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ABSTRACT

This paper presents an elementary proof of the well-known Routh-Hurwitz stability criterion.
The novelty of the proof is that it requires only elementary geometric considerations in the com-
plex plane. This feature makes is useful for use in undergraduate control system courses.

Research supported by Hughes Aircraft Company, El Segundo, CA., 90245; and the National
Science Foundation Grant ECS 21818.



1. Introduction

The determination of stability of lumped parameter, linear, time invariant systems is one of the
most fundamental problems in system theory. According to Gantrhacher, [2, pp.172-173] this
problem was first solved in essence by Hermite [3] in 1856, but remained unknown. In 1875, E.
J. Routh also obtained conditions for stability of such systems [7]. In 1895, A. Hurwitz, unaware
of Routh’s work, gave another solution based on Hermite’s paper. The determinantal inequali-
ties obtained by Hurwitz are known today as the Routh-Hurwitz conditions, taught in virtually
every undergraduate course on control theory. - '

Unfortunately, Hurwitz’s proof of the result is very complicated, involving algebraic
manipulations. Indeed, the proof is so complicated that most elementary textbooks (for example,
[1], [5]) choose not to prove it at all, but rather to state it as a fact.

In a recent paper, Mansour [6] proves the Routh-Hurwitz Theorem in a very simple manner
using the Hermite-Biehler Theorem. Motivated by Mansour’s proof, this paper presents a proof
based on elementary geometric considerations in the complex plane. It thus provides a clear
geometric insight into what makes the procedure work. It also slightly extends Mansour’s work
by a providing a proof of the second part of the Routh-Hurwitz criterion: the number of sign
changes in the first column of the Routh Table is the number of open right half-plane zeros.

The idea behind the proof of the theorem is simple. It will be shown that at each step the
Routh procedure (i) eliminates precisely one zero of the characteristic polynomial (ii) preserves

the position of the jw-axis zeros, and (iii) ensures that the remaining off jw-axis zeros do not
cross the jo-axis. By observing the sign changes in the first column of the Routh table, it can be
determine whether the eliminated zero is a zero in the open right half-plane or the open left half-

plane. Thus, in n steps, precisely n zeros have been eliminated and the sign changes indicate the
number of right half-plane zeros of the original polynomial.

2. Statement of the Routh-Hurwitz Stability Criterion
Theorem 2.1 (Routh-Hurwitz) - Consider an nth order polynomial in s

P(s) = ay+a;s+ a.zs2 + ... an_ls“'l +a s"

where a,,i=0, 1, ..n€ R and a,>0anday=0. (If ay = 0, simply factor out an appropriate sk

term and proceed.) If possible (i.e., none of the divisors are zero), construct the well-known
Routh table, written in the form as shown in Table 1. We have used the notation
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Table 1 - 'Ihe Routh Table

Then p(s) is Hurwitz (i.e., p(s) has all its zeros in the open left half-plane) if and only if each el-
ement of the first column is positive, i.e.,a; >0,a, ; >0, b ,>0, ... mg, >0, ny > 0.

Remark on Notation - In Table 1 we have assumed (to fix notation) that n is even. The even
polynomial p(s) was split into its even and odd part by p(s) = hn(sz) + sgn_z(sz), where hn(sz) is

even and of degree n, and where gn_z(sz) is even and of degree n-2. Note that the coefficients of
hn(sz) are contained in the first row of the Routh table, and the coefficients of gn.z(sz) are con-

tained in the second row of the Routh table. This explains the presence of the hn(sz) and gn_z(sz)
in the column to the left of the Routh table in Table 1. (If we had assumed n was odd there

would be a gn_l(sz) to the left of the first row, and a hn_l(sz) to the left of the second row.) The
remainder of the notation in Table 1 is explained in section 4.

3. Preliminary Lemmas

We first start with a definition which makes precise the notion of net phase change. Let C de-
note the complex plane.

