
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A STANDARD SOFTWARE PLATFORM

FOR SHARED MEMORY MULTIPROCESSOR

SIGNAL PROCESSING SYSTEMS

by

Manish Arya

Memorandum No. UCB/ERL M90/92

5 October 1990

A STANDARD SOFTWARE PLATFORM

FOR SHARED MEMORY MULTIPROCESSOR

SIGNAL PROCESSING SYSTEMS

by

Manish Arya

Memorandum No. UCB/ERL M90/92

5 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A STANDARD SOFTWARE PLATFORM

FOR SHARED MEMORY MULTIPROCESSOR

SIGNAL PROCESSING SYSTEMS

by

Manish Arya

Memorandum No. UCB/ERL M90/92

5 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

To facilitate rapid prototyping of new signal processing designs we developed
a standard hardware platform consisting of a general purpose host proces
sor controlling multiple slave boards on a common bus. Processors on these
boards locally control custom application specific circuitry; they communi
cate with the host through shared memory.

We recently developed system software, which is the subject of this report,
to support the common hardware base. It provides a means of controlling
the slaves from the host, synchronizing programs on the host with programs
on the slaves, and communicating information between the host and slaves.

With this hardware/software platform, one can design, prototype, and
debug a custom system supported by this master/slave model of control
more quickly than without, concentrating mainly on the application-specific
circuitry and software, and investing little effort in the supporting circuitry
and software.

Our systems use a Heurikon 68020-based single board computer running
the VxWorks operating system as the host on a VME bus and AT&T DSP32C
digital signal processors as the slaves. However, since we implemented the
software almost entirely in the language C, it should be easy to adapt to other
hardware environments provided that they also fit within the multiprocessor,
shared memory, single master, multiple slave architecture.

This report describes the design of the common software platform and
provides all information necessary for developing applications in this envi
ronment.

Contents

I General Description of System Functions 1

1 Introduction 3

1.1 An Image Processor 3
1.1.1 Custom Hardware 3

1.1.2 Local Support and Control 4
1.1.3 Global Control 4

1.2 A Multi-axis Robot Controller 4

1.3 Benefits of a Common Platform 6

1.4 Common Software 6

2 The Common Platform 7

2.1 Hardware 7

2.1.1 Host Processor 7

2.1.2 Local Processors 7

2.1.3 Host & Board Interface 10

2.2 Software 10

2.2.1 Implementation 10
2.2.2 Data Types 11
2.2.3 Communication Model 11

2.2.4 DSP Monitor Program 11
2.2.5 Remote DSP I/O Console 12
2.2.6 Writing Applications 12
2.2.7 Some Conventions 12

3 Synchronization of Host Tasks with DSP Programs 14
3.1 Locking Regions of DPRAM 14
3.2 Insufficient Existing Support for Locking 15

3.3 Arbiters for Locking Parts of DPRAM 16
3.4 Semaphores 19

3.4.1 Interpretation 19
3.4.2 Locking 20
3.4.3 Operations 20
3.4.4 Conserving Arbiters 22

4 Communication between Host Tasks and DSP Programs 25
4.1 Queue Layout 25
4.2 Queue Packets 26
4.3 Queue Structure 26
4.4 Queue Operations 27

4.4.1 Getting a Packet from a Queue 27
4.4.2 Putting a Packet into a Queue 29
4.4.3 Sending a Message 29
4.4.4 Receiving a Message 29

4.5 Performance 29

5 Remote Input-Output Console for DSP Programs 35
5.1 Overview 36

5.2 Request and Response Formats 37
5.3 Supported Data Types 38
5.4 Data Conversions 39

5.4.1 Floating Point Numbers , . 39
5.4.2 Integers 39
5.4.3 Character Strings 39

5.5 Details of Operation 40
5.5.1 Request Generators 40
5.5.2 Request Forwarder 40
5.5.3 Request Server 44

6 DSP Fatal Error Reporting Mechanism 46
6.1 Overview 46

6.2 Error Reporter 47
6.3 Error Server 48

li

7 Starting the DSPs 49
7.1 Special Memory Address Decoders 49
7.2 Bootstrap Code 49
7.3 DSP Initialization from the Host 50

8 DSP Monitor Program 51
8.1 Organization 51
8.2 Functions 51

8.2.1 Report Version Number 51
8.2.2 Perform Loopback Test 52
8.2.3 Write Block of Memory 52
8.2.4 Read Block of Memory 52
8.2.5 Call Application Function 52

II Details of System Operation 53

9 Using the System 55
9.1 Establishing the Environment 55

9.1.1 Environment Variables 55

9.1.2 Manual Pages 55
9.1.3 System Parameter File 56

9.2 File Names 60

9.3 Running the System 60
9.3.1 Running the Remote I/O Console Server 61
9.3.2 Logging into the Host 61
9.3.3 Loading the Host Code 62
9.3.4 Bringing up the System 62
9.3.5 Interacting with the Monitor 64
9.3.6 Accessing VME Memory 67
9.3.7 Viewing Queues 68
9.3.8 Shutting down the System 68
9.3.9 Logging out from the Host 68

9.4 Sample Session 69

in

10 Developing Applications 72
10.1 Data Types 72

10.1.1 VdiWord 73

10.1.2 Vdilnt 73

10.1.3 VdiRegister 73
10.1.4 VdiDSP 73

10.1.5 VdiSemaphore 75
10.1.6 VdiQueue 75

10.2 Global Variables 75

10.2.1 DSP Code 75

10.2.2 Host Code 75

10.2.3 Control Register Shadow Variables 76
10.3 Byte Swapping and Endian Differences 76
10.4 Macros and Constants 77

10.4.1 VDI_VXWORKSJMODE 77

10.4.2 VDIJDSPJVfODE 78

10.4.3 VDIJFIX-BYTE_ORDER 78

10.4.4 VDI_WORDJ3IZE 78

10.4.5 VDI_WORDS() 78
10.4.6 VDIJBYTES0 78
10.4.7 VDLWORDJ>UT() 78
10.4.8 VDI_WORD_GET() 79
10.4.9 VDIJNTJPUTO 79
10.4.10VDUNT_GET() 79
10.4.11VdiWordReorder() 79
10.4.12 VDLTAG_APPLICATION 80

10.4.13 VDLERROR.APPLICATION 80

10.5 DSP32C Tools 80

10.6 DSP Code Memory Layout 81
10.6.1 d3cc Object Files 81
10.6.2 d3ld Binary Executable Files 81
10.6.3 Load-time Parameter Section Fixup 81
10.6.4 Linker Memory Map Files 82
10.6.5 d3genmemimage Image Files 84
10.6.6 Libraries 85

10.7 Header Files 86

10.7.1 vdiAddresses.h 86

IV

10.7.2 vdiApplication.h 86
10.7.3 vdiCommon.h 86

10.7.4 vdiErrorCodes.h 86

10.7.5 vdiErrorReport.h 87
10.7.6 vdilO.h 87

10.7.7 vdiMessagch 87
10.7.8 vdiMonitor.h 87

10.7.9 vdiQueue.h 87
10.7.10 vdiSemaphorch 87
10.7.11 vdiSharedMemory.h 88
10.7.12 vdiWordReorder.h 88

10.8 Application Program Structure 88
10.8.1 Host Code 88

10.8.2 DSP Code 88

10.8.3 Sample 89
10.9 Building Applications 91

10.9.1 Environment 91

10.9.2 Default Make Inference Rules 91

10.9.3 Sample Makefiles 95

11 System Software Internals 98
11.1 System Software Directory 98
11.2 Module Overview 98

11.3 Building the System Software 102

12 Conclusion 103

A Acknowledgements 104

B Online Manual Pages for System Software Functions 105

C An Application: High Accuracy Edge Measurement 106
C.l Processing 106
C.2 Communication 107

C.3 Files 108

C.4 Operation 110

D Optimizing DSP C Code 113
D.l Use ints Wherever Feasible 113

D.2 Use the Keyword register 114

E Porting the Software to Other Hardware Platforms 115

F Manufacturers 116

VI

List of Figures

1.1 An image processing/robot control system 5

2.1 The common hardware platform 8
2.2 Detail of the application-specific boards in the common hard

ware platform 9

3.1 An arbitration circuit which supports the locking operation
necessary for synchronization 16

3.2 The procedure VdiLock() for locking a region with an arbiter. 18
3.3 The procedure VdiUnlockQ for unlocking a region with an

arbiter 18

3.4 A modified arbitration circuit which can be implemented out
of simple gates in a PLD 19

3.5 The procedure VdiSemaphoreP() for the DSPs 21
3.6 The procedure VdiSemaphoreP() for the host 23
3.7 The procedure VdiSemaphoreV() for the DSPs 24
3.8 The procedure VdiSemaphoreV() for the host 24

4.1 The structure of a queue packet 26
4.2 The structure of a queue • 27
4.3 The procedure VdiQueueGet() for removing packets from a

queue 28

4.4 The procedure VdiQueuePut() for adding packets to a queue. 30
4.5 The procedure VdiMessageSend() for sending messages via a

queue 31

4.6 The procedure VdiMessageReceive() for receiving messages
via a queue 32

vu

5.1 The components in the remote DSP input-output console. . . 36
5.2 A sample interaction with a DSP program through the remote

input-output console 37
5.3 The format of the remote input-output request packet 38
5.4 The format of the remote input response packet 38
5.5 The procedure VdiPrintf() for remote printing 41
5.6 The procedure VdiScanfQ for obtaining remote input 42
5.7 The procedure VdilOForwarderQ that forwards requests for

remote input or output 43
5.8 The procedure VdiIOConsole() that services remote input-

output requests 45

6.1 The procedure VdiErrorReport() for reporting fatal errors to
the host 47

6.2 The procedure VdiErrorServer() that detects and reports fatal
errors from DSPs 48

9.1 Script of a sample interaction with the host 70
9.2 Script of a sample interaction with the console server 71

10.1 A sample DSP application 90

vui

List of Tables

2.1 Symbol naming conventions 13

4.1 Full loopback communications test results 33
4.2 Local loopback communications test results 33
4.3 Performance of communication routines 34

10.1 The internal host and DSP representations of C data types. . 72
10.2 The data type VdiDSP 74
10.3 The structure to which pVdiDSPs points on the host 76
10.4 The DSP32C development tools 80
10.5 The DSP address space 82

11.1 The contents of the system software directory. 99

IX

Part I

General Description of System
Functions

The first part of this document discusses general aspects of the system
software and its operation. The second part covers those details of interest
to those who use the system, develop software for it, or maintain it.

Chapter 1

Introduction

Today's complex signal processing systems involve a great deal more than
just application-specific components. They often need local microprocessors
to intelligently control the custom hardware; and, if they form parts of a
larger system, they need a master microprocessor to coordinate the activities
of all the subsystems. Two systems we are currently designing exemplify this
basic structure. The sections that follow describe them.

1.1 An Image Processor

Bill Baringer, here at UC Berkeley, is developing an image processing system
for machine vision applications capable of computing the radon transform
(a projection operation in image space) in real time (consult [1] for more
information). Among other tasks, this system will be capableof tracking the
position and orientation of a polygonal object moving in the field of view of
a video camera in real time to guide a robot's hand.

1.1.1 Custom Hardware

Bill has designed a custom ASIC (application specific integrated circuit) to
perform the projection quickly in hardware. His system will string together
multiple ASICs in a video pipeline to compute projections at varying angles
all within a single frame time.

1.1.2 Local Support and Control

Although these ASICs form the heart of his system, they cannot perform any
useful work in isolation. Some video support circuitry must supply the chips
with the pixels in an image. Moreover, the projection vectors a bank of such
chips produce are not useful results in themselves - an on-board microproces
sor must analyze the projections to compute higher level features, such as the
location and orientation of edges in the image. The microprocessor must also
continuously update parameters that control the chips' behavior, including
the regions of interest in the image and the angles of the projections.

1.1.3 Global Control

For higher accuracy and speed, Bill wishes to use more ASICs than can fit
on one circuit board. Then yet another microprocessor must coordinate the
boards. Using the individual boards to find different edges on the border
of a polygonal object, this master processor must compute the location and
orientation of the overall object. This processor must also control some of the
other supporting devices, like the video frame grabber. And since the object
position information is to guide a robot, this processor must also control the
robot controller.

1.2 A Multi-axis Robot Controller

Mani Srivastava, also here at Berkeley, is implementing the six axis robot
controller Gautam Doshi designed earlier (see [2] for details). It is similar
to the image processor discussed above in its needs for microprocessor intel
ligence. It fits on a single board and contains one motion control chip per
axis, each capable only of servoing a motor to a particular location. The local
microprocessor performs the inverse kinematics necessary to take a high level
command for motion to a new position (given as the Cartesian position and
orientation of the robot hand) and to control the individual axes to produce
the desired result.

The image processing and robot control systems are diagrammed in Fig
ure 1.1.

Robot

Controller

j common \

Hardware /

Image
Processor

Image
Processor

Video

Digitizer

Figure 1.1: An image processing system (being developed by Bill Baringer),
and robot control system (being developed by Mani Srivastava) working to
gether in a machine vision application. The HCTL chips control the robot's
servos, and the PPPE chips compute projections in the images that the dig
itizer captures from a camera.

1.3 Benefits of a Common Platform

We feel that the hierarchy of control evidenced in these machine vision and
robot control systems is typical of many signal processing applications. Such
systems have a great deal in common: the local slave microprocessors to
control ASICs, the master processor to tie together the various subsystems,
and the interface between the two.

All too often, we must start from scratch when we design a new system.
We could speed up the design process substantially if we could standardize on
a flexible, reusable hardware support platform. We could then concentrate
mainly on the parts of the system which form the heart of the application.
We would have to debug the common platform just once, and debugging the
custom circuitry would then proceed more quickly. Furthermore, we would
be able to integrate many such systems together more easily than if they
were developed independently.

Reducing development time has been one of our research group's goals.
The next chapter describes the common development platform we use to
accommplish this.

1.4 Common Software

Since the master and slave controllers are all microprocessors, they require
software in order to function; so we can go one step further than just common
hardware: common software as well.

This software must support some basic operations, such as initialization,
synchronization of the slaves with the host, and communication between the
two. It must provide a base on top of which the application specific software
components can be written.

This report focusses on the design and implementation of a common sys
tem software platform. We aim to use this common software to help us
further exploit the benefits of the common support hardware, cutting down
on the time and effort required to design, implement, and test new signal
processing systems.

Chapter 2

The Common Platform

2.1 Hardware

Figure 2.1 shows the hardware common to our systems. The application-
specific boards are illustrated in greater detail in Figure 2.2. The boards
are all interconnected via a VME bus. Gautam Doshi designed the board-
level circuitry with the microprocessor, support components, and VME bus
interface; he describes it in full detail in [2].

2.1.1 Host Processor

A Heurikon HK68/V20 series 20Mhz 68020-based single board computer
serves as the master, or host, processor. It ties into our local area network
through a CMC ENP-10 Ethernet Node Processor. The host runs VxWorks,
a real-time, multitasking operating system which integrates well with Unix
systems and supports most standard Unix network-based interprocess com
munications protocols. We interact with the host by logging into it remotely
through a Sun workstation running SunOs Unix on the LAN. The host has
no mass storage devices of its own; it accesses data on the LAN fileservers
using the network file system (NFS) protocol.

2.1.2 Local Processors

Each board contains a 50Mhz AT&T DSP32C digital signal processor for per
forming local computations and also for controlling the application-specific

*

Commercial

Board

Workstation

*
*

*

*

Commercial

Board

*
*

Custom Application
Board

*
*

*
*

Custom Application
Board

Ethernet

interface Board
CUKHIIOl

Host

Microprocessor
Board

File

Server
68020 yM/ME Bus

Figure 2.1: The common hardware platform.

i

ASIC ASIC ASIC

DSP32C

i
•

i
•

i

L.ocal
!
i

i
i
!

DUS •

EPROM SRAM Arbiter DPRAM
i

i
i

!
i

j
i

VME Bus

Figure 2.2: Detail of the application-specific boards in the common hardware
platform.

components. Each processor has 6K bytes of on-chip static RAM and can ac
cess another 64K bytes of high-speed static RAM and 16K bytes of EPROM
on the board. We refer to these local processors as DSPs throughout this
report to distinguish them from the host processor.

2.1.3 Host <=> Board Interface

The host communicates with the processors on each board through shared
memory: each board contains 16K bytes of 35ns dual-port static RAM
(DPRAM) with one port attached to the VME bus and the other attached
to the local processor's bus. As discussed in Section 3.2, the arbitration logic
these particular DPRAM chips provide is not sufficient to support the syn
chronization needs of these systems; so each board also contains a separate
arbitration circuit.

In addition, the host can access two registers on each board: a write-only
control register and a read-only status register; both are mapped into the
address space of the VME bus. Through these registers, the host can, for
example, reset DSPs or interrupt them.

Similarly, each DSP can access a (different) pair of control and status
registers. These registers allow DSPs to interrupt the host processor, for
instance.

2.2 Software

The remainder of this report discusses in detail the common software plat
form, or system software, as we call it. The rest of this chapter summarizes
some of its major aspects.

2.2.1 Implementation

We have written the common system software almost entirely in the lan
guage C. AT&T provides a C cross-compiler and linker which run on our
workstations to produce executable binary code for the DSPs.

We have written the code in a manner that should make it easy to port to
different hardware platforms, provided that they also feature a master pro
cessor controlling multiple slaves with a shared memory interface in between.

10

Appendix E explains how to convert the software to such new environments.

2.2.2 Data Types

The basic data type which the host and DSPs share is the 32-bit integer word.
We refer to this as a word throughout this report. Section 10.1 discusses the
system data types in more detail; however, the extra information there should
not be necessary for following the material in the first part of this report.

2.2.3 Communication Model

The communications model we wish to support dictates the design of the
synchronization and communications services. Specifically, we require that:

• Any DSP may communicate with the host.

• Any host task may communicate with any DSP.

• Multiple host tasks may communicate with the same DSP,

Note that DSP's may not communicate with one another directly; if they
wish to exchange information, the host must mediate.

Chapter 4 describes the communications support in the system software,
and Chapter 3 describes the synchronization services that the communica
tions routines employ.

2.2.4 DSP Monitor Program

The host processor is an off-the-shelf computer for which we can obtain an off-
the-shelf operating system: VxWorks. However, since the DSP32C section
of the hardware platform is a custom design, we must provide our own small
operating system, or monitor for it. Our monitor responds to commands
from the host. Running on each DSP in the system, it provides the ability
to:

• Examine memory local to the DSP.

• Alter memory local to the DSP.

11

• Load an application program into the DSP's local memory.

• Run a previously loaded application program.

Chapter 8 discusses the monitor program in depth.
A bootstrap loader, described in Chapter 7, is the piece of code each DSP

actually executes first when reset. It is responsible for loading the monitor
program into each DSP's local memory and transferring control to it.

2.2.5 Remote DSP I/O Console

Debugging code running on the DSPs can be difficult since we do not have
a debugger that can interactively execute programs there under control of
the host. This is due in part to the fact that the DSPs have no console for
input and output: the DPRAM is their only means of communicating with
the rest of the world.

As a first step toward aiding the debugging process, we implemented in
software a remote input-ouput console for each DSP. DSP C programs may
call special versions of printfQ and scanfQ in order to send output to or
obtain input from this console. Users interact with this console through
their workstations, typically in a separate window. The console is linked to
every DSP through the network and the DPRAM. Chapter 5 describes this
feature more thoroughly.

2.2.6 Writing Applications

All of the services the system software provides are implemented by a set
of functions that are packaged together into libraries to which application
programs can link.

Makefiles, header files with common definitions and declarations, lint li
braries, and man pages supplement the libraries.

Chapter 9 details the process of writing an application program on this
platform.

