server. Most of the low-level
connecting is done at lower levels in PiCASSO and doesn't concern
the widget writer, but the following methods are often useful.

ttac ng PiCASSO uses the term attach for connecting a widget to the
server.

do-attach [Method]
(selfclass-name)

USE:

do-attach is used to connect local resources to the server
(connection concerning the window itself is done automati
cally).

CONTEXT:

Do-attach may be called from attach.

INHERITANCE:

A do-attach method must call call-next-method at the begin
ning of the method.

Detaching PiCASSO uses the term detach for disconnecting awidget from the
server.

do-detach [Method]
(selfclass-name)

USE:

do-detach is used to disconnect local resources from the
server and save their states locally. A call to do-detach must
be able to save the context of a widget in detail sufficient to
enable future reconnection of the widget in the same state.
(disconnection concerning the window itself is done

Widget Writer's Guide 4-22

Standard Methods

automatically).

CONTEXT:
Do-detach may be called from detach.

INHERITANCE:

A do-detach method must call call-next-method

Dcs&°yins Destroying awidget disconnects it from the server without bother
ing to save the state of the widget A destroyed widget is concep
tually freed (i.e. it canneverbe attached again.).

do-destroy [Method]
(self class-name)

USE:
do-detach is used to disconnect local resources from the
server, (disconnection concerning the window itself is done
automatically).

CONTEXT:

Do-destroy may be called from destroy.

INHERITANCE:

A do-destroy method must call call-next-method.

Widget Writer's Guide 4-23

Overview

Resources

Inherited Attributes

Inherited Attributes

Widget attributes are methods defined on a widget that allow read
and/or write access to local (or class) data structures. Inherited
attributes are attributes inherited from the widget's super class.
The PiCASSO source tree contains the following class-inheritance
subtree [Diag 3]

window

/

I

x-window

/

/

widget

gadget

Any widget inherits from either the widget or the gadget class (or
bom) and hence inherits all of the attributes defined in the window
class. An attribute may be readable, settable, or readable and sett-
able.

Every attached window is associated with exactly one window in
the server (called server-window). A widget inheriting from the
widget class has its own (exclusive) server-window. A gadget
inherits its server-window from its parent and all of its gadget
siblings. Each server-window is associated with a particular
screen which in turn is associated with a particular display in the
server. The following accessors can be used for resources. All are
READ-ONLY.

res [Reader]
the server-window of window. Type: xlib:window/nil

screen [Reader]
the PiCASSO screen of window. Type: xlib:screenAul Default
current-screen

display [Reader]
the PiCASSO display of window Type: xlib:display/nil Default:
current-display

Widget Writer's Guide 5-24

Inherited Attributes

The following predicates concern the resources of a window

attached-p [Macro]
is the window been connected to the server?

detached-p [Macro]
is the window been disconnected from the server?

Region Every window has attributes which specify its location and size on
the screen. A window's location is specified relative to the
window's parent, repaint-x and repaint-y are specified relative to
window's server-window. All specifications are in pixels. All
region accessors are READABLE AND SETTABLE, but widgets
should not configure themselves dynamically (see next section).

x-ofTset [Accessor]
the x-coordinate (in pixels) of window relative to the top-left
corner of the window's parent Type: integer Default: 0

y-offset [Accessor]
the y-coordinate (in pixels) of window relative to the top-left
corner of the window's parent. Type: integer Default: 0

location [Accessor]
a list consisting of window's x-offset and y-offset. We will denote
this: (x-offset y-offset). Type: cons Default: (00)

width [Accessor]
the width of window in pixels. Type: positive-integer. Default: 1

height [Accessor]
the height of window in pixels. Type: positive-integer. Default:
1

size [Accessor]
(width height). Type: cons Default: (11)

region [Accessor]
(x-offset y-offset width height). Type: cons Default: (001 1)

Greometry Windows should not configure themselves dynamically. This rule
hints exists to avoid conflicts with geometry managers. To request a

particular size, a widget can send a message to its geometry-
manager which the manager can choose to consider or ignore.
These messages are propagated via geometry hints. There are two

Widget Writer's Guide 5-25

Resize-hints

Inherited Attributes

types of geometry hints: resize-hints and geometry-specification.
Resize-hints are typically defined at the widget definition level.
Resize hints should be defined for every widget to be of any use.
Geometry- specification is typically instance specific. All
geometry hints are READABLE ANDSETTABLE.

base-width [Accessor]
the smallest desirable width for window. Type: positive-integer
Default: 1

base-height [Accessor]
the smallest desirable height for window. Type: positive-integer
Default: 1

width-increment [Accessor]
the best amount by which to increment the width of window.
Type: positive-integer Default: 1

width-increment [Accessor]
the best amount by which to increment the height of window.
Type: positive-integer Default: 1

width-height-ratio [Accessor]
the best ratio for width/height of window. Type: positive-
number/nil Default: nil

geometry-

specification geom-spec [Accessor]
various instructions concerning the geometry of window that the
window's geometry-manager should look at Type: anything

Graphics All windows have some predefined attributes that are used in
graphics operations. Some of these attributes are associated with
built in mechanisms that perform the graphics operations. Others
attributes handle data-structures which widgets can use explicitly
to perform graphics operations. All are readable and settable