Definition 3.1 Consider a polynomial p(s) and a continuous, oriented curve C < € which starts
ats; € € and ends at s,& C. Suppose p(s) #0, forall se C. Let the curve be parametrized by
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the continuous function ¢:[0, 1] — C. Since p(s) # 0 for all se C this means that arg(p(s)) along

C is well-defined mod2x; hence, we choose arg(p( $(0))) arbitrarily and for all r € [0, 1], we
choose arg(p(¢(r))) such thatr — arg(p(¢(r))) is continuous. Then we define the function

argréet(p(')) = arg(p(¢(1))) - arg(p($(0)))
= arg(p(s,y)) - arg(p(s,))

Roughly speaking, al‘gléet(P(‘)) is simply the net phase change of p(s) as s traverses C. For

example, in Figure 2, if the plotted solid locus is p(C), then argnet(p(+)) = 2x.

The following lemma gives a relationship between the location of zeros of a polynomial and its
net phase change.

1

Lemma 3.2 - Consider the polynomial p(s) = ay+a;s+ a2s2 +... an_ls"' + a“s’l where a,, i=0,

1,.ne R and a >0and ag# 0 (so p(s) is of degree n and p(0) # 0). Then p(s) has L zeros in
the open left-half plane counting multiplicities, R zeros in open right half-plane counting multi-
plicities and 2K zeros jox, @, >0, on the jo axis with multiplicities m,, i=1, ... K (i.e., there are

a total of M jw-axis zeros) if and only if

k
@ p®(joop) <==fgp(s) b=jm)=0fork=0, .., m _,i=1,.. K butpmXjy) =0,i=l,...K,
and p(jw) #0 forall e R*\{ay: i=1,...K});

oo ° _E - .
(ii) arg!éet(p( ) -2(L R+ M)

. where the oriented curve C is the jw-axis, except for indentations on the right at each jw-axis
zero jay, i.e., the curve C starts at zero and ends at +jeo, as shown in Figure 1.



C s - plane

Y

Real

Figure 1 - Plot of the curve C

Proof of Lemma 3.2 - = Since p(s) is an nth degree polynomial, it has precisely n zeros. By
assumption, precisely M are on the jw-axis, while the remaining zeros lie in the open right half-
plane, or open left half-plane. In addition, since each zero jo,; has multiplicity m,, this implies
that p®(jw,) = 0 fork =0, ... m;-1 and p™)jax) = 0. Thus, (i) is proved. To prove (ii), note
that each simple real open right half-plane zero contributes -/2 radians of phase to the net argu-
ment as s traverses C, while each simple real open left half-plane zero contributes /2 radians of

phase. Due to indentations on the right of the jw-axis zeros, each complex conjugate zero pair

contributes either +x or -x radians of phase depending on whether the pair resides in the closed
left half-plane or open right half-plane, respectively. Since there are a total of L zeros in the
open left-half plane counting multiplicities, R zeros in open right half-plane counting multiplici-

ties and M zeros on the jo axis counting multiplicities this means

argnet(p(+)) = 2(L - R + M)
C

This proves (ii).

<= - By assumption p(s) has precisely M/2 pairs of jw-axis zeros counting multiplicities, so it
can be factored as

n-M

K
p(s) =[ I (2 + w?)™ [ (s - su)
i=1

i=1
where { Syt i=1, ... n-M} denotes the remaining zeros of p(s). Since the curve C is indented to

the right at the jw-axis zeros, we can define ar %et(P(')) . By computation its value is
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n-M
o)) I - S
argréet(p( ) = EM+ argréet(H (s Sn))

i=1
By condition (ii), the second term is equal to ®(L-R)/2. Also, n-M =L + R, and M is known by
(i); so conditions (i) and (ii) determine uniquely L, R, and M. |

The following two lemmas are the main results of the section. They characterize the effect of
one step of the Routh-Hurwitz procedure when the leading term is even (Lemma 3.3), and when
the leading term is odd (Lemma 3.4).

