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Abstract

The cycle time of a sequential digital system is the key determinant of the performance of the

system. Most approaches to cycle time optimization assume fixed delays through logic blocks.

In reality, the delays are random variables whose distribution can be characterized by historic

data obtained from previously manufactured systems.

In this paper, we describe a mathematical model and a method for optimizing the cycle time

of a sequential digital system in the presence of randomly varying logic delays. First, we give

an efficient polynomial-time algorithm for the case in which the delays are deterministic and

then solve the related stochastic problem. We obtain a polynomial time bound on the solution

of the stochastic problem under practical conditions. Also, we derive results that can be used

to devise efficient algorithms for obtaining the optimal clock period, where optimality is defined

as the most reliable clock period which yields the minimum manufacturing cost. Preliminary

tests on industrial data indicate that a practical implementation of the technique is efficient and

useful for obtaining reliability-cycle time tradeoff curves. Results from some real examples are

shown in the paper.

1 Introduction

The cycle time of a sequential digital system is the key determinant of the performance of the

system. Given a fixed computation to be performed on the system, reducing the cycle time will

result in a proportional decrease in the time to performthe computation. Several techniques that do

not modify the logiccircuitry have been proposed to optimize the cycle time of sequential systems.

Skew optimization [Fis81] and retiming [LRS83] are two such techniques.



However, these approaches assume fixed delays through logic blocks. In reality, the delays are

random variables whose distributions can be characterized using historic data. The commonly

used approach to deal with variable delays is to increase the cycle time by some fixed percentage

according to some rules of thumb or perform worst-case analysis. However, this may not be the

best approach in terms of the reliability-performance tradeoff and in some sense, may be overly

conservative. For a competitive design that pushes technology to the limits, an improvement in

the performance can be optimal often at the risk of system failure. In this paper, we present a

systematic approach for obtaining reliability-tradeoff curves for a given sequential digital system.

Our optimization technique is a mathematical approach for setting the appropriate design point.

It allows the designer to obtain the smallest clock period such that a given reliability level for

the system is achieved. Typical systems that are amenable to such optimizations are multi-chip

modules, high-performance packages and printed circuit boards.

The outline of the paper is as follows: First, we describe the physical and timing models of

the digital system under consideration. A formulation of the problem is presented, followed by

an efficient algorithm for solving it when the delays are deterministic. We then generalize the

formulation to the case of stochastic delays and discuss computational strategies. Our approach

for solving the stochastic problem is described, along with some key theorems and propositions.

Finally, we present some graphs of reliability-cycle time tradeoff curves for an industrial example

for various distribution functions.

2 Skew Optimization

2.1 Physical Model

For explanation purposes, consider the physical model of a multi-chip module (MCM); the tech

niques can be applied to other hierarchical systems as well. The system is assumed to be composed

of chips. Chips are composed of macroscontaining primitive elements such as cells or books, some

of which may be clocked or synchronizing elements. The input specification consists of chip descrip

tion netlists that specify for each chip, the netlist internal to the chip, delays though the macros,

delays in the interconnect between macros, synchronizing element setup and hold times and wiring

delays between chip clock pins and each synchronizing element. In addition, a chip-to-chip netlist

specifies the interconnectivity between chips and wire delays. Wire delays that exist from the MCM

clock sources to the chips may also be specified. For the purposes of simplicity, we assume a single



phase clock.

2.2 Timing Model

A model for detecting clockhazards and optimizingskewwas presented in [Fis81]. The synchronous

digital system used in this model consists of blocks of combinational elements separated by edge-

triggered latches. The set of latches is denoted by L = {/i,... ,/„}. Let T denote the clock period.

The circuit can be modeled as a synchronous communication graph G containing n vertices, one

for each latch and m edges. There is a directed edge between vertex i and j if at some time during

the clock cycle, there is a combinational logic path from latch /, to lj. Each edge has weights

D^ and dtj which denote the largest and smallest combinational logic delays between latch /; and

lj respectively. The setup and hold times of a latch, /,-, are denoted by tsETUPi and tfjOLDi

respectively. The delay from the clock source to the latch /,• is denoted by £,-.