Widget Writer's Guide 5-26

Graphics attri
butes with inter

nal output

mechanisms

Graphics attri
butes for con

venience

Inherited Attributes

except colormap and gc-res.

inverted [Accessor]
when a window is inverted, its background and inverted- back
ground are swapped and its foreground and inverted- foreground
are swapped. Type: t/nil Default: nil

dimmed [Accessor]
when a window is dimmed, its background and dimmed- back
ground are swapped and its foreground and dimmed- foreground
are swapped Type: t/nil Default nil

background [Accessor]
the background paint (color or tile) of window. Type: paint/nil
Default: "white" if widget, nil if gadget

inverted-background [Accessor]
the background to use when window is inverted. Type: paint/nil
Default: "black" if widget, nil if gadget

dimmed-background [Accessor]
the background to use when window is dimmed. Type: paint/nil
Default: "gray50" if widget nil if gadget

colormap [Reader]
all windows have a colormap which can be read. A widget's
colormap may be set Type: colormap Default: inherited from
parent

foreground [Accessor]
the foreground to use in graphic operations. Type: paint/nil
Default: "black"

inverted-foreground [Accessor]
the foreground to use in graphic operations when the window is
inverted Type: paint/nil Default "white"

dimmed-foreground [Accessor]
the foreground to use in graphic operations when the window is

Widget Writer's Guide 5-27

Inherited Attributes

dimmed. Type: paint/nil Default: "gray50"

font [Accessor]
every window has a font which may be used in graphic operations.
Type: paint/nil Default: "8x13"

gc-spec [Reader]
PiCASSO provides a built-in mechanism for creating graphic- con
texts on a per-instance basis [sec 4]. Type: gc-spec-type Default:
nil

gc-res [Reader]
gc-res (if specified in gc-spec) contains a graphics-context which
gets automatically updated whenever window's foreground or
background changes. Type: xlib:gcontext/t/nil Default: nil

shared-gc-table [Accessor]
PiCASSO provides a built-in mechanism for sharing graphics- con
texts across a window. If shared-gc-table is initially t, this
mechanism is enabled [sec 4]. Type: t/nityhash-table Default: nil

Borders PiCASSO has an extensible window-border mechanism (see ref
man). Any window can have a border. Border attributes are
READABLE AND SETTABLE.

border-type [Accessor]
the type of border to use for window. The predefined border-types
include (nil :box :frame :black-frame :inset standout :shadow).
Type: keyword/nil Default: :boxif widget nil if gadget

border-width [Accessor]
the dimensions of the border to be drawn. Some border-types
allow borders to have non-uniform dimensions. Therefore,
border-width may be eithera list with four elements or an integer
value (e.g. a shadow-border may have border-widm (0 0 10 10)).
Type: integer/4-D-list

Labels PiCASSO has an extensible window-label mechanism (see ref
man). Any label can have a label. Label attributes are READ
ABLE AND SETTABLE.

label-type [Accessor]
the type of label to use for window. The predefined label-types
include (nil :left-label :bottom-label :frame-label). T^pe:

Widget Writer's Guide 5-28

Inherited Attributes

keyword/nil Default: :left

label [Accessor]
the label to draw. Type: anything Default: nil

label-x [Accessor]
the x-coordinate of the label relative to an origin. The origin is
dependenton the label-type of window. Type: integerDefault: 0

label-y [Accessor]
the y-coordinate of the label relative to an origin. The origin is
dependent on the label-type of window. Type: integerDefault: 0

label-font [Accessor]
the font to use in drawing the label.

label-attributes [Accessor]
a list of attributes concerning the label (e.g., (-.foreground "red"
:font "8x13" titalicized t)). Which label-attributes to specify, if
any, is dependent on the label-type of window. Type: keyword-
value-list

Status Thestatus of a window indicates how it is currently represented on
in the server. The status of a window is one of :exposed, :con-
cealed, or :pending. If a window exposed, it is viewable on the
screenexcept if: (1) the window is fully occluded by anotherwin
dow, or (2) the window is a child of the root-window. In the latter
case, the only way to determine if an exposed window is actually
on the screen is by use of the viewable-p macro. If a window is
concealed it is not on the screen. If a window is pending, it wants
to be exposed but cannot be for some reason.

status [Accessor]
the status of window. Type: member(:exposed :concealed :pend-
ing) Default: :exposed

state [Reader]
the state of window:

0: window is exposed or concealed.

window wants to be exposed but parent is not
window wants to be exposed geometry-manager says no for
some reason. Type: member (01 2). Default: 1.

WidgetWriter's Guide 5-29

Inherited Attributes

The following predicates concerning window-status exist

exposed-p [Macro]
is window exposed?

concealed-p [Macro]
is window concealed?

pending-p [Macro]
is window pending?

invisible-p [Macro]
is state of window 1?

pended-p [Macro]
is state of window 2?

viewable-p [Macro]
is window viewable on screen (can be occluded)?

