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ABSTRACT

This paper presents an elementary proof of the well-known Routh-Hurwitz stability criterion.
The noveltyof the proofis that it requires onlyelementary geometric considerations in the com
plex plane. This feature makes is useful for use inundergraduate control systemcourses.

Research supported by Hughes AircraftCompany, El Segundo, CA., 90245; and the National
Science Foundation Grant ECS 21818.



1. Introduction

The determination of stability of lumped parameter, linear, time invariant systems is one of the
most fundamental problems insystem theory. According toGantmacher, [2, pp.172-173] this
problem was first solved in essence byHermite [3] in 1856, butremained unknown. In 1875, E.
J. Routh also obtained conditions forstability of such systems [7]. In 1895, A. Hurwitz, unaware
ofRouth's work, gave another solution based on Hermite's paper. The determinantal inequali
ties obtained by Hurwitz are known today as the Routh-Hurwitz conditions, taught invirtually
everyundergraduate courseon control theory.

Unfortunately, Hurwitz's proofofthe result isvery complicated, involving algebraic
manipulations. Indeed, the proof is so complicated that most elementary textbooks (for example,
[1]» [5]) choose not to prove it at all, but rather to state it as a fact.

In arecent paper, Mansour [6] proves the Routh-Hurwitz Theorem ina very simple manner
using the Hermite-Biehler Theorem. Motivated by Mansour's proof, this paper presents aproof
based on elementary geometric considerations indie complex plane. It thus provides a clear
geometric insight into what makes the procedure work. It also slightly extends Mansour's work
by aproviding aproof ofthe second part ofthe Routh-Hurwitz criterion: the number ofsign
changes in the first column ofthe Routh Table is the number ofopen right half-plane zeros.

The idea behind the proofof the theorem issimple. Itwill be shown that ateach step the
Routh procedure (i) eliminates precisely one zero ofthe characteristic polynomial (ii) preserves
the position of the joo-axis zeros, and (iii) ensures that the remaining off jco-axis zeros do not
cross the jco-axis. Byobserving thesign changes in the first column of theRouth table, it canbe
determine whether the eliminated zero isa zero inthe open right half-plane orthe open left half-
plane. Thus, inn steps, precisely n zeros have been eliminated and the sign changes indicate the
number of righthalf-plane zeros of theoriginal polynomial.

2. Statement of the Routh-Hurwitz Stability Criterion

Theorem 2.1 (Routh-Hurwitz) - Consider an nth order polynomial ins

p(s) = aQ +axs +ajS2 +... an jS11"1 +ansn

where a., i=0,1, ...n e IR and an >0and aQ *0. (If aQ =0, simply factor out an appropriate sk
term andproceed.) If possible (i.e., none of the divisors arezero), construct thewell-known
Routh table, written in the form as shown in Table 1. We have used the notation

bn-2 =an-2- £?:an_3 b„^ =an^-£*-a„.5 ...
~n-i °n-l

Cn-4 =an-3- jr^biHi cn.6 =an_5-£t-1bn_6 ...
On-2 Dn.2
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hn an an-2 an-4 a4 h "o

Sn-2 an-l V3 an-5 ^ ai

hn-2 bn-2 bn-4 bn-6 b2 bo

gn-4 cn-4 cn-6 cn-8 cO

hn-4
•

•

dn-4
•

•

dn-6 dn-8 do

• •

*2 *0

h h »0

80 "o

^ "o

S-2 0

Table 1 - The Routh Table

Thenp(s) is Hurwitz (i.e., p(s) hasall its zeros in theopen left half-plane) if andonly if each el
ement ofthe first column is positive, i.e., an >0, anl >0, bn2 >0,... dIq >0, nQ >0.

Remark on Notation - In Table 1 we have assumed (to fix notation) that n is even. The even

polynomial p(s) was split into its even and odd part by p(s) =hn(s2) +sgn 0(s2), where h (s2) is

even and of degree n, and where gn.2(s2)is even and of degree n-2. Note that the coefficients of
hn(s2) are contained in the first row of the Routh table, and the coefficients of gn.2(s2) are con*
tained in the second row of the Routh table. This explains the presence of the hn(s2) and gn.2(s2)
in the column to the left of the Routh table in Table 1. (If we had assumed n was odd there

would be ag^te2) to the left of the first row, and ahnl(s2) to the left of the second row.) The
remainder of the notation in Table 1 is explainedin section4.

