Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DEVELOPING A GUIDE USING
OBJECT-ORIENTED PROGRAMMING

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/93

11 October 1990

DEVELOPING A GUIDE USING
OBJECT-ORIENTED PROGRAMMING

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M9(0/93

11 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DEVELOPING A GUIDE USING
OBJECT-ORIENTED PROGRAMMING

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/93

11 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Developing a GUIDE Using Object-Oriented ProgrammingT

Joseph A. Konstan
Lawrence A. Rowe

Computer Science Division-EECS
University of California
Berkeley, CA 94720

Abstract

PICASSO is a graphical user interface development environment built using the
Common Lisp Object System (CLOS). This paper describes how CLOS features includ-
ing multiple inheritance, instance methods, multi-methods, and method combinations
were used to implement the system. In addition, the benefits and drawbacks of CLOS
development are discussed including code quality, maintainability and performance.

1. Introduction

This paper describes the object-oriented programming techniques used to develop
the PICASSO graphical user interface development environment (GUIDE). The PICASSO
system is composed of approximately 40,000 lines of Common Lisp [7] using the Com-
mon Lisp Object System (CLOS) [3]. Several programming techniques from the
PICASSO implementation that take advantage of features in CLOS are presented. In
addition, the benefits and drawbacks of using CLOS and these techniques for developing
a GUIDE are discussed.

PICASSO is composed of an interface toolkit, an application framework, and a set of
development tools. The toolkit provides the resources to create graphical user interfaces
for the X window system [6] using Common Lisp. In addition to providing CLOS objects
for standard X resources (e.g., windows, fonts, colors, graphics contexts, etc.), the system
defines CLOS objects for toolkit widgets. Different types of widgets (e.g., text, tables,
pictures and drawings) are implemented as classes in CLOS. A large library of
predefined widget types is provided including: radio buttons, pop-up and pull-down
menus, check boxes, scrolling tables and text, and graphics [4]. In addition, new widgets
can be defined by PICASSO users and they can then be used interchangeably with the
predefined ones.

t This research was supported by the National Science Foundation (Grants DCR-
8507256 and MIP-8715557), 3M Corporation, and Siemens Corporation. Joseph Kon-
stan was also supported by a National Defense Science and Engineering Graduate Fel-
lowship granted through DARPA.

The PICASSO application framework [5] provides higher-level programming con-
structs for building applications. The framework provides abstractions for forms (the
electronic counterpart of paper forms), frames (forms combined with pull-down menus to
implement a major mode of an application), dialog boxes (modal interactors that are con-
trolled with buttons) and panels (non-modal dialog boxes used to implement altemative
views of the data displayed through a frame). CLOS objects are defined for these
abstractions. These framework objects are called PICASSO Objects (PO).

The application framework also defines a data model for programming interfaces.
PO’s are like procedures in a conventional programming language. They may define
local variables and constants, they are lexically scoped, and they may be called and

Equipment [m] Junctions

Utilties

@ Equpment in Selected Space(s)

@\Eqmpmnl connecled to Selected Utilities

S Equpmenl that p N Lots

quipment v4th Salacted Junctions

7+1|440 thras phata

Figure 1: FMTOOL: A Tool for Managing IC-CIM Facilities

passed parameters. Five types of parameter passing are supported to implement different
types of sharing including value, reference and value-result. Due to the asynchronous
nature of user interfaces, PICASSO also supports value/update parameters (the callee is
updated if the caller’s variable changes) and value/update-result parameters.

A constraint system is provided that allows the programmer to specify arbitrary con-
straints between variables and object slots, and the propagation system keeps them up-
to-date. For example, constraints are defined between variables in a PO and widgets that
display their value to the user. Lazy evaluation of formula-constrained data is also pro-
vided to enhance performance. For example, a button that displays a certain rapidly-
changing value when pressed can use lazy evaluation to avoid processing values that are
not displayed.

PICASSO has been used to develop applications in semiconductor manufacturing
and education. In addition to developing other applications, development continues on
the system itself (e.g., a direct manipulation application builder) and on integrating
hypermedia capabilities into applications (e.g., animation, andio, and full-motion video).
A PICASSO application that displays and controls information about an integrated circuit
manufacturing facility is shown in figure 1.

CLOS is an object-oriented programming system built on top of Common Lisp. It
provides classes and methods found in most object systems along with a number of
features not provided in simpler object systems. For example, CLOS supports: 1) multi-
ple inheritance of both attribute slots and methods, 2) instance methods (i.e., methods
specialized for a specific object), 3) multimethods (i.e., methods that discriminate on
more than one argument), and 4) method combinations (i.e. factoring code into methods
combined at run-time). This paper describes how these features were used to implement
the PICASSO system.

The remainder of the paper is organized as follows. The next three sections discuss
the use of multiple inheritance, instance methods, and method combinations. Section 5
discusses the benefits derived from and difficulties encountered using CLOS. And, sec-
tion 6 presents conclusions.