The following functions are provided to change the status of a win
dow

expose [Function]
attempt to expose window. Expose updates window's status and
state appropriately depending if expose succeeds or fails. Return-
type: tfnil

conceal [Function]
conceal window and update status/state. Return-type: t

make-invisible [Function]
pend window, update status, set state to 1. Return-type: t

pend [Function]
pend window, update status, set state to 2. Return-type: t

Miscellane

ous parent [Accessor]
the parent window of window. Type: window/nil Default: nil

var-superior [Accessor]
the lexical parentof window. Type: picasso-object Default: nil

attach-when-possible [Accessor]
specifies whether or not to automatically attach the window when
its status is concealed and its parent becomes attached. Type: t/nil

Widget Writer's Guide 5-30

Inherited Attributes

Default: nil

repaint-flag [Accessor]
if set to t, window will not be automatically drawn as a result of
either internal events or a call to repaint Type: t/nil Default: t

mf-selectable-widget [Accessor]
specifies whether or not window can be "selected" in a table.
Type: t/nil Default: nil

name [Accessor]
a slot used to associate a name with window. Used primarily for
debugging. Type: anything

doc [Accessor]
a documentation string associated with window. Type: string

Widget Writer's Guide 5-31

Overview

Requesting
Events

EVENT HANDLING

EVENT HANDLING

PiCASSO is an event-driven application: a PiCASSO tool creates a
set of widgets, then enters a loop that 1) waits for X events, such as
typing a key or mousing in a window, to come in from the X
server, 2) figures out which widget can interpret the event; and 3)
passes that event off to the widget This process is called dispatch
ing the event, and the widget is said to handle the event This
chapter describes the event-handling mechanism as implemented
in PiCASSO.

This chapter is designed to describe event-handling only as it
relates to writing PiCASSO widgets. This section is not designed
to be an introduction to event-handling in any other form. For a
general understanding of event-handling, the reader should consult
the section on events in the PiCASSO Reference Manual and/or in
the CLX documentation.

Any PiCASSO widget can choose to receive various types of
events. Only events that are "requested" by the widget will be
"sent" to the widget. Requested events arrive asynchronously.
When an event occurs that concerns an instance of a widget that
instance is notified and must handle the event immediately. If the
widget is unable to "handle" the event it is "dropped on the floor",
which is to say effectively ignored All event traffic and interac
tion with the window-server is done automatically by PICASSO,
usually. Some special widgets have to do fancy event-handling
that requires interrupting or superceding the regular processing of
events. Such special widgets use functions like event-loop
(event-loop and related functions are described in the section
on special event-handling. However, in the general case, the only
aspects of event-handling that concern the widget-writer are
requesting and handlingof events.

An event is requested by inserting the request-name of the event-
type in the event-mask slot of an instance (of the widget) that
wishes to request it The request-name of an event is not always
the same as the name of the corresponding event that a widget
receives (called the sent-name). To determine possible return-
names from a request-name, consult the following table.

The particular types of events that a widget can request depend
both on the version of the window-server and the version of

Widget Writer's Guide 6-32

Handling
Events

EVENT HANDLING

PiCASSO. Both CLX and PiCASSO have an extensible event
mechanism, in the sense that new event-types can be added easily.
The events-types that are supported in the the current release of
PiCASSO are summarized below.

Event Type Event Request Event Sent

Keyboard :key-press :key-press
:key-release :key-release

Pointer :button-press :button-press, :double-click, :triple-click
:button-release .'button-release

:enter-window tenter-notify
:leave-window :leave-notify
:pointer-motion :motion-notify
:button-motion :motion-notify
:button-l-motion :motion-notify
:button-2-motion •.motion-notify
:button-3-motion :motion-notify
:button-4-motion :motion-notify
:button-S-motion :motion-notify

Exposure exposure SPECIAL

:expose-region SPECIAL

:visibility-change :visibility-notify
Input Focus :focus-change :focus-in, :focus-out
Client Events 1 :client-message 1 xlient-message

To simplify things, all event-names (request and sent) in the above
table correspond directly to event-names in CLX, with the excep
tion of ":double-click" and ":triple-click". A PiCASSOevent con
sists of a list of fields. The contents of these fields are exactly the
same as those for the corresponding events in CLX. For instance,
the button-press event in PICASSO has the following fields: win
dow, event-window, code, x, y, state, time, root, root-x, root-y,
child, and same-screen-p. These are the exact same fields that the
button-press event in CLX contains.

When an event is "sent" to a widget what actually happens is that
PiCASSO looks for and invokes a handler for the event. PiCASSO
always invokes the handler most-specific to the widget and the
event The two important concepts involved here aremapping and

Widget Writer's Guide 6-33

EVENT HANDLING

handling.