Lemma 3.3 - Consider the polynomial p(s) = ay+a;s+ 32s2 +... a“_ls“’l

+a s" where a,, i=0,
1,..ne R and a, > 0 and ag# 0. Assume in addition that n is even and a1 * 0. Let hn(sz) and

sgn_z(sz) be the even and odd parts of p(s), respectively, i.e.,

2 ® c— 2 l‘l-2
hn(s ) = 3+ as”+..a 8
n-4

gn_z(sz) =a; +-a3s2 +..8, S

n
+ ans

n-2
+ an_ls

Suppose that p(s) has L zeros%in the open left half-plane counting multiplicities, M jo-axis
zeros counting multiplicities, and R (=n-L-M) zeros in the open right half-plane counting multi-
plicities. For any real A, define

N(s, &) 1=p(s) + As%g, 5D
= hn(s-z) + lszgn_z(sz) + sgn_z(sz)

Then,

(@) jo, is a jw-axis zero of p(s) with multiplicity m, if and only if jo, is a jw-axis zero of N(s, A)
with multiplicity m, forallA e R ;

(ii) Given any closed, bounded interval I IR, there exists a curve C as in Figure 1 such that N(s,
M) #0forallse C,and forall L el. Thus, ar gnézt(N (*, M) is well-defined for A el.

Define the interval Iby I :=[-la /a_ .|, la fa_,I]. Choose the curve C so that argn(e:t(N(-, M) is
well-defined for A € I. (This can be done by part (ii).) Then,

(iii) |argng(N(°, D). argréet(p(-)) |<m, forallAel



(iv) { argnet(:) - argnetNC, -2,/2, 1)) Jsign(a, /ay, 1) = n/2.

(V) N(s,-a,/a ;) has (L - 1) zeros in the open left half-plane, M zeros on the jw-axis, and R
zeros in the open right half-plane, in each case counting multiplicities if and only if afa ,>0.

In addition, N(s, -a,/a; ;) has L zeros in the open left half-plane, M zeros on the jw-axis, and R-1
zeros in the open right half-plane, in each case counting multiplicities if and only if afa ;<0

Proof of Lemma 3.3 -
Proof of (i) - & Take 7‘0 € IR, arbitrary. jo, is a jo-axis zero of N(s, A with multiplicity m,
means that fN(S, o) ijwl =0fork=0,..m;1and ﬂ = NGs, Ao) ls<jo, #0. ﬁN(S, Ao) [szj(n;
=0fork=0, .. m-1 is equivalent to h (k)(- 2) + M(ﬁ—{ s2gn - 2(82) ) oo +

{ S€n - 2(821) ljox =0 fork =0, .. .m;-1. Since @, is real, equating the imaginary and real
portions of this expression to zero yields h, ®(-;?) + 7\0(-‘1— {s%n-2(s?) )ls-m 0 and

(ﬁ—{sgn z(Szj) ls=;em =0, fork =0, ... m;-1. This latter expression implies that g, 2(1‘)(-(0 )=
O;using this in the former expression shows that h (k)(- 2) =0,k=0,..m:-1. Thus, p(k)oa) )=
h, ®¢-a2) + (L{Sgn 2(82)}) bjo =0,k =0, ... m1. From JﬂN(s, A0) mjx #0and g__

(k)(-co )=0,k=0,..m- l,we further conclude that 'd_.P(s) ls—_]coa # 0. Hence, jo, is a jo-axis
zero of p(s) with muluphcxty m,.

= jco is a jw-axis zero of p(s) with multiplicity m, means that ‘p(k)(jco )=h (k)( w; 2) +
(‘d— ‘ S8n - 2( }) ls-Jax =0,k=0,.. m-1. Equating the real and i 1mag1nary parts of p(k)(lco )=0
yields h (k)(- 2) =0and g _ 2(1‘)( ; ) Ofork=0,. . m;-1. This in turn implies that

%‘ﬁ {s2ga. 2(s?) ) le=jox =0 for any A€ IR,andfork =0, .. m-1. Thus, %N(S, Ao) bejo =

k k

p®Ga,) + 7\0(:7 {52 .- 2(s2) ) oo + (f—k {sgn. z(sz)}) bhejon = 0 for k =0, ... m-1. Tt can be
S s

shown by similar reasoning that ad;%‘i N(s, Ao) ls___j(,,l # 0. This proves (i).

