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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Many engineering design problems can be formulated as nonsmooth optimization problems

of the form,

min (\|f(x)l/^)^0,V;ep) , (1.1.1)
xe R"

where y(x) £ max ek(x), the functions fk:lRn -* IR and ek'JRn -> R are continuously differen-
*e q

tiable, and where p and q denote the sets {1,.... p } and { 1,..., q }, respectively. The com

ponents of the vector x represent design variables, the functions e*() represent competing meas

ures of cost and performance which are to be minimized, and each constraint /y(x) £ 0, j e p,

represents a design specification which must be satisfied [Nye.l, PoL4, Wuu.l].1 The max func

tion \\f() provides a way of simultaneously considering competing measures of performance. The

function y() is nondifferentiable, and, although the points at which y(-) is nondifferentiable form

a set of measure zero, the nondifferentiability may cause ordinary nonlinear programming algo

rithms to converge to anonstationary point when applied to (1.1.1) [Pol.4].2 As a consequence,

algorithms which exploit the special structure of the constrained minimax problem (1.1.1) are

needed.

'More generalproblems can be specified. Forexample, if one wishes to design a feedback controllerfor a lineartime-invariant
plant so that the maximum deviation of the closed-loop impulse response from somedesiredresponseu minimized, then the max in
thefunction yQ will include a continuum offunctions, notjusta finite number. Inthiscase, V() will have theform maxy€ y$(r, y)
whereY is a compactsubsetof R"*. See [PoL4] for a discussion of suchsemi-infinite problems. Anotherexampleof a more general
problem is the computation of a continuous-timeoptimal control. In such a problem, the design vector is an element of an infinite-
dimensional space. Algorithms for these moregeneral kindsof optimization problems are basedon progressive discretization [He.1],
that is, the generalproblemis reducedto partialsolutionof a sequenceof problemsof the form (1.1.1)whichareobtainedby discretiz-
ing themore generalproblem. Hence,algorithms developed for (1.1.1) canbe incorporated into algorithms for the more generalprob
lem. The paper [Cha.2]discusseswaysof modifyingalgorithmsof the type presentedhere to handle equality constraints.

Problem (1.1.1) may be transcribed into an equivalent differentiable nonlinear programming problem,
min{w \ek(x)-w SO, ke q,fj(x)£0,je p) . However, this transcription isnot recommended, because nonlinear program
ming algorithms converge more slowly on the transcriptionthan minimaxalgorithms designed specifically for (1.1.1).
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In many engineering design problems, there are a few "hard" constraints, the violation of

which, by however small an amount, is unacceptable [Nye.l]. An example of such a constraint in

the design of a controller for a linear system is one which constrains the poles of the closed-loop

system to lie in the left half of the complex plane. If this constraint is violated, the system is

unstable. Furthermore, some of the performance functions ek() may not be defined outside of

the feasible region. For example, the value of performance functions involving integrals of the

impulse response may not be well-defined when the system is unstable. Other hard constraints

ensure the physical realizability of the design. For example, the length of a beam in a seismic-

resistant structure cannot be negative. For these reasons, it is important that, once an algorithm

for the solution of (1.1.1) constructs an estimate of the solution x, which is feasible, all subse

quent iterates are feasible, i.e., that

/>(*,) <;o, vyep, (l.l.2a)

for all / > i. It is also desirable that, once a feasible iterate is computed, the value of the objec

tive function be decreased at each iteration, i.e., that

/°(*/+i)</°(*/). (1.1.2b)

for all / > i. We will refer to an algorithm which satisfies both (1.1.3a) and (1.1.3b) as afeasible

descent algorithm.

A number of feasible descent algorithms have been developed, e.g., [Hua.1-2, Mey.l, Mif.l,

Pir.l, Pol.4, Pol.7, Top.l, Her.l, Pan.1-2, Zou.1],3 but, for the most part, they are slow. This is a

serious impediment to the use of the algorithms for several reasons. Obviously, fordesign situa

tions in which an optimization involves the investment of severaldays of computing time, the use

of a faster algorithm means a considerable savings in time and money. More commonly, how

ever, the solution of a serious optimization problem arising in design involves some hours of

computing time. The benefit of reducing computing time from several hours to a fraction of an

'Most of the algorithms referred toare intended for special case where VC*) i» differentiable.
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hour is that the optimization becomes an interactive part of the design process. It is then con

venient for a designer to initiate the optimization, review the results, reformulate the optimization

problem (for example, by changing the topology of a circuit under design) and rerun the optimi

zation.

Speed of convergence is important for yet another reason. Few problems have a single

local solution; more often there are several local minima and a number of noiiminimum station

ary points. (The latter are analogous to the inflection points and maxima of a single-variable

function). The algorithms we describe arelocal; they are able to locate a nearby stationary point,

but do not, in general, find the global minimizer. Multistart methods are a successful way of

using a local algorithm to locate a global minimizer [Rin.1-2]. In a multistart method, a local

optimization algorithm is initiated with a variety of starting points. The best local minimizer

found in this search is taken as an approximation to the global minimizer. Fast algorithms make

it possible to try a large number of starting points in a reasonable amount of time. Conversely,

without fast algorithms, it may be impractical to perform a global search on problems which

involve time-consuming function evaluations.

The aim of our research was to produce faster algorithms for the solution of (1.1.1). How

ever, to simplify our analysis, we consider separately two simpler problems, the unconstrained

minimax problem,

™%MX)' 0.1.3a)

and the smooth, inequality-constrained nonlinear programming problem,

min {f\x) Ifj(x) <; 0.V; e p} . (1.1.3b)
x e R"

We present and analyze iterative algorithms for the solution of both of these problems. We

demonstrate the reliability of the algorithms presented by proving that they converge only to

points satisfying necessary conditions for optimality.
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The efficiency of the algorithms is evaluated by two methods. We performed numerical

experiments, in which we ran our algorithms on a variety of problems and compared their perfor

mance with other algorithms of similar type. Tests of the performanceof an algorithm on a few

problems, however, are an unreliable indicator of the generalbehavior of an algorithm. The small

number of problems on which it is practical to test an algorithm constitute only a sparse sampling

of the whole "space" of optimization problems. For this reason, we invest most of our effort in

this dissertation in deriving the asymptotic rates of convergence of our algorithms as they

approach solutions. Such results characterize the terminal behavior of algorithms on a large pro

portion of the possible problems.4 While it would have been preferable to characterize the speed

of convergence throughout the computation, rather than just in a neighborhood of the solution,

such results are difficult to obtain (see [Nem.l] for examples). Also, it is not clear whether they

are a better indicator of "average" performance than asymptotic rates.

1.2 ALGORITHMS

We will be concerned with iterative optimization algorithms for the solution of (1.1.3a) and

(1.1.3b) which arebased on a fixed procedure for improving upon any given estimate of the solu

tion. By repeating the procedure over and over, an iterative algorithm constructs from an initial

guess at the solution a sequence of ever-improving approximations {*,-},- e N. Most algorithms

construct the iterate xi+1 from the current iterate *,- by computing a search direction ht e R",

choosing a step length X; e IR, and setting*,+i = xt + A,-A;.

One class of algorithms for solving the minimax problem (1.1.3a) obtains a search direction

hi at each iteration by solving the subproblem,

min max ek(xi) + (Ve*(*,), h )+ Vfryll/t I2. n \ 4)
A e R" * e It \ • • /

*We make the assumption that the algorithm which requires the fewest iterations to solve a problem is the most efficient in
terms of CPU time. We justify this assumption as follows. The evaluationof some of the functions appearingin engineering design
problems often involves simulation or requiresthe numerical solution of differentialequations. The evaluation of these funaions and
their gradients consumes so much time that the overhead involved in computing the next iterate from this information is negligible.
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Algorithms in this class are characterized by the quantities /,- c q, y> 0, and a rule for comput

ing the step size. Algorithms of this type were proposed first by Pshenichnyi [Psh.1-2] and later,

independently, by Pironneau and Polak [Pir.l]. (Hence, we will call such algorithms PPP algo

rithms.) A linear rate of convergence was established for a PPP algorithm by Pshemchnyi under

fairly strong assumptions. Under different, but equally strong, convexity assumptions, Polak and

Wiest [Pol.2-3] showed that the sequence of function values {yfc)}, e n constructed by aPPP

algorithm converges Q-linearly to the minimum, i.e., there exists 5 e (0,1) such that

limsup £ 5 , (1.1.5)

where y is the minimum value of \j/(x). The quantity on the left-hand side of (1.1.5) is sometimes

referred to as the convergence ratio of the sequence { y(*.') )i£N [Lue.l]. In Chapter 2, we

show that these assumptions can be significantly relaxed. The relaxed assumptions are only

slightly stronger than the second-order sufficiency conditions for x to be a local minimizer of

\|/(). The convergence rate theory developed in Chapter 2 is used to prove convergence rate

results in Chapters 3,4 and 5.

Minimax problems having a special structurearise in the design of feedback compensators

and in the computation of open-loop optimal controls for a linear discrete-time system. (See the

appendix to Chapter 3.) In this class of problems, each function ek(x) is the composition of con

vex function with a linear function, i.e., ek(x) =gk{Akx) for each k e q, where g*:Rm* -* IR

andA^G R^XB. Hence, (1.1.3a)becomes

minmax £*(A**) • (1.1.6)x e R" *€ q v*.*.v/

If the intersection of the null spaces of the matrices Ak is nontrivial, then the minimax problem

will not have any isolated minimizers. Instead, for any minimizer x , every point in the affine

space x + ri Null(Ak) is a local minimizer. (If only someof the functions ek() are active at
*e q
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a minimizer, then the minimizing set may be neither isolated nor a whole affine space.) Of

course, no minimizer of such a problem satisfies the second-order sufficiency conditions for

optimality. Yet, when a PPP minimax algorithm is applied to such a problem, linear convergence

of the function values to the minimum is observed. In the latter partof Chapter 2, we prove that

linear convergence is attained by two PPPalgorithmson minimax problems of this kind.

The convergence ratio bound derived in Chapter 2 depends in part upon the conditioning of

the Hessian matrix of a Lagrangian-type function, £ $ikV2ek(x), where fl is a vector of
ke q

optimal multipliers associated with the solution x. In particular, when the smallest positive

eigenvalue of this matrix is very small, the convergence ratio bound is nearly one. The speed of

convergence is then quite slow. In Chapter 3, we explore the effect which rescaling the domain

space has on the speed with which PPP algorithms solve composite minimax problems of the

form (1.1.6). Suppose that the change of variables x = Qy is made (where Q is an invertible,

symmetric matrix), so that (1.1.6) becomes

min mdxgk(AkQy). n 1>7)
xe R" * 6 q v - "/

Then the Lagrangian Hessian matrix becomes QT £ fikV2ek(x)Q.5 The choice
* e q

t

(where Xf denotes the pseudoinverse of the matrix X) yields aQ2 ( S &*VV(Jc))*

Hessian matrix with a smallest positive eigenvalue of one.6 The result is an improvement in the

convergence ratio bound derived for the PPPalgorithm in Chapter 2.

Unfortunately, the matrix Q cannot be computed in advance, since the vector £ and the

optimal multipliers ft are unknown until the problem has been solved. This situation, in which

there exists a transformation of the domain space which would greatly increase the speed of an

The vector of optimal multipliers is invariant under such adomain transformation.

The matrices V2e*(jc ) must be positive semi-definite in order for Q to be real. We augment the zeroeigenvalues of Q as
defined in order to make it invertible.
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algorithm in solving a problem but which is unknown, occurs elsewhere in optimization. For

example, the convergence of the method of steepest descent on the problem minz e r-/(*)

where/ :Rn -»R is a uniformly convex, twice Lipschitz continuously differentiable function is,

in general, linear. However, the method of steepest descent converges superlinearly on the

transformed problem, minv€ R- / (V2/(£)"^y), where £ is the solution. Theusual approach in

such a situation is to rescale the domain at each iteration of the basic optimization algorithm with

an estimate of the desired, but unknown, transformation matrix V2/(jc )"w. Such a method is

known as a variable metric method. If the sequence of matrices defining the transformations actu

ally used converges to the matrix defining the desired transformation, then an increase in the

speed of convergence is obtained. Referring to the example of smooth unconstrained optimiza

tion, rescaling the domain at iteration i using the transformation defined by Qt =V2/^,)"^ and

then applying one iteration of steepest descent yields an algorithm which is equivalent to

Newton's method with an exact line search. The latter method is superlinearly convergent.

Han proposed such a variable metric technique for the minimax problem (1.1.3a). The

method is equivalent to rescaling the domain at iteration i using the transformation defined by

, and applying one iteration of a PPP algorithm. Han showeda« ( 2 ji*W(*,))*
„ k € q

that hisalgorithm is convergent, butit does not converge superlinearly due to the Maratos effect.7

In Chapter 3, we use the bound on the convergenceratio of sequences constructed by PPP algo

rithms which was derived in Chapter2 to gaugethe effect of incorporating a variable metric into

a PPP algorithm. Our analysis shows that the use of this variable metric decreases the conver

gence ratio bound. Numerical results show that there is a corresponding improvement in the

actual convergence ratios. The variable metric method also improves the performance of a non-

PPP algorithm.

The Maratos effect [Mar.l] isa phenomenon observed inthebehavior ofnonlinear programming algorithms, butit can beob
served in the behavior of minimaxalgorithms as well. The Maratos effect occurs when the insistence of the step size ruleon a de
crease in V(x) prevents a step sizeof one from beingtaken, evenneara solution. As a result, the convergence of analgorithm which
would be superlinearly convergent if unity step sizes were taken is degraded to linear.
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Rather than compute the second-derivatives, V2e *(*,), Han considered estimating them

using quasi-Newton updates. We take another approach to avoid computing these second-

derivatives. Note that

Z d*W(S)= £ ftWVV(*Mt. (i.i.8)
Acq keq

Since the functions gy() encountered in control system design are generally well-conditioned,

most of the benefit of the original rescaling can be obtained by using transformations defined by

In the second half of the dissertation, we turn our attention to the smooth, inequality-

constrained optimization problem (1.1.3b). Algorithms for the solution of (1.1.3b) can be

divided, with some overlap, into several types. In penalty methods, Lagrangian methods and

methods of centers, the constrainedproblem is transcribed into a sequence of unconstrainedprob

lems. The most widely used type of algorithm is based upon successive approximation to the

optimality conditions of (1.1.3b). The sequentialquadratic programmingmethod ofWilson is an

early example of such amethod [Wil.l].8 At each iteration of this algorithm, a search direction is

obtained by solving a linear complementarity problem9 which approximates the Kuhn-Tucker

necessary conditions for (1.1.3b).

A fourth type of algorithm, which has been much less thoroughly investigated, is based

upon successive approximation to (1.1.3b) itself. In such methods, a search direction is obtained

at each iteration by solving a natural approximation to (1.1.3b) in which each function /'(-) is

replaced by an approximation. Sequential linear programming [Gri.l] and Pshenichnyi's method

of linearization [Psh.l] are first-order algorithms of this type. In [Pol. 10], algorithms of this type

were proposed in which each function /;() is replaced by the quadratic approximation

Therehas been agreat deal of research aimed atconstructing second-ordermethods of this typewhich are both globally and su
perlinearly convergent Algorithmswhich arebasedupon successive approximations to optimalityconditions andwhich, of die avail
ablesecond-order information, make use only of the Lagrangian Hessian may fafl to achieve theirpotential superlinear rate of conver
gence due to truncation of the step size [Mar.l]. Additionalevaluations of the constraints areneeded to preventthis (May.l, Fle.l,
Fuk.l, Gab.l, CoLl-2, Pan.lr2].
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fj(x) + (V/'(x), h )+ xMh, Hjh ), for some matrix Hj e R" x\ The resulting subproblem

is a quadratic program with quadratic constraints, which we will call a generalized quadratic pro

gram (GQP):

min {f°(x)+{VfJ(x),h)+lMh ,H>h)\
AeR"

fJ(x)+{VfJ(x),h)+1MhfHJhUOf V;ep}. (1.1.9)

This dissertation presents the first thorough analyses of convergence and rate of conver

gence of implementable GQP-based algorithms. While there has been some theoretical analysis

of GQP-based algorithms [Pol. 10, Pan.3-4], the algorithms considered were conceptual, that is,

they assumed that the GQP subproblem is solved exactly. These algorithms were not imple

mented (to our knowledge) because no finite step procedures for solving problem (1.1.3b) were

known [Pol. 10, Pan.4]. We resolve this difficulty by approximating the solution to the subprob

lem using an active set method. By determining the set of constraints which are active at the

solution to the GQP subproblem, the inequality-constrained subproblem (1.1.9) is reduced to an

equality-constrained problem. The optimality conditions for the equality-constrained problem

constitute a system of polynomial equations (unlike the optimality conditions for (1.1.9), which

constitute a nonlinear complementarity problem) to which a root-finding method may be applied.

We obtain both a good estimate of the active set and a good starting point for a root-finding

method by computing the Polak-Mayne-Trahan search direction [Pol.7, Pir.l].

In Chapter 4, we present a first-order GQP-based algorithm, in which each //'is taken to be

a multiple of the identity. The search direction at each feasible point is a feasible descent direc

tion. We show that the algorithm converges linearly with a convergence ratio bound that is

smaller than that obtained for the Polak-Mayne-Trahan algorithm. Numerical results show the

algorithm to be generally superior to the Polak-Mayne-Trahan method and comparable to the

first-order feasible descent method of Herskovits [Her.l].

*This linear complementarity problem isequivalent to aquadratic program, and it is oftenpresented and analyzed inthat form.
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In Chapter 5, we treat a class of second-order GQP-based algorithms, in which the matrix

HJ is an estimate of the Hessian matrix V2/'(£). Second-order algorithms discard curvature

information when they combine estimates of the individual Hessian matrices to form a Lagran

gian Hessian matrix. The algorithms presented in this chapter are the first to fully use the full-

second order information. The algorithms converge globally and superlinearly.

1.3 DISSERTATION OUTLINE

In Chapter 2, we prove that two versions of a minimax algorithm converge linearly under

assumptions little stronger than second-order sufficiency conditions. For a class of composite

minimax problems which do not satisfy these assumptions, we prove that the algorithms con

verge linearly under a strict complementarity assumption.

In Chapter 3, we present a variable metric method which can be applied to any first-order

mimmax algorithm to improve the speed of convergence on a class of composite minimax prob

lems. We prove that the technique improves the convergence ratio bound obtained for the

minimax algorithms of Chapter 2. Numerical experiments are presented which show that the

technique improves the overall speed of convergence of both the minimax algorithm in Chapter 2

and a barrier-function type minimax algorithm for which no convergence rate theory exists.

In Chapter 4, we present a first-order GQP-based algorithm for problem (1.1.3b). We show

that the algorithm converges globally and linearly. Numerical results are presented which show

that the algorithm is superior to the Polak-Mayne-Trahan method of feasible directions, and is

comparable to the first-order feasible descent algorithm of Herskovits [Her.l].

In Chapter 5, we present a class of second-order GQP-based algorithms for problem

(1.1.3b). We show that the algorithms converge globally and superlinearly. The rate of conver

gence obtained ranges from superlinear to 3/2 depending upon the degree of accuracy of the Hes

sian approximations. Numerical experiments with one algorithm from the class show it to be
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competitive with the superlinearly convergent, feasible descent algorithm of [Pan.l].



CHAPTER 2

ON THE RATE OF CONVERGENCE OF

TWO MINIMAX ALGORITHMS

2.1 INTRODUCTION

We are concerned in this chapter with algorithms for solving minimax problems of the form

min max/'*(x), (2.1.1a)

where p = (1,2,..., p } and each/^:Rrt -> R is continuously differentiable.

Most minimax algorithms have been shown to converge locally or globally under various

conditions. However, the literature dealing with their rate of convergence is rather fragmentary

(see, e.g., [Psh.l, Pol.1-3, Sho.l, Kiw.l, Pev.l, Mad.l, Dau.l]. In this chapter, we establish the

rate of convergence of two versions of a minimax algorithm which was proposed first by Pshen-

ichnyi [Psh.1-2] (who calls it the method of linearizations) and later by Pironneau and Polak

[Pir.l] as a subprocedure in an implementation of theHuard method of centers1 [Hua.1].

We will briefly review the literature dealing with the rate of convergence of first-order

minimax algorithms for solving problem (2.1.1a). For this, we need to define the function

y:Rn -»R by

\|/(*) = max/>CO. (2.1.1b)
yep v J

First, since problem (2.1.la) can be transcribed into the equivalent constrained form,

min{w \fj(x)-w£0, j ep} , (2.1.2)

it can also be solved by first-order nonlinear programming algorithms.2 For example, it can be

1One of the definitions of the "center" ofaset described byinequalities, given byHuard [Hua.1], isinterms ofaminimax sub-
problem of the form (2.1.1a). Consequently, every implementation of theHuard method of centers (e.g. - [Pir.l, Hua.2]) incorporates
aminimax algorithm asa subprocedure. This faa was notwidely recognized, and some of these imbedded minimax algorithms were
laterrediscovered independently.

The transcription of (2.1.1a) into (2.1.2) is not recommended, because nonlinear programming algorithms converge more
slowlyon (2.1.2) than minimax algorithms designed specifically for(2.1.1a).
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solved by the Pironneau-Polak method of centers [Pir.l] which, as shown by Chaney [Cha.1],

converges linearly on (2.1.2) whenever a strengthened second-order sufficiency condition is

satisfied.

Subgradient and bundle methods designed for the more general problem of minimizing

locally Lipschitz functions can be used for minimizing the function \|/(-) [Kiw.l]. In Polyak

[Pol.l] and Shor [Sho.l], we find proofs that several subgradientmethods converge linearly when

V() is strongly convex.

Next, there are several algorithms which were designed specifically for solving minimax

problems of the form (2.1.1a). One of the oldest is that of Demyanov [Dem.1-2], which com

putes 5-approximations to the minimum value of yO with 8 > 0. It computes search directions

by solving a linear program defined by the linearizations of the 8-active functions /'(•) (c.f., the

Zoutendijk method of feasible directions [Zou.l], and employs an Armijo-like step size rule. It

was shown by Pevny [Pev.l] that, when >j/Q is strongly convex, the Demyanov algorithm con

verges linearly in function value.3 Madsen et al [Mad.l] propose a trust region algorithm for the

linearly constrained minimax problem in which a linear program is solved at each iteration.

When the solution x of (2.1.1a) is a "vertex" solution (also called a Chebyshev point or a Haar

point), the algorithm in [Mad.l] converges quadratically. However, when x is not a vertex solu

tion, the rate ofconvergence of this algorithm is unknown.

The minimax algorithms which we will discuss in this chapter belong to a family conform

ing to the following algorithm model, which uses the Pshenichnyi-Pironneau-Polak (PPP) search

direction subprocedure [Psh.l, Pir.l]:

PPP Algorithm Model

Data: xqg R" ; v>0.

'Pevnyi alsoshows that, if thefunctions fail to bestrongly convex butareconvex with bounded levelsets, convergence toa 5-
optimal value is arithmetic.
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Step 1: Given xn compute the searchdirection,

hi A arg min max/'(*) +\V/>(jcf),/i)+V*ytol2. n\3)
h € R" j e U v • • /

Step 2: Compute the step size X,-.

Step 3: Set xi+i = xt + X,^, replace i by i +1 andgo to Step 1. D

Algorithms in this family are specified by the quantities /, c p, y > 0, and a rule for com

puting the step size X,-. Thus, in [Psh.l], we find a minimax algorithm in the PPP family with

Ii = { j e p \fJfa) £ tpOc,-) - 8} (with 8>0), y= 1, and the constant step size X,aX. It is

shown in [Psh.l] that the resulting algorithm converges linearly, provided that the initial point is

sufficiently close to x . The proof assumesthat Xis sufficiently small, and that stria complemen

tary slackness, affine independence of the gradients of the active functions and second-order

sufficiency conditions hold at x. It is also shown in [Psh.l] that, if X= 1 and % is a "vertex"

solution, then the local algorithm converges quadratically.

In [Psh.l], we also find a PPPminimax algorithm which uses the step size rule

Xi = max {2"* Iyfe +2"*A,) - \|/(*/) £- 2-*alAlll2 } , a e (0,1) , n\A)
*eNu{0}

where N is the set of all nonnegative integers. It was shown in [Dau.l] that, if (2.1.1a) has a

"vertex" solution x, then the step size in the above algorithm eventually becomes unity. It there

fore follows from [Psh.l], that if a sequence {xj^o, constructed by the PPP algorithm using

(2.1.4), converges to a "vertex" solution x, then it converges quadratically.

In [Pol.2], Ii = p, y>0 and an Armijo step size rule [Arm.l] similar to (2.1.4) is used,

while, in [Pol.3], /,- = p, y = 1 and an exact minimizing line search is used to determine step size.

It was shown in these papers that both of these PPP methods converge linearly under the assump

tion that the functions/^) are strongly convex.
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In Sections 3 and 4 of this chapter, we show that the PPP algorithms, considered in [Pol.2-

3], converge linearly under a slightly strengthened form of the standard second-order sufficiency

condition. This condition is considerably weaker than the strong convexity assumption used in

[Pol.2-3]. Furthermore, unlike in [Psh.l], we assume neither strict complementary slackness nor

affine independence of the gradients of the active functions.

In Section 5, we consider the compositeminimax problem,

min max.gJ(AjX), (2.1.5)
* e R" j e p v/

in which each continuously differentiable function g'': R/y -»R is composed with a different

linear function Aj : R" -» R/;. Minimax problems ofthis form arise in the design offeedback

compensators and of discrete-time optimal controls. We show that, despite the fact that the solu

tion setis generally nonunique,4 the PPP algorithm described in [Pol.2] converges linearly, under

somewhat more stringent assumptions than for the general case.

2.2 THE PPP MINIMAX ALGORITHM WITH EXACT LINE SEARCH

In this section, we will consider the algorithm which results when the step size X,- in the

PPP Algorithm Model is computed by exact minimization along the search direction. To sim

plify notation, we define

VQi \x) £ fJ(x)+{^fJ(x),h)+1/^M2. (2.2.1)

Algorithm 2.2.1 (PPP-ELS): (see Algorithm 5.2 and Corollary 5.1 in [Pol.4])

Data: x0e Rn ; y>0.

Step 0: Set i = 0.

Step1: Compute thesearch direction,5

*h\ fact, the solution set must contain atranslation ofthe intersection ofthe null spaces ofthe matrices Aj.
5For theconvenience of theproofs to follow, wesubtract the term \f{x{) from theminimand in(2.1.3), soastomake thevalue

6(x,) of the search direction rinding problem less thanorequalto zero. This hasno effect on the resulting search direction.
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h(Xi) £ arg min maxtyih Ijc,-) - Vta).
h c R" / € p

Step 2: Compute the minimizing step size, X,- = arg min y(x; + Xh (x,)).
Xe R

16

(2.2.2)

Step 3: Set jc,-+1 = xt + &,-A (*,), replace i by i +1 and go to Step 1. •

Let the standard unit simplex be denoted by lp £ {p, e R' Ip/ £0 , £ y- e pu/=1}.

Then the search direction finding problem (2.2.2) can be transformed as follows:

Q(x)£ min
Ae/J"

= mm
heR"

max^(/» Ix)-\|/(jc)
yep

max £ \J §(h Ix)- v(x)
fl€^

;€p
(2.2.3)

Next, by Theorem 2.7.1, the max and min in (2.2.3) can be interchanged, and hence we obtain

that

8(x) = max min Y u> tf(h ljc)-y(x)

= max min £ u>'(/'(*) +(Vfj(x),h )-\rtx)) +V^-yB/r I2.

The solution p. to (2.2.4) is not always unique, andhence we define the solution set

U(x) = arg max
vel*

min^ £ u>(/'(*) +{VfHx),h )-v(*))+V*yllAlh
* € R" y € p

(2.2.4)

(2.2.5a)

By solving the inner minimization problem in (2.2.5a), we see that U(x) is the solution set to a

positive semi-definitequadratic program,

U(x) =arg max £ pf (/'(*) - y^x)) - ~-I £ |i/ V/'(*)l2. (2.2.5b)

Severalmethods exist for solving such problems (see, forexample, [Gil.l, Hig.l, Kiw.2-3, Rus.l,

von.l]). ;

As a consequence of the extended von Neumann Minimax Theorem (Theorem 2.7.1), we

have that, for any u.e U(x)%
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2 j? V(h(x) Ix) =max £ u> ^^(x) Ix)
yep **e2»yep

= min max Y vJ W(h \x)
AeR-ReXVy^p

= max min T u/ 6*(h Ix)
R6i;A€R->7p

=Ami£- 2 SVfllx). (2.2.6)

Hence, any multiplier vector \ie U(x) yields the solution,

h{x) =arg min £ ? VV* '*) (2 27)
Ae R"; 6 P v ' '

to the search direction finding problem (2.2.2) (for x = X,), which is unique since the function

max j 6pV(-1 x) is strictly convex.

Next we recall the following necessary optimality condition for problem (2.1.1a).

Theorem 2.2.1: [Cla.l, DemJ, Joh.l, Pol.4] Ifx e RB is a solution to problem (2.1.1a), then

there exists a vector ofmultipliers (I e Zp such that

ziwco-o. (2.2>8a)
yep

Z&Wtf)-V(*)] = 0. (2.2.8b)
yep

When the functions /'(•) are convex, equations (2.2.8a-b) are also a sufficient condition for

optimality. We denote the minimum value for problem(2.1.1a) by v = min x e R. \|f(x) and the

set of minimizers by 6 = arg min ze R. y(x). For any x e 6, the set of multiplier vectors

ft e Zp which satisfy equations (2.2.8a-b) together with x isexactly U(x).

Theorem 2.2.2: [Pol.4] Suppose that the junctions f *(:) in problem (2.1.1a) have continuous

derivatives. If x is an accumulation point of a sequence [ xt) ,£o constructed by Algorithm

2.2.1, thenx satisfies the optimality condition(2.2.8.a-b).
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2.3 RATE OF CONVERGENCE OF THE PPP-ELS ALGORITHM

We now proceed to prove that the sequence of values, {\|f(x,)} i^o* constructed by Algo

rithm 2.2.1 converges linearly to the minimum value under weaker assumptions than those used

in [Pol.2-3]. Our proof draws on ideas which appeared in the proofs of linear convergence of the

Pironneau-Polak algorithm for inequality-constrained minimization in [Pir.l, Cha.l]. We make

the following assumptions. Let FJ(x) denote the second derivative matrix of fJ(x) for each

ye p.

Hypothesis 23.1: We will assume that

(i) thejunctions f J(•) are twice continuously differentiable,

(ii) there exists T e R such that the setS = {x e R" Iy(x) <,T } is bounded and such that

there is a single point x e S which satisfies the necessaryconditions (2.2.8a-b),

(in)for some M' <«>,allx e Rn and all j e p, IlF'(x)I2<M'.

For any stationary point x, we define

J(x) § {jep\B\ie U(x):\iJ>0] . (2.3.1)

Hypothesis 2.33: Let x be as defined in Hypothesis 2.3.1, let B denote the null space of the

matrix with columns { V/ J(jt)) . . We will assume that there exists m' >0 such that, for
jeJQc)

all fie U(x),

m'\\hf<{h, h) VheB . (2.3.2)

Hypothesis 2.3.2 and equations (2.2.8a-b) together constitute a strengthening of the standard

second-order sufficiency conditions for x to be a local minimizer of yO [Wom.l]. Note that,

while (2.3.2) must hold for all multiplier vectors in U($), the subspace B over which the ine

quality must hold may be quite small, because all of the multiplier vectors in U(x ) are used to
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determine the set J (x). D

The proof of linear convergence requires several technical lemmas involving the following

quantities. With x as in Hypothesis 2.3.1 (ii) and B as in Hypothesis 2.3.2, let P : R" -> R"

denote the projection operator with range equal to B, and let P4- be the projection operator with

range equal toB\ Let

m £ min{m\v} . (2.3.3)

For anyy e Rn and u, e Ip, we define

R(y,\L) Ai/ml -llil-s^jepVJ ?*$ +V~s)y)ds . (2.3.4)

The function /*(-,) is continuous, and, by Hypothesis 2.3.2, for any ft e U(x), R(0, fi) is nega

tive definite on the subspace B.

We will use the notation z%->Z to indicate the convergence of the sequence

{ Zi} £o c Rn to the set Z c R", i.e., the fact that lim minye z lz(- -y I =0. The follow-

ing two results are established in the Appendix.

Lemma 23.1: If Hypotheses 2.3.1 and 23.2 hold, andx is defined as in Hypothesis 23.1, then

there exists K > 0 such that

limsup Mfr.r»><ir.
>-><f lyllP^yl (2-3.5)

H->£/(*) •

Lemma 233: If Hypotheses 23.1 and 23.2 hold, andx is defined as in Hypothesis 2.3.1, then

.. llx-xllP-Kx-x)! n „„^lim ^- ^-=0. (2.3.6)
*-** V(*)-V •

We now relate the potential decrease in the function y(') at x to the decrease predicted by

ect).
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Lemma 233: If Hypotheses23.1 and 23.2 hold, then

limsup 6(3:) <;-•£•
*-»* \y(x)-\jir Y
X *x

Proof: Referring to (2.2.4) and (2.2.5a-b), we seethat, for anyu. e U(x),

6(x)= min^ 2 M-V<M*)-VCx).
Ae R" y e p

20

(2.3.7)

(2.3.8)

Let s £ mIy. By the definition ofm above, s £ 1. Substituting A=j(x-x)in (2.3.8) and

using the definition of (^(-1 •) in (2.1.2), weobtain that

yep

= £ ?(/,^)-V(x)+(V/>(x),,s(Jf-x))+V4Y52lbe-xll21
ye p C J

£s 1Zn7y(*)+< S '̂V/>(x),Je-x>+VimllJe-xl2-\(f(x)k
6 p yep

(2.3.9)

since je(0,l] and /'(x)£\j/(x). Adding and subtracting the term

{x-Z,

we find that

Jod-O Z WFj{St +(l-t)(x-$))dt (x -Jc )> to the right hand side of (2.3.9),
yep

9(x)<^ £ \ijfJ(x)+ { £ p/V/>(x),x -x}
yep

J0V1-0 z £'>'(*+o-o(*-*))<a
yep

-y(x)+ (x -x ,/?(x -j? ,jl)(x -$))

e p yep

+ (x -X , (*-*)>

(2.3.10)

The first three terms in the right hand side of (2.3.10) constitute the second-order Taylor expan

sion of2 ye PviJfJ($ )• Hence,
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0(x)Zs\ £m//'(x)-\|/(x)+ (x -x ,*(x -x ,p)(x -x),
U«p

» >

\|/(S)-v(*)+ U -* .*(* -* ,ioc* -*))£j<

Dividing both sides of (2.3.11) by y(x) - \jr, we get

eoo
£s «

v(*)-v(*)

By Lemma 2.3.1,

_1+ (s-JE.flfr-s.nX*-*))
v(^)-v(^)

,. {x-x ,R(x-5t ,\l)(x-$)) „
limsup max J •— LC^ — < K ,
x^S *GUix) Bx-xOllP±(x-x*)l
X #x

and, by Lemma 2.3.2,

Bx-iHll/>-Kx-*)l n
hmsup — = 0

V(x)-v
X *x

Taking the lim sup of (2.3.12) as x -> x and using (2.3.13), (2.3.14) and

m
s = — ,

7

yields (2.3.7).