Mapping Any event-handler can be mapped to any type of event via an
event-mapping, event-mappings can either be fully qualified or
partially qualified. PiCASSO always invokes the handler
corresponding to event-mapping that most closely matches the
event An event-mapping consists of a handler-specification and
one or more event-specifications, as follows:

event-mapping:
(handler-spec events-spec)

handler-spec identifies the event-handler that is to be mapped.
Since event-handlers are defined on classes (just like methods), it
is sometimes necessary to specify the class of the widget as part of
the specification of the event-handler. Hence, the handler-spec is
either a list of (class-name handler-name) or just handler-name if
the 'context is obvious.

handler-spec:
(class-name handler-name) OR handler-name

event-spec identifies the type of event to be mapped to. The heart
of the mapping is expressed by the properties of the event-spec.
An event-mapping can include one or more event-specs as follows:

events-spec:
event-spec OR (event-spec-^)

An event-spec consists of an event-type and two qualifiers: state
and detail. Any unspecified qualifier is considered to be a "wild
card". A wild-card maps to anything. For instance an event-spec in
which only type = :button-press is specified maps to any kind of
button-press event. The more wild-cards an event-spec contains,
the less specific it becomes. There are generally three ways to
specify an event-spec:

event-spec:

event-type (event-type state detail) (event-type {.-state state)
{'.detail detail))

Any one of the preceding is a valid form for event-spec. The
qualifier fields depend on the event-type, state concerns the state
of the input devices when the event occurs. For instance, state is
usually one of :meta, :snift xontrol, etc. detail is a more specific
indication of what the contents of the event are. For instance,
detail can be a character (in the case of a key event) or a button-
keyword like :left-button, :middle-button, night-button (in the case
of a button event).

Some examples of event-mappings follow:

Widget Writer's Guide 6-34

EVENT HANDLING

(select-l (:button-press tdetail :left-button)>

((his-widget select) :button-press)

(save ((:key-press :meta # (:key-press tmeta #

Event-mappings in PiCASSO are defined at three different levels:
widget-level, system-level, and user-level. System-level and
user-level mapping capabilities are provided to allow fully custom
izable event-mappings. For instance, a user could use user-level
mappings to customize text-widget to be like the user's usual text-
editor. A systems administrator could adopt a certain PiCASSO
default mapping using system-level mappings. Defining system-
level and user-level event-mappings is discussed in the section on
events in the PiCASSO Reference Manual. Widget-level map
pings are done in the PiCASSO widget code. PiCASSO provides
two ways to define event-mappings at the widget-level:
defevents and defhandler. defevents is explained
below and defhandler is explained later.

The syntax of defevents is as follows:

defevents [Macro]
class-name

event-mapping

Here is an example usage of defevents:

(defevents my-widget

(select-l (:button-press :detail :left-button))

((his-widget select) :button-press)

(save ((:key-press rroeta # (:key-press :meta #)

g A widget can process an instance of any type of event in the third
column of the above table. Processing an event is called "event-
handling" and is done within an event-handler. Event-handlers are
defined in PiCASSO using the defhandler macro. The syntax
of defhandler is as follows:

defhandler [Macro]
name

arglist
{doc-string}

Widget Writer's Guide 6-35

EVENT HANDLING

{body-forms}*

The syntax of defhandler is like that of a function declaration with
two exceptions:

1: The first argument of arglist is of the form (local-var class-
name) where class-name is the name of the class on which
the event-handler is being defined (just like a method declara
tion), arglist can include one &default argument which
defines a default event-mapping and consists of one events-
spec.

2: return-from statements must specify the entire handler-
name; classname-name. This is necessary because
defhandler declares a function called classname-name to
actually handle events.

The arguments to defhandler are keyword arguments
corresponding to the fields in the event being handled. Hence, all
defhandler forms must include either an &allow-other-keys or
a &rest argument

Here are some example uses of defhandler:

(defhandler select ((self button) firest args

&default :button-press)

"Selects a button by inverting it*

(declare (ignore args))

(invert self)

(execute 'press-func self args))

(defhandler print-location ((self valuator)

&key x y

fiallow-other-keys

(default

((:button-press :detail :left-button)

(:button-press :detail :right-button)))

"Prints out where the mouse was clicked"

(declare (ignore args))

(format "Mouse was clicked at X-coord: "S and Y-coc

It is possible to call an event-handler explicitly. To call a handler
defined with defhandler, just invoke the handler as you would
invoke a regular function with name classname-handlername. It is
also possible to register a certain types of functions as event-
handlers. Any such function must have a name of the form
classname-name and either an &allow-other-keys or a &rest argu-

Widget Writer's Guide 6-36

EVENT HANDLING

ment.

ugging When debugging and changing event mappings for widgets, it is
Event-Mappings often nccessarv toreload md redefine event-handlers. Whenever a

new defhandler is loaded or an existing one changed, the fol
lowing operation should be invoked.

make-class-event-map [Function]
window

recreate the class level event-mapping for the specified window
instance, make-class-event-map need be called only once
per class (not per instance) that have new/altered de f handle r s
defined.

Special All activity (eg. ninning tools) in PICASSO occurs inside an
Event Han- event-loop. The event-loop continually polls the window-server
dling for new events and dispatches the events to their corresponding

widgets. This paradigm is mutually exclusive; a widget can only
receives events concerning itself and an event can only go to one
widget.

