Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



CONVERGENCE RATE ANALYSES OF
OPTIMIZATION ALGORITHMS FOR
COMPUTER-AIDED DESIGN

by

Edward Joseph Wiest

Memorandum No. UCB/ERL M9(0/94

16 October 1990



CONVERGENCE RATE ANALYSES OF
OPTIMIZATION ALGORITHMS FOR
COMPUTER-AIDED DESIGN

by

Edward Joseph Wiest

Memorandum No. UCB/ERL M9(0/94

16 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



CONVERGENCE RATE ANALYSES OF
OPTIMIZATION ALGORITHMS FOR
COMPUTER-AIDED DESIGN

by

Edward Joseph Wiest

Memorandum No. UCB/ERL M9(/94

16 October 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor, Professor Elijah Polak, for
supervising my research. I have leamed much about computational mathematics (and research in
general) from him. Much of the research on which this thesis is based was performed in colla-
boration with him. He proposed the variable metric technique which is analyzed in Chapter 3,
spotted numerous errors in my proofs, and, of course, provided guidance throughout the process.

Chapters 2, 3 and 4 derivg from papers which were co-authored by him.

I would like to thank the members of my thesis committee, Professors Pravin Varaiya and
Shmuel Oren, for reading my thesis and Professors Ilan Adler and Seth Sanders for attending my
qualifying exam.

I would like to thank my co-workers, Tom Yang, Limin He, Ted Baker and Ywh-Pyng
Harn, for their help. Joe Higgins deserves special thanks for his ready answers to my optimiza-
tion questions and his patient answers to my UNIX questions. I would also like to thank Cormac
Conroy and Mike Jackson for many interesting discussions and for describing to me what electri-

cal engineers do.

I would like to thank my parents for their support and encouragement throughout my educa-
tion. My fond thanks goes to Caroline McCall and Beate Lohser for their emotional support and
friendship.

Finally, I would like to thank my high school science teacher, Elizabeth Crippen, for

encouraging me to study mathematics independently.

This research was supported in part by the National Science Foundation (grant ECS-
8713334), the Air Force Office of Scientific Research (contract AFOSR-86-0116), the State of
California MICRO Program (grant 532410-19900) and by a Howard Hughes Doctoral Fellowship
(Hughes Aircraft Company). I would like to acknowledge these organizations for their assis-

tance.



Table of Contents

ABSTRACT ...

ACKNOWLEDGEMENTS ..........ccooveeennienmsniccsronsasecsesns

Table of Contents

CHAPTER 1: IDIFOQUCLION ........cuccuireerirrncennrieercsessessnescssessssesssssessessssssesssssssosssssasssns

1.1 Background .......c.ccceevereenerncnecernseerenne

1.2 AIOTIRIMS .....voineiitiiictcinieisesniaesssssssnssssnsesssnssesssssssssessssenssassssassassesassssassessessssesssssnass

1.3 DiSSErtation OQULIINE .......c..ceereeieeeireveersecsrsssnnssssssssssssrsssssossssossasssssessas

CHAPTER 2: On the Rate of Convergence of Two Minimax Algorithms ...................

2.1 INLTOAUCLION ......vveeereeerrresiessesseesessessossessesesseesesessssssossssssssesssssssssossssnsesssonsossassssssssssonnesns

2.2 The PPP Minimax Algorithm with Exact Line Search

2.3 Rate of Convergence of the PPP-ELS AIZOTtNM .........cccovvrenrererersensasassesssssesssesssessaeses

2.4 Rate of Convergence of the PPP-Amijo Algorithm ............ccccvvereenee. sressssssassasanans

2.5 Rate of Convergence on Composite Minimax Problems ...... cessssaresne

2.6 CONCIUSIONS ..cuvvenrerecnerseeesessssossersesssessssnmessennesssessesssesssonness

2.7 APPENAIX ...cuoreciniecrrrnsannensesssassssssserenesssssersessssssssssassrasssssssessssssssassansans

2.8 Figure ......cccceevverernrenene eeeessseeresnsrtsaststestsssnsentnasasensararassersensrsaras

CHAPTER 3: A Variable Metric Technique for a Class of Composite Minimax

PrODIEIIS ........c.ccuooeeeeieencrineresesesesrssesesssssossssassssasssossssssansassnsenssssasassnssnsasesessesenssaes

3.1 Introduction ..

3.2 Development of the Variable Metric TEChNIQUE .........cccocueveerenerersrsssseressesesessesensessseses

3.3 Rate of Convergence of the Pshenichnyi AIOMthIm ............cceeerveeereenesenerencesmsesesesons

iii

iv

10

12

12

15

18

24

26

36

37

41

42

42

45

49



3.4 Rate of Convergence of Variable-Metric-Pshenichnyi Algorithm .............cccevveuun.....

3.5 Numerical Experiments

3.6 Conclusions

ooooo

3.7 AppendiX ......ccoorvrnerennne

3.8 Figures and Tables ........

oooooooooooooooooooooooooooooooooooooooooooooooo

CHAPTER 4: A Generalized Quadratic Programming-Based Method for

Inequality-Constraine

4.1 Introduction ...............

d Optimization ..............ccoervrerererererenrenenerenes

4.2 The Polak-Mayne-Trahan AIZOTtRIN ..........cccccceueeeerreeenirereeseseseresessseassensessessssssssssssnses

4.3 A Conceptual GQP-Based AIZOTthm .............ccevrrererercrenencnsacscnsserossns ceresassaesssnnas

4.4 Globalization and Implementation of the GQP Subprocedure ...........o.ccecvvrervrnerersensunce

4.5 A Stabilized Implementable GQP-Based AIZOThIM .............ccoveveererensrerscnesseasssenssssnns

4.6 Numerical Experiments
4.7 Conclusions ...................
4.8 AppendiX .......cccerererernnnne

4.9 Figures and Table ..........

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooo

CHAPTER §: Superlinearly Convergent Generalized Quadratic Programming-

Based Methods

5.1 Introduction .........ccceeeeene

oooooooooooooooooo

5.2 A Phase IT AlZorithm MOdEl ...........ccceeveevuvereenneencnncnsesasssssessessssassssssnnse

5.3 Global Convergence ..

5.4 Rate of Convergence .

ooooooooooooooooo

ooooooooooooooooooooooo

5.5 An Example of a GQP-Based AIZOMthIN ..........ccceeunrecnennerssennensesensssssessensesesssssnsesseses

5.6 Numerical Experiments

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

vi

51

63

68

75

75

71

81

91

97

105

106

107

108

111

111

114

115

118

128

144



5.7 CONCIUSIONS .....ooeeerererenesmnieresssssessasasessosssnsassssssnsnsasasssssasenesasasssss . 145
5.8 Appendix ........ “ reebestehibst et ssa st ssate s e e st sen e e sesssnestsatsetasensreasaserasasestastnes 146
S.9TAbIE ...cecceerrecenenerenerenereresenesssensssesssensasssssens 162
CHAPTER 6: CONCIUSIONS ..........ccnsreninirersssessensarsnersanssssenssnsssassassssssssssessessossessessosssssossoss 163
6.1 CONMIDULONS ......cucvvirerirecnacnsernacasasssasennssssasensnnsssaseens . 163
6.2 Future Research .................. teeresesesssbeeestaastsnasassrsessansnssassasans 165
REFERENCES ............ccoiiineerennresrsessssssssssnsssssssssssssssssssessssesss . 167




CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

Many engineering design problems can be formulated as nonsmooth optimization problems

of the form,
min {yx)!fix)s0,Vjep}, (1.1.1)
xe R"

where y(x) & max e*(x), the functions f *:IR* — R and e*:IR* — R are continuously differen-
€q

tiable, and where p and q denote the sets {1,..,p } and {1,..,q }, respectively. The com-
ponents of the vector x represent design variables, the functions e *(-) represent competing meas-
ures of cost and performance which are to be minimized, and each constraint f/(x) <0, j € p,
represents a design specification which must be satisfied [Nye.1, PolL4, Wuu.1].! The max func-
tion y(-) provides a way of simultaneously considering competing measures of performance. The
function y(-) is nondifferentiable, and, although the points at which y(-) is nondifferentiable form
a set of measure zero, the nondifferentiability may cause ordinary nonlinear programming algo-
rithms to converge to a nonstationary point when applied to (1.1.1) [Pol.4].2 As a consequence,

algorithms which exploit the special structure of the constrained minimax problem (1.1.1) are

needed.

More general problems can be specified. For example, if one wishes to design a feedback controller for a linear time-invariant
plant so that the maximum deviation of the closed-loop impulse response from some desired response is minimized, then the max in
the function y(*) will include a continuum of functions, not just a finite number. In this case, Y(*) will have the form max , ¢ y$(x, y)
where Y is a compact subset of R™. See [PoL4] for a discussion of such semi-infinite problems. Another example of a more general
problem is the computation of a continuous-time optimal control. In such a problem, the design vector is an element of an infinite-
dimensional space. Algorithms for these more general kinds of optimization problems are based on progressive discretization [He.1],
that is, the general problem is reduced to partial solution of a sequence of problems of the form (1.1.1) which are obtained by discretiz-
ing the more general problem. Hence, algorithnis developed for (1.1.1) can be incorporated into algorithms for the more general prob-
lem. The paper [Cha.2] discusses ways of modifying algorithms of the type presented here to handle equality constraints.

%Problem (1.1.1) may be transcribed into an equivalent differentiable nonlinear programming problem,

min {w |let(x)-w <0,k € q,f/(x)S0,j € p} . However, this transcription is not recommended, because nonlinear program-
ming algorithms converge more slowly on the transcription than minimax algorithms designed specifically for (1.1.1).
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In many engineering design problems, there are a few "hard" constraints, the violation of
which, by however small an amount, is unacceptable [Nye.1). An example of such a constraint in
the design of a controller for a linear system is one which constrains the poles of the closed-loop
system to lie in the left half of the complex plane. If this constraint is violated, the system is
unstable. Furthermore, some of the performance functions ek) may not be defined outside of
the feasible region. For example, the value of performance functions involving integrals of the
impulse response may not be well-defined when the system is unstable. Other hard constraints
ensure the physical realizability of the design. For example, the length of a beam in a seismic-
resistant structure cannot be negative. For these reasons, it is important that, once an algorithm
for the solution of (1.1.1) constructs an estimate of the solution x; which is feasible, all subse-

quent iterates are feasible, i.e., that
fix)<0, Vjep, (1.1.2a)

for all I >i. Itis also desirable that, once a feasible iterate is computed, the value of the objec-

tive function be decreased at each iteration, i.e., that

£ <f %), (1.1.2b)

for all I >i. We will refer to an algorithm which satisfies both (1.1.3a) and (1.1.3b) as a feasible

descent algorithm.

A number of feasible descent algorithms have been developed, e.g., [Hua.1-2, Mey.1, Mif.1,
Pir.1, Pol.4, Pol.7, Top.1, Her.1, Pan.1-2, Zou.1],? but, for the most part, they are slow. This is a
serious impediment to the use of the algorithms for several reasons. Obviously, for design situa-
tions in which an optimization involves the investment of several days of computing time, the use
of a faster algorithm means a considerable savings in time and money. More commonly, how-
ever, the solution of a serious optimization problem arising in design involves some hours of

computing time. The benefit of reducing computing time from several hours to a fraction of an

3Most of the algorithms referred to are intended for special case where y(x) is differentiable.
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hour is that the optimization becomes an interactive part of the design process. It is then con-
venient for a designer to initiate the optimization, review the results, reformulate the optimization
problem (for example, by changing the topology of a circuit under design) and rerun the optimi-

zation.

Speed of convergence is important for yet another reason. Few problems have a single
local solution; more often there are several local minima and a number of nonminimum station-
ary points. (The latter are analogous to the inflection points and maxima of a single-variable
function). The algorithms we describe are local; they are able to locate a nearby stationary point,
but do not, in general, find the global minimizer. Multistart methods are a successful way of
using a local algorithm to locate a global minimizer [Rin.1-2]. In a multistart method, a local
optimization algorithm is initiated with a variety of starting points. The best local minimizer
found in this search is taken as an approximation to the global minimizer. Fast algorithms make
it possible to try a large number of starting points in a reasonable amount of time. Conversely,
without fast algorithms, it may be impractical to perform a global search on problems which

involve time-consuming function evaluations.

The aim of our research was to produce faster algorithms for the solution of (1.1.1). How-
ever, to simplify our analysis, we consider separately two simpler problems, the unconstrained

minimax problem,

xrglg,w(x) ' (1.1.3a)
and the smooth, inequality-constrained nonlinear programming problem,

xnélg {rox)1fix)<o,vijep} . (1.1.3b)

We present and analyze iterative algorithms for the solution of both of these problems. We
demonstrate the reliability of the algorithms presented by proving that they converge only to

points satisfying necessary conditions for optimality.



§1.1 BACKGROUND 4

The efficiency- of the algorithms is evaluated by two methods. We performed numerical
experiments, in which we ran our algorithms on a variety of problems and compared their perfor-
mance with other algorithms of similar type. Tests of the performance of an algorithm on a few
problems, however, are an unreliable indicator of the general behavior of an algorithm. The small
number of problems on which it is practical to test an algorithm constitute only a sparse sampling
of the whole "space" of optimization problems. For this reason, we invest most of our effort in
this dissertation in deriving the asymptotic rates of convergence of our algorithms as they
approach solutions. Such results characterize the terminal behavior of algorithms on a large pro-
portion of the possible 'problems.‘ While it would have been preferable to characterize the speed
of convergence throughout the computation, rather than just in a neighborhood of the solution,
such results are difficult to obtain (see [Nem.1] for examples). Also, it is not clear whether they

are a better indicator of "average" performance than asymptotic rates.

1.2 ALGORITHMS

We will be concemed with iterative optimization algorithms for the solution of (1.1.3a) and
(1.1.3b) which are based on a fixed procedure for improving upon any given estimate of the solu-
tion. By repeating the procedure over and over, an iterative algorithm constructs from an initial
guess at the solution a sequence of ever-improving approximations { x; } ; ¢ . Most algorithms
construct the iterate x;,; from the current iterate x; by computing a search direction h; € R",

choosing a step length A; € R, and setting x;,; = x; + A;h;.

One class of algorithms for solving the minimax problem (1.1.3a) obtains a search direction

h; at each iteration by solving the subproblem,

. 2
min_ max e*(x;) + (Ve (x), h Y+ ofn PP (1.1.4)

“We make the assumption that the algorithm which requires the fewest iterations to solve a problem is the most efficient in
terms of CPU time. We justify this assumption as follows. The evaluation of some of the functions appearing in engineering design
problems often involves simulation or requires the numerical solution of differential equations. The evaluation of these functions and
their gradients consumes so much time that the overhead involved in computing the next iterate from this information is negligible.



§1.2 ALGORITHMS s

Algorithms in this class are characterized by the quantities I; < q, ¥> 0, and a rule for comput-
ing the step size. Algorithms of this type were proposed first by Pshenichnyi [Psh.1-2] and later,
independently, by Pironneau and Polak [Pir.1]. (Hence, we will call such algorithms PPP algo-
rithms.) A linear rate of convergence was established for a PPP algorithm by Pshenichnyi under
fairly strong assumptions. Under different, but equally strong, convexity assumptions, Polak and
Wiest [Pol.2-3] showed that the sequence of function values { w(x;) } ; ¢ N constructed by a PPP

algorithm converges Q-linearly to the minimum, i.e., there exists 8 € (0, 1) such that

Xi -
limsup "’( l+l) L4 <

I 5, (1.1.5)
Ty -9

where \Tf is the minimum value of y(x). The quantity on the left-hand side of (1.1.5) is sometimes
referred to as the convergence ratio of the sequence { W(x;) }; e n [Lue.1). In Chapter 2, we
show that these assumptions can be significantly relaxed. The relaxed assumptions are only
slightly stronger than the second-order sufficiency conditions for £ to be a local minimizer of
y(). The convergence rate theory developed in Chapter 2 is used to prove convergence rate
results in Chapters 3, 4 and 5.

Minimax problems having a special structure arise in the design of feedback compensators
and in the computation of open-loop optimal controls for a linear discrete-time system. (See the
appendix to Chapter 3.) In this class of problems, each function e*(x) is the composition of con-
vex function with a linear function, i.e., e*(x) = g*(4,x) for each k e q, where g*::R™ —» R

and A, € R™*”, Hence, (1.1.3a) becomes

: k
J:nemlin ;‘nEaJ‘tl 85 (Axx). (1.1.6)

If the intersection of the null spaces of the matrices A, is nontrivial, then the minimax problem
will not have any isolated minimizers. Instead, for any minimizer % , every point in the affine

space £ + ﬁk - Null(A.) is a local minimizer. (If only some of the functions e *(-) are active at
€q
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a minimizer, then the minimizing set may be neither isolated nor a whole affine space.) Of
course, no minimizer of such a problem satisfies the second-order sufficiency conditions for
- optimality. Yet, when a PPP minimax algorithm is applied to such a problem, linear convergence
of the function values to the minimum is observed. In the latter part of Chapter 2, we prove that

linear convergence is attained by two PPP algorithms on minimax problems of this kind.
The convergence ratio bound derived in Chapter 2 depends in part upon the conditioning of

the Hessian matrix of a Lagrangian-type function, ¥ f1*V2e*(¥), where fi is a vector of
keq

optimal multipliers associated with the solution £. In particular, when the smallest positive
eigenvalue of this matrix is very small, the convergence ratio bound is nearly one. The speed of
convergence is then quite slow. In Chapter 3, we explore the effect which rescaling the domain
space has on the speed with which PPP algorithms solve composite minimax problems of the
form (1.1.6). Suppose that the change of variables x = Qy is made (where Q is an invertible,

symmetric matrix), so that (1.1.6) becomes

: k
A :
Jnin, max g (AcQy) 1.1.7)

Then the Lagrangian Hessian matrix becomes Q7 ¥ fi*V%*(2)Q.5 The choice
kegq

r
08 |( T R*V2ZrR)) ”] (where X' denotes the pseudoinverse of the matrix X) yields a
kegq

Hessian matrix with a smallest positive eigenvalue of one.5 The result is an improvement in the
convergence ratio bound derived for the PPP algorithm in Chapter 2.
Unfortunately, the matrix Q cannot be computed in advance, since the vector £ and the

optimal multipliers fl are unknown until the problem has been solved. This situation, in which

there exists a transformation of the domain space which would greatly increase the speed of an

*The vector of optimal multipliers is invariant under such a domain transformation.

The matrices V2e*(£ ) must be positive semi-definite in order for Q to be real. We augment the zero eigenvalues of O as
defined in order to make it invertible.
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algorithm in solving a problem but which is unknown, occurs elsewhere in optimization. For
example, the convergence of the method of steepest descent on the problem min, ¢ g+ f (x)
where f :IR" — R is a uniformly convex, twice Lipschitz continuously differentiable function is,

in general, linear. However, the method of steepest descent converges superlinearly on the

transformed problem, min ,, ¢ gs f (V3f (£ )~*y), where £ is the solution. The usual approach in

such a situation is to rescale the domain at each iteration of the basic optimization algorithm with

an estimate of the desired, but unknown, transformation matrix V2f (£ )~*%. Such a method is
known as a variable metric method. If the sequence of matrices defining the transformations actu-
ally used converges to the matrix defining the desired transformation, then an increase in the
speed of convergence is obtained. Referring to the example of smooth unconstrained optimiza-
tion, rescaling the domain at iteration { using the transformation defined by Q; a V3f (x;)" % and
then applying one itération of steepest descent yields an algorithm which is equivalent to

Newton’s method with an exact line search. The latter method is superlinearly convergent.

Han proposed such a variable metric technique for the minimax problem (1.1.3a). The

method is equivalent to rescaling the domain at iteration i using the transformation defined by

t
Q; 4 [( Y u,"Vze"(x;))V’] , and applying one iteration of a PPP algorithm. Han showed
keq

that his algorithm is convergent, but it does not converge superlinearly due to the Maratos effect.’
In Chapter 3, we use the bound on the convergence ratio of sequences constructed by PPP algo-
rithms which was derived in Chapter 2 to gauge the effect of incorporating a variable metric into
a PPP algorithm. Our analysis shows that the use of this variable metric decreases the conver-
gence ratio bound. Numerical results show that there is a corresponding improvement in the
actual convergence ratios. The variable metric method also improves the performance of a non-

PPP algorithm.

"The Maratos effect [Mar.1) is a phenomenon observed in the behavior of nonlinear programming algorithms, but it can be ob-
served in the behavior of minimax algorithms as well. The Marsatos effect occurs when the insistence of the step size rule on a de-
crease in Y(x) prevents a step size of one from being taken, even near a solution. As a result, the convergence of an algorithm which
would be superlinearly convergent if unity step sizes were taken is degraded to linear.
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Rather than compute the second-derivatives, V2e*(x;), Han considered estimating them
using quasi-Newton updates. We take another approach to avoid computing these second-

derivatives. Note that

T AEVZE@R)= T REATVZE(R)A, . (1.1.8)

kegq keq

Since the functions g /() encountered in control system design are generally well-conditioned,
most of the benefit of the original rescaling can be obtained by using transformations defined by

0.8 (e otFATA;) AT,

In the second half of the dissertation, we tum our attention to the smooth, inequality-
constrained optimization problem (1.1.3b). Algorithms for the solution of (1.1.3b) can be
divided, with some overlap, into several types. In penalty methods, Lagrangian methods and
methods of centers, the constrained problem is transcribed into a sequence of unconstrained prob-
lems. The most widely used type of algorithm is based upon successive approximation to the
optimality conditions of (1.1.3b). The sequential quadratic programming method of Wilson is an
early example of such a method [Wil.1].% At each iteration of this algorithm, a search direction is

obtained by solving a linear complementarity problem® which approximates the Kuhn-Tucker

necessary conditions for (1.1.3b).

A fourth type of algorithm, which has been much less thoroughly investigated, is based
upon successive approximation to (1.1.3b) itself. In such methods, a search direction is obtained
at each iteration by solving a natural approximation to (1.1.3b) in which each function f/() is
repiaccd by an approximation. Sequential linear programming (Gri.1) and Pshenichnyi’s method
of linearization [Psh.1] are first-order algorithms of this type. In [Pol.10]}, algorithms of this type

were proposed in which each function f/(") is replaced by the quadratic approximation

*There has been a great deal of research aimed at constructing second-order methods of this type which are both globally and su-
perlinearly convergent. Algorithms which are based upon successive approximations 10 optimality conditions and which, of the avail-
able second-order information, make use only of the Lagrangian Hessian may fail to achieve their potential superlinear rate of conver-
gence due to tnmcation of the step size [Mar.1). Additional evaluations of the constraints are needed to prevent this [May.1, Fle.1,
Fuk.1, Gab.1, Col.1-2, Pan.1-2].
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Fix)+{Vfix), b )+% h,H/n )Y, for some matrix H/ € R"*". The resulting subproblem
is a quadratic program with quadratic constraints, which we will call a generalized quadratic pro-
gram (GQP):

min { %)+ {Vfi(x),h)+%{n, Hin)l
he R

Fix)+{VFitx), h)+%ih, HinYs0, Viep). (1.19)

This dissertation presents the first thorough analyses of convergence and rate of conver-
gence of implementable GQP-based algorithms. While there has been some theoretical analysis
of GQP-based algorithms [Pol.10, Pan.3-4], the algorithms considered were conceptual, that is,
they assumed that the GQP subproblem is solved exactly. These algorithms were not imple-
mented (to our knowledge) because no finite step procedures for solving problem (1.1.3b) were
known [Pol.10, Pan.4]. We resolve this difficulty by approximating the solution to the subprob-
lem using an active set method. By determining the set of constraints which are active at the
solution to the GQP subproblem, the inequality-constrained subproblem (1.1.9) is reduced to an
equality-constrained problem. The optimality conditions for the equality-constrained problem
constitute a system of polynomial equations (unlike the optimality conditions for (1.1.9), which
constitute a nonlinear complementarity problem) to which a root-finding method may be applied.
We obtain both a good estimate of the active set and a good starting point for a root-finding

method by computing the Polak-Mayne-Trahan search direction [PoL.7, Pir.1].

In Chapter 4, we present a first-order GQP-based algorithm, in which each H/ is taken to be
a multiple of the identity. The search direction at each feasible point is a feasible descent direc-
tion. We show that the algorithm converges linearly with a convergence ratio bound that is
smaller than that obtained for the Polak-Mayne-Trahan algorithm. Numerical results show the
algorithm to be generally superior to the Polak-Mayne-Trahan method and comparable to the

first-order feasible descent method of Herskovits [Her.1].

®This linear complementarity problem is equivalent to a quadratic program, and it is often presented and analyzed in that form.
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In Chapter 5, we treat a class of second-order GQP-based algorithms, in which the matrix

H/ is an estimate of the Hessian matrix V2f/(£). Second-order algorithms discard curvature
information when they combine estimates of the individual Hessian matrices to form a Lagran-
gian Hessian matrix. The algorithms presented in this chapter are the first to fully use the full-

second order information. The algorithms converge globally and superlinearly.

1.3 DISSERTATION OUTLINE

In Chapter 2, we prove that two versions of a minimax algorithm converge linearly under
assumptions little stronger than second-order sufficiency conditions. For a class of composite
minimax problems which do not satisfy these assumptions, we prove that the algorithms con-

verge linearly under a strict complementarity assumption.

In Chapter 3, we present a variable metric method which can be applied to any first-order
minimax algorithm to improve the speed of convergence on a class of composite minimax prob-
lems. We prove that the technique improves the convergence ratio bound obtained for the
minimax algorithms of Chapter 2. Numerical experiments are presented which show that the
technique improves the overall speed of convergence of both the minimax algorithm in Chapter 2

and a barrier-function type minimax algorithm for which no convergence rate theory exists.

In Chapter 4, we present a first-order GQP-based algorithm for problem (1.1.3b). We show
that the algorithm converges globally and linearly. Numerical results are presented which show
that the algorithm is superior to the Polak-Mayne-Trahan method of feasible directions, and is
comparable to the first-order feasible descent algorithm of Herskovits [Her.1].

In Chapter S, we present a class of second-order GQP-based algorithms for problem
(1.1.3b). We show that the algorithms converge globally and superlinearly. The rate of conver-
gence obtained ranges from superlinear to 3/2 depending upon the degree of accuracy of the Hes-

sian approximations. Numerical experiments with one algorithm from the class show it to be
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competitive with the superlinearly convergent, feasible descent algorithm of [Pan.1].

11



CHAPTER 2
ON THE RATE OF CONVERGENCE OF
TWO MINIMAX ALGORITHMS

2.1 INTRODUCTION

We are concemed in this chapter with algorithms for solving minimax problems of the form

in max f/(x),
xn; R je pf *x) (2.1.1a)

where p a {1,2,..,p} and each f/:IR* — R is continuously differentiable.

Most minimax algorithms have been shown to converge locally or globally under various
conditions. However, the literature dealing with their rate of convergence is rather fragmentary
(see, e.g., [Psh.1, Pol.1-3, Sho.1, Kiw.1, Pev.1, Mad.1, Dau.1]. In this chapter, we establish the

rate of convergence of two versions of a minimax algorithm which was proposed first by Pshen-

ichnyi [Psh.1-2] (who calls it the method of linearizations) and later by Pironneau and Polak

[Pir.1] as a subprocedure in an implementation of the Huard method of centers! [Hua.1).

We will briefly review the literature dealing with the rate of convergence of first-order
minimax algorithms for solving problem (2.1.1a). For this, we need to define the function

yv:R"* = R by

y(x) = max fix). (2.1.1b)

First, since problem (2.1.1a) can be transcribed into the equivalent constrained form,
min{w | fi(x)-w<0, jep} , 2.12)

it can also be solved by first-order nonlinear programming algorithms.2 For example, it can be

! One of the definitions of the "center” of a set described by inequalities, given by Huard {Hua.1}, is in terms of a minimax sub-
problem of the form (2.1.1a). Consequently, every implementation of the Huard method of centers (e.g. - [Pir.1, Hua.2]) incorporates
a minimax algorithm as a subprocedure. This fact was not widely recognized, and some of these imbedded minimax algorithms were
later rediscovered independently.

2 The transcription of (2.1.1a) into (2.1.2) is not recommended, because nonlincar programming algorithms converge more
slowly on (2.1.2) than minimax algorithms designed specifically for (2.1.1a).
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solved by the Pironneau-Polak method of centers [Pir.1] which, as shown by Chaney [Cha.1],
converges linearly on (2.1.2) whenever a strengthened second-order sufficiency condition is

satisfied.

Subgradient and bundle methods designed for the more general problem of minimizing
locally Lipschitz functions can be used for minimizing the function y(-) [Kiw.1]. In Polyak
[Pol.1] and Shor [Sho.1], we find proofs that several subgradient methods converge linearly when

(') is strongly convex.

Next, there are several algorithms which were designed specifically for solving minimax
problems of the form (2.1.1a). One of the oldest is that of Demyanov [Dem.1-2], which com-
putes d-approximations to the minimum value of y(-) with > 0. It computes search directions
by solving a linear program defined by the linearizations of the 8-active functions f/(-) (c.f., the
Zoutendijk method of feasible directions [Zou.1], and employs an Amnijo-like step size rule. It
was shown by Pevny [Pev.1] that, when (') is strongly convex, the Demyanov algorithm con-
verges linearly in function value.> Madsen et al [Mad.1] propose a trust region algorithm for the

linearly constrained minimax problem in which a linear program is solved at each iteration.
When the solution £ of (2.1.1a) is a "vertex" solution (also called a Chebyshev point or a Haar

point), the algorithm in [Mad.1] converges quadratically. However, when X is not a vertex solu-

tion, the rate of convergence of this algorithm is unknown.

The minimax algorithms which we will discuss in this chapter belong to a family conform-
ing to the following algorithm model, which uses the Pshenichnyi-Pironneau-Polak (PPP) search
direction subprocedure [Psh.1, Pir.1]:

PPP Algorithm Model

Data: xoe R*; y>0.