Such an abstract communication graph may be easily constructed by a timing analysis on the

physical model presented in the previous section.

2.3 Formulation

We are now ready to formulate the skew optimization problem as defined in [Fis81]. The first

constraint concerns double clocking. It states that the signal from latch /,- to latch lj through the

fastest path should not race through the circuit before the end of one clock period. The equation

can be written as follows:

ft + ^j > 6j + tHoLD ;, V(i, j) € G. (1)

The second equation concerns zero clocking, i.e., the slowest signal from latch /,- to latch lj

should not arrive at latch lj later than the end of one period. The corresponding constraint is:

ft + tsETUPj + Dij < 6j + T, V(»,i) «= G. (2)

Frequently, we may have constraints on the maximum achievable clock offset between any pair of

nodes.

0 < ft < Amax (3)

The optimization problem may be stated as follows:

Find the smallest clock period T such that equations 1, 2 and 3 are satisfied.



V : minimize T

subject to

ft + dij > 6j + tuoLDj, V(t, j) GG (4)

ft + tsETUPj + Dij < 6j + T, V(t, j) GG

0 < ft < Amax

2.4 An Efficient Algorithm for Solving V when Delays are Deterministic

V may be solved efficiently using graph-based algorithms as follows. A lower bound on T is easily

obtained as:

Tmin = max{0,min(Aj - Amaar)}
*3

An upper bound on T is:

Tmax = TOXX{Dij}

The algorithm is:

1. Perform a bisection search on the values of T between Tmax and Tmtn to find the minimum

feasible period. This is possible because if a clock period T\ is feasible (infeasible) then any

clock period Ti > T\ (T2 < T\) is also feasible (infeasible).

2. Test each X,- obtained during the bisection search for feasibility using the Bellman-Ford algo

rithm [Dre69]

Proposition 1 The problem V can be solved in using 0(log(Tmax - Tmtn)n3) operations

Let T denote the following problem:

For a given fixed constant To, find a feasible solution to

ft + dij > 6j + tHOLDj, V(i,i) GG

ft + tsETUPj + Dij < 6j + T0, V(i,j) GG (5)

0 < ft < Amox

Let T1 be the following problem: Find a feasible solution to

ft + dij > 6j + tHOLDj, V(i, j) GG

ft + tsETUP j + Dij < 6j + To, V(i, j) GG (6)
ft - £j < Ama*>Vt,j



Let S' = {£1,.. .,ft,} be any feasible solution to 7'. Let

6min = min{6i}
t

Clearly, 6j - 6min < Amaar, Vj. Define S = {6l- 6mini..., ft, - 6min}. It can be easily verified that

S' satisfies all the constraints of?. Also, anysolution to 7 trivially satisfies T'. Therefore, 7 and

J? are equivalent.

Note that for a given fixed clock period To, all the inequalities in T have the form:

ft - Sj < Cij

where cy are real numbers.

A system of inequalities in which all the equations have this form can be checked for feasibility

and solved very efficiently in 0(mn) time, where m is the number of inequalities and n is the number

of variables, using the Bellman-Ford algorithm. Thus, the complexity of the above algorithm is

0(log(Tmax - Tmin)n3). [LS88] have shown that even the mixed-integer version of the above form

can be solved efficiently. •

2.5 Stochastic Delays

For simplicity of explanation, in this and following sections, we will assume that the hold and

setup times tnoLD and tsetup are included in the delays Dij. In a practical system, the delays

Dij are not fixed values for that particular system. There may be variations in Dij and dij due

to processing, temperature, signal variations and other sources. We assume that Dij and dij are

random variables with some known probability distribution functions.

The stochastic optimization problem may be stated as:

VI: minimize T

subject to
(7)

Pr°W\ij)€G{(*i +dij > 6j) fl(ft + Dij < 6j +T)}] > a
0 < ft < Amaar for i = 1,..., n

where a G (0,1) is the desired reliability level for the system.