3. Preliminary Lemmas

We first start with a definition which makes precise the notion of netphase change. LetC de
note the complex plane.

Definition 3.1 Considera polynomial p(s) and a continuous, oriented curveCcl whichstarts

atSj e (C and ends at s2 e C. Suppose p(s) * 0, for all s€ C. Let the curve be parametrized by
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the continuous function <|>:[0,1] -» C. Since p(s) * 0 for all s€ Cthis means that arg(p(s)) along

Cis well-defined mod2rc; hence, we choose arg(p( <|>(0))) arbitrarily and forallr e [0,1], we
choose arg(p(<|>(r))) such that r-> arg(p(<|>(r))) is continuous. Thenwedefinethe function

axgnet(p«) :=arg(p((D(l)))-arg(p((D(0)))

= arg(p(s2)) - arg(p(s1))

Roughly speaking, argnet(p(»)) issimply the net phase change ofp(s) as s traverses C. For

example, in Figure 2, if theplotted solid locus is p(C), then argnet(p(»)) = 2k.
Q

The following lemma gives a relationship between the location ofzeros ofa polynomial and its
net phase change.

Lemma 3.2 -Consider the polynomial p(s) = aQ +ajS +a^s2 +... a^s11"1 +a sn where a., i=0,
1, ...n € IR and s^ >0 and ^ * 0 (so p(s) isofdegree nand p(0) * 0). Then p(s) has Lzeros in
the open left-halfplane counting multiplicities, Rzeros in open right half-plane counting multi
plicities and 2K zeros jcOj, C0j >0, on the jco axis with multiplicities nij, i=l,... K(i.e., there are
a totalof M jco-axis zeros) if and only if

(i) pw( jcop 0=^P(S) Uj*.) =0fork =0,..., m-j, i=1,... Kbut pCm')(jc0i) *0, i=l,... K,
andp(jco)*0forallcoe IR+\{co.:i=l,.. .K};

(ii) argnet(p(0) =|(L - R+ M)

where the oriented curve Cis the jco-axis, except for indentations on the right ateach jco-axis
zero jcOj, i.e., the curve C starts at zero and ends at +joo, as shown inFigure 1.
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Figure 1 - Plot of the curve C

Proof of Lemma3.2 -^. Since p(s) isan nth degree polynomial, it has precisely n zeros. By
assumption, precisely M areon thejco-axis, while the remaining zeros lie in theopen right half-
plane, or open left half-plane. In addition, since each zero jcOj has multiplicity n^, this implies
that pW( jco.) =0for k=0,... m.-l and pfa'XjcoO *0. Thus, (i) is proved. To prove (ii), note
that each simple realopen righthalf-plane zero contributes -rc/2 radians of phase to thenetargu
ment as s traversesC, while each simplereal open left half-plane zero contributesn/2 radians of
phase. Due to indentations on theright of the jco-axis zeros, each complex conjugate zero pair
contributes either+nor -7t radians of phase depending on whether thepairresides in the closed
left half-plane or open righthalf-plane, respectively. Since there are a totalof L zerosin the
open left-half plane counting multiplicities, R zeros inopen right half-plane counting multiplici
ties andM zeroson thejco axiscounting multiplicities thismeans

argnet(p(0)=?(L - R + M)
C 2

This proves (ii).

^.- By assumption p(s) hasprecisely M/2 pairs of jco-axis zeros counting multiplicities, so it
can be factored as

K n-M

p(s)=n(s2+o?)m'n(s-s2i)
i=l i=l

where {szi: i=l,... n-M} denotes the remaining zeros ofp(s). Since the curve Cis indented to

the right at thejco-axis zeros, wecandefine argnet(p(»)). Bycomputation its value is
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/n-M

argnet(pW) =J M+ argnet II(s-szO
C 2 c \i=i i

By condition (ii), the second term isequal to rc(L-R)/2. Also, n-M =L+R, and Misknown by
(i); soconditions (i) and (ii) determine uniquely L,R, and M. •

The following two lemmas are the main results of the section. They characterize the effect of
one step of the Routh-Hurwitz procedure when the leading term is even (Lemma 3.3), and when
the leading term is odd (Lemma 3.4).