3Pevnyi also shows that, if the functions fail to be strongly convex but are convex with bounded level sets, convergence to a 8-
optimal value is arithmetic.
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Step 1: Given x;, compute the search direction,

hi 4 arg min max £i(x)+ {(VFi(n), h )+ %ydhP. 2.1.3)
AeR"jel

Step 2: Compute the step size A;.
Step 3: Set x;,1 = x; +A;h;, replace i by i + 1 and go to Step 1. O
Algorithms in this family are specified by the quantities /; < p, y> 0, and a rule for com-
puting the step size A;. Thus, in [Psh.1], we find a minimax algorithm in the PPP family with
LA {jeplfic)2y(x)-58) (with §>0), y=1, and the constant step size A;sA. It is
shown in [Psh.1] that the resulting algorithm converges linearly, provided that the initial point is
sufficiently close to £ . The proof assumes that A is sufficiently small, and that strict complemen-
tary slackness, affine independence of the gradients of the active functions and second-order
sufficiency conditions hold at £. It is also shown in [Psh.1] that, if A=1 and £ is a "vertex"

solution, then the local algorithm converges quadratically.

In [Psh.1], we also find a PPP minimax algorithm which uses the step size rule

A= max {27 by +27*%8) - yo) s-2*%als ), ae 0,1), 2.14)
ke Nu(0)

where N is the set of all nonnegative integers. It was shown in [Dau.1] that, if (2.1.1a) has a

"vertex" solution 2 , then the step size in the above algorithm eventually becomes unity. It there-

fore follows from [Psh.1], that if a sequence {x;}/=, constructed by the PPP algorithm using
(2.1.4), converges to a "vertex" solution £ , then it converges quadratically.

In [Pol.2], I; = p, ¥>0 and an Amijo step size rule [Arm.1] similar to (2.1.4) is used,
while, in [Pol.3], I; = p, Y= 1 and an exact minimizing line search is used to determine step size.
It was shown in these papers that both of these PPP methods converge linearly under the assump-

tion that the functions f /(-) are strongly convex.
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In Sections 3 and 4 of this chapter, we show that the PPP algorithms, considered in [Pol.2-
3], converge linearly under a slightly strengthened form of the standard second-order sufficiency
condition. This condition is considerably weaker than the strong convexity assumption used in
[Pol.2-3]). Furthermore, unlike in [Psh.1], we assume neither strict complementary slackness nor '

affine independence of the gradients of the active functions.

In Section S, we consider the composite minimax problem,

min max g/(A;x),
Jnin, max g/(4;x) .. @.15)

in which each continuously differentiable function g/ ‘R 5 R is composed with a different
linear function A; : R" — R". Minimax problems of this form arise in the design of feedback

compensators and of discrete-time optimal controls. We show that, despite the fact that the solu-

tion set is generally nonunique,* the PPP algorithm described in [Pol.2] converges linearly, under

somewhat more stringent assumptions than for the general case.

2.2 THE PPP MINIMAX ALGORITHM WITH EXACT LINE SEARCH

In this section, we will consider the algorithm which results when the step size A; in the
PPP Algorithm Model is computed by exact minimization along the search direction. To sim-

plify notation, we define
¢(hlx) B Fi)+{VFix), hY+veylnl?. (2.2.1)
Algorithm 2.2.1 (PPP-ELS): (see Algorithm 5.2 and Corollary 5.1 in [Pol.4])
Data: xpe R"; y>0.
Step 0: Seti =0.

Step 1: Compute the search direction,’

“In fact, the solution set must contain a translation of the intersection of the null spaces of the matrices A;.

% For the convenience of the proofs to follow, we subiract the term y(x;) from the minimand in (2.1.3), so as to make the value
6(x;) of the search direction finding problem less than or equal to zero. This has no effect on the resulting search direction.
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H A i i | x) =iz,
hGx) & arg min max ¢/(h | %) - wix). 222)

Step 2: Compute the minimizing step size, A; = arg inirlxt vix; + Ah(x;)) .
€

Step 3: Set x;41 = x; +A;h(x;), replace i by i + 1 and go to Step 1. (m)

Let the standard unit simplex be denoted by £, & {pe R? I/ 20, ¥ cpn/ =1).

Then the search direction finding problem (2.2.2) can be transformed as follows:

,

6(x)2 min | max ¢/(h | x) - y(x) ]
JEP

heR"
= i j h I - .
hﬂélgu b ﬂalz(' jgp W oth I x) \v(x)] .23)

Next, by Theorem 2.7.1, the max and min in (2.2.3) can be interchanged, and hence we obtain

that

8(x) = max min ¥ W ¢/ lx)-y@x)

uez'hen'jep

_ . . . . _ 2
= mex mip j§p W (£ +{VFIG), b )=yx)) + ¥dn P (2.24)

The solution y to (2.2.4) is not always unique, and hence we define the solution set

U(x)éargﬁai hﬂ;ig.j§pui(fj(x)+(fo(x).h)-‘4’(1))4'%’?“"“2 - (2259

By solving the inner minimization problem in (2.2.5a), we see that U (x) is the solution set to a
positive semi-definite quadratic program,
S 1 L
Ug)=ag max T W (f/0)-wx) -0 T W VFiG)P. (2.2.5b)
REL2pjEp Y jep
Several methods exist for solving such problems (see, for example, [Gil.1, Hig.1, Kiw.2-3, Rus.1,

von.1)).

As a consequence of the extended von Neumann Minimax Theorem (Theorem 2.7.1), we

have that, for any )._1 e U(x),
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S WYr@ ) =max ¥ wWenrE)lx)
j€p bek jep

= min max Jo/n | x
hen_“er’jé:pl-l ¢/ lx)

= max min J &/ | x
“e;heml_a’u ¢Y@Hlx)

= min i§l’ Wi lx). (2.2.6)

Hence, any multiplier vector E € U (x) yields the solution,

h@x)=arg min 3 W ¢/¢h|x) 2.7
JEP

to the search direction finding problem (2.2.2) (for x = x;), which is unique since the function
max j ¢ p /(- | x) is strictly convex.
Next we recall the following necessary optimality condition for problem (2.1.1a).

Theorem 2.2.1: [Cla.1, Dem.3, Joh.1, Pol.4] If £ € R" is a solution to problem (2.1.1a), then

there exists a vector of multipliers A € I, such that

T AVFI@) =0, (2.2.82)
JEP
ZRARIE)-vE) = 0. (2.2.8b)
JEP

When the functions f/(°) are convex, equations (2.2.8a-b) are also a sufficient condition for
optimality. We denote the minimum value for problem (2.1.1a) by \?l A min z e R* Y(x) and the
set of minimizers by & 4 argmin, . g W(x). For any £ € &, the set of multiplier vectors
fl e I, which satisfy equations (2.2.8a-b) together with £ is exactly U (£ ).

Theorem 2.2.2: [Pol.d] Suppose that the functions f (- in problem (2.1.1a) have continuous
derivatives. If X is an accumulation point of a sequence { x; } {29 constructed by Algorithm

2.2.1, then X satisfies the optimality condition (2.2.8.a-b).
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2.3 RATE OF CONVERGENCE OF THE PPP-ELS ALGORITHM

We now proceed to prove that the sequence of values, { y(x;) } iz, constructed by Algo-
rithm 2.2.1 converges linearly to the minimum value under weaker assumptions than those used
in [Pol.2-3]. Our proof draws on ideas which appeared in the proofs of linear convergence of the
Pironneau-Polak algorithm for inequality-constrained minimization in [Pir.1, Cha.1]. We make

the following assumptions. Let F/(x) denote the second derivative matrix of f/(x) for each
jep.

Hypothesis 2.3.1: We will assume that

(i) the functions f I () are twice continuously differentiable,

(ii) there exists T € R such that the set S & {x € R* | y(x) ST} is bounded and such that
there is a single point X € S which satisfies the necessary conditions (2.2.8a-b),

(iii) for some M’ < ,allx € R* and all j € p, IFi(x)l<M’.

For any stationary point £, we define

JR) 4 {jeplTneu@):wW>0}. (23.1)

Hypothesis 2.3.2: Let £ be as defined in Hypothesis 2.3.1, let B denote the null space of the

matrix with columns {Vf/@®)} 16y We will assume that there exists m’ > 0 such that, for
JjE€

alll e UR),

m Inl? < {h, [,z pi Fi(f)]h) VheB. (2.32)

Hypothesis 2.3.2 and equations (2.2.8a-b) together constitute a strengthening of the standard
second-order sufficiency conditions for £ to be a local minimizer of y(-) [Wom.1]. Note that,
while (2.3.2) must hold for all multiplier vectors in U (% ), the subspace B over which the ine-

quality must hold may be quite small, because all of the multiplier vectors in U (¥ ) are used to
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determine the set J (% ). (m]

The proof of linear convergence requires several technical lemmas involving the following
quantities. With £ as in Hypothesis 2.3.1 (ii) and B as in Hypothesis 2.3.2,let P : R* 5 R"
denote the projection operator with range equal to B, and let P+ be the projection operator with
range equal to B+, Let

m & min{m,v)} . (2.3.3)

Foranyy € R" and p € I, we define

RO W& Yom I =[ (1= jepW Fi® +(1-5)y)ds . 2.34)
The function R (-, -) is continuous, and, by Hypothesis 2.3.2, forany } € U(X ), R(0, 1) is nega-

tive definite on the subspace B.

We will use the notation z; - Z to indicate the convergence of the sequence
{z} 2 € R" to the set Z < R", i.e., the fact that lim mih,ez Iz; -y1 =0. The follow-

i o0

ing two results are established in the Appendix.

Lemma 2.3.1: If Hypotheses 2.3.1 and 2.3.2 hold, and % is defined as in Hypothesis 2.3.1, then

there exists K > Q such that

limsu b.RO.py )<K.
y= iyl ip+yl (2.3.5)
RoUR) a.

Lemma 2.3.2: If Hypotheses 2.3.1 and 2.3.2 hold, and % is defined as in Hypothesis 2.3.1, then

lim Z=%1 'P*(f =5l _o. 2.3.6)
x—x \p(x)—\v O

We now relate the potential decrease in the function y(-) at x to the decrease predicted by

ox).
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Lemma 2.3.3: If Hypotheses 2.3.1 and 2.3.2 hold, then
- W(x)_q’ Y . (2.3.7)

Proof: Referring to (2.2.4) and (2.2.5a-b), we see that, for any |,-1 € U(x),

6x)= min ¥ Wo/th lx)-vx). e XX)

jep
Let s 4 m /y. By the definition of m above, s S 1. Substituting h = s(£ —x) in (2.3.8) and

using the definition of ¢/(- | -) in (2.1.2), we obtain that

Bx)< ¥ We/(s@ —x)|x)-yx)

jep

= 5 W [1@ - v+ (V1)@ -00)+ Y2 12 -2

jep

<s {}: W) +{ T WVfix), 2 —x )+ ¥mlR -x’l’-wm}. 2.39)

€p jep

since se(0,1] and f/(x)Swy(x). Adding and subtracting the tem

(x-2%, [j J(l -t) Y WFI(R +(1-0)x -f))d:](x -%£)) to the right hand side of (2.3.9),
jep

we find that

8x)<s{ ¥ Wi+ { ¥ WVrix), % -x)
j€p JjEp

j€ep

+{x-%, [j'(:(l -1) T WFI(R +(-t)x -J‘E))dt](x -%))

—y@x)+{x -2 ,R(x -2, (x -f))} (2.3.10)

The first three terms in the right hand side of (2.3.10) constitute the second-order Taylor expan-

sionof ¥ ; ¢ p Wf /(% ). Hence,
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8x)Ss{ T WfI@)-wix)+{x -2, Rx -2, m(x -f))}
-
Ss{w(i’)—ql(x)+ {(x-2,Rx-%,m)(x -£))}.

Dividing both sides of (2.3.11) by y(x) — i, we get

_ 8 ), -2 Ra&-2.WE-2))|
Ww(x) - (&) W(x) - y(®)

By Lemma 2.3.1,

limsup max {x-% RGax-%, wx-2)) <K
1 f BEUGE) x ~208PHx =)

x 2%

14

and, by Lemma 2.3.2,

limsup Ix =2HIPHx -2 -
x % yx)-y

x2x

0.

Taking the lim sup of (2.3.12) asx = X and using (2.3.13), (2.3.14) and

m
SF=-—,
Y

yields (2.3.7).

21

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)
O

We combine Lemma 2.3.3 with a relation between the decrease predicted by 8(x) and the actual

decrease obtained at x in the direction A (x) using an exact line search. Let

M & max{M,y) .
Lemma 2.3.4: If Hypotheses 2.3.1 and 2.3.2 hold, then

(2.3.16)
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\y(x +M(x))—@ S'l_ miﬂ{m’,‘y} ‘
yx) - max { M, v} (23.17)

limsup min
~ A€R
X X

T#x

Proof: Since by Hypothesis 2.3.1(ii), £ is the only point in the level set S satisfying the neces-
sary condition for optimality (2.2.8a-b), it follows that y(®)= \?f and y(x)> \'f: for all
x € S\ X. Since 8(x) is zero if and only if the necessary conditions (2.2.8a-b) are met at x,

8(x)<Oforallx € S\ £.
The second derivative bound of Hypothesis 2.3.1(iii) implies that for each f /(:),
fio+2)=fiy)={Vfiy).z)s vumlzl?, \'/y ,ze R*. (2.3.18)
Thus, forany A e (0, 1Jandx € S \ £,
min ylr + M (1) = i) S Yx + M () - y(x)
S max 1) - y(x) + {VF 1), R )+ UM B ),
si[;ngff(x)—\v(xn(fo(x).h(x)HlAIMlh(x)lz]. (2.3.19)
Setting A =¥/ M and using the definition of M,
Jmin Wi + M (x)) - y(x) < [%a);f"(x)— W)+ {VFI(x), h(x))+ Yy Ih (I ]

= A8(x). (2.3.20)

Since 8(x)<Oforall x #%,

Y HME)-Yx) o Y
R 0(x) 2h=1r

(2.3.21)

Applying inequality (2.3.21) and Lemma 2.3.3 to the left hand side of (2.3.17), we obtain

Y(x + A (x)) —y(x)
~ A€eR A A
-x \II(X)-\I! X=X

xex x#X

- limsup min YEHMOEN ) _ 0G)

limsup min
Ae R O(x) "’(x) -
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<L limsup @)
M - A
X=X \y(x)-\p

A
X #X

M~ max{M.,y) (2322)

The second step holds because 8(x) < 0 and y(x) > \T! Adding 1 to both sides yields the desired
result. O

Theorem 2.3.2: If Hypotheses 2.3.1 and 2.3.2 hold and Algorithm 2.2.1 generates a sequence

{ x: } 20, starting from a point xg€ S, then (a) x; = X as i = o, and (b) either x; =% for all

largei or
Xi+1) = v i ’
limsup Y& =V <1- min{m,y} ) (2.3.23)
i—e max { M’ , v}

Vi) -
Proof: (a) The sequence { x; } /= lies in the compact set S, and hence it converges to the set of
its accumulation points. By Theorem 2.2.2, each accumulation point must satisfy the necessary
conditions (2.2.8a-b). Since, by Hypothesis 2.3.1(ii), only ¥ € S satisfies (2.2.8a-b), the
sequence converges to £ .

(b) Follows from (a) and Lemma 2.3.5. 0

Following Luenberger [Lue.1], we refer to the quantity limsup (y(x;,1) - Q)/(w(x,-) -QI)
$§ —»co

as the convergence ratio of the sequence { W(x;) } ;2. The right-hand side of inequality (2.3.23)
bounds the convergence ratio of any sequence constructed by Algorithm 2.2.1 in solving any

problem in the class defined by Hypotheses 2.3.1 and 2.3.2.
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Remark 2.3.1: The functions ¢/(: | ), could have been defined in (2.2.1) using different values
of y for each j € p. This would have had two effects. First, the search direction finding problem
would have been considerably more difficult to solve. Second, the convergence ratio bound in
the right-hand side of inequality (2.3.23) could tum out to be larger; certainly it would not be
smaller. However, if individual bounds on the IF/(x)I are known, one may be able to establish

lower bounds by using different ;. O

Remark 23.2:  From the definition of m and M in (2.3.3) and (2.3.16), the ratio m /M appear-
ing in the convergence ratio bound is independent of y provided that ye [m’, M"]. However, for
v outside this range, m/M is smaller and the convergence ratio bound is greater. The following
example shows that this dependence of the convergence ratio bound on ¥ is not an artifact of our
proof technique, but that it reflects the dependence of the actual convergence ratios on y. We
applied Algorithm 2.4.1 (see Section 4) to the problem of minimizing the maximum of
Flx) & —6xg+4(x¢ +xP)and f2x) & xo+ %(x¢ +x¢) using a variety of values for y. For

this problem m’ =2 and M’ =8. We started the algorithm from the point (1, 1), and used
ye {273,22,271,20,2!,22,24 25,26} . Figure 2.1 displays both the convergence ratio
bounds computed from the right-hand side of (2.4.2) and the convergence ratios which were

observed. O
2.4 RATE OF CONVERGENCE OF THE PPP-ARMI1JO ALGORITHM

The step size rule used in Algorithm 2.2.1 calls for the exact minimization of a function of a
single variable. In practice, we use a step size rule which can be executed in a finite number of
steps. A suitable replacement for Step 2 in Algorithm 2.2.1 is the following generalization

[Pol.4] of the Armijo rule for differentiable functions [Arm.1],

Step2’:  Compute a step size, A; = %, where k; € Z is any integer such that

W + BUR) - wx) < oB8(x:) , @24.12)
and
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vix; + B ) - yin) > of o) (2.4.1b)

with fixed parameters «, p € (0, 1). We will call the the algorithm resulting from the replace-
ment of Step 2 in Algorithm 2.2.1 by Step 2* Algorithm 2.4.1. The convergence result, Theorem
2.2.2, holds for Algorithm 2.4.1 [Pol.4]. We show that a rate of convergence result very similar

to Theorem 2.3.2 holds as well.

Theorem 2.4.1: If Hypotheses 2.3.1 and 2.3.2 hold and Algorithm 2.4.1 generates a sequence

{ x; } i, starting from a point xg € S, then (8) x; = £, as i — oo, and (b) either x; = X for all

large i or
timsup Y=V ) gmin{m.y} 242)
ioe max { M’ ,v}

wix) -
Proof: (a) The sequence { x; } /o is contained in the compact set S, and hence it converges to

the set of its accumulation points. Referring to [Pol.4] and using the fact that the functions f/(-)

are continuously differentiable, we conclude that any accumulation point must satisfy the neces-
sary conditions (2.2.8a-b). Since the only point in S satisfying these conditions is £, the

sequence must converge to £ .

(b) We obtain a bound on the decrease in () obtained at each iteration, assuming that the

sequence does not terminate in a finite number of steps at £ . The second derivative bounds again

imply relation (2.3.18), and so, foralli € Nand k 20,
yix; +B*h) - y(x) = max f T x; + BEhy) - wi(x)
S max f () + (Vf 10), B:) - i) + YoM B2 I P
<p [;nea:;f i)+ (VF F(x), b ) — i) + aM B* W, l’] » (243)

because B* <1and f /(x) < y(x). Therefore,if B*<y/M,
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wix; +Brh) - wix;) < B Enﬁw;f i)+ AVF J(x), Y - wix) + vnﬂh,-lz]
= BtO(x;) <af*o(x;)<0. (2.4.4)
It follows from (2.4.1a-b) that A; 2 By/ M and hence that
W(xiv1) — Y(x;) S oA 0(x;) < ng 6(x;) . | (24.5)

Combining inequality (2.4.5) with Lemma 2.3.3 yields the desired result. (]

2.5 RATE OF CONVERGENCE ON COMPOSITE MINIMAX PROBLEMS

Next we will establish the rate of convergence of Algorithms 2.2.1 and 2.4.1 on a class of

composite minimax problems of the form

i J(A;:x),
xtreugn ?eaﬁg A;x) (2.5.1)

where g/ : RY 5 R is continuously differentiable and A; is an /; X n real matrix. We note that
(2.5.1) is a problem of the form (2.1.1a), with the functions f/(:) defined by f/ 4 g/:4;. In

conformity with the previous sections, we will use the notation y(x) = max g/(4 jX). We note
jep

that when the null spaces of the matrices A; have a nontrivial intersection, which we will call
their common null space, problem (2.5.1) does not have a unique minimum and therefore does
not satisfy Hypothesis 2.3.1(ii). In this case, problem (2.5.1) may also fail to satisfy the convex-

ity requirement of Hypothesis 2.3.2. To see this, note that for problem (2.5.1), the second deriva-
tive of the Lagrangian at a minimizer £ has the form,

Yieph/ATGIA;2)4;, (2.5.2a)
where G/(-) denotes the second derivative matrix of g/("). Continuing to denote by B the null
space of the matrix with columns { Vf/(%)} ies@y we find that the second derivative matrix

will only be positive semi-definite on the subspace B. However, we have observed in computa-
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tional experiments that linear convergence of the values { y(x;) } ;2o constructed by PPP-ELS
and PPP-Amnijo is not lost in this circumstance. In this section we will derive a bound on the
rate of convergence of Algorithms 2.2.1 and 2.4.1 under the assumption that the Lagrangian Hes-
sian is positive definite only on the orthogonal complement of the common null space of the

matrices A je

Recall that, if £ € &, U(® ) isthe setof i € Z, which, together with £ , satisfy (2.2.8a-b).

By analogy with nonlinear programming, we shall say that strict complementary slackness holds

at(®,f),where£ € G andfl € UR), if

fl/ >0 ifandonlyif f/(X)=yQ&), (2.5.2b)
for j e p. If strict complementary slackness holds at (£ ,f1) forall f € U (%), then the set U (R )

is a singleton, the vectors {A]Vg/(4;%)) oy, e affinely independent, and
j

&)
J&)={jeplfi®)=v®)}.

The following definition will be used throughout the dissertation. A set-valued function
SR* - 2"’ (where Y < R™) is upper semicontinuous in the sense of Clarke [Cla.1] if, for
every x € R” and every open set O D S(x), there exists a neighborhood W of x such that
S(W) c 0. Animmediate corollary of this definition is that, if S (x) is a singleton on any open
set, then S () defines a continuous single-valued function on that set. Like continuity of single-
valued functions, upper semicontinuity has a sequence characterization. If S(-) is upper semicon-
tinuous and S (x) is compact for all x, thenx; = X,y; € S(x;) and y; > y imply that y € S (X).
Proposition 2.5.1:  Suppose that the functions g/ (-) are strictly convex and that strict comple-

mentary slackness holds at (% , L) for every L € U ) and every £ € & . Then, (a) there is a

unique L such that UG )= (L },and (b)theset? & JR) is independent of £ forall% e & .

Proof: We show (b) first. Suppose that J1,, i, € U(®) forsome £ € & , and that t; # 1. Let ¢
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and j o be defined by -
t éﬂix;{u{/(u{—u{)lu{>u{l >0, (2.5.32)
jo @ arg;l}sir;{u{'/(u{-ui)|u{>u£}- (2.5.3b)

Thenp, & w+t(y—p)e %, satisfies (2.2.8a-b) with £ , and hence , € U(X'). By construc-

tion, u/° = 0. Hence, it follows from the strict complementary slackness assumption that
FR)<y@®). However, uf*>0, and hence, again by strict complementary slackness,

f7%%) = w(®). This contradiction shows that U (£ ) is a singleton foreach 2 € G .

Suppose that j1€.J(£3 but j,&J@E”) for distinct points £, £”e &. Then
gj‘(Aj,f")<\p(£"). Let%, A £’+(1-¢)2”.Then®, e G forallt € [0, 1], and, by the con-
vexity of g/'(), g/¥(A X ) <YE”) =& ,) for all t € (0, 1). It follows from (i) above that

U@R,)= {n}, asingleton, and from (2.2.8b) that p/* =0 for all ¢ e (0, 1). Now, by the Max-

imum Theorem in [Ber.1], U() is an upper semicontinuous, compact-valued set-valued map.
Since U(®") = {1’} , a singleton, U (") is continuous at 2 ’. Hence p, = f1’ as ¢ — 1, which
implies that L’ /* = 0. Since this contradicts the assumption that j, € J(£ *), we conclude that (b)
holds.

Now we prove (a). Suppose that £, £” e & . From (b), g/(A;(&’+t(£” -2")) is con-
stant for all t € [0,1] and all j € 7. since each g/(") is strictly convex, we conclude that
Aj(®’—-%") = 0 for each j € J. Therefore, for all j e 7, AJVg i(A;2") = A]Vgi(a;2")
and hence any [l satisfying (2.2.8a-b) with £  satisfies (2.2.8a-b) with £ ”. This and the fact that
UG)isa singleton imply (a). O
Proposition 2.5.2:  If the functions g/(-) are uniformly convex, then there exists a neighbor-

hood,W,of@ such that, forallx e W,/ = Oforallpe U(x)andj ¢ J().
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Proof:  First note that the uniform convexity of the functions g /() implies that & is nonempty.
Since h(x) is the solution of the primal problem (2.2.2), it satisfies the optimality conditions
(2.2.8a-b) with the functions f/(-) replaced by ¢/(: | x). Every p e U(x) satisfies equations
(2.2.8a-b) together with & (x), and hence the second of those equations yields

T W Y@ - -60)] =0. @54)

jep

We show that A(x) =0 and 8(x) = 0 as x — G . If not, then there exists a sequence
{x}ien and >0 such that x; > & and 6(x;)<—5 for all i € N. (Note that 6(x) =0
implies that k (x) = 0.) Let AT = [AT, ..., AT). Now, since each g/() is uniformly convex, the
set { Ax; }; e n is bounded. Hence, there exists a bounded sequence {X;}; e Such that
Ax; = Ax; forall i e N. Since the sequence {x’; }; ¢ n is bounded, there exists a point ¥ and
a subsequence K C€N, such that x;=»X a {-—e,ieKk. Since
lim ; o Y(¥;) =lim i = ooy(x;) =y , Y(X) = ¥, and hence ¥ € §. By Proposition 5.5 in
[Pol.4], this implies that 8(x) = 0 and h(x) = 0. Since 6(:) and h() are continuous, therefore,

8(x;) > 0and h(x¥;) 30 asi —,i € K. But 6(¥;) =0(x;)< -8 for all i € N. This con-

tradiction proves that A(x) > 0and 8(x) - 0asx = G .
Therefore, ¢/(h (x) | x) = g/(4;£) asx = £ € & forall j, implying that

¢(h(x)l x) - y(x)-0(x)<0 (2.5.5)
for every j ¢ J () in some neighborhood, W, of G . It follows from (2.5.4) and (2.5.5) that, for
alx e W, W/ =0forall j ¢ J@& ) forall p e U(x). m]

We now proceed to show that Algorithms 2.2.1 and 2.4.1 converge linearly on some prob-
lems of the form (2.5.1) which do not satisfy the assumptions of Theorem 2.3.2. Letting

J1<..<j, be the indices comprising 7, with 7 defined as in Proposition 2.5.1, we define

AT QAT AT). First we will show that the tail of a sequence { x; } = generated either
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by Algorithm 2.2.1 or by Algorithm 2.4.1 is contained in a translation of the range of AT we

will then show that the sequence corresponds to that constructed by the corresponding algorithm

on the following restriction of problem (2.5.1) to a translation of the range of A T:

min W& +2Zy), (2.5.6)
yeR*

where g 2 rank(.@ T, and Z is a matrix, the columns of which form an orthonormal basis for

Range @AT. Finally, we will show that the restricted problem (2.5.6) satisfies the assumptions of
Theorem 2.3.2. We will use the notation 6*[X] to denote the minimum positive eigenvalue of
any symmetric, positive semi-definite matrix X .

Theorem 2.5.1: Suppose that

(i) the functions g/ (-) are twice continuously differentiable,

(ii) there exist constants 0 < ' SL’ such that, forall j € p,

P IlP<(h,GiG)hYsL W, Vh,zeRY, (2.5.73)

(iii) strict complementary slackness holds at (% ,) forallfl € U® )and allf € G ¢
(iviLetl SV and L 2L’ be such that

lo'[ Y R/AJA;) < ¥y < L max VAVY /WA R (2.5.7b)
jep J€p

where L is the sole member of U(G ). Under these assumptions:
(@) Forany£ € G ,

limsup  min YEFMGEN-Q o L oY j e p/ATA;)

rei MR uoy @ L max izTalA.ZI (2.5.7¢)
x €1 +Range(Z)
x 2%

“The assumption of strict complementary slackness is necessary only if the matrices A ; have different null spaces. For example,
the linear convergence result holds without this assumption if the matrices A ; are identical.
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(b) If Algorithm 2.2.1 constructs a sequence {x;};eg in solving problem (2.5.1), then the sequence

converges to £ for some® € G , and either x; = £ for all large i or

Y o[y, JATA:
limsup Yx) -9 Sl—l [ZJEpn' jAj)

_ (2.5.7d)
T v -9 L' max1z74fa,Z1

Proof: (a) To prove this part, we will (i) show that it is sufficient to consider the restriction of
problem (2.5.1) to an affine space, (ii) verify that Hypotheses 2.3.1 and 2.3.2 hold for the res-
tricted problem, and (iii) apply Lemma 2.3.4.

First note that the uniform convexity of the functions g/(-) implies that G is nonempty. It
follows from Proposition 2.5.2, that there exists a neighborhood W O G such that p/ =0 forall

j¢J andpe UW), and from 2.2.7),that h(x) = Y j e p W AJVg/(A;x;) forany p e U(x).