2. Multiple Inheritance

This section describes several ways that multiple inheritance was used to simplify
the PICASSO code. In CLOS, classes may inherit slot definitions, including slot attri-
butes such as default values, and methods from any number of superclasses. If more than
one parent defines a slot or method with the same name, an inheritance order, called a
class precedence list, is used to determine the slot or method inherited. For a given class,
the class precedence list is determined by the order in which the superclasses are
specified in the class definition. This list is followed in a depth-first fashion, but search is
cut off by a common superclass. For example, figure 2 shows a set of class definitions
employing multiple inheritance. Figure 3 shows the class inheritance graph for these
definitions. An instance of class F has three slots. Slot-3 has a default value of 31, as

(defclass A ()

((slot-1 :initform 10)))
(defclass B (A)

((slot-1 :initform 11)))
(defclass C (B)

((slot=2 :initform 20)))
(defclass D (A)

((slot-2 :initform 21)))
(defclass E (C D)

((slot=3 :initform 31)))
(defclass F (D C)

((slot=3 :initform 31)))

Figure 2: Class Definitions

is specified in the definition of class F. Slot=-2 has a default value of 21, not 20,
because D precedes C in class F’s class definition. Slot=-1 has a default value of 11,
not 10, because F inherits from B before inheriting from the common superclass A.

Thus, in this example, the complete class precedence list for F is (F, D, C, B, A). In
addition to using this order to search for methods and slot definitions, CLOS uses this list
for call-next-method, the mechanism for invoking the same generic function in a
superclass.

Multiple inheritance is used to improve code sharing among classes and to localize
code that might need to be modified. Multiple inheritance was used in PICASSO to imple-
ment factored behaviors and abstract classes.

We use the term factored behaviors to refer to separating the different roles that
objects play into different superclasses. For example, output and input behaviors are
separated into the classes gadget and widget, respectively. A text gadget can display
text but cannot receive input. A blank button that can be pressed, but displays nothing is
a widget. Interface objects, which we generically refer to as widgets, inherit from both
classes. Most text fields can be edited and therefore mix the behaviors of the display-
only text gadget class with the editing behaviors of the text widget class. And, most but-
tons mix display behavior (e.g., displaying a text label or picture in the button) with input
behavior (e.g., detecting and responding to mouse button presses). Titles and other
decorative trim in a form cannot be changed by the user so they can be implemented by a
gadget.

The first implementation of PICASSO did not factor input and output behaviors into
different classes. As a result, it was difficult to improve the performance of widgets that
did not need all of the input behaviors associated with the class widget. Specifically, the

4

Figure 3: Class Inheritance Graph

performance of text labels and of menus was unacceptably slow. Factoring the behaviors
allowed us to separate out the more costly event-handling and input-oriented behaviors

and to use lightweight text and picture gadgets for higher pe::formance.l

It is virtually impossible to implement cleanly factored behaviors without multiple
inheritance. A single inheritance system forces the programmer to specify descendant
behavior as a customization of a single parent. PICASSO widgets, however, tend to
inherit from at least two superclasses, both of which define many slots and methods. Fig-
ure 4 shows the class hierarchy for some typical widgets. A text-widget, for example,
inherits behaviors from the text-gadget class that displays text and from the widget class
that incorporates all of the behaviors of X windows (e.g., event handling). In single-

! Later, we introduced synthetic gadgets for very-high performance areas where even the
weight of a gadget was too high. These synthetic gadgets are little more than display
lists with the correct methods defined. This iterative process of continual factoring for
the sake of performance has happened several times in the development of PICASSO.

inheritance systems, one of these behaviors would have to be incorporated into text-
widget in a different way.

Factoring behaviors produces classes that can stand alone (e.g., they can be instan-
tiated) and combined together to mix their behaviors. However, sometimes classes are
created that will never be instantiated. They define code used in other classes. We call
these classes abstract classes. Two reasons for using abstract classes are to modularize
code and create mixins.

Abstract classes helped modularize the code behind the PICASSO application frame-
work. Figure 5 shows the class hierarchy for the PO classes. The classes picasso-object,
top-level-po, and callable-po are never instantiated. Instead, picasso-object holds code
common to all PO’s (e.g., call and return semantics, lexical and variable-holding
behaviors, and grouping behaviors inherited from collection-widget). Top-level-po adds
the special behaviors needed by PO’s that are displayed directly on the root-window as
opposed to being contained inside other PO’s (i.e., tools, panels, and dialog boxes).
Callable-po adds the behaviors of PO’s that are called like functions and co-routines
(i.e., frames, panels, and dialog boxes). By using abstract classes and multiple inheri-
tance, these behaviors are separated into distinct modules. Otherwise, code would either

text-gadget image-gadget

collection-w | | text-widget | |image-widget |
e S | el Lo H

Figure 4: Widget/Gadget Class Hierarchy

collection-widget variable-holder

..

top-level-po

Figure 5: PICASSO Object Class Hierarchy

have to be duplicated (by placing the common behaviors in each picasso-object sub-
class) or moved into the superclass picasso-object and then selectively enabled when
needed. Duplicating code causes maintenance problems and moving code into picasso-
object hurts both performance and code maintainability by making superclass behaviors
dependent on their subclasses.