Sometimes, widgets need to "grab" the event-loop in the sense of a
keyboard or mouse grab. Li other words a widget may obtain
exclusive access to the event-loop to "intercept" all events coming
in. PICASSO provides several functions for doing special event-
processing.

dispatch-event [Function]
&rest

event

&key
display
event-window

event-key
&aUow-other-keys

Used to send an event to a window (widget), dispatch-
event determines and invokes the event-handlercorresponding to
event. Exposureevents are handledspeciallyand not dispatched to
the window, event is a list of keyword-value pairs corresponding
to the fields in the actual event.

event-loop [Function]
&key
(.display (current-display))

Widget Writer's Guide 6-37

EVENT HANDLING

Chandler #' dispatch-event)
(:hang t)

Invokes .'handler on each event on the event-queue until .'handler
returns a non-nil value. Then the non-nil .'handler value is

returned by event-loop, .'handler must take as arguments the
keyword-value pairs corresponding to the fields of the event being
processed. For further information on the .'handler function, see
the section on handler-function in the CLX documentation.

If :hang is non-nil, event-loop will wait indefinitely for new
events. Otherwise, event-loop returns automatically when all
events on the queue are processed.

event-sync [Function]
(.'display (current-display))
Chandler #' dispatch-event-special)
(:windows t)
(:mask t)
Ccount :all)
Cdiscard-after-process n i 1)
Cdiscard-pnil)
Chang nil)

Invokes handler on selected events on the event-queue, specified
by .'windows, :masky and '.count, '.handler is called with regular
arguments windows, mask, and :discard-p and keyword-
arguments the keyword-value pairs corresponding to the fields of
the event being processed event-sync returns immediately if
.'handler returns :abort. If handler is not specified, event-
sync will use dispatch-event-special to filter out par
ticular events according to the following specifications:

:windows

Process only events specific to the these PiCASSO windows
(widgets). If t, can be any window.
Type: t, x-window OR (x-window*)

:mask

Process only events Of type(s) specified in mask. If t, can
be any type of event
Type: t OR (event-type-keyword).

:count

Process first .'count events on queue. If : all, limit is dis
abled.

Type: :all OR pos-int

:discard-after-process if non-nil specifies that all selected events
are to be discarded after they are processed. :discard-p if non-nil
specifies that all selected events are to be discarded without being
processed. If :hang is non-nil, event-sync will wait

Widget Writer's Guide 6-38

EVENT HANDLING

indefinitely for new events. Otherwise, event-sync returns
automatically when all events on the queue are processed.

event-sync is less efficient than event-loop so it is advis
able to use event-1o op whenever possible.

event-dispatch-current [Function]
&key
(display (current-display))

Dispatches the first event on the event-queue.

event-discard [Function]
&key
(display (current-display))

Discards all events on the event-queue.

event-count [Function]
&key
(display (current-display))

Returns the number of events on the event-queue.

flush-window-output [Function]
&key
(display (current-display))

Bushes any buffered output to the screen.

flush-display [Function]
&key
(display (current-display))

Flushes any buffered output to the display, flushes any buffered
errors to error-handlers, and makes sure all known events have
reached the event-queue, flush-display will not returnuntil
all of this is completed (usually quite fast).

grab-display [Function]
&key
(display (current-display))

Grabs the entire window-server and effectively freezes event-
processing.

ungrab-display [Function]
&key
(display (current-display))

Widget Writer's Guide 6-39

EVENT HANDLING

Releases a grab on the display.

descriptor [Function]
event

returns the event-descriptor for the event. A descriptor consists of
a list of (event-type state detail). event consists of a list of
keyword-value pairs that specify the attributes (fields) of the
corresponding X event.

find-entry [Accessor]
table

descriptor

access the event-handler for the specified event-descriptor,
descriptor, in the specified event-mapping-table, table. When
find-entry is called, a hierarchical lookup is performed.
find-entry first looks for a fully-qualified match with the
descriptor. If a match is not found, first the state and then the
detail fields, and then both fields areignored to find a less-qualified
match. If a match is found, the corresponding event-handler is
returned. Otherwise, nil is returned.

lookup-event-mapping [Function]
window

descriptor

lookup and return the event-handler (if any) for the specified
event-descriptor, descriptor on the specified window, window.
lookup-event-mapping performs a find-entry on first
the instance-event-table and then the class-event-table to find a
match. If none is found, nil is returned.

Instance inaddition to specifying event mappings and handlers on awidget
Event- class level, PiCASSO provides support for specifying mappings
Handling and handlers on a per instance basis. As a general rule, instance

event-mappings always take precedence over class event-
mappings. The format for instance event-mappings is the sameas
for class event-mappings. However, the things are specified a bit
differently.

The specify an instance event-mapthe following function is used.

register-callback [Function]
window

func
event-type
&key

Widget Writer's Guide 6-40

EVENT HANDLING

(state nil)
(detail nil)
&allow-other-keys
create an instance event-mapping, window is the instance,
func is the event-handler, and event-type, state, and
detail constitute the event-spec (see above description of
event-spec).

WidgetWriter's Guide 6-41

GRAPHICS

GRAPHICS

Overview since Picasso is written on top of clx, Picasso widgets can
take advantage of all the functionality provided in CLX. As
described in the PiCASSO Reference Manual, PiCASSO represents
resources like windows, fonts, colors, images, icons, and cursors as
instances of s CLOSs classes. Each instance of a PiCASSO resource

can be attached and detached to/from the X server.