For the purposes of discussion, let us introduce additional variables in the problem as follows:



VI: minimize T

subject to

Prob[r\(ij)eG{(*ij +dh > 0) fK«y + Dij < T)}] > a (8)
Xij = 6i-6j V(t,j)GG

0 < Si < Amax for t = 1,..., n

3 Computational Strategies

There are several options available for solving the problem VI. The first is to impose penalties on

the violation of the probabilistic constraints. For example, instead of minimizing T subject to the

timing constraints, one can minimize the following objective function:

T + {£log[l - 4(x,-y)] +log[f*(T - X*)]}2
«j

subject to

Xij = Si-6j, V(iJ)eG

0 < ft < Amaa? for i = 1,..., n

where F}j is the probability distribution function associated with dij and Ifj is the distribution
function associated with Dij. dij and Dij are assumed to be independent random variables. This

objective function is nonlinear and may not be easy to optimize, since it is not separable.

Converting the probabilistic constraints to deterministic ones is the second option considered.

Since Dij and dij involve random variables on the same arc, we make the following simplifying

assumption:

Dij - dij = 7,-j + frjDij

where 7# and Mj are non-negative constants. As suggested by Prekopa [Ee88], one technique is

to convert the chance constraints into equivalent deterministic ones. The deterministic constraints

would have the form:

JI Prob[Dij <T- Xij p| Dij < (T - 7tf)/Mtf]> «

Prekopa shows that the left hand side ofthis constraint is logconcave under the assumption A:

Dij has a logarithmic concave distribution. This can be used to demonstrate that the constraint



set is convex. We could replace the above constraint by:

]T min{log(Pro6[Z)y < T- ar,J]),log(Pro6[I?,i < (T - 7.;)//*.;])} > loga
(»-,j)€G

The well known sufficient condition for the concavity of a function of the form:

£iogfH*,)

where Fi is a distribution function is that there exists 0 < p < 1 such that /,(x), the density

function, is nonincreasing for x > x(pi). x{pi) is the p,'th fractile. Define the set of functions

p = {P(a;)|3 0 < p < 1, F(x)is nonincreasing for x > x(p)}

Let

po = max(pt)
»€/

Then, Hig/logF,^,)1S concave for all Z{ when

For all symmetric unimodal distribution functions Fi G p, po = 0.5 [Kam84]. However, we have

found no suitable linearization strategy for dealing with such a constraint.

The actual strategy chosen to efficiently solve the stochastic optimization problem involves

maximizing the reliability and is discussed in the next section.

3.1 The Solution Approach

The strategywe use is to maximize the probability ofsatisfying all the constraints for a given fixed

clock period To. After conversion, the optimization problem takes form:

V2 :maximize Z(i,j)€G^(min(Prob[Dij < (T0 - Hj)llHj],Prob[Dij < T0 - *,•;]))

subject to
(9)

Xij = Si - Sj V(t,i) GG

0 < ft < Amaar for i = 1,..., n

We prove that the problem V2 is equivalent to VI. We also show that because of the simple

structure of the problem, the maximization problem turns out to be a separable convex optimiza

tion problem subject to totally unimodular constraints under the assumption A. Thus, efficient

polynomial time algorithms exist for solving such a problem [HS89].



Proposition 2 VI &V2 when the distribution junctions are increasing inT

We will write instances of VI as Pi(Amax, a) and of V2 as P2(Amax, T). For simplicity ofpresen
tation we will represent the optimal solutions as:

Pi(Amax,a) = T*

P2(Amax,T) = a*

For a given fixed value of Aroaar, we can drop that parameter from the notation above. Let

Pi(oi) = T*

P2(T*) = a*

Let the realized probability of satisfying the constraints in VI at T * be 01. If ct\ > a*, we can reduce

T* in VI under the assumption that the distribution functions are continuous and increasing in T,

thus obtaining a contradiction. a\ cannot be less than a* since otherwise, a* cannot be optimal

for V2. So, ai = a*.