Lemma 3.3 - Consider the polynomial p(s) = aQ +a^+a^2 +... a^s""1 +a s11 where a., i=0,
1, ...n € IR and an >0and aQ *0. Assume in addition that nis even and anl *0. Let h (s2) and
sgn.2(s ) betheeven and odd parts ofp(s), respectively, i.e.,

hn(s2):=a0+a2s2 +...an.2sn-2 +ansn
gn.2(s2) := ax +a3S2 +... a^s0"4 +a^s"'2

Suppose that p(s) has Lzerosin the open left half-plane counting multiplicities, Mjco-axis
zeros counting multiplicities, and R(=n-L-M) zeros in the open right half-plane counting multi
plicities. For any real X, define

N(s,X):=p(s) +Xs2gn.2(s2)
=hn(s2)+Xs2gn.2(s2) +sgn_2(s2)

Then,

(i) jcOj is ajco-axis zero of p(s) with multiplicity m{ if and only ifjcOj is ajco-axis zero of N(s, X)
with multiplicity mj for all Xe IR ;

(ii) Given any closed, bounded interval Ic IR, there exists acurve Cas in Figure 1such that N(s,

X) * 0 for all s e C, and for all Xe I. Thus, argnet(N(-, X)) \s well-defined for X€I.

Define the interval I by I :=[-lan/an_xl, la^a^l]. Choose the curve Cso that argnet(N(% X)) [s
well-defined for Xel. (This canbedone by part (ii).) Then,

(iii) |argnet(N(*,A.))_ argnet(p(.)) |<7c,foralUeI;
C C
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(iv) {argnet(p(.)) . argnet(N(*, VVl)) }sign(an/an.1) =7c/2.

(v) N(s, -aj/a^j) has (L -1) zeros in the open left half-plane, M zeros onthe jco-axis, and R
zeros in theopen right half-plane, in each case counting multiplicities if and onlyif a7a , >0.

In addition, N(s, -a^a^p has L zeros inthe open left half-plane, M zeros on the jco-axis, and R-l
zeros in the open right half-plane, in each case counting multiplicities if and only if a^a <0.

Proof of Lemma 3.3 -

Proofof(i) -.s. Take Xq e IR, arbitrary, jco. is ajco-axis zero ofN(s, Xq) with multiplicity m.

means that ^N(s, Xo) Lj*. =0for k=0,... mfl and ^ N(s, Xo) L^ *0. -^N(s, Xo) Lja*
=0for k=0,... m.-l is equivalent to h^^-coj2) +Xop^ {s2gn. 2(s2) JLja* +

'd? n" 2^7 =0for k=0,... m.-l. Since C0j is real, equating the imaginary and real
portions of this expression to zero yields h^C-coj2) +*op^ {s2Sn -2(s2} JUjax =0and

\d^Sgn~2 7^<0l=0'fork =0»-mf1- This latter expression implies that gn.^-^2) =
0;using this in the former expression shows that hn^(-C0j2) =0, k=0,... m-1. Thus, p^O*©) =

h^-coi2)+(^{sgn-2(s2)}) UM =0,k=0,...mfl. From ^L N(s, Xo) Uj<ai *0andgn_
^(-o).2) =0, k=0,... mfl,we further conclude that ^p(s) |s=j<0. *0. Hence, jcOj is ajco-axis
zero of p(s) with multiplicity mv

^. jco. is ajco-axis zero of p(s) with multiplicity m{ means that p^O'cop =\*®(-&{') +

Ids*" 2^1 =0, k=0,... m.-l. Equating the real and imaginary parts of p^Qcop =0
yields h^-fl^2) =0and g^00^2) =0for k=0,... mfl. This in turn impHes that
^(^{s2&-2(^}JU«i=0foranyX06 IR, and fork =0, ...mfl. Thus, -^N(s, Xo) Lja* =
P^O'cOj) +*o(^ (s2gn -2(s2} jLjoi +(^{sgn. 2(s2)}| Lj«, =0for k=0,... nyl. It can be
shown by similar reasoning that ^ N(s, Xo) Ljco, *0. This proves (i).