2.2.7 Some Conventions

We have followed certain guidelines in writing the system software. Under
standing them should make reading the pseudocode throughout this report

12

Prefix Type of Symbol

vdi... variable

pVdi... pointer variable
Vdi... function or type
VDI... constant

Table 2.1: Symbol naming conventions.

simpler. First, to prevent a clash between system symbol names and appli
cation symbol names, all globally visible symbols include the letters vdi in a
prefix, which, for lack of a better idea, form an acronym for something like
VxWorks to DSP Interface or VME to DSP Interface. Table 2.1 summarizes
the meanings of these prefixes.

Second, most functions indicate success by returning a status code of zero
and indicate failure by returning some non-zero error code. For simplicity,
however, the pseudocode in this report does not show the function return
code checking the system routines actually perform.

13

Chapter 3

Synchronization of Host Tasks
with DSP Programs

In order to establish a protocol for communication between the host and
DSPs, we must first provide a means of arbitrating access to the dual port
memories. When the host and DSP simultaneously access different memory
cells, no problem arises. However, when the two agents access the same cell,
they will clash if either access is a write operation.

3.1 Locking Regions of DPRAM

We need a primitive atomic locking operation that allows an agent (host or
DSP) to temporarily claim exclusive ownership of a region of the DPRAM
so that it may write information into it or read information from it without
concern that the other agent might simultaneously access a location in the
same region.

This in itself forms the basis for a simple form of communication between
the two agents. The host can lock a region of DPRAM, write information
into it, and unlock it; the corresponding DSP can then lock the region, read
the information from it, and unlock it.

However, the system software actually supports a more versatile form of
communication using the higher-level synchronization primitive discussed in
Section 3.4.

14

3,2 Insufficient Existing Support for Lock
ing

The DPRAM chips on each board feature some arbitration circuitry to help
detect write-write, read-write, and write-read contention. Whenever such a
situation arises, the chips make an arbitration decision and honor the trans
action on one port while disregarding that on the other port. They also set a
busy flag for the port whose access they denied; the host and DSPs can read
latched versions of these busy flags through their respective status registers.

The DPRAM chips are organized in 32-bit wide banks to allow the host to
make 32-bit accesses via the VME bus (indeed the host must alwaysmake 32-
bit accesses to the DPRAM locations). Normally, one of the four 8-bit wide
chips acts as a master. It makes the arbitration decisions and communicates
them to the other three, which act as slaves. If all chips are masters, some
may rule in favor of one port and others in favor of the other port during a
simultaneous access.

As described in [2], the DPRAM chips are not operated in the master-
slave mode in this hardware interface because, unlike the host, the DSPs are
allowed to make 8-, 16-, or 32-bit accesses to the DPRAM. Instead, they are
all "masters", and on each side their four busy signals are logically ORed
together to form the status register busy signal.

The original plan called for the software (on both the host and DSPs) to
perform the following steps when accessing a DPRAM location:

1. Clear the busy bit latch by writing to the control register.

2. Access the DPRAM.

3. Check the busy bit in the status register.

4. If the busy bit indicates contention, repeat the process.

This involves a great deal of overhead, and was to be done only when checking
or updating synchronization variables in the DPRAM to control a higher level
communication protocol.

However, a detailed look at the data sheet for these particular DPRAM
chips and the design of this DPRAM interface shows that no simple, efficient
software scheme exists for using this hardware to implement the primitive

15

Grant 2

Request 1

Request 2

Grant 1

Figure 3.1: An arbitration circuit which supports the locking operation nec
essary for synchronization.

locking operation necessary for synchronization. The problem relates to the
fact that all chips are masters and parts of two simultaneous DPRAM trans
fers may succeed, with neither side knowing from a "busy" indication whether
its access failed completely or just partially.

3.3 Arbiters for Locking Parts of DPRAM

We opted to provide direct hardware locking support by including the circuit
in Figure 3.1 on each board in addition to the interface circuitry described
in [2]. The request and grant lines are attached to the control and status
registers, respectively.

We conceptually associate the arbiter with a region of DPRAM. When
an agent wishes to exclusively access that region, it must:

1. Assert its request line.

2. Wait for its grant line to go high.

16

3. Access the DPRAM.

4. Disassert its request line.

An asserted grant line corresponds to possession of the lock and permission
for access to the protected region.

This particular arbiter has the following desirable properties:

• Mutual exclusion: it will never grant both agents permission simulta
neously, even if the latch composed of the cross-coupled NAND gates
enters a meta-stable state (which may occur if both agents assert their
request lines simultaneously).

• Speed: the arbiter makes its decision in less than one processor cycle
time.

• Fairness: if one agent requests permission after the other agent has
been granted permission, the first agent will receive permission as soon
as the other agent disasserts its request line. Thus two busy agents will
take turns if they need frequent access to the locked region.

Note that because of the possibility of metastability, we must modify our
procedure for accessing the DPRAM. An agent must:

1. Assert its request line.

2. Wait for its grant line to go high. If the grant line is inactive after a
fixed number of attempts, the arbiter may be in a metastable state, so
it must disassert its request line and return to step 1.

3. Access the DPRAM.

4. Disassert its request line.

Figures 3.2 and 3.3 show the procedures for locking and unlocking a region
with an arbiter. The parameter pDSP is a pointer to a structure with infor
mation about the DSP to which the arbiter a is connected.

The transistors in this circuit mandate a chip-level implementation, which
we will pursue later. For the moment, we are using the slightly different cir
cuit of Figure 3.4, implemented in a PLD. Unlike the other circuit, however,
this one might violate the mutual exclusion property by activating both grant
lines if metastability sets in. This is a rare occurrence which we have not yet
witnessed in our experiments.

17

void VdiLockCpDSP, a)
VdiDSP *pDSP;

VdiArbiter *a;

int timeOut;

for (; ;) {

timeOut = VDI.ATTEMPTS;

VdiAssert(pDSP, a->request);
while (!VdiActive(a->grant) && (—timeOut))

if (timeOut)

break;

VdiDisassert(pDSP, a->request);

Figure 3.2: The procedure VdiLock() for locking a region with an arbiter.

void VdiUnlock(a)

VdiDSP *pDSP;

VdiArbiter *a;

•C
VdiDisassertCpDSP, a->request);

>

Figure 3.3: The procedure VdiUnlock() for unlocking a region with an ar
biter.

18

Request 1

Grant 1

Grant 2

Request 2

Figure 3.4: A modified arbitration circuit which can be implemented out of
simple gates in a PLD.

3.4 Semaphores

Semaphores are more versatile synchronization devices than the simple lock
ing scheme described so far, and they can be implemented easily in software
using this primitive locking operation. For a more detailed discussion of
semaphores and their implementation than that below, consult [5]. Chap
ter 4 illustrates the utility of semaphores in the system software.

3.4.1 Interpretation

Physically, a semaphore is just a counter that can take on non-negative in
teger values. Its value indicates the number of units of some scarce resource
that are available. A system may have more agents wishing access to the
resource than it has units of that resource, each of which only one agent can
use at a time. A computer system may, for example, have a limited num
ber of buffers for holding a certain type of data. The system initializes a
semaphore to this number. To provide mutual exclusion as does the locking

19

primitive, the initial value of the semaphore is simply set to one to indicate
that only one "key" is available to access the protected region.

3.4.2 Locking

In the case of the system software, we wish to synchronize the host with
each DSP, so the semaphores must reside in the DPRAM where both agents
can access them. Moreover, because both agents might otherwise access the
semaphore variables at any time, they must be protected by the locking
mechanism.

3.4.3 Operations

The two basic operations on semaphores are takeQ and giveQ, or, synony
mously, p() and v(). When an agent wants a unit of the resource, it performs
a takeQ operation on the associated semaphore; the function takeQ will wait
until a unit of the resource is available. When finished, the agent performs a
giveQ operation.

More generally, we can allow agents to take or give multiple units of a
resource in a single operation by specifying this number in an extra argument
to the functions takeQ and giveQ.

In some situations we will want to take a semaphore if enough units are
available, and if not, to simply know the fact rather than wait for units to be
freed by another agent. This non-blocking behavior is useful for implement
ing some variants of the higher-level communication primitives discussed in
Chapter 4.

Taking a Semaphore

More formally, Figure 3.5 defines the VdiSemaphorePQ operation for code
running on the DSPs: The parameter pDSP identifies the DSP in whose
DPRAM the semaphore s resides. The parameter n indicates the number of
units desired, and nonBlocking, if true, indicates that the call must not wait
if enough units are not available, but return a non-zero value instead.

For the host side, we must modify this routine slightly because many
tasks may run concurrently on the host and try to access a semaphore for
a particular DSP simultaneously. Figure 3.6 illustrates the procedure. It

20

int VdiSemaphorePCpDSP, s, n, nonBlocking)
VdiDSP *pDSP;

VdiSemaphore *s;

int n;

int nonBlocking;

{
/* Wait until n units are available. */

for (; ;) {

VdiLockCpDSP, s->arbiter);
if (s->value >= n)

break;

VdiUnlock(pDSP, s->arbiter);
if (nonBlocking)

return(i);

}

/* Decrement the semaphore. */
s->value -= n;

/* Unlock the semaphore. */
VdiUnlockCpDSP, s->arbiter);

return(O);

>

Figure 3.5: The procedure VdiSemaphorePQ for the DSPs.

21

ensures that only one host task accesses the arbiter for a given DSP at a time.
The VxWorks operating system supports semaphores for synchronizing tasks
under its control; the procedure uses one VxWorks semaphore (initialized to
the value 1) for each DSP in the system to satisfy the constraint. The
functions semTakeQ and semGiveQ operate on VxWorks semaphores.

Giving a Semaphore

Figure 3.7 illustrates the procedure a DSP must follow to give a semaphore,
while Figure 3.8 shows the procedure for the host. The parameters are similar
to those for VdiSemaphoreVQ, except that n indicates how many units to
give up.

3.4.4 Conserving Arbiters

The system software makes use of multiple semaphores for each DSP. Upon
first thought, this indicates that we need one arbiter for each semaphore.
However, note that a semaphore need only be locked for short periods of
time within the VdiSemaphorePQ and VdiSemaphoreVQ routines.

If we use a single arbiter, then only the host or DSP (not both), may
access one of the semaphores (for that DSP) at any given time. Because the
time that a semaphore must be locked is short, having an agent wait in order
to lock its semaphore because the other agent is accessing a (potentially) dif
ferent semaphore does not significantly degrade performance. Furthermore,
just as one arbiter suffices for all semaphores for a given DSP, one local
VxWorks semaphore suffices as well.

This is the approach we have taken in the system software, necessitating
only one arbiter per DSP. Therefore, contrary to what Figures 3.2 through 3.8
show, the routines VdiLockQ and VdiUnlockQ do not need a parameter spec
ifying which arbiter to use (since the parameter pDSP implies it).

22

int VdiSemaphorePCpDSP, s, n, nonBlocking)
VdiDSP *pDSP;

VdiSemaphore *s;

int n;

int nonBlocking;

i
/* Wait until n units are available. */

for C ; ;) {
semTake(s->local);

VdiLockCpDSP, s->arbiter);

if Cs->value >= n)

break;

VdiUnlockCpDSP, s->arbiter);
SGmGive(s->local);

if (nonBlocking)

retumCD;

>

/* Decrement the semaphore. */
s->value -= n;

/* Unlock the semaphore. */
VdiUnlockCpDSP, s->arbiter);
semGiveCs->local);

returnCO);

Figure 3.6: The procedure VdiSemaphorePQ for the host.

23

void VdiSemaphoreVCpDSP, s, n)
VdiDSP *pDSP;

VdiSemaphore *s;

int n;

•C

/* Lock the semaphore. */
VdiLockCpDSP, s->arbiter);

/* Increment the semaphore. */
s->value += n;

/* Unlock the semaphore. */
VdiUnlockCpDSP, s->arbiter);

>

Figure 3.7: The procedure VdiSemaphoreVQ for the DSPs.

void VdiSemaphoreVCpDSP, s, n)
VdiDSP *pDSP;

VdiSemaphore *s;

int n;

•c

/* Lock the semaphore. */
semTakeCs->local);

VdiLockCpDSP, s->arbiter);

/* Increment the semaphore. */
s->value += n;

/* Unlock the semaphore. */
VdiUnlockCpDSP, s->arbiter);
semGive(s->local);

>

Figure 3.8: The procedure VdiSemaphoreVQ for the host.

24

Chapter 4

Communication between Host

Tasks and DSP Programs

The system software supports communication between the host and DSPs
through the shared memories. It formats sections of these memories into
unidirectional first-in-first-out (FIFO) queues. An agent may place informa
tion into a queue, from which the recipient may read it when ready. This
way, the sender can proceed with other computations without waiting for the
recipient to accept the information. (Nevertheless, if the sender requires an
acknowledgement, it can wait for a response from the recipient in another
queue.)

4.1 Queue Layout

Within each DPRAM, one queue holds host-generated data destined for the
corresponding DSP. Another queue holds DSP-generated data destined for
the host. The two queues are located at predetermined addresses within the
DPRAM.

A few other queues, also located in the DPRAM, help implement the
remote DSP input-output console; Chapter 5 discusses them.

25

Identifying tag
Length in words

Data

Figure 4.1: The structure of a queue packet.

4.2 Queue Packets

We refer to the basic unit of information that may be placed into a queue as
a packet. Figure 4.1 shows its structure. Packets are stored contiguously in
queues. The data field can vary in length, but packets must be small enough
to fit inside a queue's buffer.

The tag field simply serves to identify the contents of the data field, whose
format is the responsibility of the communicating agents.

4.3 Queue Structure

The queues consist of a header and circular buffer, as shown in Figure 4.2.
The lock semaphore guarantees the consistency of the queue: agents must
take this semaphore before accessing the queue and give it up when finished.

The number of packets semaphore counts the number of packets waiting
in the queue. An agent wishing to take a packet from the queue must take
one unit of this semaphore. An agent putting a packet into the queue must
give up one unit of this semaphore.

The free room semaphore counts the number of words of room that remain
in the queue. An agent wishing to put a packet into the queue must first
take enough units of this semaphore to hold the packet header and contents.
An agent removing a packet from the queue must give back the number of
units occupied by the packet.

The head and tail pointers mark the ends of the queue within the circular
buffer that holds the packets.

26

Lock (semaphore)
Number of packets (semaphore)
Free room in words (semaphore)

Head pointer
Tail pointer

Buffer

Figure 4.2: The structure of a queue.

4.4 Queue Operations

The two standard operations which agents may perform on a queue are putQ
and getQ to add packets and remove packets from a queue, respectively.
Sections 4.4.1 and 4.4.2 describe them.

These operations, however, require that the data fit entirely within a
single packet. Often, agents must exchange blocks of data larger than the
queues' capacities. For these situations, two similar procedures operate on
what we call messages, or simply large packets; sections 4.4.3 and 4.4.4 de
scribe these.

4.4.1 Getting a Packet from a Queue

Figure 4.3 illustrates the procedure VdiQueueGetQ. The parameter pDSP
identifies the DSP in whose DPRAM the source queue pQueue resides. The
parameters pTag and pLength point to variables in which VdiQueueGetQ is
to return the corresponding information about the packet. The parameter
pData points to a buffer of length room to receive the packet contents. The
parameter nonBlocking, if true, indicates that VdiQueueGetQ should not
wait if a packet is unavailable.

It is this non-blocking variation of VdiQueueGetQ (and VdiQueuePutQ)
that necessitates the non-blocking variation to VdiSemaphorePQ. Some ap
plications may not wish to wait when a queue is empty in order to continue

27

int VdiQueueGetCpDSP, pQueue, pTag, pLength, pData, room,
nonBlocking)

VdiDSP *pDSP;

VdiQueue *pQueue;
int *pTag, *pLength;
int room;

void *pData;

int nonBlocking;

•C

/* Wait for a packet to appear in the queue. */
if (VdiSemaphorePCpDSP, pQueue->packets, 1, nonBlocking))

returnCVDI.ERROR.QUEUE.EMPTY);

/* Lock the queue. */
VdiSemaphorePCpDSP, pQueue->lock, 1, FALSE);

/* Extract the header information from the next packet. */
♦pTag = ... ;

♦pLength = ... ;

/* Copy the packet data. */
memcpyCpData, ..., min(*pLength, room));

/* Update the queue pointer(s). */
pQueue->head = ... ;

/* Unlock the queue. */
VdiSemaphoreVCpDSP, pQueue->lock, i);

/* Update the free room semaphore. */
VdiSemaphoreVCpDSP, pQueue->room,

pLength + VDI.PACKET.HEADER.LENGTH);

returnCO);

>

Figure 4.3: The procedure VdiQueueGet() for removing packets from a
queue.

28

with other processing.

4.4.2 Putting a Packet into a Queue

Figure 4.4 illustrates the procedure VdiQueuePutQ. The arguments to
VdiQueuePutQ are analogous to those of VdiQueueGetQ, except that tag
and length are inputs describing the new packet to whose contents pData
points. Here nonBlocking, if true, instructs VdiQueuePutQ not to wait if the
destination queue currently does not have room for the new packet.

4.4.3 Sending a Message

Figure 4.5 shows the procedure VdiMessageSendQ, which is analogous to
and built on top of VdiQueuePutQ. It allows agents to send arbitrarily large
blocks of data by automatically breaking them up into multiple packets small
enough to fit within a queue. VdiMessageSendQ first sends a start ofmessage
packet that contains the parameters tag and length. It then sends multiple
message data packets with the actual contents of the buffer to which pData
points. Afterwards, it sends an end of message packet.

4.4.4 Receiving a Message

Figure 4.6 shows the procedure VdiMessageReceiveQ, which is analogous to
VdiQueueGetQ and complements VdiMessageSendQ. It expects the start of
message, message data, and end of message packets that VdiMessageSendQ
generates.

4.5 Performance

We conducted a few experiments to benchmark the communication time. In
the first test, the host writes a packet into a queue, a DSP reads it from that
queue and writes it into another queue, and the host then reads it back from
the second queue. This involves four queue operations: a VdiQueueGetQ
and VdiQueuePutQ on each side. Table 4.1 shows the results of this full
loopback test for two different packet sizes.

29

int VdiQueuePutCpDSP, pQueue, tag, length, pData, nonBlocking)
VdiDSP *pDSP;
VdiQueue *pQueue;

int tag, length;
void *pData;

int nonBlocking;

i
/* Wait for room to hold the packet. */

if CVdiSemaphorePCpDSP, pQueue->room, 1,
length + VDI.PACKET.HEADER.LENGTH))

returaCVDI_ERR0R_QUEUE_N0_R00M);

/* Lock the queue. */
VdiSemaphorePCpDSP, pQueue->lock, 1, FALSE);

/* Write the header information for a new packet. */
... = tag;

... = length;

/* Copy the packet data. */
memcpyC..., pData, length);

/* Update the queue pointerCs). */
pQueue->tail » ... ;

/* Unlock the queue. */
VdiSemaphoreVCpDSP, pQueue->lock, 1);

/* Update the packet count semaphore. */
VdiSemaphoreVCpDSP, pQueue->packets, 1);

returnCO);

Figure 4.4: The procedure VdiQueuePutQ for adding packets to a queue.

30

int VdiMessageSendCpDSP, pQueue, tag, length, pData)
VdiDSP *pDSP;
VdiQueue *pQueue;

int tag, length;
void *pData;

•C

VdiHessage m;
int size;

/* Send the start of message packet. */
m.tag a tag;

m.size = length;
VdiQueuePutCpDSP, pQueue, VDI_TAG_MESSAGE_START,

VDI.WQRDSCsizeofCVdiHessage)), ftm, 0);

/* Send the message contents. */
do {

size = min(length, pQueue->capacity);
VdiQueuePutCpDSP, pQueue, VDI.TAG_MESSAGE.DATA,

size, pData, 0);
length -= size;
CVdiWord *)pData += size;

} while Clength > 0);

/* Send the end of message packet. */
VdiQueuePutCpDSP, pQueue, VDI.TAG.MESSAGE.END,

0, NULL, 0);

returnCO);

Figure 4.5: The procedure VdiMessageSend() for sending messages via a
queue.