Hence, forallx e W,
h(x) € Range(A T) = Range(Z) , (2.5.8)

by the definition of Z above. Letus fix £ € &, and suppose thatx € W. Ifx € £ + Range (Z),

then x +Ah(x) € % +Range(Z). This suggests that we consider the restriction of problem

(2.5.1) to Range (Z), viz.,

i, v G, 2.5.92)
where
v.0) 8 v@& +2y), (2.5.9b)

s that W, (y) = max; ¢ p f#(y), with f(y) 8 f /& +2Zy). The search direction d (y ) constructed

by Algorithm 2.2.1 at a pointy € IR? for problem (2.5.9) is given by

d(y) 4 arg min max 8 (A;E +Zy) +(ZTATVEI(A;R +2Zy)), d Y+ Verld W
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= arg min max gJ(A,(x +Zy)+{A]Vgi(A;R +2y)), 2d )+ elzd

= arg min rpax ¢/zd g +2y), (2.5.10)

deR*j
since 2TZ=1, and ¢/(hlx) B gi(aix)+{A]Vgix)n )+ vdh 2. By (25.8),

h(% +2Zy) € Range(Z). Hence, referring to (2.5.10), we see that
h(Z +Zy)= min max hlx+Z
( y) ag o Min e ¢/( y)

=Zd(y). (2.5.11)
Also, fory suchthat® +Zy e W,
arg min Y(£ +Z(y +Ad(y))) = arg min y(% +Zy +AZd(y))
Ae R Ae R
= mgigw(f +Zy +M(E +2Zy)). (2.5.12a)

We conclude from (2.5.11) and (2.5.12a) that

limsup min Y& +Mx)-@ -hmsuop VE +ZG +MON -9

sz MRy -9 320 R w@ +2Zy)-9  (25.12b)
x € £ +Range(Z)

x£x

Hence, provided problem (2.5.9) satisfies Hypothesis 2.3.1 and Hypothesis 2.3.2, we can establish
(2.5.7¢) by applying Lemma 2.3.4 to problem (2.5.9) to obtain an upper bound on the right hand
side of (2.5.12b).

We now verify that Hypothesis 2.3.1 is satisfied by problem (2.5.9). (i) The functions
gl(A j(® +Zy)) are twice continuously differentiable in y by assumption (i) of this theorem.
(i) LetS, & {y e R® Iy +2Zy)<T}, with T > (6 ). Since the functions g/(-) are

uniformly convex by assumption (ii) of this theorem, the set A ZS, is bounded. Since
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Range(Z) = Range(AT) and Null(Z) = {0}, Null(A Z) = {0} .7 Hence S, is bounded, and,
since closed, it is compact.
The point y =0 satisfies the necessary conditions for optimality (2.2.8a-b) for problem

(2.5.9), since X satisfies the necessary conditions for problem (2.1.1a). Showing that 0 is the only

point in S, which satisfies the necessary conditions (2.2.8a-b) for problem (2.5.9) is slightly

involved. Let &, denote the minimizing set for problem (2.5.9). Now suppose that there is a
y € G, suchthatf +2Zy’ ¢ G. Then y@& +Zy") > y(& +Z0), which contradicts the assump-
tionthaty e & ,. Therefore,£ +2G, ¢ 6.

Now consider the sét of multipliers,

( | . ]

|Z ujvfr}(V):O

é uezpljep , . >

- |z ll’ (frj()')"\l’r(yn=0 ’
Jep

~ o

(2.5.13)

which, together with y, satisfy the the optimality conditions (2.2.8a-b), when the functions func-
tions f /(-) are replaced by the functions f,/(-). We show that U,(& ,)= {fL }, where [l is as
defined in Proposition 2.5.1(a). For any y € 6 »»wehave £ +Zy e é by the previous para-
graph, and hence f,/(7) < ,(7) forall j ¢ 7. Consequently, p/ =0 for all j ¢ J and for any

ﬁe U,(). Therefore,

3 WAJVgi(Aj(® +2y)) € Range(AT) = Range 2) . (2.5.13)
JEP

For any i € U, (), it follows from (2.5.13) that ¥ ; ¢ o W/ ZTAJVg/(A;(® +25)) =0, hence,
making use of (2.5.13), we conclude that ¥’ ; ¢ p I/ A]Vg/(A;(£ +Z5)) = 0. Hence, s together

with ¥ +Zy satisfy the necessary conditions (2.2.8a-b) for the original problem (2.5.1). Thus,

7 7y = . N k2 s 4.
Suppose that A Zy = 0. Since Null(A ) N Range(A T)= (0} ,Zy =0. Butthen Null Z)= {0} implies thaty =0.
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UG, cuE+26,).

Since, £+ 26, = & by the previous paragraph, this implies that U,(§,) = {fL }, where [ is
the only member of U (G ).

Suppose that y € S, satisfies the optimality conditions (2.2.8a-b) for problem (2.5.9).

Since , () is convex in y, these necessary conditions are sufficient for optimality, and, further-
more, the entire line segment between 7 and 0, [¥, 0], lies in & ,. Since U,((y,0]) = {fl } and
p/>0foralljed,g/(Aj® +2Zy) =@ +2Zy) = forally e [¥,0)andall j € 7. Because
the functions g/(-) are strictly convex, it follows that A iZy =AjZ0=0forall j € 7, and hence

that ¥ € Null (A Z). As mentioned above, Null(A Z) = {0), implying that § = 0. Therefore,

the necessary conditions are satisfied at the unique point 0 € S, and Hypothesis 2.3.1(ii) holds.
(iii) It follows from assumption (ii) of this theorem that for all y € R?,

IF/(y)ll < Lmax ; ¢ , iZTATA;Z1, where Fj(-) denotes the second derivative matrix of /().

Now we verify that Hypothesis 2.3.2 holds. Letting o[X ] denote the minimum eigenvalue

of any real symmetric matrix X, we obtain that

c [z fL/ F,J'(O)] =c Lz fliZTAJGi@A;& +20))A,-z]

“lUep €p

21 glz fLJj zTA,TA,-z]

€p

=lc* [z pi A,TA,-] . (2.5.14)

€ep

since the columns of Z span Range (A T) = Null (A Y and Null (T ; ¢ p R/ATA;) = Null &)

Letting the left-hand and right-hand sides of the double inequality (2.5.7b) correspond to m

and M respectively, we can apply Lemma 2.3.4 to problem (2.5.9) to obtain
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limsup min Y& +Z@Gy +MdON-§
5,30 *eR V@& +2Zy)-9

1§ OIS, ¢ AIATA

<1- £
L max1ZTAJA,ZI
kep

, (2.5.15)

which, combined with (2.5.12b), gives part (a).

To show (b), we first show that x; = £ asi — oo for some £ € &, and then apply part (a)
of this theorem. Let AT 4 [AT,.., ATl From (2.2.7), every h;, constructed by Algorithm
22.1,is of the form ¥ . , Azj, with z; e R". Thus, the sequence { x; } /2 is contained in
the closed and convex set @ & {xo+RangeAT)} N {x e R" ly(x)<Sy(xe) ). Suppose
that Q is unbounded. Then, since Q is convex, there exists a nonzero ¥ € Range (Z Ty, such
that, with x, a xo+fu, Y(x,) Sy(xo) for all £ 20. If Aju +0 for some jo € p, then the uni-
form convexity of g/(-), which follows from assumption (ii) of this theorem, implies that
lim, _, . WY(x;) = + 0. Since this contradicts our assumption that y(x,) < y(x o), we must have
that Ay = 0. Hence u € Range(A T) N Null(A) = {0}, which contradicts the assumption that
u #0. Therefore, the set Q is bounded, and hence compact. Consequently, the sequence

{x; } {20 must have an accumulation point, £. From Corollary 5.1 and Proposition 5.5 in

[Pol.4], any accumulation point £ "of a sequence generated by Algorithm 2.2.1 must satisfy the

first-order necessary conditions for optimality (2.2.8a-b). Since (') is convex, this implies that

£ e G. Since Q is compact, it follows thatx; = G asi — e .

Since x; — & as i = o, there exists ioe N such that x; e W for all { >i{y Hence,
{x )i, € x;,+Range(AT) = x; + Range(Z). Since the functions g/(-) are uniformly con-
vex, G N (x;,+Range(AT)) is a singleton. Hence, the sequence {x;} 2 converges to

£ =6 0 (x;,+Range(AT)).
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Inequality (2.5.7d) follows directly from convergence of the sequence to £ and part (a). O

The corresponding result for Algorithm 2.4.1 can be obtained by following the steps used in

Section 4 and above.
Theorem 2.5.2: Suppose that the assumptions of Theorem 2.5.1 hold. If Algorithm 2.4.1 con-
structs a sequence {x;}iao in solving problem (2.5.1), then, the sequence converges to X for some

£eb,and either x; = X for all large i or

Yxi) -9 <1 -aBi o'lT;e PnjAJTAj]

N TuT
vx) - L opaxliziaiazi

limsup

i >0

(2.5.17)

2.6 CONCLUSIONS

We have shown that sequences { y(x;) } ;2o generated by two PPP minimax algorithms
converge linearly to the minimum value under weaker conditions than those assumed in previous
analyses of the rate of convergence of PPP algorithms [Psh.1, Dau.1, Pol.2-3]. Although compo-
site minimax problems which have nonunique, nonisolated minimizers do not satisfy the second-
order sufficiency conditions Hypothesis 2.3.2, we were able to show that these PPP algorithms
converge linearly on such problems provided that strong convexity and strict complementary

slackness conditions are satisfied.

PPP algorithms can be generalized in a straightforward way to solve semi-infinite composite

minimax problems [Pol.4] which arise in control system design,

min max max ¢/(4;x,y;),
(i, max max ¢'(A;x.y;) 2.6.1)

where the sets ¥; ¢ R¥ are compact, and the functions ¢/ : RYxR%Y - R, je p and
V1¢/(-, ) are continuous. As before, each A; is an Ij x n matrix. Under assumptions analogous
to those of Theorem 2.5.1, it can be shown that the semi-infinite versions of the PPP algorithms,

considered in this chapter, also converge linearly (see [Pol.2]).
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2.7 APPENDIX
The following extension to the von Neumann Minimax Theorem is quoted from [Pol.4].

Theorem 2.7.1 [Pol.4]: Let f:R"XR™ — R be a continuous function such that f (x,y) is con-
vex in x and concave in y and let Y be a compact, convex set in R™. Suppose also that

f(x,y) > aslxl = oo, uniformlyiny € Y. Then,

min, ;ngf(x,y) =;nea§,xnellg.f(x.y)- (2'7'13

Proof of Lemma 2.3.1: Forany y € R"*,y = Py + P+y. Hence, since R (-, -) is continuous and

R (0, f1) is negative definite on B for any fl € U (% ) by Hypothesis 2.3.2,

{y,Ro. Wy )={Py + P}y Ry, )Py + P4y))
= {Py,R(y. WPy }+ (P+y, Ry, p)(P+y +2Py))
<{PY,R@y. WP +2Py)), 2.7.1b)

for p near U(X) and y small. Using the Schwarz inequality and the fact that
P4y + 2Pyl <2lyll,

{y, ROy, wy)sIRy, i lPyIIPPPdy + 2Pyl
S20R @y, W P4yl Byl

<3 max RO, wIiPHlIy],

2.7.1¢c
He UR) ¢ )

for p near U(® ) and y small, since IR (-, -)l is continuous. m]

Proof of Lemma 2.3.2: Using Taylor’s Theorem, we obtain that for any x € R"*,
yx)-y(E)2 max fi(x)-yiR)
jeJE)

= max f/I@)+{Vfi@),x-%)
jeJi®)
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+{x-%, [jé(l —-SFIR +s@x -f))ds](x -2) )-w®). .12)
Since f /(£ ) = y(® ) forall j € J(® ), it follows from Hypothesis 2.3.1(iii) that
vx)-y@E)2 max (VFig),x-% Y+ (x-%, [j;(l -SWFI@® +s(x -f))ds](x -))
jel§)
2 max {(Vfi@),x-% )-MIx-%P. Q.7.3)
jeJ&)
Since {Vf/(),P(x ~£)}=0forall j e J&)and h = Ph + P*h forany h € R",
max (VFi@®),x-% )= max (VFi@®), PHx -%)). (2.74)
jeJ&) jelJ&)
We will to show that there exists an 1 > 0 such that
max (Vf/i@),PHx -%2)) 2nlPHx -2)1. Q.1.5)
jel®)

If not, then there exists a nonzero ¥ € B+ such that max {(Vf/(%),& }<0. Since UQ®X) is
jeJ@&)

convex, there exists a fl € U(®) such that L/ >0 for all j € J(£). By (2.2.8b), i/ =0 for
J € J(X). Therefore, by (2.2.8a),
Z n’(Vf"(f), ﬁ): ( z ﬂ,’Vf’(f),ﬁ' >= (0' u )= 0, 2.7.6)
jeJ@) jep
Equation (2.7.6) states that a convex combination of the nonpositive numbers,

, is zero. Hence

Vi), u , with fficients, {fl/
{((VFrig),a )} jesgy With nonzero coefficien {n }jel(i‘)

2)
(VFi@®), i Y=0 forall je J&). Butthen € B NB+= {0}, contradicting the assump-
tion that # # 0. Hence, let > 0 be such that (2.7.5) holds.

Substituting (2.7.4) into (2.7.5) and (2.7.5) into (2.7.3) yields

yx)-yR) 2P x -2l -Mix -2 12, (2.7.7)
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for x in some neighborhood of X .

Now we derive another lower bound on y(x) — (X ). For any fl € U (%), using Taylor's

Theorem and the fact that ¥’ ; ¢ o A/ Vf /() =0,
V@) -vE@)2 T I - i)
jep

={x-%, j;(l -5) T RIFIE +s(x -f))ds](x -2))

jep

= (P -2), |[o1-5) T RIFIE +5Gx -f))ds]?(x -%))

jep

+{PYa-2), ([o(-5) T MIFI@ +5x —2))ds](2P(x —2)+PHx-2))). 218
L jep

Making use of Hypothesis 2.3.1(iii) and Hypothesis 2.3.2, (2.7.8) leads to
vx) - y@E) 2 YemlIP (x - £ - uMIPHx -1 2P (x —£) + PHx - £)!
2YmlP(x -£)WP =M IPHx - £)I Ix - 21, 2.79)
for x in a neighborhood of £ .

Combining (2.7.7) with (2.7.9) and dividing by IP+(x — % )llx -2 | yields

V&) -Y@) o ) YmlPa o2 n e lk2E Lo

IPHx -2 )llx -2 ¥ IPHx -2)lix -2 1 k-z1 IPHx ~-2)1

for x in a neighborhood of . Using the fact that Uxl<1P*xl+1Pxll, and defining

rx)=1PHx -2)1/1P(x - %), we obtain that

yix) -y ) Yom n 1
Z2max{————-M , -M( +1)7, 2.7.11
IPYx —)ilx -2 1 {'(x)’“(x) Ix-%1 r(x) } @710
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We use (2.7.11) to show that

x =5 llP*(x -f)“ Ix-z1

=0, 2.1.12)

which is equivalent to (2.3.6). Thus, given any integer k£ > 0, there exists a real number » >0

such that the first term in the max in (2.7.11) is greater than & if r(x) <r. For x such that
r(x)>r, the second term term in the max is greater thann/llx — 2 | =M (1/7 +1). Hence, there

exists a neighborhood, W,, of £ such that the max in (2.7.1171) exceeds k for all x € W, and,

therefore, (2.3.6) holds. O
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CHAPTER 3
A VARIABLE METRIC TECHNIQUE FOR
A CLASS OF COMPOSITE MINIMAX PROBLEMS

3.1 INTRODUCTION

The term variable metric method is commonly used to describe a number of algorithms,
such as those discussed in [Den.1, Byr.1], which emulate the behavior of the Newton method.
The term can be applied, however, to any optimization algorithm which uses a sequence of linear
transformations of the variables to convert the original optimization problem into a sequence of
equivalent problems, to each of which it applies one iteration of a "standard” method and uses a
transformed result as a starting point for the iteration on the next problem. Variable metric
methods are effective when there is a linear transformation which transforms an optimization
problem into a better conditioned form. Since the desired transformation is not known a priori,

an approximating sequence of transformations is constructed as the computation progresses.

In the past, variable metric techniques were used as a means of improving the conditioning
of an optimization problem with respect with respect to a particular algorithm. For example, the
Amijo-Newton method [Gol.1] can be viewed as a combination of a sequence of transformations

with the Amijo gradient method. Consider the problem
min, f&), (3.1.1a)

where f:R" — R is strictly convex and twice Lipschitz continuously differentiable. Given an

estimate x; of the solution £, at iteration i, the Amijo-Newton method uses the transformation

x = F (x;)™y to construct the equivalent problem
min f @ ) y), (3.1.1b)

to which it applies one iteration of the Amijo gradient method. Thus, (i) it computes the search
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direction! d; = -V, f (F(x;)™y;), in the new coordinates, (ii) then it transforms this search
direction back to the original space by the formula A; = F(x,-)‘”d; = =F (x;)"VVf (x;), and (iii)
computes the step size A;, which is unity near the solution, using a suitably transformed Armijo
step size rule (see [Gol.1]). Setting x;,1 = x; + A;h; completes the construction of the next iterate.
As is well known, the result is a quadratically convergent algorithm. Similarly, it should be obvi-
ous that variable metric methods such as those in [Dix.1] can be viewed as combinations of
sequential linear transformation techniques with the method of steepest descent, which uses an

exact line search.

The above discussion shows that certain sequential linear transformations are effective in
conjunction with two gradient methods. Referring t0o [Nem.1], we see that sequential linear
transformations can be effective with any first-order method. It is shown in [Nem.1] that, for

problem (3.1.1a), the number of iterations required by any first-order method to reduce an initial
cost-error, f (xg) —min, ¢ g~ f (x), by a factor x € (0, 1) (for x near a solution £ ) is bounded
from below by 0(\’1? log(1/x)), where K is the condition number of the Hessian F (X ). For
problem (3.1.1a), the domain transformation x = F (£ )%y produces the equivalent problem
min, ¢ g f (F (£ )™y), which has an associated condition number of 1. Hence the bound on the

required numbser of iterations is reduced from O (VK log(1/x)) to O (log(1/x)). For example, the

method of steepest descent, which converges only linearly on problem (3.1.1a), converges super-

)

linearly on the transformed problem [Lue.1]. Since the point £ is not known a priori, a variable

metric method attempting to implement this reconditioning must use a sequence of linear

transformations approximating x = F (£ ) ™y.

' 1 is interesting to observe that the Newton search direction A; is the solution of the problem
min, (VF (), h )+ lhlR ),

which has the form of the Armijo gradient search direction finding problem, except that the norm (corresponding to F (x;) = /) is re-

placed by a new metric at each iteration. This fact influenced the naming of the variable metric methods which emulate Newton's
method.
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Experience with solving feedback compensator design problems [Pol.5], as well as optimal
control problems involving flexible structures [Bak.1], has shown that they can be very badly
conditioned with respect to first-order minimax algorithms, such as those described in [Pol.4).

These problems have the form of a composite minimax problem,

min, max g iAjx), (3.12)
where each 4; is an /; X n matrix, each function g IRV Ris continuously differentiable,
and p denotes the set of integers { 1,...,p }. Since the outer functions, g /(), encountered in
control system design are usually very well conditioned, the ill-conditioning appears to be caused
by the matrices A;.

In this chapter, we present a sequential linear transformation technique which is intended to

mitigate the ill-conditioning caused by the matrices A;. The technique is similar to one used
implicitly by Han in [Han.1]. Our technique was inspired by the observation that when all the
functions gf () in (3.1.2) are convex, any solution £ to (3.1.2) is an unconstrained minimizer of
the corresponding Lagrangian, /(x,1)4 ;. , /g /(A; x), where the L/ are optimal multi-
pliers. Although the Hessian of this Lagrangian is usually singular, a restriction to a suitable sub-
space can be used to recondition the problem min, . g- /(x,fl). Since, in many engineering
applications, only the matrices A; cause ill-conditioning and since second order derivatives of the
g7 (-) can be very costly to compute, we replace the Hessians of the g/(-) by identity matrices and
use linear transformations to improve the conditioning of approximations to the matrix
3 e pfjATA;. The resulting sequential linear transformation technique can be used in conjunc-
tion with any first-order minimax algorithm which produces estimates of the optimal multipliers.
Our variable metric technique is developed in Section 2. In Sections 3 and 4, we present theoreti-
cal results which show that our variable metric technique can improve the speed of convergence

of the Pshenichnyi method [Psh.1]. (Han proves only a global convergence of his related algo-

rithm [Han.1].) In Section 5, we present numerical experiments which show that our variable
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metric technique reconditions problems with respect to both the Pshenichnyi method and a new

interior point method [Pol.6].

3.2 DEVELOPMENT OF THE VARIABLE METRIC TECHNIQUE

We begin by providing a heuristic rationale for our method. Consider the general minimax

problem,

$ J
xnéulll' ?em;f (x), (3.2.1

where the functions f/(-) are twice continuously differentiable. We will denote the standard unit
simplex inR" by Z, & {peRPIY ;cpw/ =1, p20}, and the second derivative matrix
of f/() by F/(). We can associate with problem (3.2.1) the Lagrangian /:R" xZ, >R,

defined by

I, wW= 3 Wfik). (3.2.2)
jep ’

We recall the following result.

Theorem 3.2.1: [Cla.1, Dem.3, Joh.1, Pol.4] If ¥ is a solution to (3.2.1), then there exists a

fl e Z, such that

VAE. Q)= T RIVFIE)=0, (32.32)
jiep
Y Rifi@)-max fi®) = 0. (3.2.3b)
jep JeP

Now suppose that the functions f /(- are strictly convex. Then it follows from (3.2.3a) and
the convexity of /(-, L) that, if £ is a solution to (3.2.1), then it must also be a minimizer of the

function ¢ii Ol fi). Now, as we have seen in the Section 1, the conditioning of the problem
min, . je ¢ﬁ (x) can be improved by a linear domain transformation based on the Hessian of ¢(-).

Our method originated in the conjecture that this transformation would also improve the
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conditioning of problem (3.2.1). Han used this matrix as the basis for a variable metric method

for problem (3.2.1) in [Han.1].

We now retun to problem (3.1.2). The Lagrangian for problem (3.1.2) is given by

I(x, 1) = X ¢ p W g’(Ajx). Hence its Hessian with respect to x is given by

Lx,m= 3 WAJGi@Ajx)A;, (3.24)
Jep

where G/(-) denotes the second derivative matrix of g/(-). In many engineering optimization
problems, such as those mentiéned in the introduction, the functions g /(-) do not contribute to the
ill-conditioning of the matrix L (%, f1), at a solution. Furthermore, their Hessians may be very
difficult to compute. Hence we propose to replace the Hessian matrices G/(A ;j%;) in (3.2.4) by

l; x I; identity matrices. Thus, forany p € X,, let

RWw & 3 wafa;. (3.2.5)
JEP

We will show that a sequential transformation method based on the matrix R (i) can compensate

for the ill-conditioning introduced by the matrices A;.

To ensure that a sequential domain transformation method does not destroy the convergence
properties of the algorithm which it uses, there must be both an upper bound and a strictly posi-

tive lower bound on the eigenvalues of the domain transformation matrices. However, the

minimum positive eigenvalue of R (1;) may decrease to zero as y; — fl. Hence, we propose to
modify R (it;) by augmenting the small eigenvalues in its spectral decomposition, as follows. For
any € I, let Aj(u) 2 () 2 ... 2 A, (1) be the eigenvalues of R (). Let U, be any real uni-
tary matrix such that R (1) = U , diag( M), ..., Ay@)) U, andlet X ;) 4 max {A;Qv), €},

where € > 0 is a small fixed number. Then we define

ow) & U, diag(A,@), ... X,@))U. (3.2.6)
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Proposition 3.2:.1: The matrix-valued function Q () is well defined and continuous in p.

Proof: We begin by showing that Q (i) is well defined even though the selection of the eigen-

vector matrix U , is not unique when R (it) has multiple eigenvalues. Letting Ao 8 o, we define

D@ 4 {Jjen!Ihym>n0w =2ul - =Ame 1) >Ajum@@®} . G20
so that {A;()} ;e pgy is the set of distinct eigenvalues of R (1), with multiplicities m; ().
Next, let u; denote the j—th columnof U, j € n. Then,

RW= Y A [ Y Uik u};k—l ] (3.2.8)
je D) ke a0

is a spectral decomposition of R (). The matrix ¥’ s e m,) ujq*_]u}.;k_] represents a projection
operator which projects onto the eigenspace corresponding to A; (1), and hence it is independent
of the selection of U ,. Since

Q) 8 U, diag(M @), ... X,0)UT = X i,-(u)[ PIPINSL ] (32.9)
jeD@® ke m()

we see that it, too, is independent of the selection of U ,.

Now, suppose that the sequence {};}i2o < Z, converges to some p-te Z, asi 9. For

eachp;, let U; =[u,;, ..., u,;]be aunitary matrix of eigenvectors of R (i;y, so that

) TRy} Y ] . (3.2.10)

€ m(L)

o) = T Ajw)
je D) k
The sequences { Q(;)} 2 and { U; } ;2 are bounded, since the eigenvalues are continuous

and the matrices U; are unitary. Therefore, there exists an infinite subset X < NN, and matrices

- — - - )
Q and U = [ity, ..., it,), such that Q(;) > Q and U; = U as i — 0. Because U;UT =1, for

al i e N,UUT =1. Since [R(u;)—Aj@u) Ju;; =0, for j € n, and since the eigenvalues,
A;(), are continuous, [R (&) —A; () 1a; = 0 forj € n. Thus, U is a unitary matrix of eigenvec-

tors for R (). The matrix Q (j1;) can also be written in the form
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QW)= X _ [ p -X FITRRY(T7) VPR S 7 Y ] . (3.2.11)
jeD@) \ke mﬁn

Taking limits in (3.2.11) as{ — s, i € K, yields

Q0 = ) [ Z_xjn-l(l-l)l@u-xl@'ru-l]
jeD@W) (ke m@)

) ) [ pX _‘7j+k-lij1;k-l ] =0@. (3.2.12)
jeDQ ke mGu)

Since the sequence { Q (1;) } /2o is bounded and any accumulation point of this sequence equals

0 (ﬁ), it follows thatlim ; _, . Q (t;) = Q (j.-l.). and hence Q (") is continuous. O

We now provide an algorithm model which shows how to combine our variable metric
technique with any one-step, first-order minimax algorithm which produces multiplier estimates.

To simplify notation, we rewrite problem (3.1.2) as

min, ¢ g~ Y(x), (3.2.13)
where
vix) & max; ¢ , g7(4;x). (3.2.14)

Now consider any first-order minimax algorithm for solving (3.2.13) which generates estimates
of the optimal multipliers at each iteration. We can associate with the algorithm a y-dependent,
set-valued iteration map M ;R"” — R" x 2% such that, if { G, i) ) 21 is a sequence generated

by the algorithm on the problem min, . g» Y(x), then
(Xie1, His1) € M (x;) , (3.2.15)
foralli € N.

Forany ve Z,, let S(v) a Q(V)™. Then the function (S (V)y) can be written in the
altenative form (y-S)(y), which leads to the notation M y.gy) for the iteration map defined for

the problem transformed by S (v). Hence a variable metric algorithm for solving problem (3.1.2),
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based on the the iteration map M, and the transformation matrix § (v) has the form

Variable Metric Algorithm Model 3.2.1:

Data: xR, €%,,i =0

Step1:  Sety; =Su)'x; .

Step2:  Compute (Vis1, His1) € M s 04) 5

Step3:  Setx;, =S(L)Yis1 -

Step 4: Replace i by i+1 and go to Step 1. a
Note that the multiplier vectors do not require transformation because, for any invertible matrix
S, (x,fl) e R" xI, satisfies equations (3.2.3a-b) with respect to problem (3.1.2) if and only if

(5712, ) satisfies these equations’ with respect to problem min , ¢ g= W(Sy).

3.3 RATE OF CONVERGENCE OF THE PSHENICHNYI ALGORITHM

We will now summarize a number of results, established in [Pol.4] and Chapter 2, for a ver-
sion of the Pshenichnyi minimax algorithm [Psh.1] which uses an exact minimizing line search.
When applied to problem (3.1.2), with y(-) defined in (3.2.14), this algorithm has the following

form:
Algorithm 3.3.1 : (see Algorithm 5.2 and Corollary 5.1 in [Pol.4])
Data: xos; Y>0.
Step 0: Seti =0.
Step 1: Compute the search direction
h; = arg ;."éi%- }nea); giAjx)+ (A]Vgi(A;x), h Y+ Yt 2. (3.3.1)

Step2:  Compute 2 minimizing step size, A; € argmin 3 ¢ g W(x; + Ak;) .
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Step 3: Set x; 41 = x; +A;h;, replace i by i +1 and go to Step 1. O

Theorem 3.3.1: [Pol.4] If the functions g/ (") in problem (3.1.2) are continuously differentiable,
then any accumulation point X of a sequence {x;} 2o constructed by Algorithm 3.3.1 satisfies the

first-order optimality conditions (3.2.3a-b).

To show that the algorithm converges linearly, we need to introduce more restrictive

assumptions. Let the set of minimizers for problem (3.1.2) be denoted by
G 4 argmin, . g W(x). By analogy with nonlinear programming convention, we say that
strict complementary slackness holds at (% ,fl), where £ e &, fl € Z, and the pair satisfies
(3.2.32-b), if we have L/ > 0 if and only if g7(4;% ) = y(®).

Hypothesis 3.3.1: Suppose that

(i)fT the functions gf () are twice continuously differentiable,

(ii) there exist0< 1l <L <o such that, forall j € p,

1Ih<(h,Gig)h YSLWI?, Vz,heRY, (3.32)

(iii) strict complementary slackness holds for all % , L) where £ € G, € I, and % , L) satisfy
(3.2.3a-b).

It follows from Hypothesis 3.3.1 that (i) forany £ € G there is a unique optimal multiplier
l e Z, satisfying equations (3.2.3a-b), (ii) the set of optimal multipliers, associated with the set
of optimal solutions, G , is a singleton, { i }, and (iii) the set of indices of functions maximal at
2,7 4 {jepl g/(A;2) =y(®) ), isindependent of £ € G (see Proposition 2.5.1).

Let ji<..<j, be the | indices comprising 7, then we define the matrix
AT 4 (AT, AL). Leta 4 Rank(AT)andlet Z be an n x a matrix, the columns of which

form an orthonormal basis for Range (2 T). Then we have the following result, established in

Chapter 2 and [Wie.1).
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Theorem 3.3.2: [Wie.1] Suppose that Hypothesis 3.3.1 holds with respect to problem (3.1.2) and,
in addition,

(iv) I and L are chosen so that the scaling parameter, ¥, in Algorithm 3.3.1 satisfies

l c*[jE;P piATAl <y<L max 1Z7AJA;zi, (3.33)

where 6*[X ] denotes the minimum positive eigenvalue of the symmetric matrix X . If Algorithm
3.3.1 constructs an infinite sequence {x;}eg, then, (@) x; > X asi = o with% € 6, and (b)

either there exists anige N such thatx; =% foralli 2igor

limsup Yo =¥ P, . (3.34)
where
oty . JATA,
p 4 1-4 (Z; e ol '4/4)] (3.3.5)
L max IZTA}'A iZ1

jep
Following [Lue.1], we refer to the quantity limsup (y(x;41) — \?!) 1 (y(x;) - Q!) as the conver-
§ =
gence ratio of the sequence { W(x;) } ;2. The quantity p in (3.3.4) bounds the convergence ratio

of any sequence constructed by Algorithm 3.3.1 in solving any problem in the class defined by

(3.1.2) and the assumptions stated.