21

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

•

We combine Lemma 2.3.3 with a relation between the decrease predicted by 6(x) and the actual

decrease obtained at x in the direction h (x) using an exact line search. Let

M £ max{Af',y} . (2.3.16)

Lemma 23.4: If Hypotheses2.3.1 and 23.2 hold, then
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limsupmin *«+»*»»-$ gl_ min(m',1f)

X #X

Proof: Since by Hypothesis 2.3.1(ii), x is the only point in the level set S satisfying the neces

sary condition for optimality (2.2.8a-b), it follows that y($) = y and \|<x)>y for all

x e S \ x . Since 8(x) is zero if and only if the necessary conditions (2.2.8a-b) are met at x,

9(x)<0fbrallxeS\x.

The second derivative bound of Hypothesis 2.3.1(iii) implies that for each/ '(•)•

fJ(y+z)-fJ(y)-{VfJ(y),z)£ V*Aflzll2, Vy , z e R" . (2.3.18)

Thus, for any Xe (0,1] andx € S \ x ,

min \y(x +Xh(x)) - y(x) <S \y(* + Xh(x))- v(x)
A € IK

<Smax/'(x)-y(x) +(V/'(x), aV»(x))+V4A/IXA(x)I2 ,
y'« P .

Setting X=y/ M and using the definition ofM,

in^+^(^))-^)^^fmax/>(x)-v(x)+(V/>(x),/r(x)>+V4yl/»(x)ll2]
R v.y e P J

=^e(*) • (2.3.20)

mm

Sincee(x)<0forallx *x,

. y(x+Xh(x))-yy(x) ^- y

Applying inequality (2.3.21) andLemma 2.3.3 to the left hand sideof (2.3.17), we obtain

,imsup min *»+»(«))-*») =B min trct^^))-^) e»)

x*x x*x
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^JLi- 6(x)£ -f- hmsup ——
*-** \fix)->y
X *X

^
-m

m _ min{m',y}
=~M = max{Af,y} ' (23.22)

The second step holds because 8(x) < 0 and y(x) > y. Adding 1 to both sides yields the desired

result. •

Theorem 23.2: If Hypotheses 23.1 and 2.3.2 hold and Algorithm 2.2.1 generates a sequence

{Xi} Jto, starting from a point x<> e S, then (a) x, ->x as i ->«>, and(b) either x, =x /or all

large i or

V(*,+i)-V ^ minfm'.y) „*<v^hmsup SI J L-L-J- . (2.3.23)
"*~ VW-V max{M\y}

Proof: (a) The sequence {x;} £o lies in the compact setS, and hence it converges to the setof

its accumulation points. By Theorem 2.2.2, each accumulation point must satisfy the necessary

conditions (2.2.8a-b). Since, by Hypothesis 2.3.1(H), only x e S satisfies (2.2.8a-b), the

sequence converges to x.

(b) Follows from (a) and Lemma 23.5. D

Following Luenberger [Lue.l], we refer to the quantity limsup(\j<xl+i)-\ir)/(xj/(xl)-y)
i ->«>

as the convergence ratio of the sequence {\j/(x.)} £& The right-hand sideof inequality (2.3.23)

bounds the convergence ratio of any sequence constructed by Algorithm 2.2.1 in solving any

problem in the class defined by Hypotheses 2.3.1 and 2.3.2.
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Remark 23.1: The functions $>(•1 •), could have been defined in (2.2.1) using different values

of y for each j e p. This would have had two effects. First, the search direction finding problem

would have been considerably more difficult to solve. Second, the convergence ratio bound in

the right-hand side of inequality (2.3.23) could turn out to be larger, certainly it would not be

smaller. However, if individual bounds on the lF'(x)l areknown, one may be able to establish

lowerbounds by usingdifferent y,. D

Remark 23.2: From the definition of m and M in (2.3.3) and (2.3.16), the ratio mIM appear

ing in the convergence ratio boundis independent of y provided that ye [m', Af ]. However, for

y outside this range, mIM is smaller and the convergence ratio bound is greater. The following

example shows that this dependence of the convergence ratio bound on y is not an artifact of our

proof technique, but that it reflects the dependence of the actual convergence ratios on y. We

applied Algorithm 2.4.1 (see Section 4) to the problem of minimizing the maximum of

/*(*) = -6xo+4(x£+x?)and/2(x) £ x0+V4(x^+x2) using avariety of values for y. For

this problem m' - 2 and Af = 8. We started the algorithm from the point (1,1), and used

ye {2"3,2"2,2"1,2°, 21,22,24,2s,26). Figure 2.1 displays both the convergence ratio

bounds computed from the right-hand side of (2.4.2) and the convergence ratios which were

observed. D

2.4 RATE OF CONVERGENCE OF THE PPP-ARMLJO ALGORITHM

The step size rule used in Algorithm 2.2.1 calls for the exact minimization of a function of a

single variable. In practice, we use a step size rule which can be executed in a finite number of

steps. A suitable replacement for Step 2 in Algorithm 2.2.1 is the following generalization

[Pol.4] of the Armijo rule fordifferentiable functions [Arm. 11,

Step 2': Compute astep size, A,- =(J*, where kt e Z isany integer such that

yfcf +phi) - v(x4) <; 00*60*) . (2.4.1a)
and
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yfe +p*-1*,) - Wi) >o^^BiXi), (2.4.1b)

with fixed parameters a, p g (0,1). We will call the the algorithm resulting from the replace

ment of Step 2 in Algorithm 2.2.1 by Step 2' Algorithm 2.4.1. The convergence result, Theorem

2.2.2, holds for Algorithm 2.4.1 [Pol.4]. We show that a rate of convergence result very similar

to Theorem 2.3.2 holds as well.

Theorem 2.4.1: If Hypotheses 23.1 and 23.2 hold and Algorithm 2.4.1 generates a sequence

{xi} £o, starting from a pointXq e S, then (a) x,- -» x , as i —> «», and(b) either xt - x for all

large i or

,. V(*/+i) - V ., Qmin {ro', y}hmsup £ 1- ap j—L-LJ- . (2.4.2)
'"*" YC*.-)-V max{Af',y}

Proof: (a) The sequence {Xj} ,^o is contained in the compact set S, and hence it converges to

the set of its accumulation points. Referring to [Pol.4] and using the faa that the functions /'(•)

are continuously differentiable, we conclude that any accumulation point must satisfy the neces

sary conditions (2.2.8a-b). Since the only point in S satisfying these conditions is x, the

sequence must converge to St.

(b) We obtain a bound on the decrease in y(-) obtained at each iteration, assuming that the

sequence does not terminate in a finite number of steps at x. The second derivative bounds again

imply relation (2.3.18), and so, for all i e IN and k £ 0,

V(*,+P*/»,)-V(*,) = max/'fc+p*/!,)-^)
yep

Smax/ J(Xi)+ (V/ '(Xi),$khi) -ipOtf +ViM^IM2

£p* [max/ '(x,)+ <V/ >(*).*,-> -vfrO+VOlf p* l/t.l2] , (2.43)

becauseP*£ 1and/ >(x)£\|/(x). Therefore,if p*£y/M,
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Wi+PhJ-yixi) Zp* \m^f J(Xi)+(Vf J(Xi)thi)-Mxi) +̂ hil2}
yep J

= P*e(x,)<ap*6(xI)<0. (2.4.4)

It follows from (2.4.1a-b) that Xi Z py / M and hence that

V(*,+i) -¥*;) *oX, 0(x,) £-^ e(x,). (2.4.5)

Combining inequality (2.4.5) with Lemma 233 yields the desired result. D

2.5 RATE OF CONVERGENCE ON COMPOSITE MINIMAX PROBLEMS

Next we will establish the rate of convergence of Algorithms 2.2.1 and 2.4.1 on a class of

composite minimax problems of the form

mtamK,^). (2.5.,)

where gj : lRli -> R is continuously differentiable and Aj is an lj xn real matrix. We note that

(2.5.1) is a problem ofthe form (2.1.1a), with the functions /'(•) defined by f* k gj*Aj. In

conformity with the previous sections, we will use the notation \j/(x) = max gj(A:x). We note
yep

that when the null spaces of the matrices Aj have a nontrivial intersection, which we will call

their common null space, problem (2.5.1) does not have a unique minimum and therefore does

not satisfy Hypothesis 2.3.1(ii). In this case, problem (2.5.1)may also fail to satisfy the convex

ity requirement of Hypothesis 2.3.2. To see this, note that for problem (2.5.1), the secondderiva

tive of the Lagrangian at a minimizer x has the form,

Z yePlj AfGJ(Aj$ )Aj , (2.5.2a)

where G'() denotes the second derivative matrix of gj(). Cbntinuing to denote by B the null

space of the matrix with columns { V/'(x)} A, we find that thesecond derivative matrix
j € J(X )

will only be positive se/m-definite on the subspace B. However, we have observed in computa-
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tional experiments that linear convergence of the values { y(x,-)} /^o constructed by PPP-ELS

and PPP-Armijo is not lost in this circumstance. In this section we will derive a bound on the

rate of convergence of Algorithms 2.2.1 and 2.4.1 under the assumption that the Lagrangian Hes

sian is positive definite only on the orthogonal complement of the common null space of the

matrices Aj.

Recall that, ifx e 6, U(St) is the set of fl e 2^, which, together with x, satisfy (2.2.8a-b).

By analogy with nonlinear programming, we shall say that strict complementary slackness holds

at(x ,fl), where* e 6 and fie U(St),if

ft' >0 if and only if /'(x) = y(x), (2.5.2b)

for j e p. If strict complementary slacknessholds at (St, (I) for all ft e U(St), then the set U(St)

is a singleton, the vectors {AjVgJ(AjSt)} A are affinely independent, and
jeJ(x)

J(x)= {;epl/;(*) =v(*)} .

The following definition will be used throughout the dissertation. A set-valued function

S:JR.n -> 2Y (where Y c Rm) is upper semicontinuous in the sense of Clarke [Cla.l] if, for

every x e 1R" and every open set O => 5(x), there exists a neighborhood W of x such that

S(W) c O. An immediate corollary of this definition is that, if S (x) is a singleton on any open

set, then S() defines a continuous single-valued function on that set. Like continuity of single-

valued functions, upper semicontinuity has a sequencecharacterization. If S(-) is upper semicon

tinuous andS (x) is compact for allx, then x, -> x, y, e S (x,) andyt -» y imply that y e S (x).

Proposition 2.5.1: Suppose that the functions gj() are strictly convex and that strict comple

mentary slackness holds at (St ,fi)for every fl e U(St) and every St e 6 . Then, (a) there is a

unique fl such thatU(d)= [ fl }, and (b) the set J £ J(St) is independent ofSt for all St e (? .

Proof: We show (b) first Suppose that \ix, p2 e U(St) for some St e 6, and that \ix * H* Let /
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and j o be defined by

t A mm{p//(p/-pi)lp/>ui} >0, (2.5.3a)

jo A argmin{p//(p/-pi)lp/>pi}. (2.5.3b)
yep

Then \it = Pi +r(p2 - M-i) e Ip satisfies (2.2.8a-b) with x, and hence p, e U(St). By construc

tion, |x/° = 0. Hence, it follows from the stria complementary slackness assumption that

/y°(x)<\|/(x). However, p/°>0, and hence, again by strict complementary slackness,

/ ;o(x) =y(x). This contradiction shows that U(St) isasingleton for each St e 6 .

Suppose that j\eJ(Sf) but ji<£J(x") for distinct points x', x"e<5. Then

^y,(A;,x")<v(x"). Letx, A /Jc' +(l-f)r'.Thenx*,e(? forallre [0,1], and, by the con

vexity of gJl(), gil(AjJtt)<\|/(x ")=v(x/) for all t e (0,1). It follows from (i) above that

U(Stt)= {\it}, a singleton, and from (2.2.8b) that p/1 =0 forall f e (0,1). Now, by the Max

imum Theorem in [Ber.l], U() is an upper semicontinuous, compact-valued set-valued map.

Since U(Sf)= {ft'}, a singleton, U() is continuous at St'. Hence \it -> ft' as t -> 1, which

implies that ft';' = 0. Since this contradicts the assumption that j j e J (St 0. we concludethat (b)

holds.

Now we prove (a). Suppose that St', St" e d. From (b), s'(Ay(x'+t(St" -x 0)) is con

stant for all t e [0,1] and all j e J. Since each #'(>) is strictly convex, we conclude that

A,(x'-x ") = 0 for each ; e J . Therefore, for all ; e 7, A/Vg '(Ayx') = A]Vg'(AjX ")

and hence any ft satisfying (2.2.8a-b) with St' satisfies (2.2.8a-b) with St". This and the fact that

U(6) isasingleton imply (a). D

Proposition 233: If the functions gy() are uniformly convex, then there exists a neighbor

hood, W,of6 such that, for all x e W,yJ = Oforall\ie U(x)andj 4 J(St).
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Proof: First note that the uniform convexity ofthe functions g'() implies that 6 isnonempty.

Since h(x) is the solution of the primal problem (2.2.2), it satisfies the optimality conditions

(2.2.8a-b) with tiie functions /'(•) replaced by f'(- Ix). Every pe U(x) satisfies equations

(2.2.8a-b) together with h(x), and hencethe second ofthose equations yields

£ p> W(h(x)\x)-\?(x) -6(x)1 =0. (23.4)
/ e p *• «*

We show that h(x) ->0 and 6(x) -> 0 as x -> <?. If not, then there exists a sequence

{x,}, €*j and 5>0 such that x, -> (? and Ofo) <- 8 for all i e N. (Note that 6(x) =0

implies that h(x) =0.) Let AT =[A f,..., Aj], Now, since each $'(•) is uniformly convex, the

set { Ax,}, c K is bounded. Hence, there exists a bounded sequence {x',}, €N such that

Ax*, =Ax, for all i e N. Since the sequence {x*,-},- 6 Nis bounded, there exists a point x and

a subsequence ^cN, such that x/,->x as i-»«>fJeA:. Since

lim, __„ yCr*,-) =lim i -• o^x,) =y . V(*) =V. and hence x e 6. By Proposition 5.5 in

[Pol.4], this implies that 6(x) = 0 and h(x~) =0. Since 9() and *(•) are continuous, therefore,

8(x/,)->0 and h(x*i)->0 as i ->««>,/ e AT. But 6(x/l) =0(x,)<-6 for all i e N. This con

tradiction proves that h(x) ->0 and 6(x) -» 0 as x -> <?.

Therefore, f'(A(z) Ijc)->£>(*,•£) asx ->x* e 6 forall;, implying that

V(h (x) Ix) - y(x) - 6(x) <0 (2.5.5)

for every ; 4 J(St) in some neighborhood, Wt of6. It follows from (2.5.4) and (2.53) that, for

allxe W,p> =OforaUy€/(x)forallpel/(x). D

We now proceed to show that Algorithms 2.2.1 and 2.4.1 converge linearly on some prob

lems of the form (2.5.1) which do not satisfy the assumptions of Theorem 23.2. Letting

j\ < ••• <jb be the indices comprising J, with 7 defined as in Proposition 2.5.1, we define

AT&[A?,..., Ajp]. First we will show that the tail ofasequence {x,- }£o generated either
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by Algorithm 2.2.1 or by Algorithm 2.4.1 is contained inatranslation of tiie range of XT. We

will then show that the sequence corresponds to that constructed by the corresponding algorithm

onthe following restriction of problem (2.5.1) toatranslation of the range ofX T:

mmy(x+Zy), (2.5.6)

where a = rank (A T), and Z is a matrix, the columns of which form an orthonormal basis for

Range (X T). Finally, we will show that the restricted problem (2.5.6) satisfies the assumptions of

Theorem 2.3.2. We will use the notation <s*[X] to denote the minimum positive eigenvalue of

any symmetric, positive semi-definite matrix X.

Theorem 2.5.1: Suppose that

(i) the functions gJ() are twice continuously differentiable,

(ii) there exist constants 0 <t £ V such that, for allj e p,

rM2<{h,Gi(z)hHU\h\2, VA,zeR'>, (2.5.7a)

(iii) strict complementary slackness holds at(St, ft )forall ft e U(St) and allSt e 6 f

WLetlZt andL ££/ be such that

Io+[ £ fLUjAj] < y< Lmax \LtA]AjZ\ , Q.$nb)
yep

jep

where fl is the sole member ofU(G). Under these assumptions:

(a) For any St e 6 ,

limsup min V(*+A/K*))-<fr ^.1 *lZj;VATW
x->* XeR V(x)-<j> L maxlzW^*Zl (2.5.7c)

x e x + Range@)

x *x

The assumption of strict complementary slackness is necessary only ifthe matrices Aj have different null spaces, for example,
the linear convergence result holds without this assumption ifthe matrices Aj are identical.
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(b) If Algorithm 2.2.1 constructs a sequence {xj^o in solving problem (23.1), then the sequence

converges toSt for some St e 6 ,and either xt =x for alllarge i or

V(W -» ^t / q*Ey efijAjAj]
limsup £ 1- T \ r t . • (2.5.7d)
l_>~ y(Xi)-$ L maxlZM4MAZI

Proof: (a) To prove this part, we will (i) show that it is sufficient to consider the restriction of

problem (2.5.1) to an affine space, (ii) verify that Hypotheses 2.3.1 and 2.3.2 hold for the res

tricted problem, and (iii) apply Lemma 2.3.4.

First note that the uniform convexity of the functions gy() implies that 6 isnonempty. It

follows from Proposition 2.5.2, that there exists aneighborhood W 3 6 such that yJ =0 for all

j'47 and pe U(W), and from (2.2.7), that h(x) =£ j16 pp/ AjVgJ(AjX{) for any pe U(x).

Hence, for all x e W,

h(x) e Range(A T) =Range(Z), (2.5.8)

bythe definition ofZ above. Let us fix x e 6, and suppose thatx e W. Ifx e x +Range (Z),

then x +Xh(x) e x + Range(Z). This suggests that we consider the restriction of problem

(2.5.1) to Range (Z), viz.,

mm yr(y), (2.5.9a)

where

Vr(y)£y(x +Zy), (2.5.9b)

so that yr(y) =max, €pfl(y), with f((y )£fj(St +Zy). The search direction d(y )constructed

by Algorithm 2.2.1 at a pointy e Rfl for problem (2.5.9) is given by

d(y) £ arg min max£>(A.(x +Zy))+ (ZTAfVgJ(Aj(St +Zy)),d)+Vtfldl2
rfeR'/cp '
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=arg min max*'(A<<? +Zy))+ (A]Vgi(Aj(St +Zy)),Zd)+l/r#ZdI2
d E R' ; E p ' ' '

= arg min max^(Zrf ISt +Zy), (2.5.10)

since ZTZ =/a and <^(A Ix) £ *>(A/x) +(AjVg*(x)Jh )+ x/zilh\2. By (2.5.8),

A(x +Zy)e Range(Z). Hence, referringto (2.5.10), we see that

h(St +Zy) =arg min maxty(h Ix +Zy)
h 6 Range(Z)j 6 p

= Zd(y). (2.5.11)

Also, fory such that x +Zy eW,

arg min y(x +Z(y +M(y))) = arg min \jf(x +Zy+XZtf(y))
A.€ R Xc R

= arg min y(x +Zy +X/i(x +Zy)). (2.5.12a)
Xe R

We conclude from (2.5.11) and (2.5.12a) that

in y(x+XMx))-<i>=li min Y(*+Zfr+A</Cy))-<fr
R V(*)-<i> yv7o eR \j/($+Zy)-<j> (2.5.1

limsup min
x-j? *eR y(x)-tp ;y;0u "" W +Zy)-y (2.5.12b)

x e x + /?aitge(Z)

x *x

Hence, provided problem (2.5.9) satisfies Hypothesis 2.3.1 and Hypothesis 2.3.2, we can establish

(2.5.7c) by applying Lemma 2.3.4 to problem (2.5.9) to obtain an upper bound on the right hand

side of (2.5.12b).

We now verify that Hypothesis 2.3.1 is satisfied by problem (2.5.9). (i) The functions

gJ(Aj(St +Zy)) are twice continuously differentiable iny byassumption (i) of this theorem.

(ii) Let Sr £ {y e Ra I\p(x +Zy)£T }, with T>y(<?). Since the functions gJ() are

uniformly convex by assumption (ii) of this theorem, the set XzSr is bounded. Since
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Range(Z) =Range (A T) and NuU(Z) = {0 } , Null (A Z)= {0} ? Hence Sr is bounded, and,

since closed, it is compact.

The point y = 0 satisfies the necessary conditions for optimality (2.2.8a-b) for problem

(2.5.9), sinceSt satisfies the necessary conditions forproblem (2.1.1a). Showing that0 is the only

point in Sr which satisfies the necessary conditions (2.2.8a-b) for problem (2.5.9) is slightly

involved. Let G r denote the minimizing set for problem (2.5.9). Now suppose that there is a

y' e 6 r such that St +Zy' 4 6. Then \p(x +ZyO >v(x +Z0), which contradicts the assump

tion thaty' e 6 r. Therefore, x +ZS r c 6.

Now consider the set of multipliers,

Ur(y) ^ <He I,

Z ^VfV(y) =0
yep

Z M.yOfry(y)-Vr(y)) = o
yep

(2.5.13)

which, together with y, satisfy the the optimality conditions (2.2.8a-b), when the functions func

tions /'(•) are replaced by the functions //(•). We show that Ur(6 r)= {fl }, where fl is as

defined in Proposition 2.5.1(a). For any y e 6 r, we have St +2!y e 6 by the previous para

graph, and hence frj(y) <Vr(y) for all j' 4 7. Consequently, p' =0 for all j 4 7 and for any

p e Ur(y). Therefore,

2 V*AjVgi(Aj(St +Zy)) e Range(X T) =Range(Z) (2.5.13)
;ep

For any pe t/r(y), it follows from (2.5.13) that£y€ pi?ZTAjVgi(Aj(St +^T)) =0, hence,

making use of(2.5.13), we conclude that Z ; e pM-y AfVgJ(Aj(St +250) =0. Hence, ptogether

with x +Zy satisfy the necessary conditions (2.2.8a-b) for the original problem (2.5.1). Thus,

'Suppose that A Zy =0. Since Null (A ) r\ Range(AT)= {0}.Z> =0. But then A/u//(Z) = {0} implies that >=0.
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Ur(6r)CU(St +Z6r)-

Since, St +z6 r c 6 by the previous paragraph, this implies that Ur(<6 r) = {fl }, where fl is

the only member ofU((?).

Suppose that y e Sr satisfies the optimality conditions (2.2.8a-b) for problem (2.5.9).

Since yr(y) is convex in y, these necessaryconditions aresufficient for optimality, and, further

more, the entire line segment between y and 0, [y, 0], lies in6 r. Since Ur(\y, 0]) = {fl } and

flj> 0 for all ye 7 ,gj(Aj(St +Zy)) =y(x +Zy) =y for all y e [y, 0] and all j e 7. Because

the functions $'(•) are strictly convex, it follows that ^•ZJ' =AyZO =0 for all j e 7, and hence

that y e Null (A Z). As mentioned above, Null (A Z) = {0}, implying that y =0. Therefore,

the necessary conditions are satisfied at the unique point 0 e Sr and Hypothesis 2.3.1(H)holds.

(iii) It follows from assumption (ii) of this theorem that for all y e lRd,

IlF/(y )ll <Lmax j 6p\ZTAjAjZ D, where F/() denotes the second derivative matrix of//(•).

Now we verify that Hypothesis 2.3.2 holds. Letting c[X] denote the minimum eigenvalue

of any real symmetric matrix X, we obtain that

Z PFJ(0)
\JeP

= o

£/o

2 fLj ZTAjGJ(Aj(x +Z0))AjZ
L/ e P

2 fLJZTAjAjZ
U€p

= /o+

|y€P

(2.5.14)

since the columns ofZ span Range (AT) =Null(X )* and Null (SyepflM/i4y) =A^«// (X).

Letting the left-hand and right-hand sides of the double inequality (2.5.7b) correspond to m

andM respectively, we can apply Lemma 2.3.4 to problem(2.5.9) to obtain
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>>*<)* V$+Zy)-$

, / <J+Cy€^^y]
^x - T • $ t • > (2-515>£ maxlZTi4ft%Zl

*€ p

which, combined with (2.5.12b), gives part (a).

To show (b), we first show that x, -> x as i -* «> for some St e 6, and then apply part (a)

of this theorem. Let AT &[A\ Aj\. From (2.2.7), every /»,-, constructed by Algorithm

2.2.1, is of the form £, €pAjzjy with Zj e R*'. Thus, the sequence {x,-} £o is contained in

the closed and convex set Q £ {x0 +Range (AT)} n {x e RB Iy(x) £ \|/(xo)}. Suppose

that Q is unbounded. Then, since Q is convex, there exists a nonzero u e Range (A T), such

that, with xt ^ x0 +tu, y(x,) £ y(x0) for all f £0. IfAjji * 0 for some j0e p, then the uni

form convexity of g'(-), which follows from assumption (ii) of this theorem, implies that

lim, _> „ \\f(xt) = + oo. Since this contradicts our assumption that yfo) £ \y(*o)»we must have

that Au =0. Hence u e Range (A T) n Null (A) = {0}, which contradicts the assumption that

u * 0. Therefore, the set Q is bounded, and hence compact Consequently, the sequence

{Xi} ,~o must have an accumulation point, x. From Corollary 5.1 and Proposition 5.5 in

[Pol.4], any accumulation point x of a sequence generated by Algorithm 2.2.1 must satisfy the

first-order necessary conditions for optimality (2.2.8a-b). Since y() is convex, this implies that

x e 6. Since Q iscompact, it follows that x,- -»<? as i -»» .

Since x,- -•($ as i -»°°, there exists /oe N such that *,- e W for all i >i'o- Hence,

{*»} T= «o c xio+Range(A T) =x<0+Range (Z). Since the functions g'O) are uniformly con

vex, 6 n (xit +Range(AT)) is a singleton. Hence, the sequence {jc,},^ converges to

x =<? n(x, +/?an^(^r)).
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Inequality (2.5.7d) follows directly from convergence ofthe sequence to x and part (a). D

The corresponding result for Algorithm 2.4.1 can be obtained by following the steps used in

Section 4 and above.

Theorem 23.2: Suppose mat the assumptions of Theorem 23.1 hold. If Algorithm 2.4.1 con

structsa sequence {Xi}£c in solvingproblem(23.1), then, thesequence converges to St for some

St e 6 ,and either x,- =x for all large i or

limsup ^'»" * ^i _ap-L ^,%P TJ . (2.5.17)
1_>~ i|to)-<fr L maxlZM4MAZl

2.6 CONCLUSIONS

We have shown that sequences {yfc)} £o generated by two PPP minimax algorithms

converge linearly to the minimum value under weaker conditions than those assumed in previous

analyses of the rateof convergence of PPP algorithms [Psh.l, Dau.l, Pol.2-3]. Although compo

site minimax problems which have nonunique,nonisolated minimizers do not satisfy the second-

order sufficiency conditions Hypothesis 2.3.2, we were able to show that these PPP algorithms

converge linearly on such problems provided that strong convexity and stria complementary

slackness conditions are satisfied.

PPPalgorithms can be generalized in a straightforward way to solve semi-infinite composite

minimax problems [Pol.4] which arise in control system design,

min max max ^(Ajx.yj), (2.6.i)
x e R" j e p yj € I) v*.v.*y

where the sets Yj c R'> are compact, and the functions tf: R/jx RJ> -> R, y e p and

vW0 f') are continuous. As before, each Aj is an /, x n matrix. Under assumptions analogous

to those of Theorem 2.5.1, it can be shown that the semi-infinite versions of the PPPalgorithms,

consideredin this chapter, also convergelinearly(see [Pol.2]).
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2.7 APPENDIX

The following extension to the von Neumann Minimax Theorem is quoted from [Pol.4].

Theorem 2.7.1 [Pol.4]: Let / :R"xRm -> R be a continuous function such that / (x, y) is con

vex in x and concave in y and let Y be a compact, convex set in Rm. Suppose also that

f(x ,y) -> oo as Ixl -*oo,uniformly iny e Y. Then,

min max/(x,y) =max min f(x,y). (2.7.1a)
xgR" y e Y y 6 ? x e R" vq

Proof of Lemma 2.3.1: ForanyyeRB,y=Py+/>-ly. Hence, since /?(•»•) is continuous and

/?(0, fl) is negative definite on B forany fl e U(St)by Hypothesis 2.3.2,

{y. R(y. V)y)= (Py +Ph, R(y, \i)(Py +P*y))

= {Py ,R(y ,\i)Py)+ {P*y ,R(y ,\D(P*y +2Py))

£{Piy,R(y.\L)(P*y+2Py)), (2.7.1b)

for p near U(St) and y small. Using the Schwarz inequality and the faa that

DP4?+2Pyl£2llyl,

(y, R(y, \L)y )& fl* (y, p)l \P*y I \P™ay +2Py I

«S 28,? (y,p)l Uglily II

£3 max ltf(Ofp)ll/>4yllyl, (21 \c)

for p near(J(St)andy small, since I/? (•, )l is continuous. D

Proof of Lemma 23.2: UsingTaylor's Theorem, we obtainthat forany x e R\

V(x)-V(x)* max />(*)-VC*>

= max/>(x)+{V/;($),x-x )
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+U-*. [fo(l-^^(x+5(x-x)>is](x-x)\-v(x). (2.7.2)

Since fJ(St) =y(St) for all y e J(St), it follows from Hypothesis 2.3.1(iii) that

y(x)-y(Sc)Z max (V/>(S),x-x Mx-x, [jo(l-5)F>(5+5(x-x)>fc](x-x) )

;> max (V/'(x),x-x )-Aflx-xl2. (2.7.3)

Since (V/'(x),P(x -x))=0forally e 7(x)and/r =Ph +P±h forany/r e R\

max (V/''(x-),x-x )= max (V/'(j?), />±(x -x)>. (2JA)

We will to show that there exists an r\ > 0 such that

max {Vf>(St),PHx-St))7>i\lPHx-St)1i. {ln5)

If not, then there exists a nonzero ueB1 such that max (Vf'(St ),u )£0. Since U(St) is
jeJ0t)

convex, there exists a fl e U(St) such that fl' >0 for all j e J (St). By (2.2.8b), fl' =0 for

j 4 J (St). Therefore, by (2.2.8a),

E fi'(v/;(*),«>={ zfi'v/'ee),*)=(o,u>=o, (276)
ye/(x) >•'

Equation (2.7.6) states that a convex combination of the nonpositive numbers,

{ {Vf'(x)fU )} A, with nonzero coefficients, {fly} „ , is zero. Hence
j e J(x ) jeJ(x)

(V/>(x ), u )= 0 for all y e 7(x ). But then u e £ hb4- = {0}, contradicting the assump

tion that u * 0. Hence, let rj > 0 be such that (2.7.5) holds.

Substituting (2.7.4) into (2.7.5) and (2.7.5) into (2.7.3) yields

y(x)-y(x)2>rtl/>-Kx -*)I-Af Ix -x I2 , (2.7.7)
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forx in some neighborhood ofx.

Now we derive another lower bound on \y(x) - y(St). For any fl e U(St), using Taylor's

Theorem and the faa that Z y€ pfly Y/"7(*) =0,

yep

= <*-*.

= (/>(*-*),

+ (/>"Kx-S).

Jod-^) Z &'>'(* +s(x-St))ds
Jep

!o(l-s)ZfLJFJ($+s(x-St))ds
J*P

\l0(l-s)XVFJ(St+s(x-St))ds

(x-St))

P(x-St))

(2P(x-St)+PHx-St))). (2.7.8)
jep

Making use of Hypothesis 2.3.1(iii) and Hypothesis 2.3.2, (2.7.8) leads to

V(x)-v(x)^V^lP(x-x)B2-VWl/>^x-x)lll2/>(x-x)+/>-Kx-x)l

£xhm\P(x -St)\2-M \\P\x -x)ll Ix -x I ,

for x in a neighborhood of x .

Combining (2.7.7) with(2.7.9) and dividing by \P\x -x )8lx -x I yields

\j/(x)-y(x)

ll/>-Kx-*)llllx-JM
£max «

*xli2l/m\P(x-St)\

lP-Hx-x)lllx-x
-Af , -Af

llx-xl

\x-Stl V>Hx-St)l

(2.7.9)

(2.7.10)

for x in a neighborhood of x. Using the fact that Bxl£l/>4xl + l/>xll, and defining

r(x) = IP\x -x)B/ BP(x -x)I , we obtain that

y(x)-vC£)

llP-Kx-x^lllx-xB
£max

[r(x)2 +r(x) k_$| r(x) J (2.7.11)
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We use (2.7.11) to show that

Uminf *»)-***> . ^ 9 (2.7.12)
x-* ii/>-Kx-j?)iiBx-jei

which is equivalent to (2.3.6). Thus, given any integer k > 0, there exists a real number r > 0

such that the first term in the max in (2.7.11) is greater than k if r(x)£r. For x such that

r(x)>r, the second termterm in the max is greater than rj/flx -J?B-Af(l/r + 1). Hence, there

exists a neighborhood, Wk, of x such that the max in (2.7.1171) exceeds k for all x e Wk, and,

therefore, (2.3.6) holds. •
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CHAPTER 3

A VARIABLE METRIC TECHNIQUE FOR

A CLASS OF COMPOSITE MINIMAX PROBLEMS

3.1 INTRODUCTION

The term variable metric method is commonly used to describe a number of algorithms,

such as those discussed in [Deal, Byr.l], which emulate the behavior of the Newton method.