Mixins are behaviors that can be added into any of a number of other classes. They
are ‘“‘mixed in’’ by creating a new class that inherits from both the original or base class
and the mixin class. Mixins have two major benefits in developing a GUIDE such as
PICASSO. First, they allow behaviors to be shared among classes that are otherwise dis-
tantly spread across the class hierarchy. Second, they allow easy prototyping of situa-
tions where behaviors may or may not belong in certain classes. As an example, the
behavior of holding variables (and therefore being a lexical entity) in PICASSO is defined
by the mixin class variable-holder. It was clear through most of the development of the
framework that PO’s should be variable holders, but it was not clear whether any other
entities should also be variable holders. Specifically, collections which hold other widg-
ets for grouping behaviors and tables could arguably benefit from holding variables. For
development purposes, variable holding behaviors could easily be mixed into these
classes to further research this question.

Designing mixin classes is trickier than designing ordinary classes because an effec-
tive mixin should not disturb the other operations of the class it is being mixed into. A
mixin must not conflict with the slots and methods that may be defined in any class
except where necessary for the operation of the mixin. In this case, variable-holder
required a single slot to hold the variable table and a single accessor method for that
table. The rest of the class hierarchy was not permitted to use that slot or method name.

Multiple inheritance greatly simplifies the development and maintenance of a large
system such as PICASSO. There are some cases, however, where multiple inheritance is
too cumbersome to use. The main disadvantage of mixins is the combinatorial explosion
in the number of classes that must be defined if all of the behaviors defined in the mixin
classes can be combined orthogonally. This large number of classes reduces the maintai-
nability of the code by requiring developers to understand a great number of classes and
to code all mixins orthogonally to prevent conflicts in common descendants. A large
number of classes is also inefficient since the creation of a class than may not be needed
wastes both processing time and memory. Some object systems support dynamic classes
which are instantiated at run-time as needed. Dynamic classes remove the run-time
inefficiency of a large class space by allowing classes to be specified as a list of superc-
lasses. The next section introduces an alternative solution to this problem that uses
instance methods.

3. Instance Methods

Instance methods discriminate on the value of an argument(s) rather than the class
of the argument(s). They define a behavior for a single instance of a class. Slot-value
methods define a behavior for all instances of a class that have a specific value in a par-
ticular slot. CLOS provides an eg/ method structure that can be used to implement
instance and slot-value methods.

Instance methods are used in PICASSO to implement the propagation system that
constrains slot values to be equal to the result of specified functions of other slot values.?
The Lisp form setf is used to set slot values with the expression:3

(setf (slot-name object) bnew-value)
This form invokes a method named (set£ slot-name) that takes the new value and the

object as arguments and discriminates on the class of the object. Setf methods can be
written just as any other methods.

2 Propagation also constrains PICASSO variables, but since variables are implemented as
CLOS objects the same mechanism can be used.

3 Technically, setf is a macro that expands into functions and methods depending
upon the target being set.

A simple implementation of propagation can use the setf method for all classes
to check whether the change requires a propagation to occur when any slot value is set.
This solution is inefficient, even with caching, since setting a slot value must be a fast
operation and relatively few slots have propagations that depend on them. By using
instance methods, the propagation behavior is added only to the specific slots of objects
that need to propagate their changes. These are the slots and objects referred to as argu-
ments in the function used to constrain another slot.

In this case, the pre-existing setf method for an object slot is augmented by defining
an eql around method. Around-methods, discussed in more detail in section 4, wrap
themselves around primary methods. They are invoked first, and the primary method is
called under their control. After the primary method retums, control returns to the
around-method. In other words, the around-method specifies code to execute before and
after the primary method. For propagation, the following method is dynamically defined
for any object slot that must be propagated:

(defmethod (setf siot-name) :around (value (self (eql object)))
(unless (equal (slot-value self ’slot-name) value)
(call=-next~method)
(propagate (gethash unique-key *prop-table*))))

The argument list for this method indicates that it applies for any value, but only for the
specific object designated. The body of the method checks first to assure that the slot
value indeed changed to cut off loops. Then, the primary method is called to update the
slot value. Notice that this approach insures that any error checking, side effects, or other
processing will be done. Once the primary method returns, the around-method calls the
propagate function to pass on the changes to whatever slots have registered interest in
this slot value.

Custom setf methods are used for virtual slots and PICASSO variables. Virtual
slots are implemented as methods to access and update a value without actually storing
the value. The setf method does not check for a change since no old value can exist.
PICASSO variables, for efficiency, always propagate since most variables have propaga-
tions. This example illustrates another benefit of instance methods: different variants of
the method can be defined to optimize cases that do not deserve their own classes.

Slot-value methods are also used to overcome the problems of combinatorial class
explosion introduced by multiple inheritance. The different slot values define a set of vir-
tual classes each of which has the same slots and class-discriminating methods but dif-
ferent slot-value methods. The following two examples show how virtual classes reduce
the number of classes in the system and make changing classes faster and easier.

Geometry management is the process of sizing and laying out windows within a
parent window. This process is implemented in PICASSO by a geometry manager that is
bound to a collection. A geometry manager includes a data structure that holds layout
hints and a collection of routines that pack children within a collection when called. A
geometry manager also has routines that respond to asynchronous changes to the children

in the collection (e.g., adding or removing a child), requests from children for different
sizes, and notifications that the collection itself is being resized. Approximately ten
geometry managers are provided in PICASSO (see figure 6) and new ones can be added
by defining the appropriate functions.