Proofof (ii) - This statement merelyasserts theexistence of acurveC whichensures that

argnet(N(% X)) is Well-defined for all Xin the closed, bounded interval I. Since the details are
notrelevant to the rest of the proof, thedetails are left to the Appendix.
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L k{s&-2(s )I Ujods =0for k=0,... m.-l. Since co. is real, equating the imaginary and real

portions of this expression to zero yields hjty-caj2) +*oP-j{s2gn-2(s2} ]Lja* =0and

la^^S&1"2 V̂COl =0»fork:5:0'-mr1- This latter expression implies that gd^l-ofi**
0;using this in the former expression shows that h &)(.&*) =0, k=0,... m-1. Thus, p^Qco-) =

h^-^V (^{sS-2(s2)}) U* =0,k=0,...m.-l. From ^.N(s,Xo)lNffll ^0andgn.
2K '(-©j) =0, k=0,... mfl,we further conclude that ^f(s) Ljo, *°- Hence, jco- is ajco-axis
zeroofp(s) with multiplicitym..

^. jcOj isajco-axis zero ofp(s) with multiplicity m. means that p^(ja>) =h ^(-co 2) +

k(sgn-2(s2}j Ujcoi =0, k=0,... m.-l. Equating the real and imaginary parts of p^(j©i) =0

yields h^-co^) =0and g^00^2) =0for k=0,... mfl. This in turn implies that

^(^{s2Sn-2(s2}JUjtDi==0foranyX0eIR,andfork =0,...mrl. Thus,-^N(s,Xq)U^ =

p^Ocop +*©(^{s2gn-2(s2] jLjim +(^(sg„. 2(s2)}J Ujco, =0for k=0,... mfl. It can be
shown by similar reasoning that^LN(s, Xo) Uj^ *0. This proves (i).

Proofof (ii) - This statement merely asserts the existence of a curveC which ensures that

argnet(N(% X)) is well-defined for all Xin the closed, bounded interval I. Since the details

not relevant to the restof the proof, the details are leftto the Appendix.

Proofof(Hi) - For simplicity, first assume that p(s) has no jco-axis zeros. For this case wetake

the curve C tobe thepositive jco-axis. Note that N(jco, X) * 0 on IR xl.

-7-
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Thus, the only difference in phase occurs for (co^ ©o). Since there are no zeros of ©g^-©2)
in this interval, this again implies that sign{Im(N(j©, X))} is a constant(see Figure 2). This in

turn implies that |"*g£gj^- ^gW) Uit for all X€LSince ^f1(#A)) =
SSjfK-) we then have

Iargnet(N(% X)). argnet(p«)l <£ k
I0*rt [ojoo]

for all X€ I. This proves (iii) for thecase where p(s) has noj©-axis zeros.

Proofof(iv) -Note that by the definition of Ithat -a^a^ € L Order the zeros of ©gn_2(-©2) as
before, and usearguments identical to that of part (iii) toobtain

ar£
[0,
rgnet(p(*)) argnet(N(«,-a7an .))_ argnet(p«) argnet(N(%-aj/a^j))
:o,joo] [o,joo] n n~l " ti^M ' U<\,H

Since ^ is a fixed point (i.e., independent of X), we then obtain

= arg(p(j©)) - arg(N(j©, -a /a .))

Since we are taking the limit as ©-»©©, we only need to consider the leading term ofeach poly
nomial. Performing this operation, and using the properties of arg, weobtain in succession

= arg(an(j©)n). arg(an_10*©)n'1)
(0—>oo (0—»oo

= argCa^X-iO®)11"1]

0 argfajw/a^j]
ca->oo

Thus, ifan/anl >0, the net argument difference is rc/2, and if an/anl <0, then the net argument
difference is -7C/2. This proves (iv) for the case where p(s) has noj©-axis zeros.