The term can be applied, however, to any optimization algorithm which uses a sequence of linear

transformations of the variables to convert the original optimization problem into a sequence of

equivalent problems, to each of which it applies one iteration of a "standard'* method and uses a

transformed result as a starting point for the iteration on the next problem. Variable metric

methods are effective when there is a linear transformation which transforms an optimization

problem into a better conditioned form. Since the desired transformation is not known a priori,

an approximating sequence of transformations is constructed as the computation progresses.

In the past, variable metric techniques were used as a means of improving the conditioning

of an optimization problem with respect with respect to a particular algorithm. For example, the

Armijo-Newton method [Gol.l] can be viewed as a combination of a sequence of transformations

with the Armijo gradient method. Consider the problem

"*/<*>• (3.1.1a)

where / :R" -> R is strictly convex and twice Lipschitz continuously differentiable. Given an

estimate xt- of the solution St, at iteration i, the Armijo-Newton method uses the transformation

x = F(xi)~Vty toconstruct the equivalent problem

minJ(F(xiT1/ty), (3.ub)

to which it applies one iteration of the Armijo gradient method. Thus, (i) it computes the search
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direction1 d, =-Vy/(F(xi)"V5yl), in the new coordinates, (ii) then it transforms this search

direction back to the original space by the formula hi =F(x{)'JAdi =-F(x,)"1V/(xl), and (iii)

computes the step size X,*, which is unity near the solution, using a suitably transformed Armijo

step size rule (see [Gol.l]). Setting x,+i = x,- + Xiht completes the construction of the next iterate.

As is well known, the result is a quadratically convergent algorithm. Similarly, it should be obvi

ous that variable metric methods such as those in [Dix.l] can be viewed as combinations of

sequential linear transformation techniques with the method of steepest descent, which uses an

exact line search.

The above discussion shows that certain sequential linear transformations are effective in

conjunction with two gradient methods. Referring to [Nem.l], we see that sequential linear

transformations can be effective with any first-order method. It is shown in [Nem.l] that, for

problem (3.1.1a), the number of iterations required by any first-order method to reduce an initial

cost-error, /(x<j) -minx 6 R»/(x), by a factor kg (0,1) (for xo near a solution x) is bounded

from below by 0(^K log(l/K)), where K is the condition number of the Hessian F(St). For

problem (3.1.1a), the domain transformation x =F(St)~Vly produces the equivalent problem

mm> eir" / (F (x T^y), which has an associated condition number of 1. Hence the bound on the

required number of iterations isreduced from 0 (fit log(l/K)) to OQog(l Ik)). For example, the

method of steepest descent, which converges only linearly on problem (3.1.1a), converges super-

linearly on the transformed problem [Lue.l]. Since the point x is not known a priori, a variable

metric method attempting to implement this reconditioning must use a sequence of linear

transformations approximatingx =F(St )"^y.

1It is interesting toobserve that theNewton search direction A, isthesolution of theproblem
min (V/(xf)./i>+V4fol£w,

which has the form of the Armijo gradient search direction finding problem,except that the norm (corresponding to F(x,) = /) is re
placed by a new metric at each iteration. This fact influenced the naming of the variable metric methods which emulate Newton's
method.
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Experience with solving feedback compensatordesign problems [Pol.5], as well as optimal

control problems involving flexible structures [Bak.l], has shown that they can be very badly

conditioned with respect to first-order minimax algorithms, such as those described in [Pol.4].

These problems have the form of a compositeminimax problem,

min maxg'(A;x), /3 i 2)

where each Aj is an lj x n matrix, each function g ' :R*' -*R is continuously differentiable,

and p denotes the set of integers {1 p }. Since the outer functions, g '(), encountered in

control system design areusually very well conditioned, the ill-conditioning appearsto be caused

by thematrices Ay.

In this chapter, we present a sequential linear transformation technique which is intended to

mitigate the ill-conditioning caused by the matrices Aj. The technique is similar to one used

implicitly by Han in [Han.l]. Our technique was inspired by the observation that when all the

functions gj() in (3.1.2) are convex, any solution St to (3.1.2) is an unconstrained minimizer of

the corresponding Lagrangian, l(x, fl) ££y 6 fL*g j(Aj x), where the fl'' are optimal multi

pliers. Although the Hessian of this Lagrangian is usuallysingular, a restriction to a suitable sub-

space can be used to recondition the problem minze R. l(x, ft). Since, in many engineering

applications, only the matrices Aj cause ill-conditioning and since second order derivatives of the

gl() can bevery costly tocompute, we replace the Hessians of the g*() by identity matrices and

use linear transformations to improve the conditioning of approximations to the matrix

£, e pQijAjAj. The resulting sequential linear transformation technique can be used in conjunc

tion with any first-order minimax algorithm which produces estimates of the optimal multipliers.

Our variable metric technique is developed in Section 2. In Sections 3 and4, we presenttheoreti

cal results which show that our variable metric technique can improve the speed of convergence

of the Pshenichnyi method [Psh.l]. (Han proves only a global convergence of his related algo

rithm [Han.l].) In Section 5, we present numerical experiments which show that our variable
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metric technique reconditions problems with respect to both the Pshenichnyi method and a new

interior point method [Pol.6].

3.2 DEVELOPMENT OF THE VARIABLE METRIC TECHNIQUE

We begin by providing a heuristic rationale for our method. Consider the general minimax

problem,

min max/^x), n2.l)

where the functions /'(•) are twice continuously differentiable. We will denote the standard unit

simplex in R" by Zp £ {pe R* I£ yepp' =1, p£0}, and the second derivative matrix

of fJ() by Fj(). We can associate with problem (3.2.1) the Lagrangian /:Rrt xl,p -»R,

defined by

l(x,\L)= £ \Ljfj(x). (322)
yep

We recall the following result.

Theorem 3.2.1: [Cla.l, Dem.3, Joh.l, Pol.4] If St is a solution to (3.2.1), then there exists a

fl e Zp such that

V,/(x . fl) = 2 fl'V/'tf ) =0, (3.2.3a)
yep

Z fl'Vy($)-max/>tf)] = 0. (3.2.3b)
yep yep

Now suppose that the functions /'(•) are strictly convex. Then it follows from (3.2.3a) and

the convexity of /(•, (I) that, if x is a solutionto (3.2.1), then it must also be a minimizer of the

function <J>A (•) £ /(•, fl). Now, as we have seen inthe Section 1, the conditioning ofthe problem

minx e R» <J>A (x) can be improved by a linear domain transformation based on the Hessian of <b().

Our method originated in the conjecture that this transformation would also improve the
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conditioning of problem (3.2.1). Han used this matrix as the basis for a variable metric method

for problem (3.2.1) in [Han.l].

We now return to problem (3.1.2). The Lagrangian for problem (3.1.2) is given by

/(x, p) =jv.6p\Ljgj(AjX). Hence its Hessian with respect to x is given by

L(x,\l)= £ \LjAjGJ(AjX)Aj , (324)
yep

where Gy() denotes the second derivative matrix of g;(). In many engineering optimization

problems, such as those mentioned in the introduction, the functions g'() do not contribute to the

ill-conditioning of the matrix L(x , fl), at a solution. Furthermore, their Hessians may be very

difficult to compute. Hence we propose to replace the Hessian matrices G*(AjXi) in (3.2.4) by

lj x lj identity matrices. Thus, for any p e Ip, let

*<H)A Z rlJA?Aj. (325)
yep

We will show that a sequential transformation method based on the matrix R (p) can compensate

for theill-conditioning introduced by thematrices Aj.

To ensure that a sequential domain transformation method does not destroy the convergence

properties of the algorithm which it uses, there must be both an upper bound and a strictly posi

tive lower bound on the eigenvalues of the domain transformation matrices. However, the

minimum positive eigenvalue of R(p,) may decrease to zero as p,- -> ft. Hence, we propose to

modify R (p;) by augmenting the small eigenvalues in its spectral decomposition, as follows. For

any p e Ip, let Xi(p) £ Ag(p) £... £ X„(p) be the eigenvalues of R(p). Let U^ be any real uni

tary matrix such that R(p) =tfHdiag( Xi(p),..., KQO) UJ. and let Xy(p) £ max {A,y(p), e},

where e > 0 is a small fixed number. Then we define

fi(p) £ <7ndiaga,(p) Xn(p))f/J . (3.2.6)
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Proposition 3.2:1: The matrix-valuedfunction Q()is well defined and continuous in p.

Proof: We begin by showing that Q (p) is well defined even though the selection of the eigen

vectormatrix Up is not unique whenR(p) hasmultiple eigenvalues. Letting Ao = ~, we define

D(p) d {j e n IX7_!(p) >Xy(p) =X;+1(p) ••• =X^oo-iOO >Xj+mM(p.) } , (3.2.7)

so that { Xj(p)} ye dqi) is the set of distinct eigenvalues of /?(p), with multiplicities my(p).

Next, let My denote the j-th column ofU^j e n. Then,

y e Dip.) k e ffl^u)
(3.2.8)

is aspectral decomposition of fl (p). The matrix £ *emj.^ Uj^.\uJ^-\ represents aprojection

operator which projects onto theeigenspace corresponding to Xy(p), and hence it is independent

of the selection of U^. Since

G(p) £ i/Hdiag(X1(p) X„(p))tfJ = £ Xy(p)
yeD(n) Jt e m/jri

' (3.2.9)

we seethat it, too, is independent of the selection of U^.

Now, suppose that the sequence fpJ£o c ^ converges to some p e 2^, as / ->«>. For

eachp,, let £/,- = [wt|l,..., i^- ]be a unitary matrix of eigenvectors ofR (pl)f so that

y'eD(^)
£ uy'+*-l.i My>*-U (3.2.10)

The sequences {Q(\ii) }5 and { Ui} £o are bounded, since the eigenvalues are continuous

and the matrices Ui are unitary. Therefore, there exists an infinite subset K c N, and matrices

— — - — K
Q and U = [ulf..., un], such that fi(p,) -» Q and I/, ->1/ as i -• °°. Because l/fl/T" =/, for

all i e N, U U T=/. Since [J?(ILj)-X/GLj)/ ]«;,/ =0» for/ e n, and since the eigenvalues,

Xj(), are continuous, [/? (p) - Xj(\i)I ]5) =0 for./ e «. Thus, £/ is aunitary matrix ofeigenvec

tors for R (p). The matrix Q (pf) can also be written in the form
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G(H,)= Z
y'€D(jI)

2 _Xy+*-lGli)"y+*-U lf/**-l.i

Taking limits in (3.2.11) as i -><», i e K, yields

y e D(jl)
2 _Xy+t-lOO W>+*-l M/+4-1

77T
= Z *yG0

y e D(|I)
2 _My+*-lMy'+*-l

IkemM
= eoo

48

(3.2.11)

(3.2.12)

Since the sequence { Q(p4)} £o is bounded and any accumulation point of this sequence equals

Q (p), it follows that lim,- _>«(2(M-») = C (p). and hence Q (•) is continuous. •

We now provide an algorithm model which shows how to combine our variable metric

technique with any one-step, first-order minimax algorithm which produces multiplier estimates.

To simplify notation, we rewrite problem (3.1.2) as

minlxe R* V(x). (3.2.13)

where

\|/(x)£maxyep$'(Ayx) (3.2.14)

Now consider any first-order minimax algorithm for solving (3.2.13) which generates estimates

of the optimal multipliers at each iteration. We can associate with the algorithm a y-dependent,

set-valued iteration map MV:R" -»R" x ih such that, if {(x,-, p,)} ,~i isasequence generated

by the algorithm on the problem minz € R» y(x), then

(^+i»^i+i)€Mv(xl), (3.2.15)

for all / e K.

For any v € 2p, let S(v) k Q(v)~*. Then the Junction \|<S(v)y) can be written in the

alternative form (\|f*5)(y), which leads to the notation My.S(v) f°r the iteration map defined for

the problem transformed by S(v). Hence a variable metric algorithm for solving problem (3.1.2),
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basedon the the iteration mapMv andthe transformation matrix S (v) has the form

Variable Metric Algorithm Model 3.2.1:

Data: x0 e R" , p_! e 1^ , i = 0.

Step1: Sety, = ^(p,)"1^ ,

Step 2: Compute (yM, p1+1) e M ^^(yf),

Step 3: Setxl+1=S(p,)yl+1.

Step 4: Replace i by i+1 and go to Step 1. D

Note that the multiplier vectors do not require transformation because, for any invertible matrix

S, (x , fl) € R" x Zp satisfies equations (3.2.3a-b) with respect to problem (3.1.2) if and only if

(S~lx , fl) satisfies these equations'with respect to problem min y€R. y(Sy).

33 RATE OF CONVERGENCE OF THE PSHENICHNYI ALGORITHM

We will now summarize a number of results, established in [Pol.4] and Chapter 2, for a ver

sion of the Pshenichnyi minimax algorithm [Psh.l] which uses an exact minimizing line search.

When applied to problem (3.1.2), with y(") defined in (3.2.14), this algorithm has the following

form:

Algorithm 3.3.1: (see Algorithm 5.2 and Corollary 5.1 in [Pol.4])

Data: x0; y>0.

StepO: SeW=0.

Step 1: Compute the search direction

hi = arg min maxg'*(A.x,) + (AfVgJ(AjXi),h )+l/tflhl2. (3.3.1)

Step 2: Compute a minimizing stepsize, X, e argmin xc r y(*, + X/t/) •



§33 RATE OF CONVERGENCE OF THE PSHEMCHNYI ALGORITHM 50

Step 3: Set x, +1 = x,- + Xihi, replace i by i +1 andgoto Step 1. •

Theorem 3.3.1: [Pol.4] If the functions gj() in problem (3.1.2) are continuously differentiable,

then any accumulation point xofa sequence {xJSo constructed by Algorithm 3.3.1 satisfies the

first-order optimality conditions (3.2Ja-b).

To show that the algorithm converges linearly, we need to introduce more restrictive

assumptions. Let the set of minimizers for problem (3.1.2) be denoted by

G = argmin z € R- y(x). By analogy with nonlinear programming convention, we say that

strict complementary slackness holds at (x , ft), where St g 6, ft g T.p and the pair satisfies

(3.2.3a-b), if we have ft'' >0if and only if gj(AjSt) =y(x).

Hypothesis 3.3.1: Suppose that

(i)fl the functions g'() are twice continuously differentiable,

(ii) thereexist0 < / £ L < <» suchthat, for all j e p,

lM2<t(h,GJ(z)h )ZLlhP. Vi.HeR'', (3.3.2)

(iii) strict complementary slackness holdsfor all (St, ft) where St € G, ft € T^ and (St, ft) satisfy

(3.2.3a-b).

It follows from Hypothesis 3.3.1 that (i) for any x e 6 there isaunique optimal multiplier

fL g Zp satisfying equations (3.2.3a-b), (ii) the set of optimal multipliers, associated with the set

ofoptimal solutions, 6, is asingleton, {ft }, and (iii) the set ofindices of functions maximal at

x,7 £ { j e pIgj(AjSt) =\|/(x*)}, is independent ofx e 6 (see Proposition 2.5.1).

Let j\<...<jb be the indices comprising J, then we define the matrix

AT£ [Ajx,..., A]h]. Let a ^ Rank(fi T) and let Z be an nxa matrix, the columns ofwhich

form an orthonormal basis for Range (X T). Then we have the following result, established in

Chapter2 and [Wie.l].
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Theorem 33.2: [WIe.l] Suppose that Hypothesis33.1 holds with respect to problem (3.12) and,

in addition,

(iv) / and L are chosen so that the scaling parameter, y, in Algorithm 33.1 satisfies

I tf*[ Z b'AjAj] <y<Lmm UTAjAjZl, (3.3.3)
y€p J''* P

where c+[X] denotes the minimum positive eigenvalue cfthe symmetric matrix X. If Algorithm

33.1 constructs an infinite sequence {xrfSo»then, (a) x,- ->x «/-)« with St e 6 , and (b)

either there existsani0e N such that x4- = St for all i £ i oor

limsup 1±-1™—L. £ p f , (3.3.4)
"*m Wi)-$

where

A / O+VLje^AfAj]
P= L maxlZTA/A;Zl * (33'5)

y € p

Following [Lue.l], we refer to the quantity limsup (y(**+i) - \|0 / (vte) - V) as the conver-
i -»oo

gence rar/0 of thesequence {\j/(x,)} Jo. The quantity p in (3.3.4) bounds theconvergence ratio

of any sequence constructed by Algorithm 3.3.1 in solving any problem in the class defined by

(3.1.2) and the assumptions stated.

3.4 RATE OF CONVERGENCE OF VARIABLE-METRIC-PSHENICHNYI

ALGORITHM

We will refer to the algorithm obtained by inserting the iteration map of Algorithm 3.3.1

into the Algorithm Model 3.2.1 as the Variable-Metric-Pshenichnyi Algorithm. We will now

show that the Variable-Metric-Pshenichnyi Algorithm converges faster on problems of the form

(3.1.2) than Algorithm 3.3.1.
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For the transformed problem

min z e r- V(S (v)y), (3.4.1)

given a point y =S(v)~*x and av e SP, thesearch direction computation (3.3.1) has the form

d(y,v) Aarg min maxgj(AjS(v)y)+ {(AjS(v)?VgJ(AjS(v)y),d)+ V*yldl2. (342)

The result can be transformed back to the original space using the formula

h(x,v) £ S(v)d(y,v). (3.4.3)

Equivalentiy, h (x, p) can be computed directly using the variable metric defined by S(y) as fol

lows:

h(x, v)=arg min max g '(A.x)+U/V* >(A.x),/r) - vCx> +V*Y U. G(v)/» >. (344)
A € /?" y" 6 p ' ' ' \ • • /

Since the max function in (3.4.4) is strictiy convex in h, h(x, v) is unique, and hence it also fol

lows that h (-, ) is continuous.

Problem (3.4.4) can be solved by converting it to dual form by the same argument used in

Section 2 of Chapter 2. Let 0(x, v) denote the minimum value in (3.4.4). Then for any x e R"

andv e Zp, the search direction problem canbe writtenin the following equivalent forms:

9(x, v) 4 min max g '(A a) +{AjVg J(AjX), h)-y(x) +V4y (h. Q(v)A )
he R* j e p

= min max £ HJ\gJ(AjX)+(Aj*gJ(AjX)th H<x)]+V*)r(A.fi<V)*). r345)heR"\ielf j e J J J \j.-*.j)

By Theorem 2.7.1, the max and min in (3.4.5) can be interchanged. Hence,

6(x,v) = max min £ yj {g >(A.x)+ {AjVg >(A.x),A ) -\K*)1 +V*y (h,Q(v)h )

= max 2 p' [g J(Ajx)-\y(x))-±i £ pM/Vg >(Ayx)le2(v)-» > (3.4.6)

where the last expression is obtained by solving the inner minimization problem2. Since the

3Several methods exist (see, forexample, [GU.l, von.l, Kiw.2-3, Rus.l, Hig.l]) forsolving thepositive semi-definite quadratic



§3.4 RATE OF CONVERGENCE OF VARIABLE-METRIC-PSHENICHNYI ALGORITHM 53

solution to (3.4.6) is usually not unique, we denote the solution set by

U(x,v) £ arg max £ p> [g >(A;x)-V(x)]--£-1 £ tfAptg >(Ayx)Hfi2(v)-. • (3.4.7)
I16 Z* y* e p z * y e p

The set-valued function U(-, ) has the following properties: (i) it is upper semi-continuous in the

sense of Clarke [Cla.l] and compact-valued; (ii)forany minimizer x of (3.1.1a) and any v e Lp,

U(St ,v) is the set of multiplier vectors which, together with St, satisfy equations (3.2.3a) and

(3.2.3b), (iii) under Hypothesis 3.3.1, U(G ,Ip) = {ft }, asingleton, (iv) any multiplier vertor

[1e U(x,v) yields the unique solution to the primal problem (3.4.4), according to the formula

h(x, v) =- \-Q (V)"1 2 v/AjVg J(AjX) . (3.4.8)
' yep

Steps 2 and 3 of the Variable Metric Algorithm 3.2.1, using the iteration map of Algorithm

3.3.1, can also be performedin the original space without affecting the sequence of iterates pro

duced. We therefore present it in this form to simplify proofs.

Algorithm 3.4.1:

Data: x0; Y> 0 , U-! e Zp , e> 0, i = 0.

Step 1: Compute the multiplier vector, p,- € U(xit Pf.j).

Step 2: Compute A, = h (x,-, p,_i) using (3.4.8).

Step 3: Computethe minimizing step size, Xi = arg min x€ r yCt* + ^i) •

Step 4: Set xi +\ = x, + XjAj, replace i by i +1 and go to Step 1. D

We will now establish several properties of Algorithm 3.4.1.

Theorem 3.4.1: If the functions gj() in problem (3.1.2) are continuously differentiable, then

any accumulation point St of a sequence { xt} £o generated by Algorithm 3.4.1 satisfies the

necessary conditions (3.2.3a-b).

program (3.4.6).
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Proof: This follows from the proof of convergence for Algorithm 3.1 in [Pol.4] and the fart that

the scaling matrices S(p,-i) are uniformlybounded, i.e. - that forallv g 2^,,

(max VLjAjlT* M* B2 <; IS(v)h I2 £e"* to I2. (3.4.9)
yep

•

Next we will show, under assumptions of convexity and complementary slackness, that the

sequence ofiterates, fo-J/Zo, constructed by Algorithm 3.4.1 converges to the solution set 6 and

that the corresponding sequence of multiplier vectors, /PiA^-i converges to (I, the unique

optimal multiplier associated with the solution set 6. We will use the notation Zi~*Z to

represent the convergence of a sequence {z,*}£ocR" to a set Z c R", i.e. -

lim,- _»« minyeZ ^i -yI =0.

Theorem 3.4.2: Suppose that Hypothesis 3.3.1 holds and that Algorithm 3.4.1 generates

sequences ofiterates [ xt} £$ and ofmultiplier vectors { p,-} JIq. Then,

(a) there exists an open set W => 6 such that p' =0 for every j&7 and all

pe UQV,Zp),

(b) there exists St e 6 such thatxt -*St asi -*°°,

(c) there exists iqg Msuch that x,- g x +Range (A T) for all i £ i o>

(d) Pj; -»fl as i -> oo.

Proof: (a) Since h(-, •) defined in (3.4.3) and 6(-, •)defined in (3.4.5) are uniformly continuous in
i

(x, v) on compact sets in R" x T.p% and since both functions are zero on the set <? xl.p, (a) fol

lows from the same argument as Proposition 2.5.2.

(b) Let AT A [A],..., A*]. Equation (3.4.8) and the fact that Range(AT) is invariant under

S(v) for all v g Zp imply that the sequence of search directions { ht },~o is contained in the

range of AT. Therefore, the sequence of iterates {x,-} ,£o iscontained inthe set



§3.4 RATE OF CONVERGENCE OF VARIABLE-METRIC-PSHENICHNYI ALGORITHM 55

V £ (x0+Range(AT))n {x g R" I\|<x) S^xq)} • (3.4.10)

The set V is compact by the same argument as in the proof of Theorem 2.5.1, and therefore the

set {Xi} Zo converges to the set of its accumulation points. By Theorem 3.4.1, these must

satisfy the optimality condition (3.2.3a-b). Since \|<) is convex, these necessary conditions are

sufficient for optimality, implying that x,- -»<?.

From part (a) of this theorem, h(x,v)e Range(XT) for all x g W and all ve Ip.

Because x,-»(?, there exists i'0g N such that x,- g W for all i > if> Hence,

U«} «~=,o c Xia+Range(AT),*n<lXi ->(xio+Range(A T))^6.

We show that this limit set is a singleton. Suppose xj,x2g (xio+Range(XT))(^6.

Then, since \j/() is convex, the entire line segment between x\ and jc2, [*i,xj, is contained in

this set. Now, U([xx,x2], Ip) = { fl } and fl' >0 for all; g J . Hence, gj(AjX) =\jf(x) =y

for all x g [x i, x2] and all j g 7, byequation (3.2.3b). Since the functions $y() are strictiy con

vex, this implies that Aj(x i - xi) =0 for all j g J . Since xi - x2 g Range (A T), this implies

that xi-x2g Range(AT)r>Null(A) = {0}, i.e. - that X! =x2. Thus,

6 r*(xio+Range(XT))= [St } forsomex.

(c) From the proofof(b), x,- g x,0 +Range (AT) =St +flange (X T), for all i ^ <0.

(d) The set-valued map U(,) defined in (3.4.7) is upper semicontinuous in the sense of Clarke

[Qa.1] and compact-valued, uniformly on compact sets in R" x Zp. Since ^-»jc e(J by (b)

and U(6 ,Zp) = {(I }, this implies that p,- -»fl. D

We define the function p : R"*" -» R by
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PCS) £ 1- T \ r t t \ ' C3-4-11)^ maxlZr5rA/A;5Zl

Note that p in equation (3.3.5) equals p(/), where I is then xn identity matrix.

Theorem 3.4J: Suppose that Hypothesis 33.1 holds and, in addition, (iv) / andL are chosen so

that the scaling parameter, y, satisfies

I o+[ J tL*SQL)AjAjS<SL)] <y<Lmax IZTS(SL)TAjAjS(Si)Zl. (3 4 12a)
>ep i«P

#" {*«' ) M) & 0* infinite sequence generated by Algorithm 3.4.1, then, either there exists an

i0e IN andx g 6 such thatx{ =jc for all i £ Iq, or

W(xl+1)-ftlimsup ZLUll-JL ^ p(5 (ft)). (3.4.12b)

Proof: By Theorem 3.4.1(b), the sequence of iterates has a limit point x g (? . Assume that

Xj *x for all i e K. Hypothesis 3.3.1 and assumption (iv) of this theorem ensure that the

assumptions ofTheorem 3.3.2 are met for the transformed problem,

min \j/(S(fl)y). (3.4.13)
y g R"

Since the range of XT is invariant under S(fl), the columns of Z form abasis for the range of

S($L)AT. This fact and assumption (iv) of this theorem imply that assumption (iv) ofTheorem

3.3.2 holds with respect to problem (3.4.13). This and Hypothesis 3.3.1 ensure that the assump

tions of Theorem 3.3.2 are satisfied with respect to problem (3.4.13). The following result,

slightly stronger than Theorem 3.3.2, but valid under the same assumptions, is stated in Theorem

2.5.1:
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^p min vs^^m-i^o®.
y->y *«* ^(^(fDy)-^ (3.4.14)
y*9

y € Range (Z)

where y k S^)""1^ for an arbitrary St e (? . Using the substitution y =StfO^x and the fact

that A(S(fl)y, fl) = S(fl)d(y, fl), (3.4.14) can be rephrased as follows. For any 6 >0, there

existsa setV c St +/tonge (Z), whichis openin the affine space St +Jtoige(Z), suchthat

min V(x+U(x,(l))-^ ^(1 +g)p(5((l)) ^ (34 15)

for all x g V, x * x . Since y() is strongly convex, the min over R in (3.4.15) and in Step 3 of

Algorithm 3.4.1 can be replaced by a min over a closed interval C. With this modification, the

left hand side of (3.4.15) is continuous in (x,p), since h(,) is continuous. This implies that

there exists aneighborhood of fl, D clpi such that

min Tfr+**ft.|i))-»s(1 +26)P(5(fl)), (3.4.16)
XeC V(x)-$

for allx e V and p g D. Of course, since 8 was arbitrary,

v • V(* +Xh(x,\L))-<fr ^^/e,,A^limsup mm Jti r —x-^p(S(fi,)).
*->j? XeC W)-$ (3.4.17)
X *x

x e x + Range(Z)

By Theorem 3.4.2(c), x,- e J? +Range (A T) =St +Range (Z) for large i. Then, since x,- ->x,

p, -> fl andv(x,- +XfA.) = min xe c Vfo + M,), (3.4.12b) holds. D

The following comparison of the two convergence ratio bounds, p given by (3.3.5) and

p(£(P-)) given by (3.4.11), suggests thatourvariable metrictechnique results in a faster algorithm

than the original Pshenichnyi Algorithm 3.3.1.
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Proposition 3.4.1:If<s*[R(fl)] > e, then p(/) £ p(5(fl)).

Proof: Consider a spectral decomposition R(fL) = UAUT, where U is unitary,

A £ <ftv(Xi(fL) XB(fl))andA Adiagd^) X„(fl)). Wehavethat

£ fl' S($L)T AjAjS($i) =S<$i)T RQDSQi) (3.4.18)
yep

= U A~* UT ( U A UT) U A*"*4 UT

= UA-XKUT.

Since o+[/?(fl)] >e, we have that, for each j g n, either X;(fl) =Xyflt) or XyCfl) =0. Hence,

ZjepP S$i)TAjAjS($L) =Udiag(l,..., 1,0 0)U, which implies that

a+Cy €Pfly SOLfAfAjSQL)] = 1, and

p(S(ft)) Ai-1 ! .
L maxllZ^aifA/A^^JZll (3A19)

yep

Now,

« r * r r * . (yfZT5(fl)TA7A;5(fl)Zy/IIZT5(fl)rA/A>5(fl)Zl= max — vty y y v^^
)6 r \y»y /

2IU.S(ft)Zy II
= max *

yeR- |y|2

lly(fl)Zyll2 ,342m= max —*-—-r , (3.4.2U)
yeR- |ZyB2

since the orthonormality of the columns of Z implies that IZy II = ly tl for the Euclidean norm.

Making the substitution z = £(fl )Zy yields

U.zl2
\rIIZr5(fl)TA/Ay5(fl)Zl = max

zb Ranged) \S(^)^Z\2
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U.zil2
max

ze Ranged) |Q(fx)V42|2

max

xc Ranged) {2fQ(Ji)z)
lAjzf

Substituting (3.4.21) into (3.4.19) yields

p(S(fl)) £l--£min {z:QV>z)\jep,zeRange(Z)
IU.zl2

By inspection,p(5 (fl)) is never greaterthan

p(/) = l- —min

1"
(z Q(p.)z ){j e p yz e^e(Z) ( ,vj, =|z, =!

"AyVl

59

(3.4.21)

(3.4.22)

(3.4.23)

D

The difference between p(/) and p(S(fl)) can be quite significant, as the following example

shows.

Example 3.4.1: Suppose that a minimax problem involves two scaling matrices,

1 0

0 l(T2
1(T2 0
0 10

(3.4.24)

and that pl = p2 = V4 and / =L = 1. The rate constant for the unsealed Algorithm 3.3.1 is

p(/) = 0.995, whereas, under rescaling, it is p(S(fl)) = 0.5. This suggests that

f log 1CT1 / logp(/) 1 = 460iterations of the Pshenichnyi Algorithm 3.3.1 would be required to

achieve a ten-fold reduction in vCO~¥ near me solution, while only

rioglO~!/logp(S(fl)) 1 =4 iterations of the Variable-Metric Pshenichnyi Algorithm 3.4.1

would be required. D
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3.5 NUMERICAL EXPERIMENTS

We performed a number of numerical experiments to evaluate the overall behavior of the

variable metric technique. We compare the performanceofthe Pshenichnyi Algorithm 3.3.1 with

that of the Variable-Metric-Pshenichnyi Algorithm 3.4.1 and with Han's method [Haal], which

performs domain rescaling by replacing the matrix R(p,) by £ y€?\i/AjGJ(Xi)Aj. In addition,

we compared the performance of the barrierfunction minimax algorithm in [Pol.6] with a

corresponding variable-metric-barrier-function method which we constructed in accordance with

the Variable Metric Algorithm Model 3.2.1. The barrier function method is based on the penalty

function

(3.5.1)jeP a-gJ(AjX)

which is differentiable at all x for which y(x) < cc An iteration of the barrier method involves an

indefinite number of inner cycles, each of which requires the evaluation of all functions and first

order derivatives. The rate of convergence of this algorithm has not been established and hence

we can only evaluate the effect of our sequential transformation technique on it through numeri

cal experiments. The five algorithms were applied to the two problems below. An Armijo-like

step size rule [Arm.1( Pol.4],

Xi =max { $kXi Ivfr +1$%) - yfe) Zalfike(Xi, p,)} . (3.5.2)

with a, p g (0,1), was substituted for the exact minimizing line search in Algorithms 3.3.1 and

3.4.1, since problem (3.5.2) can be solved in a finite number of steps. Quadratic interpolation

was used to determine a trial step size X,-. In all of the experiments, the algorithm parameters

were set to a = 0.7,p = 0.9,y = 1.0, and e = 10"10 (inthe definition of thematrices Q(p)). Since

in engineering applications, gradients and Hessians are frequently computed using finite differ

ences, the evaluation counts in Tables 3.1 and 3.2 are tabulated as though the gradients and Hes

sians of the functions gy() were evaluated by finite differences. The evaluation of a single rune-
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tion gj(z) incurs one function evaluation, and the gradient Vg'(z) incurs an additional lj evalua

tions. Thus, the total number of function evaluations required to obtain the information to com

pute a search direction for the Pshenichnyi and Variable-Metric-Pshenichnyi Algorithms is

Z ye p('y + !)• The evaluation of Hessians for use by the Han algorithm incurs an additional

V4(// +1) evaluations per function gj().

Problem 3.5.1: Consider the simple problem min , 6 R4 max {g l(A i x), g\A 2x)}, where

gl(y)=y2+y2+(y3-l)2-l, (3.5.3a)

g2(y)=y12+y22+(y3+l)2-l , (3.5.3b)

and the matrices A \, A 2 aregiven by

A,=

10 0 0 o"
0 10 0 ^2 =

0 0 10"1 0.