Proof of (ii) - This statement merely asserts the existence of a curve C which ensures that

argng(N (> A) is well-defined for all A in the closed, bounded interval I. Since the details are
not relevant to the rest of the proof,, the details are left to the Appendix.
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k
<L ( $gn - 2(s? ls=jax =0fork=0, .. m-1. Since , is real, equating the imaginary and real
sk 1 1
k
portions of this expression to zero yields hn(k)(-coiz) +Ao ‘d'; {Szgn - 2(82j ) Ljom =0and

k
{i—k (sgn - 2(521) L;,m =0, fork=0,... m;-1. This latter expression implies that gn.z(k)(-(oiz) =
O;using this in the former expression shows that hn(k)(-(oiz) =0,k=0,... mi-l. Thus, p(k)(jcoi) =
k

h M0 + (gs; {sgn- 2(82)}) i =0,k=0,...m"1. From % N(s, Ag) bejery #02nd g__
-0 =0,k=0,... m;-1,we further conclude that &%"n%p(s) li=jes, # 0. Hence, jo, is a jo-axis
zero of p(s) with multiplicity m,.
= jo, is a jw-axis zero of p(s) with multiplicity m, means that p(k)(jmi) = hn(k)(-coiz) +

( ‘Sgn 2(S2 ) L-Jco. =0, k= 0, .. m;-1. Equating the real and imaginary parts of p(k)(](o )=0
yields b, ®(-02) =0 and g_, P02 = 0fork =0, . m;-1. This in turn implies that

x k
lo(fg {28 2(s2) ) l<je =0 for any Ag€ R, and fork =0, .. m-1. Thus, ads—kN(s, 20) ki =

k k
p®Gey) + M(ads-k {s%n-2(s7) ) lejox + (ﬁ (s&n- 2(82)}) bjox =0 fork =0, ... m.-1. It can be
shown by similar reasoning that % N(s, Ag) keje, #0. This proves ().
Proof of (ii) - This statement merely asserts the existence of a curve C which ensures that

argnét(N (1)) is well-defined for all A in the closed, bounded interval I. Since the details are
not relevant to the rest of the proof, the details are left to the Appendix.
Proof of (iii) - For simplicity, first assume that p(s) has no jw-axis zeros. For this case we take

the curve C to be the positive jw-axis. Note that N(jo, A) # 0 on IRxL.
-7-



Thus, the only difference in phase occurs for ("’k' o), Since there are no zeros of cogn_z(-mz)
in this interval, this again implies that sign{Im(N(jo, A))} is a constant (see Figure 2). This in

torn implies that | SEREINCA) . SO |<x foranin e 1 since FERNC.A)
?5%!1‘::]@(') we then have

t(N(e, 1)) - .
la[{)gne](N( ) %ﬁt@( Nisw

for all A € I. This proves (iii) for the case where p(s) has no jw-axis zeros.

Proof of (iv) - Note that by the definition of I that -a,fa;_, € L Order the zeros of O)gn_z(-coz) as
before, and use arguments identical to that of part (iii) to obtain

. _ argnet(p(+)) argnet(N(e,-a /a_,))
arg’l}it](p( ). aro,;;;(]N( a/a 1)) Ug)-;,ng S /3.1

Since o, is a fixed point (i.e., independent of 1), we then obtain
= arg(p(jo)) - arg(NGow, -én/an_l))
W —> oo @ —> oo

Since we are taking the limit as @ — oo, we only need to consider the leading term of each poly-
nomial. Performing this operation, and using the properties of arg, we obtain in succession

arg(a, (o)) . arg(a ,Go)™)

W — oo @ —> oo

- argla (o), (o)™

@ —>co

_ argla joa, ]

® —> oo

Thus, if a_/a__, > 0, the net argument difference is #/2, and if a /a _; <0, then the net argument
difference is -m/2. This proves (iv) for the case where p(s) has no jo-axis ZEeros.