34 RATE OF CONVERGENCE OF VARIABLE-METRIC-PSHENICHNYI
ALGORITHM

We will refer to the algorithm obtained by inserting the iteration map of Algorithm 3.3.1
into the Algorithm Model 3.2.1 as the Variable-Metric-Pshenichnyi Algorithm. We will now
show that the Variable-Metric-Pshenichnyi Algorithm converges faster on problems of the form

(3.1.2) than Algorithm 3.3.1.



§34 RATE OF CONVERGENCE OF VARIABLE-METRIC-PSHENICHNYI ALGORITHM 52

For the transformed problem

min , ¢ g YSV)Y) , (3.4.1)

given apointy = S(v)"!x and av e Y7, the search direction computation (3.3.1) has the form
d(y,v) & arg min_ max gl S W)+ {A;SW)TVg/(4;SWy). d Y+ ¥ld P . (342

The result can be transformed back to the original space using the formula
h(x,v) 4 SWdy,v). (3.4.3)

Equivalently, A (x, it) can be computed directly using the variable metric defined by S (v) as fol-

lows:
h(x,v) = arg min max g iAjx)+{A]Vg @Az h ) —y(x) + %y {h, QWK ). (344)
€
Since the max function in (3.4.4) is strictly convex in &, h(x, V) is unique, and hence it also fol-
lows that A (-, -) is continuous.

Problem (3.4.4) can be solved by converting it to dual form by the same argument used in
Section 2 of Chapter 2. Let 6(x, v) denote the minimum value in (3.4.4). Then for any x € R"

and v € Z,, the search direction problem can be written in the following equivalent forms:

n>

0(x,Vv)

heR*

min, max g iAjx)+ (ATVg J(Ajx), h ) - y(x) + 4y {h,Q (WA )

huelig. '{réa)zc' j?p Wig/A jX)+ (A,TVg j (Ajx),h wix)1+%y{h, QA ). (34.5)

By Theorem 2.7.1, the max and min in (3.4.5) can be interchanged. Hence,

6(x,v) = max min ¥ W [g i(4;x)+{A]Vg Ja;x) h Y —yx) 1+ %y {h, QW)k)
e heR jep

A 1 . ,
max 3 W (g J(4;x) -yl - 50 T WATVg J@ixlgey (3.4.6)
Hed, jep ¥ JEP

where the last expression is obtained by solving the inner minimization problem?. Since the

2 Several methods exist (see, for example, [Gil.1, von.1, Kiw.2-3, Rus.1, Hig.1]) for solving the positive semi-definite quadratic
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solution to (3.4.6) is usually not unique, we denote the solution set by

Ux,vy@agmax T wig "(ij)-W(x)l-zll T WAV iAoy . 3.47)
ke, jep Y jep

The set-valued function U(:, ) has the following properties: (i) it is upper semi-continuous in the
sense of Clarke [Cla.1] and compact-valued; (ii) for any minimizer £ of (3.1.1a) and any v e Z,,
U ,v) is the set of multiplier vectors which, together with £, satisfy equations (3.2.3a) and

(3.2.3b), (iii) under Hypothesis 3.3.1, U ¢, )= {R }, asingleton, (iv) any multiplier vector

K e U(x, V) yields the unique solution to the primal problem (3.4.4), according to the formula

h(x,v)=- %Q W™ T WATVg J4x). (3.4.8)
JEP

Steps 2 and 3 of the Variable Metric Algorithm 3.2.1, using the iteration map of Algorithm
3.3.1, can also be performed in the original space without affecting the sequence of iterates pro-

duced. We therefore present it in this form to simplify proofs.

Algorithm 3.4.1:

Data: xo, Y>0, € 2,;, €e>0,i=0.

Step 1: Compute the multiplier vector, p; € U(x;, i;-y).

Step 2: Compute h; = h(x;, 1;-1) using (3.4.8).

Step 3: Compute the minimizing step size, A; = argmin s ¢ g V(x; + M%) .

Step 4: Set x; .y = x; +A;h;, replace i byi +1 and go to Step 1. a
We will now establish several properties of Algorithm 3.4.1.

Theorem 3.4.1: If the functions g/ (-) in problem (3.1.2) are continuously differentiable, then

any accumulation point ¥ of a sequence {x;} 2o generated by Algorithm 3.4.1 satisfies the

necessary conditions (3.2.3a-b).

program (3.4.6).
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Proof: This follows from the proof of convergence for Algorithm 3.1 in [PolL4] and the fact that
the scaling matrices S (;-1) are uniformly bounded, i.e. - that forallv € Z,,
(max AJA,h % kP SISMrPse P, (3.49)
jep
a

Next we will show, under assumptions of convexity and complementary slackness, that the

sequence of iterates, {x;} =0, constructed by Algorithm 3.4.1 converges to the solution set 6 and
that the comresponding sequence of multiplier vectors, {j;};=., converges to fi, the unique
optimal multiplier associated with the solution set & . We will use the notation zi—>Z W0
represent the convergence of a sequence {z;}ioo € R" to a set Z CR", ie. -
lim; ,.miny ez lz; —=yl=0.

Theorem 3.4.2: Suppose that Hypothesis 3.3.1 holds and that Algorithm 3.4.1 generates

sequences of iterates { x; } ;oo and of multiplier vectors { W; } i=0. Then,

(@) there exists an open set W O & such that W =0 for every j ¢l and all

He UW, L),
(b) there exists £ € G suchthatx; > % asi = oo,
(c) there exists ig € N suchthatx; € £ + Range @A Tyforalli 2ig,

dp;, »>fasi oo,

Proof: (a) Since A (-, -) defined in (3.4.3) and 6(-, -) defined in (3.4.5) are uniformly continuous in
t

(x, v) on compact sets in R" x I, and since both functions are zero on the set G x £, (a) fol-
lows from the same argument as Proposition 2.5.2.

() Let AT 2 (AT, .., AT). Equation (3.4.8) and the fact that Range(AT) is invariant under
S(v) for all v e Z, imply that the sequence of search directions { k; } 2o is contained in the

range of A7. Therefore, the sequence of iterates { x; } /2o is contained in the set
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V 8 (xo+Range(AT) N (x e R" ly(x)syxo) } . (3.4.10)

The set V is compact by the same argument as in the proof of Theorem 2.5.1, and therefore the
set { x; } /2 converges to the set of its accumulation points. By Theorem 3.4.1, these must

satisfy the optimality condition (3.2.3a-b). Since y(*) is convex, these necessary conditions are

sufficient for optimality, implying that x; = é.

From part (a) of this theorem, h(x,v)e Range(AT) for all xe W and all ve I,.

Because x; » G, there exists ige N such that x;e W for all i> i, Hence,
{x: )i, € x;,+Range(AT), and x; = (x; + Range A 1) N G .

We show that th:s limit set is a singleton. Suppose xy,x; € (x;,+ Range AN)NG.
Then, since (') is convex, the entire line segment between x ind X2, [x1,x2], is contained in
this set. Now, U((x1,x3],Z,)= {f } and i/ >0forall j e 7. Hence, g/(A;x) = y(x) =¥
forallx € [x;,x2]andall j € 7, by equation (3.2.3b). Since the functions g" () are strictly con-
vex, this implies that A;(x;—x3)=0 for all j € J. Since x| —x, € Range(A T), this implies
that x;-x,e€ Range(AT)ONull@)= {0}, ie - that x;=x,  Thus,
G N(x;,+Range(AT)) = (£ ) forsome£.

(c) From the proof of (b), x; € x;,+ Range(A T) =% +Range(AT), forall i 2i,.

(d) The set-valued map U (-, ) defined in (3.4.7) is upper semicontinuous in the sense of Clarke
[Cla.1] and compact-valued, uniformly on compact sets in R” xZ,. Since x; > £ € G by ()
andU(@,}:P)= {f }, this implies that ; — fi.. O

We define the function p : R*** — R by
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oY jep, AISTATA;S)
o) d1-L Z’E’T’T ki G4.11)
L max1z7sTAJA;sZ1
JEP

Note that p in equation (3.3.5) equals p(/), where / is the n X n identity matrix.

Theorem 3.4.3: Suppose that Hypothesis 3.3.1 holds and, in addition, (iv) ! and L are chosen so

that the scaling parameter, ¥, satisfies

oY RISQATASQ) <y< L max 1ZTs@)TAJA;sQ)ZI. (3.4.122)
jep

If {x:} 20 is an infinite sequence generated by Algorithm 3.4.1, then, either there exists an

ioe Nand% e G suchthatx; =% foralli 2ig or

timsup Y=Y s @y (3.4.12b)

2w -9
Proof: By Theorem 3.4.1(b), the sequence of iterates has a limit point ¥ € G . Assume that

x; #X% for all i € N. Hypothesis 3.3.1 and assumption (iv) of this theorem ensure that the

assumptions of Theorem 3.3.2 are met for the transformed problem,

min W(S@)y). (3.4.13)
yeR*

Since the range of AT is invariant under S(fl), the columns of Z form a basis for the range of

S()A 7. This fact and assumption (iv) of this theorem imply that assumption (iv) of Theorem
3.3.2 holds with respect to problem (3.4.13). This and Hypothesis 3.3.1 ensure that the assump-
tions of Theorem 3.3.2 are satisfied with respect to problem (3.4.13). The following result,
slightly stronger than Theorem 3.3.2, but valid under the same assumptions, is stated in Theorem

25.1:
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yf§ MR w(SQy)-¢ (34.14)

y € Range @)
where § & S()"'% for an arbitrary £ € & . Using the substitution y = S(1)'x and the fact
that A(S@)y.R)=S@)d(y,f1), (3.4.14) can be rephrased as follows. For any § > 0, there

existsaset V/ < X + Range(Z), which is open in the affine space £ + Range (Z), such that

min YCE+HMGE.0)N-9 506y, (3.4.15)
Ae R ‘v(x)_{",

forall x e V', x #X. Since (') is strongly convex, the min over R in (3.4.15) and in Step 3 of

Algorithm 3.4.1 can be replaced by a min over a closed interval C. With this modification, the

left hand side of (3.4.15) is continuous in (x, p), since A(:, -) is continuous. This implies that

there exists a neighborhood of i, D < Z,, such that

min YEHM@E. W)= 4 o50s@y . (3.4.16)
rec yx)- ¢

forallx € V' and p € D. Of course, since § was arbitrary,
limsup min Yo+ MG )= SpiS@L)).

A vx)-9¢ (3.4.17)

x 2%

x € £ +Range(Z)

By Theorem 3.4.2(c), x; € £ +Range(A T) =% + Range(Z) for large i. Then, since x; =%,
- ﬁ. and \V(x,' + Z..h,) =minj¢ ¢ \p(x,- + M;), (3.4.12b) holds. 0
The following comparison of the two convergence ratio bounds, p given by (3.3.5) and

p(S (f1)) given by (3.4.11), suggests that our variable metric technique results in a faster algorithm

than the original Pshenichnyi Algorithm 3.3.1.
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Proposition 3.4.1: If 6* [R(1)] > €, then p(I) 2 p(SRR)) .

Proof: Consider a spectral decompositon R({l)=UAUT, where U is unitary,

A 8 diag(M(Q), ... A@))and A 8 diag (A @), ... Aa(fl)). We have that

T ASQTATASQ)=SQT RQ)SQ) (3.4.18)

jep
=UAMUT(UAUT)U A%UT
=UAAUT.
Since 6*[R(L)] > €, we have that, for each j e n, either A j@) =A;@) or A;() = 0. Hence,
Y iepfi SQYAJA;S@Q) =U diag(1, .., 1,0,..,0)U,  which  implies that
ST jeph/ SQTATA;S@)] =1,and

ps@y 2 1-+ !

L maxlz7sq@)Tala;s @)zl (3.4.19)
JEP

Now,

{y,ZTS Q) ATA;S0)Zy )
T TATA. = i
IZTs @)7AJA;SQ)Z0 = max, .y

la;s @)zy 1P
TyeR P

- la;s @)z I 3.420
TR ImF G420

since the orthonormality of the columns of Z implies that 1Zyll = Iy [l for the Euclidean norm.

Making the substitution z = S(fl )Zy yields

T T IAjZ'z
1ZTSQ)TAJA;S@)Z0 = max —F——
z € Range Z) IS(ﬂ.)"z |2
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IA jz “2
= max _—
z € Range(Z) lQ m)uz l2

lAjZ I2

= max —1 (3.4.21)
reRage@) (7,00 )

Substituting (3.4.21) into (3.4.19) yields

|
pS@Y 4 1~ min (’lez)’):je p.z e Range(2) }. (3422)
j

By inspection, p(S (1)) is never greater than

|

p(l)=l—%min (zif(lz)z)ljep,y,zeRange(Z),Iyl|=|zl=1 . (34.23)
Y |

a

The difference between p(/) and p(S(fl)) can be quite significant, as the following example

shows.

Example 3.4.1:  Suppose that a minimax problem involves two scaling matrices,
10 102 0
59:] [5°8].

and that pl =p2=1% and I =L = 1. The rate constant for the unscaled Algorithm 3.3.1 is
p(I) =0995, whereas, under rescaling, it is p(S(1))=0.5. This suggests that
[ 1og 1071 /log p(I) ] = 460 iterations of the Pshenichnyi Algorithm 3.3.1 would be required to
achieve a ten-fold reduction in W(x)-¢ near the solution, while only

[1og 107! /log p(S()) ] = 4 iterations of the Variable-Metric Pshenichnyi Algorithm 3.4.1

would be required. O
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3.5 NUMERICAL EXPERIMENTS

We performed a number of numerical experiments to evaluate the overall behavior of the
variable metric technique. We compare the performance of the Pshenichnyi Algorithm 3.3.1 with
that of the Variable-Metric-Pshenichnyi Algorithm 3.4.1 and with Han's method [Han.1], which
performs domain rescaling by replacing the matrix R (11;) by ¥ ; ¢ pb/AJG/(x;)A;. In addition,
we compared the performance of the barrier function minimax algorithm in [Pol.6] with a
corresponding variable-metric-barrier-function method which we constructed in accordance with
the Variable Metric Algorithm Model 3.2.1. The barrier function method is based on the penalty
function

3 1

jep—a-gj(ij) ’ 3.5.1)
which is differentiable at all x for which y(x) < a. Aniteration of the barrier method involves an
indefinite number of inner cycles, each of which requires the evaluation of all functions and first
order derivatives. The rate of convergence of this algorithm has not been established and hence
we can only evaluate the effect of our sequential transformation technique on it through numeri-

cal experiments. The five algorithms were applied to the two problems below. An Ammijo-like

step size rule [Arm.1, Pol.4],
M =max { B*A; | wix; + A:B%h:) — wix) < ok;Br0Gx, 1) } (35.2)

with o, B € (0, 1), was substituted for the exact minimizing line search in Algorithms 3.3.1 and
3.4.1, since problem (3.5.2) can be solved in a finite number of steps. Quadratic interpolation
was used to determine a trial step size 7..-. In all of the experiments, the algorithm parameters
were setto & = 0.7, B = 0.9, ¥y = 1.0, and & = 107'° (in the definition of the matrices Q (). Since
in engineering applications, gradients and Hessians are frequently computed using finite differ-
ences, the evaluation counts in Tables 3.1 and 3.2 are tabulated as though the gradients and Hes-

sians of the functions g7(-) were evaluated by finite differences. The evaluation of a single func-
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tion g/(z) incurs one function evaluation, and the gradient Vg/(z) incurs an additional /; evalua-
tions. Thus, the total number of function evaluations required to obtain the information to com-
pute a search direction for the Pshenichnyi and Variable-Metric-Pshenichnyi Algorithms is
2 jep(lj+1). The evaluation of Hessians for use by the Han algorithm incurs an additional

%(17 + 1) evaluations per function g/(*).

Problem 3.5.1: Consider the simple problem min , o gemax { g'(4,x), g%A,x)} ., where
gl =yt +yZ+03-17-1, (3.5.32)
g2y =yt +y$ +(3+12-1, (3.5.3b)

and the matrices A, A, are given by

1000 O 10000
Ai=10 10 0| A,=[0 100]. (3.5.3c)
0 01010 0 010

An initial point of (1073, 0, 10, 0) was used. The minimum value of 0 is achieved on the sub-

space spanned by the vector (0,0, 0, 1). Table 3.1 shows the work required for the five algo-

rithms to achieve two given levels of accuracy in the value of ﬁl The units of work listed are
number of iterations, the number of function evaluations and the CPU time. Figures 3.1 and 3.2
plot the function values { w(x;) } against the number of function evaluations for the Pshenichnyi
and Variable-Metric-Pshenichnyi Algorithms. O

Problem 3.5.2: [Hoa.1] Consider the problem of designing a controller for the feedback system

in Figure 3.3 with plant,
1 5%485+10 35247544
Fer= (s +2)%(s+3) [ 25+2 3549548 |- (3.5.4)

Since the plant is stable, we can parametrize the controller by
C(x)=( -R(x,s)P(s))'R(x,s) where R(x, s) is a 2 X 2 matrix of rational polynomials in

the complex variable s, which are bounded and analytic for Re(s) <0. We chose to shape
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frequency
domain tracking error by solving the problem
. . . 2
min % max lH (jo, R(x,jo) IF , (3.5.5)

where € consists of six frequency points, equally spaced on a logarithmic scale,
{ 0.010, 0.029, 0.080, 0.240, 0.693,2.0 }, and }-Ir denotes the Frobenius norm. For this sys-

tem, Hoy(x,s) =1 -P(s)R(x,s). We used the following first order expansion of R (x , ),

_ | x1 x2 1 x5 x6
R(x,s)= [ 3 x4 ] G+10) + [x? 8 | (3.5.6)

The initial point xo =(0,0,0,0,1,0,0,1) was chosen, and our computations converged to the

minimum value of 0.025508S at the point

[-80.308718709. —4.4337113582, 84.132574000, ~31.534025985,

A
X

9.2348949849, —0.0051528236, -8.9338039187, 4.8550280952 ]

The work required for the algorithms to achieve two given levels of accuracy is recorded in Table
3.2. The values of y(-) are plotted versus the number of function evaluations for the Pshenichnyi

and Variable-Metric-Pshenichnyi Algorithms in Figure 3.4. a

Theorems 3.3.1 and 3.4.2 apply under the same assumptions to versions of Algorithms 3.3.1

and 3.4.1 employing an Armijo-like step size rule, except that the convergence ratio bounds are

given by
o4 1-apt OIPPRLYLY 357
L maxzTAJA;zI ' hh
jep
and

O'(X jcp A/SQYATA;SQ)]
p@Y) & 1-ap z,e:n — (3.58)
max IZ7S Q) 474;S @)z
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Table 3.3 presents the actual convergence ratios of the sequences constructed by the algorithms
under comparison on Problems 3.5.1 and 3.5.2, as well as the convergence ratio bounds derived
above. Table 3.3 shows that the variable metric technique reduces both quantities. The reduction
in computational effort corresponding to the decrease in the convergence ratios of the observed
sequences is evident from Tables 3.1 and 3.2. The reduction in effort entailed by even the slight
reductions in the convergence ratio bounds is also large. To show this, we have included in Table

3.3 the number of iterations which the algorithm convergence ratio bounds suggest would be
required to reduce y(x) -ﬁl by a factor of 10 near a solution, i.e. - [ log 0.1/logp ].

If a variable metric Oy () is based on Ry(1) 8 ¥ j < p WAJG/(Ajx)A), rather than R ()
as in Section 2, and if 6*[Ry(fl)] > €, the search direction of Algorithm 3.4.1 coincides with that

of Han's algorithm near G . A result similar to Theorem 3.4.3 holds for this algorithm with

|
Py = 1-—min {2, 0n @) ljep,zeRange(Z)}. (359

(z,AJG/(A;%)A)z )|

In general, py > 0, suggesting that only linear convergence is achieved despite the use of second
order information. This is born out by the strictly positive convergence ratios observed for ver-
sions of the Han algorithm using an exact minimizing line search. While a sequence {x;} con-
structed by the Han algorithm with a fixed step size of 1 converges superlinearly to a minimizer,
some iterations may produce an increase in y(-). It is likely that a descent algorithm based on
Han’s search direction will not be superlinearly convergent without the use of devices analogous
to the feasibility enhancing corrections of some algorithms for nonlinear programming (see, for

example, [May.1, Pan.1]).

3.6 CONCLUSIONS
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We have introduced a variable metric technique which substantially mitigates the ill-
conditioning produced in the composite minimax problem by the A; matrices. The technique
does not require the evaluation of second derivatives and can be used as described in Algorithm
Model 3.2.1 to speed the convergence of any first-order minimax algorithm which produces esti-
mates of the optimal multipliers. We have analyzed the effect of the technique on the rate of con-
vergence of the Pshenichnyi minimax algorithm. An upper bound on the convergence ratio was
obtained for the variable metric version of the algorithm which can be considerably smaller than
for the unscaled version. Numerical experiments verify the improvement suggested by the
decrease in the convergence ratio bounds. The variable metric technique yielded a dramatic
acceleration in convergence. The experiments also confirmed that the technique can speed con-
vergence of another minimax algorithm. The variable metric technique can be applied without
modification to a version of the Pshenchinyi algorithm for solving minimax problems involving

semi-infinite composite max functions [Pol.4] of the form ma); ¢(x,y), where Y C R" is a
y€

compact, but infinite set. The convergence rate analysis extends to this case as well.

3.7 APPENDIX

Affine Parametrizations in Control: We give two important examples of affine parametrization
in control system design. The first is in the the design of a compensator according to H ® criteria
(see [Pol.5)), and the second is the construction of a discrete time control which keeps a trajectory
within prescribed bounds. The resulting optimization problems involve composite functions with
the inner function affine and the outer function possibly nondifferentiable.

Consider the feedback system S (P ,C) shown in Figure 3.3 where the plant, P, has a stabil-
izable, detectable state space representation. Let U 2 {s e €lRe(s)>-0ay), with ay 20, and
let Ry(s) be the set of rational functions that are bounded and analytic in U. If N,D,‘l and
D/ IN; are right and left coprime factorizations of P, with entries in Ry(s), and

U, V., Ny, Up, V;, with entries in Ry(s), satisfying the Bezout identities [Des.1, You.1],
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then all compensators which ensure intemal stability of the feedback system have the form
C(R) = (V, =RN;) Y (U, + RD;) for some R with entries in Ry(s). The transfer function of the

closed loop system with such a compensator representation is given by

- N,RD,+V,D, N,RN,~N,V, N,RD;~V,D; N,RD,~V,D,

HR) = | D,RD;+D,U, —D,RN/+D,V, -D,RD;~-D,U, —D,RD,-D,U,|, (3.7.1)

N,RDi+N, U, =N,RN+N,V, =N, RD+V,;D; —N,RD,-N,U,

Referring to (3.7.1), we see that every transfer function in the feedback loop S (P,C) is an affine
Junction of the parameter R. Hence, referring to [Pol.5], we see that performance in command
tracking, disturbance rejection, plant saturation avoidance and stability robustness can be

expressed by inequalities of the form

max_ {6((G;R G, - F)jw)] -b; (@)} <0, (3.7.2)

we [0, o)

where G;, R, G,, F are matrices with entries in Ry(s) and by () is a positive, bounded, lower

semicontinuous function and © > 0 is large.

A time domain criterion such as performance in following a given trajectory can be

expressed in the form

, max  g(L7{(GiR G, —F)(s)d () )N <0, (3.7.3)
where g :IR* - R is a differentiable, convex function, e, denotes the k—th unit vector, and

G;, R, G,, F have elements in Ry(s).

The selection of an optimal compensator can be formulated in several ways, but, since it
may not be clear a priori that the design requirements are consistent, it may be desirable to

choose a compensator which minimizes the maximum violation of several such performance ine-

qualities.
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Computationally, one cannot deal with elements of Ry(s )**. Hence in [Pol.5, Sal.1], the
parameter R € Ry(s )™ of the compensator C(R) was parametrized in terms of a vector
xe R™, with n =12,3, ---, as follows. Define the matrices X; e R™*™,

i = 12,..,n, by filling them in order, row-wise, with the components of x, i.e.,

Xiles & )6 -twm+@-tnst » k€M, L €ng. (3.74)

where for any k € IN, k denotes the set {1,...,k }. Let p € R,, then [Pol.5, Sal.1] define

R, :R™"™ — Ry(s )™ by

R, (x)(s) A i X (s_—_-_p_ﬂ

R i-1
& s+p+au) . (3.7.5)

It was shown in [Pol.5, Sal.1] that any R with entries in Ry(s) can be approximated with arbi-
trary precision by an R, (x) for some x and n. Thus, we can expect to obtain solutions reason-
ably close to the optimum over Ry(s )™ *™ if we choose n large enough. Note that, with this
parametrization, the compensator parameter, R, (x), is a linear function of the design variable

vector, x

Substituting (3.7.5) into (3.7.1), and then (3.7.1) into the functions in the performance ine-

qualities (3.7.2) or (3.7.3), yields a function of the form, ma:)(7 ¢(Ax,y), where Y is a compact,
Y€

convex set in IR' for some ¢, A : R* = R™ is linear, and ¢ : R™xY — R is twice continuously
differentiable in x and continuous in y. (The maximum singular value function appearing in
(3.7.2), o(B), is not differentiable in B, but it can be written in the equivalent form
max{ {u,Bv)|lul=1, lvl=1}.) It was shown in [PoLd, Sal1] that the functions in
(3.7.2) and (3.7.3) are convex in the design parameter R. Thus, the optimal compensator design
problem becomes a minimax problem involving convex, nondifferentiable functions which are

composed with a linear function and has the form:

P1:
,g‘}{‘... ;ng ,mé”‘ O(Arx, yi). (3.7.6)
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Next consider a discrete time, time-varying linear system,

Xiv1 = Fix; + Giu;, Io=f, i=1,2,.,.N, 3.1.7)

where x; € R" is the state at time i and u € R™® is the control sequence. We assume that the
control is required to be bounded for all time, i.e., 4; € U, where U € R™ is compact. Suppose

that we wish to find a feasible control that, as much as possible, keeps the trajectory within a

prescribed tube, defined at i by Ix — £ ;1 < b;. Then we obtain the minimax problem

P2a: min max {Ix; -%;1-5;}, (3.7.82)

ueUieN

where Ul ({ueR™|yel,i=1,2.N}. But
i-1 -l i-l

x; =B;X+Au 8 [IF;ix+ 3 TI F;Giu. Hence (3.7.8a) is seen to be of the form
j=0 k=0 j=i-1-k

. H icA.
P2b: ,ﬂn{, gneaﬁ f'Au). ) (3.7.8b)
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\y,-S\?I+10'2 \II,'S{;I-FIO-‘

Algorithm :
Iterations Function Time Iterations Function Time
evaluations (sec.) evaluations (sec.)
Pshenichnyi 291 5,246 116 397 7,154 159
VM-Pshenichnyi 4 80 03 6 116 0.4
Han 3 98 02 5 12 03
Barrier 45 6,806 94 48 16,640 22.1
VM-Barrier 40 2276 48 43 2,812 57

Table 3.1: Numerical Results for Problem 3.5.1.
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v; Sy +1072 v; Sy +10°

Algorithm

Iterations Function Time Iterations Function Time

evaluations (sec.) evaluations (sec.)

Pshenichnyi 11628 976806 23179 11976 100603 2391.9
VM-Pshenichnyi 4 390 20 6 558 2.8
Han 4 1350 22 6 1902 3.1
Barrier 15 2,314,548 2,788.0 21 10,904,772  13,008.5
VM-Barrier 4 1422 7.1 11 4962 13.2

Table 3.2: Numerical results for Problem 3.5.2.



§3.8 FIGURES AND TABLES 70
Problem 5.1 Problem 5.2
Algorithm
Convergence Convergence Iterations Convergence Convergence Iterations
ratio ratio bound ratio ratio bound
Pshenichnyi 83 999979 109,646 9969 999994 383,763
VM-Pshenichnyi 67 697697 7 0805 937000 36
Han 0840 697697 7 0805 937000 36

Table 3.3: Convergence ratios and bounds for Problems 3.5.1 and 3.5.2.
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CHAPTER 4 |
A GENERALIZED QUADRATIC PROGRAMMING-BASED
METHOD FOR INEQUALITY-CONSTRAINED OPTIMIZATION

4.1 INTRODUCTION

We now consider the inequality-constrained nonlinear programming problem,
ICP  min (f%)fix)s0, Vjiep), @.1.1)

where p denotes the set of natural numbers {1,..,p } and the functions f/:R" —» R,
j € pu{ 0]}, are continuously differentiable. In [Pol.10], algorithms were proposed for the solu-
tion of problem (4.1.1) which obtain a search direction at each iteration by solving a natural
approximation to (4.1.1) in which each function f /(-) is replaced by the quadratic approximation
FI@)+{VFix), h Y+ %in, Hjh ), for some H; € R"* *", The resulting subproblem is a qua-

dratic program with quadratic constraints, which we will call a generalized quadratic program

(GQP):

Juin - { £+ {VF i), h )+ aln, Hin )l

i)+ {Vfix), hY+%{h Hin}<0 VYjep) .@.12)

The use of GQP subproblems in algorithms for the solution of (4.1.1) offers some potential
advantages over the use of quadratic programs. Information about the curvature of individual
constraints can be incorporated directly into the constraints of the GQP subproblem. If the
matrices H;; are positive definite and the current iterate is feasible, the resulting search direction
is a feasible descent direction. This chapter presents the first thorough analysis of convergence

and rate of convergence of an implementable GQP-based algorithm.
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There has been some theoretical analysis of GQP-based algorithms. The convergence of
conceptual phase II' algorithms is treated in [Pol.10]). Rates of convergence are obtained for
. GQP-based minimax algorithms in [Pol.9, 11) under assumptions of uniform convexity. It is
shown in [Pan.3] that, on uniformly convex problems, the norms of the search directions con-
structed by a conceptual GQP-based algorithm converge superlinearly to zero as the iterates

approach a solution.?