102 0 0 0

0 10 0

0 0 10

(3.5.3c)

An initial point of (10~3,0,10,0) was used. The minimum value of 0 is achieved on the sub-

space spanned by the vector (0,0,0,1). Table 3.1 shows the work required for the five algo

rithms to achieve two given levels of accuracy in the value of y. The units of work listed are

number of iterations, the number of function evaluations and the CPU time. Figures 3.1 and 3.2

plot the function values {y(x,)} against the number of function evaluations for the Pshenichnyi

andVariable-Metric-Pshenichnyi Algorithms. •

Problem 3.5.2: [Hoa.l] Consider the problem of designing a controller for the feedback system

in Figure 3.3 with plant,

P(s) =
(s+2)2(s+3)

s2+&s+\0 3s2+7s+4
2s+2 3$2+9j+8

(3.5.4)

Since the plant is stable, we can parametrize the controller by

C(x)=(/ -R(x ,s)P(s))~lR(x, s) where R(x,s) is a2 x2 matrix of rational polynomials in

the complex variable s, which are bounded and analytic for Re(s)£0. We chose to shape
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frequency

domain tracking error by solving the problem

min lA max IH^jm, R(x, j©)) l| , (3.5.5)
X (DC Q v '

where Q consists of six frequency points, equally spaced on a logarithmic scale,

{ 0.010,0.029,0.080,0.240,0.693,2.0 }, and UF denotes the Frobenius norm. For this sys

tem, H ejuCt ,s)-I -P(s)R(x,s). We used the following first orderexpansion ofR (x, s),

•*<*.')-[ *3 XxA ]-(dm+[ *7 *8]• (3.5.6)
The initial point x0 = (0,0,0,0,1,0,0,1) was chosen, and our computations converged to the

minimum value of 0.0255085 at the point

x = f-80.308718709. -4.4337113582,84.132574000, -31534025985.

9.2348949849, -0.0051528236. -8.9338039187,4.8550280952 ]

The work required for the algorithms to achieve two given levels of accuracy is recordedin Table

3.2. The values of \j/(-) are plotted versus the number of function evaluations for the Pshenichnyi

and Variable-Metric-Pshenichnyi Algorithms in Figure3.4. D

Theorems 3.3.1 and 3.4.2 apply under the same assumptions to versions of Algorithms 3.3.1

and 3.4.1 employing an Armijo-like step size rule, except that the convergence ratio bounds are

given by

P VL wolIzTaTAjZI { '
jet

and

*^ __„ ItTp/A\Ti Ti (i/A\>ilmax \ZtS($,)tA]AjS($l)Z\
yep

(3.5.8)
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Table 3.3 presents the actual convergence ratios of the sequences constructed by the algorithms

under comparison on Problems 3.5.1 and 3.5.2, as well as the convergence ratio bounds derived

above. Table 3.3 shows that the variable metric technique reduces both quantities. The reduction

in computational effort corresponding to the decrease in the convergence ratios of the observed

sequences is evident from Tables 3.1 and 3.2. The reduction in effort entailed by even the slight

reductions in the convergence ratio bounds is also large. To show this, we have included in Table

3.3 the number of iterations which the algorithm convergence ratio bounds suggest would be

required to reduce y(x) - \|/ by a factor of 10 near asolution, i.e. - f log0.1 / log p ].

Ifavariable metric fi«(p) is based on /?//(p) = £ j e p\ljaJgj(Ajx)Aj, rather than R(p)

as in Section 2, and if c+[RH($i)] > e, the search direction of Algorithm 3.4.1 coincides with that

ofHan's algorithm near <5. A result similar to Theorem 3.4.3 holds for this algorithm with

p/z = 1 - min «
{z,QH($L)z) '

lj e p , z e Range(£)
(z,AfG'(AjSt)Ajz)

(3.5.9)

In general, pH > 0, suggesting that only linear convergence is achieved despite the use of second

order information. This is bom out by the strictiy positive convergence ratios observed for ver

sions of the Han algorithm using an exact minimizing line search. While a sequence {xj con

structed by the Han algorithm with a fixed step size of 1 converges superlinearly to a minimizer,

some iterations may produce an increase in yO). It is likely that a descent algorithm based on

Han's searchdirection will not be superlinearly convergent without the use of devices analogous

to the feasibility enhancing corrections of some algorithms for nonlinear programming (see, for

example, [May.l, Pan.l]).

3.6 CONCLUSIONS
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We have introduced a variable metric technique which substantially mitigates the ill-

conditioning produced in the composite minimax problem by the Aj matrices. The technique

does not require the evaluation of second derivatives and can be used as described in Algorithm

Model 3.2.1 to speed the convergence of any first-order minimax algorithm which produces esti

mates of the optimal multipliers. We have analyzed the effect of the technique on the rate of con

vergence of the Pshenichnyi minimax algorithm. An upper bound on the convergence ratio was

obtained for the variable metric version of the algorithm which can be considerably smaller than

for the unsealed version. Numerical experiments verify the improvement suggested by the

decrease in the convergence ratio bounds. The variable metric technique yielded a dramatic

acceleration in convergence. The experiments also confirmed that the technique can speed con

vergence of another minimax algorithm. The variable metric technique can be applied without

modification to a version of the Pshenchinyi algorithm for solving minimax problems involving

semi-infinite composite max functions [Pol.4] of the form max $(x,y), where Y c Rr is a
y e Y

compact, but infinite set. The convergence rate analysis extends to this case as well.

3.7 APPENDIX

Affine Parametrizations in Control: We give two important examplesof affineparametrization

in control system design. The first is in the the design of a compensator according to H°°criteria

(see [Pol.5]), and the second is the construction of a discrete time control which keeps a trajectory

within prescribedbounds. The resulting optimization problems involve composite functions with

the inner function affine and the outer functionpossiblynondifferentiable.

Consider the feedback system S(P,C) shown in Figure 3.3 where the plant, P, has a stabil-

izable, detectable state space representation. LetU = {s e t\ Re(s) >-av } , with otu 2 0, and

let JR\j(s) be the set of rational functions that are bounded and analytic in U. If NrD~{ and

DrxNi are right and left coprime factorizations of P, with entries in lRu(s), and

Ur, Vr, Nt, Uit V/, with entries! in Ru(5), satisfying the Bezout identities [Des.l, You.l],
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then all compensators which ensure internal stability of the feedback system have the form

C(R) =(Vr -RNiT1 (Ur +RDi) for some R with entries in WL\j(s). The transfer function of the

closed loop system with such a compensator representation is given by

-NrRDt+VtDt NrRNnNrVr NrRDt-ViDt ^/^/-V/D,

H(R) = DrRDi+DrUr -DrRNt+DrVr -DrRDi-DrUr -DrRDt-DrUr (3.7.1)

NrRDt+NrUr -NrRNt+NrVr -/VVKD/+V/D/ -NrRDt-NrUr

Referring to (3.7.1), we see that every transfer function in the feedback loop S(P,C) is an affine

function of the parameter R. Hence, referring to [Pol.5], we see that performance in command

tracking, disturbance rejection, plant saturation avoidance and stability robustness can be

expressed by inequalities of the form

max_ fo[(G//?Gr-F)0,©)]-fe/((0);^0,
coe [0, oo]

(3.7.2)

where Gt, R , Gr, F are matrices with entries in Ru(s) and bf() is a positive, bounded, lower

semicontinuous function and oo > 0 is large.

A time domain criterion such as performance in following a given trajectory can be

expressed in the form

max g(Vl{(GlRGr-F)(s)u(s)}(t))^0,
t € [0, fo]

(3.7.3)

where g :R* -> R is a differentiable, convex function, ek denotes the k-th unit vector, and

Gi, R , Gr , F have elements in Ru(s).

The selection of an optimal compensator can be formulated in several ways, but, since it

may not be clear a priori that the design requirements are consistent, it may be desirable to

choose a compensator which minimizes the maximumviolationof several such performance ine

qualities.
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Computationally, one cannot deal with elements of Rufa )**"•. Hence in [Pol.5, Sal.l], the

parameter R e Rud)*"10 of the compensator C(R) was parametrized in terms of a vector

xe]Rmino, with n = 1,2, 3, • • •, as follows. Define the matrices X/eR**'1*,

i = 1,2,..., n, by filling them in order,row-wise, with the components ofx, i.e.,

[Xi]kJ £ [x\i-i)nino+(k-i)n. +i . * e «; , / e no. (3.7.4)

where for any * e IN, £ denotes the set {1,... ,k ). Let p e R+, then [Pol.5, Sal.1] define

/?„ :R""'^ -> RuC*)**1* by

B s -p +<Xn . .

It was shown in [Pol.5, Sal.l] that any R with entries in Ru(?) can be approximated with arbi

trary precision by an Rn(x) for some x and n. Thus, we can expect to obtain solutions reason

ably close to the optimum over Ru(j)','x,w if we choose n large enough. Note that, with this

parametrization, the compensator parameter, Rn(x), is a linear function of the design variable

vector, x.

Substituting (3.7.5) into (3.7.1), and then (3.7.1) into the functions in the performance ine

qualities (3.7.2) or (3.7.3), yields a function of the form, max $(Ax,y), where Y is a compart,
y e Y

convex set in R' for some t, A :R" -» Rm is linear, and $: Rmx7 -* R is twice continuously

differentiable in x and continuous in y. (The maximum singular value function appearing in

(3.7.2), o(B), is not differentiable in B, but it can be written in tiie equivalent form

max { {u , Bv) I\uI =1, ilvl = 1}.) It was shown in [Pol.4, Sal.l] that the functions in

(3.7.2) and (3.7.3) are convex in the design parameter R. Thus, the optimal compensator design

problem becomes a minimax problem involving convex, nondifferentiable functions which are

composed with a linear function and has the form:

P1: mi5L max ma$ +k(AkZ,yk). (3.7.6)
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Next consider a discrete time, time-varying linear system,

xi+i = FiXi+ GiUi, x0 = x, i =1,2 N , (3.7.7)

where xt e R" is the state at time i and u e WLmxN is the control sequence. We assume that the

control is required to be bounded for alltime, i.e.,«,- e U, whereU c Rm is compact Suppose

that we wish to find a feasible control that, as much as possible, keeps the trajectory within a

prescribed tube, defined ati by h - St ,1£ &,. Thenweobtain the minimax problem

P2a : min max {I* - x, II - 6,} , (3.7.8a)

where U A {ue RmxVUle U, i =1,2,..JV* }. But
i-l _ i-1 i-1

Xi =£,Jc +A,u £ YlFjx + E II FjGki*k> Hence (3.7.8a) isseen to be ofthe form
y=0 *=0 jm-\-k

P2b: minmax/'^u). (3<7.8b)
U € U I € N v '
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Algorithm
\|/,- £ y + 10~2 \ft £ \Jf +10""*

Iterations Function

evaluations

Time

(sec.)

Iterations Function

evaluations

Time

(sec.)

Pshenichnyi 291 5,246 11.6 397 7,154 15.9

VM-Pshenichnyi 4 80 0.3 6 116 0.4

Han 3 98 0.2 5 152 0.3

Barrier 45 6,806 9.4 48 16,640 22.1

VM-Barrier 40 2,276 4.8 43 2,812 5.7

Table 3.1: Numerical Results for Problem 3.5.1.
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Algorithm
\ft; £ \jf +10"2 V, £ V + 10"4

Iterations Function

evaluations

Time

(sec.)
Iterations Function

evaluations

Time

(see.)

Pshenichnyi 11628 976806 2317.9 11976 100603 2391.9

VM-Pshenichnyi 4 390 2.0 6 558 2.8

Han 4 1350 2.2 6 1902 3.1

Barrier 15 2,314,548 2,788.0 21 10,904,772 13,008.5

VM-Barrier 4 1422 7.1 11 4962 13.2

Table 3.2: Numerical results for Problem 3.5.2.
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Algorithm
Problem 5.1 Problem 52

Convergence
ratio

Convergence
ratio bound

Iterations Convergence
ratio

Convergence
ratio bound

Iterations

Pshenichnyi .83 .999979 109,646 .9969 .999994 383,763

VM-Pshenichnyi .67 .697697 7 .0805 .937000 36

Han .0840 .697697 7 .0805 .937000 36

Table 3.3: Convergence ratios and bounds for Problems 3.5.1 and 3.5.2.
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CHAPTER 4

A GENERALIZED QUADRATIC PROGRAMMING-BASED

METHOD FOR INEQUALITY-CONSTRAINED OPTIMIZATION

4.1 INTRODUCTION

We now consider the mequauty-coiistrained nonlinear programming problem,

ICP mm {/°(x)lMx)S0, Vyep} , (4.U)

where p denotes the set of natural numbers {l,...fp } and the functions /':R" -»R,

; e pvj {0}, are continuously differentiable. In [Pol.10], algorithms were proposed for the solu

tion of problem (4.1.1) which obtain a search direction at each iteration by solving a natural

approximation to (4.1.1) in which each function/^) isreplaced by the quadratic approximation

fJ(x) +(VfJ(x), h)+ l/t{h, Hjh ), for some Hj e R" x\ The resulting subproblem is aqua

dratic program with quadratic constraints, which we will call a generalized quadratic program

(GQP):

min {f\x)+{VfJ(x),h)+K{h.Hjh)\
h € R" '

fi(x)+{VfJ(x)th)+iMh,Hjh)^0 V;€p} .(4.1.2)

The use of GQP subproblems in algorithms for the solution of (4.1.1) offers some potential

advantages over the use of quadratic programs. Information about the curvature of individual

constraints can be incorporated directly into the constraints of the GQP subproblem. If the

matrices Hj are positive definite and the current iterate is feasible, the resulting search direction

is a feasible descent direction. This chapter presents the first thorough analysis of convergence

and rate of convergence of an implementable GQP-based algorithm.
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There has been some theoretical analysis of GQP-based algorithms. The convergence of

conceptual phase n1 algorithms is treated in [PoLlO]. Rates of convergence are obtained for

GQP-based minimax algorithms in [Pol.9, 11] under assumptions of uniform convexity. It is

shown in [Pan.3] that, on uniformly convex problems, the norms of the search directions con

structed by a conceptual GQP-based algorithm converge superiineariy to zero as ihe iterates

approach a solution.2

The GQP-based algorithms proposed in [PoLlO, Pan.3-4] were conceptual, that is, they

assumed that the GQP subproblem is solved exactly. These algorithms were not implemented (to

our knowledge) because no finite step procedures for solving problem (4.1.2) were known

[Pol.10, Pan.4]. Furthermore, (4.1.2) may not have feasible solutions ifx is infeasible for (4.1.1).

In this chapter, we resolve these difficulties for the case of first-order information, where each Hj
is taken to be amultiple of the identity.

Our GQP-based method approximates the solution to (4.1.2) by adding acorrection to the

search direction ofthe Polak-Mayne-Trahan algorithm [PoL7, Pir.l]. The approximation is exact

under certain conditions, and requires the solution ofonly one quadratic program and aprojection

operation. The method uses the Polak-Mayne-Trahan search direction when no solution to

(4.1.2) exists.

Because we set each Hj in (4.1.2) to amultiple ofthe identity, the search direction at each

feasible point is a feasible descent directioa Hence, once the algorithm constructs a feasible
point, the inequalities

/'(*,)£0 V/ep and /Vi+i)</°(x,), (4.1.3)

hold for all subsequent iterates. This property is important in engineering design problems for

which function evaluations are extremely costly and for which designs failing to satisfy

tion hvTw.iu S!^00 °^U2^tJS to *• ^P"^00 of•to"™* PO«t. Phase Erefer, to the improvement of this solu-uon by afeasible, descent algorithm, which decreases the the value of the objective function while maintaining feasibility.
riilm,. J2!t(^,l<;COn.U?in^ u'VC "H? •PPefred " *e «ubproblems of trust region algorithms [More.1]. However, in ten Age*mhms, they function to limit the search direction, rather than to represent the constramtt oftlie problem.
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specifications are unacceptable [Nye.l]. Other first-order algorithms satisfying these require

ments include [Hua.1-2. Mey.l, Mif.l, Pir.l, Pol.4, Pol.7,Top.l, Her.l].

We compare the efficiency of our GQP-based algorithm with that of the Polak-Mayne-

Trahan algorithm, because the GQP-based algorithm can be viewed as a modification of the

Polak-Mayne-Trahan algorithm and because the Polak-Mayne-Trahan algorithm satisfies (4.1.3)

and has beenshown to converge linearly in Phase n [Pir.l, Cha.1] under convexityassumptions.

We show that the GQP-based algorithm converges linearly with a smallerbound on the conver

gence ratio of the sequence ofcost values3 than that obtained for the Polak-Mayne-Trahan algo

rithm. Numerical experiments also showthe new algorithm to be generally superior to the Polak-

Mayne-Trahan algorithm, andcompetitivewith the feasible descentalgorithm of [Her.l].

The GQP-based algorithm presented in this chapter accepts infeasible starting points, and a

linear rate of convergence obtains even if the sequence of iterates approaches feasibility only

asymptotically.

In Section 3, convergence and rate of convergence results are obtained for a local, concep

tual GQP-based algorithm. In Section 4, an implementation of the local, conceptual algorithm is

developed. In Section5, the convergence and rate of convergence results are obtained forthe sta

bilized, implementable algorithm, and the results of numerical experiments are presented in Sec

tion 6. The properties of the Polak-Mayne-Trahan algorithm arereviewed in the next section.

4.2 THE POLAK-MAYNE-TRAHAN ALGORITHM

The Polak-Mayne-Trahan (PMT) algorithm [Pol.7] is a phase I - phase n extensionof the

Pironneau-Polak algorithm [Pir.l], which, in turn, is an implementation of Huard's method of

centers [Hua.1-2]. The PMT algorithm is one of very few first-order phase I - phase n methods

for which the rate of convergence is known (see also [Pol.8]), and its computational behavior is

'Recall that the convergence ratio of a sequence {x^} t e N which converges to x is defined as
limsup, ^.f/°(xui)-/°0?))t<f0<?{)-f°&))•
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quite competitive in this class. We will use the PMT algorithm as a benchmark for evaluating the

new algorithm. The PMT algorithm solves problems of the form

min{/°(x)l/'(x)£0, yep), (4.2.1a)

under the assumption that the functions/'iR" -> R arecontinuously differentiable and the con

straint qualification that the function maxj € p/'(x) nothave any stationary points outside the

interior of the feasible set.

We willuse the following definitions. We denote thesetof natural numbers {1 p } by

p, and the set { 0,1,..., p } by puO. The/? smooth constraints f*(x) £ 0 in (4.1.1) canbe com

bined into a single nonsmooth constraint \|/(x)£0, where \jf(x) =max/6p/;(x). Constraint

violation is indicated by the values of the function v+(x) =max{y(x), 0}. Finally, we define

first-orderconvex approximations to the functions /'(•) at x by

fKh\x) AJ/^>+^^^^12 *^P (4.2.1b)

for some fixed y>0. Notethat/°(0lx) =0 and fj(0\x) =fj(x) for ally e p.

Algorithm 4.2.1

Data: x0; a,Pe (0,1); y>0; i = 0.

Step 1: Compute the search direction,

AfoO^argmin max /'(fclxf), (4.2.2a)

and evaluate the optimality function,

ec*i) £ .max /'(A(x,)I x,)- v+(x.). (4.2.2b)
/ € DUO N

Step 2: If\Kx,)^0,set

\i =max{pM/°(jfi +P*/»(xl))-/0(xl)^ap*8(x<)andv(xl+P*A(xl))^0} , (4.2.2c)
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else set

\i =max { p* Iybi +P*A(*.)) - V(x,0 £ ap*e(x,)} . (4.2.2d)

Step 3: Set xM =xf + X, h(x,).

Step 4: Replace / by *+l,and goto Step 1.
•

Step 2 ensures that, once a sequence generated by Algorithm 4.2.1 has entered the feasible

region X§ {x e R" l/'(x) £0Vj e p }, it can never leave it Refening to [PoL4] we see

that the search direction vector fifa) can be computed in two steps. Hrst one solves the dual of

(4.2.2a), i.e., the positive semi-definite quadratic program

ma* tmi2. S u//'(/ilx)-\|f+(x)

= max J) ^/^)-V+(x)-»Vl E H'V/>(x)l2. (42~

for any solution u.(x,). We denote the set of solutions to (4.2.3) by

tfPp(x)£argmax £ "Af'CO- V+CO-V4V1! £ u/V/>(x)l2. This can be done using
>*e V> yep >«puO

one of several methods [Gil.l, von.l, Hig.l, Kiw.2-3, Rus.l]. The unique primal solution, h(x,),

is then given by

/i(x)=argrnin £ riJ(x)fHh\x) =±- £ H'(*)V/>(x). (4.2.4a)
*€K ycpuO 'ycpuO

From (4.2.3), we can write

6(x)= max £ nV>(x)-v+(x)-V4r»l £ n'V/>(x)l2. W24b)
*•**++* jep >«puO v '

The following theorem summarizes the properties of the optimality function 0:R" -» R,

the search direction function h:R" ->R" used in theabove algorithm.
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Theorem 4.2.1: [Pol.4]

(a) Ifx is a local minimizerfor problem (4.1.1), then 8(x ) = 0.

(b) ForanyxeW, 8(x) =0 tfand only ifthere exists (t e 2^+i such that

Z H'V/><x) =0. (4.2.5a)
> € DUO

Z(IW) =V^). (4.2.5b)
y'€ p

(c) Both 8(0 a/id A() arc continuous.

Note that if x satisfies (4.2.5a-b) for some u, e 2^+1, and y+(x) >0, then u.0 =0, and hence x

satisfies the standard first order condition for a local minimizer of y(0. If x is a local minimizer

of (4.1.1), then l/PP(x) is the set of Fritz John multipliervectors which, together with %, satisfy

(4.2.5a-b).

Theorem 4.22: [Pol.4] If x is an accumulation point of a sequence { x,- } £o constructed by

Algorithm 4.2.1 in solving (4.1.1), then 8(x) = 0. Furthermore, if, for a/heR" such that

y(x)£0, 0£d\f(x) (where 9y(x) denotes the generalized gradient of \j<) at x [Cla.l]J, then

y(x) £ 0.

It was first shown in [Pir.l] that an algorithm based on the search direction rule (4.2.2a)

convergeslinearlyunder convexity assumptions. Chaney [Cha.l] laterestablished linearconver

gence under slightly weaker assumptions. The following theorem is avariant of Chaney's result,

accounting for the fact that Algorithm 4.2.1 uses anArmijo-type line search [Arm.l] rather than

an exact minimizing line search as in [Cha.1,Pir.l]. Let

FJ(x)^d2fHx)/dx2, (4.2.6)

andu.0£min{u°lu.€ C/PP(x)}.
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Theorem 4.2J: Suppose that

(i) the functions />(), j e puO are twice continuously differentiable,

(ii) r/k? rcr L£ {x e R" Iy(x) £v+(xq) } &bounded, and the necessary conditions (4.2.5a-b)

are satisfied at a single point, $ eX, at which the Mangasarian-Fromovitz constraint

qualification holds (i.e. - there exist h e R" and 5>0 such that (V/'(x),h )<-hfor each

yep such thatfj(x) =0;,

(iii) forx as above, and with

1 ^uUOO'net/pptf)} , (4.2.7a)

wherefor any \ie Ip+1,7(u,)i {; e p\\iJ >0), there exists me (0,y)suchthat

mM2<{h,
1/epuO

A). (4.2.7b)

/or every u, e t/PP(x) andfor everynonzero h e H, where

H&{h\ {V/>(* ),A)« 0, V; e ? } . (4.2.7c)

If Algorithm 4.2.1 constructs a sequence {x,-} £o in so/ving problem (4.1.1), then (a)

x, -> x asi -> oo, fl/u/ (b) i/vfo) £ O/ar any i e \S, then

f\xi+l)-f\$) _ m
hmsup £ 1- o$u°— , (4.2.7d)
J_>~ /0(*,)-/°(x) ~*

/orany Af >max7 6 puo {IF>(£ )l,y}.

Inequality (4.2.7d) then gives an upper bound on theconvergence ratio of sequences constructed

by Algorithm 4.2.1.

4.3 A CONCEPTUAL GQP-BASED ALGORITHM
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We begin by considering a conceptual,local algorithm for solving (4.1.1) which computes a

searchdirection at x,- by solving the generalizedquadraticprogram,

GQP(x): min {/°(A Ix)I /'(A Ix)S0 Vy <= p} , (4.3.la)

withx =x,-.

Local Algorithm 43.1:

Data: x0; Pe (0,1); ?>0; i =0.

Step 1: Compute the searchdirection,

A, =AGQpfr) Aargmin {/ °(A Ix)I/ >(A Ix) S0 V; e p} . (4.3.lb)

Step 2: Compute the step size,

Xi =max { p* I/°(x, +p*A.) -/°(x.) <; p*/°(A4-1x,),

V+(x, +p*A.) - V+(x,) £ p*[max {fJfa U). 0} - V+(x4)]} (4.3.ic)

Step 3: Set xi+1 = x, + a,-*,-.

Step4: Replace i by i+1, and go to Step 1.
D

Lemma 4.3.1: Suppose that assumptions (i)-Ciii) ofTheorem 4.2J hold, and let x be as defined

in assumption (ii) ofTheorem 4.2.3. Then there exists a neighborhood V ofSt such that GQP(x)

has a continuous solution, hCqp(x),forallx e V.

Proof: Suppose that x e R" is such that there exists an A' e R" satisfying / '(A' Ix) <0 for

all ye p. Then the set-valued map G(x)£ {A e R"I/>(A lx)£0, Vy e p} is upper sem-

icominuous at x. G(x) is compact since the functions/'() are uniformly convex. Hence, by

the Maximum Theorem [Ber.l], the set of solutions toGQP(x) is acompact-valued, upper sem-

icominuous set-valued map atx. Since GQP(x) is astrictly convex program, its solution set is a
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singleton, {Agqp(x) ). Therefore, the solution, Agqp(x), to GQP(x) is continuous at any point

x at whichGQP(x) is strictly feasible.

By assumption (ii) of Theorem 4.2.3, there exist A e R" and 8>0 such mat

{VfJ(x), A>< - 8for each ye /(x). Therefore, there exist t >0and aneighborhood. V, ofx

such that fj(th Ix)<0 for all x e Vand j e p. Therefore, GQP(x) is strictly feasible for all

x e V. Inlight of the previous paragraph, AgqpOO exists and iscontinuous in V.
D

Forany x e R" such that GQP(x) has a solution, wewill denote thesetofFritz John multiplier

vectors associated with the unique solution, AgqpCO by

Ugqj*x)£ {u-elpj £ ^V/>(Agqp(x)Ix) =0.
yc puO

Z rijfj(hGojf(x)\x) =0} . (431<1)

Consider the /„ penalty function, pe(x) £e/°(x) +\|f+(x), where e> 0. The proofs below

exploit the correspondence between minimizers of the constrained problem (4.1.1) and those of

the minimax problem,

^mmpe(x). (432a)

As is shownin the following lemma, the solution to (4.1.1) is alsoa strictlocalminimizer ofp e()

for sufficiently small e. Let

dt(x) £ argmin {e/°(A lx) +max {0,/'(A Ix)} }, (4.3.2b)

and let

e£(x)Ae/0(</e(^)l*) +max{0./>(rfe(x)lx)} -y+(x). (4.3.2c)

Recall that u° £ min {u°l u. e f/PP(Jc)} .
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Lemma 432: Suppose that assumptions (i)-(iii) ofTheorem 42.3 hold, letx be as defined in

assumption (ii) of Theorem 42.3, and let V be as defined in Lemma 4.3.1. Then, for any

£€ (0, u.°/(l -ji0)), there exists a neighborhood, Wt c V, of x, such that, for all x g Wz,

(a) pt(x)Zpt($)+ywfo-2l2,and(b) deOO^GQpOO-

Proof: (a) Assumptions GMiii) of Theorem 4.2.3 ensure that the point f satisfies the stan

dard second-order sufficiency conditions for problem (4.1.1) [McC.l]. In fact, they ensure that x

satisfies these conditions for the problem,

^mm {/0(x)-!4mIlx-J?l2l/>(x)-MmBx-il2^0} . (4.3AI)

It follows from Theorem 4.6 of [Han.2] (see Theorem 4.8.1 of the Appendix for arestatement),

therefore, that x is a strict local minimizer of Pe()-ftm(e+ 1)1--x I2, provided that

1fe>Zj'6 puJ for some Kuhn-Tucker multiplier vector for the problem (4.3.2d), ue R', asso

ciated with x . Since the Kuhn-Tucker multiplier vectors for (4.3.2d) associated with x are the

same as those of(4.1.1), we can construct aKuhn-Tucker multiplier vector for (4.3.2d) from any

Fritz John multiplier vector, u, e t/PP(x ), as follows:

"»i =(H1 u')/u°, (432e)

because the Mangasarian-Fromovitz constraint qualification (assumption (ii) ofTheorem 4.2.3)

ensures that u.°2>u.°>0. Hence, if l/z>luv}l =(l-u.°)/u_0, then* is astrict local minimizer

ofp£(0 - We +1)1- -x I2. This implies thatpetf) Zp^x) - Um(e +l)Bx-xl2forx insome

neighborhood ofx.

(b) We recall that by Lemma 4.3.1, the solution AGqp(x) to GQP(x) exists for all x in aneigh

borhood Voff. Wewmnowprovemat,foranye<H°/(l-ji0),Je(x) =AGQp(x)foraUxin

a neighborhood ofx .
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We first show that, for x near x, the norm of some Kuhn-Tucker multiplier vector associ

ated with the solution to GQP(x) is bounded from above by (1 - jjl°) /jjl°. We denote the set of
Kuhn-Tucker multiplier vectors for GQP(x) by

ATGQP(x)£ {« gR^l V/0(AcQp(x)|a:)+ £ k>V//(Acqp(x)Ix) =0,
yep

Z^/y(AcQP(x)lx) =0} . (433)
yep

for x € V. Since Agqi»(x) =0 and \|f+(x) =0, an inspection of (4.3.1d) reveals that

tf gqp(* )=i/pp(x). By assumption (ii) of Theorem 4.2.3, *i° >0. Since C/gqpO is an upper

semicontinuous, compact-valued set-valued map at x, there exists, for any 6e (0, u.), aneighbor

hood, WB c V, of x, such that u° >u.0 - 5 for every u, e tfcQpOVs). Now, every Fritz John

multiplier vector u,e UGQV(x) corresponds to a Kuhn-Tucker multiplier vector,

u|l £ (u.V...., uf /u,0) e /TgqP(x). For such Kuhn-Tucker multiplier vectors,
ll"Hfli =(l-^/u0<(l-^°+8)/ai0-5)foreveryH€ C/cQpOVa).

Because (i) for any 8e (0,u.), there exists a neighborhood W6 of x such that

min {In I, Iii 6 tfrGQP(x)} <(l-u_0 +8)/Gi0-5)forx e Wh (from the previous paragraph),

(ii) max, ep/'(A' Ix) <0for x e Vand some A' e R" (from the proof of Lemma 4.3.1), and

(iii) problem GQP(x) is a convex program, we can apply Theorem 4.9 of [Han.2] to conclude

that, for e<({l0-5)/(l-p,0+5), AGqp(x) is the unique minimizer of the convex function

mil* der- *J\d Ix) +max {0,/'(d Ix)) for all xe W8. (See Theorem 4.8.2 of the Appen

dix for arestatement ofTheorem 4.9 of [Han.2].) Hence, AGQP(x)=rf£(x) for all x e W8. Since

5was arbitrary, such aneighborhood exists for any e<yPl (1 - u,0).
~ D

Theorem 4.3.1: Suppose that assumptions (i)-(iii) ofTheorem 423 hold, and let x be as defined

in assumption (ii) ofTheorem 42.3. Then, for any neighborhood, W,ofx, there exists a neigh-
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borhood

VwczWofx such that, (f x0 e Vw,the sequence {x,}, e K constructed by Algorithm 43.1

remains in Vw and converges to St.

Proof: LetA() denote the iteration map of Algorithm 4.3.1. The function A() maps one iterate

into the next, i.e., xl+1 =A(x,). The sequence {x,-},-c K will remain in a set W if the set W is

invariant under A( ), i.e.,A(W) c Vw. We now show that such a neighborhood Vw c W ofJ?

exists.

Let e<u? /(1 - jjl°) be arbitrary. By Lemma 4.3.2(a), there exists aneighborhood Wt ofx

such that p£(x)£p£(x) +Um'Hx -x I2 for x e Wz, For small enough 8>0, therefore, the set

Vw£ {x e W£lp£(x)<p£(x) +8} is contained in W. By the continuity ofp£(), the set Vw is

a neighborhood ofJ?.

ByStep2of Algorithm 4.3.1, withX! =A(x0)foranyx0€ V,

Pe(*i)-/>£(x0) =etAxO-Axo)] +[V+(X!)- v+(x0)]

^Ao[e/0(AG<ip(xo)lxo) +max{/>(AGQp(xo)lxo),0} -y+(xa)]. (4.3.4a)
yep

By Lemma 4.3.2(b), AGqp(xo) =A£(xo) forx0 e V*. and, hence,

Piixd-PiixdZHef^Mlxd +mKif'ihtixdlx&O) -v+(x<,)]
yep

=MeC*a)£0. (4.3.4b)

Therefore,p£(x1)^p£(x0)^p£(x) +8,implyingthatA(Vr) c Vr.