If p(s) has j©-axis zeros, then part (i) shows that N(s, X) has the same j©-axis zeros with the
same multiplicities. This means that the only difference inargument can come from the non jco-

M/2

axis zeros. If we extract the jco-axis zeros by Pj(s) =p(s)/ II (s2 +°$ ,then px(s) has no jco-ax
is zeros, sowecan apply the arguments above. For example, toprove (iii) weknow from above
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that

jargnetp^.A)). aigiet^-)) ^

M/2

where Nj(s, X) := N(s, X)/ II t2 +«$ for all Xe LIf we choose acontour Clike Figure 1, in-
i=l

dented on the right of the j©-axis zeros, we then obtain

|argnet(N(% X)). argnet(p«) |* K
C C

for all X€ I, which proves (iii). Statement (iv) isproved similarly.

Proofof(v) -The net argument difference between p(s) and N(s, -a^a^)as straverses Cis
sign(an/an-1)7c/2, byapplying part (iv) above. Applying both logical implications of Lemma 3.2

shows that N(s, -a^a^) and p(s) have the same number of zeros on the j©-axis, and adifference
ofat most one in the number ofopen right half-plane or open left half-plane zeros, depending on
the sign of a^a^. This proves (v). •

In thecase that n is odd(rather than evenas in thestatement of Lemma 3.3), we have the cor
responding result to Lemma 3.3.

Lemma 3.4 - Consider the polynomial p(s) =aQ +̂ s+s^s2 +... an-1sn-1 +a sn where a., i=0,
1, ...n e IR and an >0and aQ *0. Assume nis odd. Let hnl(s2) and sgn-1(s2) be the even and
odd parts of p(s), respectively, i.e.,

gn.x(s2) := ax +a3s2 +... an_2sn-3 +a/"1

Assume anl * 0. Suppose that p(s) has L zeros in the open left half-plane counting multiplici
ties, Mj©-axis zeros counting multiplicities, and R (=n-L-M) zeros in the open right half-plane
countingmultiplicities. For any real X, define

N0(s,X):=p(s) +Xshn.1(s2)
=sgn.1(s2) +Xshn_1(s2) +hn.1(s2)

Then, statements (i)-(v) ofLemma 3.3 hold, with NQ(s, X) replacing N(s, X).

Proof ofLemma 3.4 - The proofs of (i) and (ii) are identical to the analogous results of Lemma
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3.3, and are thus omitted. The proofs of (iii)-(v) are alsonearly identical to their counterparts in
Lemma 3.3. The key point is to note that j©Xhnl(-©2) contributes only to the imaginary part of
NQ(j©, X). This means that points aand bof Figure 3are fixed points, i.e. if©x satisfies pO'̂ ) -
a, then \A(-G>2) =0, which means that N0(j©p X) =bfor all Xe I. The details are left to the
reader.

N(j©,X),X*0

Real

p(j<o) = N(j©,0)

Figure 3 - Graph of © -> N(j©,X), 0 £ © < °° (n odd).

4. Proof of Theorem 2.1 (Routh-Hurwitz)

Let us first emphasize some notation. To fix notation, assume n is even.

Lethn w(s ) be the even polynomial of degree n-w whose coefficients lie in the row 2w. (See

Table 1). Let gn.w(s ) be the even polynomial ofdegree n-w whose coefficients lie in the row
2w + 1. (Again see Table 1).
Toconstruct theRouth Table, perform thecalculations indicated in section 2. This corresponds

to finding a Xn_w € IR, ora u.n w€ IR, such that

hn-w<s2)= Vw^ +Vw^n-w^) (4.1)

(4.2)

where the leading terms of lyw(s2) and gn.w(s2), respectively, are canceled. If this procedure
cannot be performed (i.e., the leading term ofgn <s2) orh (s2) is zero), then a zero is in the
first column of the Routh Table. The standard procedure given in elementary textbooks is to re-
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place the zero bye > 0, and proceed. See section 5 for some of the implications of this.