The obvious implementation defines an abstract class for each geometry manager
and mixes that class into the base collection classes to yield a different class for packed-
collection-gadget, rubber-sheet-collection-gadget, etc. This approach leads to 30 or 40
new classes and even more classes if subclasses of collections (e.g., form, table, etc.) can
have any of these geometry managers. It also makes it more difficult for a user-defined
geometry manager to be fully incorporated into the system because the user must add
many new classes.

CLOS provides two solutions to this problem. One solution is to create these
classes dynamically as they are needed. Classes can be dynamically created rather easily
with a meta-class protocol feature that allows a class to be inserted into another class’
superclass list. While this solution is a perfectly reasonable implementation, different
solution was used in PICASSO because this solution results in less obvious code and
greater difficulties when changing a collection’s geometry manager.

Name Function
anchor-gm controlled stretch and relative positioning
just-pack-gm | full-width menu bars
left-pack-gm | compressed (pushed left) menu bars
linear-gm linear stretch (useful for bordered objects)
matrix-gm tabular layout
menu-gm layout of menu entries
null-gm default, just places objects where they request
packed-gm perpendicular packing (useful for fill-in forms)
root-gm special manager for PICASSO root window
rubber-gm rubber sheet (complete stretch)
stacked-gm vertical and horizontal stacking for icon palettes

Figure 6: Geometry Mangers Defined for PICASSO

10

The PICASSO solution uses slot-value methods to call the appropriate geometry
manager. Since each collection has exactly one geometry manager, we include a slot in
the collection that holds the name of the geometry manager (i.e., a Lisp symbol). The
methods that implement a specific geometry manager discriminate on the value stored in
this slot, rather than on the class of the object passed to them. For example, the method
that handles repacking a collection is defined as

(defmethod gm-repack ((gm.(egl ‘my-gm)) self)
code)

This method is called when the first argument is the symbol my-gm. To make it easier
to program this way, we add a simple macro to handle passing in the slot-value:

(defmacro repack (self)
V (gm-repack (gm ,self) ,self))

Thus, we can call repack as if it were an ordinary method, passing only the collection
as an argument, and it will call the correct repack method.

The other difficulty is to allocate storage for the geometry manager to use, since vir-
tual classes are not real classes so they cannot add slots. For geometry managers, the
solution is straightforward. All geometry mangers are defined to use certain slots that are
present in all collections: 1) a children slot that holds a list of child windows for which
the geometry manager is responsible (in an order it manages) and 2) a gm-data slot that
holds other data including layout hints and cached results. The geometry manager rou-
tines are given complete control of this gm-data structure, and they can use it for any

purpose.

A second use of slot-value methods in PICASSO is for widget borders and labels. A
border describes the graphics that surround a widget to enhance its visual appearance.
Many borders are provided including drop-shadows, picture frames, and boxes. A label
contains text or an image that identifies the widget. They can be positioned in various
locations including to the left, above, or below the widget or in a smaller font in the
frame. Figure 7 shows some of the borders and labels provided with PICASSO. Users
can define additional borders and labels by naming them and defining appropriate
methods.

Labels and borders are implemented using the same technique we used for
geometry managers. Since the data structures used by borders and labels are better
defined, they are given more detailed slot assignments including label-x, label-y, label-
position, label-value, border-type, and border-width. When no border or label is
desired, there is a small space penalty for these extra slots but no method is executed so
the time penalty is insignificant.

There are several benefits to using slot-value methods as an implementation of vir-
tual classes. First, they are easy to implement and extend. For example, a new geometry
manager, label, or border can be added by selecting a name and defining a couple of
methods. The performance penalty when used is small (i.e., the cost of accessing the

11

Figure 7: PICASSO Borders and Labels

slot-value before method discrimination) and the performance penalty when not used is
small (i.e., the unused extra space). And, it is easy to change the virtual class of an object
by changing the value in the appropriate slot.

With these benefits come some limitations as well. The two biggest limitations are
the inability to define slots in virtual classes and the very limited inheritance available.
Since virtual classes are not classes, they can only use the slots defined in the classes into
which they are mixed. This limitation requires that all classes for a given virtual class
must use the same slots which typically limits this technique to small features imple-
menting different versions of the same attribute. Additionally, the inheritance available
for virtual classes is minimal. Since they are based on symbol equality, there is a very
strict two-level virtual class tree. At the root is class t that applies to everything and at
the leaves are all of the virtual classes.* As a result, virtual classes implemented this way
do not work well when there are large amounts of code to be shared among some, but not

12

all, of the variants.

4. Multimethods and Method Combinations

As we have seen, CLOS allows very powerful method constructs that can discrim-
inate on both class membership and equality. This section describes how PICASSO used
CLOS multimethods and method combinations.

PICASSO has tended to avoid using multimethods due to performance considera-
tions which are discussed in the following section.’ Multimethods have been used, how-
ever, to prototype behaviors that were later implemented in other ways or in some cases

abandoned. Two examples are the development of type-sensitive widgets and methods
that handle different types of windows.