Now we show that only x can be an accumulation point of the sequence {xt): 6Ncon

structed by Algorithm 4.3.1, from an x0e Vw. Suppose that {x,},- €Kconverges to x e Vw,

where K c N and x *x. Since, by assumption 00 ofTheorem 4.2.3, St is the only stationary
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point for (4.1.1) in Vw, x caimot be stationary for problem (4.3.2a). By Lemma 4.3.1,

/°(Acqp(x)Ix)) is continuous in Vw, and therefore there exist 8>0 and a neighborhood,
W c Vw, ofx such that

0E(x)<-8, (4.3.4c)

for all x e W. Qeariy, there exists an i0e K, such mat x, e W for all / >Iq, i e K. Ut

M' < oo be such that lF'(x)B £ AT forallx e W. Then,

/'"(*,• +XAGQP(xJ))^/>(x<) +X(V//(xl), AGQPfe)/+UM'X%GQ^)l2 . (4.3.4d)

for all i e K, i > i0. Hence, for; e p and X£1,

/'(*«+MGQi<*0)-V4teO£X{^^

since v+fo)£/y(x4). ForX£y/A/',then

/>(x, +XAgqpC*)) - ¥*(*.) *X{/>(x.) +{V/'(x(). AGQKxi))+ V4ylAgqpC*)!3-v+(x,) }

=X{/>(AGQP(xl)lxl)-v+(xI)} . (4.3.4f)

Taking the maximum over; e p,

y+(xt +XA cqi^x,)) -y+(x,) £X< max {0, / '(Acojfo) Ix,)} -y+(x,) [, (4.3.4g)

forallXe (0,y/Af] and/ >i0,i e *. Setting; =0 in(4.3.4d),

/°(*. +XAgqKx,))-/°(xt) <;X { (V/'(x,), AcQ^Xi)>+ V*yflAcojto)!2 }

=V°(AGQp(xi)Ixi), (4.3.4h)

forX<y/AT andi e A",i >/q. Inequalities (4.3.4g) and (4.3.4h) and Step 2of Algorithm 4.3.1

imply that X, 2» py/AT. From Step 2ofAlgorithm 4.3.1 and the fact that Acq^x,) =A^x,) for

i >i(h
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P&i+l)-pfri)=P& +MoQP(*l))-p£(xl)

*hWfyaopfr)U)+max{0,/'(Acp.p&oU)} -V+&)[

^W>A)l«l)+ij«{O.AAefcOlx.) }-v+(Xi)1

=AfQ&r) • (4.3.4i)

Then fori e A\ i >i0,

Pefc+i) ~P e(*,0 =P&l^x,)*-^ • (4.3.4J)

Now pE(xl+1)^p£(^) for a// i >i0 by (4.3.4i). Hence (4.3.4J) implies that p^x,)-*--* as

i -»~. However, this is impossible, since {x,}, €N is contained in the bounded set Vw.

Therefore, x * x cannot be an accumulation point for the sequence.

Since V* is compact, the sequence {x,}, 6N c VV must converge to the set of its accu

mulation points. We have shown that x can be the only accumulation point for the sequence.

Therefore, the sequence converges tox.
D

Letu°£max{u°ljie tfPP(*)}.

Theorem 432: Suppose that assumptions (i)-(iii) ofTheorem 42.3 hold with St as defined there,

that x0 € Vw, with anyVwos defined in Theorem 4.3.1, and that Algorithm 43.1 constructs a

sequence {x,},^, in solving (4.1.1) starting from a point x0e Vw. Then, (a) for any
e<u.°/(l-u.°),

and(b) #>(x<0) £ Ofor any i0e N,
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%? /0^l)"/fl<tt)^-P»V^- (4.3.5b)
'"* /0(^0-/°(x) " M }

Unless x is also an unconstrained minimizer of/°() (in which case, jl0 « 1), the bound in

(4.3.5b) on the convergence ratios of sequences constructed by Algorithm 4.3.1 is smaller than

the bound in(4.2.7d) for sequences constructed by Algorithm 4.2.1,

Proof: (a) Let positive ee (0, u.0 / (1 - u,0)) be arbitrary. The proofofTheorem 4.3.1 gives us

a relation between the decrease in the penalty function p£(x) at iteration / and the decrease

predicted by 6£(x),

Pe(*i+i) -Pt(xi) £EL e£(x,). (4.3.6)

for large i. Hence,

.. Pt(xi+i)-pt(Xj) fty,. Hxi)limsup £ -HI iimsUp £_! .
'-*" PM-Pffi) M '— pjx)-p#) C}

To complete our proof, wewill make use of Theorem 2.3.3. This result provides an upper bound

onthe right-hand side of (4.3.7). For this purpose, wewill show that the assumptions of Theorem

2.3.3 hold. Assumptions (i) and (ii) of Theorem 4.2.3 ensure that assumptions G) and (ii) of

Theorem 2.3.3 hold with respect to the minimax problem (4.3.2a) atx. Next weturn to assump

tion (iii) ofTheorem 2.3.3.

We associate withtheminimax problem (4.3.2a) thesetofmultiplier vectors Uz(St) consist

ing of those u. e Zp+1 such that

u°eV/°(S)+ £ W{eV/°(*) +V/'(S)} =0 , (43.8a)
yep
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H°e/°(x)+ Zn'{e/°(x )+/'(*)} =pe(S) (4.3.8b)

Thesets t/^f) and U^St) are related as follows. Since y+(Jc) =0. (4.3.8a-b) can berewritten as

eV/°(£)+ £m/V/^(£)bO.
yep

2>'/'(*) = o.
yep

(4.3.9a)

(4.3.9b)

Then, since 1-u.0 =£, 6pu>, (e, a.1 u/)/(e+1 -|i°)e tfPP(x) for any |1g J7£(x). It

follows from assumption (iii) of Theorem 4.2.3, that, with H as defined inTheorem 4.2.3,

wlAfl2<(A, --f—o^H Z 9J! yj(x)h), VAeff,A*0,(4.3 10a)

foranyu.e t/£(x). Hence for any u. € C/^x),

mMf< {A, \L°eFo0t)+ £^{eF°(J?) +F>(J?)}
yep

h) VAett ,A*0,(4.3.10b)

where mt ±min{ro (e+ l-u.°)lu.e £/£(*)} =m (e+ 1-max{\L°\\ie Ug(St)}). Hence,

assumption (iii) ofTheorem 2.3.3 is satisfied at x for the minimax problem (4.5.1), and it there

fore follows from Theorem 2.3.3 (and the fact that

6£(x)s^min„y.£**,*'(*)+(V(*).A)+ V*(l +e>yOAfl2-p£(x).

whereg'(x)&e/°(x) +/>(x) for; e pandg°(x)Ae/°(x))that

limsup
ee(*,)

s-
min{m£,(l+e)y}

Combining (4.3.11) with (4.3.7) yields

limsup P^d-PM £_lx min{/n£>(l+e)y}

(4.3.11)
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s_pmin{me/0+e).v} ^^

Next consider any \ieUt(St). As mentioned above,

(e.^1 ^/(e+l-^et/PP(Jc).Re(^matiI0Amax{^0l^€^pp(5)}. Then

777^^°' <4-3-13>
and hence

m£ =m(e+ 1-max {\i°\ u.e U^St)} )£ro^ . (4.3.14)

Substituting (4.3.14) into (4.3.12) yields

limsup P&+0-PM s-£mm{me/(il0(l+e)),y} S-P^min{ ^—, 1)4.3 15)
"*" PM-Pt(St) M M H°d +e) <4315)

Adding 1 to each side of the inequality in (4.3.15), we obtain (4.3.5a).

(b) Using the fact that p £(x4) =/ °(x,) for i > i q,

hmsup — £ 1-p—mm {^- -, 1} . (4.3.16)
"*~ /°(Jc,)-/°(x) M Fd+e)

Since e<u°/ (1 - u.0) is arbitrary, (4.3.5b) holds.

4.4 GLOBALIZATION AND IMPLEMENTATION OF THE GQP SUBPRO

CEDURE

Thereare two issues associated with the useofthe problem

GQP(x): min{/°(Alx)l/>(Alx)SOr Vyep} . (4.4.1)

as a search direction subprocedure that must be resolved. The first is the issue of globalization.

When x is not feasible for (4.1.1) and is far from asolution to (4.1.1), GQP(x) maynothave any
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feasible solutions. The second is the issue of implementation. Unlike the search direction prob

lem (4.2.2a) of Algorithm 4.2.1, GPQ(x) cannot be transformed into a quadratic program to be

solved by known methods. We must find anefficient method forsolving it in a neighborhood of

any solutionx of (4.1.1),where, by Lemma 4.3.1,GQP(x) is knownto have a solution.

We will develop the globalized, implementable search direction subprocedure in three

steps. First, we will show that GPQ(x) is equivalent toa problem GQP(x) with linear equality

constraints and a single quadratic inequality constraint, determined bytheconstraints active at the

solution to GPQ(x). Second, we will use the PMT search direction subprocedure to predict

which constraints are active at the solution. This will allow usto construct a problem with linear

equality constraints and a single quadratic inequality constraint which approximates GQP(x).

We will show that, when the approximating problem has a solution, it can be easily obtained

from the PMT search direction vector A(x). Third, we will incorporate these observations in a

search direction subprocedure which reverts to the PMT search direction when the approximating

problem has no solution.

Because, the PMT search direction subprocedure correctly predicts theconstraints active at

the solution to GQP(x) when x is near a solution to (4.1.1) atwhich strict complimentary slack

ness holds, the globalized, implementable search direction subprocedure leads toaphase I - phase

II algorithm which has the same robustness properties asthe PMT algorithm and the same rate of

convergence as the conceptual Algorithm 4.3.1.

Thus, we begin by developing an equivalent statement for GQP(x). For any x e R" and

set J c p, we define the problem

P(*'/): Hm r- {?*{h 'x)'?h(h 'x)*°' ?i(h 'x) =-f>0(A '*>• *J eJNJo}. (4.4.2a)

where ;0e J is arbitrary. A brief inspection of (4.4.2a) reveals that the problem P(x,/) is

independent ofthe selection ofj0e /. We will denote the solution to P(x, /) by d(x,J).
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Since the functions/>(• Ix) all have the same quadratic term, VfcylAI2, the equality con

straints in (4.4.2a) are linear. Hence, problem (4.4.2a) requires the imnimization ofaquadratic

function subject to linear equality constraints and asingle positive-definite quadratic inequality

constraint. A subproblem of this form appears intrust region methods, and efficient methods for

solving ithave been developed [Mor.l]. However, because f\ Ix) and/'•(• Ix) have the same

quadratic term, asimpler technique can be used to solve (4.4.2a) for our choice of/ (see Proposi

tion 4.4.2).

Assuming that (4.4.1) is feasible, we define the active constraint index set by

^gqp(*) &{/ e p I/>(AGQP(x) Ix) =0} . (4.4.2b)

(The set /GQP(x) may be empty.) A small amount of reflection confirms mat the problem

GQP(x) is equivalent to the problem P(x,/GQP(x)). (Problem P(x,/GQP(x)) is what we

referred to above as GQP(x).) Hence, when the set /cq^x) is known, the problem GQP(x) is

relatively easy to solve. Next, for any a e Xp+1, let

^00= (;eplu>>0) (4.4.3a)

and let nPP(x) be any selection from tfPP(x). In the following propositions, we will prove that

the use of

^pp(x) £/(HPP(x)), (4.4.3b)

as an estimate ofJGqp(x) has several desirable consequences.

The following proposition shows that d(x, /PP(x)) can be obtained rather easily from A(x).

Recall that, for any x cs R" such that GQP(x) has a solution, we denote the set of Fritz John

multiplier vectors associated with the solution by C/Gqi<x) (see (4.3.1d)).

Proposition 4.4.2: Suppose that problem P(x,/PP(x)) has a solution rf(x,/PP(x)). Ut

y0e/PP(x) be arbitrary, let Gx be a matrix with columns V/'(A(x)lx)- Vfj\h(x)\x),

; g Jpp(x)\j0, let Nx be amatrix whose columns form an orthonormal basis for the null space
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ofGj, and let Px *NxNj be the orthogonal projection operator whose range is the null space of

Gj. Then there exists a z e R such that

<*(x ,/PP(x))=A(x)+tPxV/°(A(x)lx). (4.4.4)

Proof: First, we rewrite P(x, /PP(x)) in the form

min {/ °(A Ix) I/ >°(A Ix) £0, gx +Gjh =0}, (4.4.5a)

where jQe /PP(x) is arbitrary, gx is the vector with elements /'(A(x)lx)-/yo(A(x)lx),

j e Jpp(x)\jq. Since gx+G/A(x) =0,it follows that if we set A =A(x)+5A in(4.4.5a), then

we must have G/SA =0, which implies that 5A =Nxy for some y. Hence, By substituting

5A =Nxy into (4.4.5a), the equality constraint in(4.4.5a) can beeliminated. Upon expansion of

the functions / '(• Ix) around A(x), (4.4.5a) becomes

min{/0(A(x)lx)+(V/°(A(x)lx),tfxy )+V*yfcVxyl2l

fJXh(x)\x)+{VfJ%h(x)\x),Nxy )+ *A$NxyI2£0} . (4.4.5b)

If /PP(x) =O, then u^p =1, then V/°(A(x)lx) =0 and the optimal solution to (4.4.5a) is

8A(x) =0. Now suppose that V/°(A(x)lx)*0. This implies that jLJp(x)<l and that

•fpp(x)* O. Then the solution 6A(x) forproblem (4.4.5b) satisfies the first-order condition

Nj^°V/0(A(x)lx)+(l-^°)V/>8(A(x)lx)+76A(x)] =0, (4.4.5c)
for some \l° e [0,11. Since NxN^bh (x) =PxSh (x) =5A (x). we obtain from (4.4.5c) that

5A(x) =T1 ^°/>,V/°(A(x)lx)+(l-jia)PzV/y'0(A(x)lx)] . (4.4.5d)
Now, A(x), the solution to (4.2.2a), satisfies the optimality condition

Z jf e puo Mip(*W *{h(x) Ix) =0. Rearranging this equation (and dropping the dependence of

HPP on x) yields
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0 =H&V/°(A (x) Ix) +(1 - HftOV/ "(A(x) Ix)

+Z ^p[v/>(A(x)lx)-V/>«(A(x)lx)]. (4.4.5e)

Applying Px to both sides of (4.4Je), we conclude that

0 =u&PzV/ °(A(x)lx)+(l -\l$F)PxVfjXh(x)\x) , (4.4.5f)

since Px(V/>(A(x)lx)-V/'«(A(x)lx)) =0 for all j e p by the definition of Px. Since

H?P<1,

PxV/ j\h(x) Ix) =- -^5-PxV/ °(A(x) Ix). (4.4.5g)
l-u,PP

Substituting (4.4.5g) into (4.4.5d) yields

5A(x)=r! u0-(i-U0). I*
1-Hfr

^V/^(x)ljt). (4.4.5h)

D

The search direction </(x, /PP(r)) may notbe a feasible solution for GQP(x). The following

subprocedure returns the Polak-Trahan-Mayne search direction in this case.

Search Direction Subprocedure 4.4.1:

Step 1: Compute the Polak-Trahan-Mayne search direction A(x) and identify the set / PP(x).

Step2: Compute the step. AA (x) =Px V/°(A (x) Ix).

Step 3: Compute t e R by solving

min {/°(A(x)+xAA(jc)lx)l/>(A(x)+tAA(x)lx)SO Vyep) . (4.4.6)

Gf problem (4.4.6) is infeasible, set x = 0.)

Step 4: Setd(x) = A(x) + xAA(x).
•

The minimization in Step 3 can be performed very quickly since it involves only quadratic

functions of a single variable. Note that AA(x) of the Search Direction Subprocedure 4.4.1 is
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equal tox5A (x), with SA (x) as defined inthe proofofProposition 4.4.2. The following proposi

tion summarizes the useful propertiesof</(x).

We now prove that, if A(x)is feasible forGQP(x), then d(x) is a feasible direction promis

ingasmuch decrease in theobjective asA(x). IfA(x) is notfeasible forGQP(x), then d(x) pro

vides as much improvement in the constraint violation as A(x).

Proposition 4.43:

(a) IffHh(x)\x)^0 for each j e p, thenp(d(x)\x)^f\h(x)\x) and fJ(d(x)\x)^0

for each j € p.

(b) //max;6p/>(A(x)lx)>0,/Aenmax>Cp/>(d(x)lx)Smaxyep/>(A(x)lx).

(c) //GQP(x) isfeasible andJ?P(x) =J^x), then d(x)solves GQP(x).

Lemma 4.5.1 shows that the assumptions of Proposition 4.4.3(c) hold in a neighborhood of

a solution x to (4.1.1), provided that stria complementary slackness holds at St.

Proof: (a) This follows from the fact x = 0 is feasible for the single-variable minimization in

Step 4.

(b) If problem (4.4.6) is feasible, then

maxy€p/>(rf(x)lx) =0^maxy6p/>(A(x)lx). (4.4.7)

If problem (4.4.6) is infeasible,d(x) = A(x).

(c) Since /PP(x)= /GQP(x), rf(x,/PP(x)) solves GQP(x). We show that Algorithm 4.4.1

computes <*(x,/PP(x)). Since d(x,/PP(x)) minimizes /°(lx) over

{AeRl,l/>(Alx)^0,y€p},

/°(d(x,/PP(x)))= min {/°(Alx)l/'(Alx)£0,yep}
k e R"

Smin {/°(A(x) +xAA(x)lx)l/>(A(x) +xAA(^)lx)^0,yep}
T€ R
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Since d(x,/PP(x)) can beexpressed as A(x) +XbAA(x)l x) for some To «= R, problem (4.4.6) is

feasible and has the solutionXq. Therefore, d(x) = d(x, Jn(x)X D

4.5 A STABILIZED IMPLEMENTABLE GQP-BASED ALGORITHM

We replace Step 2 of Algorithm 4.3.1 with the Search Direction Subprocedure 4.4.1 to

obtain a global phase I - phase IImethod, and we establish itsconvergence properties.

Algorithm 4.5.1:

Data: x0; pe (0,1); y>0; /=0.

Step1: Compute a search direction dt = d(x,) by means of Search Direction Subprocedure

4.4.1.

Step 2: Compute a step size,

A, = max { p*l /°(x4 +p*dl)-/0(xl)^p*/0(J4lxl),

V+(X|f+P^)-^)£p*[max{/>(4Jx^.O} -\|f+(*,)] } . (4.5.1)
yep

Step 3: SetxM=Xi+\idi.

Step 4: Replace i by i+1, and go to Step1.
D

The three cases listed in Theorem 4.5.1 are exhaustive. In case (b), 6(x) = 0 implies that

0e d\j/(x), where d\j/(x) denotes the generalized gradient of tptO at x. This case is normally

ruled outby assumption. The convergence result obtained for Algorithm 4.5.1 is slightly weaker

than that obtained for Algorithm 4.2.1 in Theorem 4.2.2. In case (c), where Algorithm 4.5.1 con

structs a sequence which remains infeasible but has feasible accumulation points, not all of the

accumulation points are guaranteed to be stationary pointsof problem (4.1.1).

Theorem 4.5.1: Suppose that the functions /y() in (4.1.1) have continuous derivatives, that

Algorithm 4.5.1 constructs a sequence {x,} £o insolving (4.1.1), and thatx is anaccumulation

point of the sequence.
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(a) Ifthere exists ani0ef1 such that y(XiJ £ 0, then 8(x) • 0.

(b) Ify(Xi)>0for alii e Handy(f)>0,thenQQc) = 0.

(c) Ifytfxi) >Ofor alli e Handy&) =0, thenliminf left)! =0.

Proof: First we derive bounds on ld(x)l for use inthe proofofparts (a) and (b). Suppose tfiat

the subsequence {x,},- c* converges to x, for some subset K c N, and that 8(x>0. By

Theorem 4.2.1, 8(0 is continuous, and, by (4.4.2b), 8(x)£0 for all x e R\ Therefore there

exists a8>0 and aneighborhood, W0, of x such that

e(x) =̂ ma^{/'(A(x)lx)} -y+(x)<-5, (452aL)

for all x e Wq. We use this fact and Proposition 4.4.3 to show that U(x)l >0 for all x in a

neighborhood ofx.

Suppose that y(x) so. In view of (4.5.2a), there exists aneighborhood, Wx c W0, of x,

such that y(x)< V*5forallx € Wx. Then,forx e Wh

max / >(A (x) Ix) £8(x) +y+(x) £- V45 <0. (4.5.2b)

From Proposition 4.4.3(a), we have that

/0Wx)lx)-V+(x)£/°(A(x)lx)-v+(x)£e(x)<-8, (4.5.2c)

for all x e Wq. Since y(x) <V45, if foUows from (4.5.2b) and (4.5.2c) that/°(<*(x) I*) <- V*5

for allx € W,. Hence. since/°(0lx) =0, and since/°(A lx)is continuous in A, uniformly in

x, there exists b' >0 such that ld(x)l >&' for all x e Wi.

Now suppose that \|/(x) >0. We proceed in amanner similar to that in the previous para

graph. There exists aneighborhood, W2 c Wq, ofx, such that \|<x) >Vty(x) for each x e W2.

For each x e W2, either maxy€p/'(A(x)lx)>0, or else maxy€ p/>(A(x)lx)<S0. In the

former case, it follows from Proposition 4.4.3(b) that
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max/'(d(x)lx)-y+(x) S max/>(A(x)lx)-y+(x) <-8. (4.5.2d)
/€ p yep

In the latter case, it follows from Proposition4.4.3(b) tfiat

max/^(d(x)lx)-Y+(x)<0-v+(x) = -V4\|/(x) , (4.5.2e)
yep '

for all x e W2. Therefore, for all x e W2,

maxj>6 pfj(4(x) Ix) - \jf+(x) <- min { 8, Vty(x)}. Hence, since

max y€p/'(01 x) - y+(x) =0 for x e IV2. and since the function max jcP/'(A Ix) is con

tinuous in A, uniformly in x, there exists b e (0,6') such that B</(x)l >b for allx e W2-

Because the functions /*(• Ix) are strongly convex in A, uniformly in x, lrf(x)l is also

bounded from above in W2. Because ld(x)l is bounded onW2 and the gradients V/'() are con

tinuous, there exist X>0 and a neighborhood, W3, of x, such that

KjoVfj(x+s\d(x))ds-VfJ(x)Vi<l/iib for all xeW3, Xe [0.X] and / e puO. (We

assume without loss of generality that W3 c W 2if y(x) £ 0 and that W3 c W2 if vCO >0.)

(a) Suppose that y(xl0) £ 0 for some /0 G N. (This implies that y(x,) £ 0 for all i £ 10and that

y(x) <0.) Then there exists an ii £ j0 suchthatxf € W3 for all i £ ilf i e JT. Fori > i j, / € K

and Xe (0,X],

/°(x, +H)-/°(x<) =(V/°(ii),H)+ {JoW0^ +*X4)-V/°(xt)]*,X4,

^XfiV/^x^d.klrfJlJoW^.+^UO-V/^)^!}

^X{ {Vf0(xi),di)+^ybW)

*X{ (V/0(x,),di/+ KM*2} =VViIx<). (4.5.3a)

Similarly, for Xe (0, X], j > i x, i e /Y, and y € p,

/>(xJ+H)£X{/>(xl)+(V/>(xi),rfi)+lrfJIJ0W>(^+^H)^
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* * {fJ(Xi) + {V/>(x,), di)+ Vqb \d\} £ X/>(41 *«) • (4.5.3b)

Taking the maximum over; e p,and using the fact that y+fo) =0, weobtain from (4.5.3b) that

\f4ti +X4) - V+(x,) £X[max {/*(& Ix,), 0} -y^M], i4S3c)

for i >i,, i e K and Xe (0,X}. It foUows from (4.5.3a), (4.5.3c) and Step 2 of Algorithm 4.5.1

thatX, >pXfori >j,,i e K. By Proposition 4.4.3(a), /0(rfllx1)^8(xl) for i >ilti e AT, and

hence

/°(x/ +Mi)-/°(x/)^X/ViIx.O^^x.O^-^PXS . (4.5.3d)

for/ >f 1,1 e K.

However, this is impossible, since /°(x,0 is monotone decreasing for itix and

K Kf (x,) -*/ °(x), as i -• *>. Thus, the necessary condition (4.2.5a-b), must besatisfied at x inthis

case.

(b) Now suppose that y(x,) >0 for aU i e N and that \|<x) >0. Then there exists an i j e N

such that x, e W3 for aU i Ziu i e AT. For any x e R" such that />(A(x)lx)£0 for each

j € p, fJ(d(x)\x)£0 for each y e p by Proposition 4.4.3(a). For any x e R" such that

maxy6p/y(A(x)lx)>0, max, €p/'(d(x)lx)£maxy6 p/>(A(x)lx)£0 by Proposition

4.4.3(b). Therefore,/'(d(x)lx)£v(x)foran./ e pandx e R\ Hence,

l

Ji
o

f'te +H)-v+(xl)=/>(xl)+ {VfJ(K)M)+ <J[V/'(x/+jH)-V/>(xl)lds,XA(xl))-v+(^0

* * {fJ(Xi) +<V/'fc),4)+ V4# f*l - y+(Xi) }

* X{/>(x.) +{V/>fc), ^)+ fcyOdH2 - ^(x.)}
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«M/>(41*)-¥&)} . (4.5.4a)

for all i > ilf i e K, Xe (0, X], and ; e p.Taking the maximum over; e p, and using the fact

that 0- \k+(x.) £ X[max jc /'(d, Ix.) - y+fc)],

V+(x, +X4) - V+(*,0 *Mmax {/>(4 Ix,), 0} - y+fc)]. (4.5.4b)

Similarly,

/ °(Xi +HO-/°(x,0 * V \di Ix.) , (45.4c)

for all / >11, i e K, Xe (0, X], and ; e p. It follows from (4.5.4b), (4.5.4c) and Step 2 of Algo

rithm4.5.1 that X, > PX fori>iu4 e K.

From Proposition 4.4.3(b), ifmax k6p/*(A (x,) Ix,) >0,

max / k(di Ix4) - v+(x,) £max /*(A,-1 x.) - \|f+(x,) £Sfr) £- 8. (4.5.44)
*€p IC p N/

Otherwise, max k€p/*(A (x,) Ix,) £0, which, together with Proposition 4.4.3(a), implies that

maxA€p/*(4lxl)-v+(xJ)^0-v+(xl). (4.5.4e)

There exists i2>M such that \|f+(x,)> Vto|f+(x) for i >i2,f e K. Substituting (4.5.4d) and

(4.5.4e) into (4.5AT),

V+(x, +Xd{) - ^(x,) £ - X, min{ y^x,). 8} £ - pXmin { V4y+(x). 8} f (4.5.4f)

fori >i\,i e AT.

Since yfo) is monotone decreasing, (4.5.4f) implies that y(x,) -» - <» as 1 -»«>. However,

this is impossible, since y(x,) -> y(x) as / -> », Therefore, the necessary condition (4.2.5a-b)

must be satisfied at x.

(c) Now suppose that y(x4) >0 for all 1e N and that y(x) =0. In this case, we do not show

that 8(x) =0,but merely that liminf ,* _> J8(x,)l =0.



§4.5 A STABILIZED IMPLEMENTABLE GQP-BASED ALGORITHM 102

To obtain a contradiction, suppose that liminfl_>w8(xl0<-8'<0. Then there exists

/1 € N such that 8(x,)<- 8' for aU i > i,. By Proposition 4.4.3(a-b),

maxy 6p/>(d, Î O^max {0,maxy€ p/>(A(xl)lxl)}

£ max {0, 8(x,) +y+(x,)} . (45.5a)

Hence

max j€pfJ(di Ix4) - y+fr) £max {- y+(x,), 8(x,0 } £max {-y+(x/), - 8'} <0(4.55b)

for all t >11. This implies that y+(x,) is monotone decreasing, and, since y(x) =0,the sequence

{y+(x,0) iek converges to 0. Therefore, there exists 12 >i1 such that y+(x,) <Vi 8' for all

i >/2. Hence,

max , €p/>(A (x,) Ix,) £Oft) +y+(x,) £- 8' +V4S' <0 , (4.5.5c)

for all i > 12. From Proposition 4.4.3(a), then,

/oWlxl0£/o(A(xl0lx,)£8(xl) +y+(xl)£-V48/, (4.5.5d)

for all / >12. This implies that/°(x») is monotone decreasing for for i >i2.

Now we use the fact that x isan accumulation point ofthe sequence {xt} i€V. It foUows

from an argument similar to the ones used in parts (a) and (b) that there exists X> 0 such that

X,• >Xfor all i >/2, j e K. Combining this fact with (4.5.5d) and Step 2ofAlgorithm 4.5.1,

f°(xi+i)-fO(xi) £- V4S7., (4j.5e)

for i >ii, i € K. Since/^x,) is monotonicaUy decreasing, (4.5.5e) impUes that/^x,)-^--

as i -»oo. This is impossible, however, since /°(Xi)-»/ (x) as i ->oo. The contradiction

proves that liminf ,• _+„ lefo)! =0.
D

RecaU the definitions of/Gqp(x) and /PP(x) in(4.4.2b) and (4.4.3b) respectively, and that

Agqp(x) denotes the solution to GQP(x).
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Lemma 4.5.1: Suppose that assumptions (i)-(iii) ofTheorem 423 hold, and that (iv) strict com

plementary slackness holds at the solution, St, of(4.1.1), ( i.e. -for every p. e U(St) and j e p,

u/>0 if and only if /'(x) =0;. Then, there exist a neighborhood, V", of St, h' e R" and

h>0 such that, for allx e V"t(a)/PP(x)=/GQp(x),a«f (b) J(x) =Acqp(x).

Proof: First we observe that assumption (ii) ofTheorem 4.2.3 implies that y(x) £ 0. Assump

tion (iv), above, implies that U^St) is a singleton {ft J for some {L e 1^, and hence that

1 =/(ft) = {y e p I /'(x) =0). Let Vbeas defined in Lemma 4.3.1.

(a) Because (i) £/PP(x) = {(I }, (ii) £/pp() is an upper semicontinuous, compact-valued set-

valued map, and (iii) fl> >0 for all; e J, there exists aneighborhood W0 c V ofx such that

u/ >0 for every j eJ and ue I/PP0V0). From the definition of/pp(x) in (4.4.3b), /pp(x) 3 J

for all x e W0. Now we show that /PP c 7. By strict complementary slackness, /'(x) <0 for

every ;<*?. Since A(x) =0 and A() is continuous [Pol.4], there exists a neighborhood,

Wx c W0,ofx suchthat/>(A(x)lx)-y+(x)<OforaUy*? andxe Wx, It foUows from the

definition of £/PP(x) that u> =0 for every ;*? and every u. € UnQVi). Hence ;*? impUes

j4JnW0. Therefore,/PP(x)=? foreveryx € Wh

By asimilar argument, we show that JqqjpOc) =7 for aU x contained in aneighborhood of

x. (i) Since AGqi<x) =0 and y+(x) =0, an inspection of (4.3.1d) reveals that

tfgqp(£) =# pp(x) = {{I }. (ii) Lemma 4.3.1 impUes that AgqpGO is continuous in Wh and

hence C/gqp00 is an upper semicontinuous, compact-valued set-valued map. (iii) For aU j e J,

fty >0. Hence, there exists aneighborhood, r0cV, of* such that u/>0 for every / e ? and

He £/gqp(Wo). From the definition of £/gqp(x) in (4.3.1d), this implies that

/ (Agqp(x) Ix) =0 for j e J and x € Wq. Hence, by the definition of SgqpGO in (4.4.2b)
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^gqp(*) => 7 for every x e Wo. Now we show that /gqp(x) c J. By stria complementary

slackness, /'(x) <0 for every j*J. Since AgqfC* )=0and Agqi»() is continuous, there exists

aneighborhood W\ c W0 ofx such tfiat/>(AcQp(x)lx)<0 for every jtJ and x e W\.

From the definition ofC/gqpOO. M> =0 for every J4? and every u, € £/gqp(W'i). Hence y*J

implies that ;*/gqp(Wi). Therefore, /gqp(x) =? for every x e W\. Statement (a) holds

withV" = Wxr\w\.

(b) This foUows from (a) and Proposition 4.4.3(c).
D

The foUowing theorem asserts that, under an additional strict complementarity assumption,

the implementable Algorithm 4.5.1 has the same asymptotic rate of convergence as Local Algo

rithm 4.3.1. Without the strict complementarity assumption, the bound onthe convergence ratio

which can be obtained for Algorithm 4.5.1 is the same as that obtained for Algorithm 4.2.1 in

Theorem 4.2.3. However, an improved bound is not obtained for Algorithm 4.2.1 under this

additional assumption. Under the strict complementarity assumption, t/PP(x) = {(l } for some

P. e Zp+1 and hence p° =JI0 =(1°.

Theorem 4.5.2: Suppose that assumptions (iM»i) ofTheorem 4.2.3 hold, that (iv) strict com

plementary slackness holds at (St ,{L) for every Qi e Upp(St),(i.e. -for every j e p , Jl> >0 if and

only if fj(x) =0), and that Algorithm 43.1 constructs asequence {x,-} £q in solving (4.1.1).

Then,(a) x,->x asi ->«>, (b) forany e<ft°/ (1- Jl°),

.. PefXi+{)-pg($) m ehmsup * i - p-2. min * x} (4 56a)
"*~ PeOc.O-Petf) M Jt°d+e)

and(c) ifv(Xij£Oforanyi0e IS,

hmsUp ^ j _ pJZL (4.5.6b)
'— /°(*)-/°(*) M
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Proof: (a) The sequence hes in the bounded set L defined in assumption (ii) of Theorem 4.2.3,

and hence it converges to the set of its accumulation points. By Theorem 4.5.1,

liminf;.,j8ta)l =0.

We prove that £ must be an accumulation point Suppose not Then there exists aneigh

borhood W of x such that {x,}, €N c L\ W. By assumption GO ofTheorem 4.2.3, there is

no point in L\ W which satisfies (4.2.5a-b). Since L\ W iscompact, this and Theorem 4.2.1(b)

imply that inf {8(x) Ix e L\ W} >0. But this contradicts the fact that Uminf ,• _>-l8(xl)l =0.

Hence x must be anaccumulation point

Let V" be as defined in Lemma 4.5.1. The iteration maps (see the proofofTheorem 4.3.1)

of Algorithm 4.3.1 and 4.5.1 coincide forx € V". By Theorem 4.3.1. there exists aneighbor

hood V'" c V" ofx such that if the sequence {x,}, 6 Kenters V", it remains inV" and con

verges to x. Since x is an accumulation point of the sequence, it must enter V". Hence, the

sequence converges to x.

(b) and (c) Since, by (a), {x,},- 6Nconverges to x and the iteration map of Algorithm

4.5.1 coincides with that ofAlgoritiim 4.3.1 inthe neighborfioodV" ofx , theresults of Theorem

4.3.2 hold. Since UfV(St) = { 0. ), u,0 s J[0 =(1°.
D

4.6 NUMERICAL EXPERIMENTS

Algorithm 4.5.1 was compared with Algorithm 4.2.1 and the feasible descent algorithm in

[Her.l] (which also satisfies (4.1.3)) on several weU-known inequality-constrained problems.