31

int VdiMessageReceiveCpDSP, pQueue, pTag, pLength, pData, room)
VdiDSP *pDSP;

VdiQueue *pQueue;
int *pTag, *pLength;
void *pData;

int room;

•C
int tag, length;
VdiMessage m;

/* Get the message tag and size. */
VdiQueueGetCpDSP, pQueue, fttag, ftlength, &m,

VDI.WORDSCsizeofCVdiMessage)), 0);
if Ctag != VDI.TAG.MESSAGE.START)

returnCVDI.ERROR.MESSAGE.BAD);

♦pTag = m.tag;

♦pLength = m.length;

/* Get the message contents. */
do {

VdiQueueGetCpDSP, pQueue, &tag, ftlength, pData,
room, 0);

CVdiWord *)pData += length;
room -a length;

} while Ctag == VDI.TAG.MESSAGE.DATA);

/* Check for the end of message signal. */
if Ctag != VDI.TAG_MESSAGE.END)

returnCVDI.ERROR.MESSAGE.BAD);

returnCO);

Figure 4.6: The procedure VdiMessageReceive() for receiving messages via a
queue.

32

Packet Length (words) Roundtrip Transit Time (microseconds)
1

1000

850

13100

Table 4.1: Time spent by the system in a full loopback communications test.
(Results are average times for 5000 iterations).

Packet Length (words) Transit Time (microseconds)
1

1000

780

4860

Table 4.2: Time spent by the system in a local loopback communications
test. (Results are average times for 5000 iterations).

In a second test, the host writes a packet into a queue and reads it back
from the same queue - it does not involve the DSP at all. Table 4.2 shows
the results for this local loopback test.

If we assume that VdiQueuePutQ and VdiQueueGetQ require approxi
mately the same amount of time on either the host or a DSP, we can derive
a formula for the communication time for an arbitrary size packet from the
results of these two tests. The difference between the full and local loopback
times give the time the DSP spends in queue operations. The local loopback
times give the time the host spends in queue operations. Table 4.3 lists the
results of such an analysis.

The time for one complete communication from the host to DSP or vice
versa is the sum of the two times shown in Table 4.3. Note that the host

contributes most heavily to the overhead, while the DSP contributes most
heavily to the per byte time.

33

Agent
Host

DSP

Total

Time

388*u + 2.04J^
31^ + 4.09^
419^ + 6.13^

Table 4.3: Approximate time spent by the host and DSP in either
VdiQueueGetQ or VdiQueuePutQ.

34

Chapter 5

Remote Input-Output Console
for DSP Programs

When we debug programs in mature computer environments, source-level,
symbolic debuggers usually offer the greatest insight into problems with the
software. When such a debugger is not available, we often resort to a more
"traditional" techniques — adding printfQ and scanfQ statements (in the
case of C) into the code to display or alter the values of variables and generate
messages indicating progress.

The VxWorks operating system includes interactive source-level symbolic
debugging support through a remote version of the tool dbx. This is useful for
debugging those parts of an application that run on the host. Unfortunately,
we do not have even a simple object-level debugger for the code running on
the DSPs. AT&T supplies a DSP32C simulator, but having no knowledge
of our particular hardware platform, it is mostly useful for checking the
computational parts of an application in isolation.1

Furthermore, because the DSPs do not have a console for input and out
put, the printfQ/scanfQ debugging technique would be impossible as well
... unless we provide a virtual console through the system software. This is
precisely what we have done.

*AT&T does offer an in-circuit emulator that allows one to debug the target system
under the control of a personal computer; however, we do not have one at our disposal.

35

I/O Forwarder

Process 0 on Host

DSPO

Console Server

Process on Workstation

I/O Forwarder

Process 1 on Host

Remote I/O Queues

DSP1

I/O Forwarder

Process N on Host

DSPN

Figure 5.1: The components in the remote DSP input-output console.

5.1 Overview

Figure 5.1 depicts the components in the system software's remote input-
output console.

Users interact with a console server process that runs on the workstation,
usually in a separate window. The standard input and standard output of this
process are effectively tied to each DSP. The system software provides special
versions of printfQ and scanfQ: VdiPrintfQ and VdiScanfQ. Presently, they
provide the only means for a DSP program to access these input and output
handles.

All of the DSPs share one console server process. The server names the
DSP making each request for input or output by displaying an identifying
number in the first several columns of the display. Thus a test program,

36

2 -> Remote I/O Console Test

2 <- Enter an integer: 1234
2 -> You entered 1234.

Figure 5.2: A sample interaction with a DSP program through the remote
input-output console.

running on DSP #2, might yield the interaction of Figure 5.2. Rightward-
pointing arrows mark output the DSP program generates with VdiPrintfQ,
and leftward-pointing arrows mark VdiScanfQ's prompts for input.

Two extra queues reside in the DPRAM of each DSP in addition to
the normal communication queues. One holds requests from the DSP (for
both VdiPrintfQ and VdiScanfQ); the other holds responses from the console
server (for VdiScanfQ only).

Forwarding tasks run on the host, one per DSP. Each task constantly
watches its request queue for request packets. When it finds one, it creates a
connection to the console server through a Unix socket and passes the request
to the server. It then listens to the socket for an acknowledgement. In the
case of VdiScanfQ, this acknowledgement carries with it the data the user
entered at the console; the forwarder places this data into the response queue
where the DSP can access it.

5.2 Request and Response Formats

Figure 5.3 shows the contents of the request packet which VdiPrintfQ and
VdiScanfQ generate. The DSP id field, which the forwarding tasks fill in,
names the DSP originating the request. The request type field indicates
whether the request is for input or output. The data type field identifies the
type of data involved in the transaction: for VdiPrintfQ, the data is supplied

37

DSP id

Request type
Data type

Newline flag
Data value

Text

Figure 5.3: The format of the remote input-output request packet.

Data type
Data value

Figure 5.4: The format of the remote input response packet.

in the data field; for VdiScanfQ, the data field is ignored. The newline
flag field indicates whether the server should print a newline character after
processing the request (for VdiPrintfQ only). The text field contains the
string which the console server displays when processing the request.

In the case of VdiScanfQ, the consoleserversends back a reply. Figure 5.4
shows the format of the response packet which the forwarding tasks place into
their response queues. The data type field identifies the type of the data value
the user supplied.

5.3 Supported Data Types

The remote input-output system supports the C data types listed below:

• char.

• int. Signed or unsigned, hexadecimal or decimal, and short, normal, or
long.

• float and double.

• string. Null-terminated, but with a fixed upper limit on length.

38

The hex data type variants merely inform the console server to display or
read values in hexadecimal for user convenience.

5.4 Data Conversions

Because of differences between our workstation environment, where the con
sole server runs, and the DSP environment, where the applications using
the remote services run, the system software must take some extra steps to
provide an input-output service which hides these dissimilarities.

5.4.1 Floating Point Numbers

The workstation uses the IEEE format for float and double data, while the
DSPs do not. Moreover, the DSPs treat the two types identically: double does
not imply any greater precision than float and is permitted in C programs
solely for compatibility.

The system software therefore explicitly converts DSP 32-bit float and
double variables to and from IEEE format. Since IEEE 32-bit floats do not
have enough dynamic range to properly cover the range of DSP numbers,
the console server utilizes IEEE 64-bit doubles.

5.4.2 Integers

The workstation environment defines int as a 32-bit quantity, but the DSPs
define them as 24-bit quantities. The types short int and long int, however,
are 16- and 32-bits wide in both environments, respectively.

The system software simply extends DSP ints into long ints.

5.4.3 Character Strings

Although both the workstation and DSP architectures employ 32-bit wide
data paths, they place 16-bit and 8-bit data on different parts of their 32-bit
data busses. The workstation is what is known as a high-endian machine
while the DSPs are low-endian machines. The result is that characters in

strings sent from one to the other are scrambled: within every block of four
characters, the characters are in reverse order.

39

To correct for this effect, the console server pads strings to lengths that
are multiples of four characters and reorders the characters within each group
of four.

5.5 Details of Operation

This section covers the actual procedures involved in the remote input-output
system in more detail. Note that for both the host and DSPs, pWrite-
Queue in the pseudocode refers to the outbound queue and pReadQueue to
the inbound queue. Therefore, pWriteQueue refers to the request queue in
VdiPrintfQ and VdiScanfQ (which run on the DSPs), but to the response
queue in VdilOForwarderQ (which runs on the host). The opposite is true
of pReadQueue.

5.5.1 Request Generators

VdiPrintf()

Figure 5.5 shows the code for the procedure VdiPrintfQ. The console server
first displays the string to which pText points; then it prints the value of
the variable of type varType to which pVar points; and if newline is true, it
advances the cursor to the next line.

VdiScanf()

Figure 5.6 illustrates the procedure VdiScanfQ. The console server first dis
plays the string to which pText points; then it reads a value of type varType
and returns it in the variable to which pVar points.

5.5.2 Request Forwarder

Figure 5.7 shows a simplified version of the procedure VdilOForwarderQ. A
separate process for each DSP executes this function. The parameter dspid
tells it which DSP to service.

40

void VdiPrintf(pText, pVar, varType, newline)
char *pText;

void *pVar;

int varType;

int newline;

•C

VdilOParameters parameters;

VdiDSP *pDSP;

/* Locate the information for this DSP. */

pDSP = ...;

/* Format the request. */
parameters.request = VDI.IO_REQUEST_PRINTF;

parameters.dataType = varType;

parameters.newline = newline;

/* Copy the text. */
strncpy(parameters.text, pText, VDI_IO_TEXT.MAX);

/* Copy the variable, making any necessary conversions. */
VdiDataCopyCpVar, parameters.data, varType);

/* Send the request. */
VdiQueuePutCpDSP, pDSP->pWriteQueue, VDI.TAG.IO.REQUEST,

VDI.WORDSCsizeofCVdilOParameters)),
^parameters, 0);

Figure 5.5: The procedure VdiPrintfQ for remote printing.

41

void VdiScanfCpText, pVar, varType)
char *pText;

void *pVar;

int varType;

•c
VdilOParameters parameters;

VdilOResultScanf result;

int tag, length;
VdiDSP *pDSP;

/* Locate the information for this DSP. */

pDSP = ...;

/* Format the request. */
parameters.request = VD1.10.REQUEST.SCANF;

parameters.dataType = varType;

/* Copy the text. */
strncpyCparameters.text, pText, VDI.IO_TEXT_MAX);

/* Send the request. */
VdiQueuePutCpDSP, pDSP->pWriteQueue, VDI.TAG.IO.REQUEST,

VDI.WORDSCsizeofCVdilOParameters)),

^parameters, 0);

/* Get the reply. */
VdiQueueGetCpDSP, pDSP->pReadQueue, fttag, ftlength,

ftresult, VD1.W0RDSCsizeof(VdilOResultScanf)),

0);

/* Copy the user's response into the variable. */
VdiDataCopyCresult.data, pVar, varType);

Figure 5.6: The procedure VdiScanfQ for obtaining remote input.

42

void VdilOForwarderCdspId)
int dspid;

{
VdilOParameters parameters;

VdilOResultScanf result;

int tag, length;
VdiDSP *pDSP;

/* Locate the DSP information in the global table. */
pDSP = ...;

for (; ;) {
/* Get the next request. */

VdiQueueGetCpDSP, pDSP->pReadQueue, Jttag, Jtlength,
(parameters,

VDI.VORDSCsizeof(VdilOParameters)), 0);

/* Fill in the DSP identification number for the console

server's use.

*/

parameters.dspid • dspid;

/* Create an Internet stream socket, forward the request
to the server.

*/

}

}

/* Wait for soma form of acknowledgement that the request
was serviced.

*/
if (parameters.request •• VDI.IO.REQUEST.PRIITF) {

/* Get the acknowledgement from the server. */

} else {

/* Get the response from the server. */

/* Forward the response to the DSP. */
VdiQueuePutCpDSP, p¥riteQueue,

VDI_TAG_IO_RESULT_SCAIF,

VDI_«ORDS(sizeof(VdilOResultScanf)),
tresult, 0);

>

Figure 5.7: The procedure VdiIOForwarder() that forwards requests for re
mote input or output.

43

5.5.3 Request Server

Figure 5.8 shows a simplified version of the procedure VdilOConsoleQ.

44

void VdilOConsoleO

{
VdilOParameters parameters;
VdilOResultScanf result;

VdiDSP *pDSP;

/* Setup the socket. */

for (; ;) {
/* Read the request from the socket. */

... kparameters ...

/» Locate the DSP information in the global table. */
pDSP • ...;

/* Reorder the characters in the request's text field. •/

/* Identify and process the request. */
if (parameters.request — VDI.IO.REQUEST.PRIITF) <

/* Display the text. */
printfC'Xd -> %s", parameters.dspid, parameters.text);

/* Convert and display the data. */
switch (parameters.dataType) {

... parameters.data ...

}

/* Display a newline if requested. */
if (parameters.newline)

printf("\n");

/• Acknowledge the completion of the request */

> else {

/« Display the prompt. */
printf("Xd <- %s", parameters.dspid, parameters.text);

/* Read and convert the data value. */
switch (parameters.dataType) {

... result.data ...

>

/* Return the value to the forwarder. */
... tresult ...

Figure 5.8: The procedure VdilOConsoleQ that services remote input-output
requests.

45

Chapter 6

DSP Fatal Error Reporting
Mechanism

DSP applications and the system software may detect various forms of errors
during execution, some of which require immediate attention. For instance,
a DSP application may detect a robot malfunction; it must then shutdown
power to the servos and notify the host. Another possibility is that the
system software may be unable to service a request, such as one initiated
by VdiPrintfQ, because some communication link failed or because a DSP
application accidentally destroyed a system data structure.

In either scenario, the DSP must directly notify the host that a problem
exists. Using a communication queue is not appropriate for two reasons.
First, other packets may already be waiting in the queue; the host will not
see the error notification until it processes these packets waiting ahead of
it. Second, the queue itself may be in an inconsistent state or corrupted, in
which case it cannot be used to transmit any information at all.

For these reasons, the system software provides one alternate communi
cation channel for each DSP solely for the purpose of reporting severe errors.

6.1 Overview

Each DPRAM contains a location reserved for fatal error codes. The location

is initialized to zero. A DSP may report an error by writing a (non-zero)
error code into the special location in its DPRAM.

46

void VdiErrorReportCerrorCode, loop)
int errorCode;

int loop;

•C
VdiDSP *pDSP;

/* Locate the information for this DSP. */

pDSP = ...;

/* Write the error code into the DPRAM. */

*(pDSP->pErrorCode) = errorCode;

/* Loop forever if requested. */
if (loop)

for (; ;)

Figure 6.1: The procedure VdiErrorReport() for reporting fatal errors to the
host.

A special task, VdiErrorServerQ, runs on the host. It periodically checks
the error word in every DSP's DPRAM. When it finds a non-zero value, it
displays it in the window through which the user logged into the host, and
then resets the word back to zero.

6.2 Error Reporter

Figure 6.1 shows the procedure VdiErrorReportQ which any DSP function
may call to report a severe error. The parameter errorCode identifies the
error, and the parameter loop indicates whether the routine should enter an
infinite loop to stop the DSP.

47

void VdiErrorServerO

{

VdiDSP *pDSP;

int errorCode;

int i;

for (; ;) {

for (i = each DSP) {

/* Locate the information for the DSP. */

pDSP = ... i ...;

/* Get the error code. */

errorCode = *(pDSP->pErrorCode);

/* Report it if non-zero. */
if (errorCode) {

printf("Detected error 7,d from DSP y,d.\n",
errorCode, i);

*(pDSP->pErrorCode) = 0;

>

>

}

Figure 6.2: The procedure VdiErrorServer() that detects and reports fatal
errors from DSPs.

6.3 Error Server

Figure 6.2 shows the procedure VdiErrorServerQ that the host error server
task executes.

48

Chapter 7

Starting the DSPs

In a production system, the DSP side of the system software will reside in
the EPROM on each board. During development of the system software,
however, this would pose a major inconvenience - changing the software
would require (slowly) burning the new code into an EPROM.

We have designed the system software to allow the host to load the DSP
system code into RAM on each board. This ability greatly speeds up the
modify-compile-test cycle for system software components.

7.1 Special Memory Address Decoders

We use a special version of the memory decoder PAL chip on each board that
allows us to place the system startup code into RAM. The DSPs, when reset,
start executing code from location zero. These special PALs are programmed
to map the beginning of the DPRAMs to address zero in the memory spaces
of the DSPs. By contrast, the production PALs map the beginning of the
EPROMs to address zero.

7.2 Bootstrap Code

The bootstrap code is the first pieceof code which the DSPs actually execute.
Its main purpose it to bring the DSPs into a controlled state and to load the
complete monitor program into the DSPs' local static RAMs.

49

The host does not try to put the monitor program directly into DPRAM
for two reasons. Firstly, the monitor is too large to fit. Secondly, even if
the monitor were trimmed down to fit within the DPRAM, it would occupy
valuable space that communication queues could better utilize.

The bootstrap program occupies only the first half of the DPRAM. The
two normal communication queues occupy the second half. After the boost-
rap program terminates, the host uses the first half of the DPRAM to hold
the remote input-output queues.

7.3 DSP Initialization from the Host

For each DSP, the code on the host takes the following actions to start each
DSP during system initialization:

1. Forces the DSP into an idle reset state by writing to the control register
on the board.

2. Writes the bootstrap code into the DPRAM starting at location zero.

3. Formats the second half of the DPRAM into empty communication
queues.

4. Releases the DSP from its reset state, allowing it to start executing the
bootstrap code from location zero.

5. Sends the monitor program to the bootstrap loader via a queue.

6. Formats the first half of the DPRAM into empty remote input-output
queues, overwriting the bootstrap code.

7. Tests that the monitor is "alive."

50

Chapter 8

DSP Monitor Program

The monitor program serves as a simple operating system for the DSPs.
During initialization, the boostrap program loads it into the local static RAM
on each board and transfers control to it.

8.1 Organization

The monitor is essentially a server that responds to commands from the host.
The host may send commands to a DSP's monitor by placing an appropri
ately formatted packet into its communication queue — the tag specifies the
command and the contents its arguments. The host may send commands
faster than the DSPs can execute them; the DSPs will simply process them
in order.

8.2 Functions

8.2.1 Report Version Number

The monitor can report its version number. The initialization code on the
host uses this to test that the monitor is actually running and to verify
that it is compatible with the support code on the host. If the monitor
is burned into EPROM, and the host code is subsequently modified, the
version number checking can safeguard against situations in which changes
in monitor protocol lead to incorrect interpretation of commands.

51

8.2.2 Perform Loopback Test

The monitor supports a loopback test in which it simply returns all packets
sent to it, until it receives an end of test packet. This is useful for checking
that the communications routines do not corrupt packets and for benchmark
ing their speed.

8.2.3 Write Block of Memory

Although the host can access the DPRAM on any board, it cannot access
any other memory in a DSP's address space. Instead, the monitor can act
on behalf of the host and write host-supplied data into a block of DSP mem
ory. This function is useful both for diagnostic purposes and for loading
application programs into a DSP's static RAM.

8.2.4 Read Block of Memory

The monitor can also send the contents of a block of DSP memory to the
host for diagnostic purposes.

8.2.5 Call Application Function

Finally, the monitor can jump to a subroutine at a specified address. Typi
cally, the host uses this function to execute an application previously written
into the static RAM.

52

Part II

Details of System Operation

53

The remaining sections of this document cover the details necessary for
developing and running applications and for maintaining the system software.

54

Chapter 9

Using the System

This chapter describes how to interact with a system built on the common
software/hardware base and run applications on it.