A feature tested in an early version of PICASSO was a type-sensitive widget. This
type of widget would display only certain types of values (e.g., integers, strings, or
arrays). The widget would change itself into a different widget if it was set to a value
that it was unable to display. In this way, a single widget could be created to display a
numerical value. If, for some reason, a picture was assigned to that widget, it would
automatically change itself into a picture-widget.

Implementing this type of automatic class changing was simplified by writing
setf methods that discriminated on the type of the value as well as the type of the
widget. There would be a method to set meters to integers and floating point numbers
but not to strings. The default method for widgets would then change the widget into an
appropriate type of widget. The performance of multimethods was not a problem in this
situation because this operation was executed infrequently and changing classes was

already slow. However, we abandoned this idea for a more flexible synthetic gadget.6

4 Another possible implementation would create a class for each geometry manager, la-
bel or border and place an instance of that class in a slot in the collection or widget. This
implementation solves the slot and inheritance problems but is no longer a lightweight
implementation. Indeed, it merely adds a list of components to an object, each of which
has its own methods, with methods on the holder that invoke methods on the proper com-
ponent. We initially chose not to employ this implementation but are now considering
implementing geometry managers, labels, and borders in this fashion.

5 In an earlier system we tried to use multimethods to implement event dispatching. A
generic dispatch function was defined that took an event and window object and discrim-
inated on both. Besides learning that multimethods were not implemented correctly in
the early CLOS implementation we were using, we also quickly realized that method
determination for multimethods was too slow for event dispatching.

6 A synthetic gadget contains only data and a list of display parameters. The method put is defined

on each data type to paint the data onto the screen. Where a text gadget is an object with many slots
representing all of the possible functionality for text and windows, a text synthetic gadget contains only a

13

PICASSO still uses multimethods for a few cases where operations depend on two
different widgets or gadgets. In some cases, there is a simple X server call that can per-
form operations on two X windows (e.g., calculating relative coordinates or positions in
the window hierarchy) but does not operate on non-X-windows (e.g., gadgets and syn-
thetic gadgets). In these cases, a method is defined that discriminates on the class of both
objects. If they are both X windows, the server call is performed. Otherwise, toolkit
code 1is executed to perform the operation.

Multimethods could be replaced in all cases with code that resembles a case struc-
ture. Inclusion of multimethods allows programmers to take advantage of the built-in
CLOS method dispatching, with its caching and other performance tuning, rather than
writing ad hoc, and likely less performance tuned, custom dispatchers.

In CLOS each generic function has a primary method as well as before-, after-, and
around-methods. These additional methods layer their execution on top of the primary
method. Suppose that we have two classes super and sub and that a method foo has a
primary, before-, after-, and around-method on each class. Figure 8 shows the definitions
for class sub. The definitions are the same for class super except that the formatted print
statements read ‘“‘SUPER’ and the primary method does not execute the call-
next-method call.

(defmethod foo ((self sub))
(format t "Entering SUB Primary Method")
(call—-next-method)
(format t "Exiting SUB Primary Method"))

(defmethod foo :before ((self sub))
(format t "SUB Before Method"))

(defmethod foo :after ((self sub))
(format t "SUB After Method"))

(defmethod f£oo :around ((self sub))
(format t "Entering SUB Around Method")
{call-next-method)

{(format t "BExiting SUB Around Method"))

Figure 8: Method Definitions for Class sub

string, a location for painting, a font, and some colors.

14

When the method foo is called on an instance of sub the output shown in figure 9
is produced by the format functions. In each case where (call-next-method)
appears, not executing that expression would result in skipping forward to the
corresponding ‘‘Exiting’’ clause without executing any additional methods in between.
For example, if the around foo method for sub did not execute call-next-
method, none of the other methods would be called.

Before-methods execute before any primary methods. Before a primary method is
executed, all before-methods that apply are executed from most to least specific. Even if
a superclass’ primary method is not executed, its before-methods are always executed.
Therefore, before-methods should only be used when any possible subclass will also
need the same behavior.

In PICASSO, before-methods have a natural place in implementing lazy evaluation
slots. These slots are typically defined for a class, although they can also be defined for
an instance. Lazy evaluation slots check a cache stored in the slot for validity when the
slot is accessed. If the cached value is valid, it is returned. If not, the cached value is
recomputed. The cache is automatically invalidated when appropriate. It is assumed that
there may be primary methods on the slot to properly convert data or perform side
effects. This lazy slot behavior is implemented with the following before-method:

(defmethod slot-name :before ((self class-name))
(when (invalid-p (slot=-value self ’slot-name))
(setf (slot-value self ’slot-name) recomputation formula)))

The body of the method uses the CLOS accessor slot-value to avoid recursively

Entering SUB Around Method
Entering SUPER Around Method
SUB Before Method

SUPER Before Method

Entering SUB Primary Method
Entering SUPER Primary Method
Exiting SUPER Primary Method
Exiting SUB Primary Method
SUPER After Method

SUB After Method

Exiting SUPER Around Method
Exiting SUB Around Method

Figure 9: Call Sequence for Method Combinations

15

calling this method or a setf method. This technique is common in before-methods
that wish to prepare the data without getting trapped in an infinite loop. This implemen-
tation of lazy slots prevents the slot accessors themselves from having to know that the
slot is lazy. Instead they can assume that whenever they are called, the correct value is
there.