Table 4.1 summarizes the performances of the three algorithms on these problems. The results

for the algorithm of [Her. 1] are quoted from that paper.

The algorithm parameters for both Algorithms 4.2.1 and 4.5.1 were set at

a =0.9, p=0.9, y=1.0 in the experiments. To reduce the number of trial step sizes tested in
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the Armijo step rule, quadratic interpolation was used at each iteration of both algorithms to

determine the initial trial step size.

The Rosen-Suzuki problem is problem 43 in [Hoc.l], See Figure 4.1 for acomparison ofthe per

formance ofAlgorithms 4.2.1 and 4.5.1. (The y-axis label "Cost Error" ofthe figures refers to the

quantity, f0(Xi)-f0(St)). Colville's Test Problems One and Two are problems 86 and 117,

respectively, in [Hoc.l].

Kuhn-Tucker Problem [Con.l]: This problem has a unique minimizer at which neither the

Kuhn-Tucker constraint qualification nor the Mangasarian-Fromovitz constraint qualification

holds. It serves as atest ofalgorithm robustness. The minimum value of-1 occurs at x =(0,1).

Both algorithms converged to the solution from the feasible initial point x0=(0.25,0.25). How

ever, Algorithm 4.2.1 converged sublinearly, while Algorithm 4.5.1 converged linearly. See Fig

ure 4.2. q

Circular-Quadratic Problem: In this problem, the function approximations are exact for y=1,

thatis,/>(A lx)=/>(x +h)forj e puO.

min {1^(x12+(x2 +4)2)IV6((x1 +l)2+x12)-2^0, V4((X!-l)2+x|)-2^0 } .(4.6.3)

The minimum value of4.5 occurs at St =(0, -1); the feasible initial point x0=(1,1) was used. D

Infeasible Problem: This simple problem was constructed to demonstrate the behavior of the

algorithms when the constraints cannot be satisfied.

min { -xx\(xx +l0)2+x} £0 ,(xx-10)2+x} £0 } . (4.6.2)

The minimum value of 1occurs at the origin. Both Algorithms 4.2.1 and 4.5.1 converged to the

solution from theinitial point x0 =(-10, -20). •

4.7 CONCLUSIONS
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We obtained a bound onthe convergence ratio ofsequences {/°(x«0} i c v constructed by

Algorithm 4.5.1 which is smaller than that obtained for Algorithm 4.2.1. On all of the standard

problems on which they were tested. Algorithm 4.5.1 far surpassed the performance of Algorithm

4.2.1 and was competitive with the first-order feasible descent algorithm of [Her.l]. Search

Direction Subprocedure 4.4.1 was developed as a method for approximating the solution to the

GQP subproblem. The above facts show that the subprocedure can profitably be viewed as a

speed-enhancing correction to the method ofcenters search direction (4.2.2a).

4.8 APPENDIX

The following two theorems are special cases of Theorems 4.6 and 4.9 of [Han.2], used in

the proof of Lemma 4.3.2.

Theorem 4.8.1: [Han.2] Consider theproblem

min {*°(x)l$'(x)<;0, V; e p}, (4.8.1)

andsupposethatthefunctions g'() are twice continuously differentiable.

Ifx e R", together with a Kuhn-Tucker multiplier vector u e R£, satisfies the standard

second-order sufficiency conditions [McC.l], then,for anyz<\llulx, x is a strict localminim

izer ofthefunction eg °() +maxg '(0.
y«p

Theorem 4.8.2: [Han2] Consider the problem (4.8.1) andsuppose that (i) thefunctions g'()

are convex and continuously differentiable, and (ii) there exists x* e R" such that gi(x')< Ofor

all j e p.

Ifx e R", together with a Kuhn-Tucker multiplier vector u e R£, satisfies the standard

second-order sufficiency conditions [AfcC.1], then,for anyz<\l lulx, x isa global minimizer of

thefunction tg%) + max g'Q.
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Problem Algorithm NF NG NDF NDG FV

Rosen-Suzuki [Her.l]
Algorithm 2.1
Algorithm 5.1

7

66

6

27

198

18

7

33

3

21

99

9

-43.81453

-43.83851

-43.82342

[Her.l]
Algorithm 2.1
Algorithm 5.1

15

132

20

54

396

60

15

66

10

45

198

30

-43.99907

-43.99912

-43.99927

ColviIle#l [Her.l]
Algorithm 2.1
Algorithm 5.1

6

265

12

60

2650

120

6

127

6

60

1270

60

-32.03453

-32.06142

-32.21449

[Her.l]
Algorithm 2.1
Algorithm 5.1

9

884

32

90

8840

320

9

436

16

90

4360

160

-32.34851

-32.34851

-32.34865

Colville#2 [Her.l]
Algorithm 2.1
Algorithm 5.1

36

1840

526

190

9200

2630

36

872

246

180

4360

1230

32.81567

32.81530

32.66952

[Her.l]
Algorithm 5.1

53

1741

320

8705

53

324

265

1620

32.34897

32.34906

Kuhn-Tucker Algorithm 2.1
Algorithm 5.1

92

45

184

90

46

6

92

12

-0.9009127

-0.92223418

Algorithm 2.1
Algorithm 5.1

6116

110

12232

220

3058

15

6116

30

-0.9900006

-0.9905035

Circular-Quadratic Algorithm 2.1
Algorithm 5.1

10

2

20

4

5

1

10

2

4.526097

4.530063

Algorithm 2.1
Algorithm 5.1

54

4

108

8

27

2

54

4

4.500000

4.500000

Table 4.1: Summary of Numerical Results

The abbreviations in the tablehavethe following meanings:

NF: Number ofobjective function evaluations.

NG: Number of constraint function evaluations.

NDF: Number of gradient evaluationsof the objective function.

NDG: Number ofgradient evaluations of the constraints.

FV: Value of the objective function at tiie final iterate.

Each constraint was counted separatelyin the tabulation of NG and NDG. Boundson the
variables, i.e., xJ < 0, were not included in the tabulation.
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CHAPTER 5

SUPERLLNEARLY CONVERGENT GENERALIZED

QUADRATIC PROGRAMMING-BASED METHODS

5.1 INTRODUCTION

We consider the inequality-constrained nonlinear programming problem,

ICP min {/«k)l/'CO*0.V/ep} . (5.1.1)

where p denotes the set {1,..., p ) and each function fhWC1 -> R is continuously differenti-

able. In this chapter, we develop second-order algorithms based upon successive approximation

to the problem ICP, as proposed in [Pol. 101. The search direction subproblem for such algo

rithms isobtained from ICP by replacing all of the functions /«*(•) by quadratic approximations,

fHx \xk,H) &/>(**)+ {VfJ(xk),x -xkWA {x -Xt.Miix -xk)), (5.1.2)

where Hk =[Hk°,..., H£] and each Hi e R" x" is amatrix approximating V2fj{xk)} The result

is aquadratically constrained quadratic program which we call a generalized quadratic program

(GQP),

GQPfo,//): min< {f\x \xk,H)\ fj(x Ixk,H)£0, V j € p} . (5.1.3)

The GQP-based algorithms whichwe develop are novel in theiruse of the full second-order

information. As a rule, the second-order information used by other algorithms is limited to an

estimate of the Lagrangian Hessian (or a submatrix thereof). The Lagrangian Hessian is a linear

combination of the Hessians of the individual functions. If exact second derivatives or finite

difference approximations are used, the Lagrangian Hessian estimate is generally formed by com

bining the Hessians of the individual functions. If the Lagrangian Hessian estimate is updated as

'Note that this definition of/>(• I•) diffen from that used in Chapter 4, not only in the addition ofthe argument H, but also in
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in a variable metric method, then the update is a function of vectors which are linear combina

tions of vectors which could be used to update individual Hessian estimates. In both cases, the

Lagrangian Hessian estimate is formed bycombining information which could be used to provide

estimates of the individual Hessians. Hence, these algorithms discard information about the

differences among the curvatures of the functions /y().2 In contrast, the GQP subproblem natur

ally incorporates all of this second-order information. This information will not, of course,

enable GQP-based algorithms to converge faster than quadratically, but we undertook this

research in the hope that the use of this information would speed convergence when the algorithm

was far from asolution, where quadratic terms are not dominated by linear terms.

Algorithms based on GQP subproblems have been proposed before. In [Pol.10], GQP-

based algorithms are proposed, and aconvergence theory is developed for them. Minimax algo

rithms have been based on subproblems obtained in a similar way from the minimax problem

[Pol.9, Pol.ll, Pan.31 and the constrained minimax problem [Pan.41.3 Rates of convergence are

obtained in [Pol.9, Pol. 11] under assumptions of uniform convexity. It is shown in [Pan.4] that,

on uniformly convex problems, the norms of the search directions constructed by aconceptual

GQP-based algorithm converge superiineariy to zero as the iterates approach asolution.

In this chapter, we develop acomprehensive theory ofconvergence and rate ofconvergence

for aclass of algorithms based on second-order GQP subproblems. Our convergence rate theory

shows that these algorithms will achieve rates ofconvergence ranging from Q-superlinear [Ortl]

to Q-order 3/2, depending onthe accuracy of the Hessian approximations. The results hold for a

class of algorithms characterized by an algorithm model and a set of generic conditions. The

assumptions made about the problem inour main theorem are weaker than the assumptions usu

ally made in superlinear convergence theorems. Our convergence rate theorem requires neither
theorigin of the first argument.

"Consider the fact that the Lagrangian Hessian consists ofn2 numbers, while the individual Hessians contain (p +l)xn2
numbers. ^

"Quadratic constraints have also appeared in the subproblems of trust region algorithms [Mor.l-2J. However, in these algo
rithms, they function to limit the search direction, rather than torepresent the constraints ofthe problem.
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strict complementarity nor linear independence of the gradients of the active constraints at the

solution. The sufficiency condition which it assumes is weaker than tiiat in [Theorem 3.2 of

Rob.l], and the Mangasarian-Fromovitz constraint qualification used is also quite weak. How

ever, the assumption made in our main theorem about the convergence of Hessian estimates,

Algorithm Property 5.4.7,is stronger than usual.

We also propose an efficient method for solving the GQP subproblem. The GQP-based

algorithms proposed in [Pol.9-11, Pan.3-4] were conceptual, that is, they assumed that the GQP

subproblem is solved exactly. These algorithms were not implemented (to tiie author's

knowledge) because no finite step procedures for solving the GQP subproblem were known

[Pol.4, Pan.4].4 We resolve this difficulty in two steps. First, the convergence rate theory which

we develop requires that the GQP be solved only to within a prescribed accuracy. Second, we

propose an efficient method for approximating the solution of the GQP to this accuracy. Our

approximation method requires the solution of one quadratic program and the inversion of a

(n +p) x (n +p) matrix. Our proof that the approximation method provides the required accu

racy does rely on a stria complementarity condition.

The class of algorithms we describe are feasible descent algorithms for ICP. They are

shown to converge superiineariy. The only other such algorithms known to the author are those

in [Pan.1-2].

In Section 2, we present an algorithm model; inSection 3, weprove that algorithms which

conform to the model and which possess certain properties converge. In Section 4, we derive

rates ofconvergence for algorithms conforming to the algorithm model In Section 5, we develop

amethod for approximately solving the GQP and incorporate it into an example algorithm which

conforms to the algorithm model. In Section 6, we present the results of numerical experiments

*The GQP-based minimax algorithm of fPoL91 was implemented, but because no efficient finite method for approximating the
solution to the GQP subproblem was known, anonlinear programming algorithm was applied to solve the subproblem. Because no
stopping rule was available, the subproblem was solved to high precision at each iteration. As aresult, the search direction computa
tion consumed so much time that the algorithm's overall efficiency was little better than that ofafirst-order minimax algorithm. The
convergence rate theory developed in [Pol.l 11 resolved this problem byincluding a stopping rule for the solution of the search direc
tion subproblem which preserves the rate ofconvergence ofthe conceptual algorithm.
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with the example algorithm.

52 A PHASE n ALGORITHM MODEL

In this section, wepresent an algorithm model fora class of feasible descent algorithms for

solving ICP. Eachalgorithm in the class is characterized by a search arcfunction, A(x, //), and

by the method used toconstruct Hessian approximations, Hj. The search arc function,

A :R" xIR"*^1* ->PC([Q,l],WL*), (5.2.1)

maps the parameters (x,H) (whichdefinethe subproblem GQP(x, //)) into a piecewise continu

ous arc in Rn. We also require thatA(x, H)(s) be differentiable at s = 0. Wegive an example

of a search arc function in a familiar setting. An algorithm which improves on an iterate xt by

performing a line search in the direction A(*,,//,) has a search arc function given by

A(x,H)(s) = x+sh(x,H).

We define I = [/„ /„]e R"*<p+1>» where /„ is the n x n identity. Also, for compact-

ness we wiU write a() forA(x, //)(•), suppressing thex and// dependence, and we will let a (j)

denoteda(s)lds.VJtdefiney(x) £ maxy69fJ(x).

Algorithm Model 5.2.1

Data: x0e R" such that y(xo) Z0,H0 e R" x"0>+1>, a, pe (0,1).

Step 1: Construct a search arcak = A(xk, Hk).

Step2: Take the step length j* to be the largest element s of the set

{1, V4P*, 1-V4P*} ke N, such that

V(ak(s))Z0, (5.2.2a)

/°(ak(s)) -f °(xk) <Zsp(lfl4(0)!l) max fHxk +^(0) Ixk, D, (5.2.2b)

where p(r) = ctf/(!+*)•
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Step3: Set*4+l = ak(sk), update Hk, replace k byk+l and goto Step1.
D

The V4 preceding dk(s) in (5.2.2b) and (5.3.2b) was chosen for the convenience of our proofs; it

could be replaced by any positive constant

In Algorithm Model5.2.1,each iteration involves the computation of a search arc and tfie

selection of a step size along the searcharc using an Armijo-like step size rule [Arm.l, Pol.4].

The step size rule differs from more familiar Armijo-type rules in [Pan.1-2] in two ways. First,

s = 1, as well as s = 0, is an accumulation pointof the set of trial step sizes. This allows a near-

unity stepsize to be accepted when s = 1 would yield a slightly infeasible point, and prevents the

degradation of superiinear convergence to linear. Second, the quantity on the right-hand side of

the inequality is a generalization of the usual Armijo-rule term sa{Vf°(xk), dk(0)\ The

coefficient p(la*(0)11) tends to zero as xk tends to a solution ofICP, which ensures that near-unity

step sizes satisfy (5.3.2b) for xk near such a solution.

To simplify the exposition below, wewill usetheexpression "for x nearyn to mean"forall

x in a neighborhood of y". We will also use the expression "for large Jtw to mean "forevery

k e N greater than some k0 e N". Fmally, we will have noneed to distinguish among many of

the constants which appear below. To avoid accumulating long expressions for them, we adopt

the following shorthand. A single symbol K will denote any large positive realconstant. Hence,

K+K =K andK2 =K. We will avoid trouble by refraining from subtracting Kordividing by

K. Similarly, a singlesymbol 5 willdenote anysmall positive realconstant

5.3 GLOBAL CONVERGENCE

In this section, we prove a convergence result which applies to any algorithm which con

forms to Algorithm Model 5.2.1 and which is based on a search arc function possessing certain

properties. We restate the Fritz John necessary conditions for optimality for ICP. Letting puo

denote the set pu {0), we denote the standard unit simplex by
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Ep+i = {H e R',+112,- 6puo u/ =1, p£ 0} . Note that we index the components ofvectors

inZp+1fromOtop.

Theorem 5.3.1 [Cla.l, DemJ, Joh.1, PoMJ: Ifx solves ICP, then there exists u. e J^+1 jkc/i

r/iar

y € puo

2 ^/^-o (53U)
: puO \—.*»/

?//'(*>=<>• (5.3.1b)
yep

Any feasible pointwhich satisfies conditions (5.3.1a-b) is a stationarypoint forthe ICP.

In order to show that an algorithm conforming oto Algorithm Model 5.2.1 converges, we

must assume that the search arc function A(•, •) has the following properties. For anyx and//,

the arcA(x, H) mustbegin at the pointx, and the beginning of the arcmustbe bothsmooth and

tangent to a feasible descent direction. We will describe the variety of search arc functions pos

sessing Algorithm Property 5.3.2 in Section 5. In that section, we will exhibit an example of a

search arcfunction and prove thatit possesses Algorithm Property 5.3.2.

Algorithm Property5.3.2: Consider anyxeW and compact setH c r0>+1)*« *\ Thefol

lowing holdfor x nearx and // e H (using the notation a&A(x,H)and d(s) =da{s)Ids).

(i) There exist 8 > 0 and K > 0 such that,

lla(j)- (a(0) +d(0)s)IZKs2, (5.3.2a)

for s near0. Also, a (0) = x and8 < Id(0)1 < K.

(ii) Ifx e R" is nota stationarypoint of ICP,there exists 8 > 0 such that

fJ(x + 1/ui(0)\x,I)<-b , (5.3.2b)

for all j e puo.
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Theorem 533: Suppose that an algorithm conforming to Algorithm Model 5.2.1 constructs a

sequence {xk } k€ Nstarting from afeasible point xo, and that

(i) the functions fj() areLipschitz continuously differentiable,

(ii) the search arcfunction A (•, •)satisfies Algorithm Property 532,

(iii) the set [Hk] t{Nu bounded.

If the sequence xk has an accumulation point x, then x satisfies the Fritz John necessary condi

tions for optimality (5.3.1a-b).

Proof: Suppose that the subsequence {xk) k6 L, where L c N, converges to x, butthat x does

not satisfy the necessary conditions (5.3.1a-b). Since the functions /'(-) are Lipschitz continu

ously differentiable, there exists K > 0 such that

fKak{s))£fKxk)+{Vfi{xk),ak(s)-xk)+K\ak(s)-xk\2

£/'(**) + (Vfj(xk), sdk(0))+ IV/>(^)I lak(s) -xk- 5J4(0)I +tfllat(j)e4&)

using the triangle inequality. By Algorithm Property 5.3.2(i) and the triangle inequality, there

exists K > 0 such that

WVfi(xk)l Wak(s)-xk -MA(0)1 +Klak(s)-xkPz (WfJ(xk)l +K) lak(s)-xk -J&WbtKha^orf

(lVfJ(xk)$ + K)Ks2 + Ks2+ 2Ks3 ,

for s near 0, large k e L and; € p. Substituting (5.3.3b) into (5.3.3a) yields, forsomeK >0,

fj(ak(.s))^fJ(xk)+s{VfJ(xk),dk(0))+Ks2

Z2fj(xk + lMk(0) \xk, I)+Ks 2 , (5.3.3c)

for s near0, large k e L andyep. Similarly,

f\ak(s))-f\xk)Z2sp(xk + mk(0)\xk,V) +Ks2, (5.3.4)

for ^ near 1. By the descent requirement of Algorithm Property 5.3.2(ii), there exist 8 >0 such
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that

fJ(xk +V*aA(0) Ixk, I)<- 8 , (5.3.5)

for j <= puo, s near 0 and large k c L. Since fJ(xk)&Q, substituting (5.3.5) into inequality

(5.3.3) yields

f'(ak(s))Z0. (5.3.6)

for; € p, s near0 and largek e L. Similarly, sincep()£ 1,

/^(jW-ZW^^P^^O^/^ +^^Ix*,!) , (5.3.7)

for s near 0 and large k e L. Inequalities (5.3.6) and (5.3.7) and Step 2 of Algorithm Model

5.2.1 imply that there exists s>0 such that sk £ J for large * e L. By Algorithm Property

5.3.2(i), there exists 8 >0 such that la*(0)l >8 for large * e L. Applying this fact and (5.3.3) to

(5.2.2b) yields

/ °(ak(s)) -/ °(xk) <; skp(}dk(0)hf0(xk +V*flA(0) Ixk, I) <; -5tp(laA(0)l)8 £ - j 82 . (5.3.8)

for large k e L. Since/°(xA) is nonincreasing, (5.3.8) implies that/°(xk) ->-<». However, by

the continuity of/°(),/ °(xk) -> / °(J) as k -> «, ^ € L. This contradiction proves that x must

satisfy the necessary conditions (5.3.1a-b).
•

5.4 RATE OF CONVERGENCE

We now derive rates of convergence for algorithms which conform to Algorithm Model

5.2.1 and which posses a further set of properties. The rate of convergence obtained varies from

superiinear to 3/2 depending on the accuracy of the Hessian approximations. In the remainder of

this chapter, we assume that the problem ICP satisfies the following hypotheses onthe problem

ICP. In addition, we will introduce assumptions about the behavior of the algorithm, labeled

Algorithm Properties, as we need them.
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Hypothesis 5.4.1: Suppose that

(i) thefunctions /'(•) are twice locallyUpschitz-continuously differentiable,

(ii) there exist TX,T2>0 such that the set V & {x e R" \y(x)ZTimdf0(x)<T2) is

bounded andsuch thatthere exists a single point, St, in the set V which satisfies the neces

sary conditions (53.1a-b),

(iii) thepointSt isfeasible.

The following definitions are needed in order to frame further assumptions about the prob

lemICP. Weassume below thatSt is asdefined in Hypothesis 5.4.1.

Definition: We denote by 0 the subset of Zp+1 which, together with St, satisfies (5.3.1a-b),

0 £ Ug I,+1l £ p'V/>(*) =0and £ u//'(x) =0 } . (5.4.!)
y € puo yep

Using the definition /(p) £ {j e p Iu>! >0}, we define the set of indices corresponding to

strictly positive multipliers,

/£ U '00= {7€pl3|i6 0:|i'>O} . (542)
fie U

Furthermore, we let B = Span{Vfi(St))
j*7

, the null space of the matrix with columns

{V/>(ic)} We also define FJ(x) &V2/'(x) for each ; e puo, and we denote by F(x)
ye/

the matrix [F°(x) F'(*)].
D

Hypothesis 5.4.2: LetSt beasdefined in Hypothesis 5.4.1, and suppose that

(i) there existsm>0such that

mM2<{h, I \ijFJ(x)
l/epuo

h) VheB ,h*0, Vfie^, (5.4.3)
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(ii) there exists d e R» suchthatfJ(St)+{VfJ(x).d)<0 forallj e p.

Hypotheses 5.4.1-2 constitute a strengthened version of the standard second-order

sufficiency conditions for Jc to be a local minimizer of ICP. However, this condition is weaker

than the strong second-order sufficiency condition used in [Cha.l, Theorem 3.2 of Rob.l]. In

their second-order condition, the inequality in (5.4.3) must hold for every

h € {V/ '(St)} j; eJ(Jl)) \ which is alarger set than

*= n [span{VfJ(St))jeJ(Jl.

Hypothesis 5.4.2(H) is equivalent to the Mangasarian-Fromovitz constraint qualification, which is

quite weak.

In the following definition, we define an optimality (or merit) function which, as Lemmas

5.4.3 and 5.4.5 show, gauges the distance from the minimizer St.

Definition: We define a measure of constraint violation by y+(x) £ max {y(x), 0} , and we

will use the optimality function 6(0 discussed in Chapter 4 with change of sign (and symbol to

avoid confusion),

o(x)£y+(jc)- min maxfJ(/ Ix,I), (544)
x'eR'/e puo v '

where I =[/„,.... /J e RB x<p+1>» and/„ isthe n xn identity. The functionoX) isnonnegative

and is zeroonly at points satisfying the necessary conditions for optimality (5.3.1a-b). The func

tion o() can be rewrittenusing Theorem 2.7.1,

o(*)= mm v+C*)-L |i//'C*>+Vil Z u7V/'(x)fl2. (545)
**6 ^** yep j e puo

We define analogous quantities for tfie GQP subproblem. Let

y(x\x,H) £ maxy6p/>(xlJ,//)and y+(x\x,H) § max/6p {fJ(x\x,H),0) . We

will denote the quantitycorresponding to o() by
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o(x Ix,H) = min y+(x Ix,H) - £ u>/'(x IJ, //)+V4fl £ p.'V/'(x IxH)fi. (5A6)
l*€^*> yep y'epuo

D

We assume in the remainder of this section that Hypotheses 5.4.1-2 hold,with Tx,T2,St and m

as defined there. We will also assume that an algorithm which conforms to Algorithm Model

5.2.1 constructs a sequence {xk} k6 k starting from a feasible point*o, and that thealgorithm is

based upon a searcharc function A (•, •) which possessesanotherset of properties, Algorithm Pro

perties 5.4.6(i-iv) below. We will denote A (xk, Hk) by ak. The convergence rate proof for such

an algorithm is structured as follows.

The main convergence rate theorem, Theorem 5.4.12, is proved by combining two facts,

which are proved in Lemmas 5.4.10 and 5.4.11, respectively. The first is that an unstabilized ver

sion of Algorithm Model 5.2.1, i.e., an algorithm for which xk+x £ a*(l), converges superiineariy

in a neighborhood of the solution. The second is that the step size sk converges to one.

Several relations are combined in the proof of Lemma 5.4.10 to show that the unstabilized

algorithm converges superiineariy. (1) Algorithm Property 5.4.6(iii) ensures that, at each itera

tion, the search arc ak ends at a point ak(\) which is nearly stationary for the subproblem

GQP(xk,Hk). This is a point at which the optimality function for the subproblem,

c(ak(\) Ixk, Hk), is small. (2) By Lemma 5.4.9, this implies that ak{\) decreases the optimality

function o() for the main problem ICP. (3) Lemmas 5.4.5 and 5.4.3 translate this decrease in o(-)

into a decrease in the distance from the minimizer St.

We begin by relating the optimality function o(x) to the distance from the minimizer

h - St I using anondifferentiable exact penalty function.

Definition: We will denote the lm exact penalty function for ICP by

pe(x)£f\x) +cy+(x), (5.4.7)

with c >0. The function pc{) can be represented as a max function,

pc(x) £ maxy€p [f°(x)+cf'(x),f°(x)}. Letu°£min {u°lp€ 0 }.
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D

Lemma 5.4.3 showsthatSt is a local minimizer of the penalty function aswell. The lemma

is used in the proofs ofLemmas 5.4.5 and 5.4.10.

Lemma 5.4.3: For any c >(1 - pty/p0, there exists 8> 0 such thatpe(x) -pe(St) £ 8lx -x I2

forx near St.

Proof: See Lemma 4.3.2. D

Definition: We define

U(x) &argminv+(x)-S p//>(*)+Vil Z p/V/>(x)l2. (548)
^e *»♦' yep ye puo

Note that, from (5.4.5), U(x)is the set ofmultiplier vectors such that

o(*) =V+fr) - I H'/'CO +V4I 2 p'V/>(x)l2. (5 49a)
yep j e puo

The following definition is used in the proofs of several of the lemmas.

U(x \x,H) Aargmin\j(+(x \x.H)- £ p'/>(x lx,//)+V4l £ n/V/'(x Ijc,//)l^54,9b)
P€ *»** yep ye puo

D

The remaining lemmas are established in the Appendix. Lemma 5.4.4 is a technical result

which is used in the proofs of Lemmas 5.45,4.11 and 5.1.

Lemma5.4.4: For any c > (1 - p0)/ p°,

(a)min{u°lu.G U(x)} >l/(l+c)forx nearSt,

(b) \|f+(x) £ (1 +c)o(x)forx nearSt,

(c)y+(x lx,//)£(l+c)5(x Ix,H)forx nearSt,x nearSt andH nearF(St).

Lemmas 5.4.5 and 5.4.3 show that o(x), which depends only upon first-order information at

x, can be usedas a merit function to gauge progress toward St. Lemma5.4.5is usedin the proof

that a step size of one yields superiinear convergence (Lemma 5.4.10) and in the proof that the

step size converges to one (Lemma 5.4.11).
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Lemma 5.4.5: For any c >max{ 1, (1-p0)/ p0}, there exist b>0 andK >0 such that

8o(x)£pe(x)-pe(m*o(x), (5.4.10)

forx nearSt.

In order to be assured of a superiinear rate of convergence, the search arc constructed in

Algorithm Model5.2.1 must possess further properties. Forx near a solution, the arcA(x, H) is

required to be well-behaved at s = 1 and end at an approximate solution to the subproblem

GQP(x,//). It is also required that, at ak(\), the arc be tangent to a descent direction for y(-).

This property ensures that y(ak(s)) is sensitive to changes in the step size. Hence, when

A(x,H) is slightly infeasible at s.= 1, feasibility can be recovered with only a small change in

the step size. The additional properties we need are as follows.

Algorithm Property 5.4.6: Foranyt>0 andfor x near St and H near F (x ), there exist K > 0

and 8 > 0 such that (with the notation a =A(x,H) and a(s)-da(s)lds),

(i) lla(j)-a(l)l£ff 11-51 lfl(l)l, (5.4.11a)

(ii) 8lla(l)-xl2<Sla(l)l£tfHa(i)-xB, (5.4.11b)

(iii) o(a(l)lx,//)£/rla(l)-xl3£e, (5.4.11c)

(iv) y(a(s)\x,H)£y(a(.l)\x,H) +(s-\)bU(l)l, (5.4.11d)

for s near I.

The right-hand inequality in Algorithm Property 5.4.60U) ensures that A (x, //)(1) converges to

x as x converges to St and H converges to F(x).

We must also assume that the Hessian estimates converge.

Algorithm Property 5.4.7: If an algorithm conforming to Algorithm Model 5.2.1 constructs a

sequence {x,-},- e n which converges to x e R", then the sequence {Hi} k€n converges to
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F7(x) for each j c puo.

Note that that Algorithm Property 5.4.7 is stronger than the assumption usually made about the

convergence of estimates of second-orderinformation. Whereas the analyses in [Pan.1-2, Pow.l]

assume only that the reduced Lagrangian Hessian estimate converges, we assume that all of the

Hessian estimates converge to the Hessians of the respective functions at the solution. This

assumption will be satisfied if exact Hessians or secant updates [Bre.l, Pol.12] are used, but can

not be guaranteed if variable metric updates areused.

We assume in the remainder of this section that an algorithm which conforms to Algorithm

Model 5.2.1 and which satisfies Algorithm Properties5.3.1,5.4.6 and 5.4.7 constructs a sequence

{xk} ke n starting from a feasible point xq. We will denote A(xk, Hk) by ak.

Lemma 5.4.8: As k -> «>, (a) x* -• x , (b) o(x4) -> 0, (c) ak(l) -> x .

Definition: We define

r\(x,H)§ max max {l//> -F>0OI lx* e S(x,2U(x,//)(l)-xl)} , (5.4.12)
y e puo

where S(x ,£) denotes the ball in R* with center x and radius e. For sequences {xk } kc n and

(^)t6N.wedefiner\k &i\(xk,Hk).
D

The quantity r\(x, H) is a measure of the errorwith which H approximates F(x0 for x* nearx.

Note that r\(x, H) is equal to zero only ifF() is constant nearx.

Lemma 5.4.9: There existsK>0 suchthat,for largek,

o(a*(l)) £ o(fl4(l) Ixk, Hk) +tfTUla*(D - xki2. (5.4.13)

In Lemma 5.4.10, four relations are combined to show that an unstabilized version ofAlgo

ritiim Model 5.2.1, i.e., an algorithm in which xk+x = ak(\), converges superiineariy in a neigh

borhood of the solution. Algorithm Property 5.4.6(iii) shows that ak(\) is nearly stationary for

GQP(xk,Hk). By Lemma 5.4.9, this implies that ak(\) decreases the optimality function o().
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Lemmas 5.4.5 and 5.4.3 translatethis decrease into the amount of progress made toward the solu

tion.

Lemma 5.4.10: ThereexistsK > 0 such that,for large k,

IMD-x l£*Vmax(TU,l<it(l)-x*l} la4(l)-xAl . (5.4.14)

An immediate corollary is s Applying the triangle inequality to (5.4.14) yields superiinear con

vergence of the sequence ak(\), lak(X)-St I £ o (Ix* - St I) .

The next lemma shows that the step size converges to unity.

Lemma 5.4.11: There exists K > 0 such that,for large k,

skZ 1-Kmax {tu .Oa*(l)-xkl} \ * . (5.4.15)

It is apparent from the proof of Lemma 5.4.11 (see the Appendix) that the interval of step sizes

which are guaranteed to satisfy (5.2.2a-b) shrinks rapidly as the sequence converges (with

yk(\)-xkl). This analysis suggests, and our numerical experiments confirm, that a careless line

search may miss this interval of acceptable near-unity step sizes. If this happens, the algorithm's

rate of convergence is degraded to linear. If the algorithm were modified by replacing the vari

able s in the search arc by (1 - Vrj7lat(l)-x4l)5, then a step size of 1 would eventually be

accepted by the line search and only a single step size would need to be tested when very near the

solution. However, this would slow convergence when farther from the solution. We chose not

to disguise the computational difficulty caused by the narrowness of the interval of acceptable

step sizes in this way.

Theorem 5.4.12: (a) IfHi -> F'(St )ask -> <*>for each j e puo, then

limsup IIxA+1 - St I/ \xk - St I =0. (5.4.16)
k -»»
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(b) If, for some M >\, some qt\ and each j e puo, \H{-Fj(xk)l £M max lx4_,- -x*l,
« •! q

then there exists K > 0 such that

limsup Hx*+1-xl/lxft-jcr£jr ,
k ->oo

wfere x is the unique positive solution to f*+1 - tq - V4 =0.

(c) ///# = FJ(xk)for each j e puo,(ten/tore exfrtt AT >0 such that

limsup l!xA+1-SI/ lxk-StV*ZK
k —»oo

(5.4.17)

(5.4.18)

Proof: We prove this theorem by combining the faa that the unstabilized algorithm converges

superiineariy (Lemma 5.4.10) with the fact that the step size converges to one (Lemma 5.4.11).

By the triangle inequality, Algorithm Property 5.4.6(i), Lemma 5.4.11 and Lemma 5.4.10, there

exists K > 0 such that

llx*+1 - x I <; \ak(sk) - a4(l)8 +la4(l) - St 8

Z(\-sk)lak(l)Uiak(l)-Stl

/rmax{ruJflA(l)-xJ}
lakQ)-xkt

l«A(l)l
ia4(l)H + IIflA(l)-xl

<; [Armax{Tt*.Ml)-xAl}Ba4a)-^2]+ (Wmaxfiu. !«*(!)-**l} M)-^l]

StfVmaxt 1^,1^(1)-xAl} MD-xJ , (5.4.19)

for large k. We now estimate the size ofthe coefficient Vmax {r\k, la*(l) -xAl} in (5.4.19) for

the cases (a-c).
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(a) Since xk and ak(l) converge to x, i\k converges to 0. The result foUows immediately from

(5.4.19).