9.1 Establishing the Environment

9.1.1 Environment Variables

Set the environment variable VDI on the workstation to the name of the

directory containing the system software. For example:

setenv VDI "arya/vdi

Also, add the bin and util subdirectories within that directory to your
path. You will probably want to modify your .cshrc or .login file to make the
change permanent.

9.1.2 Manual Pages

The simplest way to access the manual pages of Appendix B online is to
define an alias on the workstation that calls the Unix man command with a

pointer to the directory containing the man pages. For instance, after issuing
the Unix command:

alias vdiman man -M $VDI/man

you can access the manual page for VdiQueuePutQ with the command:

55

vdiman VdiQueuePut

Some topics in the manual pages are pertinent to system use, while others
concern application development. Refer to Appendix B for more details.

9.1.3 System Parameter File

Very little system dependent information is compiled into the system soft
ware. Most of it is contained in a special human-readable ASCII parameter
file. The sample parameter file system.parms in the system software root
directory looks like this:

/* Host Information */

"bin/vdiBootCode.d3bin" /* Bootstrap code file */
ubin/vdiMonitorCode.d3bin" /* Monitor code file */

/* Remote I/O Console Server Information */

"bryce" /* Console server machine */
1100 /* Port number (must exceed 1000) */

/* Task Priorities: from 51 (highest) to 253 (lowest). */

125 /* I/O server tasks */

100 /* Fatal error server task */

2.0 /*

Fatal error server sleep time (sec).
The error server pauses for this

duration of time between checks for

errors.

*/

56

/ft***/

/* Application information. */

0x7000 /* Application load address */

/*

DSP Information:

Each "DSP { ... >n structure defines one DSP in the system.
The DSPs are identified by their positions in this file:
the first one is DSP #0, the second DSP #1, and so on. No

more than 16 DSPs may be defined.

All queues must lie within the shared dual port memory.

Since the bootstrap loader makes use of the in and out
queues, they must not lie within the region occupied by it
(which starts at the specified boot address and is as long
as the bootstrap loader itself). The read and write
queues, however, may lie in that region.

The request mask is OR'ed into the control register to
assert the arbiter request line. The release mask is

AND'ed into that register to disassert the request line.
Similarly, the reset mask is OR'ed and the run mask is

AND'ed. The grant mask is AND'ed with the status register
to test the arbiter grant line.

*/

DSP { /* DSP #0 */

/* Host view */

0x01980000 /* Control Register */
0x00000000 /* Initial Control Register Value */
0x01980400 /* Status Register */
0x01903000 /* In Queue */

0x03ef /* Length */
0x01902000 /* Out Queue */

57

0x03ef

0x01901000

0x03ef

0x01900000

0x03ef

0x00002000

Oxffffdfff

0x00002000

0x00000100

Oxfffffeff

0x01900000

/* DSP view */

0xffd400

0x0000

0xffd440

0x002000

0x003000

0x000000

0x001000

0x0020

Oxffdf

0x0020

/* Length */
/* Read Queue */

/* Length */
/* Write Queue */

/* Length */
/* Request Mask */
/* Release Mask */

/* Grant Mask */

/* Reset Mask */

/* Run Mask */

/* Boot Address */

/* Control Register */
/* Initial Control Register Value */
/* Status Register */
/* In Queue */

/* Out Queue */

/* Read Queue */

/* Write Queue */

/* Request Mask */
/* Release Mask */

/* Grant Mask */

The system software reads this file before initializing the hardware. The
comments near each entry define the type of information the initialization
code expects.

Lexical Format

Lexically, the parameter file looks very similar to C source. White space
consisting of spaces, tabs, and newlines may appear anywhere between to
kens. Comments begin with /* and end with */. Decimal integers consist of
a simple sequence of digits. Hexadecimal integers are similar but begin with
Ox. Floating point numbers follow the usual convention (and may contain
exponential notation). Strings are enclosed in double quotation marks.

58

Syntax

DSP System Code: The first section of the parameter file specifies the
names of the files containing the binary executable code for the bootstrap
and monitor programs.

Remote I/O Console Server: This section names the machine on which
the remote input-output console server is running, and the Unix socket port
number on which the server is listening for requests. The machine name must
appear exactly as it does in the VxWorks host table. The port number must
exceed 1000 and be identical to that you specify when running the console
server (see Section 9.3.1).

Host Background Tasks: This section sets the priorities of the host back
ground tasks — the remote input-output forwarders and the error server.
VxWorks allocates less cpu time to tasks with high priority numbers and
more time to tasks with low numbers. The priorities must lie between 51
and 253, inclusive. In addition, this section specifies how long, in seconds,
the error server should wait between scans for fatal error reports from DSPs.
The error server does not consume cpu time during this delay period. The
shorter the period, the quicker the error server will detect and report fatal
errors, and the more cpu time it will consume.

Application: This section specifies the address at which the host loads ap
plication programs in the static RAM local to a DSP. It must match the num
ber specified in the memory map file passed to the linker (see Section 10.6.4
for details).

DSPs: The final section of the parameter file describes each DSP in the
system. It consists of a series of structures, one per DSP, that begin with
DSP and contain information between a pair of curly braces. The order of the
structures defines the DSP identificationnumbers: the first one is number 0,
the next 1, and so on The system supports no more than 16 total.

Within each structure, the first set of entries provide information about
the DSP from the host's perspective, and the second set from the DSP's own
perspective. The comments in the sample file describe each individual entry
more thoroughly.

59

9.2 File Names

Many types of files exist in this system, especially since object code exists for
both the host and DSPs. The list below explains the relationship between
the role of a file and the extension to its basic name:

.c: C source code.

.h: C header.

.s: DSP assembler source code.

.o: Host object code.

.d3o: DSP object code.

.d3bin: DSP linked executable code.

.d3img: DSP executable code in a special ASCII format.

.map: Module memory layout information for input to the DSP linker; or,
library/executable file layout information from the host or DSP librar
ian/tinker.

.a: DSP library.

.In: Host or DSP lint library.

All the .dSxxxextensions are nonstandard names for files of those types. They
serve to differentiate the DSP files from the host files of the same type. This
is necessary because some source files may be compiled for both the host and
DSPs.

9.3 Running the System

The following sections outline the steps you must follow in order to run the
system.

60

9.3.1 Running the Remote I/O Console Server

The input-output forwarding tasks expect the remote input-output console
server to be running before they start. You will probably want to run it in a
separate shell window. To bring it up, issue the command:

vdilOConsole <port number>

The port number argument identifies the port on which the server will listen
for requests via a socket. It must be identical to the number specified in the
system parameter file, as discussed in Section 9.1.3.

For instance, if you issue the command:

vdilOConsole 1100

to use port 1100, you should see the following if all is well:

3S3==3aC===S=SSSSSS=SSSSSCSSS=SS=SSSSS=SSSS=SSSSS=S=SSS==S

VxWorks <—> DSP32C Interface Software

Remote DSP I/O Console Server

Version 1.00

University of California, Berkeley

Waiting for requests on port #1100 ...

To terminate the server for any reason, press control-c.
If the console server reports the error "Can't bind socket," use a different

port number. This problem sometimes arises when the console server or the
forwarding tasks (on the host) terminate abnormally. The port in use at the
time of termination can be reused after a short period of time (on the order
of fifteen minutes).

9.3.2 Logging into the Host

To connect with the host machine, log into it remotely through another shell
window on the workstation with the command:

rlogin <host name>

where host name is the name of the machine. You should then see the

standard VxWorks prompt:

61

->

If you see an error message stating that the machine refuses your request
for a connection, someone else is logged into that host. VxWorks is not a
multi-user system, so only one person may use it at a time.

After logging in, execute your VxWorks startup shell script. For example:

< vwstartup

This script must define the machine on which the console server runs in the
VxWorks host table. Consult [6] for more information.

9.3.3 Loading the Host Code

Once you have logged into the host, you must load the host code. To load
the system library, issue the command:

Id < lib/libvdi.o

To load the support code, use the command:

Id < bin/vdiHostCode.o

These examples assume that the current directory is the one containing the
system software; if not, you must prefix the file names with the correct path.

9.3.4 Bringing up the System

With the host code loaded, you are ready to initialize the system. At the
VxWorks prompt, the command:

Vdilnit("<parameter file>")

accomplishes this, using the parameter file for hardware information. Be sure
to enclose the file name in quotation marks. For example:

Vdilnit("system.parms")

The function VdilnitQ reports its progress in detail. When everything is
in order, you should see a display like this:

62

VxWorks <—> DSP32C Interface Software

Version 1.00

University of California, Berkeley

Initializing System ...

Reading system configuration from 'system.parms' —
Loading bootstrap code from 'bin/vdiBootCode.d3bin' ...

Reading: .text .data .parms .mon[skipped] .bss[skipped]
Loading monitor code from 'bin/vdiMonitorCode.d3bin' ...

Reading: .text .data .parms .bss[skipped]

Initializing DSP #0:
Initializing control register ...
Halting DSP ...
Initializing host task sync semaphore ...
Initializing communications queues ...

Writing bootstrap code into DP RAM ...
Starting DSP ...

Sending monitor code to bootstrap program ...
Testing monitor ...

Monitor version number: 1.00

Initializing remote 1/0 queues
Spawning remote DSP I/O forwarder ...

Initializing DSP #1:

Spawning DSP fatal error server ...

If VdilnitQ stops somewhere in the middle of this process, verify that
the boards are seated properly in the card cage and that the entries in the
parameter file are correct.

63

9.3.5 Interacting with the Monitor

The host support code includes a set of utility routines for sending commands
to the monitor program running on a DSP; they send properly formatted
command packets to the monitor and thus serve as a crude front-end to the
DSPs.

VdiBlockPut()

The command:

VdiBlockPut(<dspId>, <address>, <length>, <pData>)

writes to a block of memory in the address space of DSP #dspld. The
parameters address and length specify the location of the block and its size
in words, and pData points to the buffer containing the source data.

For example, to write Oxll into 0x10 words at address OxaOOO of the
memory belonging to DSP #0, issue the commands:

mybuffer = malloc(0xl0 * 4)
bfill(mybuffer, 0x10*4, 0x11)
VdiBlockPut(0, OxaOOO, 0x10, mybuffer)
free(mybuffer)

The host implements this command by sending a packet with tag VDI--
TAGMONJBLOCK-PUT to the monitor running on the specified DSP fol
lowed by a message containing the contents of the buffer.

VdiBlockGet()

The command:

VdiBlockGet(<dspId>, <address>, <length>, <pData>)

reads from a block of memory in the address space of DSP #dspld. The
parameters address and length specify the location of the block and its size
in words, and pData points to the buffer for holding the data read.

For example, to display the contents of 0x10 words at address OxaOOO of
the memory belonging to DSP #0, use the commands:

64

mybuffer = malloc(OxlO * 4)
VdiBlockGet(0, OxaOOO, OxlO, mybuffer)
d mybuffer
free(mybuffer)

The host implements this command by sending a packet with tag VDI--
TAGMONJ&LOCKJGET to the monitor running on the specified DSP and
writing the contents of the monitor's reply message into the buffer.

VdiAppLoad()

The command:

VdiAppLoad«dspId>, "<file>")

loads a compiled application program into the memory local to DSP #dspid
for execution later. The parameter file names the file containing the compiled,
linked application program; such files normally have the extension .dSbin.

To load the application test.dSbin into DSP #0, for example, use the
command:

VdiAppLoad(0, "test.d3bin")

The host implements this command by calling VdiBlockPutQ for each
section of the binary file, starting at the address application load address in
the parameter file.

VdiAppRun()

The command:

VdiAppRun(<dspId>)

executes an application program previously loaded into the memory local to
DSP #dspld by the command VdiAppLoadQ.

To run an application loaded into DSP #0, for example, use the com
mand:

VdiAppRun(O)

65

You may repeat this multiple times without reloading the application be
tween iterations.

The host implements this command by sending a packet with tag VDI--
TAGJtdON-CALL to the monitor on the specified DSP with the application
load addressfrom the parameter file as the target address. The host does not
wait for the DSP; the DSP will begin execution once it has processed other
commands waiting in the queue.

VdiAppLoadAndRun()

The command:

VdiAppLoadAndRun(<dspId>, "<file>")

loads and executes an application program on DSP # dspid. It is merely
shorthand for the combination of VdiAppLoadQ and VdiAppRunQ.

To load and run the application in test.dSbin on DSP #0, for example,
issue the command:

VdiAppLoadAndRun(0, "test.d3bin")

The host implements this command simply by calling VdiAppLoadQ fol
lowed by VdiAppRunQ.

VdiLoopback()

The command:

VdiLoopback(<dspId>, <mode>, <iterations>)

runs a communication loopback test of DSP # dspid and reports the round
trip packet transit time. It is useful for both testing that a monitor is "alive"
on a DSP and for benchmarking the communications routines. The param
eter mode identifies one of several test variations and iterations specifies the
number of times to perform the test. The manual page for this command
describes each mode in detail

To test how long it takes to transmit short, one word packets to DSP #0,
for instance, issue the command:

VdiLoopback(0, 1, 1000)

66

The host will time 1000 packets and display the average.
The host implements this command by sending a packet with tag VDL-

TAGMON-LOOPBACKJSTART to the monitor on the specified DSP, fol
lowed by a series of test packets. The monitor returns these packets to
the host unaltered. The host sends a packet with tag VDIJTAGJMON--
LOOPBACKSTOP to the monitor to terminate the test.

To time packets, the host calls the VxWorks routine tickGetQ both before
and after the entire test. It then divides the elapsed time by the number of
iterations and the ticks-per-second conversion factor that sysClkRateGetQ
returns.

9.3.6 Accessing VME Memory

The two routines described below provide a means of accessing any memory
in the VME address space. They are necessary because the VxWorks shell
only permits access to memory on the host circuit board through the use of
pointers and the dQ command.

VdiMemDump()

The command:

VdiMemDump(<address>, <length>)

displays memory words in 32-bit hexadecimal format. The parameters ad
dress and length specify the starting address and number of words to display.

To dump 0x40 words at address 0x1900000, for example, issue the com
mand:

VdiMemDump(0x1900000, 0x40)

VdiMemSet()

The command:

VdiMemSet(<address>, <value>)

writes to a 32-bit memory word. The parameters address and value specify
the word address and value to write.

To write 0x55aa55aa into the word at address 0x1900000, for instance,
use the command:

67

VdiMemSet(0x1900000, 0x55aa55aa)

9.3.7 Viewing Queues

The command:

VdiQueueDisplay(<address>)

displays the contents of the queue at address in DPRAM. It is useful mostly
for determining at what point a malfunctioning system stopped.

To view a queue at address 0x1902000, for instance, use the command:

VdiQueueDisplay(0xl902000)

9.3.8 Shutting down the System

To stop a running system, issue the command:

VdiShutdownO

at the VxWorks prompt. The host will then halt every DSP, delete every
input-output forwarder task, and delete the error server task.

Like VdilnitQ, VdiShutdownQ reports its progress in detail. When ev
erything is in order, you should see a display like this:

Bringing down the system ...
Halting DSPs ...
Killing remote 1/0 forwarders ...
Killing fatal error server ...

Before reinitializing a running system with VdilnitQ, you must execute
VdiShutdownQ to delete these background tasks; otherwise the tasks which
VdilnitQ creates the second time will compete with the original ones.

9.3.9 Logging out from the Host

To leave the host, issue the command:

logout

Do not use the command exit, as this will prevent you from logging into the
host again until it is physically reset.

The system continues to run even after you log out. You need only be
logged in to control it.

68

9.4 Sample Session

Some aspects of the system's operation will be clearer from an extended
example. Figure 9.1 is a script of a session with the host. Figure 9.2 is a
script of the corresponding interaction with the remote input-output console
server. Section 10.8.3 explains the sample application program illustrated
here.

69

navajo:arya ("/vdi) 53 > rlogin vw2

-> <arya

hostldd "navajo", "128.32.139.73"
value > 0 a 0x0

iam "arya"
value » 0 • 0x0

cd "zabri8kio:~arya/vdi"
value = 0 ° 0x0

-> Id < lib/libvdi.o
value a o a 0x0

-> Id < bin/vdiHostCode.o

value a o » 0x0

-> Vdilnit("87stem.parms")

VxWorks <—> DSP32C Interface Software

Version 1.00

University of California, Berkeley

Initializing System ...

Reading system configuration from 'system.parms' ...
Loading bootstrap code from >bin/vdiBootCode.d3bin' ...

Reading: .text .data .parms .mon[skipped] .bss[skipped]
Loading monitor code from >bin/vdiHonitorCode.d3bin' ...

Reading: .text .data .parms .bss[skipped]

Initializing DSP #0:
Initializing control register ...
Halting DSP ...
Initializing host task sync semaphore ...
Initializing communications queues ...
Writing bootstrap code into DP RAM ...
Starting DSP ...
Sending monitor code to bootstrap program ...
Testing monitor ...

Monitor version number: 1.00

Initializing remote I/O queues ...
Spawning remote DSP I/O forwarder ...

Spawning DSP fatal error server ...
value a o a 0x0

-> VdiAppLoadAndRunCO/'app/test.dabin")
Reading: .text .data .parms .bss[skipped]

value a o a 0x0

-> VdiShutdown

Bringing down the system ...
Halting DSPs ...
Killing remote I/O forwarders ...
Killing fatal error server ...

value a o a 0x0

-> logout
Connection closed,

navajo:arya ("/vdi) 54 >

70

Figure 9.1: Script of a sample interaction with the host.

navajo:arya C/vdi) 62 > bin/vdilOConsole 1100

VxWorks <—> DSP32C Interface Software

Remote DSP I/O Console Server

Version 1.00

University of California, Berkeley

Waiting for requests on port #1100 ..,

0 -> DSP Test Application

0 <- Enter an integer value for X: 10
0 -> X * X » 100

0 <- Enter a string: hello
0 -> You typed:

0 -> hello

Figure 9.2: Script of a sample interaction with the console server.

71

Chapter 10

Developing Applications

This chapter explains some of the more detailed aspects of the common
hardware/software platform and describes how to develop applications that
run atop it.

10.1 Data Types

Table 10.1 summarizes the representation of the basic C data types as im
plemented by both the host and DSP C compilers.

The sections that follow describe those system software data types built
from these that applications may find useful.

Name Size in bits

Host DSP

char

short

long
int

8

16

32

32

8

16

32

24

Table 10.1: The internal host and DSP representations of C data types.

72

10.1.1 VdiWord

The most primitive integer quantity which the host may share with a DSP
is the VdiWord. It is defined as an unsigned long int and is 32-bits wide.
Wherever this report and the online manual pages refer to words, they are
speaking of VdiWords.

10.1.2 Vdilnt

The DSPs do not handle VdiWords very efficiently because their integer reg
isters are only 24-bits wide (the 32 in the name DSP32C refers to the 32-bit
wide floating point registers). The compiler must allocate two registers to
hold VdiWords and produce many extra instructions to treat the pairs as
single units. The host's microprocessor, however, does have 32-bit wide inte
ger registers and thus suffers no performance loss when handling VdiWords.

When 24-bits of integer precision are sufficient, use the data type Vdilnt
instead of VdiWord. Vdilnt is defined as an unsigned int. To the host, this
is 32-bits wide. To the DSPs, this is 24-bits wide. Furthermore, whenever
DSPs write a Vdilnt to memory, they actually write a 32-bit word whose
upper 8 bits are zero; and whenever they read a Vdilnt from memory, they
read a 32-bit word and ignore the upper 8 bits.

Thus the host and DSPs can directly share Vdilnts without any soft
ware adjustments. Furthermore, Vdilnts are the quantities which each agent
handles most efficiently in software.

10.1.3 VdiRegister

The type VdiRegister defines the control and status register objects. It is
defined as unsigned long int on the host side since the host sees registers as
32-bit wide objects. It is defined as unsigned short int on the DSP side since
the DSP sees them as 16-bit wide objects.