The GQP-based algorithms proposed in [PoL10, Pan.3-4] were conceptual, that is, they
assumed that the GQP subproblem is solved exactly. These algorithms were not implemented (to
our knowledge) because no finite step procedures for solving problem (4.1.2) were known
(Pol.10, Pan.4). Furthermore, (4.1.2) may not have feasible solutions if x is infeasible for (4.1.1).
In this chapter, we resolve these difficulties for the case of first-order information, where each H;

is taken to be a multiple of the identity.

Our GQP-based method approximates the solution to (4.1.2) by adding a correction to the
search direction of the Polak-Mayne-Trahan algorithm [Pol.7, Pir.1). The approximation is exact
under certain conditions, and requires the solution of only one quadratic program and a projection
operation. The method uses the Polak-Mayne-Trahan search direction when no solution to

(4.1.2) exists.

Because we set each H; in (4.1.2) to a multiple of the identity, the search direction at each
feasible point is a feasible descent direction. Hence, once the algorithm constructs a feasible
point, the inequalities

xS0 Viep and [ <fox), @.13)
hold for all subsequent iterates. This property is important in engineering design problems for

which function evaluations are extremely costly and for which designs failing to satisfy

) 'Phase I in the solution of (4.1.1) refers to the computation of a feasible point. Phase II refers to the improvement of this solu-
tion by a feasible, descent algorithm, which decreases the the value of the objective function while maintaining feasibility.

. *Quadratic constraints have also appeared in the subproblems of trust region algorithms [More.1). However, in these algo-
rithms, they function to limit the search direction, rather than to represent the constraints of the problem.
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specifications are unacceptable [Nye.1]. Other first-order algorithms satisfying these require-
ments include [Hua.1-2, Mey.1, Mif.l. Pir.1, Pol.4, Pol.7, Top.1, Her.1).

We compare the efficiency of our GQP-based algorithm with that of the Polak-Mayne-
Trahan algorithm, because the GQP-based algorithm can be viewed as a modification of the
Polak-Mayne-Trahan algorithm and because the Polak-Mayne-Trahan algorithm satisfies (4.1.3)
and has been shown to converge linearly in Phase II [Pir.1, Cha.1] under convexity assumptions.
We show that the GQP-based algorithm converges linearly with a smaller bound on the conver-
gence ratio of the sequence of cost values® than that obtained for the Polak-Mayne-Trahan algo-
rithm. Numerical experiments also show the new algorithm to be generally superior to the Polak-

Mayne-Trahan algorithm, and competitive with the feasible descent algorithm of [Her.1).

The GQP-based algorithm presented in this chapter accepts infeasible starting points, and a
linear rate of convergence obtains even if the sequence of iterates approaches feasibility only
asymptotically.

In Section 3, convergence and rate of convergence results are obtained for a local, concep-
tual GQP-based algorithm. In Section 4, an implementation of the local, conceptual algorithm is
developed. In Section S, the convergence and rate of convergence results are obtained for the sta-
bilized, implementable algorithm, and the results of numerical experiments are presented in Sec-

tion 6. The properties of the Polak-Mayne-Trahan algorithm are reviewed in the next section.

4.2 THE POLAK-MAYNE-TRAHAN ALGORITHM

The Polak-Mayne-Trahan (PMT) algorithm [Pol.7] is a phase I - phase II extension of the
Pironneau-Polak algorithm [Pir.1], which, in tum, is an implementation of Huard’s method of
centers [Hua.1-2]. The PMT algorithm is one of very few first-order phase I - phase II methods

for which the rate of convergence is known (see also [Pol.8]), and its computational behavior is

‘Recall that the convergence ratio of a sequence (x;},¢n which converges w0 £ is defined as
limsup ; _, u(f %x;01) =1 %% N/ (f %xr) - £ O ).
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quite competitive in this class. We will use the PMT algorithm as a benchmark for evaluating the
new algorithm. The PMT algorithm solves problems of the form
min { f%x)1 f/(x)<0, jep} (4.2.1a)

under the assumption that the functions f /:R" — R are continuously differentiable and the con-
straint qualification that the function max ; ¢ pf J(x) not have any stationary points outside the

interior of the feasible set.

We will use the following definitions. We denote the set of natural numbers { 1,..,p } by
p.andtheset {0,1,..,p } by pu0. The p smooth constraints f /(x) < 0in (4.1.1) can be com-
bined into a single nonsmooth constraint y(x) <0, where y(x) 4 max jepf J(x). Constraint
violation is indicated by the values of the function y,(x) 4 max { y(x),0} . Finally, we define

first-order convex approximations to the functions f /() at x by

Fi@)+ Vi), h )+ ¥drP ifjep

4.2.1b
(V£Ox), h Y+ Veylln I ifj =0, ¢ ‘

ff(hlx)é{

for some fixed y> 0. Note that f %0l x) = 0and /(0! x) = fi(x) forall j € p.
Algorithm 4.2.1
Data: x0; o,pe (0,1); y>0;i=0.
Step 1: Compute the search direction,
h(x;) & argmin jmax fimlx), (4.2.22)
and evaluate the optimality function,

e(x.-)éj:ggﬁof ith @) x) - wax:) . (4.2.2b)

Step 2: If w(x;) <0, set

A = max { Bl £Ox; + B*h (x:)) - £ %x;) S oB*6(x;) and y(x; +B*h(x)) S0},  (4.2.20)
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else:set
A =max { B* | y(x; + Bt (x,)) - w(x;)) S aftex;) ) . 4.2.2d)

Step 3: Set x;41 = x; + LA (x).

Step 4: Replace i by i+1, and go to Step 1.
O

Step 2 ensures that, once a sequence generated by Algorithm 4.2.1 has entered the feasible
region X & {x € R*|f/(x)SOVj e p ), it can never leave it. Referring to [PoL4] we see
that the search direction vector & (x;) can be computed in two steps. First one solves the dual of

(4.2.2a), i.e., the positive semi-definite quadratic program

max min ifith | x)=walx
uez,.lhen-jezpw"f( x) = Yx)

= max Y Wfiex) =y, (x) - Yayll Y Yy ij(x)lz , @4.2.3)
heljep jepo
for any solution W(x;). We denote the set of solutions to “4.2.3) by

Upp(x)Bargmax 3 W fix)-wu(x)-%yll Y W VFi@)I?. This can be done using
BEDm jep jepo

one of several methods [Gil.1, von.1, Hig.1, Kiw.2-3, Rus.1]. The unique primal solution, A (x;),

is then given by

hx)y=agmin 3 Wefitln=2 T wWeVrig). @2.43)
heR" jepuo jepo

From (4.2.3), we can write

0(x)= max ¥ Wi -w@-%r'l T wrie)P. (4.2.4b)
e :P"je P Jj& pJSo

The following theorem summarizes the properties of the optimality function 6:R” — RR,

the search direction function 4 :IR* — IR" used in the above algorithm.
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Theorem 4.2.1: [Pol.4)
(@) If® is a local minimizer for problem (4.1.1), then (% ) = 0.

(b) Foranyx € R",8(x) =0 if and only if there exists . € I, such that

. }ioain ‘@ =0, 4.2.53)
je€
,-E‘.,a IfiE@) = y.&). (4.2.5b)

(c) Both ©(:) and h (") are continuous.
Note that if X satisfies (4.2.5a-b) for some j € Z,,, and y,(¥) >0, then p° =0, and hence ¥
satisfies the standard first order condition for a local minimizer of y(-). If ¥ is a local minimizer
of (4.1.1), then U pp(% ) is the set of Fritz John multiplier vectors which, together with £ , satisfy
(4.2.5a-b).
Theorem 4.2.2: [Pol.4] If X is an accumulation point of a sequence { x; } i=o constructed by
Algorithm 4.2.1 in solving (4.1.1), then 8(x) = 0. Furthermore, if, for all x € R* such that
Y(x) 20, 0 ¢dy(x) (where oy(x) denotes the generalized gradient of () at x [Cla.1)), then
V(&) S 0.

It was first shown in [Pir.1] that an algorithm based on the search direction rule (4.2.2a)
converges linearly under convexity assumptions. Chaney [Cha.1] later established linear conver-
gence under slightly weaker assumptions. The following theorem is a variant of Chaney’s result,

accounting for the fact that Algorithm 4.2.1 uses an Armijo-type line search [Arm.1] rather than

an exact minimizing line search as in (Cha.1, Pir.1]. Let
Fi(x)23%i(xyax?, @4.2.6)

andg°émin[u°|ue Upp(®)).
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Theorem 4.2.3: Suppose that

() the functions fI(), j € pJO are twice continuously differentiable,

(ii) the set L & {x e R*lyx) Sy, (x0) } is bounded, and the necessary conditions (4.2.5a-b)
are satisfied at a single point, £ € X, at which the Mangasarian-Fromovitz constraint
qualification holds (i.e. - there exist k € R and 8> 0 such that (VFiR), h Y< -8 for each
jepsuchthatf/(%)=0),

(iii) for X as above, and with
Teu(Imlne Um®)) , @.2.72)

where for any L € 2,,+1.J(p.)é {jeplw/ >0}, there exists m € (0, y) such that

mih < (h, [ Y WFi@E )]h). (4.2.7v)
e

for every u € U pp(X ) and for every nonzero h € H, where
HA{nl{vfig).n)=0,Vjel }. 4.2.70)

If Algorithm 4.2.1 constructs a sequence {x;) ;2o in solving problem (4.1.1), then (a)

x; 9% asi = o, and (b) if Y(x;) S 0foranyi € N, then

O(y. \_ £0r2
limsup @)=l &) - o’ @4.2.7d)

== %) -f9%%)

forany M >max; ¢ po{ IF/(),v).
Inequality (4.2.7d) then gives an upper bound on the convergence ratio of sequences constructed
by Algorithm 4.2.1.

4.3 A CONCEPTUAL GQP-BASED ALGORITHM
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We begin by considering a conceptual, local algorithm for solving (4.1.1) which computes a

search direction at x; by solving the generalized quadratic program,
GQP(x): min {(Foalnlfimlxso vjep). @.3.12)
€ Ll

withx = x;.
Local Algorithm 4.3.1:
Data: x0, Be (0,1); ¥y>0;i=0.

Step 1: Compute the search direction,

h; =hGQp(x,-)é3‘r§:gp(f°(h Ix)Ifinlx)so vjep). (4.3.1b)

Step 2: Compute the step size,

A = max { Bl £ Ox; + B*hy) = £ %x;) < BAF ks | x;),
Wa(x; +Bh) -y (x) S B"[;,ng (Fiilx),0) -wx)1}  @3.10)

Step 3: Setx;41 = x; + Ak,

Step 4: Replace i by i+1, and go to Step 1.
(W]

Lemma 4.3.1: Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold, and let  be as defined

in assumption (ii) of Theorem 4.2.3. Then there exists a neighborhood V of £ such that GQP(x)

has a continuous solution, hgqp(x),forallx € V.

Proof:  Suppose that x € R" is such that there exists an ¥’ e R" satisfying f /(4" | x) < 0 for
all j € p. Then the set-valued map G(x)4 {h e R*| fi(h |x)S0, V j e p} is upper sem-
icontinuous at x. G (x) is compact since the functions f 4(-) are uniformly convex. Hence, by
the Maximum Theorem [Ber.1], the set of solutions to GQP(x) is a compact-valued, upper sem-

icontinuous set-valued map at x. Since GQP(x) is a strictly convex program, its solution set is a
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singleton, { hgqp(x)}. Therefore, the solution, h cqe(x), to GQP(x) is continuous at any point
x at which GQP(x) is strictly feasible.

By assumption (ii) of Theorem 4.2.3, there exist A € R® and >0 such that
(VfI@®),h )< -8 foreach j € J(£). Therefore, there exist ¢ >0 and a neighborhood, V, of £
such that f /(th | x) <0 for all x € V and j € p. Therefore, GQP(x) is strictly feasible for all

x € V. Inlight of the previous paragraph,  gqp(x) exists and is continuous in V.
@]

For any x € R" such that GQP(x) has a solution, we will denote the set of Fritz John multiplier

vectors associated with the unique solution, & gqp(x) by

Ucex) & {ne Tyl ¥ WVfithgoex)lx)=0,
jepo

T Wfiheoetx)lx)=0} . @3.19)
JEP

Consider the /,, penalty function, p (x) 4 ef %x) +y,(x) , where > 0. The proofs below
exploit the correspondence between minimizers of the constrained problem (4.1.1) and those of

the minimax problem,
Join_p(x). (4.3.2a)

As is shown in the following lemma, the solution to (4.1.1) is also a strict local minimizer of p ¢()

for sufficiently small €. Let

de(x) 8 a':‘geng!i{ef%h Ix)+max{0,f i lx)}) }, (4.3.2b)
and let
0:(x) Qe f Ude(x) | x) +max {0, Fi(do(x) )} =y, (x). 4.3.2¢0)

Recall that ;_Loémin {(Wlpe Upp@®)).
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Lemma 43.2:  Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold, let £ be as defined in
assumption (i) of Theorem 4.2.3, and let V be as defined in Lemma 4.3.1. Then, for any

g€ (0, W% (1~ %), there exists a neighborhood, W € V, of £, such that, for all x € W,

@ pex)2pR)+Umlx 2P and(b) dyx) = hgop(x).

Proof: (a) Assumptions (i)-(iii) of Theorem 4.2.3 ensure that the point £ satisfies the stan-

dard second-order sufficiency conditions for problem (4.1.1) [McC.1). In fact, they ensure that ¥

satisfies these conditions for the problem,
min { %)= Ymlx -2 Pl £ i) - Umlz -2 P50} . 4.32d)
xeR"

It follows from Theorem 4.6 of [Han.2) (see Theorem 4.8.1 of the Appendix for a restatement),
therefore, that £ is a strict local minimizer of p () ¥m(e+ 1)l - £ P, provided that

1/€>3; ¢ ju’ for some Kuhn-Tucker multiplier vector for the problem (4.3.2d), u € RP, asso-

ciated with £. Since the Kuhn-Tucker multiplier vectors for (4.3.2d) associated with £ are the

same as those of (4.1.1), we can construct a Kuhn-Tucker multiplier vector for (4.3.2d) from any

Fritz John multiplier vector, L € U pp(% ), as follows:

up=@l, .., WP/, (4.3.2¢)
because the Mangasarian-Fromovitz constraint qualification (assumption (ii) of Theorem 4.2.3)
ensures that p° 2 E° >0. Hence,if 1/e> lu I, = (1- g") / E°. then £ is a strict local minimizer
of pe(:)— ¥m(e+ DI - £ PP. This implies that p (£ ) S p (x) - Um (e + 1lix — £ I for x in some
neighborhood of £ .
(b) We recall that by Lemma 4.3.1, the solution A cqp(x) to GQP(x) exists for all x in a neigh-

borhood V of £. We will now prove that, for any e < p%/ (1 =19, de(x) = hgop(x) for all x in

a neighborhood of £ .
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We first show that, for x near £, the norm of some Kuhn-Tucker multiplier vector associ-
ated with the solution to GQP(x) is bounded from above by (1 — 1%/ u® We denote the set of
Kuhn-Tucker multiplier vectors for GQP(x) by

KT Gor(x) £ {u € REIVF Uhgopx) | x)+ 3 uiVFithgoptr)lx) = 0,
jep

j;pu"f ihaerx)x)=0} , @4.33)
for x e V. Since hcép(f) =0 and y,.(£)=0, an inspection of (4.3.1d) reveals that
Ugqe(®) = Upp(X ). By assumption (ji) of Theorem 423, E°> 0. Since Ugqp() is an upper
semicontinuous, compact-valued set-valued map at £ , there exists, for anyd e (0, E)' a neighbor-
hood, W5 < V, of £, such that > 50'5 for every € Ugqp(Wg). Now, every Fritz John
multiplier vector pe Ugqp(x) comesponds to a Kuhn-Tucker multiplier vector,
uy & @O, ... w0 e KTgqe(x). For such Kuhn-Tucker multiplier vectors,
luyly =(1-p%/p0<q -E°+8)/(;_1°-8) forevery p € Ugqp(W).

Because (i) for any 8e€ (0, W), there exists a neighborhood W3 of £ such that
min { lul;lu € KT gop(x) } <1 -E°+8)/(E°-8) for x € W3 (from the previous paragraph),
(ii) max ¢ p f /(" |x) <O for x € V and some &’ € R* (from the proof of Lemma 4.3.1), and
(iii) problem GQP(x) is a convex program, we can apply Theorem 4.9 of [Han.2] to conclude
that, for e<(@1%-8)/(1-°+8), hgqp(x) is the unique minimizer of the convex function
min 4 ¢ ge &f %d | x) +max {0, Fi(d |x)} forall x e W . (See Theorem 4.8.2 of the Appen-
dix for a restatement of Theorem 4.9 of [Han.2).) Hence, A GQpP(x) = d¢(x) forall x € W3 Since

& was arbitrary, such a neighborhood exists for any e < p%/ (1 - p%.
- - O

Theorem 4.3.1: Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold, and let % be as defined

in assumption (ii) of Theorem 4.2.3. Then, for any neighborhood, W, of X , there exists a neigh-
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borhood

Vw C W of X such that, if xg € Vw, the sequence {x;} ;¢ N constructed by Algorithm 4.3.1
remains in Vw and converges to % .

Proof: Let A () denote the iteration map of Algorithm 4.3.1. The function A (-) maps one iterate
into the next, i.e., x;4; = A(x;). The sequence { x; } ; ¢ ;v Will remain in a set Vw if the set Vw is
invariant under A (), i.e.,, A(Vv) € Vw. We now show that such a neighborhood Vw € W of £

exists.

Lete<p®/(1- K9 be arbitrary. By Lemma 4.3.2(a), there exists a neighborhood W ¢ of £
such that pe(x) 2p %)+ ¥m’llx - £ I for x € W,. For small enough & > 0, therefore, the set
Vw8 {x e Wlp(x)<pe(f)+8) is contained in W. By the continuity of p (), the set Vw is
a neighborhood of £ .

By Step 2 of Algorithm 4.3.1, withx; = A(xo) foranyxge V,
Pe(x1)=pexo) = €lf °(x1) = £ %x0)] + [Wa(x 1) = Wulxo)]
S holef (hoor(xo) 30+ max { f /haortxo) | 20, 0) - vux0].  (43.42)
By Lemma 4.3.2(b), h gqp(x0) = h¢(xq) forxg € Vw, and, hence,

Pex1) = pe(xo) S Aglef U o(x0) | x0) + max (Fithexd)lx0),0) - yi(xo]

= AoBe(x0) SO. (4.3.4b)

Therefore, p (x1) Sp ¢(x0) S p (% ) + 8, implying that A (Vw) € V.

Now we show that only £ can be an accumulation point of the sequence {x:}:encon-

structed by Algorithm 4.3.1, from an xg € Vw. Suppose that {x;}:ex convergesto X € Vw,

where X © N and X #%. Since, by assumption (ii) of Theorem 4.2.3, £ is the only stationary
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point for (4.1.1) in Vw, ¥ cannot be stationary for problem (4.3.2a). By Lemma 4.3.1,

£ %hee(x)| x)) is continuous in Vw, and therefore there exist 5> 0 and a neighborhood,
W < Vw, of X such that

Oc(x) <=9, 4.3.4¢c)

for all x € W’. Clearly, there exists an ig€ K, such that x; € W’ forall i >ip i € K. Let
M’ < oo be such that IF/(x)I S M’ forall x € W. Then,

FIGxi +Migop(x)) S £ (%) + MVFI(x;), hopn) )+ BM* A3k gop(x)? , (4.3.4d)
foralli € K,i >i( Hence,forj e pandA<1,
Fitx +Migopt)) = W) SA{ £i(x) + {VFi(x), hcqp(x;) )+ M’ Mh gop(x)I? — y(t3de),
since W,(x;) 2 f /(x;). ForA<y/M’,then

F/@i +Mgop() = W) SA{ £ix) + {VFiGx), hgop(x:) )+ Yerlh GQP(xi)lz -y.x) ]}

=M { fithoore) %) - wa(x) ) . (4.3.4f)

Taking the maximum over j € p,
Wa(x; + M gop(xi)) = ya(x) S l{,mea: {0.f i corx) x) } - \l’+(xi)} , 4.3.4g)

forallle (0,y/M']andi >ig,i € K. Setting j = 0in (4.3.4d),

1%t + Mrgop(x)) = £ %x) SA { {VFI(x), hgop(x:) }+ Yerlh cop(xi)P )

=M Ahoex) | x) (4.3.4h)

forA<yY/M andi € K,i > i, Inequalities (4.3.4g) and (4.3.4h) and Step 2 of Algorithm 4.3.1
imply that A; 2 By/M’. From Step 2 of Algorithm 4.3.1 and the fact that hgqp(xi) = h(x;) for

i>io,
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P e(Xiv1) =P e(x;) = po(x; + Aihgop(x)) = p o(x;)

Sli{efo(hcqp(xi)'xi) +ﬂa’; { O.fj(hcqr(xi)l x)} - ‘I’+(1i)}
sk {Gf o(he(xi)lxi)"’}‘fx’ {0.Fiex))x)) "\l'+(xi)}

= Ai0¢(x;) . (4.3.4i)

Thenfori € K,i > iy,
Pe(xis))~pexi)=p ¢ %Oe(xa) < -%}ﬁ . 4.3.4j)

Now pe(x;41) Spe(x;) for all i > iy by (4.3.4i). Hence (4.3.4j) implies that p /(x;) = — o as

i = . However, this is impossible, since {x;}; ¢ n is contained in the bounded set V.
Therefore, X #£ cannot be an accumulation point for the sequence.

Since Vi is compact, the sequence {x; }; ¢ n © Vv must converge to the set of its accu-
mulation points. We have shown that £ can be the only accumulation point for the sequence.

Therefore, the sequence convergesto £ .
a

Let ) 2 max { pOlp e Upp(®) ).
Theorem 4.3.2: Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold with £ as defined there,
that xg € Vw, with any Vw as defined in Theorem 4.3.1, and that Algorithm 4.3.1 constructs a
sequence {x;} 2 in solving (4.1.1) starting from a point xog€ Vw. Then, (a) for any

e<|._1°/(l-g°),

. Pe(xis1) =pe(X) m . €
limsup <1- BH min { l»-lo(— 1}, (4.3.52)

‘2 pex)=pe®) l1+e)’

and (b) if y(x; ) SOforanyige N,
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Oy, y_ £0/2
limsup &) -fO2)
%) -ro%%)

<1 -B(E%")ﬁ. (4.3.5b)

Unless ¥ is also an unconstrained minimizer of f %) (in which case, p° = 1), the bound in
(4.3.5b) on the convergence ratios of sequences constructed by Algorithm 4.3.1 is smaller than
the bound in (4.2.7d) for sequences constructed by Algorithm 4.2.1,

1- aﬁ@/ﬁ")ﬁg <1- 30% .

Proof: (a) Let positive € € (0, u°/ (1 — u%) be arbitrary. The proof of Theorem 4.3.1 gives us
a relation between the decrease in the penalty function p (x) at iteration i and the decrease

predicted by 0¢(x),
PeXis) =pelx) S %} 0e(x;) . 4.3.6)

for large i. Hence,

ee(xi )
Pex)=pe®)

Pe(Xis1) =P e(x:) < ﬂ limsup

limsup )
px)-puk) M ==

i =00

@4.3.7)

To complete our proof, we will make use of Theorem 2.3.3. This result provides an upper bound
on the right-hand side of (4.3.7). For this purpose, we will show that the assumptions of Theorem
2.3.3 hold. Assumptions (i) and (ii) of Theorem 4.2.3 ensure that assumptions (i) and (ii) of
Theorem 2.3.3 hold with respect to the minimax problem (4.3.2a) at £ . Next we turn to assump-

tion (iii) of Theorem 2.3.3.

We associate with the minimax problem (4.3.2a) the set of multiplier vectors U (£ ) consist-

ing of those L € I, such that

WeVr%®)+ T W (eVr%®)+Vri@)) =0, (4.3.82)
JEP



§4.3 A CONCEPTUAL GQP-BASED ALGORITHM 90

ef%@)+ T W {er'®)+1i®)) =pf). (4.3.8b)
jep

The sets U (£ ) and U pp(% ) are related as follows. Since y,(£ ) = 0, (4.3.8a-b) can be rewritten as

eVf®)+ T wWVri@)=o, 4.3.92)
JEP
T wri@)=0. (4.3.9b)
JEP

Then, since 1=p0=3F ;e p i/, €, pn',... , WP/ (e +1-pD e Upp(R) forany pe U %). It

follows from assumption (iii) of Theorem 4.2.3, that, with H as defined in Theorem 4223,

mlal < (h, [H =F%%)+ ¥ —“——F'(x >]h) VheH, h#0,43.102)

jept

forany p e Ug(X ). Hence forany p e U %),

mdnlt<{n, [uan°(£)+ T (eF'R)+FIi®)) ]h) VheH,h#0,4310b)
iep

where m¢ & min{m (€+1-p%lpe U,£)) =m (e+1-max {0lpe U£)]}). Hence,

assumption (iii) of Theorem 2.3.3 is satisfied at £ for the minimax problem (4.5.1), and it there-

fore follows from Theorem 2.3.3 (and the fact that

Be(x) Shrgxg. _max g/ @)+ (Vgitx), h )+ %1 +eninl? -pex),

where g/(x) 8 ef %x) + fi(x) for j € p and g%x) A ef %x)) that

0(x;) min{me,(l-'.e)y} .
Pex)=peR) (1+ey ' @.3.11)

limsup
i =»oo

Combining (4.3.11) with (4.3.7) yields

P e(xie1) = pe(x;) m min { me, (1+ S)Y]
<-—
pex)-p) M a+ey

limsup
{ =) oo
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min{m./(1+¢€),¥}

4.3.
o 4.3.12)

=-B

Next consider any Re U R). As mentioned above,

€1, ..., W)/ €+1-p% e Upp(f ). Recall that u°4 max { p®lpe Upp(2) ). Then

€ =0
—Su, 3.
er1-p0 " @3.13)
and hence
m€=m(£+l-max{u°|ue Uz(f)})Zm-l%. “4.3.19

Substituting (4.3.14) into (4.3.12) yields

. =0 m (¢
min { me/ (4°(1 +)), v} S -PB-min { i°(1+e)’ll4‘3'ls)

Pe(Xis1) =P e(x;) < _ﬁ_
Pexi)=peX)

limsup

{ =00
Adding 1 to each side of the inequality in (4.3.15), we obtain (4.3.5a).
(b) Using the fact that p ((x;) = f %x;) fori > i,

. o) -r%R)
limsup
2 %) -f0%R)

m . €
~Bmin{ =—5—,1} . 3.
<1 BMmm{ 0+o } (4.3.16)

Since € < p0/ (1 — uO) is arbitrary, (4.3.5b) holds.
- - a

44 GLOBALIZATION AND IMPLEMENTATION OF THE GQP SUBPRO-
CEDURE

There are two issues associated with the use of the problem
GQP(x): min{fonIx)lfimlx)<0,vjep), @.4.1)

as a search direction subprocedure that must be resolved. The first is the issue of globalization.

When x is not feasible for (4.1.1) and is far from a solution to (4.1.1), GQP(x) may not have any
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feasible solutions. The second is the issue of implementation. Unlike the search direction prob-
lem (4.2.2a) of Algorithm 4.2.1, GPQ(x) cannot be transformed into a quadratic program to be

solved by known methods. We must find an efficient method for solving it in a neighborhood of

any solution £ of (4.1.1), where, by Lemma 4.3.1, GQP(x) is known to have a solution.

We will develop the globalized, implementable search direction subprocedure in three
steps. First, we will show that GPQ(x) is equivalent to a problem GQii(x) with linear equality
constraints and a single quadratic inequality constraint, determined by the constraints active at the
solution 1o GPQ(x). Second, we will use the PMT search direction subprocedure to predict
which constraints are active at the solution. This will allow us to construct a problem with linear
equality constraints and a single quadratic inequality constraint which approximates GQP (x).
We will show that, when the approximating problem has a solution, it can be easily obtained
from the PMT search direction vector A (x). Third, we will incorporate these observations in a
search direction subprocedure which reverts to the PMT search direction when the approximating

problem has no solution.

Because, the PMT search direction subprocedure correctly predicts the constraints active at
the solution to GQP(x) when x is near a solution to (4.1.1) at which strict complimentary slack-
ness holds, the globalized, implementable search direction subprocedure leads to a phase I - phase
II algorithm which has the same robustness properties as the PMT algorithm and the same rate of

convergence as the conceptual Algorithm 4.3.1.

Thus, we begin by developing an equivalent statement for GQP(x). For any x € R" and

setJ C p, we define the problem
P(x,J): hrgig_{f%h|x)|fj°(h|x)$0,fj(hlx)=fj°(h|x),VjeJ\jo}, 4.4.22)

where jo€ J is arbitrary. A brief inspection of (4.4.2a) reveals that the problem P(x,J) is

independent of the selection of jo € J. We will denote the solution to P(x , J) byd(x,J).
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Since the functions £/(-| x) all have the same quadratic term, Yylh I, the equality con-
straints in (4.4.2a) are linear. Hence, problem (4.4.2a) requires the minimization of a quadratic
function subject to linear equality constraints and a single positive-definite quadratic inequality
constraint. A subproblem of this form appears in trust region methods, and efficient methods for
solving it have been developed [Mor.1]. However, because f - | x) and f /%- | x) have the same
quadratic term, a simpler technique can be used to solve (4.4.2a) for our choice of J (see Proposi-
tion 4.4.2).