While the PiCASSO Reference Manual explains what resources
are, this chapter explains how to use resources in graphics opera
tions. CLX provides a special structure to group together a set of
resources to be used for graphics operations. This structure is
called a graphics-context (abbreviated as gc). Because the
graphics-context is so central to graphics operations, PiCASSO has
provided a facility for managing graphics-contexts to help ease the
task of writing widgets. This first section describes the aforemen
tioned mechanism and subsequent sections describe special graph
ics operations that PiCASSOprovides.

Graphics
Contexts

In the X window-system, graphics operations are performed with
structures called graphics-contexts. CLX represents gcs as a lisp
structure. Forefficiency reasons, gcs are manipulated in their CLX
form in PiCASSO (instead of defining a special s CLOSs class for
gcs). Each gc has the following fields and default values.

Widget Writer's Guide 7-42

gc-spec

GRAPHICS

Field Default

arc-mode :pie-slice
background "white"

cap-style :butt

clip-mask :none

clip-ordering unsorted

clip-x 0

clip-y 0

dash-offset 0

dashes 4

exposures off

fill-rule even-odd

fill-style solid

font undefined

foreground "black"

function 2

join-style :miter

line-style tsolid

line-width 0

paint see below
plane-mask mask of ones

stipple undefined

subwindow-mode :clip-by-children
tile undefined

ts-x 0

ts-y 0

For more information on CLX graphic-contexts, see the relevant
CLX documentation.

Each widget/gadget has a special slot named gc-spec. gc-spec can
be used to specify gcs to be automatically created and destroyed
when the widget is attached and detached, respectively, gc-spec
consists of a list of descriptions of gcs and slots in which to put
them, gc-spec is typically specified as an initform in a widget's
class-definition. The format of a gc-spec specification is one of the
following:

gc-spec:

slot-spec OR (slot-spec*)

slot-spec is as following:

slot-spec:
(slot-name name-spec)

Widget Writer's Guide 7-43

GRAPHICS

slot-name must be the name of an existing slot, defined on the
widget, in which the gc can be stored when it is created, name-
spec is as follows:

name-spec:
default-gc OR ({default-gc) field-value*)

default-gc, when specified, is astring which represents the name of
adefault graphics-context specification. Default gc-specificauons
are created with register-gc (explained later) and they
specify default values for fields in the gc. default-gc defaults to
"default". The field-value arguments are keyword-value pairs
corresponding to the field-value pairs ofthe gc.
field-value:

ifield-name value
field-name is just the name of the field of the gc. value is the
desired value for the field. The type value must match the type
that CLX enforces for each field in the gc, except for the following
fields:

paintbackground, foreground
Type: string, paint or integer. If string, itmust correspond
to the name ofapaint. If integer, it corresponds to the pixel
value of acolor in thecolormap of thewindow.

tile, stipple .
Type: string or image. If string, it must correspond to the
name of an image,

font Type: string or font. Ifstring, itmust correspond to the name
of a font.

Possible gc-specs:

(gc-res (cforeground "green" :font "6x10"))

((gc-res "default")
(graygc (:paint "gray50"))
(weavegc ("weave" foreground "white" background "red")))

The :paint specification in the second example above is aadded
feature in PICASSO. Specifying .-paint as a field-specifier has the
semantics of choosing the correct resource depending on the type
ofdisplay, yaint Mgray50" has the following semantics:
If the display iscolor, :paint "gray50" translates to

:foreground "graySO" :fill-style :solid

7-44
Widget Writer's Guide

GRAPHICS

If the display is black-and-white, :paint "graySO" translates to

:tile "gray50" :fill-style :tiled

gc"res In addition to the gc-spec slot PiCASSO provides one other
predefined gc related slot called gc-res. Any gc put in the gc-res
slot (via gc-spec or other means) is automatically updated when
the foreground and background of the window change. To be pre
cise, when the foreground or background of the window is set to a
color, the foreground or background field, respectively, of the gc
in gc-res is set to the pixel number of the color and the fill-style
field is set to : solid. If the foreground or background of the
window is set to an image or tile, the foreground or background
field in the gc is set to the CLX resource of the tile and the fill-style
is set to : tiled.

Because gc-res is updated automatically, it is usually desirable to
include the gc-res slot in a widget's gc-spec.

tmg Some widgets need to be able to create gcs dynamically. The gc-
spec specification is not appropriate for dynamically creating gcs.
PiCASSO provides support for dynamic creation of gcs with the
following functions:

make-gc [Function]
window

spec

&optional
(shared nil)

Returns a gc specified by window and spec, window is a widget
and spec is a name-spec having the syntax explained earlier. If
shared is non-nil, make-gc will look to see if there already
exists a gc having the same window and an equivalent spec that
was also created with the shared option. If the lookup is success
ful, make-gc returns the existing gc. Otherwise, a new gc is
created and registed as being sharable for future calls. Making
shared gcs is generally more efficient in both time and space, than
making regulargcs. However, changing an attributeof a sharedgc
has the side-effect of changingthe output of all operationsthat use
the gc (not just operations relating to the one that originally

Widget Writer's Guide 7-45

GRAPHICS

changed the gc).

make-shared-gc [Macro]
window

spec

A short form for making shared gcs. Has the same effect of calling
make-gc with the sharedargument non-nil.