10.1.4 VdiDSP

The type VdiDSP is a large structure which holds physical hardware con
stants read from the system parameter file. Table 10.2 shows its contents.
The second group of fields are only present in the definition of the structure

73

Field Name Data Type Description

pControlReg
controlRegS
pStatusReg
pInQueue
pOutQueue
pReadQueue
pWriteQueue
requestMask
releaseMask

grantedMask

VdiRegister *
VdiRegister
VdiRegister *
VdiQueue *
VdiQueue *
VdiQueue *
VdiQueue *
VdiRegister
VdiRegister
VdiRegister

Address of control register
Shadow of control register
Address of status register
Address of inbound comm. queue
Address of outbound comm. queue
Address of inbound I/O queue
Address of outbound I/O queue
OR bit-mask for arbiter request
AND bit-mask for arbiter release

AND bit-mask for arbiter grant
inQueueLength
outQueueLength
readQueueLength
writeQueueLength
resetMask

runMask

bootAddress

hostSync
lOForwarderTask

unsigned int
unsigned int
unsigned int
unsigned int
VdiRegister
VdiRegister
char *

SEMJD

int

Length of inQueue
Length of outQueue
Length of readQueue
Length of writeQueue
OR bit-mask for resetting DSP
AND bit-mask for letting DSP run
VME address of DSP boot location

VxWorks host task semaphore
VxWorks id of forwarder task

Table 10.2: The data type VdiDSP. Note that the second group of fields are
present only in the structure definition on the host side.

on the host side. Furthermore, those fields which occupy less than 32-bits
on the DSP side are padded to 32-bit boundaries with dummy fields; this is
necessary to allow the load-time fixup described in Section 10.6.3.

Not all of the fields in the table should be of interest to applications;
the various arbiter mask fields, for instance, are necessary for accessing the
arbiter, but applications should use the higher-level semaphore functions for
synchronization instead. On the other hand, applications must access the
various p... Queue fields to name queues when calling the queue functions.
Section 10.2.3 explains the purpose of the pControlRegS field.

74

10.1.5 VdiSemaphore

System semaphore objects are of type VdiSemaphore. Internally, they are
defined as Vdilnts. Applications requiring extra synchronization beyond that
provided by the queues may define their own semaphores in the DPRAM.

10.1.6 VdiQueue

System queue objects are of type VdiQueue. Figure 4.2 describes their con
tents. Applications need not know the actual internal structure of VdiQueues,
however, because the system library provides functions for manipulating
them: VdiQueuelnitQ, VdiQueuePutQ, and VdiQueueGetQ. Applications
thus need only use this data type to define the types of arguments to these
functions.

10.2 Global Variables

Applications need to access the global system variables that contain the
hardware information shown in Table 10.2. The sections that follow describe

these variables.

10.2.1 DSP Code

The DSP library defines a global variable called pVdiDSP. It is a pointer to
a VdiDSP containing the hardware information for the DSP on which the
code is executing, from that DSP's perspective.

An application wishing to get a packet from the inbound queue, for in
stance, may use this structure to name the queue as:

pVdiDSP->pInQueue

in the VdiQueueGetQ argument list.

10.2.2 Host Code

The host must carry more hardware information than the DSP for two rea
sons. First, it requires knowledge of every DSP from its own perspective.

75

Field Name Data Type Description

total

h

d

int

VdiDSP \\
VdiDSP []

Count of DSPs in system
Host view of DSP

DSP view of DSP

Table 10.3: The structure to which pVdiDSPs points on the host.

Second, it requires knowledge of each one from the DSP's perspective as well
to implement the load-time fixup described in Section 10.6.3.

Thus the global variable pVdiDSPs on the host side is pointer to the
structure shown in Table 10.3. The field total indicates how many DSPs are
installed in the system. The array h[] defines the host's view of each DSP,
while the array d[] defines each DSPs' view of itself.

Thus host code wishing to reference the inbound communication queue
from DSP #0 can name it as:

pVdiDSPs->h[0] .pInQueue

in a call to VdiQueueGetQ.

10.2.3 Control Register Shadow Variables

The control registers oneach board are write-only, so it is convenient to keep
a software copy of the last value written to them. The system software uses
the controlRegS field of the VdiDSP structure for exactly this purpose.

Therfore, an application wishing to modify a control register must use
this same field in the appropriate (host or DSP) global hardware information
variable; otherwise, the system software will not be aware of changes the
application makes to the register, and vice versa.

10.3 Byte Swapping and Endian Differences

The first prototype of the robot controller pointed out a slight error in the
design ofthe DSP tohost interface section ofthe common hardware platform.
Because of differences in the endian-ness of the DSP32C and 68020, the

76

design called for reordering the data lines between the VME bus connector
and DSP on each DSP board to compensate. The design exchanged lines for
byte 0 with those for byte 3, and lines for byte 2 with those for byte 1.

This, however, is not the correct solution to the problem of endian differ
ences. In fact, the system software must swap bytes to compensate for the
design error. Specifically, C preprocessor macros filter accesses to memory
in the DPRAM (see Section 10.4). On the host side, the macros swap bytes;
on the DSP side, they do nothing. These macros are sensitive to the state
of a compile-time flag so that code may be reused directly on newer systems
without a byte-swapping problem.

The system queue functions VdiQueueGetQ and VdiQueuePutQ, auto
matically hide this swapping problem from applications that use them. How
ever, applications that access DPRAM directly must use the macros to ensure
correct behavior.

Note that these macros simply undo the swapping; they do not correct
for endian differences. Applications must take these differences into account
when exchanging data between the host and DSPs. For a char at offset x
modulo 4, the recipient must look to offset 3 - x to find the data. For a short
at offset x modulo 4 (which must be 0 or 2), the recipient must look to offset
2 - x. For an int or long, the recipient need not do anything special. For a
string, the recipient must swap bytes within each group of 4 characters, as
discussed in Section 5.4.3.

10.4 Macros and Constants

The system software provides some C preprocessor constants and macros to
facilitate software development. The following sections describe them.

10.4.1 VDI-VXWORKSJVLODE

VDLVXWORKSJMODE is defined in modules compiled for the host. Files
can test this flag to tailor source code that the host and DSPs share through
#if defined(VDLVXWORKSMODE) ... #endif sequences.

77

10.4.2 VDIJDSPJVEODE

VDIJ)SPMODE is defined in modules compiled for the DSPs. Files can
test this flag to tailor source code that the host and DSPs share through #if
defined(VDIJ)SP-MODE) ... #endif sequences.

10.4.3 VDI_FIX_BYTE_ORDER

VDIJFIXJBYTEJORDER is defined in modules compiled for the host on
systems that require byte ordering correction as described in Section 10.3.
Application code should not have to test this flag since the macros discussed
in Sections 10.4.7 through 10.4.10 hide this hardware detail.

10.4.4 VDI-WORDJ3IZE

VDLWORDJSIZE is the number of bytes in a VdiWord or Vdilnt 4.

10.4.5 VDI_WORDS()

VDI.WORDS(b) returns the number of VdiWords that 6 bytes occupy.

10.4.6 VDI_BYTES()

VDIJBYTES(w) returns the number of bytes that w VdiWords occupy.

10.4.7 VDI_WORD_PUT()

VDLWORD-PUT(w) returns the value of VdiWord w scrambled to correct
for byte ordering problems, if necessary, in preparation for a write to a mem
ory location on a DSP board, whether it is a register or the DPRAM.

For example, anapplication wishing to write the value of xto the DPRAM
location to which p points must use the statement:

*p = VDI.WORD.PUT(x);

78

10.4.8 VDI_WORD_GET()

VDIJWORD-GET(w) returns the value of VdiWord w scrambled to correct
for byte ordering problems, if necessary, assuming w resulted from a direct
read from a memory location on a DSP board, whether it is a register or in
DPRAM. The actual definition of VDIJWORDJGETQ is identical to that of
VDIJ/VORDJPUTQ because the scrambling operation is its own inverse.

For instance, an application wishing to assign to x the value of the
DPRAM location to which p points must use the statement:

x = VDI.WORD.GET(*p);

10.4.9 VDIJNT_PUT()

VDIJNTJ>UT() is analogous to VDLWORDJ>UTQy but operates on Vdi
lnts.

10.4.10 VDIJNT_GET()

VDIJNTJGETQ is analogous to VDLWORD-GETQ, but operates on Vdi
lnts.

10.4.11 VdiWordReorder()

VdiWordReorder(w) returns the value of VdiWord/Vdilnt w with its bytes
swapped: byte 0 is exchanged with byte 3, and byte 1 with byte 2.

VdiWordReorderQ is defined only on the host side and scrambles bytes
regardless of the state of the compile-time byte swapping flag VDIJ^IX--
BYTE-ORDER. It is most useful for correcting the ordering of characters in
strings shared by the host and DSPs.

VdiWordReorderQ is either an asm macro or C function, depending on
which C compiler is used, to provide for very rapid byte swapping. With
the Gnu C compiler, for instance, it translates into only 3 inline assembly
language instructions.

79

Name Description
d3as Assembler

d3cc C compiler
d3ld Linker/loader
d3ar Librarian

d3dump Object file dumper
d3nm Symbol table dumper
d3sim Simulator

d3genmemimage Image file generator

Table 10.4: The DSP32C development tools.

10.4.12 VDL.TAG .APPLICATION

The constant VDIJTAG-APPLICATIONrepresents the lowest tag value ap
plications may use; the system software reserves lower numbered tags for its
own use.

10.4.13 VDI_ERROR_APPLICATION

The constant VDI.ERROR-APPLICATIONrepresents the lowest error code
applications may use; the system software reserves lower numbered codes for
its own use.

10.5 DSP32C Tools

Table 10.4 lists some of the utilities that support DSP32C cross development
on the workstation. Consult [9], [8], and [7] for more information on all but
dSgenmemimage, which is discussed in Section 10.6.5.

80

10.6 DSP Code Memory Layout

10.6.1 d3cc Object Files

Object files that dScc generates are divided into sections. Each section con
tains a group of related information. Normally, dScc generates three sections
in each file: .text with the executable code, .data with the static data, and
.bss with an initial word for the stack. Command line options can instruct
dScc to use other section names.

These .dSo object files axe in what is known as the Common Object File
Format (COFF), and they contain relocation information that the linker
needs.

10.6.2 d31d Binary Executable Files

The DSP linker, dSld, takes object files that dScc generates and lays them
out in physical memory. A DSP can directly execute the code d3ld generates
when loaded into memory.

The .dSbin files it produces are in COFFformat also, but contain absolute
addresses.

10.6.3 Load-time Parameter Section Fixup

During the initialization phase, the DSPs need the hardware information
from the system parameter file. If this information is not compiled into the
code, then the DSPs must obtain it later. They cannot access it at run time
becase they cannot communicate with the host until they know the control
register and queue addresses, for example.

The systemsoftware circumvents thisdifficulty by storing the global hard
ware information structure (to which pVdiDSP points) in a special section
named .parms rather than in .data. The .dSbin executable files that dSld gen
erates initially contain zeros in the region that .parms occupies. Whenever
the system software loads a .dSbin file, it looks for a .parms section. If it
finds one, it overwrites it with the information from the appropriate entry in
the global array d[] of pVdiDSPs. Thus the code it sends to the DSP during
the initialization phase contains the necessary information.

81

Address Length (bytes) | Description |

0x000000 0x004000 DPRAM

0x004000 0x010000 Static RAM

0x014000 0x004000 EPROM

* : •

OxffeOOO 0x000800 On-chip RAM
0xffe800 0x000800 Reserved

OxfffOOO 0x001000 On-chip RAM

Table 10.5: The DSP address space.

The DSP definition of the type VdiDSP contains padding to fill out every
field to 32-bits to ensure that when the host writes information into the

.parms section, it falls into the places where the DSP expects it, given its
definition of VdiDSP.

10.6.4 Linker Memory Map Files

Special .map files tell dSld where to place each object file section in memory.
A MEMORYdirective assigns symbolic names to regions of physical memory.
A SECTIONS directive then names the memory region to whicheach section
(.text, .data, ...) belongs.

Table 10.5 depicts the DSP address space. The the system operates the
DSPs in mode 6 (see [10] for an explanation of DSP32C memory modes).
The locations of the EPROM and DPRAM may be interchanged if desired
in order to start the system from code in EPROM.

Accesses to off-chip memory incur wait states while on-chip references
do not. The map files described below place the stack in the smaller on-
chip memory bank for rapid stack variable access; the other bank is free for
application use.

Boot Code

The map file for the boot code contains:

82

MEMORY {

boot.ram (RWX): origin=0x000000, length=0x02000
ext_ram (RWX): origin=0x004000, length=OxlOOOO
eprom (RX): origin=0x014000, length=0x04000
int.raml (RWX): origin=0xfI*eOOO, length=0x00800
int_ram2 (RWX): origin=0xfff000, length=0x01000

SECTIONS {

.text 0x000000: { } > boot_ram

.data: •C } > boot.ram

.parms: { } > boot.ram

.bss: { } > int_ram2

.mon: { } > ext.ram

}

This places the boot code in the lower half of DPRAM, leaving the rest free
for the communication queues. The startup code uses the section .mon to
locate the monitor's region so that it may branch there when it has finished
loading the monitor.

Monitor Code

The map file for the monitor contains:

MEMORY {
mon_ram (RWX): origin=0x004000, length=0x03000
app_ram (RWX): origin=0x007000, Iength=0x0d000
eprom (RX): origin=0x014000, length=0x04000
int.raml (RWX): origin=0xffeOOO, length=0x00800
int_ram2 (RWX): origin=0xfff000, length=0x01000

SECTIONS {

.text 0x004000: { } > mon.ram

.data: { } > mon_ram

.parms: { } > mon.ram

.bss: •C } > int_ram2

83

This places the monitor code into the lowest locations of the static RAM,
reserving the rest for applications.

Application Code

The map file for applications contains:

MEMORY {
app_ram (RWX): origin=0x007000, Iength=0x0d000
int.raml (RWX): origin=0xffeOOO, length=0x00800
int.ram2 (RWX): origin=0xfff000, length=0x01000

>

SECTIONS -C

.text 0x007000: { } > app_ram

.data: { } > app.ram

.parms: { } > app.ram

.bss: { } > int.ram2

}

This places the appHcations in the region of static RAM just following the
monitor.

Applications may alter this map file to define extra object code sections
or to access the free bank of fast on-chip RAM.

10.6.5 d3genmemimage Image Files

Mani Srivastava experimented with an AT&T library of routines for accessing
COFF files and wrote a set of functions to interface those low-level routines
with the system software. As a result, the system can now directly load
COFF files that dSld generates.

Prior to discovering this library, however, we captured the output of
dSdump and generated .dSimg files, which the system software then read.
Mani wrote the current version of dSgenmemimage using the library to per
form this conversion rapidly as a transition step toward direct COFF file
loading. The system software no longer needs this tool, but it is sometimes
useful for analyzing .d3bin files since its .dSimg are human-readable.

For each object file section, these .dSimg files include a header line with
the section name, address, and length in bytes followed by a series of data

84

lines with the section contents. Each data line represents one 32-bit word.
All numbers, both in the header and data lines, are in hexadecimal. For
example, a .dSimg file might contain the following:

.text 00000000 00000010

00000000

11111111

22222222

33333333

.data 00000010 00000008

55AA55AA

87654321

to define a .text section at address 0x0of length 0x10bytes and a .data section
at address 0x10 of length 0x8 bytes.

10.6.6 Libraries

The file lib/libvdi.o in the system software directory contains the core syn
chronization and communication library routines for the host. VxWorks
performs linking at load time, so when host code for an application is loaded
after this library, it will automatically reference the appropriate routines, and
only one copy of them will ever exist in host memory.

The situation is different for DSP code, however. The DSP library resides
in Ub/libvdi32c.a. The boot code, monitor code, and DSP application code
all link to it. The linker extracts the referenced routines from the library
and packages them together with each independently. Since the boot code,
monitor, and applications all typically reference VdiQueueGetQ, for example,
that routine is duplicated in memory three times. Those routines that only
the application calls, such as VdiPrintfQ, exist in only one place.

Actually, since the boot code ceases to exist after DSP initialization, and
the memory it occupies is reclaimed for the remote input-output queues, it
does not contribute to any memory "waste." Only those routines which both
the monitor and DSP access are duplicated in static RAM. The total size
of these routines is not very large, so the wastage may not be important in
most applications.

85

10.7 Header Files

The system provides several C header files that define various data types and
constants and declare the system functions. The sections that follow describe
the contents of those files which applications should find useful.

All applications must include vdiApplication.h before any other system
include files; that file includes vdiCommon.h for basic system definitions and
vdiErrorCodes.h for function return codes. The manual page for each system
function mentions the other files that applicationsmust include before calling
it.

10.7.1 vdiAddresses.h

The file vdiAddresses.h defines the internals of the type VdiDSP and declares
the variable pVdiDSP or pVdiDSPs for the DSPs or host, respectively. Ap
plications wishing to access these globalhardware information variables must
include this file.

10.7.2 vdiApplication.h

The file vdiApplication.h provides a basic set of definitions that all applica
tions need. It includes the files vdiCommon.h and vdiErrorCodes.h.

10.7.3 vdiCommon.h

The file vdiCommon.h declares the most primitive system data types, con
stants, and macros. Among them are VdiWord, Vdilnt, VDLWORDJSIZE,
VDLWORDSQ, and VDI_BYTES().

10.7.4 vdiErrorCodes.h

The file vdiErrorCodes.h defines symbolic constants that represent the error
return codes from all system functions. The manual pages list the errorcodes
that every system function may return.

86

10.7.5 vdiErrorReport.h

The file vdiErrorReport.h declares the function VdiErrorReportQ for appli
cations that wish to report fatal errors directly to the host.

10.7.6 vdilO.h

The file vdilO.h provides appHcations with access to the remote input-output
console. It declares VdiPrintfQ and VdiScanfQ and defines symbolic con
stants for the various data types they handle.

10.7.7 vdiMessage.h

The file vdiMessage.h declares the functions VdiMessageSendQ and Vdi-
MessageReceiveQ for appHcations that need to send data larger than the
capacity of a queue.

10.7.8 vdiMonitor.h

The file vdiMonitor.h defines symboHc constants for the packet tags for each
monitor commmand as weU as the structures for parameters to those com
mands. AppHcations that wish to speak with a DSP monitor directly, bypass
ing the host monitor support functions such as VdiBlockPutQ, must include
this file.

10.7.9 vdiQueue.h

The file vdiQueue.h defines the internals of the VdiQueue structure and de
clares the routines VdiQueuelnitQ, VdiQueuePutQ, and VdiQueueGetQ that
operate on queues.

10.7.10 vdiSemaphore.h

The file vdiSemaphore.h declares the functions VdiSemaphorelnitQ, VdiS-
emaphorePQ, and VdiSemaphore VQ that operate on semaphores. AppHca
tions that wish to create their own semaphores for synchronization schemes
that the queues do not support must include this file.

87

10.7.11 vdiSharedMemory.h

The file vdiSharedMemory.h defines the macros VDLWORDJPUTQ, VDL-
WORDJGETQ, VDUNTJ>UTQ, and VDIJNT.GETQ. In order to access
the DPRAM directly, appHcations must include this file and use the macros
to automatically correct byte ordering problems, if present.

10.7.12 vdiWordReorder.h

The file vdiWordReorder.h defines VdiWordReorderQ for swapping bytes in
a word. AppHcations that share character strings between the host and
DSPs, for instance, must include this file to correct for the endian differences
between the two sides.

10.8 Application Program Structure

The following sections explain the requirements that the system hardware
and software impose on appHcation code.

10.8.1 Host Code

The VxWorks environment is more mature and complete than the DSP en
vironment that the system software provides, so host code faces few restric
tions. Consult [6] for details on VxWorks software development; the system
software does not add any further requirements.