Proofof Theorem 2.1 (Routh-Hurwitz) ^ If p(s)is Hurwitz, theneachof its zeros is in the
open left half-plane. Consider the first step ofthe Routh procedure. ByLemma 3.3, part (v),
N(s, -a^a^) =hn(s2) -a„/an-1s2gn_2(s2) +sgn-2(s2) has the same number of zeros in the open
left half-plane as p(s) except for the eliminated zero. Since all the zeros ofp(s) are in the open
left half-plane, the eliminated zero must also be in the left half-plane. Thus, N(s,-a^a ,)=

2 1Sgn-2^S )+ hn-2^s )has Preciselv n"! zeros in the open left half-plane, and an/an xis positive. By
using Lemma 3.4, in the next step we have that hn_2(s2) +sgn-4(s2) has precisely n-2 zeros in the
open left-half plane, and a^a^j ispositive. After nsteps, n zeros have been eliminated and each
element in the first column is positive.

^. Ifeach element inthe first column ispositive then use ofLemma 3.3, part (v), and Lemma
3.4, part (v) show that precisely n zeros in the open left half-plane have been eliminated. Thus,
p(s) is Hurwitz. •

Remark 4.1 - In the case that nisodd, the proofofthe Routh-Hurwitz theorem isnearly identi
cal. Simply write p(s)= sgn.1(s2)+ h^s2), where sgn-1(s2) and hn_j(s2) are the odd and even
parts ofp(s), respectively. Apply Lemmas 3.4 and 3.3 appropriately in amanner similar to that
in the proof of the even case. The details are left to the reader.

5. The Second Part of the Routh-Hurwitz Theorem

Based on Lemma 3.3we have thesecond partof the Routh-Hurwitz criterion.

Theorem 5.1 - Consider an nthorder polynomial in s

p(s) = aQ +axs +ajs2 +... a^s""1 +ansn

where aj, i=0,1,... n€ IR and an >0and aQ * 0. As before, to fix notation assume that nis
even. Suppose whencalculating the Routh Table thatno element in the first columnis zero.
Then the number ofsign changes in the first column ofthe Routh Table is the number ofopen
right half-plane zeros of p(s).

Proof ofTheorem 5.1 - At each step the algorithm (i) eliminates precisely one zero ofp(s), (ii)
preserves the position of the j©-axis zeros, and (iii) ensures that the remaining offj©-axis zeros
do not cross the j©-axis. By Lemma 3.3 part(v), and Lemma 3.4 part (v) the eliminated zero is
in the open left half -plane if the ratio ofthe associated leading coefficients ispositive, whereas
the eliminated zero is in the open right half-plane if the ratio ofthe associated leading coeffi
cients is negative. Thus, thenumber of sign changes in the first column indicates thenumber of
open right half-plane zerosof p(s) that wereeliminated.

Remark 5.2 - Ifa zero does appear in the first column during the Routh procedure, care must be
exercised in ascertaining the zero positions ofthe original polynomial. By adding an 6>0 to a
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column, the positionof the zerosof the original polynomial are being perturbed (since the zeros
of apolynomial are continuous functions of their coefficients provided a remains bounded away
from zero). Attemptingto deduce properties of the zeros of theoriginal polynomial based on the
properties of the perturbed polynomial can often lead to erroneous conclusions asthe following
examples show.

Example - Let p(s) =(s2 +a)(s2 +b) =s4 +(a +b)s2 +ab, where a, bg IR. The Routh Table for
this example is

1 a + b ab 0

6 0 0

a + b ab 0

-eab 0
a + b

\J

ab 0

If a>0 andb >0, then there are two signchanges in the firstcolumn since 6 >0. This leadsto
the "conclusion" that there are twozeros inclosed right half-plane. Note diat adding an e >0
merely pushes thej©-axis zeros of the p(s) off the j©-axis. Much more insidious examples can
beconstructed that make it verydifficult totell the position of the zeros of the original polyno
mial. (See, for example, [2, p. 184, Example 4].) However, wedo have the following proposi
tion.

Proposition S3 - Suppose thatduring construction of the Routh table a zeroin the first column
is encountered. Then

(i) If there are oneormore nonzero elements in the same row, then p(s) has at least onezero in
the open right half-plane;

(ii) If the row is zero, then (a) p(s) has atleast one pair of j©-axis zeros, or(b) p(s) contains a
factor ofthe form (s+ aQ)(s- a^ for some Oq g IR, or (c) p(s) contains afactor ofthe form (s+ Oq
+Pq)) (s+ cCq - p^) (s- <x0 +PqJ) (s -Oq - PqJ) for some aQ, P0 g IR.