(b) By the definitionofr\k, the triangle inequalityand the local Lipschitz continuity of f(),

r\k£Khk-StVi+ max max{ BF>(x)-F'(x*)l Ix e S(xk,2lak(l)-xkl)) +l/5,'(x4)-/#II
ye puo

ZKlak(l)-xkl+M max {Ix^-xJ} , (5.420)
i »1 q

for some K > 0 and large it. By Lemma 5.4.10, \ak(\)-xAl £2Bx* -J? I for large k. Applying

this and the triangle inequality to (5.4.20), there exists K > 0 such that

r\k£2Klxk-Stl+M max [lxk-i-xkl)
« =i *

£/? max {3bA-xO + Bx4-f-xB}
«= i *

<K max Ix^-SII, (5.4.21)
i =0,1,...,?

for large k. Substituting (5.4.21) into (5.4.19) yields

llx*+1 -x I«S/T\/ max {Bx^-xl} Bx* -x fl, (5.4.22)
MaO.l q

for large k. Since x* converges to x, (5.4.22) implies that lx*+i -x I £ Ix* - x Bfor large k.

Hence, max {lx*_,- - St I} = Bx*.* - $ I forlarge k. Substituting this into(5.4.22) yields
is 0,1 q ^

Ilx4+, -* 1<; /Wlx^-Slflx* -*I, (5-4.23)

It follows from (5.4.23) and Theorem 3.1 in [Pot.l] that there exists K > 0 such that

limsup llxA+i - x I / lx4 - x BT £ K , (5.4.24)
k -»»

where x is the unique positive root ofthe polynomial f*+1 - tq - V4.
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(c) By the local Lipschitz continuity of Fj(), there exists K >0 such that

r\k£K 11^(1) - xkB£ Klx* - St I, andtherefore (5.4.19) implies

Ux*+,-*l£Jrlbfc-*l1's. (5.4.25)

for large k.
D

5.5 AN EXAMPLE OF A GQP-BASED ALGORITHM

Algorithm Model 5.2.1 and Algorithm Properties 5.3.2, 5.4.6 and 5.4.7 define a class of

feasible descent algorithms for ICP. Each algorithm in the class is characterizedby its search arc

function,A (x, //), and by the method it uses to construa Hessian approximations. The choice of

a method for approximating the Hessian matrices is independent of the choice of search arc func

tion. In this section, we describe the variety of admissible search arc functions. We will present

one search arc function in detail and showthat it possesses AlgorithmProperties 5.3.2 and 5.4.6.

First, however, we discuss methods for approximating the Hessians. In order for the global

convergence result, Theorem 5.3.3, to hold, the method used must ensure tiiat the Hessian esti

mates are bounded. Furthermore, in order for superiinear convergence to be assured, the method

must satisfy Algorithm Property 5.4.7. The use of exact Hessians or sufficiently accurate finite-

difference approximationsyields an asymptoticrate of convergence of at least 1.5. Because of the

high cost of such approximations, it may be more efficientto use a secant method [Bre.l, Pol12]

to update the Hessian approximations. The secant method of [Pol.12] forms Hessian estimates on

the basis of gradients from the past n iterations. By Theorem 5.4.12, such a scheme has a poten

tial rate ofconvergence oft where t is the positive root of the polynomial t"+1 - x" - Vt Vari

able metric methods are the most commonly used means for updating Hessian approximations. A

variety of updates can be considered for use in GQP-based algorithms because the Hessian

approximations need not be positive definite. However, it is not clear that any variable metric

update will ensure that Algorithm Property 5.4.7 is satisfied.
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We now discuss search arc functions. Algorithm Properties 5.3.2 and 5.4.6 place restric

tions on four parts of the search arc function: the initial point A (x, H)(0), the initial direction

dA(x,H}(0)las, tiie final point A(x,//XD and the final direction dA(*,H)(\)lds. Hence, a

search arc function can be defined by an algorithm which, given x and H, computes suitable

points and directions and assembles them into an arc. These points and directions can be com

puted in various ways.

Algorithm Property5.4.6(iii) specifies that the arcA (x ,H) end at a good approximationto

a stationary point for the subproblem GQP(x,//). Any method for nonlinear programming

could be used to obtain such a point. However, the method used should satisfy (5.4.11c) in a

bounded, and preferably small, number of iterations. This limits consideration to superiineariy

convergent methods with a Q-rate [Ort.1] strictly greaterthan one. Since high-order derivatives

of the functions appearingin GQP(x0, //) can be computed trivially, extensions of the high-order

root-finding methods like those of Chebyshev [Tra.1] and Halley [Cuy.l] to the nonlinear com

plementarity problem formed by the first-order necessary conditions for GQP(xJf) would be

particularly desirable.

The initial direction dA (x, H)(0)/ds must be a feasible descent direction. A feasible des

cent direction can be computed by any of the methods described in [Zou.l, Pir.l]. Each of these

requires the solution of a quadratic or linear program. The final direction dA(x, H)(0)/ds must

be a descent direction for the constraint violation function \p(• Ix, H), and can be computed

using similarly techniques.

There are many ways to connect two given points with a curve tangent to a given vector at

each end. Algorithm Properties 5.3.20) and 5.4.6(i-ii) require only that the arc A(x ,H)(s) be

smooth at its beginning and end, uniformly with respect to x, H and s. As illustratedby Algo

rithm 5.5.1 below, it is not necessary for the arc to be continuous. However, it is possible to con

struct an admissible search arc which smoothly interpolates between the initial and final points.
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In general, there does not exist aquadratic curve (i.e. • acurve of the form c(j) =z0+ki +s2z2

with z o, r!, z 2e R") which interpolates between two given points and is tangent to given direc

tions at the endpoints. For each pairof points and directions, however, there is a two-parameter

family of cubic curveswhich perform the interpolation. (The parameters correspond to the norms

of the velocities of the curves at the endpoints.) Alternatively, if an interior pointmethod is used

to solve GQP(x0, //), a search arccan be constructed by piecewiselinear interpolation between

the iterates which it generates.

The most efficient way of obtaining suitable initial and final directions for the search arc is

to approximate the solution to GQP(x, //) in a way which generates such directions automati

cally. Interior pointmethods,which are now in vogue forlinear programming, automatically con

struct a feasible search arc which satisfies the descent conditions (5.3.2a-b) and (5.4.lid) in the

course of solving GQP(x,//). At present, however, no superiineariy convergent interior point

methods are known.

We now develop a searcharc function in detail, and we show that it satisfies Algorithm Pro

perties 5.3.2 and 5.4.6. The search arc function is defined by Algorithm 5.5.1 below. Algorithm

5.5.1 requires only a moderate amount of computation to construct the search arc for a given xQ

and H. Algorithm 5.5.1 computes an approximate solution to GQPfro,//) using a root-finding

method which is quartically convergent, i.e. - of order four. A feasible descent direction at x and

a direction of descent for y() at the approximate solutionaregenerated in the courseof the com

putation of the approximate solution. A search arc A (x<>, H) is then constructed from the four

quantities, the current point, the feasible descent direction, the approximate solution and the y-

descent direction.

We turn to the development of Algorithm 5.5.1. Condition 4.60ii) requires that we com

pute a point which is nearly stationary for GQP(x0, H), i.e., apoint x for which o(x Ix0, H) is

small. By Lemma 5.5.1 below, problem GQP(xq, H) possesses a stationary point x for xq near
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a solution x and for H near F(x). Furthermore, x is the unique stationary point for

GQP(x0, //) in a neighborhood ofx. We can satisfy Condition 4.60ii) by computing an approx

imation to x. (Note that x is a function of x<> and H; we suppress tins dependence to simplify

our notation.)

We take an active set approach to approximating x. We denote the set of indices of con

straints active at x by /gqpC*0'#) « {j € pl/'Cx \x0,H) =0). For any / c p, we

define an equality-constrained subproblem,

P(x0,H,J): min {/°(x \x0,H)\f'(x \x0,H) = 0,Vj e J } . (5.5.1)

Since x is a stationary point of GQP(x0,//). x must be a stationary point of

P(x0,H ,JCQp(xo,H)). We can write the first-order necessary conditions for

P(xQ,H, Jc<ff(xQ, //)) inaconvenient form. For any set / = { jx,.... jr] cp,i0e R" and

H € R" x<p+l)n, wedefine the function C(-1 x0,//,/):R"xR'?-♦R,,+r by

C(x,u \x0,H,J) £

V/0(xlxo.//) +S;e/«;V/>(xlx0.//)
fj\x\xo,H)

fj'(x\x0,H)

Since x is stationary for P(x<>. H, /gqp(^o. //))• there exists u e Rp such that

C(x ,u \x0,H,JGQV(xo,H)) =0.

(5.5.2a)

(5.5.2b)

This system of quadratic equations may be solved by any root-finding method. We discuss the

method used in Algorithm 5.5.1 later.

Of course, the setJgqp(xo> /?) is notknown a priori. Nor is a good point atwhich to ini

tialize a root-finding technique for the solution of (5.5.2b) known. We propose to approximate

Jcqp(xq,H) and obtain sucha starting point as follows. Consider the minimax problem,
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min max £ u//>(x Ix0,1), (5.5.3)

where I = [/„,..., /„] e R" x(p+1> and /j, is the n xn identity. Problem (5.5.3) is the search

direction problem of the Pironneau-Polak method of feasible directions [Pir.l]. It can be solved

by conversion to its dual form (see [Pol.4])

max £ u.'7'(xo)-V4l £ p/V/'(xo)l2. (55.4a)

Recall that (5.4.8) defines U(xo) as the set of solutions to (53.4a). Problem (5.5.4a) is a positive

semi-definite quadratic program, and a vector |xe U(xq) can be computed by a variety of

methods [Gil.l, Hig.l, von.l, Kiw.2-3].

Let the function \ix:JRn -> X^+i be any selection from the set-valued map UiR* -» 22**1.

We define /i(x0) =/(Pi(x0)), where, for any u€ 2^,+1, We define /(p)« {j € p Iu/>0}.

The setJ x(x0) is used in Algorithm 5.5.1 to approximate /gqpOco* #)• We will showin Lemma

5.5.1 that /i(x0) =/gqp(*o> #) forx0 nearx* and H nearF(£), provided that the local minim

izerof ICP, St, satisfies Hypothesis 5.5.1 below.

The unique solution to the primal problem (5.5.3)

x j£argmin max £ yJfKx Ix0,1), (5.5.4b)
*€R" nei;.iy-€puo v

can be obtained from any solution p to the dual problem (5.5.4a) [Pol.4] by

*i=*o- L H'V/^xo). (5^.^)
j € pUO

We define a function which maps Fritz-John multiplier vectors into Kuhn-Tucker multiplier vec

tors, k1:Zp+1-»R£,

^/(H1 H')/pOifu°>0
uM=\0 ifp°=0' ( ^

By Lemma 5.4.4(a), Pi°(x0) >0 for ]ix e t/(x0) and x0 near a solution, x, to ICP. The pair
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(xx,ux) obtained from m(*o) according to (53.4b) and (5.5.5) is used in Algorithm 53.1 as a

starting point for the root-finding method.

Now we discuss the root-finding technique which is applied in Algorithm 53.1 to

C(x,«lxo,//./i(xo)) =0, (53.6)

in order to approximate (x , u). The accuracy to which we are required by (5.4.1 lc) to approxi

mate x could be achieved by the application of two iterations of Newton's method to the system

of equations (5.5.6). Instead, we use a single iteration of a higher order method, Chebyshev's

method [Tra.l]. This simplifies the analysis, and requires less computation than two iterations of

Newton's method.5 Chebyshev's method requires the computation of the second derivative of

C (•). This computation is trivial since the system (5.5.6) is quadratic. Chebyshev's method has

convergence of order three in general, but, as is evident from the proof of Proposition 5.2, it has

convergence oforder four on quadratic systems.6

We denote by (x2, u2) the approximate solution to (5.5.6) which results from the applica

tion of one iteration of Chebyshev's method to (5.5.6) starting from the point (xx,ux). (We

define VC(x, u \x0,H,J)§dC(x,u Ixo,H,/)/9(x, u) and we denote byAf the pseudoin-

verse of any matrix A.) The Chebyshev step, (x2, u 2)- (x x,u x), is the sum of the Newton step

hH(x0,H) £-VC(xx,ul\xo,H,Jx(xo»tC(xx,ux\xo,H,Jx(xo)), (5.5.7)

(where Af denotes the pseudoinverse of the matrix A) and acorrection step which compensates

for the curvature ofthe function C(• Ixo, H,7),

Ac(xo>//)^-V4VC(x1,«1lxo,//,/i(xa))fV2C(x1,u1lx0,//,/i(*o))[A(l,/rJt]. (5.5.8)

The term V2C (x, u \xq,H ,J) denotes the second-derivative of the function C(x, u \x0,H ,J)

5A single iteration of Chebyshev's method requires the solution of twolinear systems with thesame coefficient matrix, while
two iterations of Newton's method requires the solutionof two linearsystems with different coefficientmatrices.

' An alternative is Halley's method [Cuy.l] which is based on rational approximation of the function C(). Algebraic ap
proaches to the solution of systemsof algebraic equations are discussed in [Can.l,Kob.1], amongotherplaces.
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with respea to (x, u). It is a bilinear operatorof two vector arguments, defined by (suppressing

the dependence on xr> H and /),

limlVC((x,tt) +rt)r«-VC(x,«)rg-rV2C(xfii)[g^]l/r=0. (5.5.9)

for all*,A e R""*.

The computation of an approximation x2 to x described above is incorporated into tiie fol

lowing algorithm which defines a searcharc function. Let e denote the vector of ones of length

P-

Algorithm 53.1:

Data: x0e Rn such that y(x o) £ 0,H e R" x<p+1>1 .

Step 1: Compute any pt e £/(xo).

Step 2: Obtain from plt /1 = J (\ix),x xaccording to (5.5.4c) and u xaccordingto (5.53).

Step 3: Compute hR and hc accordingto (5.5.7-8) and set

+ hH+he. (5.5.10)

Step4: Set d0 =*i-*o» and set d2 equal to the first n components of

-VC(x1,«1lx0,//./i)ff?]ix2-xol2.

• * ' *

Xl

u2
=

*1

«1
. a . d

Step 5: Set A (x0, H) equal to

-lMo ifsZH(xo + Qs

={*2+(2-Aixo.Hm^l^n-^ if5>V4. (5'511)
D

Steps 1 and 3 are the only computationally expensive steps of this algorithm. Step 1 requires the

solution of a semi-definite quadratic program, (5.5.4). A number of methods areavailable fortius

task [Gil.l, von.l, Hig.l, Kiw.2-3, Rus.l]. Step 3 requires the solution of two linear systems

which have dimension no greater than n+p and which have the same coefficient matrix,
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VC(xx,ux\xQ,H,Jx).

Now we verify that the search arc function A(x,H) defined by Algorithm 53.1 possesses

Algorithm Properties 5.3.2 and 5.4.6. We needthe following additional assumption in order to

prove that Algorithm Property 5.4.6 is satisfied.

Hypothesis 53.1: Suppose that Hypotheses 5.4.1-2 holdwith St as defined there, and, in addi

tion, that strict complementary slackness holds at St7 and that the vectors { V/«f(£ )} A are
JmJ

linearly independent. Without loss ofgenerality, suppose that J = { 1,..., r } .

Hypothesis 5.5.1 implies that 0 isasingleton, {(I }. By Hypothesis 5.4.2(ii), (L° >0, and hence

the unique Kuhn-Tucker multiplier vector forthe problem ICP associatedwith x is

* ft «,(&) =(JL1 WlfL0. (5.5.12)

By strict complementary slackness and the uniqueness ofp., / =/((I) = {j e p I/'(x) =0}.

The following lemma will be useful in showing that Algorithm 5.5.1 satisfies Algorithm

Property 5.4.6. It is proved in the Appendix.

Lemma 53.1: IfHypotheses 5.4.1-2and53.1 holdwithSt as defined there, then

(a) Jx(x o) =JGQpOtO' //) =f for Xrj near St andH near F(St),

(b) the matrix VC (x, u \x0,H ,f)f iscontinuous and

VC(x,iilx0,//,/)f =

dC(x,u\x0,H,f)
3(X,M1 Ur)

0

<»-i

(53.13a)

TStrict complementary slackness it said to hold ata stationary point x if there exists \i 6 V such that |i/ >0 forevery yep
such that/ >(x) =0.
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forx andx0 near St ,u nearu andH near F(St),

(c)for any selection p^R" -> I^^from U:R" -» 2X**\

lim

Xo-*X

X\

Ml

X
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(53.13b)

(d) tftere exists a neighborhood WofSt such that, for x0 near St and H nearF(St), the

problem GQP(x0.//) has a unique stationary point, x(x0,H)t in W, and there exists a

uniqueKuhn-Tucker multiplier vector u associated with x. Furthermore,

x

lim

Jto-»X LM J

//-»F(r)

A

X

v" v (5.5.13c)

Lemma 5.5.1(c), Hypothesis 5.4.2(ii) and equation (5.53) show that ux is continuous at x.

Lemma 53.1(b-c) shows that hH andhc are continuous atxo = St andH = F(St).

Proposition 52: The search arc function A(\ •) defined by theAlgorithm 53.1 possessesAlgo

rithm Property 532. If Hypotheses 5.4.1-2 and 53.1 hold with St as defined there, then Algo

rithm 53.1 possessesAlgorithm Property5.4.6 with respectto St.

Proof: Let a(s) ft A(x0, H)(s). We consider each property separately.

Algorithm Property 5.32(1): By construction, a(0)=x and la(s)-a(0)-d(0)sl = 0 for

s e [0, lA]. From [Pol.4], x i is a continuous function of x0, independent of//, and hence la (0)1

is bounded on any compact set of (x0, H).

Algorithm Property 53.2(H):Sincea(0) = 2(Xi -xn).

max/'(x0+Via(0)lxo,D= max/'(x! lx0,I)
j € puO j 6 pU0

min max f'(x Ix<>, I) ,
X € R" j 6 PUO

(5.5.14)
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by the definitionofx i(xo) in (53.4b). From [Pol.4], tiie right-hand side of (5.5.14) is continuous

in x0 and is strictly negative at any pointx0 which is nonstationary for ICP. Therefore, Algo

rithm 5.5.1 has Algorithm Property5.3.2(H).

Algorithm Property 5.4.60): For 5 e [te,l].la(r)-a(l)l = 2 ll-jl ld(l)l.

Algorithm Property 5.4.6(H): From Algorithm 53.1,

0*0)0 =2ld2l =1VC(x1,ii1 lx0,//,/i(xa))f [?llb2-xol2. (5.5.15)

By Lemma 53.1(b), the quantity IVC(xi,iii \x0,H,Jx(xo))f fill is continuous forx0nearx

and H nearF(x). It follows from Lemma 53.1(a-d) that this quantity is nonzero forxo s x and

H =F(St). Therefore, there exists 8 > 0 and K > 0 such that

5IUo-x2B2£ia(l)l£fflIxo-x2l2, (5.5.16)

forx0nearx and//near/7 (x). Now lx0-x 2l£ DA,,I + l/»e0, where A„ and he are asdefined in

(5.5.7-8). From (5.5.7) and (5.5.8), therefore, llx2-x0l is bounded for x0 near St and H near

F (St). Therefore, there exists K > 0 such that

5IU0-x2l2!Ua(l)l£tflbo-x2l, (53.17a)

forx0nearx and// nearF(x).

Algorithm Property 5.4.6(iii): We derive arelationship between lx2-x I and BxA -i"B. In the

paragraph below, we suppress the dependence of C (•) onxq, H and the index set7. The analysis

belowis local, and we restrict consideration to xo in aneighboriiood ofx in which the three index

sets Ji, JGqp and J are equal Such aneighboriiood exists by Lemma 53.1(a). We treat only

the special case where? =p. mtms case, me mverse ofthe matrix VC(r,ii Ix0,H,f) exists,

and hence the inverse of the function C(- \xq,H,/) exists. The result we derive can be

obtained for the general case, but the proofis more complicated and we omit it.
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First, we derive an upper bound on he -x2B. Chebyshev's method for solving systems of

equations is an inverse method. It approximates the root (x,u) of C(-1 x0,H,7) using a

second-order Taylor series approximation to the inverse of the function C(-1 x0,H,J ). From

the definitions in (53.7) and (53.8) and our assumption mat

VC(x, u lx0.//,/)>* VC(x, u lx0,//, /V.it follows that

A. =-VC(x1.i<1r1C(x1,ii1)= j;C-\(l-t)C(xx,ux))ltm0,

/ic=-^vc(x1.«1r1v2c(x1,ii ,)[/rnf/,j =v4|ic-ko-oc(x1,«1))U.

Then, since C_1((l -t)C(x,., u!)) ll-0 =(x x, ux), we can write (x2, u^as

+ hn+he

' « » •

x2

"2

A *1

"1
. a . .

=C-1(0-OC(x1,«1))U+ ^C-I((l-r)C(x1.u1))U

(5.5.17b)

(5.5.18)

+V4|ic -»((1 - OC(x,, ux)) \tm0. (5.5.19)

Note that the right-hand side of (5.5.19) is a second-order Taylor series expansion of

C"1((l-r)C(x1,M,)) about r=0 evaluated at t =1. By Taylor's theorem and since

C-kO - OC(x,, ux)) \tmX =C-kO) =(i*.«),

x

."J

'2

"2
V J

«=l,4,(l-.)2|ic-1(0-0C(x1,ii1))U^I

Now, since V2C(x, p) isconstant,

rf3^-^?C-1(0-OC(x1,Ml)) =VC(^r1V2C(x1,ii1)[A,A],

where

(5.5.20)

(5.5.21)
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Aft|ic-1(0-OC(x1,«1))

=-vc&rlv2c(xx, niMVc&rtofc). vc&^cfc)], (5.5.22)

and §, ft C_1((l -t)C(xx,u i)). (The curve 5/ exists and is continuous by the Inverse Function

Theorem and the fact that VC(x ,6) is nonsingular.) By Lemma 53.1(b), VCft)"1 is bounded

above for x0 near St, H near F(x*) and r e [0,1]. Therefore, (5.5.20) and (5.5.21) imply that

there exists K > 0 such that

llx"-x2H<;ll x2
u2

for x onear St and H near F (St).

Now we derive an upper bound on flC (x i, uxIx0, H,f )l. By its definition in (5.5.2a),

IIC(x0,« Ix0,//,/)!!= Z\fJ(xo\xo,H)\ +Wf0(x0\x0,H)+ £ u>V/>(x0lx0,//)Il

= Z l/'(*o)l +!V/°(xo)+ S uJVfJ(xo)l. (5.5.24a)
yep y e p

Let pi ft (1, ul,..., u~P) / (1 +2y cp" J). Then, substituting u' =p'*/p° into (5.5.24a),

HC(x0,M lx0.//,/)ll= £ I/'(xq)I +Jg-I £ p'V/>(x0)l
y « p M- >e puo

iZK max IC(5/)l4^AT0C(x1,u1)l4 , (5.5.23)
I 6 [0, 1J

* Z l/'W +l S iI>V/>(xo)l
y«p j € puo

* S jl'l/>(*d>l +B Z ^V//(xo)l, (53.24b)
yep y € puo

since p' <1 for ally e puo. Since If I£-r for any / e R,
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NC(xo,iTlxo,//,/)D^-J p//y(xo) +l J p''V/>(xo)B.
y « p j « puo

140

(53.24c)

The quantity V/°(xo)+ £ «'V/>(xq) converges to zero as x0 converges to x and H con-
y«p

verges to F(St). Hence,

HC(x0,u lx0,//,/)B*- £ p''/>(xo) +V4l 2 p'V/'froyB2
y« P ye puo

£- L H'/'(*o)-V4l £ Sy'V/>(xa)l:
L y « p y e puo

forxonearSt and H nearF (x). Therefore,

IIC(x0,k Ix0,//,/)!!£-

£-

I H'/'(*a)-V*II I ^V/>(x0)l2
L y e P y e puo

max £ p>/'(xo)-V4B £ p'V/'(xo)l2
,M^';«P y«puo

for xonear x and H near F(St). From [Pol.4] (or compare (5.4.4) with (5.43)),

max EpV^xaJ-ViO Z p'V/>(xo)l2= min max /'(x Ix0.D ,
H ^''yep y€puo xcR">6puo

and, hence, using the definition ofx xgiven in (5.5.4b),

UC(x0,m lx0.//,/)8*- max /'(xi lx0.I).
ye puo

(5.5.25)

(5.5.26)

(5.527)

(53.28)

forx0nearx and// near F($). Since/,(xo)=/ for x0 near x\/>(x, Ix0.1) is equal to the

maximum for each j e /. Therefore, (since this maximum is negative)

IIC(x0,a lx0,//,/)I*- SlMxJx^Dl,
76/

(5.5.29)

for x0 near x and H near F(x). Since X! satisfies necessary conditions for (5.5.3) and
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J\(x0)=f, 12 ^ p/V/^xi lx0,I)l=0. Hence, there exists K>0 such that

• Z "YvY'frJxo./OBStfbo-x,!2. f553m

Furthermore, there exists K>0such that l/'(xx Ix0, D-/'(x i Ix0, /Olsffbo-x^forxo

nearx . Applying this and (5.5.30) to thedefinition of C(•)in (5.5.2a), we havemat

IIC(x1,tt1lx0,//./)l£2; , l/'CcJxo.Dl+tfbo-xJ2. (5.5.31a)

forx0nearx . Substituting (5.5.31a)into (5.5.29) yields

IIC(xo,« lxo,//,/)02i80C(x1,M1lxo,//,/)l-^bo-x1l2. (5.5.31b)

Since C() is Lipschitz continuous and C(x,u \xQ,H) = 0, there exists K>0 such that

0C(xo,u lx0,//,/)l£Jfb0-xl. Substituting this into (5.5.31b) yields

Kh0-Il>^C(xx,ux\x0,H,f)l-Kh0'-xxl2. (53.32)

Substituting llx0 -xj £ lx0 -x I+ Ix -xj into (5.5.32) yields

/r(l!xo-xl +lxo-xl2 +bo-x*lbi--xB)^80C(xlfii1lxo,//,/)l-A:lx1-xl2.(53.33)

By Lemma 5.5.1(b), there exists 6 > 0 such that

"C(x1,«1l*o.//./)la8l(x,,«,)-(!, u)l^b,-xl, (53.34)

forx0 near St and H nearFtf ). By (5.5.34) and Lemma 53.1(c-d),

60C(x1.tt,lxo.//,/)l-yrbi-x'I2 aV*8lC(x,,ux\x0,H,f)l. (53.35)

Substituting (5.5.35) into (5.5.33) yields

A-(Ixo-xl +bo-xll2+bo-x0b1-xl)^V48IC(x1,«1lxo,//,/)l. (5.5.36)

Also by Lemma 5.5.1(c),
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2tfbo-xl2^(b0-xl +bo-x'l2+bo-x'lb1-xl) ,

for x0 near St and H near F(St). Substituting (53.37) into (5.5.36) yields

K\x0-x\*\C(xx,ux\xQ,H,f)\,

for some K > 0 and forallx0 nearSt andH nearF(St).

Combining (5.5.23) with (53.38), there exists K > 0 such that

Hi* -x2l£l
r ^

*2
U2 SJTbo-xl4,
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(5.5.37)

(5.5.38)

(5.5.39)

for x0 near x and H near F(x). Inequality (5.5.39) implies that b0 - x I £ 2b0 -x2l. Hence,

Ox-x2l<ffb0-x2l4, (5.5.40)

for some K >0, x0nearx and H nearF(x). By(5.5.40), s Since o(x Ix0,H) isLipschitz con

tinuous in x, uniformly in x0 andH, and since o(x) = 0, thereexists K > 0 such that

o(x2lx0,//)<A'[lx -X2I.

Substituting (5.5.40) into (5.5.41a) yields thatthere existsK > 0 suchthat

o(x2lx0,//)<:tfllxo-x2r\

(5.5.41a)

(5.5.41b)

forx0 nearx and//near F(x). Hence theleft-hand inequality in (53.4.11c) holds.

We turnto the right-hand inequality in (5.5.4.1 lc). By (5.5.39) and Lemma 53.1(d),

lim lx-x2l=0and lim b-xl=0.
xo-»z.//-»F(x) x,-»x.!/->F£)

Hence

lim b2-x0l =0.
x0->z ,H ->F&) (5.5.41c)
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Algorithm Property 5.4.6Xiv): If \y(x) <0, then (5.5.4.1 Id) holds automatically for x0 nearx

and//nearF(x). Weassume now that \jf(x )=0. Withtf(j)6A(x0,//X*).

fHa(s)\x0,H)=f'(x2\x0,H) +(2-2s){Vf'(x2\x0,H),d2)

+Vi(2 - 2s)2{d2, Hld2), (5.5.42)

for s > lA It follows from Lemma 53.1(b) and the definition ofd2 in Algorithm 5.5.1 that there

exists K > 0 such that

0*0)11 =2ld2i </Tb2-x0l2 . (5.5.43)

for xonear x and H near F(x). Therefore, by the Lipschitz continuity of V/'(-1 x0, //),

(v/>(x2lxo.//).rf2^{V/>(x1lx0,//).rf2)+A:b2-x1lb2-xol2. (53.44)

By the definition ofd2, {Vf*(xx lx0.//),</2)=-b2-xol2fory g7. Hence,

{V/>(x2lxo.//),d2^-b2-x0l2 +^b2-x1lb2-xol2. (5.5.45a)

Lemma5.5.1(c) and (5.5.41c) imply thatlim A A b2 - x tB = 0. Hence,
xo-»x ,H -*F(x )

(V/>(x21x0,//),<J2)£-fcb2-xoH2 , (5.5.45b)

fory e 7 ,x0nearx andH nearF(J?). Substituting (5.5.45b) into (5.5.42),

fi(a(s)\x0,H)£fJ(x2\x0,H)-yi(2-2s)h2-Xol2, (5.5.46)

for all; e?,x0nearx,// nearF(x)and j near 1. Using (53.43) and the fact that /'(x)<0

for j 47, there exists 8>0 such that

fJ(a(s)\x0,H)Zx/(x2\x0.H)-(\-s)bld(l)l, (5.5.47)

for ally e p,x0 nearx and// nearF(x),andj nearl.
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5.6 NUMERICAL EXPERIMENTS

An implementation of Algorithm Model 5.2.1 withthe search arc function defined by Algo

rithm 5.5.1 was used to solve the inequality-constrained problems in [Hoc.l] for which feasible

starting points are given. The results are compared in Table 5.1 with those for the algorithm of

[Pan.l], which was the first superiineariy convergent feasible descent algorithm. The search

direction computation for the algorithm of [Pan.1] involves the solution of two quadratic pro

grams (involving the same quadratic term), an extra evaluation of the constraint functions, and

the solution of a linear least-squares problem. This effort is comparable to that required to con

struct the search arc for Algorithm 5.5.1.

In the experiments in [Pan.l], the BFGS variable metric update was used to update the

Lagrangian Hessian estimate. In our experiments with Algorithm Model 5.2.1, we also used a

variable metric method to estimate the Hessians. Because the search direction computation

described in Algorithm 5.5.1 does not require that the Hessian estimates Hfbe positive definite,

we were free to use a wide variety of updating techniques. The rank-one update described in

[Lue.l] was used when it was defined; otherwise the BFGS update was used. The Hessianesti

matesH{ wereeach initialized to the identity.

In the experiments, the algorithm parameters wereset to a = 0.35 and p = 0.9. As we men

tioned after the proofof Lemma 5.5.1,locating the narrow interval of acceptable near-unity step

sizes can be difficult and requires a careful line search. Quadratic interpolation was used to

reduce the number of trial step sizes tested.

Several modifications were made to Algorithm 53.1 to improve its performance. Although

they would not invalidate the results of Section 5, their inclusion there would have complicated

the analysis. Ascaled norm, 11^, was used in (5.5.4), where Lkl ££ / «puo ui-i#i +e«' and

where e* > 0 was selected to ensure that Lk remained positive definite. Because the full Che-

byshev step can be "wild" whenxq is far from a solution to the GQP, we added the following step
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to Algorithm 5.5.1,

Step3V4 If IC((xi,M,) +/tJI+/tclxo,//,/i)l>IC(xo,Milxo,//,/i)l. then set hH =lhH

and he =T2he where7 solves

min IC((xi,ux) +thH +t2he\x0,H,Jx)l2. (6.1)

This minimization is relatively inexpensive, since the objective function of problem (6.1) is a

fourth order polynomial in a single variable. Near a solution St satisfying Hypothesis 53.1,

lC((xx,ux) +hH +AC lxo.//,/i)0<IC(xo,Mi lx0,//,/i)ll,andr =1. Hence,Proposition5.2

holds for Algorithm 5.5.1 with this additional step. Finally, in the computation of a descent

direction for \j/(), we divide d2 by 1+b2 -x0l to prevent d2 from becoming excessively large

when x o is far from a solution to ICP.

This implementation of Algorithm Model 5.2.1 proved to be competitive with the super-

linear feasible descent method of [Pan.l] on all but a few of the problems tested. In general, the

GQP-based algorithm performed better than the algorithm of [Pan.1] on convex problems, and

more poorly than the algorithm of [Pan.1] on nonconvex problems. This may be partly due to the

choice of the search arc function. Algorithm 5.5.1, which defines the search arc function used in

the experiments, selects a feasible descent direction using the Pironneau-Polak algorithm, which

uses uniformlyconvex approximations to the functions/;().

5.7 CONCLUSIONS

The numerical experiments which we performed constitute a "proof of principle". They

show that a GQP-based algorithm is competitve with a sophisticated method basedupon succes

sive approximation to optimality conditions. The mixed performance of the GQP-based algo

rithm in comparisonwith the algorithm of [Pan.1] suggeststwo things. First, the searcharc func

tion defined by Algorithm 5.5.1 canbe improved upon. Algorithm Properties 5.3.2 and5.4.6 offer

considerable latitude in this task. Second, the extra evaluations of the constraints performed by
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the algorithm of [Pan.1], together with the Lagrangian Hessian, seems to contain as much curva

ture information as is useful in optimization, and the additional curvature infonnation contained

inthe individual Hessian estimates does notseem tobeuseful even far from asolution.