Note that appHcation host code must not use Hbraries on the workstation;
it must use the header files and Hbraries suppHed with VxWorks.

10.8.2 DSP Code

Header Files

AU modules must include the header file vdiApplication.h to access system
software data types and functions, in addition to other header files that
specific functions mandate. The #includestatement for this file must precede
that for any other system header file.

88

Module Layout

AppHcations execute under control of the monitor on a DSP. Since the mon
itor does not have access to any code entry point information in .dSbin files,
it makes the simple assumption that the beginning of the executable portion
of the appHcation Hes right at the beginning of the appHcation memory space
in static RAM.

This means that the top-level appHcation function, which does not nec
essarily have to be named mainQ, must precede all other code and data
in the source file. If the appHcation consists of multiple modules that are
later linked together, the module with the top-level function must precede
all others; naming this module before all others on the dSld command line
guarantees this (see Section 10.9.2).

Return Codes

The monitor expects an int return code from any appHcation it executes, so
the top-level appHcation function must be a function with return type int.
Also, since the monitor does not pass any parameters to appHcations, the
top level function must not take any arguments.

After calHng an appHcation, the monitor checks the return code; if it is
nonzero, it interprets it as an error code and passes it to the host via the
fatal error reporting routine VdiErrorReportQ and enters an infinite loop.
Thus appHcations must return 0 when successful and an appropriate status
code under fatal error conditions.

Limited Stack Space

To provide rapid access to stack-based data, the system software keeps the
DSP stack in on-chip RAM, as discussed in Section 10.6.4. This region is
limited to 2K bytes or 512 words in size, so appHcations must be careful not
to overflow it — highly recursive routines may not work.

10.8.3 Sample

Figure 10.1 shows the source code for the sample appHcation corresponding
to the script of Section 9.4. This appHcation consists of just one module, and
the top-level function mainQ is the first piece of code or data in the file. It

89

#include "vdiApplication.h"
#include "vdilO.h"

int main()

i
long x;

char string[VDI.IO.TEXT.MAX];

VdiPrintf("DSP Test Application", 0, VDI.NONE, 1);
VdiScanf("Enter an integer value for X: ", &x, VDI.LONG);
x = x * x;

VdiPrintf("X * X = ", &x, VDI.LONG, 1);

VdiScanf("Enter a string: ", string, VDI.STRING);
VdiPrintf("You typed: ", 0, VDI.STRING, 1);
VdiPrintf(string, 0, VDI.STRING, 0);

return(O);

Figure 10.1: A sample DSP appHcation.

90

includes vdilO.h in order to use the remote input/output console functions.
It returns 0 when finished to signal successful completion to the monitor.

Refer to Appendix C for a detailed look at a more involved appHcation.

10.9 Building Applications

The system software provides some support for the utiHty make to simpHfy
appHcation building. The sections that foUow cover the steps involved.

10.9.1 Environment

In addition to following the steps outHned in Section 9.1.1, you must set the
environment variable DSPS2SL to name the directory containing the AT&T
DSP32C Support Software Library, and the variable VXWORKS to name
the directory containing the VXWORKS software. For example:

setenv DSP32SL /usr/cadtools/dsp/dsp32sl
setenv VXWORKS /usr/cadtools/vw

You must also add the bin directory inside the DSP support software
directory to your path to provide access to the utiHties in Table 10.4.

10.9.2 Default Make Inference Rules

The file vdiRules.make in the top-level system software directory provides the
vast majority of the makefile definitions appHcations require. AppHcation
makefiles should include it with the make command:

include $(VDI)/vdiRules.make

Read the comments at the top of the file for the most up-to-date information.

Directories

Just prior to the include command, appHcation makefiles must set the make
variables DIRJSRC, DIR.OBJ, and DIR-BIN to name the directories for
holding the appHcation source, object, and executable binary code, respec
tively. For a simple appHcation with few modules, one directory suffices for
aU of these, so the statements:

91

DIR.SRC = .

DIR.OBJ = .

DIR.BIN = .

suffice, naming the appHcation directory with the makefile for all three pur
poses.

DSP Tools

The file vdiRules.make defines the following make variables to access the host
and DSP tools:

cc s gcc

DSP..AR s d3ar

DSP..AS s d3as

DSP..CC 3 d3cc

DSP..LD « d31d

DSP..IMG = d3genmemimage

Assembling DSP Code

The rule:

$ (DIR.OBJ) 1%.d3o: $ (DIR.SRC) /%. s
echo "***** Assembling '$<» for the DSP ..."
$(DSP.AS) -Q -o $Q $<

in vdiRules.make automatically generates .d3o files from .s DSP assembler
source files.

Compiling DSP Code

The rule:

$ (DIR.OBJ) /*/..d3o: $ (DIR.SRC) /*/.. c
echo "***** Compiling '$<» for the DSP ..."
$(DSP.CC) -Q -c $(C.FLAGS.DSP) -o $0 $<

in vdiRules.make automatically generates .dSo files from .c DSP C source
files. AppHcation makefiles may append extra flags to CJFLAGSJDSP prior
to including vdiRules.make.

92

Linking DSP Code

The rule:

$(DIR.BIN) /'/.. d3bin: $(DIR.0BJ) /*/.. d3o

echo "***** Linking '$<* for the DSP ..."
$(DSP_LD) $(LD.FLAGS.DSP) -o $Q $< $(LIB.DSP) \

$(LD.SUFFIX.DSP) $(MAP.APP) | tee $(<0: .d3bin=) .map

in vdiRules.make automatically generates .dSbin files from .d3o DSP object
files. It also generates a .map file in the appHcation bin directory; this map file
shows exactly where the linker placed each object module section in physical
memory (do not confuse this .map file with the .map files suppHed as input
to the linker to specify the memory layout).

AppHcation makefiles may append extra flags to LD-FLAGSJDSP prior
to including vdiRules.make to alter the linker's behavior.

LDJ5UFFIXJDSP is initialized to include references to the Hbraries lib-

vdiS2c.a, Ubm32c.a, Ubap32c.a, and UbcS2c.a in that order (see [7] for more
information on the AT&T suppHed Hbraries). To search other Hbraries or
object files before or after these, appHcations may append extra -I flags or
object file names to LIBJDSP or LDJSUFFIXJ)SP, respectively.

To use a memory layout file diiferent from the default (discussed in Sec
tion 10.6.4), appHcation makefiles may set MAP-APP to the name of the file
to use.

If the appHcation consists of several modules, the names of all but the
main module should be appended to LIBJ)SP as weU, and the rule appHed
to the main module only.

For instance, assume the directory mylib contains appHcation Hbraries
named Ubtools32c.a and Ubrobot32c.a, that the file utU.dSo also contains some
Hbrary functions but is in .d3o format, that the main appHcation module is
in main.dSo, and that the remaining modules are in init.dSo and move.dSo.
Then the following sequence of make commands:

LD.FLAGS.DSP += -Lmylib
LIB.DSP += init.d3o move.d3o util.d3o -ltools32c -lrobot32c

wiU set up the correct environment so that a command to build the target
main.dSbin wiU properly combine all necessary modules. The -L flag teUs
dSld to also search mylib for Hbraries.

93

Generating DSP Image Files

The rule:

V..d3img: y..d3bin
echo "***** Creating the memory image for '$<' ..."
$(DSP.IMG) $< > $<0

in vdiRules.make builds .dSimg files from .dSbin files, as discussed in Sec
tion 10.6.5.

Checking DSP Code with lint

The file vdiRules.make does not provide an inference rule for running lint on
DSP code. Instead, appHcation makefiles should define a rule on their own.
For instance, the rule:

dsp.lint:
echo "***** Checking DSP code ..."

$(LINT) $(LINT.FLAGS.DSP) $(DSP_SRC) $(LINT.VDI.DSP)

checks the appHcation source files named in DSPJSRC against the lint Hbrary
LINT-VDIJDSP for the system functions. The file vdiRules.make defines
LINT-FLAGS-DSP, but appHcation makefiles may append extra flags to it
prior to including vdiRules.make.

Compiling Host Code

The rule:

$ (DIR.OBJ)//..o: $ (DIR.SRC)/'/..C
echo "***** Compiling »$<» for VxWorks ..."
$(CC) -c $(C.FLAGS.H0ST) -o $0 $<

in vdiRules.make automaticaUy generates .dSo files from .c host C source files.
AppHcation makefiles may append extra flags to C-FLAGSJIOST prior to
including vdiRules.make.

94

Linking Host Code

The file vdiRules.make does not provide an inference rule for linking host
code. Instead, appHcation makefiles should define a rule on their own. For
instance, the rule:

host.o: $(H0ST.0BJS)

echo "***** Linking VxWorks code ..."
$(LD) $(LD_FLAGS_H0ST) -o $0 $(H0ST.0BJS) \

$(LD.SUFFIX_H0ST) | tee $(G:.o=).map

combines all modules named in HOST-OBJS with any necessary functions
from the Hbraries mentioned in LDJSUFFIXJIOST to produce host.o. The
file vdiRules.make defines LDJ'LAGS-HOST and LDJSUFFIXJIOST, but
appHcation makefiles may append to these variables prior to including vdiR
ules.make.

Note that one of the flags in LD-FLAGS-HOST is -r to instruct the host
linker to combine the modules into another relocatable .o file since VxWorks

dynamicaUy links binary files when it loads them.

Checking Host Code with lint

The file vdiRules.make does not provide an inference rule for running lint on
host code. Instead, appHcation makefiles should define a rule on their own.
For instance, the rule:

host.lint:

echo "***** Checking host code "
$(LINT) $(LINT_FLAGS_HOST) $(H0ST_SRC) $(LINT_VDI_H0ST)

checks the appHcation source files named in HOSTSRC against the lint
Hbrary LINT-VDI-HOST for the system functions. The file vdiRules.make
defines LINT-FLAGS-HOST, but appHcation makefiles may append extra
flags to it prior to including vdiRules.make.

10.9.3 Sample Makefiles

The simplest possible appHcation makefile contains only:

95

.SILENT:

DIR.SRC = .

DIR.OBJ » .

DIR.BIN o .

include $(VDI)/vdiRules.make

test.d3bin:

The statement .SILENT: tells make not to echo the commands it executes;
the inference rules expHcitly display progress messages that do not clutter
the screen.

In order to build test.dSbin, make looks for test.dSo. To build test.dSo, it
searches for test.c. The inference rules in vdiRules.make teU it how to build

each file.

A sHghtly more compHcated makefile might look like this:

.SILENT:

DIR.SRC = src

DIR.0BJ = obj
DIR.BIN = bin

C.FLAGS.DSP += -1

LD.FLAGS.DSP += -Llib

LD.FLAGS.H0ST += -Llib

DSP.OBJ = $(DIR.0BJ)/init.d3o $(DIR.OBJ)/move.d3o

DSP.SRC = $(DIR.SRC)/main.c $(DIR.SRC)/init.c \

$(DIR.SRC)/move.c

LIB.DSP += $(DSP.OBJ) lib/utils.d3o -lrobot32c -ltools32c

HOST.SRC = $(DIR_SRC)/control.c $(DIR.SRC)/report.c
HOST.OBJ = $(DIR.0BJ)/control.o $(DIR.OBJ)/report.o

include $(VDI)/vdiRules.make

all:

main.d3bin

host.o

96

main.d3bin: $(DSP.OBJ)

host.o: $(H0ST.0BJ)

echo "***** Linking VxWorks code ..."
$(LD) $(LD_FLAGS_HOST) -o $<9 $(H0ST.0BJ) \

$(LD.SUFFIX.HOST) I tee $(«:.o=).map

dsp.lint:

echo "***** Checking dsp code "

$(LINT) $(LINT.FLAGS_DSP) $(DSP_SRC) $(LINT.VDI.DSP)

host.lint:

echo "***** Checking host code ..."

$(LINT) $(LINT_FLAGS.HOST) $(H0ST.SRC) $(LINT_VDI_HOST)

The definitions of DIRJSRC, DIR-OBJ, and DIR-BIN name special directo
ries for holding various types of files. The addition to C-FLAGS-DSP tells
dScc to generate listing files showing the assembler source into which it com
piles C source. The additions to LD-FLAGS-DSP and LD-FLAGSJIOST
teU the Hnkers to search the directory lib for Hbraries. The additions to
LIBJDSP name the secondary DSP appHcation code modules and the appH
cation Hbraries.

The variables DSPJSRC, DSP.OBJ, HOSTSRC, and HOST-OBJ name
the various source and object modules for the DSP and host. The target all
forces make to generate both the DSP and host binaries when invoked with
no parameters.

The targets dsp.lint and host.lint force make to run lint on the source files
when invoked with:

make dsp.lint host.lint

97

Chapter 11

System Software Internals

The preceeding sections of this report cover most of the internal details of
the system software. The misceUaneous extra details included in this section,
combined with the numerous comments throughout the code, should provide
sufficient information for understanding and maintaining the code.

11.1 System Software Directory

Table 11.1 summarizes the contents of the system software directory and the
subdirectories within it.

11.2 Module Overview

The following list briefly describes each source code module:

vdiAddresses.c: Defines the global hardware information structures and
pointer variables pVdiDSP for the DSPs and pVdiDSPs for the host.

vdiBoot.c: Defines the function mainQ for the DSP startup code.

vdiBootStartup.s: Contains a modified version of the standard C startup
code in crtOS2c.s. It is linked together with only the module vdiBoot.
It is the first code a DSP actually executes (even before the function
mainQ of vdiBoot.c) and is responsible for initializing the stack and

98

Name Description
app/ Sample DSP appHcation
bin/ Binary files:

vdilOConsole

vdiHostCode.o

coff/ COFF library
include/ Header files

lib/ Libraries:

libvdi.o

libvdi32c.a

lint/ Lint libraries:

llib-lvdi.ln

Uib-lvdi32c.ln

man/ Online manual pages
map/ Memory layout files:

vdiBoot.map
vdiMonitor.map
vdiApplication.map

obj/ Object code:
.d3o files

.0 files

src/ Source code:

.c files

.lex files

.s files

clean-lex.sed Sed script to clean lex output
Makefile System makefile
system.parms Sample parameter file
vdiDependencies.make C header file dependencies
vdiRules.make Common make rules

Table 11.1: The contents of the system software directory. Subdirectories
are marked with a trailing slash.

99

number of memory wait states. After it calls the boot code, it branches
to the monitor that the boot code just loaded.

vdiDataCopy.c: Defines VdiDataCopyQ for copying a variable of any sup
ported remote input-output data type from one place to another.

vdiErrorReport.c: Defines VdiErrorReportQ to allow DSP programs to
report severe errors to the host.

vdiErrorServer.c: Defines VdiErrorServerQ which the host error server
task executes to detect DSP errors.

vdiHost.c: Defines VdilnitQ for initializing the entire system and the sup
port functions VdiLoadBootCodeQ, VdiLoadMonitorCodeQ, and Vdi-
TestQ. It also contains VdiShutdownQ for bringing down the system
and VdiChecklnitializedQ that many other routines call to verify that
the system is up before attempting to communicate with a DSP.

vdiIEEE2DSP.c: Defines IEEE2DSPQ and DSP2IEEEQ to convert be
tween the DSP and IEEE floating point formats. The DSP library
does contain functions for just this purpose, but they do not always
work correctly.

vdilOConsole.c: Defines the routine mainQ containing the remote I/O
console server code. For more information on the techniques it em
ploys for accessing Unix sockets, consult [3].

vdilORequester.c: Defines VdiPrintfQ and VdiScanfQ to allow applica
tions to request remote console services.

vdilOForwarder.c: Defines the function VdilOForwarderQ that the host
remote input-output forwarder tasks execute. Consult [3] for more
information on the techniques it uses to operate on Unix sockets.

vdilmage.c: Defines the routines for operating on COFF format binary files.
VdilmageLoadQ loads files into host data structures, VdilmageParame-
tersStoreQ writes hardware information from a DSP's perspective into
the .parms section of the structures, and VdilmageFreeQ deallocates
the structures. These routines call functions in the library libcoff.a. It

100

includes low level COFF access routines from an AT&T library and
some higher-level interface functions that Mani Srivastava wrote.

vdiMessageReceive.c: Defines VdiMessageReceiveQ to receive messages
through queues.

vdiMessageSend.c: Defines VdiMessageSendQ to send messages through
queues.

vdiMonitor.c: Contains the routine mainQ for the DSP monitor and the
supporting routines VdiMonBlockGetQ, VdiMonBlockPutQ, and Vdi-
MonLoopbackQ for servicing monitor commands.

vdiNullStartup.s: Contains an almost empty copy of the standard C start
up code in crtOS2c.s. It is linked together with all DSP code except
vdiBoot. It simply defines the variable errno for C library functions
and contains no executable code.

vdiParameters.c: Defines the function VdiParametersGetQ for reading the
system hardware parameter file and the supporting routine VdiDSP-
GetQ for reading each DSP structure within the file. These functions
use the lex tokenizer in vdiTokenize.lex to scan the file.

vdiQueueDisplay.c: Defines VdiQueueDisplayQ for viewing the contents
of a queue.

vdiQueueGet.c: Defines VdiQueueGetQ for reading packets in queues.

vdiQueuelnit.c: Defines VdiQueuelnitQ for formatting parts of DPRAM
into empty queues.

vdiQueuePut.c: Defines VdiQueuePutQ for adding packets to queues.

vdiSemaphore.c: Defines VdiSemaphorelnitQ for creating semaphores in
DPRAM and VdiSemaphorePQ and VdiSemaphoreVQ for operating
on them.

vdiTokenize.c: Contains the output that the tool lex generates from vdiTo
kenize.lex. The lex output is filtered with the sed script clean-lex.sed to
prefix all lex yy... symbols with vdi- to ensure that they do not clash
with the lex and yacc symbols of the VxWorks shell.

101

vdiTokenize.lex: Contains the lex source file describing the parameter file
tokenizer.

vdiTools.c: Contains VdiLoopbackQ, VdiMemDumpQ, VdiMemSetQ, Vdi-
BlockGetQ, VdiBlockPutQ, VdiAppLoadQ, VdiAppRunQ, and Vdi-
AppLoadAndRunQ to interact with DSP monitors and examineor mod
ify VME memory.

11.3 Building the System Software

The file Makefile contains all the information necessary for building the sys
tem software. The following list describes the targets it defines:

vdi: Builds all system software binary files, including bin/vdilOConsole,
bin/vdiHostCode.o, lib/libvdi.o, and lib/libvdi32c.a. This is the default
target, so make will build these files if invoked without any arguments.

dep: Scans all C source files for #include directives and builds the file vdiDe
pendencies.make to reflect the header file dependencies. Note that
vdiDependencies.make must exist in order to use the Makefile', if it
doesn't exist, create an empty version first with touch and then build
the proper dependencies with this target.

vdi.dsp.lint: Checks all DSP system software library modules.

vdi.host.lint: Checks all host system software library modules.

boot.lint: Checks the module vdiBoot.

monitor.lint: Checks the module vdiMonitor.

host.lint: Checks all host support modules.

console.lint: Checks the console server modules.

102

Chapter 12

Conclusion

Our initial experiences with the common hardware/software design platform
have shown it to be extremely worthwhile. The time and effort we invested
in designing, prototyping, and debugging the system software and the first
custom DSP board dramatically reduced the time and effort we needed to
create a second working system.

Furthermore, because both systems, one for controlling a robot and an
other for processing video images, share the interface the platform defines,
the two may easily work together to produce a "seeing" robot that can track
moving objects in real time.

In restrospect, however, two changes to the hardware platform would sig
nificantly improve the efficiency of the systems built upon it. First, using
dual port memory chips that provide hardware semaphores would provide
cleaner, faster synchronization. Second, using a local processor that is a
true 32-bit integer machine, unlike the DSP32C, and which comes with a
more intelligent compiler and other development tools, would speed up the
communication routines. In fact, having a better compiler would have sim
plified the development of the system software; we spent a great deal of time
hand optimizing C source code to lead the AT&T compiler to produce more
efficient assembly code.