After-methods execute after all primary methods. If one or more primary methods
have executed, all after-methods are executed from the least to most specific. This order
is the opposite of the order in which before-methods are executed. Again, all after-
methods are executed if any primary method is executed, so they should only be used
when any subclass will need the same behavior.

After-methods are used in PICASSO to implement side effects that require a fully
initialized object. As an example, the new-instance method, which is called to ini-
tialize a new instance of a class, for collections has an after-method that creates the chil-
dren objects in the collection. It is more efficient to wait until the collection is properly
initialized before creating the children objects, so an after-method is ideal. After-
methods are also defined on new-instance to perform other side effects such as
informing the geometry manager that a new widget has been added to a collection.
These side effects are best handled after the object has been properly initialized.

Around-methods wrap behaviors around the rest of the methods. In structure, they
are much more like primary methods than before- or after-methods. When a method is
invoked, the most specific around-method is called even if there is a more specific pri-
mary, before-, or after-method. If an around-method calls call-next-method the
next most specific around-method is called. If and when the most general around-method
- calls call-next-method, all of the before-methods execute, followed by the most
specific primary method and any more general primary methods if it calls them and then
all of the after-methods are executed. At this point, control returns to the most general
around-method and back up the around-methods as each returns.

Around-methods are used in PICASSO to prevent primary methods from executing.
Section 3 discussed an example in which an instance around-method prevents the pri-
mary setf method from executing if no change has occurred. Around methods are
also useful because they can return values. In some cases, such as the creation and invo-
cation of PO’s, around-methods are used to allow values to be correctly returned when
they cannot be computed until after all after-methods have executed.

Method combinations have another use when combined with bushy abstract class
hierarchies. Proper use of method combinations allows the maximum sharing of code.
Using only primary methods, a subclass and superclass have three phases of execution
(subclass before call-next-method, superclass, subclass after call-next-method). Adding
before-, after-, and around-methods provides the twelve phases shown in figure 9. The
method invoke for PO’s, which calls a PO, is defined in eleven pieces. It handles
parameter passing, allocating lexical children, managing the display, and event handling.

16

Class # Type Description
picasso-object | before | handles in-use objects, allocates resources

picasso-object | primary | processes parameters, allocated local vars,
resolves references to external objects

picasso-object after notify parent about self, execute setup and init code
top-level-po before | places PO on root window
top-level-po after handles mouse warping and delayed exposure
callable-po primary | processes contained form variables

callable-po after invokes contained form
tool around | handles package search list, calls start frame,
starts event loop
dialog around | positions dialog over caller, starts event loop
form after exposes window
frame around | handles nested calls, starts event loop

Figure 10: Invoke Methods for PICASSO Objects

The table in figure 10 shows the different methods defined for invoke. Figure 11
shows the order in which these methods are called when a PICASSO frame is called.
Recall that the class precedence list for frame is frame, callable-PO, picasso-object.

Using method combinations to create layered behaviors has benefits and drawbacks.
The main benefit is that more code can be implemented once for the class picasso-object
rather than several times. The biggest drawback is that the implementation is very com-
plicated and requires a clear understanding of the intent of each phase of the method
calls. The original implementation of PO’s did not use these layered methods. As a
result, much of the code that was shared by different PO classes (e.g., notification of
parents, invoking contained forms, and resource allocation) could not be placed in the
superclass methods due to execution order constraints. Consequently, the code was
copied into the methods for each PO class which made maintenance difficult. This poor
design was so difficult to develop further that we redesigned the PO class hierarchy. By
virtue of our prior experience, we were able to see the actions that depended on other
actions and developed a cleaner layering of behavior.

17

Class Type Description

frame around | check for and conceal existing current frame
set invoked frame’s parent to the current tool

picasso-object | before | check to see if frame is in use
allocate X resources for frame

callable-po primary | no action taken before call-next-method

picasso-object | primary | process all variables and parameters
' allocate lexical children

callable-po primary | establish frame-level aliases for form variables

picasso-object after notify lexical parent of frame’s invocation
execute frame setup code and initialization code

callable-po after invoke frame’s form with appropriate arguments
which recursively calls invoke on a form object

frame around | put frame on call-stack and start event loop

Figure 11: Invocation of a Frame

Multimethods and method combinations make it possible to write very compact,
modular code that takes full advantage of the object system’s built-in method dispatcher.
Performance, of course, will depend on the implementation of the object system.

5. Discussion

This section discusses the impact CLOS had on the development of PICASSO.
CLOS made PICASSO far easier to prototype and develop. On the other hand, it compli-
cated the system and makes the system harder for new researchers to change. This sec-
tion also discusses some performance issues encountered during development.