5.8 APPENDIX

Proof ofLemma 5.4.4: (a) By assumption, p°> 1/(l+c). (Since Hypothesis 5.4.2(ii) implies

that p° £min {p° Ipe 0 }>0, such ac exists.) The set-valued map !/(•) is upper semicon

tinuous and compact-valued [Pol.4], and U(St) =0. Hence, min {p° Ipe U(x)} >1/(l+c)

forx nearx.

(b) For any pe 2^+1, we have y+(x) *£ y* p\ijf'(x)I(1 - p°), since y+(x) a/'(x) for all

yep. Hence, v+(x)-2>€pP77y(x)^p(V+(*). We apply this to the expression for o() in

(5.4.5). For any x e R" and any pe U(x),

o(x) =y+(x)- 2 p> fJ(x) + fcfl £ p> V/°(x)l2
y € P j € PUO

*V+0O- Z vJfj(x)
yep

*nVco
(5.8.1)

The conclusion follows from (5.8.1) and part (a),

(c) As in (b) above,

a(x \x,H)Zp°^+(x \x,H), (5.8.2)

for any p€ U(x Ix,H). Since t7(-1 x, H) is upper semicontinuous in x, uniformly in x and

//, and since tftf Ix ,F(St)) =0, min{p°lp€ U(x \x,H)} >l/(l +c)forx nearf.x

nearx and H nearF(x ).
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Proof of Lemma 5.43: First, we prove right hand inequality in (5.4.10). We define

dJ(x)£f°(x) +cfJ(x) for j e pand d°(x)&f°(x). Note that pc(x) =max y€puo</>(x). In

Chapter 2, an optimality function for theminimax problem, min, c R. pe(x), is defined by

8c(x)= min max d'(x)+ (Vd'(x),h )+V4l/rl2-pc(x). /587^
h € R" j e puo y^'°'''

The function 0C()is nonpositive and is zero onlyatstationary points ofpc() [PoL4].

To relate 8C() to pc(x) -pc(x), we will make use of Lemma 2.3.3. For this purpose, we

will show that the assumptions of Lemma 2.3.3 hold. Hypothesis 5.4.1 ensures that assumptions

(i) and (ii) of Lemma 2.3.3 hold with respea to the minimax problem, minxc n-pc(x)atx. We

turn to assumption (iii) of Lemma 2.3.3.

We associate with the minimax problem, minze R.pc(x), the set of multiplier vectors

Vc(St) consisting ofthose v e Ip+1 for which

v°V/°tf)+ £v>{V/°(*) +cV/>(x-)} =0, (5^8a)
yep

v°/°(x)+ XvJ[f\St)+cfHSt)} =Pe(St). (588b)
yep

The sets Uc(St) and U(St) are related as follows. Since y+(x) =0, (5.8.8a-c) can berewritten as

(5.8.9a)V/°(x)+ 2v'cV/'(x*) =0,
ye p

£v>c/>tf) =0. (589b)
yep

Then, since l-v0 =2yepv>,(l,cv1,...,cv^)/(l +c(l-v°))€ U(St), for any v e Ve(St).

It follows from Hypothesis 5.4.2 that, withB as defined in Hypothesis 5.4.2,
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mM2<(h, 1 F\st)+ x cvi
l+c(l-v°) 1+C(1-V°)

F>(St) h), VAeB,A*Of (5.8.10)
yep

for anyve Vc(x). Inequality (5.8.10) and the fact thatB = H imply that foranyv e Vcn(x),

rocfl/il2<</i, v0F°(S) + £v/{F°($) +cF>(S)} A) VAe/7 ,A*0, (5.8.11)

where me &min {m (l+c(l-v^)lve Vc(x)} =m (l +c(l-max{v°lpe Vc(x)})).

Hence, assumption (iii) of Lemma2.3.3 is satisfied atSt for the minimax problem, and it follows

from Lemma 2.3.3 that

limsup
8c(x,) ^ min{mc,(l+c)}

Pc(Xi)-pe($)
£-

(1 + c) (5.8.12)

This implies that there exists K > 0 such that

ec(x)</r(pctf)-pc(x)) , (5.8.13)

forx nearx.

Now we relate 8e() to o(). It follows from Theorem 2.7.1, which is an extension to the von

Neumann Minimax Theorem, that

9c(x)= max p°(/°(x)-pc(x))+ £ yf ( f\x) +cf*(x)-pc(x))
^€Z».i yep

-V4lp°V/°(x)+£ p' (V/°(x) +cV/'(x))l2. (5g
14)

y«p

Rearranging (5.8.14), we have

8(x) = - min c\|f+(x)- £ p> c/>(x) +fcOV/°(x) + £ p'cV/'(x)l2
J1* £*i yep yep

Usingany p e U(x), we can define another multiplier vectoras follows.

(5.8.15)
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€ Vl- (5.8.16)

By Umma 5.4.4(a), o(l-p°)/p0 for any pe tf(x) for x near x. Then, since

c> (1 - p0)/ p°, v°>0. Substituting this v into the min in(5.8.15) and using (5.8.16) yields

-8(x)£cv+(x)- £ v>c/>(x) +V4lV/°(x)+ £ v>cV/>(x)l2
yep yep

=cy+(x)- £ -4/>(x)+V4lV/°(x)+ £ ^V/'OOl2
yep y«p

p°{cpV+CO- £ VJfKx)} +V4lp°V/°(x)+ £ ^V/>(x)f
yep y « p

/(H°)s

cHV+(x)-S;epH>/'(Jc)+V4ln°V/0(i)+ £ '̂V/>(jt)l2
>« p

/(H0)2 (5.8.17)

since A>Zyep^ and V+(x)I>/>(x).

c(x) =\|/+(x)-£ p'/>(x) +V4l £ p>V/>(x)l2. Hence,
yep j e puo

-8(x)<S {o(x) +(cp°-l)\|f+(x)}/(p0)2.

Since

forx nearx . By Lemma 5.4.4(b),

-8(x)<; {o(x) +(cp0-l)(l +c)o(x)}/(p0)2^(l+c)3o(x),

forx nearx , since c> cp°-1. Substituting (5.8.18b) into (5.8.13) yields

Pc(x)-pe(St)Z(l+c)3Ko(x),

for x nearx. This is the right-hand inequality in (5.4.10).

H€t/(X),

(5.8.18a)

(5.8.18b)

(5.8.19)

Now we prove the left-hand inequality in (5.4.10). By Lemma 5.4.3, x is a stria local

minimizerofpc(). Therefore, there exists a neighboriiood W ofSt such that
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Pc(x)-pe(x) = max PcOO-PcOO ,
Jc W

150

(5.8.20)

where Wdenotes the closure of the open set W. Since the tactions/>(•) are twice continuously
differentiable, there exists K £ 1 such that

fj(x)ZfJ(x)+(VfJ(x),x-x)+>/uXlx-xf,

forx,x e W. Therefore,

Pc(^)-Pc(^)^max_pc(x)-J/0(x)+(V/0(x),x-x/+V^lx-xl2
x e w r

+cmax{0,/>(x)+(V/>(x),x-x)+ViA:lx-xll2}
yep

By the definition ofpc(),

Pc(x)-pc(St)Z

Now the function

max cw+(x)-«f
ze w I

+̂max{0,/>(x)+<V/^(x),x-x)+ViArlx-xfl2} 1. (5.8.23)

We can replace the max over j e p with amax over pe Zp+1 (which becomes amin when

pulled through the minus sign to the front),

/>c(*)-Pc(*)*max min cy+(x)- ^{V/°(x),x-x)+V4^lx -xfl2
x e W He 2,.i I

(Vf°(x),x-x }+»/*/? lx-xfl2

+Z ^c(/>(x)+(V//(x),x-x)+V4ATflx-xl2) I.
y'«p J

<D(x \x)§ min
jie

m cy+(x)-{(V/°(x).x-x)+V^lx-xl2

(5.8.21)

(5.8.22)

(5.8.24)
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+£ H7c(/>(x)+(V//(x),x-x)+VM:lx-xl2) t, (5.8.25)
y'«p J

is concave inx. Therefore, the function argmax f6 $ G>(x Ix) is an upper semicontinuous set-

valued map in x (by the Maximum Theorem in [Ber.l]). Sinceargmaxir€^^Oclx)= {x },

this implies that argmax f 6 ^<I>(x Ix) c W forx nearx. Therefore we can substitute R" for

W in the max in (5.8.24),

Pc(x)-pc(St)Z max
xe R

min cy+(x)-\ (V/°(x),x-x/+VH:lx-xl2

+ £ ^c(/>(x)+(V/>(x),x-x)+V^lx-xl2)
yep

By Theorem 2.7.1, wecan interchange the min and max in (5.8.26). Hence,

Pe(x) -pc(x) £ min max c w+(x)- «
H« VixeR'

<V/°(x),x-x/+Vtf:[ix-xl2

+£ ^c(/^)+{V/>(x),x-x)+V^:lx-xl2)j.
y«p J

Rearranging (5.8.27),

(5.8.26)

(5.8.27)

Pc(x)-pe(x)}> min max (cy+(x)- £ p'c/'(x)) - <V/°(x)+ £ p'cV/'(x),x -xne^.xeR- >€p y~p

-W+cd-p^lx-xl2

Solving the inner max, we have

Pc(x)-pe(x)Z min (cy+(x)- £ p'c/>(x))
116 ** yep

(5.8.28)
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2(i+caWv/°^ycV/>(')|2
Therefore, for some p e X^+j,

Pc(x)-pe(St)Z(cy+(x)- £ p'c/y(*))
yep

»*«o-rt»^»y<Ml'
Since y+(x)£/'(x) for; e p and * * 1,

*l yep

2(l+c(l-p°))
!V/°(x) +

Ut

£p>cV/>(x)l2[.

152

(5.8.29a)

(5.829b)

(5.8.30)

v= (l.^c ^c]/(l+c(l-p°)), (5.8.31)

and note that v € LP+1. We substitute p> =v'(l +c(l - p°))/c fory e pinto (5.8.30),

Pc(x)-pe(St)Z-gic V+(*)-(l+c(l-p°)) £ v>/>(x)
yep

ye puo J (5.8.32)

Now, Pc(x)-pe(x)Zcy+(x) forx nearx,sincex is alocal minimizer ofICP and \jr+(x) =0.

Therefore,

I±££^W)-*(*)) ,-Lt£^>v+fr). (5.8.33)

Adding (5.8.33) to (5.8.32) and rearranging yields
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^T77TFl(^x)- £ V/'(x))+V4l £ v/'V/>(x)l2l.
1+C+iCl yep yepuo J (5.8.34a)

y« p y«pwo j

We can take the min overv e 2^,+1,

.34b)

Therefore, by the characterization ofo() in (5.4.5), thereexists 6 >0 such that

Pc(x)-pc(St)Zte(x), (5.8.35)

forx nearx.

D

Proof of Lemma 5.4.8: (a) Since v(x0) £ 0, y(xk) £ 0 and /°(x*)£/°(xo) for all * e N, by

Step 2 of Algorithm Model 5.2.1 and Algorithm Property 5.3.2(H). This implies that the

sequence {xk }k€Nis contained in V and hence is bounded. Therefore, {xk }k6Nconverges

to the set of its accumulation points. Since the conditions of Theorem 5.3.3 are implied by

Hypothesis 5.4.1, Algorithm Property 5.4.7 and Algorithm Property 5.3.2, any accumulation

point of the sequence {xk ) k6Nis astationary point of ICP. By Hypothesis 5.4.1(ii), St is the

only stationary point in V. Hencexk -* St ask ->«.

(b)This follows from 0) of this lemma, the continuity of oQ [PoL4] and the fact that o(St) =0.

(c) From (ii) of this lemma and Algorithm Property 5.4.6(iii), a(ak(l) Ixk, Hk) -> 0 as k -> «.

The set-valued map Af(x,/Y,r) £ {xe R" lo(x \x,H)£r } is upper semicontinuous in x,

r and H, M(•) is compact-valued and M(St, F(St), 0) = {x }. Therefore, ak(l) -• x as k ->~.
D

Pc(*)-pe(*)* ^J^^jmin^ (v+CO- £ v'/'(x)) +V4l £ VV/>(x)l2 Lg,
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Proof ofLemma 5.4.9: By the definition ofo() in (5AS) and the triangle inequality,

o(x)= min \|f+(x)-£ |i//'(z)+Vti £ p'V/>(x)l2
M *- yep >epuo

*V+(*)-£ Ji//'C*) +Vil £ p>V/>(x)l2
yep ;i puo

£V+(xlx4,/74)-£ p>/>(xlx4,^)+V4l £ p'V/'(x U,/7A)fl2
Je p ye puo

+8l(x,x*,/7ik)+82(x lxft,/Y4)+63(x Ix^/Y^ +S^x lx*,/Y4) , (5g36)

for any x e R" and p € Zp+X, where

*\(x,xk,Hk)&y+(x)-\jf+(x Ixk,Hk) , (5.8.37)

B2Qc\xk,Hk)& £ p'(/>(xU. #*)-/>(*))
yep

63(xlxA,/YJk)^^l £ p>(V/>(x)-V/>(xlxA,/Y4))l2,
ye puo

(5.8.38)

(5.8.39)

54(*U,//*)£l £ p^V/^xlx*.//*)!! £ Py'(V/>(x)-V/>(xlxA,/Y4))lr5840x
y e puo y e puo v ;

For any x € R" and any p e U(x IxA. Hk), therefore,

o(x)Zc(x lx*.ff4) +«i(* lxA.iYft) +52(x Ixk.Hk) +6j(x U./Y^ +c^x Ix*,**) , (5.8.41)

using the definition off/() in (5.4.9b). Now.foranyx e S(x*,2la4(l)-x*l) and each j e p,

fj(x)-fJ(x \xk,Hk)Z*/a\klx -x4l2. (5.8.42)

Therefore, 8,(x \xk.Hk)Zr\klx -x*l2 and ^(x Ix*,/Y4)£tuIx -x*l2 for any
xeS(xk,2\\ak(\)-xkti). Also,

o I ^{v/^w-v/^U.isrjjiiiub-^i, (5g43)
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and hence c^x Ixk,Hk) £ (rfclx -xAl)2 for any x e S(xk,2lak(\)-xkl). Bythe definition of

o() and Algorithm Property5.4.6(iii), there exists K > 0 such that

" £ ^v/'tea)!*.**)!^
ye puo

for large *. Inequalities (5.8.43) and (5.8.44) imply that 64(<fc(l)lx*,#*)£iuix -*J2 for

large k. Substituting these bounds on 5,(^(1) Ix*, Hk) into (5.8.41) yields

o(ak(\)) Za(ak(l) Ixk, Hk) +Tulfl*(l) -x*l2+V&Crukkd)-xtf+JTiuMk(l) -x*l2. (5.8.45)

Since tu converges to 0 as k -> « by Algorithm Property 5.4.7, r\k&1 for large* and hence

c(ak(2)) £ o(a*(l) Ixk, Hk) +Kr\khk(l) -xj2. (5.8.46)

D

Proof of Lemma 5.4.10: We combine the previous lemmas. By Lemma 5.4.8, the sequences

ak(l) and xk convergeto St. Therefore, by Lemma 5.4.3, thereexists K >0 such that

Wak(\)-St i2^Kpe(ak(l))-pc(St), (5.8.47)

for any c> (1 -p°) / p° and large k. Combining Lemmas 5.4.5 and 5.4.9 with (5.8.47), there

exists K > 0 such that

\\ak(l) -Stl2Z Ka(ak(l)) ZKfo(a4(l) Ixk, Hk) +t^MD- xkl2) (5.8.48)

for large k. Applying Algorithm Property 5.4.6(iii) to (5.8.48), thereexists K > 0 suchthat

Uk(l)-Stl2ZKlak(l)-xki*+KT\klak(l)-xkl2

£ffmax {tu. b*(l) -xAl} la*(l) -x*l2. (5.8.49)

for large k. Taking the square root ofboth sides of (5.8.49) yields(5.4.14).
D

Proof of Lemma 5.4.11: We show that inequalities (5.2.2a-b) of Step 2 of Algorithm Model

5.2.1 hold for step lengths s satisfying (5.4.15). Since x0 is feasible for ICP, everyxk is feasible.
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By Algorithm Properties 5.4.6(i-ii), ltf*(5)-x4l£2laft(l)-x4l, for large* and 5 near 1. There

fore, there exists K > 0 such that

ak(s))ZV(ak(s)\xk,Hk)+ max {ak(s)-xk, fail -1)F'(xk +1(ak(s)-xk))dt-&]&&)-xk))

£V(ak(s) IxA, Hk)+i\klak(s)-xj2 , (5.830)

for s near 1 and large k. By Algorithm Property 5.4.6(iv), Lemma 5.4.4(c) and Algorithm Pro

perty 5.4.6(iii), there exist 8 > 0 and K > 0 such that

y(ak(s))£y(ak(l) Ix*,Hk) + (s - 1)68^(1)1 +T|Jfl*0)-**l2

£ (1 +C yOfakd) IXk, Hk) +(S - 1)61**0)1 +Tl4lflft(l) -X*l2

</rlkA(l)-xAU3 +(j - l)6laA(l)l +^1^(1)-x4H2 (5.8.51)

for 5 near 1 and large k. Therefore, there exists K >0 such that y(ak(s)) £ 0 for large k and for

s near 1 such that

1-5 ;>tfmax {r\k, Mfc(l)-x4l} lfl4(l)-xAl2/ ia4(l)fl. (5.8.52)

Hence, for such 5 and large k, inequality (5.2.2a) of Step 2 ofAlgoritiim Model 5.2.1 holds.

Now we determine which step lengths s provide sufficient decrease in the objective func

tion to satisfy inequality (5.2.2b). Let c> max { 1,(1 - p°) / p°}. For s such that y(ak(s)) £ 0,

/ W*))-/°(**) =pe(ak(s))-pe(xk)

=Pc(ak(s))^pe(ak(l))+pe(ak(\))-pe(St)+pe(St)-pe(xk). (5.8.53)

Now we bound each of thethree terms onthe right-hand side of (5.8.55). By Lemma 5.4.5

and the fact thatxk converges to St, there exists t >0 suchthat

Pc(x)-pe(xk)<;-to(x*), (5.8.54)

y(
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for large*.

By Lemma 5.4.5, there exists K > 0 such that

Pc(ak(l))-pe(St)ZKo(akU)) , (5.855)

for large k. Applying Lemma 5.4.9 and Algorithm Property 5.4.6(iii) to (5.835) yields

pc(ak(\)) -pc(St) £/Tmax {Tfc, \ak(\) -x*l } ltf*(l) -x*l2 , (5.856)

for large k. By Lemmas 5.4.5 and 5.4.7, there exists K > 0 such that

Kc(xk)*hk-Stl2, (5.8.57)

for large k. By Lemma 5.4.10, laA(l)-x*l£2lx*-x I for large k. Substituting this into

(5.8.57) yields

Ko(xk)Zlak(\)-xkP , (5.8.58)

forlarge k and some K > 0. Substituting (5.8.58) into (5.8.56) yields

Pc(ak(l))-pe(St)ZKmax{T\k, la*(l)-xAl} o(xA), (5.8.59)

for large k ands near 1. Since ak(\) -xk converges to 0,

Pcfok(D) ~Pc(x) £ 14to(xa) , (5.8.60)

for large it.

By the Lipschitz continuity of the functions /'(•) and Algorithm Property 5.4.60), there

exists K > 0 such that

Pc(ak(s))-pe(ak(l))^K 11 - s\Uk(l)l (5.8.61)

for s near 1and large k. Let p > 0 be arbitrary. Forj suchthat

ll-''*p 140)1 ' (5'862)
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(5.8.61) becomes

Pc(ak(s)) -pe(ak(l)) ZpK lak(l) -xj2. (5.8.63)

Substimting (5.8.58) into (5.8.63),

Pc(ak(s))-pe(ak(l))<ipKo(xk), (5.8.64a)

for large * and j near 1satisfying (5.8.62). Since p>0 was arbitrary, we can choose psmall

enough that

Pc(ak(s)) -pe(ak(\)) £ \z<s(xk). (5.8.64b)

Substituting (5.8.54), (5.8.60) and (5.8.64b) into (5.8.53) yields

f\ak(s))-/°(x*) S- V4xo(xA). (5.8.65)

for large k and s near 1satisfying (5.8.62). By (5.4.4) and the fact that u/+(x4) =0,

c(x) =-max £ p>/>(x) +Vil £ p'V/'(x)l2 ,. R
^^'/ep yeluo (5A.66)

=- £ ">/'(*) +V4I £ p'V/'(x)fl2,
yep j% puo

for any pe U(x). Then, for any p e U(x),

o(x) =-min £ p//VI*.D. ,5R,_
* 6 R ye puo (5.8.67)

Substituting x* + l/tdk(0) forx* inthe min in(5.8.67),

o(x)2>- £ \iV'(x +*M(0)\x,T)Z-\L°f°(fi+i/ui(0)\x,I), (5868)

since Algorithm Property 5.3.20H) implies that / >(x +V*a (0) Ix, I) <0 for j e p. By Lemma

5.4.4(a), there exists 5>0 such that p°>5 for pe U(x) and x near x. Hence,

o(x)>-8/°(x +VSa(0)lx,I)forx near*. Substituting this into (5.8.65),
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/W*))-/V*)£Vfc5/°(x +V*a(0)lx,I) . (5.8.69)

for large k and s near 1satisfying (5.8.58). Algorithm Properties 5.4.6(ii-iii) together imply that

dk(0) converges to zero as xk converges toSt. Therefore,

f°(ak(s))-f°(xk)£5p(la*(0)fl) max/ >(x* +lMk(0)\xk,T), (5.8.70)

for large k and s such that

lfljk(l)-xj2

'"'^ 1**0)1 * <5-8-71>

By (5.8.70), (5.8.71) and (5.8.51-52), inequalities (5.2.2a-b) are satisfied for large k by all s in

the interval

lk(l)-**H2 lj*m-xJ2

for some 8>0and K>0. Since r\k -• 0, ak(l) -» x and x* -> x, this interval is nonempty for

large*.

Now we must account for the quantization of the step size. For each k, let sk denote the

maximum element of [0,1] satisfying (5.2.2a-b). By(5.8.72), there exists K >0 such that

1-sk £ATmax {r\kJak(l)-xkl} fl*(1)~** , (5 g73)
la4(l)l

for large k. For large k, either sk =1 or sk =1-p* for some y* e N. In both cases,

l-^^(l-Jft)/p. Therefore, (5.4.15) holds for large*.
D

Proof of Lemma 5JS.U

(a) This part follows bythesame argument as Lemma 45.1.

(b) Since we have assumed, without loss of generality, that / = {1 r }, the matrix

VC(x,u lx,F(x),/)has the form
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VC(x,« \x0,H,f) =

where

dC(x,u\xo,H,f)
d(x,ux,...,ur)
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dC(x,u\x0,H,f)
<Kx,ux i^)

0
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(5.8.74a)

F°&)+2 .«'>'(*) V/"(x \x0.H) ...Vf >(x Ix0,# )

V/kxIxo,///

0
(5.8/4b)

V/'(xlx0,//)r

The matrix 9C(x,w \x0,H,f)/d(x,ux,...,ur) has the fonn of a "bordered Hessian". By

Hypothesis 5.4.2(i), F°(x )+£ . k'F'C? ) is positive definite on the subspace orthogonal to
jef

the vectors l Vf'ff if.Ffrtt » Hence, the{VfHSt\St,F(St))} A.
ye/

matrix

9C(x, u Ix0, #,/ )/3(x, ui Ur) is nonsingular [Lue.l]. It follows from the Moore-Penrose

conditions which characterize the pseudoinverse that

M'- A"1
0 (5.8.74c)

ifA is asquare, nonsingular matrix. The result (b) then follows from the continuity ofthe matrix

inverse at nonsingularmatrices.

(c) It was shown in [PoL4] that *i, which was defined in(5.4b), is acontinuous function of x0,

and that the compact-valued, set-valued map U() isan upper semicontinuous function ofxq. By

inspection of(5.4.8) and by Theorem 5.3.1, tf(x )=tf. Hence, lim mU(xq) = { 0. }, where
X»-»X

fl is the unique Fritz-John multiplier vector associated with St. Since (1° >0by Lemma 5.4.4(a),

H?(*o)>0 forx0 nearx, and hence ux =(Pi1,..., pf)/p? and ux is continuous forx0 nearx.

Since lim APi(x0) =(l. lim „«i(Pi(xq)) =m. Since Pi(x) =fl, it foUows from (5.4c)
Xo-*X Xo-*X N '
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that x i(x) = x. It follows from this and the continuity of x i that lim Ax i(xo) = x.
Xt-frX

(d) The system of equations

C(x,\i\x0tH,f)
..r+l

=0, (5.8.75)

has a solution (x , ft) forx0 =£ andH = F(£). By Lemma 5.5.1(b),the gradient of the function

(C( lx,F(x),/ )T,ur+1 up)T is nonsingular at the point (St ,u). Hence, there exists a

neighborhood W of (x , Q) such that, for x0 nearSt and H nearF(Jc), the system (5.8.75) has a

unique solution in W, (x , u ), which is continuous in Xq and H.

Now (x, u) is a Kuhn-Tucker pair for GQP(xo, H) if

V/°(xlx0,/O+ £^V/>(xlx0,/f) =0, (5.8.77)
ye p

£ uJfJ(x\x0.H) =Q
yep

By Hypothesis 5.5.1, there exists a neighboriiood W of St such that/'(x lx0,//)<0 for all

y^7, x e W,x0nearx and HnearF(x).Therefore, forx0nearx and H nearF(x), ii' =0 for

y47 for every Kuhn-Tucker pair (x, u)e WxRf ofGQP(x0, //). Hence, for x0 near j? and /f

near F(x), (x, u) is a Kuhn-Tucker pair for GQP(x0, H) if and only if (x, u) solves (5.8.75).

This implies that, for x0 near St and H near F(St), (x, u) is the unique Kuhn-Tucker pair of the

problem GQP(x0, H) in the set W xR£.

(5.8.78)
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Problem Algorithm NF NDF FV KT

12 PT

GQP
7

34

7

5

-.30000000E402

-.30000000E+02

.12E-06

.31E-15

29 PT

GQP
14

50

10

9

-.22627417E+02

-.22627417E+02

.17E-06

.11E-11

30 PT

GQP
14

6

13

4

.10000000E+01

.10000000E+01

0.

.21E-17

31 PT

GQP
11

15

8

6

.60000000E+01

.60000000E4O1

.41E-06

.35E-14

33 PT

GQP
4

36

4

7

-.40000000E+01

-.40000000E+01

0.

.14E-14

34 PT

GQP
9

47

8

10

-.83403245E+O0

-.83376811E-00

.43E-04

.45E-07

43 PT

GQP
9

29

9

9

-.44000000E+02

-.44000000E+02

.68E-04

.25E-10

57 PT

GQP
33

52

19

20

.28459673E-01

.30729013E-01

.20E-07

.64E-04

66 PT

GQP
8

23

8

8

.51816324E+00

.51816327E-00

0.

.35E-14

84 PT

GQP
4

42

4

4

-.52803389E+O7

-.23512434E+07

0.

.79E+06

100 PT

GQP
42

110

14

14

.68063006E+03

.68063005E+03

.21E-03

.42E-06

113 PT

GQP
18

OVERFLOW

14 .24306209E+O2 .17E-04

117 PT

GQP
28

OVERFLOW

16 .3234679E+02 .68E-04

Table 5.1: Summary of Numerical Results

The abbreviations in the table have the following meanings:

Problem: Number of the test problem in [Hoc.l].

Algorithm: PT denotes the algorithm in [Pan.1]. The results are quoted from that article.
GQP denotes the algorithm described in Section 6 with H0 = I.

NF: Number ofobjective function evaluations.

NDF: Number of gradient evaluations of the objective function.

FV: Value of the objective function at the final iterate.

KT: Norm of the Kuhn-Tucker vector at the final point As defined in [Hoc.l], this is
min uaoIVyx°(x/) + £ uJVfxJ(xf)l, where xf denotes the final point



CHAPTER 6

CONCLUSIONS

6.1 CONTRIBUTIONS

We showed in Chapter 2 that PPPalgorithmsconverge linearly even on problems which are

nonconvex and on which strict complementary slackness does not hold. This weakening of

assumptions is significant because few problems arising in practice are convex. Recall that, while

singular matrices form a set of measure zero in Rn x", nearly singular matrices are common and

pose computational difficulties. Similarly, while problems for which strict complementarity does

not hold form a "set of measure zero", many problems nearly violate stria complementarity. On

such nearly degenerate problems, an optimization algorithm which is sensitive to degeneracy

might converge slowly until very near to the solutioa Our result shows that this will not occur

with PPP algorithms.

PPP algorithms are sensitive to domain scaling, however. This issue was explored in

Chapter3, where we investigated the effectof a variable metric technique on the performance of

a PPP algorithm on a class of composite minimax problems. Luenberger [Lue.l] advocates the

evaluation of variable metric algorithms for differentiable, unconstrainedoptimization by consid

ering how they affect the eigenvalue structure of the Hessian matrix. The rationale for this is that

the condition number of the Hessiandetermines the convergence ratio of sequences constructed

by the methods. We used this idea in Chapter 3 to evaluate the variable metric technique

presented there. The use of the variable metric technique in conjunction with the PPP algorithm

decreases the upper boundon the convergence ratio which we derivedin Chapter2. Experiments

have shown that, while this bound is not tight, it is a reliable predictorof the relative speed of

convergence on different problems. This provides a theoretical explanation for the performance

improvement observedin numerical experiments.
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The use of GQP subproblems in algorithms for solving problem (1.1.2b) was proposed in

1971 [Pol 10], but the algorithms were never implemented because no finite-step method for

solving the subproblem was known. In Chapters 4 and 5, we presented efficient methods for

approximately solving first-order and second-order GQP subproblems. Both are active set

methods. The difficult inequality-constrained GQP subproblem is reduced to an easier equality-

constrained problem by guessing the set of constraints which are active at the solution. The

method by which we guess the active set - computing the Pironneau-Polak search direction -

yields both a good point at which to initialize a root-finding method for the solution of the

equality-constrained problem and a feasible descent direction which can beused in stabilizing the

overall algorithm. In the first-order case, discussed in Chapter 4, the error in the approximation

to the GQP solution is zero when the error in the approximation to the solution to (1.1.2b) is

small. In the second-order case, discussed in Chapter 5, the error in the approximation to tiie

GQP solution is of theorder of the fourth power of the error in the approximation to the solution

to (1.1.2b).

The convergence rate theory developed in Chapter 4 is another example of theusefulness of

convergence ratio bounds for comparing linearly convergent algorithms. The convergence ratio

bounds derived for the GQP-based algorithm are smaller than those obtained for the Pironneau-

Polak algorithm. The GQP-based algorithms proved superior innumerical experiments as well.

The superiinear convergence rate theory developed in Chapter 5 is fairly general. The

results apply to an entire class of algorithms. (Admittedly, proving that an algorithm isamember

of the class requires some calculation.) A range of convergence rates from superiinear to 3/2 is

obtained, depending upon the degree of accuracy of the Hessian approximations. In contrast,

other superiineariy convergent feasible descent algorithms have been shown to converge only

two-step superiineariy [Pan.1-2].1

'We do assume, however, that each ofthe Hessian estimates converges to the actual Hessian at the solution; this is stronger than
the corresponding assumption madein [Pan.1-2].
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6.2 FUTURE RESEARCH

Asymptotic convergence rate results, like the ones proved in this dissertation, provide a partial

ordering of algorithms according to their overall performance. Even when far from a solution, a

linearly convergent algorithm with a small convergence ratio bound canbe expected to converge

faster than a sublineariy convergent algorithm or a linearly convergent algorithm with a conver

gence ratio bound near one. Similarly, a superiineariy convergent algorithm can be expected to

converge faster than a linearly convergent algorithm. However, there is a limit to the usefulness

of asymptotic theories in predicting pre-asymptotic performance. Small differences in the con

vergence ratio bounds do not reliably indicate the relative overall speed of linearly convergent

algorithms. A two-step superiineariy convergent algorithm may well be faster in the early phase

of optimization than a quadratically convergent algorithm. As a result, othergauges of algorithm

performance are needed.2

Some ran-asymptotic efficiency results have beenobtained. In the course of theircomplex

ity research, Nemirovsky and Yudin [Nem.l] have derived bounds on the total number of itera

tions needed by certain algorithms to reduce the cost-to-go, /°(x,-) -/°(x), by acertain fraction.

However, such results are difficult to obtain, and it is notclear howconservative they are.

We suggest the investigation of analternative measure of pre-asymptotic performance: the

rate of escape ordivergence of an algorithm from theneighboriiood of a nonminimum stationary

point. Such situations are encountered in practice, and many iterations may be spent on such an

escape. Furthermore, an algorithm's performance in this test situation may be indicative of its

ability to pass quickly through a poorly scaled region of the domain. An algorithm's rate of

divergence from nonminimum stationary points is not, in general, the same as its rate of conver

gence to minimizers. For example, Newton'smethod converges quadratically to both minimizers

and maximizers. In addition, algorithms with the same asymptotic rate of convergence to

'Measures ofalgorithm performance like rate of convergence are not useful merely as means for ranking algorithms. The in
sight gained in proving that an algorithm attains acertain level of performance, for example, is superiineariy convergent, leads tothe
construction of better algorithms.
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minimizers may have different rates ofdivergence from nonminimizers. The rate ofdivergence

may be a better predictor ofthe relative behavior ofalgorithms during the most time-consuming

portion ofthe computation, reaching the vicinity ofthe solution. The potential usefulness ofthis

measure could be evaluated by numerically estimating the rates of divergence of well-known

algorithms and correlating the results with their overall performances on, for example, the test

problems in [Hoc.l]. Deriving the rate ofdivergence ofan algorithm should be no more complex

than deriving its rate ofconvergence; both tasks would rely heavily on the use ofTaylor series

expansions.
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