103

Appendix A

Acknowledgements

Professor Bob Brodersen has been the guiding force in our efforts to reduce
the time we spend prototyping custom systems.

Mani Srivastava and Bill Baringer conceived many of the ideas I imple
mented in the system software. Mani and Bill also tested and helped debug
the software by putting it to actual use in developing their own robot control
and image processing systems, respectively.

Dragutin Petkovic, of the IBM Almaden Research Center in San Jose,
California, provided inspiration and feedback on the design.

Wayne Niblack, also from IBM Almaden, aided me in porting the high
accuracy line measurement software to this new platform by explaining how
the algorithms work and what results I should expect.

I am deeply grateful to these people for the time and effort they invested
in this project. Hopefully, the common platform we developed together will
simplify and expedite future custom design efforts.

104

Appendix B

Online Manual Pages for
System Software Functions

The following pages contain copies of the system software manual pages that
are also accessible online. The topics support and vdi in section 1 summarize
the host support code and system service library, respectively. Section 2
contains pages describing each individual function in greater detail.

These manual pages are not substitutes for this report. They contain
specific details about the functions but assume familiarity with the structure
and operation of the system software, its terminology and data types, and
procedures for developing applications atop it.

105

vdi(l) USER COMMANDS vdi(l)

NAME

vdi — VDI synchronization and communication library

SYNOPSIS

VdiErrorReport()
VdiMessageSend()
VdiMessageReceive()
VdiPrintf()
VdiQueueGet()
VdiQueuelnit()
VdiQueuePut()
VdiScanf()
VdiSemaphorelnit()
VdiSemaphoreP()
VdiSemaphoreV()

Report a fatal error to the host
Send a message through a queue
Receive a message from a queue
Send output to the remote I/O console
Get a packet from a queue
Initialize a queue
Put a packet into a queue
Receive input from the remote I/O console
Initialize a semaphore
Take a semaphore
Release a semaphore

DESCRIPTION

This library provides a set of routines for synchronizing
tasks running on the host with programs running on the DSP
and for allowing them to communicate through the shared
memory.

These routines are available to both host and DSP programs,
except for VdiErrorReport(), VdiPrintf(), and VdiScanf(),
which may be called only by DSP programs.

INCLUDE FILE

vdiCommon.h

VDI Ref. Manual Last change: June 2, 1989

support(1) USER COMMANDS support(1)

NAME

support — VDI system support routines

SYNOPSIS

vdilOConsole

VdiAppLoad()
VdiAppLoadAndRun()
VdiAppRun()
VdiBlockGet()
VdiBlockPut()
Vdilnit()
VdiLoopback()
VdiMemDump ()
VdiMemSet()
VdiQueueDisplay()
VdiShutdown()

Remote DSP I/O console server program
Load an application into DSP memory
Load and run a DSP application
Run a loaded DSP application
Read a block of DSP memory
Write a block of DSP memory
Initialize the system
Run a loopback test routine
Display a block of host memory
Write to a word of host memory
Display the contents of a queue
Shutdown the system

DESCRIPTION

These routines provide a means of starting & stopping the
system, manipulating DSP memory, running DSP applications,
servicing remote I/O requests from DSP programs, and testing
& benchmarking the communication channels.

vdilOConsole runs on a workstation. The other routines all

run on the host machine.

VDI Ref. Manual Last change: June 2, 1989

VdiAppLoad(2) SYSTEM CALLS VdiAppLoad(2)

NAME

VdiAppLoad — Load an application into DSP memory

SYNOPSIS

int VdiAppLoad(dspld, imageFile)
int dspld; /* DSP identification number */
char *imageFile; /* Name of application code file */

DESCRIPTION

VdiAppLoadQ loads the compiled, linked DSP application in
imageFile into DSP #dspld's memory for later execution.

RETURN VALUE

0 if successful. VDI_ERROR_INIT_SYS_NOT_UP if the system
has not been initialized. VDI_ERROR_IMAGE_FILE if the
application code cannot be loaded from the file.

SEE ALSO

VdiAppRun()

VDI Ref. Manual Last change: June 2, 1989

VdiAppLoadAndRun(2) SYSTEM CALLS VdiAppLoadAndRun(2)

NAME

VdiAppLoadAndRun — Load and run a DSP application

SYNOPSIS

int VdiAppLoadAndRun(dspld, imageFile)
int dspld; /* DSP identification number */
char *imageFile; /* Name of application code file */

DESCRIPTION

VdiAppLoadAndRun() loads the compiled, linked DSP applica
tion in imageFile into DSP #dsp_IcT s memory and then executes
it. It does not wait for the application to finish before
returning.

RETURN VALUE

0 if successful. VDI_ERROR_INIT_SYS_NOT_UP if the system
has not been initialized. VDI_ERROR_IMAGE_FILE if the
application code cannot be loaded from the file.

SEE ALSO

VdiAppLoad()
VdiAppRun()

VDI Ref. Manual Last change: June 2, 1989

VdiAppRun(2) SYSTEM CALLS VdiAppRun(2)

NAME

VdiAppRun — Run a loaded DSP application

SYNOPSIS

int VdiAppRun(dspld)
int dspld; /* DSP identification number */

DESCRIPTION

VdiAppRun() executes the application previously loaded into
DSP #dspld's memory. It does not wait for the application
to finish before returning.

RETURN VALUE

0 if successful. VDI_ERROR_INIT_SYS_NOT_UP if the system
has not been initialized.

SEE ALSO

VdiAppLoad()

VDI Ref. Manual Last change: June 2, 1989

VdiBlockGet(2) SYSTEM CALLS VdiBlockGet(2)

NAME

VdiBlockGet — Read a block of DSP memory

SYNOPSIS

int VdiBlockGet(dspld, address,
int dspld;
Vdilnt address;
unsigned int nWords;
void *pData;

nWords, pData)
/* DSP identification number */
/* Address of block in DSP memory space */
/* Length of block in words */
/* Pointer to buffer to receive data */

DESCRIPTION

VdiBlockGet() returns the contents of a block of DSP
#dspld/s memory nWords long beginning at address in the
buffer to which pData points.

RETURN VALUE

0 if successful. VDIJ3RR0R_INIT_SYS_N0T_UP if the system
has not been initialized. VDI_ERROR_MESSAGE_BAD if the mes
sage from the monitor program containing the block is not
properly formatted.

SEE ALSO

VdiBlockPutO

VDI Ref. Manual Last change: June 2, 1989

VdiBlockPut(2) SYSTEM CALLS VdiBlockPut(2)

NAME

VdiBlockPut — Write a block of DSP memory

SYNOPSIS

int VdiBlockPut(dspld, address,
int dspld;
Vdilnt address;

unsigned int nWords;
void *pData;

nWords, pData)
/* DSP identification number */
/* Address of block in DSP memory space */
/* Length of block in words */
/* Pointer to buffer with data */

DESCRIPTION

VdiBlockPut() writes the nWords of data to which pData

points into DSP #dspld's memory space beginning at address.

RETURN VALUE

0 if successful. VDI_ERROR_INIT_SYS_NOT_UP
has not been initialized.

SEE ALSO

VdiBlockGet()

VDI Ref. Manual Last change: June 2, 1989

if the system

VdiErrorReport(2) SYSTEM CALLS VdiErrorReport(2)

NAME

VdiErrorReport — Report a fatal error to the host

SYNOPSIS

#include "vdiErrorReport.h"

void VdiErrorReport(errorCode, loop)
int errorCode; /* Code identifying error */
int loop; /*

Flag indicating that VdiErrorReportQ
should enter an infinite loop

*/

DESCRIPTION

VdiErrorReport() communicates a fatal error, given by error-
Code, from a DSP program to the host. It does not use the
communications queues or the remote I/O console and can thus
be trusted even when those lines of communication fail.

If loop is non-zero, VdiErrorReport() will enter an infinite
loop after posting the error.

The error message is detected and displayed by the fatal
error server task on the host.

VdiErrorReport() may be called only from a DSP program.

RETURN VALUE

None.

VDI Ref. Manual Last change: June 2, 1989

Vdilnit(2) SYSTEM CALLS Vdilnit(2)

NAME

Vdilnit — Initialize the system

SYNOPSIS

int Vdilnit(parameterFileName)
char *parameterFileName; /* Name of file with system parameters */

DESCRIPTION

Vdilnit() initializes the system, performing all of the
steps necessary to bring up the monitor program on each DSP
in the system. It must be called exactly once before per
forming any other operations.

Vdilnit() looks in the file parameterFileName for descrip
tions of all of the components in the system, both from the
host's perspective and each DSP's perspective. Consult the
manual or the comments in the sample system parameter file
for more details.

RETURN VALUE

0 if successful. VDI_ERROR_PARAMETERS_BAD if the parameter
file is not correctly formatted. VDI_ERROR__IMAGE__FILE if
the bootstrap or monitor code cannot be loaded from the
corresponding files. VDI_ERROR_INIT_SPAWN__FAILED if a back
ground task cannot be spawned.

SEE ALSO

VdiShutdown()

VDI Ref. Manual Last change: June 2, 1989

vdilOConsole(2) SYSTEM CALLS vdilOConsole(2)

NAME

vdilOConsole — Remote DSP I/O console server program

SYNOPSIS

vdilOConsole [port number]

DESCRIPTION

vdilOConsole services remote I/O requests from DSP applica
tions, as generated by the functions VdiPrintf() and VdiS
canf () .

It listens on a socket with the specified port number, which
must match that supplied to Vdilnit() in the system parame
ter file. The number must be greater than 1000.

The first column of each line the server displays shows the
identification number of the DSP which made the correspond
ing request. The next several characters are -> or <- if
the request is for output from the DSP or input to the DSP,
respectively.

Press control-C to stop the program.

RETURN VALUE

1 if the command line syntax is not correct.
VDI_ERROR_IO_SOCKET_FAILED if the socket cannot be created.
VDI_ERROR_IO_BIND_FAILED if the socket cannot be bound.
VDI_ERROR_IO_LISTEN_FAILED if the server cannot listen on
the socket. VDI_ERROR_JEO_ACCEPT_FAILED if the server cannot
accept a connection from a client. VDI_ERROR_IO_READ_FAILED
if the server cannot read a request from the socket.
VDI_ERROR_IO_WRITE_FAILED if the server cannot send a
response through the socket.

SEE ALSO

VdiPrintf()
VdiScanf()

VDI Ref. Manual Last change: June 2, 1989

VdiLoopback(2) SYSTEM CALLS VdiLoopback(2)

NAME

VdiLoopback — Run a loopback test routine

SYNOPSIS

int VdiLoopback(dspld, mode, n)
int dspld; /* DSP identification number */
int mode; /* Test mode number */
int n; /* Number of samples (modes 1 to 4) */

DESCRIPTION

VdiLoopback() performs a loopback test of the monitor pro
gram running on DSP #dspld. It sends packets to the DSP's
monitor through a queue and waits for the monitor to return
them through another queue.

The parameter mode sets the test format.

In mode 0, which is interactive, data is read from standard
input and sent to the DSP; the receieved data is then
displayed. The routine exits when a null line is read. The
parameter n is ignored.

In mode 1, a packet with one data word is sent n times.

In mode 2, the largest packet the outgoing queue can hold is
sent n times.

Modes 3 and 4 are like 1 and 2, respectively, except that
the data is read from and written to the same queue to test
the communications routines locally (i.e. the DSP's monitor
program is not involved).

In the non-interactive modes 1 through 4, the average
round-trip packet transit time is computed and displayed to
benchmark the communications routines.

RETURN VALUE

0 if successful. VDI_ERROR_INIT_SYS_NOT_UP if the system
has not been initialized.

SEE ALSO

VdiQueuePut()
VdiQueueGet()

VDI Ref. Manual Last change: June 2, 1989

VdiMemDump (2) SYSTEM CALLS VdiMemDump (2)

NAME

VdiMemDump — Display a block of host memory

SYNOPSIS

void VdiMemDump(address, nWords)
VdiWord *address; /* Address of block */
int nWords; /* Length of block */

DESCRIPTION

VdiMemDump() displays in hex the contents of nWords of host
memory beginning at address. It is useful for displaying
the contents of off-board memory, such as the shared commun
ications memory, which the VxWorks memory dump command can
not access.

RETURN VALUE

None.

SEE ALSO

VdiMemSet ()

VDI Ref. Manual Last change: June 2, 1989

VdiMemSet(2) SYSTEM CALLS VdiMemSet(2)

NAME

VdiMemSet — Write to a word of host memory

SYNOPSIS

void VdiMemSet(address, value)
VdiWord *address;
VdiWord value;

/* Address of word */
/* Value to write */

DESCRIPTION

VdiMemSet() writes value into the word at address in the
host's memory space. It is useful for setting the contents
of off-board memory, such as the shared communications
memory, which the VxWorks memory dump command cannot access.

RETURN VALUE

None.

SEE ALSO

VdiMemDump ()

VDI Ref. Manual Last change: June 2, 1989

VdiMessageReceive(2) SYSTEM CALLS VdiMessageReceive(2)

NAME

VdiMessageReceive — Receive a message from a queue

SYNOPSIS

#include "vdiMessage.h"

int VdiMessageReceive(pDSP, pQueue, pTag, pNWords, pData, room)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiQueue *pQueue; /* Pointer to queue */
unsigned int *pTag; /* Pointer to variable to receive tag */
unsigned int *pNWords; /* Pointer to variable to receive size */
void *pData; /* Pointer to buffer to receive data */
unsigned int room; /* Length of buffer in words */

DESCRIPTION

VdiMessageReceive() receives a message from the queue. It
is analogous to VdiQueueGet() but does not impose restric
tions on the length of the data. The message must have been
sent by VdiMessageSend().

The message tag is returned in *pTag, the length in *pNWords
(in words), and the data in *pData.

No more than room words will be written into *pData; if the
message length exceeds room, only the first room words of
the message data will be written into the buffer (*pNWords
will still be set equal to the actual message length).

RETURN VALUE

0 indicates success.

SEE ALSO

VdiMessageSend()

VDI Ref. Manual Last change: June 2, 1989

VdiMessageSend(2) SYSTEM CALLS VdiMessageSend(2)

NAME

VdiMessageSend — Send a message through a queue

SYNOPSIS

tinclude "vdiMessage.h"

int VdiMessageSend(pDSP, pQueue, tag, nWords, pData)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiQueue *pQueue; /* Pointer to queue */
unsigned int tag; /* Message tag */
unsigned int nWords; /* Message length */
void *pData; /* Pointer to buffer with message data */

DESCRIPTION

VdiMessageSend() sends a long packet, or message, through
the queue. It is analogous to VdiQueuePut(), but does not
restrict the length of the data to the capacity of the
queue.

The parameter tag specifies the message tag, nWords its
length (in words), and *pData its contents.

VdiMessageSend() sends a start of message packet, followed
by as many packets as necessary to transfer the data, fol
lowed by an end of message packet.

RETURN VALUE

0 indicates success.

SEE ALSO

VdiMessageReceive()

VDI Ref. Manual Last change: June 2, 1989

VdiPrintf(2) SYSTEM CALLS VdiPrintf(2)

NAME

VdiPrintf — Send output to the remote I/O console

SYNOPSIS

#include "vdilO.h"

void VdiPrintf(pText, pVar, varType, newline)
char *pText; /* Identification string */
void *pVar; /* Pointer to variable */
int varType; /* Data type of variable */
int newline; /*

Flag indicating that VdiPrintf()
should print a newline character

*/

DESCRIPTION

VdiPrintf() displays the message, *pText, followed by the
value of the variable, *pVar, on the remote I/O console. If
newline is non-zero, then it will also print a newline char
acter following the variable.

The parameter varType identifies the object to which pVar
points. It must have one of the following values:

VDI_NONE
VDI_CHAR
VDI_SHORT
VDI_INT
VDI_LONG
VDI_FLOAT
VDI_DOUBLE
VDI__U_SHORT
VDI_U_JENT
VDI_U_LONG
VDI_HEX_SHORT
VDI_HEX_INT
VDI__HEX_LONG
VDI_HEX_U_SHORT
VDI_HEX_U_INT
VDI_HEX_U_LONG
VDI_STRING

When the type is VDI STRING or VDI NONE, VdiPrintf () just
prints the string and ignores pVar.

VdiPrintf() displays only the first VDI 10 TEXT MAX charac
ters of the identification string.

VdiPrintf() may be called only from a DSP program.

RETURN VALUE

None.

VDI Ref. Manual Last change: June 2, 1989

VdiPrintf(2) SYSTEM CALLS VdiPrintf(2)

SEE ALSO

VdiScanf()

VDI Ref. Manual Last change: June 2, 1989

VdiQueueDisplay(2) SYSTEM CALLS VdiQueueDisplay(2)

NAME

VdiQueueDisplay — Display the contents of a queue

SYNOPSIS

void VdiQueueDisplay(pQueue)
VdiQueue *pQueue; /* Pointer to queue */

DESCRIPTION

VdiQueueDisplay() displays the contents of the queue and its
header.

It shows only the first 6 words of long packets waiting in
the queue.

RETURN VALUE

None.

SEE ALSO

VdiQueuePut()
VdiQueueGet()

VDI Ref. Manual Last change: June 2, 1989

VdiQueueGet (2) SYSTEM CALLS VdiQueueGet(2)

NAME

VdiQueueGet — Get a packet from a queue

SYNOPSIS

tinclude "vdiQueue.h"

int VdiQueueGet(pDSP, pQueue,
VdiDSP *pDSP;
VdiQueue *pQueue;
unsigned int *pTag;
unsigned int *pNWords;
void *pData;
unsigned int room;
int nonBlocking;

pTag, pNWords, pData, room, nonBlocking)
/* Pointer to DSP information */
/* Pointer to queue */
/* Pointer to variable to receive tag */
/* Pointer to variable to receive size */
/* Pointer to buffer to receive data */
/* Length of buffer in words */
/*

Flag indicating that VdiQueueGet()
should not wait if queue is empty

*/

DESCRIPTION

VdiQueueGet() returns the packet at the head of the queue.
If the queue is empty, it waits until a packet is available,
unless nonBlocking is non-zero, in which case it returns
VDI ERROR QUEUE EMPTY instead.

The packet tag is returned in *pTag,
(in words), and the data in *pData.

the length in *pNWords

No more than room words will be written into *pData; if the
packet length exceeds room, only the first room words of the
packet data will be written into the buffer (*pNWords will
still be set equal to the actual number of words in the
packet).

RETURN VALUE

0 indicates success. VDI_ERROR_QUEUE_EMPTY indicates
the queue is empty (non-blocking mode only).

SEE ALSO

VdiQueuePut()

VDI Ref. Manual Last change: June 2, 1989

that

VdiQueuelnit(2) SYSTEM CALLS VdiQueuelnit(2)

NAME

VdiQueuelnit — Initialize a queue

SYNOPSIS

#include "vdiQueue.h"

int VdiQueuelnit(pDSP, pQueue, length)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiQueue *pQueue; /* Pointer to queue */
unsigned int length; /* Total length of queue with header */

DESCRIPTION

VdiQueuelnit() formats the block of memory to which *pQueue
points into an empty queue. The capacity is set such that
the queue header and contents occupy length words.

RETURN VALUE

0 indicates success.