If p(s) has jw-axis zeros, then part (i) shows that N(s, 1) has the same jw-axis zeros with the
same multiplicities. This means that the only difference in argument can come from the non jo-

M/2
axis zeros. If we extract the jw-axis zeros by p,(s) =p(s)/ H (52 + 0)2.) » then p, (s) has no jw-ax-

. i=1
1s zeros, so we can apply the arguments above. For example, to prove (iii) we know from above
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that

|arrg?j§°t](N1(°, M), aff&‘;}ffl(')) l<w

M/2
where N 165 A) :=Ngs, A)/ H (82 + 0;.) forall A e L If we choose a contour C like Figure 1, in-

i=1
dented on the right of the jw-axis zeros, we then obtain

|argn8t(N(-, \). argléet(p(o)) l<x
for all A €I, which proves (iii). Statement (iv) is proved similarly.

Proof of (v) - The net argument difference between p(s) and N(s, -a"/an_l) as s traverses C is
sign(a /a__,)®/2, by applying part (iv) above. Applying both logical implications of Lemma 3.2

shows that N(s, -an/an_l) and p(s) have the same number of zeros on the jw-axis, and a difference

of at most one in the number of open right half-plane or open left half-plane zeros, depending on
the sign of an/an_l. This proves (v). I}

In the case that n is odd (rather than even as in the statement of Lemma 3.3), we have the cor-
responding result to Lemma 3.3.

1

Lemma 3.4 - Consider the polynomial p(s) = a,+a;s+ a2s2 + ... an_ls"' + ansn where a;, i=0,

1,..ne R and a, > 0 and ag # 0. Assume nis odd. Let hn_l(sz) and sgn_l(sz) be the even and
odd parts of p(s), respectively, i.e.,

3 1

2y . 2 -
81 (D) = a + ags“+..a "
n-3

n-
+ anS

Sn-l

2y . 2
h (8 = a5+ 88" +...a; o5 " +a

Assume a__, # 0. Suppose that p(s) has L zeros in the open left half-plane counting multiplici-

ties, M jw-axis zeros counting multiplicities, and R (=n-L-M) zeros in the open right half-plane
counting multiplicities. For any real A, define

Ny(s, A) :=p(s) + Ash_,(s?)
=s5g,1(D +Ash D +h_ ()

Then, statements (i)-(v) of Lemma 3.3 hold, with No(s, A) replacing N(s, A).
Proof of Lemma 3.4 - The proofs of (i) and (ii) are identical to the analogous results of Lemma
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3.3, and are thus omitted. The proofs of (iii)-(v) are also nearly identical to their counterparts in
Lemma 3.3. The key point is to note that ja)khn_ 1 2) contributes only to the imaginary part of

N, (@, 1). This means that points a and b of Figure 3 are fixed points, i.e. if o, satisfies p(jo,) =

a, then b, (-c;%) =0, which means that N, (jo,, A\) =bforall A & I The details are left to the
reader. |

NG@, A), L #0
N\

p(i®) =NGw,0) b

Figure 3 - Graph of ® — N(jo, A),0 £ ® <o (n odd).

4. Proof of Theorem 2.1 (Routh-Hurwitz)

Let us first emphasize some notation. To fix notation, assume n is even.

Let hn,w(sz) be the even polynomial of degree n-w whose coefficients lie in the row 2w. (See

Table 1). Let gn_w(sz) be the even polynomial of degree n-w whose coefficients lie in the row

2w + 1. (Again see Table 1).
To construct the Routh Table, perform the calculations indicated in section 2. This corresponds

to findingad, e R,orap . e R,such that

By @ = b oD+ A s (D) (4.1)

B () = Brgua ) + iy by oY) 42)

where the leading terms of hn_w(sz) and gn-w(sz), respectively, are canceled. If this procedure

cannot be performed (i.e., the leading term of gn_w(sz) or hn_w(sz) is zero), then a zero is in the
first column of the Routh Table. The standard procedure given in elementary textbooks is to re-

-10-



place the zero by € > 0, and proceed. See section 5 for some of the implications of this.