CLX allows dynamic alteration of gcs. PICASSO provides a func
tion providing an easy interface for changing fields of a gc that
takes advantage of PICASSO support for gcs (the '.paint field,
specifying colors as strings, etc.).

alter-gc [Function]
gc
atts

Changes the fields of gc specified in atts. atts consists of a list of
field-value specifications (the syntax of field-value was described
earlier in this chapter).

Graphics Most graphics operations in PiCASSO are performed either in the
Operations do-repaint or do-repaint-region methods, in event-handlers, or as a

result of bindings (eg. binds, alerters, etc). The advantage of doing
graphics operations in the repaint methods and event-handlers is
that it is safe to assume that the widget is actually on the screen,
exposed. Otherwise, it is advisable to check that the window is
viewable before doing graphics operations or the output will be
lost. This checking is done with following macro.

viewable-p [Macro]
window

Returns t if the window is currently mapped onto the screen (can
be occluded), otherwise nil.

Again, this macro is not necessary in the repaint methods and
event-handlers.

Put Method PiCASSO provides support for some common types of graphics
operations like drawing text and images in a window. The most
generally useful of these support operations is the put method.
The put methodis definedon data types like strings, images, and
lists and provides a uniform interface for drawinga data object in a
window. All put methods have the following format though some

WidgetWriter's Guide 7-46

GRAPHICS

have extra keyword-arguments that others don't have.

put [Method]
self
&key
(window nil)
(gc (gc-ires self))
(font nil)
(x 0)
(y 0)
(height (height self))
(width (width self))
(mask nil)
(dimmed nil)
(inverted nil)
(horiz-just .center)
(vert-just '.center)
&allow-other-keys

Draws the data object specified by self in the window specified by
window. The default values may vary for different pur methods.

window:

window in which to draw object.

gc: gc with which to draw object.

font: font with which to draw object (used as a convenience-
changes gc).

x, y, width, height:
area in which to draw object (not used for :top or :left
justification), x, y coordinates relative to upper-left orgin of
window.

mask:

draw in masked (no background-glyph for text) form.

dimmed:

dim the object by xoring a gray tile with output

inverted:

invert the gc.

horiz-just:
horizontal justification for the object in area.

vert-just:
vertical justification for the object in area.

As many of the widgets use the put method for output it is pos
sible to customize the output of many of the predefined widgets by
defining a new class and a corresponding put method defined on
the class.

Widget Writer's Guide 7-47

Synthetic Gadg

ets

Gray/Dimmed

Output

GRAPHICS

For instance, one could make buttons display vertical text by
defining a s CLOSs class called vertical-text and a put
method that outputs an instance of vertical-text. To use
the vertical-text in a button, just set the value of the button
to an instance of vertical-text and the button will draw it
automatically (since the button uses the put method for output).

As described in the section on collections, widgets can be com
posed to create more complex types of interfaces. Because acom
plex widget may contain several widgets, creating complex widg
ets can become expensive. Some of this expense can be avoided
by using synthetic gadgets. Synthetic gadgets (abbreviated
synths), are much cheaper to create than normal widgets/gadgets
and can even be faster (tooutput). Moreover, synths aer extensible
just like normal widgets/gadgets (one can define new types of
synths).
How are synths used and implemented? A synth is simply a list
consisting of the arguments to a put method (described above).
To draw a synth on the screen, simply invoke:

(apply #'put synth)

Many of the widgets/gadgets in PICASSO that were originally
implemented using collections have since been rewritten to use
synths instead. The result is a considerable decrease in load-up
time and an increase in speed. In complicated widgets like tables
or menus, synths really make a dramatic difference (try creating
and using atable containing text-widgets as fields).
In using synths, it is often useful to share gcs, especially when
several gcs are sharing the same window. Sharing gcs further
reduces the overhead ofcreating these CLX structures.

Much of the PICASSO interface depends on borders in conjunction
with various shades of gray to achieve a sort of 3-D look. The
functions used to draw "gray" things are provided here along with
those used to draw the 3-D borders.

draw-gray-text [Function]

win gc str x y w h
Draws the string strinunmasked form in the region specified byx,
y, w, h. The output iseffectively xored with the tile

Widget Writer's Guide 7-48

GRAPHICS

specified in gc. To be effective, thefill-style field of
gcmust be : t i led and ihtfunction must be 8.

PFajtHgray-text-mask

win gc str x y w h
Draws the string str inmasked form inthe region specified by x,
y, w, h. The output iseffectively xored with the tile
specified in gc. To be effective, thefill-style field of
gcmust be :t i led and ihtfunction must be 8.

PfeKHgray-image

win gc im x y w h
Draws the image im in theregion specified byx,
y, w, h. The output iseffectively xored with the tile
specified ingc. To be effective, ihtfill-style field of
gcmust be :tiled and ihtfunction must be 8.