Without question, CLOS made prototyping and implementing new features in
PICASSO fast and easy. The entire constraint system, including propagation and triggers,
was implemented in 350 lines of code. The lazy evaluation slots referred to above were
implemented in 50 lines of code. The entire application framework (including all PO’s,
the lexical environment, and PICASSO variables) was implemented in under 2000 lines of
code. We estimate that writing the framework and toolkit without CLOS, just in Com-
mon Lisp, would require about twice as many lines of code. The CLOS features dis-
cussed in this paper (ie., multiple inheritance, instance methods, and method

18

combinations) have saved 5000 to 10,000 lines of code and their use resulted in a cleaner
implementation.

For the most part, CLOS has also been a great benefit when adding new features and
prototyping changes. Method combinations have made it easy to prototype changes and
experiment with new ideas. Multiple inheritance allowed us to implement widgets such
as radio-button groups in under 100 lines of code.

With all this saved code and the benefit of the class abstraction, you might infer that
CLOS made PICASSO’s implementation easier to understand. In fact, the opposite was
more often the case. Multiple inheritance required each superclass, and almost any class
should expect to become a superclass, to be designed to share superclass responsibilities.
For example, each method had to invoke call-next-method even if the superclass
had no next method, since a subclass might inherit this method from two superclasses
and call-next-method is the way for the second superclass’ method to be invoked.
Consequently, many methods had to be defined on the class at the top of the hierarchy
(ie., window) to serve as placeholders. These methods are required because subclass
methods that call-next-method generate an error if no method is available. Of
course, you could argue that these methods are actually prototype definitions for optional
methods defined lower in the class hierarchy and that they should be defined in the super-
class to document the abstractions. Teaching developers to design clean methods for
multiple inheritance took some effort, but good programmers were able to write such
methods with a couple of week’s practice.

The next problem was that the CLOS model of inheritance does not support or
encourage encapsulation. As a result, all behaviors of all superclasses have to be well-
understood before writing a new subclass. We discovered that conventional documenta-
tion did not address this problem. An interactive, dynamic form of documentation that
indicates non-overridden inherited behaviors in the documentation of each child is
needed. Moreover, a good development environment should provide an interactive
object inspector and class hierarchy browser similar to the tools provided by Genera [8]
or SmallTalk [2]. hierarchy.

A final difficulty with multiple inheritance is that the class inheritance order
matters. While this concept is not difficult to understand, many of our methods are
order-dependent and we found that avoiding circular dependencies was often difficult.
As a result, method combinations were used to isolate explicitly layered behaviors.

Instance methods presented almost no problems for our developers. While most
programmers had not heard of them, they were easy to understand and use. Indeed,
instance methods tumed out to be the one feature of CLOS that simplified code and made
it more compact.

Method combinations, even more than multiple inheritance, made the system harder
to understand and modify. The layers of abstraction must be well-understood and con-
ventional documentation was inadequate.

19

The final serious problem we had using CLOS is ironically problematic with
research development. Since CLOS does little to support or encourage encapsulation of
superclass features, each detail of the superclass implementation is quite visible to the
subclasses. In an existing system, where superclasses towards the root are unlikely to
change, this design works well. However, in developing PICASSO we found that major
changes were being made to these base classes rather frequently. Most changes to a base
class required rewriting code in subclasses that inherited from the class being changed
particularly when the changes involved adding or removing slots and methods. This
effect is partly a product of poor object-oriented design, partly unavoidable, but partly
attributable to CLOS.

The performance of Common Lisp and CLOS continues to be a big concern because
the success of a graphical user interface can be determined by the perceived responsive-
ness of the system. We have been using a portable implementation of CLOS developed
at Xerox (PCL). [1] We recognize that some of our performance concemns will be
addressed by native implementations of CLOS. Nevertheless, the success of PICASSO
will be to some extent determined by the performance of Common Lisp and CLOS.

The two major performance concerns are space and time. There is no question that
Common Lisp and CLOS cost us a great deal of space. On a Sun Sparcstation computer
using Allegro Common Lisp, the size of the Lisp image is over 5 megabytes on disk.
Adding CLOS, the CLX interface, and some database access code brings this to over 8
megabytes. The PICASSO toolkit and application framework add another 5 megabytes
which brings the disk image of PICASSO to 13 megabytes.” Adding in application code
increases the space. The CIM Facility Browser tool adds another 2 megabytes to this
when packaged as an application. On a positive note, the run-time image of PICASSO
rarely exceeds 16 megabytes which indicates that the system does not grow much when
executing.

We recognized that a Lisp system would be larger than a similar system written in C
when the project started. For example Windows/4GL, a commercial system written in C
that uses the X Toolkit and OSF/Motif look and feel, duplicates some of the functionality
of PICASSO in under 4 megabytes. We estimate that a complete implementation of
PICASSO in C would result in an image size of 6 to 8 megabytes.? Clearly, space is a
problem but we are willing to trade space for power, as long as speed was not an issue.

7 The disk space used is highly dependent on the specific machine architecture and the
quality of the compiler. For example, Sun 3 and Sequent Symmetry images of PICASSO
use about 11 megabytes and Decstation 3100 images use 18 megabytes.

8 We could shrink the present PICASSO image by about 2 megabytes by removing the compiler and

" other development tools. We include these tools because PICASSO is designed to be an extensible system
and they are important for building extensions to the system.