Assuming that (4.4.1) is feasible, we define the active constraint index set by

Jogp®)8 {jep | fithgeex)x)=0} . (4.4.2b)

(The set Jgop(x) may be empty.) A small amount of reflection confirms that the problem
GQP(x) is equivalent to the problem P(x,J cp(x)). (Problem P(x,Jgqp(x)) is what we
referred to above as GQP(x).) Hence, when the set J gqp(x) is known, the problem GQP(x) is

relatively easy to solve. Next, for any p e o4 let
Jwa{jeplpso} (4.4.32)

and let ppp(x) be any selection from Upp(x). In the following propositions, we will prove that

the use of
Tep(x) 87 (upp(x)) , (4.4.3b)
as an estimate of J gop(x) has several desirable consequences.

The following proposition shows that d(x , J pp(x)) can be obtained rather easily from & (x).
Recall that, for any x € R" such that GQP(x) has a solution, we denote the set of Fritz John
multiplier vectors associated with the solution by U gop(x) (see (4.3.1d)).

Proposition 4.42:  Suppose that problem P(x,Jpp(x)) has a solution d(x,Jpp(x)). Let
Jo€ Jpp(x) be arbitrary, let G, be a matrix with columns Vfi(h(x)|x)-Vfixh@)lx),

J € Jpp(x)\jo, let N, be a matrix whose columns Jform an orthonormal basis for the null space



§4.4 GLOBALIZATION AND IMPLEMENTATION OF THE GQP SUBPROCEDURE 94

of GI, and let P, & N, NT be the orthogonal Projection operator whose range is the null space of
GI. Then there exists at € R such that

d(x,Jpp(x)) = h(x) + P, Vf °h (x) | x). @44)
Proof: First, we rewrite P(x, J pp(x)) in the form
min { f % | x)I f7*h 1 x)<0, g, +GTr =0}, 44.52)

where jo e Jpp(x) is arbitrary, g, is the vector with elements ff(h(x)lx)-fj‘(h(x) | x),
Jj € Jpp(x)\ jo. Since g, + GTh(x) =0, it follows that if we set h = h (x) + dh in (4.4.5a), then
we must have G78h =0, which implies that 8k = N,y for some y. Hence, By substituting
8h =N,y into (4.4.5a), the équality constraint in (4.4.5a) can be eliminated. Upon expansion of

the functions f /(- | x) around A (x), (4.4.5a) becomes

min { £ % (x) | x) + {VF Ok (x) | x), Noy )+ ¥ydN,y Pl

Frlm@) | x)+{VFm@)lx), Ny Y+ 4iN,yP<0) . (4.4.5b)

If Jpp(x) = ©, then pfp =1, then V£ %%k (x)|x) =0 and the optimal solution to (4.4.5a) is

8h(x)=0. Now suppose that VfOh(x)lx)#0. This implies that pfp(x)<1 and that
J pp(x) # ©. Then the solution 3k (x) for problem (4.4.5b) satisfies the first-order condition

NI (1097 %)Ly + (1 - pOVF o)l ) +18h) | =0, (44.50)

for some p° € [0, 1]. Since N;NT8h(x) = P,8h (x) = 5h (x), we obtain from (4.4.5c) that

Sh(x) =y [poP,Vf Ok (x) | x) + (1 = WP, Vf Jon (x)lx)] . 4.4.5d)

Now, h(x), the solution to (4.22a), satisies the optimality condition
2 jepwo wip(x)VF i h (x)l x) = 0. Rearranging this equation (and dropping the dependence of

Hpp ON x) yields
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0 = pdeVf %h x) | x) + (1 = pfIVF /*(h (x) | x)

+ 3 udp [fo(h(x)lx)-Vf""(h<x)lx>]. @.4.5¢)

JjE€P
Applying P, to both sides of (4.4.5¢), we conclude that
0 = pfpP, Vf %h (@) x) + (1 = pfp)P,VF P (x) I x) , (4.4.50)

since P,(Vf/(h(x)|x)-Vf%h(x)|x))=0 for all j € p by the definition of P,. Since

pep<1,

0
ipp

0
- Hpp

P.Vfithx)lx) =~ 1 P.Vf%hx)lx). (4.4.59)

Substituting (4.4.5g) into (4.4.5d) yields

0
Sh(x) =y [u°-(l .. & ]P,vf O x)lx). (4.4.5n)
1-ppp
O

The search direction d(x , J pp;)) may not be a feasible solution for GQP(x ). The following

subprocedure retums the Polak-Trahan-Mayne search direction in this case.

Search Direction Subprocedure 4.4.1:

Step 1: Compute the Polak-Trahan-Mayne search direction & (x) and identify the set J pp(x).
Step2:  Compute the step, A (x) = P, Vf Oh (x) | x).

Step 3: Compute t € R by solving
min { £ %k (x)+1ar ) x)| Fih(x) +1ARGx)2)SO Vjep) . 4.4.6)
(If problem (4.4.6) is infeasible, set T = 0.)
Step 4: Setd(x) = h(x)+1Ah(x).

O
The minimization in Step 3 can be performed very quickly since it involves only quadratic

functions of a single variable. Note that Ak (x) of the Search Direction Subprocedure 4.4.1 is
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equal to T8k (x), with 8k (x) as defined in the proof of Proposition 4.4.2. The following proposi-

tion summarizes the useful properties of d (x).

We now prove that, if A (x) is feasible for GQP(x), then d(x) is a feasible direction promis-
ing as much decrease in the objective as h(x). If A (x) is not feasible for GQP(x), then d (x) pro-

vides as much improvement in the constraint violation as & (x).

Proposition 4.4.3:
@ IffIhx)|x)S0 for each j e p, then £ %d(x) x) <7 %h(x)| x) and fid(x)| x) <0
foreach j € p.
) Ifmax ;¢ f/h(x)|x)>0, thenmax j e, fidx) x)Smax ¢ p fih(x) | ).
(¢) IfGQP(x) is feasible and J pp(x) = J gop(x ), then d (x) solves GQP(x).

Lemma 4.5.1 shows that the assumptions of Proposition 4.4.3(c) hold in a neighborhood of
a solution £ to (4.1.1), provided that strict complementary slackness holds at £ .

Proof: (a) This follows from the fact T = 0 is feasible for the single-variable minimization in

Step 4.
(b) If problem (4.4.6) is feasible, then

max ;e pfid(x)|x)=0smax ¢ o fih(x) ). 44.7)
If problem (4.4.6) is infeasible, d (x) = h(x).

(c) Since Jpp(x) = Jgop(x), d(x,Jpp(x)) solves GQP(x). We show that Algorithm 4.4.1
computes  d(x,J pp(x)). Since  d(x,Jpp(x)) minimizes fO:lx)  over

{her"lfinlx)<0,jep),

f“°<d<x,fpp<x)»=hnéig_ (Fo% 1)l finlxy<o,jep)

< min {(F%h@)+tan ) ) Fithx) +tan(x)Ix)<0,j e p) .
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Since d(x, J pp(x)) can be expressed as & (x) + oAk (x) | x) for some 7o € R, problem (4.4.6) is
feasible and has the solution 7y, Therefore, d(x) = d(x, J pp(x)). a

4.5 A STABILIZED IMPLEMENTABLE GQP-BASED ALGORITHM
We replace Step 2 of Algorithm 4.3.1 with the Search Direction Subprocedure 4.4.1 to
obtain a global phase I - phase II method, and we establish its convergence properties.
Algorithm 4.5.1:
Data: xo;, Be (0,1); y>0;i=0.
Step 1: Compute a search direction d; = d(x;) by means of Search Direction Subprocedure
44.1.

Step 2: Compute a step size,

A= max { B*1 £ + Brd) - £ °x) S B4 O | ),

Valx; +B‘da)-v¢(x;)sﬂ"[§nea§[f idilx), 0} -w, )]} . @s.1)

Step 3: Set x;,y = x; + A;d;.

Step 4: Replace i by i+1, and go to Step 1.
O

The three cases listed in Theorem 4.5.1 are exhaustive. In case (b), 6x) = 0 implies that
0 e dy(x), where dy(x) denotes the generalized gradient of () at x. This case is normally
ruled out by assumption. The convergence result obtained for Algorithm 4.5.1 is slightly weaker
than that obtained for Algorithm 4.2.1 in Theorem 4.2.2. In case (c), where Algorithm 4.5.1 con-
structs a sequence which remains infeasible but has feasible accumulation points, not all of the

accumulation points are guaranteed to be stationary points of problem (4.1.1).

Theorem 4.5.1: Suppose that the functions f it) in (4.1.1) have continuous derivatives, that
Algorithm 4.5.1 constructs a sequence { x; } {2 in solving (4.1.1), and that X is an accumulation

point of the sequence.
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(@) Ifthere exists anig € N such that y(x;) < 0, then 8(X) = 0.

®) Ifyix;)>0foralli € Nand yX) >0, then 8() = 0.

(©) Ify(x;)>0foralli € Nand () =0, then ggnlfle(x,.)l =0.

Proof: First we derive bounds on Id (x )N for use in the proof of parts (a) and (b). Suppose that
the subsequence {x;};ex converges to X, for some subset X < N, and that 6(%)20. By

Theorem 4.2.1, 6(’) is continuous, and, by (4.4.2b), 8(x) SO for all x € R*. Therefore there

exists a 8 > 0 and a neighborhood, W, of X such that
0) = max (fibm)ln} -wx)<-8, (4.5.22)
for all x € W, We use this fact and Proposition 4.4.3 to show that Hd(x)I >0 for all x in a
neighborhood of %. |
Suppose that y(x) <0. In view of (4.5.2a), there exists a neighborhood, W, C W, of x,
such that y(x) < }4d for all x € W,. Then, forx e W,

max Fith@)|x)<6(x)+y,(x)S-%5<0. 4.5.2b)
J

From Proposition 4.4.3(a), we have that
Fod@) x) = yx) s FUhx) x) -y, (x) SB(x) <=5, (4.5.2c)

forall x € Wy Since y(x) < 149, if follows from (4.5.2b) and (4.5.2¢) that f 0@d(x)lx) <-13
for all x € W . Hence, since f %0l x) =0, and since £ %4 | x) is continuous in 4, uniformly in
x, there exists b” > 0 such that ld(x)I > b’ forallx € W,.

Now suppose that y(x) > 0. We proceed in a manner similar to that in the previous para-
graph. There exists a neighborhood, W, © W, of X, such that y(x) > Yy(%) for each x € W,
For each x € W,, either max; ¢ ,ff(k(x)lx)>0. or else max; ¢ ,fi(h(x)lx)so. In the

former case, it follows from Proposition 4.4.3(b) that
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;neaﬁf idmlx) -y,x) s ;pgf' i@ x)-ye) < -8. (4.5.2d)

In the latter case, it follows from Proposition 4.4.3(b) that

g\ea’;f id@x)|x) - wi(x) < 0-yi(x) = - %y@) , (4.5.2¢)
for all xeW, Therefore, for all xeW,,
max ;¢ pf /@d(x)|x) =y, (x)<-min { 8, ¥y®)}. Hence, since

max ; ¢ pf /(01 x) = y.(x) = 0 for x € W, and since the function max ; ¢ , f /(h | x) is con-

tinuous in A, uniformly in x, there exists b € (0, b’) such that {d(x)I > b forallx € W,.

Because the functions F %1 x) are strongly convex in k, uniformly in x, ld(x)l is also
bounded from above in W,. Because Id(x)! is bounded on W ; and the gradients V£ /() are con-
tinuous, there exist A>0 and a neighborhood, Wi of X, such that
Uj;fo(x +sAd(x))ds -Vfix)l<¥yp for all x e W3, Ae [0,A] and jepu. (We

assume without loss of generality that W3 € W, if y(x) S0 and that W3 € W, if y(x) >0.)

(@) Suppose that y(x;,) <0 for some iy € N. (This implies that y(x;) SO forall i 2 i and that
y(x) <0.) Then there exists an i} 2 igsuchthat x; e Wyforalli 2i,,i € K.Fori >i;,i e K

and A e (0, A),

£ %0+ Mdi) = £°0) = {VF %x), A Y+ ([ oVF Ox; +sAdy) — Vi Ox)lds , Ad;)
SA{AVF ), d )+ 1 [V I (x; + sAdy) = VS i x)lds }
<A { {VFox;), d; )+ %ypld;l }

<A {{Vr o), d; )+ ¥ia P} = Af %1 x;) . (4.5.32)
Similarly, forA e (0,A),i >iy,i € K,and j € p,

I+ M) SA{fiG) +{VF i), d; )+ 14, |I(:[ij(x£ +sMd;) - Vf i (x)ds1 }
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SA{FI)+ Vi), d;)+ Yepld ) } SAfild;|x;). (4.5.3b)
Taking the maximum over _1 € P, and using the fact that y,(x;) = 0, we obtain from (4.5.3b) that
Vel + M) = W) S Amax { Fid1%),0) =yx)], 4.5.30)

fori >iy,i € K and A e (OA]. It follows from (4.5.3a), (4.5.3c) and Step 2 of Algorithm 4.5.1
that A; > BX fori >iy,i € K. By Proposition 4.4.3(a).f°(d,- Ix)seq;) fori >iy,i € K, and
hence
£+ Midy) - £ ) S Mf %d; | x) S 0,8(x;) s - %PAS 4.5.3d)
fori >i,,i e K.
However, this is impossible, since f%x;) is monotone decreasing for i 2i, and

%) -f) Fox), as i -,f) oo, Thus, the necessary condition (4.2.5a-b), must be satisfied at X in this
case.

(b) Now suppose that y(x;)> 0 for all i € N and that y(x) > 0. Then there exists an i; € N
such that x; € W3 for all i 2i,,i € K. For any x € R" such that f /(h(x)| x) <0 for each
je€p, fi@@)|x)<0 for each j € p by Proposition 4.4.3a). For any x € R”" such that
max e pf/(h(x)|x)>0, max jepfid@x)|x)Smax ¢, fih(x)|x)SO by Proposition

4.4.3(b). Therefore, f /(d(x)| x) S y(x) forall j € pand x € R*. Hence,

1
FIG + M) = wax) = £I0) + (VF (), Ad; Y+ ([ (VF I, + sMdy) = ViF S x)lds , Mh (x:) Y- W (x)
0
SA{FIG) +AVFi@), di Y+ b ld =y (x:) }

SA{FI) +AVFi), di Y+ lld P -y, (x) )
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=A{fidlx)-vix)) . (4.5.42)

foralli >i;,i € K,Ae (0,A], and j e p. Taking the maximum over j € p, and using the fact

that 0 - y,(x;) S Almax ; ¢ of /(d; | %;) = o (x)],

Vo(x;i +Md;) = yu(x) S M}pg {(Fi@ix),0) —v,(x)]. (4.5.4b)
Similarly,
IO +Ad) - £ o) SAf %d; | ;) (4.5.4c)

foralli >i,,ie K,Ae (0, X]. and j € p. It follows from (4.5.4b), (4.5.4c) and Step 2 of Algo-
rithm 4.5.1 that A; > BA fori >i,,i € K.

From Proposition 4.4.3(b), if max ; ¢ p A ) lx)>o0,
max f4(d; 1) - wu(x) S max £ 4 %) - e 0 5 - 8. 4.5.4d)
Otherwise, max ; ¢ P f kep (x;) | x;) S 0, which, together with Proposition 4.4.3(a), implies that

maxy ¢ p f 4(d; | %) =y, (%) SO =y, (x;) . (4.5.4¢)
There exists i;> i) such that y,(x;)> %y, (x) for i >iy,i € K. Substituting (4.5.4d) and
(4.5.4e) into (4.5.4f),
Wi +Ad;) = Yu(x;) S = A min { yy(x:), 8} < - PAmin { %y.@), 5} (454D
fori >iy,ie K.
Since y(x;) is monotone decreasing, (4.5.4f) implies that y(x;) = — e as i — o, However,

X ¢
this is impossible, since y(x;) = Y(xX) as i — oo, Therefore, the necessary condition (4.2.5a-b)
must be satisfied at x.
(c) Now suppose that y(x;)> 0 for all i € N and that y(X) = 0. In this case, we do not show

that 8(X) = 0, but merely that liminf; _, .. 16(x;)| = 0.
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To obtain a contradiction, suppose that liminf; _, .8(x;)<—8 <0. Then there exists
i€ Nsuchthat 8(x;) <- & forall i >i,. By Proposition 4.4.3(a-b),

max j ¢ p f(d; | x;) Smax {0, max ;¢ , F iR (x) | 5) )

< max ( 0, 6(x;) + y.(x;) } . (4.5.5a)

Hence

max ; ¢ p f /(d; | x;) = yu(x;) S max { = y,(x,), 8(x;) } S max - y.(x;),~- 8} <0 (4.5.5b)

forall i >i,. This implies that y,(x;) is monotone decreasing, and, since Y(x) = 0, the sequence
{ wi(x) } i e v converges to 0. Therefore, there exists i, > such that V.(x) <% & for all

i >i,. Hence,

max j ¢ p £ /(h(x:) | x;) S 0(x) + yu(x) S— & + %8 <0, (4.5.5¢)
forall i >i,. From Proposition 4.4.3(a), then,

7% %) S £ ) %) S 0(x;) + yiy(x;) S— W8, 4.5.50)
forall i >i,. This implies that f %(x;) is monotone decreasing for fori > i ,.

Now we use the fact that X is an accumulation point of the sequence { x; } ; ¢ i It follows
from an argument similar to the ones used in parts (a) and (b) that there exists §> 0 such that

A > 1» foralli >i,,i € K. Combining this fact with (4.5.5d) and Step 2 of Algorithm 4.5.1,
%)~ fOx) S - %8, @4.5.5¢)
fori >i,,i € K. Since f%x;) is monotonically decreasing, (4.5.5¢) implies that f °(x;) = — oo

K
as i = . This is impossible, however, since f%x;) = f%X) as i = . The contradiction

proves that liminf; _, .. 16(x;)| = 0.
O

Recall the definitions of J gqp(x) and J pp(x ) in (4.4.2b) and (4.4.3b) respectively, and that

h gqp(x) denotes the solution to GQP(x).
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Lemma 4.5.1: Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold, and that (@v) strict com-
plementary slackness holds at the solution, £ , of (4.1.1), ( i.e. - for every p€ U(%) and jep,
W >0 if and only if f/(£) =0). Then, there exist a neighborhood, V', of £, K € R" and
8> 0 such that, for allx € V", (a) J pp(x) = J gqp(x), and (b) d (x) = hgqp(x).

Proof:  First we observe that assumption (i) of Theorem 4.2.3 implies that y(£ ) S 0. Assump-
tion (iv), above, implies that Upp(? ) is a singleton {fl } for some i € Z,,,, and hence that
7 =s@)={jeplfi®)=0)}.LetV be asdefined in Lemma 4.3.1.

(@) Because (i) Upp(x) = {fi }. (i) Upp(") is an upper semicontinuous, compact-valued set-
valued map, and (jii) L/ > 0 for all j € J, there exists a neighborhood Wo < V of £ such that
p/ >0 for every j e 7 and n € Upp(W ). From the definition of J pp(x) in (4.4.3b), J pp(x) 2 7

for all x € Wo. Now we show that Jpp 7. By strict complementary slackness, f /(£ ) <0 for
every jé? . Since () =0 and h(-) is continuous [Pol.4], there exists a neighborhood,
W1 C Wo,of £ such that f /(h(x)| x) = y,(x) <O forall j¢} andx € W,. It follows from the
definition of U pp(x) that u/ = 0 for every j¢J and every pe Upp(W,). Hence j¢J implies

j&Jpp(W ). Therefore,J pp(x) =J foreveryx e W,.

By a similar argument, we show that J cop(x) = 2 forall x contained in a neighborhood of
X. () Since hgee(f)=0 and y.2)=0, an inspection of (4.3.1d) reveals that
Ugp(X) =Upp(X)= {f }. (ii) Lemma 4.3.1 implies that h gqp(x) is continuous in W, and
hence U gqp(x) is an upper semicontinuous, compact-valued set-valued map. (jiii) For all j e 7.

A/ >0. Hence, there exists a neighborhood, W’y < V,0f £ such that p/ >0 forevery j € 7 and

Le Ugop(W'o). From the definition of U cor(x) in (4.3.1d), this implies that

f(hgorx)|x)=0 for j €} and x € W4, Hence, by the definition of J gop(x) in (4.4.2b)
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Jgqop(x) 7 for every x € W’o. Now we show that Jgop(x) < 7. By strict complementary
slackness, f/(2) < 0 for every j¢J . Since hgqp(2) = 0 and h gqp(:) is continuous, there exists
a neighborhood W*; © W’g of £ such that f /(hgqp(x)| x) <0 for every j¢J and x € W',
From the definition of U gqp(x), u/ = 0 for every j ¢J and every p € Ugop(W’;). Hence jé?
implies that j&Jgqp(W’'y). Therefore, Jgqp(x) =% for every x € W’,. Statement (a) hdlds
with V"’ =W, "W’

(b) This follows from (a) and Proposition 4.4.3(c).

(]
The following theorem asserts that, under an additional strict complementarity assumption,

the implementable Algorithm 4.5.1 has the same asymptotic rate of convergence as Local Algo-

rithm 4.3.1. Without the strict complementarity assumption, the bound on the convergence ratio

which can be obtained for Algorithm 4.5.1 is the same as that obtained for Algorithm 4.2.1 in

Theorem 4.2.3. However, an improved bound is not obtained for Algorithm 4.2.1 under this

additional assumption. Under the strict complementarity assumption, Upp(£)= {fL } for some
f € 3,1 and hence p° = uo = o,

Theorem 4.5.2:  Suppose that assumptions (i)-(iii) of Theorem 4.2.3 hold, that (iv) strict com-

plementary slackness holds at (X , 1) for every i € Upp(R ), (i.e. - for every j € P, f/>0 ifand
only if f/(2)=0), and that Algorithm 4.5.1 constructs a sequence {x; } = in solving (4.1.1).

Then, (a) x; =X asi — o, (b) foranye<fi®/(1-9),

limsup Plrin) =P ) <1-p2 min{ —&— 1 }. (4.5.6a)

iS= b ) =pe®) M %1 +€)

and (c) if y(x;) SO0 foranyige N,

Oy. .y _ £0r2
limsup [ &) =f &) 51-5%. (4.5.6b)
%) - %)
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Proof: (a) The sequence lies in the bounded set L defined in assumption (ii) of Theorem 4.2.3,

and hence it converges to the set of its accumulation points. By Theorem 4.5.1,
liminf; _, «16(x;)l = 0.

We prove that £ must be an accumulation point. Suppose not. Then there exists a neigh-
borhood W of ¥ such that {x; }; ¢ © L\ W. By assumption (ii) of Theorem 4.2.3, there is
no point in L \ W which satisfies (4.2.5a-b). Since L \ W is compact, this and Theorem 4.2.1(b)
imply that inf { 6(x)|x € L\ W } >0. But this contradicts the fact that liminf; _, .. 16(x;)] = 0.
Hence X must be an accumulation point.

Let V be as defined in Lemma 4.5.1. The iteration maps (see the proof of Theorem 4.3.1)
of Algorithm 4.3.1 and 4.5.1 coincide for x € V. By Theorem 4.3.1, there exists a neighbor-
hood V" < V” of X such that if the sequence { x; }; ¢ v enters V*”, it remains in V" and con-
verges to £. Since £ is an accumulation point of the sequence, it must enter V*”. Hence, the

sequence converges to £ .

(b) and (c) Since, by (a), {x;};en converges to £ and the iteration map of Algorithm
4.5.1 coincides with that of Algorithm 4.3.1 in the neighborhood V* of £ , the results of Theorem

4.3.2hold. Since Upp(£) = {1 },p0=p"=1°. o

4.6 NUMERICAL EXPERIMENTS
Algorithm 4.5.1 was compared with Algorithm 4.2.1 and the feasible descent algorithm in
(Her.1] (which also satisfies (4.1.3)) on several well-known inequality-constrained problems.

Table 4.1 summarizes the performances of the three algorithms on these problems. The results

for the algorithm of [Her.1] are quoted from that paper.

The algorithm parameters for both Algorithms 4.2.1 and 4.5.1 were set at

a=09,f=09,y= 10 in the experiments. To reduce the number of trial step sizes tested in
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the Ammijo step rule, quadratic interpolation was used at each iteration of both algorithms to

determine the initial trial step size.
The Rosen-Suzuki problem is problem 43 in [Hoc.1). See Figure 4.1 fora comparison of the per-
formance of Algorithms 4.2.1 and 4.5.1. (The y-axis label "Cost Error” of the figures refers to the

quantity, f%)—f%R)). Colville's Test Problems One and Two are problems 86 and 117,

respectively, in [Hoc.1].

Kuhn-Tucker Problem [Con.1}: This problem has a unique minimizer at which neither the

Kuhn-Tucker constraint qualification nor the Mangasarian-Fromovitz constraint qualification

holds. It serves as a test of algorithm robustness. The minimum value of —1 occurs at £ = ©,1).
Both algorithms converged % the solution from the feasible initial point x¢ = (0.25, 0.25). How-
ever, Algorithm 4.2.1 converged sublinearly, while Algorithm 4.5.1 converged linearly. See Fig-

ure 4.2, (]

Circular-Quadratic Problem: In this problem, the function approximations are exact for y = 1,

thatis, f /(h | x) = fi(x +h) for j € puo.
min { Y6 f +@+4) | %G+ 1 +x2)-250, %((x,- 12 +x$)-250 } .(4.63)

The minimum value of 4.5 occurs at £ = (0, -1); the feasible initial point xo = (1, 1) was used. O

Infeasible Problem: This simple problem was constructed to demonstrate the behavior of the

algorithms when the constraints cannot be satisfied.
min { —x) 1 (x;+10%+x2<0,(x,-102+x250 ) . 4.62)
The minimum value of 1 occurs at the origin. Both Algorithms 4.2.1 and 4.5.1 converged to the

solution from the initial point x¢ = (=10, —20). O

4.7 CONCLUSIONS
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We obtained a bound on the convergence ratio of sequences { fx;) } ; ¢ N constructed by
Algorithm 4.5.1 which is smaller than that obtained for Algorithm 4.2.1. On all of the standard
problems on which they were tested, Algorithm 4.5.1 far surpassed the performance of Algorithm
4.2.1 and was competitive with the first-order feasible descent algorithm of [Her.1). Search
Direction Subprocedure 4.4.1 was developed as a method for approximating the solution to the
GQP subproblem. The above facts show that the subprocedure can profitably be viewed as a
speed-enhancing correction to the method of centers search direction (4.2.2a).

4.8 APPENDIX
The following two theorems are special cases of Theorems 4.6 and 4.9 of [Han.2], used in

the proof of Lemma 4.3.2.

Theorem 4.8.1: (Han.2] Consider the problem
min (g)lgi)<0, vjep), @8.1)

and suppose that the functions g (-) are twice continuously differentiable.

If x € R”, together with a Kuhn-Tucker multiplier vector & € R}, satisfies the standard
second-order sufficiency conditions [McC.1], then, for any e < 1/Vial,, X is a strict local minim-

izer of the function eg °(:) + maxg /().
ji€p

Theorem 4.8.2: [Han.2] Consider the problem (4.8.1) and suppose that (i) the functions g/(-)
are convex and continuously differentiable, and (ii) there exists X € R* such that g’(x' ) < 0 for

allj € p.

If X € R*, together with a Kuhn-Tucker multiplier vector & € R}, satisfies the standard
second-order sufficiency conditions [McC.1], then, for any e < 1/ Ny, X is a global minimizer of

the function £g%() + max g/ (-).
jep
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The abbreviations in the table have the following meanings:

Problem Algorithm NF NG ___NDF __NDG FV
Rosen-Suzuki [Her.1] 7 27 7 21 43.81453
Algorithm 2.1 66 198 33 99  43.83851
Algorithm 5.1 6 18 3 9 43.82342
[Her.1] 15 54 15 45 4399907
Algorithm 2.1 132 396 66 198 -43.99912
Algorithm 5.1 20 60 10 30  -43.99927
Colville #1 [Her.1] 6 60 6 60 -32.03453
Algorithm2.1 265 2650 127 1270 -32.06142
Algorithm 5.1 12 120 6 60 -32.21449
[Her.1] 9 90 9 90 -32.34851
Algorithm 2.1 884 8840 436 4360 -32.34851
Algorithm 5.1 32 320 16 160  -32.34865
Colville #2 [Her.1] 36 190 36 180  32.81567
Algorithm 2.1 1840 9200 872 4360  32.81530
Algorithm 5.1 526 2630 246 1230  32.66952
[Her.1] 53 320 53 265  32.34897
Algorithm 5.1 1741 8705 324 1620  32.34906
Kuhn-Tucker Algorithm 2.1 92 184 46 92 -0.9009127
Algorithm 5.1 45 90 6 12 -0.92223418
Algorithm 2.1 6116 12232 3058 6116  -0.9900006
Algorithm 5.1 110 220 15 30  -0.9905035
Circular-Quadratic  Algorithm 2.1 10 20 5 10 4.526097
Algorithm 5.1 2 4 1 2 4.530063
Algorithm 2.1 54 108 27 54 4.500000
Algorithm 5.1 4 8 2 4 4.500000

NF: Number of objective function evaluations.
NG: Number of constraint function evaluations.
NDF: Number of gradient evaluations of the objective function.

NDG: Number of gradient evaluations of the constraints.

FV: Value of the objective function at the final iterate.
Each constraint was counted separately in the tabulation of NG and NDG. Bounds on the

variables, i.e., x/ < 0, were not included in the tabulation.