Can

Pi (a*) = T*

P2(T) = a*, and T ^ T*?

If T < T* we have a contradiction. If T > T*, let (x}j) and (xfj) be the solutions to VI and

7?2. Let us assume that the distribution functions are continuous and increasing in T. Then, if we

substitute the values (x]j) into the objective function ofV2, we get

J] Prob[Dij < min(T - x}jt (T - 7.;)//*.;)] > <**
(«\j)€G

since the distribution functions are non-decreasing in T. This leads to a contradiction, unless the

reliability achievable has reached its upper limit. So in the region of interest T = T*. m

Proposition 3 The constraint set ofV2 is totally unimodular

Consider

Xij-Si + Sj = 0, V(i,i)€C?

The submatrix of the constraints corresponding to all the st/s is an identity matrix. The columns

corresponding to Si are that of a node-arc incidence matrix. So the constraint set is totally uni

modular (see [Law76]). •

In reality, a given clock period has associated with it some cost of implementing the digital

system to run at T. The trade-offs are as follows:



1. Increasing T reduces the rejection rate and thus decreases costs

2. Decreasing T increases the value of the digital system

3. Increasing Aroax decreases T but increases manufacturing costs

Finding the best tradeoffbetween T and Amax could be tedious. However, weobtained the following

results that ensure that not many iterations are required to search for the optimal values of T and

Am0x that minimize the cost. We first show that the optimal objective function value is a concave

function of T.

Proposition 4 The optimal objective function value ofV2 is concave increasing in T

By the equivalence of PI and V2, we analyse VI. Let

Let T\ beless than T2. Let the solutions be(£j), (a:}-) and (6/), (xfj) respectively. For any 0 < A< 1

let

Amax = AALx + (i - A)ALx

6i = \6} + (l-\)6}

Then,

Xij = Si-Sj, W(iJ)eG

0<ft < Amax,i= l,...,n

And for a > p0 , the reliabilty constraint is satisfied when we set T = aT\ -f (1- a)T2 since the

constraint set is concave. This implies Pi(Amax, Aa1 +(1 - A)a2) < T. Also,T* is nondecreasing in

a. Therefore, if the distribution functions are continuous and increasing in T, T* is an increasing

convex function of a, for a > p0. For the distribution functions chosen for analysis these conditions

are satisfied. Under the monotonicity assumption we can therefore invert this relationship and

obtain a to be concave increasing function of T. (Note also that the convexity of T in Amax

follows).



Reliabilityv/s Clock Period
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Figure 1: Reliability v/s Clock Period, normal distribution

Proposition 5 The optimal objective function value of V2 is an increasing concave function of

^max

This result is obtained by observing that Amax does not appear in the objective function. Therefore,

for any given granularity in the solution vector to V2, the optimal objective function is a piecewse

linear concave function of Amax [Mur83]. Since it can be easily shown that reliability increases with

increasing Amax, the optimal objective function value is an increasing concave function of Amax. •

4 Results

We have implemented a prototype program that obtains tradeoffcurves between P and reliability

and Amax and reliability. Typical analysisof a digital system with about 100 nodes and 375 edges

takes a few seconds of CPU time. We tested the program on an industrial example and obtained

tradeoffcurves for somesampledistribution functions for Dij. For a normaldistribution, the curves

are shown in Figures 1 and 2. The curves for a triangular distribution are shown in Figures 3 and

4. (Note: there may be small deviations from concavity in the plots due to the limited numerical

resolution of the plotter). We are currently investigating the best overall sequence of obtaining the

cost tradeoffs given two degrees of freedom: Amax and T.
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Figure 2: Reliability v/s Amax, normal distribution, To = 30000
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Figure 3: Reliability v/s Clock Period, triangular distribution
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Figure 4: Reliability v/s Amax, triangular distribution, To = 30000
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