Proof of Theorem 2.1 (Routh-Hurwitz) = If p(s) is Hurwitz, then each of its zeros is in the
open left half-plane. Consider the first step of the Routh procedure. By Lemma 3.3, part (v),

N(s, -a fa_ P= hn(sz) - an/an_lszgn_z(sz) + sgn_z(sz) has the same number of zeros in the open

left half-plane as p(s) except for the eliminated zero. Since all the zeros of p(s) are in the open
left half-plane, the eliminated zero must also be in the left half-plane. Thus, N(s, -an/an_l) =

sgn_z(sz) + hn-z(sz) has precisely n-1 zeros in the open left half-plane, and afa_ . ispositive. By

using Lemma 3.4, in the next step we have that hn_z(sz) + sgl; _4(32) has precisely n-2 zeros in the
open left-half plane, and afa ,is positive. After n steps, n zeros have been eliminated and each
element in the first column is positive.

<= If each element in the first column is positive then use of Lemma 3.3, part (v), and Lemma
3.4, part (v) show that precisely n zeros in the open left half-plane have been eliminated. Thus,
p(s)is Hurwitz. |}

Remark 4.1 - In the case that n is odd, the proof of the Routh-Hurwitz theorem is nearly identi-
cal. Simply write p(s) = sgn_l(s2)+ hn-l(sz), where sgn_l(sz) and hn_l(sz) are the odd and even

parts of p(s), respectively. Apply Lemmas 3.4 and 3.3 appropriately in a manner similar to that
in the proof of the even case. The details are left to the reader.

S. The Second Part of the Routh-Hurwitz Theorem
Based on Lemma 3.3 we have the second part of the Routh-Hurwitz criterion.
Theorem 5.1 - Consider an nth order polynomial in s

P(s) = ay+a;s+ a252 F ... an_ls“'l +a s"
where a,, i=0,1,..ne IR and a, > 0 and ay # 0. As before, to fix notation assume that n is

even. Suppose when calculating the Routh Table that no element in the first column is zero.
Then the number of sign changes in the first column of the Routh Table is the number of open
right half-plane zeros of p(s).

Proof of Theorem 5.1 - At each step the algorithm (i) eliminates precisely one zero of p(s), (ii)
preserves the position of the jw-axis zeros, and (iii) ensures that the remaining off jw-axis zeros

do not cross the jo-axis. By Lemma 3.3 part(v), and Lemma 3.4 part (v) the eliminated zero is
in the open left half -plane if the ratio of the associated leading coefficients is positive, whereas
the eliminated zero is in the open right half-plane if the ratio of the associated leading coeffi-
cients is negative. Thus, the number of sign changes in the first column indicates the number of
open right half-plane zeros of p(s) that were eliminated.

Remark 5.2 - If a zero does appear in the first column during the Routh procedure, care must be
exercised in ascertaining the zero positions of the original polynomial. By addingane>0toa

-11-



column, the position of the zeros of the original polynomial are being perturbed (since the zeros
of a polynomial are continuous functions of their coefficients provided a, remains bounded away

from zero). Attempting to deduce properties of the zeros of the original polynomial based on the
properties of the perturbed polynomial can often lead to erroneous conclusions as the following
examples show.

Example - Let p(s) = (s + a)(s? + b)=s*+ (a+ b)s2 + ab, where a, b € IR. The Routh Table for
this example is ‘

1 a+b ab 0
€ 0 0
a+b ab O
—€ab

a+b

ab 0

If a>0and b > 0, then there are two sign changes in the first column since € > 0. This leads to
the “conclusion” that there are two zeros in closed right half-plane. Note that adding an € >0

merely pushes the jw-axis zeros of the p(s) off the jo-axis. Much more insidious examples can
be constructed that make it very difficult to tell the position of the zeros of the original polyno-
mial. (See, for example, [2, p. 184, Example 4].) However, we do have the following proposi-
tion.

Proposition 5.3 - Suppose that during construction of the Routh table a zero in the first column
is encountered. Then

(i) If there are one or more nonzero elements in the same row, then p(s) has at least one zero in
the open right half-plane;

(ii) If the row is zero, then (a) p(s) has at least one pair of jw-axis zeros, or (b) p(s) contains a
factor of the form (s+ ao)(s- ao) for some o, € R, or (c) p(s) contains a factor of the form (s+ o

+ Byi) (s+ oy - Byi) (s- 0t + Byi) (s - & - Byi) for some oy By e R.