Proof of Proposition 53 - Proof of(i). Since there is a zero in the first column in the Routh
Table, the Routh-Hurwitz Theorem 2.1 shows that p(s) has at least one zero in the closed right
half-plane. Without loss of generality, assumethat the zero is in the secondelement of the first

column, i.e., sgn 2(s ) has aleading coefficient of at most order n-3. (Since the row is nonzero

bysupposition, sgn2(s ) is at least of order 1.) Suppose that the only zeros of p(s) in the closed

right half-plane are j©-axis zeros, say M counting multiplicities. Then extract the j©-axis zero
M/2 M/2 M/2

pairs fromp(s) by Pl(s) := p(s)/n (s2 +̂ ) =hn(s2)/II (s2 +̂ )+sgn2(s2)/II U2 +a?i).
i=l i=l i=l

(Note that since sgn2(si:) is nonzero, M<n.) By supposition, p^s) is Hurwitz and thus has
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every coefficient strictly positive. However, hn(s2)/jj[ Is2 +(3[ Jis of order n-M, while sg _
i=l

M/2

2(s2)/ii ' s2 +°?i) is oforder at most n-M-3(but at least 1). Thus, p^s) has its n-M-1 co
efficient equal to zero, which contradicts the fact that pj(s) is Hurwitz. This proves (i).

Proofof(ii) - Encountering a zero row during construction of the Routh Table means that some
step

hn-w+2(s2) =-Vws2gn-w(s2)'or
Sn-w+2(s2) =̂ n-whn-w+2(s2)

Hence the polynomial hn.w+2(s2) +sgn.w(s2) or sgn.w+2(s2) +hn.w+2(s2) equals (1 -Vws>sSn-
w(s2) or (1 -^Vws)hn_w+2(s2), respectively. Since gn.w(s2) and lyw+2(s2) have real
coefficients, this means that gn_w(s2) or hn_w+2(s2) have zeros of the type stated in the
Proposition. Working ourway backup the Routh Table, note that p(s) can be written aslinear
combinations of gn.w(s2) and lyw+2(s2) or gn.w+2(s2) and lyw+2(s2). (Use (4.1)-(4.2) and the
RouthTable, Figure 1.) Thus, p(s) also has the stated property. •
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Appendix - Proof of Lemma 3.3, part (ii)

The idea is to choosea curveC asin Figure 1with a sufficiently small indentation about each
j©-axis zero so that (ii) holds.

Take any bounded interval I c IR. From pan (i) of Lemma3.3, for any X€ I, N(s, X) hasthe
same j©-axis zeros with the same multiplicities as p(s), say atotal of M. Therefore, onlyn-M
zeros ofN(s, X) depend on X. Let {zf(X), i=l,... n-M}be such that N(z{(X\ X) =0. At X=-

ar/an-l'note ^the degree ofN(s» k) d^P by precisely one (since an_x * 0). Thus, precisely
one member of {z^A,), i=l,... n-M}, say Zj(X), goes to infinity as X-> -a^a p and ittends to
infinity along the real axis, as an asymptotic expansion shows. This means thatthere is aclosed

interval L c I with lzT(X)l <~ for all Xe L, satisfying . ^n , min(lzj(X) - j©= I) =
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i€{iu^Mj'Te iJ JCOj • This latter term has an achievable positive minimum, since the
locus Zj(Ij) is closed and bounded, and never crosses the imaginary axis. Call this minimum dis
tance Rj.

So now consider z(I) := {zfi.), i=l,... n-M, i* J, Xe 1} c C, the locus of all off-imaginary

axis zeros of N(s, X) (except for Zj(A.)) as Xvaries over I. Since I isclosed and bounded, the

locus is aclosed and bounded set. Therefore, .mr?^z${ M îs afinite, positive constant, say
R. LetR* =min(Rj, R)>0. Using this value of R*, wecan then make the radius of the indenta

tion about each j©-axis zero j©j equal to R*/2, say. This allows construction of thedesired con
tour C, which proves (ii). •
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