20

Runtime performance is largely determined by the time it takes to do a method call.
Ironically, the method call time is not a performance bottleneck because method combi-
nation lists are cached and a high percentage of methods called are in the cache. The

cache reduces the time to call a method to approximately 2.5 times the time required to
call a function.

The biggest performance problem we experienced was with keyword parameters to
functions and methods. The Common Lisp keyword mechanism requires that keywords
be reparsed for each function called. In particular, every call-next-method
reparses the keyword parameters. This performance penalty is substantial because we use
many keyword parameters so that applications can selectively override default values
(e.g. creating a text widget calls approximately 70 methods which have an average of 30
allowable keyword parameters).

We have removed keyword parameters from many run-time critical methods and
functions to improve performance, but we still pay a significant overhead on object crea-
tion. A solution to this problem would be an automatic system to normalize methods and
method calls. This normalization would define a unique ordering of keyword parameters
for any function or generic function. Then, the compilation of a method or method call
would automatically rearrange the actual keyword arguments to match this unique order-
ing. Interpreted methods and method calls would still require keyword parsing but com-
piled methods and method calls would not. We have not developed such a normalizer but
expect that a Lisp implementer will have to do so to stay performance-competitive.

A final performance consideration is the compilation of methods generated at run-
time. Triggers, propagation, and some instances of lazy evaluation require that new
methods be defined at run-time. Portable implementations of CLOS make it very
difficult to compile these methods on the fly. Any native implementation will need a
simple compilation function for methods to improve the performance of methods defined
at run-time.

In summary, most of the programming techniques discussed in this paper do not
significantly degrade performance. Multiple inheritance could cause problems with
method resolution time, but caching of method combination lists minimizes the over-
head. Instance methods are a tiny bit slower than class methods (approximately five per-
cent) but this time is still better than the cost of dispatching the various behaviors.
Method combinations have lowered system performance due to keyword processing
costs and the basic overhead of method calls. In addition, the lack of code duplication
has caused the size of the PICASSO image to shrink as refinements were made to layer
behaviors which presumably improved performance.

6. Conclusions

Using CLOS to develop the PICASSO GUIDE resulted in faster development, easier
prototyping, and more modular and compact code. Taking advantage of CLOS features
created complex interactions among classes and methods that makes it hard for a new

21

developer to learn the PICASSO implementation and makes certain modifications
difficult. The details discussed here are hidden from users who develop and use
PICASSO applications. And, once a developer has leamed the implementation, he or she
reaps the benefits of CLOS and is able to accomplish a great deal.

This paper presents some programming techniques using CLOS that are applicable
to other areas. First, instance methods are effective ways of specifying instance-specific
behaviors and implementing slot-value methods for lightweight virtal classes. Second,
method combinations are an effective way to reduce code duplication by layering
behaviors in a cluster of classes. And, mixin classes, when properly designed, can make
experimenting with new -behaviors easy and they can make code much easier to read.

Lastly, several areas that need more work were identified. First and foremost is the
development of a sophisticated environment for CLOS development. Object systems in
general create documentation problems. For a programmer, a tool is needed to browse
the class hierarchy and a full code walker is needed to recognize which inherited
behaviors are included and which are pre-empted at a specific place in the code. And,
work needs to be done on the performance of method calls to make CLOS competitive
with object systems based on C. This problem is clearly a case where individual vendors
must part with portability while adhering to the standard to achieve optimal performance.

Acknowledgements

Many people have worked on the design and implementation of PICASSO. David Martin
developed the XCL package and the original CLOS abstractions for the X Window Sys-
tem. Donald Chinn, Ken Whaley, and Scott Hauck worked on the early infrastructure
and the first version of the toolkit. Scott Luebking extended the toolkit and implemented
the first version of the framework. Brian Smith developed much of the present PICASSO
toolkit design and implementation and he developed the CIM facility browser shown in
figure 1. Steve Seitz implemented many of the performance enhancements for the toolkit
as well as the label and border abstractions. Chung Liu developed many PICASSO widg-
ets and early applications. We also want to thank our early users for their patience and
feedback, especially Beverly Becker, who developed a hypermedia system and is now
adding hypermedia features to the toolkit.

22

References

D. Bobrow and G. Kiczales, ‘‘Common Lisp Object System Specification’’, Draft
X3 Document 87-001, Am. Nat. Stand. Inst., February 1987.

A. Goldberg, Smalitalk-80: The Interactive Programming Environment, Addison
Wesley, Reading, MA, May 1983.

S. Keene, Object-Oriented Programming in Common Lisp, Addison-Wesley, 1988.

J. A. Konstan and et. al., ‘‘PICASSO Reference Manual’’, Electronics Research
Lab. Technical Report M90/79, Sep. 1990.

L. A. Rowe and et.al., ‘““The PICASSO Application Framework’’, Electronics
Research Lab. Technical Report M90/18, Mar. 1990.

R. W. Scheifler and J. Gettys, ‘““The X Window System’’, ACM Trans. on
Graphics 5, 2 (Apr. 1986).

G. L. Steele, Common Lisp - The Language, Digital Press, 1984.

J. Walker, D. Moon, D. Weinreb and M. McMahon, ‘‘The Symbolics Genera
Programming Environment’’, IEEE Software, Nov. 1987.

23