$ftu&&Dt}>order

win black-gc white-gc x y w h &key invert
Drawsa "3-D" borderinwindow win in region x, y, w, h.
The 3-D border consists ofa rectangular box in two colors toachieve a 3-D
effect that "stands out".

black-gc and
white-gc are two gcs used todraw the border. Usually,
back-gc ishas color "black" and white-gc has color "white",
although this isnot necessary, invert will switch the use ofthe two
gcs to create aninverse "indented" 3-D effect.

Pra*Hgr&y-border

win black-gc white-gc &key invert x-width y-width
Draws a "gray" border surrounding the window win. The "gray" border
consists of two concentric 3-D borders, the inner one inverted toachieve a

Widget Writer's Guide 7"49

GRAPHICS

3-D effect that looks something like a picture-frame.

••••*$ \<- i vv v^yv waj^jV^j, .. v. ,.

black-gc and white-gc are two gcs used to draw the border. Usu
ally, back-gc is has color "black" and white-gc has color "white",
although this isnot necessary, invert will switch the use ofthe two
gcs to create an inverse "indented" 3-D effect x-width and y-width
specify the horizontal and vertical widths of the border, respec
tively. If width is less than 3, only the outer 3-D border will be
drawn.

Widget Writer's Guide 7-50

Overview

Adding
Children

8

COLLECTIONS

COLLECTIONS

Often, it is possible to take advantage of existing widgets when
writing a new widget For instance, if we were writing scroll-bars,
it would be wise to take advantage of buttons without having to
reimplement them as a part of scroll-bars. Similarly, it would be a
riduculous waste of effort to implement matrix-fields and table-
fields independently. Many widgets do litde more than bind other
widgets together to produce a more complex interface.

The techniques for collecting widgets together into a new more
complex widget are similar to the techniques, outlined in the
PiCASSO Reference Manual, for collecting widgets together into
collection widgets and gadgets.

To be a collection, a widget must inherit (either directly or
indirectly) from either of the two classes collection-widget or
collection-gadget. If the widget wants to receive events, it should
inherit from collection-widget, otherwise collection-gadget is
sufficient.

A collection can have any number of sub-widgets, called children.
The collection is then called the parent of the children. Any
widget can become a child of the collection by setting its parent
attribute. To create a widget whose parent is die collection <my-
collection>, create the widget with the : parent argument
specified. For example:

(make-button

:parent (root-window)

:value "Presa-me")

creates a button which is a child of the root-window.

Though widgets can be created and reparented at any time, it is
usually advisable to create and parent the children of a collection
when the collection is created. Because widget creation and
reparenting are expensive operations, it is not as suitable to per
form them at run-time, as opposed to creation-time. Hence, chil-

Widget Writer's Guide 8-51

COLLECTIONS

dren are usually created in the new-instance method.

Other All other details concerning collections, like geometry-
Details management and attaching/detaching, can be found in the

PiCASSO Reference Manual.

Widget Writer's Guide 8-52

alter-gc :7-46
attach-when-possible :5-30
attached-p :5-25

B

background :5-27
base-height :5-26
base-width :5-26
border-type :5-28
border-width :5-28

colormap :5-27
conceal :5-30
concealed-p :5-30

D

defevents :6-35
defhandler :6-35
descriptor :6-39
detached-p :5-25
dimmed-background :5-27
dimmed-foreground :5-27
dimmed :5-27
dispatch-event :6-37
display :5-24
do-attach :4-22
do-destroy :4-23
do-detach :4-22
do-expose :4-20
do-repaint-region :4-19
do-repaint :4-19
doc:5-31
draw-3D-border :7-49
draw-gray-border :7-49
draw-gray-image :7-49
draw-gray-text-mask :7-49
draw-gray-text :7-48

E

event-count :6-39
event-discard :6-39
event-dispatch-current :6-39
event-loop :6-37
event-sync :6-38

Function Index

expose :5-30
exposed-p:5-29

find-entry :6-40
flush-display :6-39
flush-window-output :6-39
font:5-27
foreground :5-27

gc-res :5-28
gc-spec:5-28
geom-spec:S-26
grab-display :6-39

H

height :5-25

inverted-background :5-27
inverted-foreground :5-27
inverted :5-27
invisible-p :5-30

label-attributes :5-29
label-font :5-29
label-type :5-28
label-x:5-29
labcl-y:5-29
label :5-28
location :5-25
tookup-event-rnapping :6-40

M

make-class-event-map :6-37
make-gc :7-45
make-invisible :S-30
make-shared-gc :7-45
mf-selectable-widget :5-31

N

name:5-31
new-instance :4-18

parent :5-30
pend :5-30
pended-p :5-30
pending-p :5-30
put :7-46

R

region :5-25
register-callback :6-40
repaint-flag :5-31
res:5-24
resize-window-handler :4-21

screen :5-24

shared-gc-table :S-28
size :5-25
state :5-29

status :S-29

u

ungrab-display :6-39
update-instance-for-different-class :after-4

var-superior:5-30
viewable-p :5-30,7-46

w

width-height-ratio :5-26
width-increment :5-26
width :5-25

X

x-offset :5-25

Reference Manual

Y

y-offset :5-25

Function Index

Index-2