Table 4.1: Summary of Numerical Results
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CHAPTER 5
SUPERLINEARLY CONVERGENT GENERALIZED
QUADRATIC PROGRAMMING-BASED METHODS

5.1 INTRODUCTION
We consider the inequality-constrained nonlinear programming problem,

ICP  min {f'%x)lfix)s0.Vjep}, (5.1.1)

where p denotes the set {1,..,p } and each function f/:R* — R is continuously differenti-
able. In this chapter, we develop second-order algorithms based upon successive approximation
to the problem ICP, as proposed in [Pol.10). The search direction subproblem for such algo-

rithms is obtained from ICP by replacing all of the functions f /() by quadratic approximations,
Filx, H) 8 fig)+(VFit), x —x )+ % x -, Hitx -x)). (5.12)

where Hy = [H/, ..., HE] and each Hf € R" *" is a matrix approximating V3f(x,).! The result
is a quadratically constrained quadratic program which we call a generalized quadratic program

(GQP),

GQP(x, H):  min {f% |x.H) | fiGxlx, H)S0,Vjep). (5.1.3)

The GQP-based algorithms \;rlﬁch we develop are novel in their use of the full second-order
information. As a rule, the second-order information used by other algorithms is limited to an
estimate of the Lagrangian Hessian (or a submatrix thereof). The Lagrangian Hessian is a linear
combination of the Hessians of the individual functions. If exact second derivatives or finite
difference approximations are used, the Lagrangian Hessian estimate is generally formed by com-

bining the Hessians of the individual functions. If the Lagrangian Hessian estimate is updated as

'Note that this definition of £ /(- ] ) differs from that used in Chapter 4, not only in the addition of the argument H, but also in
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in a variable metric method, then the update is a function of vectors which are linear combina-
tions of vectors which could be used to update individual Hessian estimates. In both cases, the
Lagrangian Hessian estimate is formed by combining information which could be used to provide

estimates of the individual Hessians. Hence, these algorithms discard information about the

differences among the curvatures of the functions f /()2 In contrast, the GQP subproblem natur-
ally incorporates all of this second-order information. This information will not, of course,
enable GQP-based algorithms to converge faster than quadratically, but we undertook this
research in the hope that the use of this information would speed convergence when the algorithm

was far from a solution, where quadratic terms are not dominated by linear terms.

Algorithms based on GQP subproblems have been proposed before. In [Pol.10], GQP-
based algorithms are proposed, and a convergence theory is developed for them. Minimax algo-
rithms have been based on subproblems obtained in a similar way from the minimax problem
[Pol.9, Pol.11, Pan.3] and the constrained minimax problem [Pan.4).3 Rates of convergence are
obtained in [Pol.9, Pol.11] under assumptions of uniform convexity. It is shown in [Pan.4] that,
on uniformly convex problems, the norms of the search directions constructed by a conceptual

GQP-based algorithm converge superlinearly to zero as the iterates approach a solution.

In this chapter, we develop a comprehensive theory of convergence and rate of convergence
for a class of algorithms based on second-order GQP subproblems. Our convergence rate theory
shows that these algorithms will achieve rates of convergence ranging from Q-superlinear [Ort.1]
to Q-order 3/2, depending on the accuracy of the Hessian approximations. The results hold for a
class of algorithms characterized by an algorithm model and a set of generic conditions. The
assumptions made about the problem in our main theorem are weaker than the assumptions usu-

ally made in superlinear convergence theorems. Our convergence rate theorem requires neither

the origin of the first argument. ;

*Consider the fact that the Lagrangian Hessian consists of n2 numbers, while the individual Hessians contain (p +1)xn?
numbers.

*Quadratic constraints have also appeared in the subproblems of trust region algorithms [Mor.1-2). However, in these algo-
rithms, they function to limit the search direction, rather than to represent the constraints of the problem.
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strict complementarity nor linear independence of the gradients of the active constraints at the
solution. The sufficiency condition which it assumes is weaker than that in [Theorem 3.2 of
Rob.1], and the Mangasarian-Fromovitz constraint qualification used is also quite weak. How-
ever, the assumption made in our main theorem about the convergence of Hessian estimates,

Algorithm Property 5.4.7, is stronger than usual.

We also propose an efficient method for solving the GQP subproblem. The GQP-based
algorithms proposed in [Pol.9-11, Pan.3-4] were conceptual, that is, they assumed that the GQP
subproblem is solved exactly. These algorithms were not implemented (to the author’s

knowledge) because no finite step procedures for solving the GQP subproblem were known

[Pol.4, Pan.4].* We resolve this difficulty in two steps. First, the convergence rate theory which
we develop requires that the GQP be solved only to within a prescribed accuracy. Second, we
propose an efficient method for approximating the solution of the GQP to this accuracy. Our
approximation method requires the solution of one quadratic program and the inversion of a
(n+p)x(n +p) matrix. Our proof that the approximation method provides the required accu-

racy does rely on a strict complementarity condition.

The class of algorithms we describe are feasible descent algorithms for ICP. They are
shown to converge superlinearly. The only other such algorithms known to the author are those

in [Pan.1-2).

In Section 2, we present an algorithm model; in Section 3, we prove that algorithms which
conform to the model and which possess certain properties converge. In Section 4, we derive
rates of convergence for algorithms conforming to the algorithm model. In Section 5, we develop
a method for approximately solving the GQP and incorporate it into an example algorithm which

conforms to the algorithm model. In Section 6, we present the results of numerical experiments

“The GQP-based minimax algorithm of [Pol.9] was implemented, but because no efficient finite method for approximating the
solution 1o the GQP subproblem was known, a nonlinear programming algorithm was applied to solve the subproblem. Because no
stopping rule was available, the subproblem was solved o high precision at each iteration. As a result, the search direction computa-
tion consumed so much time that the algorithm's overall efficicncy was litle betier than that of a first-order minimax algorithm. The
convergence rate theory developed in [Pol.11] resolved this problem by including a stopping rule for the solution of the search direc-
tion subproblem which preserves the rate of convergence of the conceptual algorithm.
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with the example algorithm.

$.2 APHASE II ALGORITHM MODEL

In this section, we present an algorithm model for a class of feasible descent algorithms for
solving ICP. Each algorithm in the class is characterized by a search arc function, A (x , H), and

by the method used to construct Hessian approximations, H;. The search arc function,
A:R"xR"*C+n  pC([0,1], R"), (5.2.1)

maps the parameters (x , H') (which define the subproblem GQP(x , H)) into a piecewise continu-
ous arc in R". We also require that A (x , H X(s) be differentiable at s = 0. We give an example
of a search arc function in a familiar setting. An algorithm which improves on an iterate x; by
performing a line search in the direction h(x;,H;) has a search arc function given by
Ax , H)s)=x +sh(x,H).

We define I = [I,, ..., I,] € R**@* where ], is the n x n identity. Also, for compact-
ness we will write @ () for A(x, H)(:), suppressing the x and H dependence, and we will let a(s)

denote da(s)/ ds. We define y(x) 4 max; ¢, f/(x).

Algorithm Model 5.2.1

Data:  xpe R” suchthat y(xq)S0,Hoe R***®+D o Be (0, 1).
Step 1:  Construct a search arc g, = A (x;, H;).

Step2: Take the step length 5, to be the largest element s of the set
{1,%B%, 1 -%B*}, ¢ N such that

y(a(s)sO0, (5.2.2a)

F%as) - <s p(ldk(ow)jrgg& it +%a,0)1x,D, (5.2.2b)

where p(r) 2z 1 (1+1).
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Step 3:  Set x4y = ax(s:), update H;, replace k by k+1 and go to Step 1.
]

 The % preceding d,(s) in (5.2.2b) and (5.3.2b) was chosen for the convenience of our proofs; it

could be replaced by any positive constant,

In Algorithm Model 5.2.1, each iteration involves the computation of a search arc and the
selection of a step size along the search arc using an Armijo-like step size rule [Arm.1, Pol.4].
The step size rule differs from more familiar Armijo-type rules in (Pan.1-2] in two ways. First,
s =1, as well as s = 0, is an accumulation point of the set of trial step sizes. This allows a near-
unity step size to be accepted when s = 1 would yield a slightly infeasible point, and prevents the
degradation of superlinear convergence to linear. Second, the quantity on the right-hand side of
the inequality is a generalization of the usual Amijo-rule term sa{Vfx;), ,(0)) The
coefficient p(la, (0)ll) tends to zero as x; tends to a solution of ICP, which ensures that near-unity

step sizes satisfy (5.3.2b) for x; near such a solution.

To simplify the exposition below, we will use the expression “for x near y " to mean "for all
x in a neighborhood of y". We will also use the expression "for large k" to mean "for every
k e N greater than some ko € IN". Finally, we will have no need to distinguish among many of
the constants which appear below. To avoid accumulating long expressions for them, we adopt
the following shorthand. A single symbol X will denote any large positive real constant. Hence,
K +K =K and K2 =K. We will avoid trouble by refraining from subtracting X or dividing by
K . Similarly, a single symbol & will denote any small positive real constant.

5.3 GLOBAL CONVERGENCE

In this section, we prove a convergence result which applies to any algorithm which con-
forms to Algorithm Model 5.2.1 and which is based on a search arc function possessing certain
properties. We restate the Fritz John necessary conditions for optimality for ICP. Letting pLo

denote the set pu{0)}, we denote the standard unit simplex by
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Tou1 & (Re RIS ;e oo/ =1,020) . Note that we index the components of vectors

inZ,,, fromOtop.

Theorem 5.3.1 [Cla.1, Dem.3, Joh.1, Pol.d]: If X solves ICP, then there exists p € T, such

that
[ E N TE =0 (53.19)
,Ep Wri@=0. (5.3.1b)

Any feasible point which satisfies conditions (5.3.1a-b) is a stationary point for the ICP.

In order to show that an algorithm conforming oto Algorithm Model 5.2.1 converges, we
must assume that the search arc function A (-, -) has the following properties. For any x and H,
the arc A (x, H) must begin at the point x, and the beginning of the arc must be both smooth and
tangent to a feasible descent direction. We will describe the variety of search arc functions pos-
sessing Algorithm Property 5.3.2 in Section 5. In that section, we will exhibit an example of a

search arc function and prove that it possesses Algorithm Property 5.3.2.

Algorithm Property 5.3.2: Consider any X € R"* and compact set H ¢ RP+*V*8 X8 The f5)

lowing hold for x near x and H € H (using the notation a QA(x yH)anda(s) =da(s)/ds).

(i) There existd>0and K > 0 such that,
las)- (a0 +a(0)s )1 <Ks2, (5.3.2a)
Sors near 0. Also,a(0) =x and 8<la(O)l <K.

(i) Ifx € R" is not a stationary point of ICP, there exists 8 > 0 such that
fic+%i@lx,D<-5 , (5.3.2b)

Sforall j € puo.
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Theorem $3.3: Suppose that an algorithm conforming to Algorithm Model 5.2.1 constructs a

sequence { xx } 4 e N Starting from a feasible point x o, and that
(i) the functions f /() are Lipschitz continuously differentiable,
(ii) the search arc function A (-, -) satisfies Algorithm Property 5.3.2,
(iii) the set { Hy } 1 ¢ N is bounded.

If the sequence x; has an accumulation point X, then X satisfies the Fritz John necessary condi-

tions for optimality (5.3.1a-b).

Proof: Suppose that the subsequence { x; } ; ¢ L, Wwhere L < NN, converges to X, but that ¥ does
not satisfy the necessary conditions (5.3.1a-b). Since the functions f/(-) are Lipschitz continu-

ously differentiable, there exists K > 0 such that

Fi@GN S Fi) + Vi), an(s) - xi }+ Klay(s) - x P

SFI@) + AVF i), 56, O+ IVF i () lag(s) — xi — 5@ (O + K lag(s) 5 8. 83)

using the triangle inequality. By Algorithm Property 5.3.2(i) and the triangle inequality, there

exists X > 0 such that

VS i @)l llag(s) = x, = 53, O + K lap(s) - x2S (W)l + K ) bag(s) — x, — 55, 803by K lsa, (O)FF
(Wil +K ) Ks?+ Ks?2+2Ks?,

fors near 0, large k € L and j € p. Substituting (5.3.3b) into (5.3.3a) yields, for some K > 0,

FI@N S Fix) +5{VFi(x), a,(0) )+ Ks?

S 2f J(xy + %3, (0) | x,. D)+ Ks 2, (5.3.3¢)
for s near 0, large k € L and j € p. Similarly,
£ %ai(s)) - £ %xy) S 25F %x, + %, (0) | x;, D) + K52, (5.34)

for s near 1. By the descent requirement of Algorithm Property 5.3.2(ii), there exist 8 > 0 such
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that
FiG+%a,0) %, D<-85, (5.3.5)

for j € pLo, s near O and large k € L. Since f/(x;) <0, substituting (5.3.5) into inequality
(5.3.3) yields

fi(a(s) <0, (5.3.6)

for j € p, s near 0 and large k € L. Similarly, since p(-)< 1,

£ %ai(s)) - £ %xp) S spa ONf Oxy + %23, 0) 1 x,, D, (5.3.7)

for s near 0 and large k € L. Inequalities (5.3.6) and (5.3.7) and Step 2 of Algorithm Model
5.2.1 imply that there exists 5 >0 such that s, 25 for large k € L. By Algorithm Property
5.3.2(j), there exists & > 0 such that 14, (0)l > & for large k € L. Applying this fact and (5.3.3) to
(5.2.2b) yields

£ %a(s)) = £ %) < siplap OB Oy + %4, (0) | x,, 1) S —s5,p(la, ()5 S -58%, (5.3.8)

for large k € L. Since f%zx,) is nonincreasing, (5.3.8) implies that f %(x;) — — . However, by
the continuity of f %), f %x;) = f %¥) as k = =, k € L. This contradiction proves that ¥ must

satisfy the necessary conditions (5.3.1a-b).
o

5.4 RATE OF CONVERGENCE

We now derive rates of convergence for algoriﬁms which conform to Algorithm Model
5.2.1 and which posses a further set of properties. The rate of convergence obtained varies from
superlinear to 3/2 depending on the accuracy of the Hessian approximations. In the remainder of
this chapter, we assume that the problem ICP satisfies the following hypotheses on the problem
ICP. In addition, we will introduce assumptions about the behavior of the algorithm, labeled

Algorithm Properties, as we need them.
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Hypothesis 5.4.1: Suppose that
(i) the functions f () are wice locally Lipschitz-continuously differentiable,
(if) there exist T, T2 > O such that thesetV & (x e R* | y(x)ST,and fOx)<T;} is
bounded and such that there exists a single point, £ , in the set V which satisfies the neces-
sary conditions (5.3.1a-b),
(iii) the point X is feasible.
The following definitions are needed in order to frame further assumptions about the prob-

lem ICP. We assume below that £ is as defined in Hypothesis 5.4.1.

Definition: We denote by 0 the subset of Z,.+1 which, together with X , satisfies (5.3.1a-b),

02 (pezul T wWVfig)=0and 3 Wri@)=0}. (5.4.1)
jepwo jep

Using the definition Ju)8 {j e plp/ >0}, we define the set of indices corresponding to

strictly positive multipliers,

S8 yIiw={jeplTnel :p>0}.
pe 0

(54.2)

. 4
Furthermore, we let B & [Span {VFrig)) 3 ] , the null space of the matrix with columns
Jje€

(vFig)) 5 We also define F/(x) 4 V?fJ(x) foreach j € puo, and we denote by F (x)
je

the matrix [F%x), ..., FP(x)).
O

Hypothesis 5.4.2: Let X be as defined in Hypothesis 5.4.1, and suppose that

(i) there exists m > 0 such that

mlhi®< (h, [ ) uipi(f)]h) VheB ,h#0, Vpel , (5.4.3)
€ po
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(ii) there exists d € R" suchthat fi(€)+{Vfi®),d <0 forallj € p.
Hypotheses 5.4.1-2 constitute a strengthened version of the standard second-order

sufficiency conditions for £ to be a local minimizer of ICP. However, this condition is weaker
than the strong second-order sufficiency condition used in [Cha.1, Theorem 3.2 of Rob.1]. In

their second-order condition, the inequality in (54.3) must hold for every

he {Vfi®)} jesu)* whichis alarger set than

. 4
B= N [SPaﬂ{Vf’(f)]jem)]-
pel

Hypothesis 5.4.2(ii) is equivalent to the Mangasarian-Fromovitz constraint qualification, which is

¢

quite weak.
In the following definition, we define an optimality (or merit) function which, as Lemmas
5.4.3 and 5.4.5 show, gauges the distance from the minimizer % .

Definition: We define a measure of constraint violation by y,(x) 4 max { y(x),0} , and we
will use the optimality function 6() discussed in Chapter 4 with change of sign (and symbol to

avoid confusion),
a - mi fi
o() £ y.(x) - min_ max £ Ix.D, (5.4.4)

where I = [/,, .., I,] € R**¢* and J, isthe n x n identity. The function (‘) is nonnegative
and is zero only at points satisfying the necessary conditions for optimality (5.3.1a-b). The func-

tion 6(*) can be rewritten using Theorem 2.7.1,

o(x)= min y(x)- 3 wWfix) +%l T Wi, (5.4.5)
BE Hu jep jepw o

We define analogous quantities for the GQP subproblem. Let

Vx |2, H) 8 max; ¢, fiGx |7, H) and (x| 3, H) 8 max; ¢ p (FiGx1Z,H),0) . We

will denote the quantity corresponding to 6(-) by
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oix 1%, H)= min y,x|x,H)-F Wiz, H)+wl T WVficlmH)P. 546
RE Ipa jep jepwo

g

We assume in the remainder of this section that Hypotheses 5.4.1-2 hold, with T;, T;,% and m

as defined there. We will also assume that an algorithm which conforms to Algorithm Model
5.2.1 constructs a sequence { x; } ; ¢ v Starting from a feasible point x o, and that the algorithm is
based upon a search arc function A (-, -) which possesses another set of properties, Algorithm Pro-
perties 5.4.6(i-iv) below. We will denote A (x;, H,) by a,. The convergence rate proof for such

an algorithm is structured as follows.

The main convergence rate theorem, Theorem 5.4.12, is proved by combining two facts,
which are proved in Lemmas 5.4.10 and 5.4.11, respectively. The first is that an unstabilized ver-
sion of Algorithm Model 5.2.1, i.e., an algorithm for which x; .1 4 a,(1), converges superlinearly

in a neighborhood of the solution. The second is that the step size s, converges to one.

Several relations are combined in the proof of Lemma 5.4.10 to show that the unstabilized
algorithm converges superlinearly. (1) Algorithm Property 5.4.6(iii) ensures that, at each itera-
tion, the search arc g, ends at a point a,(1) which is nearly stationary for the subproblem
GQP (x;, H;). This is a point at which the optimality function for the subproblem,
o(a,(1) | x,, Hy), is small. (2) By Lemma 5.4.9, this implies that a,(1) decreases the optimality
function o(") for the main problem ICP. (3) Lemmas 5.4.5 and 5.4.3 translate this decrease in o(*)
into a decrease in the distance from the minimizer £ .

We begin by relating the optimality function o(x) to the distance from the minimizer
ix - £ } using a nondifferentiable exact penalty function.

Definition: We will denote the [, exact penalty function for ICP by
pe(x) & o) +cwx) (54.7)
with ¢>0. The function p.() can be represented as a max function,

Pe(x) & max jep (£O0)+ef00). 1)) Letp’&min {1 lpe 0 ).



§54 RATE OF CONVERGENCE 122

a
Lemma 5.4.3 shows that £ is a local minimizer of the penalty function as well. The lemma

is used in the proofs of Lemmas 5.4.5 and 5.4.10.

Lemma 5.4.3: For any ¢ > (1 -;_L.o)/&", there exists 8> 0 such that p.(x) -p.(® )2 8lx - £ I

forx near % .
Proof: See Lemma 4.3.2. (|
Definition: We define

Ukx) 4 argmin y,(x) - 3, Wi+l T wricP. (5.4.8)

jep jepwn
Note that, from (5.4.5), U (x) is the set of multiplier vectors such that

ot) = wi(x) - T Wi +%l T WP (54.92)
JEP J € po

The following definition is used in the proofs of several of the lemmas.

Uz, H) & agminy,(x |3, H)- 3 WfiGIZ, H)+%l 3 wWVfix|%, H)ls 4.9p)
HE L jiep jepwo

O

The remaining lemmas are established in the Appendix. Lemma 5.4.4 is a technical result

which is used in the proofs of Lemmas 5.4.5,4.11 and 5.1.

Lemma 5.4.4: Foranyc > (1 - Eo), E°,
@min{u’lpe UR)} >1/(1+c)forx near 2,
(b) y.(x) < (1 +c)o(x) for x near %,
(c)\Th,(x |, H)SQ +c)o(x | X, H) forx near £ , X near £ and H near F ().

Lemmas 5.4.5 and 5.4.3 show that 6(x), which depends only upon first-order information at

x, can be used as a merit function to gauge progress toward £ . Lemma 5.4.5 is used in the proof
that a step size of one yields superlinear convergence (Lemma 5.4.10) and in the proof that the

step size converges to one (Lemma 5.4.11).
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Lemma 5.4.5: For any c >max {1, (1-u%/p°}, there exist § > 0 and K > O such that
do(x) Sp.(x)-p.(2)SKo(x), (5.4.10)

forx near%.

In order to be assured of a superlinear rate of convergence, the search arc constructed in
Algorithm Model 5.2.1 must possess further properties. For x near a solution, the arc A (x , H) is
required to be well-behaved at s =1 and end at an approximate solution to the subproblem
GQP(x, H). 1t is also required that, at a,(1), the arc be tangent to a descent direction for i;(-).
This property ensures that y(a,(s)) is sensitive to changes in the step size. Hence, when
A(x,H) is slightly infeasible at s = 1, feasibility can be recovered with only a small change in

the step size. The additional properties we need are as follows.

Algorithm Property 5.4.6: For any € > 0 and for x near  and H near F (%), there exist K >0

and 8 > 0 such that (with the notationa = A(x ,H)and a(s) =da(s)/ds),

() laGs)-aIsK 11=sla(l, (5.4.11a)

() Sla()-xPslaq)lskla()-xt, (54.11b)

(i) o@()|x,H)yskla()-xPse, (5.4.11¢)

(v) wa@)x, H)sy@)lx,H)+(@ -1sla)l, (5.4.11d)
fors near 1.

The right-hand inequality in Algorithm Property 5.4.6(ii) ensures that A (x , H)(1) converges to
% asx convergesto  and H convergesto F(%).
We must also assume that the Hessian estimates converge.

Algorithm Property 5.4.7: If an algorithm conforming to Algorithm Model 5.2.1 constructs a

sequence { x; ) ; e N which converges to X € R, then the sequence { H{ )} ; ¢ N converges to
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F/(X)for each j € puo.

Note that that Algorithm Property 5.4.7 is stronger than the assumption usually made about the
convergence of estimates of second-order information. Whereas the analyses in [Pan.1-2, Pow.1)
assume only that the reduced Lagrangian Hessian estimate converges, we assume that all of the
Hessian estimates converge to the Hessians of the respective functions at the solution. This
assumption will be satisfied if exact Hessians or secant updates [Bre.1, Pol.12] are used, but can-

not be guaranteed if variable metric updates are used.

We assume in the remainder of this section that an algorithm which conforms to Algorithm
Model 5.2.1 and which satisfies Algorithm Properties 5.3.1, 5.4.6 and 5.4.7 constructs a sequence

{ x¢ } £ e n starting from a feasible point xo. We will denote A (x;, H) by a;.

Lemma 5.4.8: Ask = o, (a) x; =%, () 6(x;) 20, (c) a,(1) =2 .

Definition: We define
nGx, H) 8 max max (IH/ -Fi)llY e S, 24, H)1)-xD)} , (5.4.12)
J O

where S (x, €) denotes the ball in R* with center x and radius €. For sequences { x; } x ¢ N and

{Hi )i e v we definen, 8 n(x,, Hy). .

The quantity n(x , H) is a measure of the error with which H approximates F (x’) for X’ near x.

Note that n(x, H) is equal to zero only if F (*) is constant near x.

Lemma 5.4.9: There exists K > O such that, for large k,
o(ax (1) So @) | x, Hy) + Knilay (1) -, 2. (5.4.13)

In Lemma 5.4.10, four relations are combined to show that an unstabilized version of Algo-
rithm Model 5.2.1, i.e., an algorithm in which x;,; = a;(1), converges superlinearly in a neigh-
borhood of the solution. Algorithm Property 5.4.6(iii) shows that @, (1) is nearly stationary for

GQP (x;, H,). By Lemma 5.4.9, this implies that a,(1) decreases the optimality function o(:).
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Lemmas 5.4.5 and 5.4.3 translate this decrease into the amount of progress made toward the solu-

tion.

Lemma 5.4.10: There exists K > 0 such that, for large k,

lay (1) - £ 1S K Vmax { g, la,(1) =0 ) lap(1)=x, 0. (5.4.149)

An immediate corollary is s Applying the triangle inequality to (5.4.14) yields superlinear con-
vergence of the sequence a;(1), la,(1)-£1So (Ix, -£1) .
The next lemma shows that the step size converges to unity.

Lemma 5.4.11: There exists K > O such that, for large k ,

la,(1) - x, P

s 21 -Kmax {ng, lay(1) - x, 1) ool
k

(5.4.15)

It is apparent from the proof of Lemma 5.4.11 (see the Appendix) that the interval of step sizes
which are guaranteed to satisfy (5.2.2a-b) shrinks rapidly as the sequence converges (with
la, (1) - x,!). This analysis suggests, and our numerical experiments confirm, that a careless line
search may miss this interval of acceptable near-unity step sizes. If this happens, the algorithm’s
rate of convergence is degraded to linear. If the algorithm were modified by replacing the vari-
able s in the search arc by (1 - ¥nla,(1) - x;I)s, then a step size of 1 would eventually be
accepted by the line search and only a single step size would need to be tested when very near the
solution. However, this would slow convergence when farther from the solution. We chose not
to disguise the computational difficulty caused by the narrowness of the interval of acceptable

step sizes in this way.
Theorem 5.4.12: (a) If H{ = F/(X) as k — o for each j € p\Xo, then

likmsup gy -2 0/0x, -£0=0. (5.4.16)
-~ 00
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(b) If, for some M > 1, some q 21 and each j € pwo, IH{ = Fi(x)IsM_ max b -xl,
izl,.q

then there exists K > 0 such that
limsup "Xg.,.l -z l/lxg -2 sk ’ $.4.17)
-5 a0

where T is the unique positive solution to t9*) = t9 = % = 0.

(©) IfH] = Fi(x;)for each j € p, then there exists K > 0 such that

limsup “xk-H -2l ka -2 'LSSK . (5.4.18)

Proof: We prove this theorem by combining the fact that the unstabilized algorithm converges
superlinearly (Lemma 5.4.10) with the fact that the step size converges to one (Lemma 5.4.11).
By the triangle inequality, Algorithm Property 5.4.6(i), Lemma 5.4.11 and Lemma 5.4.10, there

exists K > 0 such that

llx“l —f I < Iak(sk) - ak(l)! + lak(l)-i‘ ﬂ

<(1- Sg)ldk(l)l + la,‘(l) -zl

r

Ia,(l) -x,l

2
<€ |Kmax ( Nk ﬂa,‘(l) —x,ll } la (l)l 'a.g(l)' + lia,(l)-i‘ |
k

.

< [Kmax { ne, lag (1) = x, 1 } Hap (1) -x,‘IZ] + [K"fmax { e, lag(1) —x,1 ) Ha,(1) -xkl]

< kVNmax {n;, 1a,(1) —x,1 ) la,(1)-x,1 , (5.4.19)

for large k. We now estimate the size of the coefficient Vmax { n;, lax(1) - x;1} in (5.4.19) for

the cases (a-c).
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(a) Since x, and a,(1) converge to £, n; converges to 0. The result follows immediately from
(5.4.19).

(b) By the definition of 1, the triangle inequality and the local Lipschitz continuity of F/ ("),

N SKlx, =21+ _:2%0 max { IFix)-Fige) |l x € S, 2la, (1) -x0) } +1Fi(x) - Hjl
J

sKkla,(1)-x,.1 +M_ max q( -zl , (5.4.20)

for some X >0 and large k. By Lemma 5.4.10, la, (1) — x, ! < 2llx, — £ | for large k. Applying
this and the triangle inequality to (5.4.20), there exists X > 0 such that

M S2Klx, -Z1+M max {Lxpmi = x1)
i=l,..q
K nllax (3Ix,‘-£ll+ﬂx;,..-—£}
i=1,..q

<K max Ix_;-21, (5.4.21)
i=0,1,..,9

for large k. Substituting (5.4.21) into (5.4.19) yields

Ity =21SKY_max (b -21) by -20, (54.22)
w q

i=0,1,
for large k. Since x; converges to £, (5.4.22) implies that lx;,y —% 1< Ix, — % § for large &.

Hence, max {lx~21) =lx,, —21forlarge k. Substituting this into (5.4.22) yields
i=0,1,..¢9

sy 21 S KVl g -2 10 - 21, (5.4.23)

It follows from (5.4.23) and Theorem 3.1 in [Pot.1] that there exists K > 0 such that
likmsup gy =20/ e, -2 <K, (5.4.29)
-) 0

where 1 is the unique positive root of the polynomial 19*! -9 = 14,
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(©) By the local Lipschitz continuity of F/(), there exists K >0 such that

N S Kla,(1) - x;# S KIx, - £ |, and therefore (5.4.19) implies
lxge; =2V Klx, -2 s , (5.4.25)

for large k.

5.5 AN EXAMPLE OF A GQP-BASED ALGORITHM

Algorithm Model 5.2.1 and Algorithm Properties 5.3.2, 5.4.6 and 5.4.7 define a class of
feasible descent algorithms for ICP. Each algorithm in the class is characterized by its search arc
function, A (x, H), and by the method it uses to construct Hessian approximations. The choice of
a method for approximating the Hessian matrices is independent of the choice of search arc func-
tion. In this section, we describe the variety of admissible search arc functions. We will present

one search arc function in detail and show that it possesses Algorithm Properties 5.3.2 and 5.4.6.

First, however, we discuss methods for approximating the Hessians. In order for the global
convergence result, Theorem 5.3.3, to hold, the method used must ensure that the Hessian esti-
mates are bounded. Furthermore, in order for superlinear convergence to be assured, the method
must satisfy Algorithm Property 5.4.7. The use of exact Hessians or sufficiently accurate finite-
difference approximations yields an asymptotic rate of convergence of at least 1.5. Because of the
high cost of such approximations, it may be more efficient to use a secant method [Bre.1, Pol.12]
to update the Hessian approximations. The secant method of [Pol.12] forms Hessian estimates on
the basis of gradients from the past n iterations. By Theorem 5.4.12, such a scheme has a poten-
tial rate of convergence of T where 1 is the positive root of the polynomial t**! —t* -1, Vari-
able metric methods are the most commonly used means for updating Hessian approximations. A
variety of updates can be considered for use in GQP-based algorithms because the Hessian
approximations need not be positive definite. However, it is not clear that any variable metric

update will ensure that Algorithm Property 5.4.7 is satisfied.
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We now discuss search arc functions. Algorithm Properties 5.3.2 and 5.4.6 place restric-
tions on four parts of the search arc function: the initial point A (x , H)0), the initial direction
dA (x , HX0)/ds, the final point A (x, H)1) and the final direction dA (x , HX1)/ds. Hence, a
search arc function can be defined by an algorithm which, given x and H, computes suitable
points and directions and assembles them into an arc. These points and directions can be com-

puted in various ways.