Proof of Proposition 5.3 - Proof of (i). Since there is a zero in the first column in the Routh
Table, the Routh-Hurwitz Theorem 2.1 shows that p(s) has at least one zero in the closed right
half-plane. Without loss of generality, assume that the zero is in the second element of the first

column, i.e., sgn_z(sz) has a leading coefficient of at most order n-3. (Since the row is nonzero

by supposition, sgn_z(sz) is at least of order 1.) Suppose that the only zeros of p(s) in the closed

right half-plane are jw-axis zeros, say M counting multiplicities. Then extract the jw-axis zero
) M/2 M/2 M/2

pairs from p(s) by p,(s) := p(s)/ H ( s2 + o ) = hn(sz)/ H ( s2+af ) + sgn_z(s2)/ H ( s2 + of )
i=1 i=1 i=1

(Note that since sgn.z(sz) is nonzero, M < n.) By supposition, pl(s) is Hurwitz and thus has
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M/2
every coefficient strictly posmve However, h (52)/ H ( s2 + & ) is of order n-M, while sg__

1
M/2 1=
2(32)/ H ( s2 + of ) is of order at most n - M - 3 (but at least 1). Thus, py(s) hasitsn-M- 1 co-
i=1

efficient equal to zero, which contradicts the fact that P,(s) is Hurwitz. This proves (i).

Proof of (ii) - Encountering a zero row during construction of the Routh Table means that some -
step

hn-w+2(s2) = 'xn-wszgn-w(sz)’ or

gn-w+2(82) = "J'n-whn-w+2(82)

Hence the polynomiai hn W +2(s2) + 58, W(s?‘) orsg. .. +2(sz) + hn W +2(52) equals (1 - ln.ws)sgn_
w(32) or(l- My S )hn w +2(s ), respectively.  Since g, w(sz) and hn W +2(sz) have real

coefficients, this means that gn_w(sz) or hn_W +2(s ) have zeros of the type stated in the
Proposition. Working our way back up the Routh Table, note that p(s) can be written as linear
combinations of g (s andh,__ (sHorg . (D andh__ .(s?). (Use (4.1)-(4.2) and the
Routh Table, Figure 1.) Thus, p(s) also has the stated property. W
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Appendix - Proof of Lemma 3.3, part (ii)
The idea is to choose a curve C as in Figure 1 with a sufficiently small indentation about each
jw-axis zero so that (ii) holds.

Take any bounded interval I < IR. From part (i) of Lemma 3.3, for any A € I, N(s, A) has the
same jo-axis zeros with the same multiplicities as p(s), say a total of M. Therefore, only n-M
zeros of N(s, A) depend on A. Let {z;(M), i=1, ... n-M}be such that N(zA), M) =0. Atd=-

a /a ;. note that the degree of N(s, A) drop by precisely one (since a 1.1 # 0). Thus, precisely

one member of {z,(A), i=1, ... n-M}, say zj(?‘.) goes to infinity as A — -a /a_,,and it tends to
infinity along the real axis, as an asymptotic expansion shows. This means that there is a closed

interval I; € I with Iz;(A)l <ee forall A e I, satisfying . dm" }mm(lzj(?&) joy ) =
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ie {?,lffm“iig(%l @) - oy . This latter term has an achievable positive minimum, since the
locus z(I;) is closed and bounded, and never crosses the imaginary axis. Call this minimum dis-

tance RI'
So now consider z(I) := {zi(l), i=1,...n-M,i#]J, A € I} c C, the locus of all off-imaginary

axis zeros of N(s, A) (except for z;(A)) as A varies over I Since I is closed and bounded, the

locus is a closed and bounded set. Therefore, ig’?}(‘z(ﬁf ;s a finite, positive constant, say
R. LetR* = min(R}, R) > 0. Using this value of R*, we can then make the radius of the indenta-

tion about each jw-axis zero jw; equal to R*/2, say. This allows construction of the desired con-
tour C, which proves (ii). Il
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