SEE ALSO

VdiQueuePut ()
VdiQueueGet()

VDI Ref. Manual Last change: June 2, 1989

VdiQueuePut(2) SYSTEM CALLS VdiQueuePut(2)

NAME

VdiQueuePut — Put a packet into a queue

SYNOPSIS

tinclude "vdiQueue.h"

int VdiQueuePut(pDSP, pQueue,
VdiDSP *pDSP;
VdiQueue *pQueue;
unsigned int tag;
unsigned int nWords;
void *pData;
int nonBlocking;

tag, nWords, pData, nonBlocking)
/* Pointer to DSP information */
/* Pointer to queue */
/* Packet tag */

Packet length */
Pointer to buffer with packet data

/*
/*
/*

*/

Flag indicating that VdiQueuePut()
should not wait if queue does not
have room

DESCRIPTION

VdiQueuePut() adds a packet to the end of the queue. It
waits until the queue contains enough room to hold the new
packet, unless nonBlocking is non-zero, in which case it
returns VDI ERROR QUEUE NO ROOM instead.

The packet must be small enough to fit entirely into the
queue. Thus nWords must not exceed pQueue->capacity -
VDI PACKET HEADER SIZE; if it does, VdiQueuePut() will never
return.

RETURN VALUE

0 indicates success. VDI_ERROR_QUEUE_NO_ROOM indicates that
the queue does not have enough space to hold the new packet
(non blocking mode only).

SEE ALSO

VdiQueueGet()

VDI Ref. Manual Last change: June 2, 1989

*/

VdiScanf(2)

NAME

VdiScanf — Receive input from the remote I/O console

SYNOPSIS

#include "vdilO.h"

void VdiScanf(pText, pVar, varType)
char *pText; /* Prompt string */
void *pVar; /* Pointer to variable */
int varType; /* Data type of variable */

DESCRIPTION

VdiScanf() first displays the prompt, *pText, on the remote
I/O console. It then waits for the user to enter a value of
type varType at the console, and it returns that value in
*pVar.

The parameter varType indicates the type of variable
expected and must have one of the following values:

VDI_NONE
VDI_CHAR
VDI__SHORT
VDI_INT
VDI_LONG
VDI_FLOAT
VDI_DOUBLE
VDI_U_SHORT
VDI_U_INT
VDI_U_LONG
VDI_HEX_SHORT
VDI_HEX_INT
VDI_HEX_LONG
VDI_HEX_U_SHORT
VDI_HEX_U_INT
VDI_HEX_U_LONG
VDI_STRING

When the type is VDI NONE, VdiScanf() just prints the string
and does not read a value from the console. When the type
is VDI STRING, VdiScanf() truncates the string to
VDI 10 TEXT MAX characters, including the terminating null.
If there is room, the null character will be preceeded by a
newline. The buffer to which pVar points must have room for
up to VDI 10 TEXT MAX characters.

VdiScanf() displays only the first VDI 10 TEXT MAX charac
ters of the prompt string.

VdiPrintf() may be called only from a DSP program.

RETURN VALUE

None.

VdiScanf(2)

SEE ALSO

VdiPrintf()

VdiSemaphorelnit(2) SYSTEM CALLS VdiSemaphorelnit(2)

NAME

VdiSemaphorelnit — Initialize a semaphore

SYNOPSIS

#include "vdiSemaphore.h"

void VdiSemaphorelnit(pDSP, pSemaphore, n)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiSemaphore *pSemaphore; /* Pointer to semaphore */
VdiSemaphore n; /* Initial value for semaphore */

DESCRIPTION

VdiSemaphorelnit() initializes a region of memory for later
use as a semaphore.

Such semaphores are used for synchronizing host processes
with DSP programs; they may exist only in the dual port
memory.

RETURN VALUE

None.

SEE ALSO

VdiSemaphoreP()
VdiSemaphoreV()

VDI Ref. Manual Last change: June 2, 1989

VdiSemaphoreP(2) SYSTEM CALLS VdiSemaphoreP(2)

NAME

VdiSemaphoreP — Take a semaphore

SYNOPSIS

#include "vdiSemaphore.h"

int VdiSemaphoreP(pDSP, pSemaphore, n, nonBlocking)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiSemaphore *pSemaphore; /* Pointer to semaphore */
VdiSemaphore n; /* Number of "units" to take */
int nonBlocking; /*

Flag indicating that VdiSemaphoreP()
should not wait if semaphore is
unavailable

*/

DESCRIPTION

VdiSemaphoreP () performs the atomic P() operation on the
semaphore: it first waits for the semaphore's value to equal
or exceed n and then decrements it by n.

However, if nonBlocking is non-zero, VdiSemaphoreP() will
not wait: if the semaphore has a value greater than or equal
to n, it will decrement it by n and return zero to indicate
success; otherwise it will return non-zero to indicate
failure.

RETURN VALUE

0 indicates success. Non-zero indicates failure (non-
blocking mode only).

SEE ALSO

VdiSemaphoreV()

VDI Ref. Manual Last change: June 2, 1989

VdiSemaphoreV(2) SYSTEM CALLS VdiSemaphoreV(2)

NAME

VdiSemaphoreV — Release a semaphore

SYNOPSIS

#include "vdiSemaphore.h"

void VdiSemaphore(pDSP, pSemaphore, n)
VdiDSP *pDSP; /* Pointer to DSP information */
VdiSemaphore *pSemaphore; /* Pointer to semaphore */
VdiSemaphore n; /* Number of "units" to release */

DESCRIPTION

VdiSemaphoreV() performs the atomic V() operation on the
semaphore: it increments the value of the semaphore by n.

RETURN VALUE

None.

SEE ALSO

VdiSemaphoreP()

VDI Ref. Manual Last change: June 2, 1989

VdiShutdown(2) SYSTEM CALLS VdiShutdown(2)

NAME

VdiShutdown — Shutdown the system

SYNOPSIS

int VdiShutdown()

DESCRIPTION

VdiShutdown() shuts down the entire system: it halts each
DSP and deletes every background task started by Vdilnit().

RETURN VALUE

0 if successful.

SEE ALSO

Vdilnit ()

VDI Ref. Manual Last change: June 2, 1989

Appendix C

An Application: High
Accuracy Edge Measurement

As a first step toward implementing the real-time motion-tracking system,
we ported a high accuracy straight-line edge measurement software package
to the common platform with Bill Baringer's projection-based image process
ing board. Wayne Niblack and Dragutin Petkovic originally developed this
software at the IBM Almaden Research Center in San Jose. They describe
the algorithm in detail in [4].

We only ported the core routines which locate edges. Furthermore, be
cause the projection ASICs are not yet fully operational, we simulate the
projections in software. When the ASICs are ready, we will replace the sim
ulation routines with functions that utilize chips.

This appendix briefly describes how the ported software implements the
algorithm on the common platform. For details about the algorithm, con
sult [4], For details about the software that we ported, consult Wayne or
Dragutin. This appendix assumes you are somewhat familiar with the oper
ation of the original software.

C.l Processing

The programtakes as input a grey-scale image and two points which roughly
mark the ends of an edge in the image. It then computes the exact location
of the edge: an angle $ and distance p (from the origin). In addition, the

106

program accepts several parameters that control the details of the algorithm.
The algorithm computes projections at various angles in a range centered

around the angle of the line specified by the input points. It then analyzes
the results to determine the actual exact angle of the edge and its location.
Ideally, the image processing boards should perform the projections (on the
ASICs) and local analyses (on the DSPs) in parallel, while the central host
processor should perform the global analysis. Presently, we have only one
image processing board, so it must sequentially do the local computing for
each angle.

We have distributed the various processing steps such that for each angle,
the DSP, lacking a projection ASIC, asks the host to perform the projections
since the host has access to the images stored in files. The DSP then com
putes the gradient of the projection vector, finds the peak, computes the p
corresponding to that particular angle, and sends the results to the host.
The host collects these results and computes the final 9 and p.

We operate the DSP as a "server". It waits for requests for local compu
tation from the host, executes them, and returns the results. Thus the host
maintains control over the system.

C.2 Communication

The DSP and host must exchange several pieces of data. Initially, the host
must provide the DSP with the region of interest for the projection (derived
from the initial points) and the parameters that control the local analysis.
These are sent in a message with tag TAG-ANALYZE containing the follow
ing structure:

typedef struct {

unsigned int XUpperLeft, YUpperLeft, XRectSize, YRectSize;
float theta;

int rhoCentroidK;

int rhoThresholdPercent;
} AnalysisPanns;

(Naturally, the host must convert the float field theta to the DSP's floating
point format before sending it.)

Next, when the DSP sends a request to the host for a projection, it
sends a message with tag TAGSIMULATEJPROJECTION and no body

107

(because the hostalready has the information necessary to do the projection).
The host responds with the results of the projection in a message with tag
TAGSIMULATIONJRESULTS containing the following structure:

typedef struct {
unsigned int sums[MAX.POINTS];
unsigned int counts[MAX.POINTS];
long rhoOffset;

} SimulationResults;

Finally, when the DSP completes a local analysis, it reports its results to
the host in a message with tag TAG-ANALYSIS-RESULTS containing the
structure:

typedef struct {
float maxGradient;

float rhoOfTheta;

} AnalysisResults;

(The host must of course convert the float fields from the DSP's floating
point format back to the IEEE format after receiving the message.)

C.3 Files

The list below describes the files that comprise the software:

comm.h: Defines the tags and structures for the messages that the DSP and host
exchange.

host.o: Contains the linked code for the host.

imagcdat: Contains the image that the host reads when simulating projections.
For the moment, the software reads only this image file. It consists of 80
lines of text with 79 characters on each line (a mixture of exclamation
marks and tildes to yield high contrast). The Y coordinate runs from
0 to 79 from top to bottom and the X coordinate runs from 0 to 78
from left to right.

main.c: Contains the server loop that executes on the DSP.

108

main.d3bin: Contains the linked code for the DSP.

Makefile: Describes howto build the application (both the DSP and host pieces).

measurex: Contains the top-level function measureQ that starts the program on
the host.

measurch: Contains the definitions common to all the code.

measure.pro: Defines the parameters that control the analysis; the host reads it at
run-time.

paramx

param.h

project.c

project.h

projrec.c

projrech

pro jutile

projutiLh

slctmeas.c

slctmeas.h

slctutilx

slctutil.h

Contains the code for reading measurcpro.

Contains the function prototypes for code in paramx.

Contains the code for computing projections in software.

Contains the function prototypes for code in project.c.

Contains the local analysis code that runs on the DSP.

Contains the function prototypes for code in projrec.c

Contains utiHty routines that projrecc uses.

Contains the function prototypes for code in projutile.

Contains the global analysis code that runs on the host.

Contains the function prototypes for code in slctmeas.c.

Contains utility routines that slctmeas.c uses.

Contains the function prototypes for code in slctutil.c.

With few exceptions, these file names correspond to those in the original
software. Likewise, the names of the functions and variables in the ported
code almost exactly correspond to those in the original code.

109

C.4 Operation

To run the software:

1. Set the parameters in measure.pro. The sample file contains typical
values as well as comments describing the meaning of each parameter.

2. Initialize the system.

3. Load and start the DSP code with the command:

VdiAppLoadAndRun(0,"main.d3bin")

4. Load and start the host code with the commands:

Id < host.o

measure

5. Supply the information the host requests. If you respond with the
quit command, the host will tell the server on the DSP to terminate
(by sending the tag TAG-END instead of TAG-ANALYZE) and return
you to the VxWorks prompt.

Sample output from the program is shown below:

ssssos High-Accuracy Projection-Based Edge Locator ======

Reading system parameters from file 'measure.pro' . . .

Reading image from image.dat . . .

Enter the two approximate endpoints (xi, yl, x2, y2) of the
line you wish to find or Q to quit: 22 42 15 49
Region of interest: (10, 37) to (26, 53)
+++++ Sending analysis request to DSP (theta = 43.00)... done
rhoRectUpperLeft: 32.54, rhoOffset: 0, rounded: 2165798
+++++ Sending analysis request to DSP (theta = 43.25)... done
rhoRectUpperLeft: 32.63, rhoOffset: 0, rounded: 2171565
+++++ Sending analysis request to DSP (theta = 43.50)... done
rhoRectUpperLeft: 32.72, rhoOffset: 0, rounded: 2177293
+++++ Sending analysis request to DSP (theta = 43.75)... done

110

rhoRectUpperLeft: 32.80, rhoOffset: 0, rounded: 2182978
+++++ Sending analysis request to DSP (theta = 44.00)... done
rhoRectUpperLeft: 32.89, rhoOffset: 0, rounded: 2188623
+++++ Sending analysis request to DSP (theta = 44.25)... done
rhoRectUpperLeft: 32.98, rhoOffset: 0, rounded: 2194227
+++++ Sending analysis request to DSP (theta = 44.50)... done
rhoRectUpperLeft: 33.06, rhoOffset: 0, rounded: 2199790
+++++ Sending analysis request to DSP (theta = 44.75)... done
rhoRectUpperLeft: 33.15, rhoOffset: 0, rounded: 2205311
+++++ Sending analysis request to DSP (theta = 45.00)... done
rhoRectUpperLeft: 33.23, rhoOffset: 0, rounded: 2210792
+++++ Sending analysis request to DSP (theta = 45.25)... done
rhoRectUpperLeft: 33.31, rhoOffset: 0, rounded: 2216230

+++++ Sending analysis request to DSP (theta = 45.50) done
rhoRectUpperLeft: 33.39, rhoOffset: 0, rounded: 2221627

+++++ Sending analysis request to DSP (theta = 45.75)... done
rhoRectUpperLeft: 33.48, rhoOffset: 0, rounded: 2226983

+++++ Sending analysis request to DSP (theta = 46.00)... done
rhoRectUpperLeft: 33.56, rhoOffset: 0, rounded: 2232296

+++++ Sending analysis request to DSP (theta = 46.25)... done
rhoRectUpperLeft: 33.64, rhoOffset: 0, rounded: 2237568

+++++ Sending analysis request to DSP (theta = 46.50)... done
rhoRectUpperLeft: 33.72, rhoOffset: 0, rounded: 2242798
+++++ Sending analysis request to DSP (theta = 46.75)... done
rhoRectUpperLeft: 33.80, rhoOffset: 0, rounded: 2247985

+++++ Sending analysis request to DSP (theta = 47.00)... done
rhoRectUpperLeft: 33.88, rhoOffset: 0, rounded: 2253131
theta rho maxGradient

43.00 45.20 44.4782

43.25 45.30 38.7500

29.7599

32.1923

39.8571

43.4000

52.0800

76.5882

76.5882

76.5882

65.0999

43.50 45.44

43.75 45.63

44.00 44.99

44.25 45.00

44.50 44.99

44.75 45.00

45.00 45.00

45.25 45.00

45.50 44.99

111

45.75 45.00 50.0769

46.00 45.00 44.8965

46.25 44.99 41.3333

46.50 46.37 33.4800

46.75 46.51 28.3043

47.00 46.66 36.3913

(First) absolute peak: Rho = 45.00, i = 44.75
rho/theta: 44.75, gradient/weight: 76.5882
rho/theta: 45.00, gradient/weight 76.5882
rho/theta: 45.25, gradient/weight 76.5882

Final rho taken from rho of theta peak.
Final edge parameters: rho = 45.00, i = 45.00

rho 45.00

XL1 XL2 DeltaX: 64 0 64 YL1 YL2 DeltaY: 0 64 -64

Rho = 45.000000, theta = 45.000000

Enter the two approximate endpoints (xl, yl, x2, y2) of the
line you wish to find or Q to quit: q

A parameter in measure.pro controls how much information the program
displays as it runs. The script above corresponds to a detail level of 2.

112

Appendix D

Optimizing DSP C Code

The following sections suggest techniques for writing C source code for the
dScc compiler to speed up and shorten the object code it produces. Con
sult [8] for additional suggestions from AT&T.

We learned these "tricks" during our experiences writing the system soft
ware. Until AT&T adds an intelligent optimizer to dScc, the use of such
techniques makes a significant difference.

D.l Use ints Wherever Feasible

The DSP32C compiler deals with the data type int more efficiently than
any other. Being 24-bits wide, it exactly matches the size of the machine's
integer registers. To handle longs, which are 32-bits wide, the compiler must
separately manage the lower and upper 16-bits. To handle shorts, which are
16-bits wide, the compiler must often generate extra instructions to mask off
the upper 8-bits of registers.

This is the prime reason for the existence of the system data type Vdilnt.
For variables that the host and DSPs must share, it allows each machine to
work with the data type it handles most efficiently, provided that 24-bits of
precision are sufficient.

113

D.2 Use the Keyword register

One of dScc's shortcomings is that its register allocation algorithm underuti-
lizes the DSP32C register set. You must explicitly label often used function
parameters and local variables with the keyword register to instruct dScc to
keep them in registers for rapid access.

114

Appendix E

Porting the Software to Other
Hardware Platforms

The main assumption which the system software makes about the underlying
hardware is that it consists of a master host processor controlling multiple
slave microprocessors through shared memory. It should be easily portable
to other hardware platforms that are based on this model of control.

The most significant changes must be made to the semaphore module
since the arbitration logic is likely to vary greatly across different hardware
designs.

If the new hardware represents C data types in a different manner, or if it
follows different high/low-endian coventions, some extra changes to the com
munications and remote input-output code will be necessary. For instance,
our implementation shuffles the characters in strings and converts between
AT&T's DSP floating point representation and the IEEE scheme.

The memory maps and system parameter files and associated routines will
probably require some changes to account for different memory organizations.

Some other changes will be necessary to optimize the software to the new
architecture. For instance, our implementation uses 24-bit integers through
out the DSP code because that processor manipulates them more efficiently
than any other data type.

Finally, some changes may be necessary to the DSP code file loading
routines if the cross-compiler and linker for the new architecture produces
files in a different format.

115

Appendix F

Manufacturers

Contact the companies named below for more information on the commer
cially-available hardware and software discussed in this report:

• AT&T Microelectronics

Department 50AL330240
555 Union Boulevard

AUentown, PA 18103
800-372-2447

• Communication Machinery Corporation
125 Cremona Drive

Santa Barbara, CA 93117
805-968-4262

• Heurikon Corporation
3201 Latham Drive

Madison, WI 53713

• Wind River Systems, Incorporated
1316 Sixty-Seventh Street
Emeryville, CA 94608
415-428-2623

UUCP: sun!wrs!inquiries

116

Bibliography

William B. Baringer, Robert W. Brodersen, Dragutin Petkovic, and
Jorge Sanz. ASICs and Machine Vision Applications of the Parallel
Pipeline Projection Engine. 1988 IEEE VLSI Conference, Monterey, Cal
ifornia. November 1988.

Gautam B. Doshi. Design and Implementation of a Six Axis Robot Con
troller. Electronics Research Laboratory, University of California, Berke
ley. February 7, 1989.

R. Nigel Horspool. C Programming in the Berkeley UNIX Environment.
Prentice-Hall Canada, Incorporated. Scarborough, Ontario. ©1986.

Dragutin Petkovic, Wayne Niblack, Myron FHckner. Projection-Based
High AccuracyMeasurement of Straight-Line Edges. Machine Vision and
Applications, Volume 1, Number 3. 1988. Pages 183-199.

Abraham Silberschatz and James L. Peterson. Operating System Con
cepts, Alternate Edition. Addison-Wesley Publishing Company. ©1988.

VxWorks Version 4-0 Reference Manual, Volumes 1 & 2. Wind River
Systems. 1988.

WE DSP32 andDSP32C C Language Compiler, Library Reference Man
ual. AT&T Document Management Organization. Publication #MN88-
12DMOS. June 1988.

WE DSP32 and DSPS2C C Language Compiler, User Manual. AT&T
Document Management Organization. Publication #MN88-03DMOS.
August 1988.

117

[9] WE DSP32 and DSP32C Support Software Library, User Manual. Publi
cation #MN88-04DMOS. AT&T Document Management Organization.
August 1988.

[10] WE DSP32C Digital Signal Processor, Information Manual. AT&T
Document Management Organization. Publication #MN88-06DMOS.
December 1988.

118

	ERL-90-92 (1 of 2)
	ERL-90-92 (2 of 2)