Algorithm Property 5.4.6(iii) specifies that the arc A (x , /) end at a good approximation to
a stationary point for the subproblem GQP(x,H). Any method for nonlinear programming
could be used to obtain such a point. However, the method used should satisfy (5.4.11¢) in a
bounded, and preferably small, number of iterations. This limits consideration to superlinearly
convergent methods with a Q-rate (Ort.1] strictly greater than one. Since high-order derivatives
of the functions appearing in GQP(x o, H) can be computed trivially, extensions of the high-order
root-finding methods like those of Chebyshev [Tra.1] and Halley [Cuy.1] to the nonlinear com-
plementarity problem formed by the first-order necessary conditions for GQP(x ,H') would be

particularly desirable.

The initial direction dA (x, H)(0)/ds must be a feasible descent direction. A feasible des-
cent direction can be computed by any of the methods described in [Zou.1, Pir.1]. Each of these
requires the solution of a quadratic or linear program. The final direction dA (x, H (0) /ds must
be a descent direction for the constraint violation function \F(' |x,H), and can be computed

using similarly techniques.

There are many ways to connect two given points with a curve tangent to a given vector at
each end. Algorithm Properties 5.3.2(i) and 5.4.6(i-ii) require only that the arc A(x, H)(s) be
smooth at its beginning and end, uniformly with respect to x, H and s. As illustrated by Algo-
rithm 5.5.1 below, it is not necessary for the arc to be continuous. However, it is possible to con-

struct an admissible search arc which smoothly interpolates between the initial and final points.
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In general, there does not exist a quadratic curve (i.e. - a curve of the form ¢ (s) = zo+ 521 + 522,
with z, 21, 22 € R") which interpolates between two given points and is tangent to given direc-
tions at the endpoints. For each pair of points and directions, however, there is a two-parameter
family of cubic curves which perform the interpolation. (The parameters correspond to the norms
of the velocities of the curves at the endpoints.) Alternatively, if an interior point method is used
to solve GQP(x ¢, H), a search arc can be constructed by piecewise linear interpolation between

the iterates which it generates.

The most efficient way of obtaining suitable initial and final directions for the search arc is
to approximate the solution to GQP(x, H) in a way which generates such directions automati-
cally. Interior point methods, which are now in vogue for linear programming, automatically con-
struct a feasible search arc which satisfies the descent conditions (5.3.2a-b) and (5.4.11d) in the
course of solving GQP(x, H). At present, however, no superlinearly convergent interior point

methods are known.

We now develop a search arc function in detail, and we show that it satisfies Algorithm Pro-
perties 5.3.2 and 5.4.6. The search arc function is defined by Algorithm 5.5.1 below. Algorithm
5.5.1 requires only a moderate amount of computation to construct the search arc for a given xo
and H. Algorithm 5.5.1 computes an approximate solution to GQP(x¢, H) using a root-finding
method which is quartically convergent, i.e. - of order four. A feasible descent direction at x and
a direction of descent for \T'(’) at the approximate solution are generated in the course of the com-
putation of the approximate solution. A search arc A (xq, /) is then constructed from the four
quantities, the current point, the feasible descent direction, the approximate solution and the \Tf

descent direction.

We turn to the development of Algorithm 5.5.1. Condition 4.6(iii) requires that we com-
pute a point which is nearly stationary for GQP(x o, H), i.e., a point x for which a(x | xo,H)is

small. By Lemma 5.5.1 below, problem GQP(xo, H) possesses a stationary point x for X near
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a solution £ and for H near F(£). Furthermore, x is the unique stationary point for
GQP(xo, H) in a neighborhood of £ . We can satisfy Condition 4.6(iii) by computing an approx-
imation to x . (Note that x is a function of xo and H; we suppress this dependence to simplify
our notation.)

We take an active set approach to approximating x. We denote the set of indices of con-
straints active at x by Jgop(xo.H) & {je plfix |xo,H)=0)}. For any J c p, we

define an equality-constrained subproblem,
P(xo.H,J): min (o lxo. W) fix 20 H)=0,VjeJ} . (5.5.1)
zeR"

Since x is a stationary point of GQP(xq, H), x must be a stationary point of
P(xo,H,Jgqe(xo, H)). We can write the first-order necessary conditions for
P(xo, H ,J gqp(xo. H)) in a convenient form. Forany setJ = { ji,...J,} € p,xo€ R" and

H e R**®+)" ye define the function C (| xo, H,J)R"XR? = R**" by

V7% lx0, H)+ Y je s wVFi(x | 20, H)
fia lxo H)
Ctx,ulxeH,J)4 - (5.5.2a)
ij'(x IxO’H)
Since x is stationary for P(xo, H, J gop(x o, H)), there exists u € RP? such that
Cx,u lxg, H,Jgop(xo. H) =0. (5.5.2b)

This system of quadratic equations may be solved by any root-finding method. We discuss the

method used in Algorithm 5.5.1 later.

Of course, the set J gqp(x ¢, H) is not known a priori. Nor is a good point at which to ini-
tialize a root-finding technique for the solution of (5.5.2b) known. We propose to approximate

J gqp(x o, H) and obtain such a starting point as follows. Consider the minimax problem,
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i ifi
%2, I Wk D, 653

where I=[I,, ..., I,] € R**®* and | is the n x n identity. Problem (5.5.3) is the search
direction problem of the Pironneau-Polak method of feasible directions [Pir.1]. It can be solved

by conversion to its dual form (see [Pol.4))

Recall that (5.4.8) defines U (x ) as the set of solutions to (5.5.4a). Problem (5.5.4a) is a positive
semi-definite quadratic program, .and a vector p € U(xp) can be computed by a variety of
methods [Gil.1, Hig.1, von.1, Kiw.2-3].

Let the function p;:IR" — Z,,; be any selection from the set-valued map U:R" — 2%,
We define J(xo) 7 (11(x)), where, for any p e Z,,, We define J & {je plp/>0}.

The set J y(x o) is used in Algorithm 5.5.1 to approximate J gop(x o, H). We will show in Lemma
5.5.1 that J y(x¢) = J goe(xo. H) for xgnear £ and H near F (£ ), provided that the local minim-

izer of ICP, % , satisfies Hypothesis 5.5.1 below.

The unique solution to the primal problem (5.5.3)

4 argmi ifi|
Sargmin max D,
fIoaEn Ry, 2 e e D (5.5.4b)

can be obtained from any solution Y to the dual problem (5.5.4a) [Pol.4] by

x1=x0- T WVfixo. (5.5.4¢)
J € po

We define a function which maps Fritz-John multiplier vectors into Kuhn-Tucker multiplier vec-

tors, u1: X, 5 RS,

1 0 ;¢,,0
un(u)é{(u e WIRT IR >0 (5.5.5)

0 iful=0"

By Lemma 5.4.4(a), pf(xo) >0 for p; € U(xq) and x near a solution, £, to ICP. The pair
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(x, uy) obtained from p;(xo) according to (5.5.4b) and (5.5.5) is used in Algorithm 5.5.1 as a

starting point for the root-finding method.

Now we discuss the root-finding technique which is applied in Algorithm 5.5.1 to
Cx,ulxg H,J (x0)=0, (5.5.6)

in order to approximate (x , 4 ). The accuracy to which we are required by (5.4.11c) to approxi-
mate x could be achieved by the application of two iterations of Newton’s method to the system
of equations (5.5.6). Instead, we use a single iteration of a higher order method, Chebyshev's

method [Tra.1]. This simplifies the analysis, and requires less computation than two iterations of

Newton’s method.® Chebyshev's method requires the computation of the second derivative of
C (*). This computation is trivial since the system (5.5.6) is quadratic. Chebyshev’s method has

convergence of order three in general, but, as is evident from the proof of Proposition .2, it has

convergence of order four on quadratic sysu:ms.6

We denote by (x2, u2) the approximate solution to (5.5.6) which results from the applica-
tion of one iteration of Chebyshev’s method to (5.5.6) starting from the point (x;, ;). (We
define VC (x,u | xo, H,7)83C(x,u | xo, H,J)/3(x, u) and we denote by A? the pseudoin-

verse of any matrix A.) The Chebyshev step, (x5, 43) = (x1, #1), is the sum of the Newton step
ha(ro, H) 8=VC(xy, uy | xo, H,J1x)'Cxy 4y | x0, H, T 1(x0)) (5.5.7)

(where A' denotes the pseudoinverse of the matrix A) and a correction step which compensates

for the curvature of the function C (- | xo, H ¥ )
he(xo, HYB-VC (1, 4y | x0, H, J1x))'V2C (x 1, 41 X0, H , T (X )lPn, hal - (5.5.8)

The term V2C (x, u | xo, H, J) denotes the second-derivative of the function C (x, u | xo, H,J)

SA single iteration of Chebyshev's method requires the solution of two linear systems with the same coefficient matrix, while
two iterations of Newton's method requires the solution of two linear systems with different coefficient matrices.

S An alternative is Halley's method [Cuy.1) which is based on rational approximation of the function C (). Algebraic ap-
proaches to the solution of systems of algebraic equations are discussed in (Can.1, Kob.1], among other places.
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with respect to (x, #). It is a bilinear operator of two vector arguments, defined by (Suppressing
the dependence on xqo, H and J),

‘H_EanVC((x,u)+M)rg -VC(x,u)g-tV3C(x,u)ig.hll/t =0, (5.5.9)

forallg,h € R**,

The computation of an approximation x5 to x described above is incorporated into the fol-
lowing algorithm which defines a search arc function. Let e denote the vector of ones of length
p. |
Algorithm §.5.1:

Data:  x,e R” such that y(xg) S0, H € R**0+1,
Step1: Compute any i; € U (xy).
Step 2:  Obtain from y;, Jy =J (I1;), X according to (5.5.4c) and u; according to (5.5.5).

Step 3: Compute h, and A, according to (5.5.7-8) and set

X2 _ |*1
[uz] = [u1]+h"+h°' (5.5.10)

Step4: Set do=x;-x0 and set d; equal to the first n components of
-VC(x‘.u,|xo,I-l.Jl)f[2]lxz-xolz.
Step S:  Set A(xg, H) equal to

Xo+(2s -1)dy ifss%

Ao, HXs) = {x; +Q-25, ifs>H (5.5.11)

0O

Steps 1 and 3 are the only computationally expensive steps of this algorithm. Step 1 requires the
solution of a semi-definite quadratic program, (5.5.4). A number of methods are available for this
task [Gil.1, von.1, Hig.1, Kiw.2-3, Rus.1). Step 3 requires the solution of two linear systems

which have dimension no greater than n+p and which have the same coefficient matrix,
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VC(xy,uylxo, H,J).

Now we verify that the search arc function A (x, H) defined by Algorithm 5.5.1 possesses
Algorithm Properties 5.3.2 and 5.4.6. We need the following additional assumption in order to
prove that Algorithm Property 5.4.6 is satisfied.

Hypothesis 5.5.1: Suppose that Hypotheses 5.4.1-2 hold with X as defined there, and, in addi-

tion, that strict complementary slackness holds at £7 and that the vectors {VfI(®)) _ are
j

eJ

linearly independent. Without loss of generality, suppose that] = {1,...r}.

Hypothesis 5.5.1 implies that § is asingleton, {  }. By Hypothesis 5.4.2(i), ° > 0, and hence

the unique Kuhn-Tucker multiplier vector for the problem ICP associated with £ is
£ 8u,)=@", .. 0PQ0°. (5.5.12)

By strict complementary slackness and the uniqueness of i,/ =J(@)= {(j e plfi@®)=0}.

The following lemma will be useful in showing that Algorithm S5.5.1 satisfies Algorithm

Property 5.4.6. It is proved in the Appendix.

Lemma 5.5.1: If Hypotheses 5.4.1-2 and 5.5.1 holdwith 2 as defined there, then
@) J 1(x0) =J goe(x0. H) =S forxonear % and H near F (%),

(b) the matrix VC (x ,u | xo, H , S ) is continuous and

locx,ulxe. H,S)
o(x,uy,..., 4) (5.5.13a)
VCx,ulxg.H,S )= ,
0

Strict complementary slackness is said to hold at a stationary point £ if there exists p € 0 such thatp/ >0forevery j @ p
suchthat f /()= 0.
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Sforx andxonear % ,u near & and H near F (%),
(c) for any selection py:R" = E, ., from U:R" — 2%,

. b 4 2
fim u:] = [f ] , (5.5.13b)
£ U

Xo—X

(d) there exists a neighborhood W of £ such thas, for xo near £ and H near F(£), the
problem GQP(xo, H) has a unique stationary point, x (xo, H), in W, and there exists a

unique Kuhn-Tucker multiplier vector u associated with x . Furthermore,

X
lim 1=
xo—=% W

H-oFEF)

) M

] ) (5.5.13¢)

Lemma 5.5.1(c), Hypothesis 5.4.2(ii) and equation (5.5.5) show that u, is continuous at % .
Lemma 5.5.1(b-c) shows that A, and A, are continuous atxg=% and H = F (% ).

Proposition 5.2: The search arc function A(-, -) defined by the Algorithm 5.5.1 possesses Algo-
rithm Property 5.3.2. If Hypotheses 5.4.1-2 and 5.5.1 hold with  as defined there, then Algo-
rithm 5.5.1 possesses Algorithm Property 5.4.6 with respect to X .

Proof: Let a(s) 2 A (xo, H)(s). We consider each property separately.

Algorithm Property 5.3.2(i): By construction, a(0) =x and la(s)-a(0)-a(@0)s1=0 for
s € [0, }4]. From [Pol.4], x, is a continuous function of x ¢, independent of H, and hence la (0)!

is bounded on any compact set of (xq, H ).

Algorithm Property 5.3.2(ii): Since a (0) = 2(x; - xo),

max f/(xo+%a(0)lxo, )= max fi(x;lxe,D
j € pwo Jjepwo

= min max fi(x|x,0), (5.5.14)
xeR je po



§5.5 AN EXAMPLE OF A GQP-BASED ALGORITHM 137

by the definition of x 1(x o) in (5.5.4b). From [Pol.4], the right-hand side of (5.5.14) is continuous
in x¢ and is strictly negative at any point xo which is nonstationary for ICP. Therefore, Algo-

rithm 5.5.1 has Algorithm Property 5.3.2(ii).
Algorithm Property 5.4.6(i): For s € [4, 1], la(s)-a()l =2 11 -5l la(DI.

Algorithm Property 5.4.6(ji): From Algorithm 5.5.1,
la()ll = 20d,l = IVC(xy, uy | x0, H, T 1(x o))’ [g]l Ix,-xol. (5.5.15)

By Lemma 5.5.1(b), the quantity IVC (xy, 4y | xo, H,J 1(xo))" [g]l is continuous for x ¢ near £
and H near F (). It follows from Lemma 5.5.1(a-d) that this quantity is nonzero forxo = £ and
H = F (). Therefore, there exists 8> 0 and X > 0 such that

Slxo—x < la(I S Klxg—x,1?, (5.5.16)
for xonear £ and H near F (£ ). Now bxg—x,ll S IA, 0 + 1k 0, where h, and h, are as defined in

(5.5.7-8). From (5.5.7) and (5.5.8), therefore, llx —x¢l is bounded for xo near £ and H near

F (% ). Therefore, there exists K > 0 such that
Slxg-xP < la (s Klixg-x, , (5.5.172)

forxonear and H near F (% ).

Algorithm Property 5.4.6(iii): We derive a relationship between lx, —x | and lIx, —x !. In the
paragraph below, we suppress the dependence of C () on x ¢, H and the index setJ. The analysis

below is local, and we restrict consideration to x ¢ in a neighborhood of x in which the three index
sets J1, Jgqp and 7 are equal. Such a neighborhood exists by Lemma 5.5.1(a). We treat only
the special case whereJ = p. In this case, the inverse of the matrix VC (x, u | xo, H,S" ) exists,

and hence the inverse of the function C(-|xo, H,S ) exists. The result we derive can be

obtained for the general case, but the proof is more complicated and we omit it.
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First, we derive an upper bound on fix —x ol. Chebyshev’s method for solving systems of
equations is an inverse method. It approximates the root (i' 4 Yof C( lxo,H 7 ) using a

second-order Taylor series approximation to the inverse of the function C(lxo.H,2). From

the  definitions in (557) and (558 and our assumption  that

Ve, ulxg, H, Y =VC(x,ulxe H,S )\, it follows that
by ==VC(x1, u)'C(xy,uy) = %C HA-0CGLu)) . (5.5.17b)
he ==Y%VC (x 1, u))'V2C (xy, u )k, hy) = %;—:C a-ncanuMhe. (5518

Then, since C~}((1 = £)C (xy, 4y)) huo = (x1, uy), we can write (x5, 45) as
X21A |X1
[] [u,]+h~+hc

= CHA-0CGL U o+ £CHA-0CE L 4D o

+ %-;—’,c A=0)CGy, u)) heo. (5.5.19)

Note that the right-hand side of (5.5.19) is a second-order Taylor series expansion of

CH(1-1)C(xy,uy)) about t =0 evaluated at ¢ = 1. By Taylor’s theorem and since

CHNA-CE 4 ) by =C N0 =%, &),

I E] - [;;]l = I%jol(l -s)zg}c A =1)C (xy, u) lagds]l . (5.5.20)

Now, since V2C (x , ) is constant,

d3

27 @ =0C Gy, u1) = VCE)IVC (xy, uplh , k], (5.521)

where
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=)

A ;_’zc A -0CEy, uy)

==VCE)V2C (x1, uVCE)'CE). VCE)ICE, (5.5.22)

and & & C7(1-1)C(xy,uy). (The curve &, exists and is continuous by the Inverse Function
Theorem and the fact that VC (£ , & ) is nonsingular.) By Lemma 5.5.1(b), VC (€,)~! is bounded

above for xq near £, H near F(£) and ¢ e [0, 1). Therefore, (5.5.20) and (5.5.21) imply that

there exists X > 0 such that
= x X2 4 4
flx -x;ﬂSI ~ 17 lu <KX max 'C(g,)' SKﬁC(xl,ul)l ’ (5.5.23)
u 2 tel0,1]

for xgnear X and H near F (£).
Now we derive an upper bound on IC (xy, u; | xo, H, S )I. By its definition in (5.5.2a),

IC@o,u lxo, H, /W= 3 Ifixolxo, B +0VF %xol x0, HY+ 3 @ iVF ixgl x, H)

jEp jep
= 3 If /ol + 197 %o+ T uiVfigol. (5.5.242)
jep jep

Letp 8(1,u', .., uP)/(1+3 j ¢ p /). Then, substituting &/ = p/ /i into (5.5.24a),

ICGo. i lxo.H, M= 3 Ifigl+ 51 & @ivfigol
jep R jepw

2 I Ifial+l T wiveigol

jep Jj€pwo
2 ¥ wifiol+l ¥ piviiaol, (5.5.24b)
j€ep j€pw

since i/ < 1 forall j € puo. Since lel2~¢ foranyt e R,
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ICGo.u lxo. H.S N2 =3 Bifig+l T RIVFiGol. (5.5.24¢)
jep Jj & po

The quantity VfO%xo)+ ¥ u/Vfi(xq) converges to zero as xq converges to £ and H con-
jep

verges to F (£ ). Hence,

ICxo.u lx0. H,/ W2 = F pifixg+¥%l T piveixgl

jep Jj € po
z—[ T wWricg-%l 3 ﬁinj(xo)|2]v (5.5.25)
jep Jj€pwo

for xonear £ and H near F (£ ). Therefore,

IC o, u | x0,H,S )nz-[ Y wifiap-%l 3 ﬁijj(xo)lz]
j€p j€pwo

2- [ max ¥ wWfig-wl ¥ u"Vf’(xo)lz]' (5.5.26)
he t,.:je P Jj € po

for xonear £ and H near F (£ ). From [Pol.4] (or compare (5.4.4) with (5.4.5)),

IR T B WOrIeoP s mig, max e lxD. s

and, hence, using the definition of x; given in (5.5.4b),

IC o, it Vg, H, S Y2~ max Fige;lxoD), (5.5.28)
ji€pw

for xo near £ and H near F(%). SinceJ,(xo)=f forxonearf.fi(x,|x°.I)isequaltothe

maximum foreach j € f. Therefore, (since this maximum is negative)

IC(xo,u lxo,H, 12 % > IfiG, lxo. 0, (5.5.29)
je?

for xo near £ and H near F(X). Since x; satisfies necessary conditions for (5.5.3) and
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J1ixo) =S 1Y ufVFix,1xo, DI = 0. Hence, there exists K > 0 such that
jelJ

IS wVFiGlxo H)isKlxo—x) 2. (5.5.30)
J € po

Furthermore, there exists X > 0 such that If /(x) | o, )= f i(x | xo, H)l S Klxo—x I for xg

near £ . Applying this and (5.5.30) to the definition of C (") in (5.5.2a), we have that

IlC(x,,u, lxo,H,f)lsz o f lfi(xllxo.l)|+leo-x1l2, (5.5.31a)
. J €

for xonear £ . Substituting (5.5.31a) into (5.5.29) yields

"C(XO,; |xo,H,f)l|25[lC(x1,u1|xo,H.f)l—K|xo—x1|2. (5'5'31b)

Since C() is Lipschitz continuous and C(; U Ixo,H) =0, there exists K >0 such that

IC (xo, 4 |xo,H,S I <K lxo~x 1. Substituting this into (5.5.31b) yields
Klxo-x1280Cxy, uy lxo, H, S N=Klxg-x,P. (5.5.32)
Substituting llxg—x,0 < lxg—x I + Ix —x,}into (5.5.32) yields
K (lxo-x1+lo-x P4 brg-xlx;-x1) 280C(xy, uy ) xo, B, S Y - Klix, -5 P (5.5.33)
By Lemma 5.5.1(b), there exists § > 0 such that
ICGy, uylxo, H,S M2 8hxy,up) -G, u)l 2k, -x1, (.5.34)
forxgnear £ and H near F(£). By (5.5.34) and Lemma 5.5.1(c-d),

SIC (x1, uy lxo, H, S M=Klxy~x 1 2%3IC (xy, uy | x0. H., ). (5.5.35)
Substituting (5.5.35) into (5.5.33) yields
K (ﬂxo—';l +|xo—;llz+ ho-;ﬂﬂxl-;l) 2 ‘/leC(x,,ul le,H.f)l . (5.5.36)

Also by Lemma 5.5.1(c),
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2Klxg-x12K (lxo-x1+ko-x P+ lxg-xlix;-x1), (5.5.37)
for xonear £ and H near F (£ ). Substituting (5.5.37) into (5.5.36) yields
Kixo-x121C(xy, uylx, H. I, (5.5.38)

for some X >0 and forall xonear£ and H near F (£ ).

Combining (5.5.23) with (5.5.38), there exists X > 0 such that
= * X2 ol 1}
Ix —x,dsh]|. |- 4o l<sKlxo-x1*, (5.5.39)
u

for xonear £ and H near F (£ ). Inequality (5.5.39) implies that Lxo— x | S 2lxy - x,1 . Hence,

lx —x,0 < Klxg—x,1*, (5.5.40)
for some K >0, xo near ¥ and H near F (% ). By (5.5.40), s Since oix | xo, H)is Lipschitz con-
tinuous in x, uniformly in x ¢ and H , and since 6(x ) = 0, there exists X > 0 such that

G(xzlxo, H)SKlx —x,l. (5.5.41a)
Substituting (5.5.40) into (5.5.41a) yields that there exists K > 0 such that

o(xylxg, HyS Klxg—x,1*, (5.5.41b)
for xonear X and H near F (£ ). Hence the left-hand inequality in (5.5.4.11c) holds.

We tumn to the right-hand inequality in (5.5.4.11c). By (5.5.39) and Lemma 5.5.1(d),

lim Ix -x,0 =0 and lim k-£1=0.
x0=% ,H F(F) 202 ,HFE)

Hence

lim Ix;-x0l=0.

n " (5.541¢)
Xox HFE)
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Algorithm Property 5.4.6(iv): If y(£ ) <0, then (5.5.4.11d) holds automatically for x near £

and H near F (£ ). We assume now that y(% ) = 0. Witha(s) 2 A(xo, HXs),

Fli@) xo Hy=f iyl xo, H)+ @ =25V fi(xs | x0, H). d>)

+%(2 -25)%{d,, Hid,), (5.5.42)

for s > '4. It follows from Lemma 5.5.1(b) and the definition of d in Algorithm 5.5.1 that there

exists K > 0 such that

la (DIl = 20d 0 < K lix - xl?, (5.5.43)
for xonear £ and H near F (£ ). Therefore, by the Lipschitz continuity of Vf /(- | xo, H),

(VF i(xz | x0. H), d3)S AVF i(xy | x0, H), da}+ K lxy = x4 llix — xof2. (5.5.44)

By the definition of d 3, {Vf /(xy | xo, H),d3)= —lx;—xol* for j € 7. Hence,
(VFixalxo, H).d2)S =y —xof + Klxy=x,llxy - xol? . (5.5.452)

Lemma 5.5.1(c) and (5.5.41c) imply that lim x, - x,0 = 0. Hence,
X

o=2 ,H=FE&)

(VFitxzlxg, H), d3)s~lxs - xol?, (5.5.45b)
forj € J,xonear £ and H near F(£). Substituting (5.5.45b) into (5.5.42),

fias) xo. HYSfi(x,] x(;.H) - R@2-25)lx, - xol?, (5.5.46)
forall j € J, xonear £, H near F(£) and s near 1. Using (5.5.43) and the fact that f/(£) <0
for jeéJ , there exists & > 0 such that

fi@) | xo, Hysyxalxo, H) - (1 =5)8la (1, (5.5.47)

forall j € p,xonearX and H near F(£ ), and s near 1.
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5.6 NUMERICAL EXPERIMENTS

An implementation of Algorithm Model 5.2.1 with the search arc function defined by Algo-
rithm 5.5.1 was used to solve the inequality-constrained problems in [Hoc.1] for which feasible
starting points are given. The results are compared in Table 5.1 with those for the algorithm of
[Pan.1], which was the first superlinearly convergent feasible descent algorithm. The search
direction computation for the algorithm of [Pan.1] involves the solution of two quadratic pro-
grams (involving the same quadratic term), an extra evaluation of the constraint functions, and
the solution of a linear least-squares problem. This effort is comparable to that required to con-

struct the search arc for Algorithm 5.5.1.

In the experiments in {Pan.1], the BFGS variable metric update was used to update the
Lagrangian Hessian estimate. In our experiments with Algorithm Model 5.2.1, we also used a
variable metric method to estimate the Hessians. Because the search direction computation
described in Algorithm 5.5.1 does not require that the Hessian estimates H ¥ be positive definite,
we were free to use a wide variety of updating techniques. The rank-one update described in
[Lue.1] was used when it was defined; otherwise the BFGS update was used. The Hessian esti-

mates H{ were each initialized to the identity.

In the experiments, the algorithm parameters were set to a = 0.35 and f = 0.9. As we men-
tioned after the proof of Lemma 5.5.1, locating the narrow interval of acceptable near-unity step
sizes can be difficult and requires a careful line search. Quadratic interpolation was used to

reduce the number of trial step sizes tested.

Several modifications were made to Algorithm 5.5.1 to improve its performance. Although
they would not invalidate the results of Section 5, their inclusion there would have complicated
the analysis. A scaled norm, I-l,, was used in (5.5.4), where L;! 4 S j e puo Wi-1Hi + € J and
where g, >0 was selected to ensure that L, remained positive definite. Because the full Che-

byshev step can be "wild" when x5 is far from a solution to the GQP, we added the following step
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to Algorithm 5.5.1,

Step3% If IC((x1,u)+hy+h lx0, H, IDI>IC(xo, uy | x9, H,J DN, then set h, =7,

and h, = 72h, where T solves

min §C (Gxy, u1) + thy + t2h, | xo, H,J DI . 6.1)

This minimization is relatively inexpensive, since the objective function of problem (6.1) is a
fourth order polynomial in a single variable. Near a solution £ satisfying Hypothesis 5.5.1,
IC((xy, uy) +hy +h | x0, H, T <IC(x0, 41 | xo, H,J DI, and ¢ = 1. Hence, Proposition 5.2
holds for Algorithm 5.5.1 with this additional step. Finally, in the computation of a descent
direction for \;7(-), we divide d, by 1 + lx, - xl to prevent d, from becoming excessively large

when x g is far from a solution to ICP.

This implementation of Algorithm Model 5.2.1 proved to be competitive with the super-
linear feasible descent method of [Pan.1] on all but a few of the problems tested. In general, the
GQP-based algorithm performed better than the algorithm of [Pan.1] on convex problems, and
more poorly than the algorithm of [Pan.1] on nonconvex problems. This may be partly due to the
choice of the search arc function. Algorithm 5.5.1, which defines the search arc function used in
the experiments, selects a feasible descent direction using the Pironneau-Polak algorithm, which

uses uniformly convex approximations to the functions f/(-).

5.7 CONCLUSIONS

The numerical experiments which we performed constitute a "proof of principle”. They
show that a GQP-based algorithm is competitve with a sophisticated method based upon succes-
sive approximation to optimality conditions. The mixed performance of the GQP-based algo-
rithm in comparison with the algorithm of [Pan.1] suggests two things. First, the search arc func-
tion defined by Algorithm 5.5.1 can be improved upon. Algorithm Properties 5.3.2 and 5.4.6 offer

considerable latitude in this task. Second, the extra evaluations of the constraints performed by
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the algorithm of [Pan.1], together with the Lagrangian Hessian, seems to contain as much curva-
ture information as is useful in optimization, and the additional curvature information contained

in the individual Hessian estimates does not seem to be useful even far from a solution.

5.8 APPENDIX

Proof of Lemma 5.4.4: (a) By assumption, ;_1° >1/(1+c). (Since Hypothesis 5.4.2(ii) implies
that p°2min{p’lpe 0 } >0, such a ¢ exists.) The set-valued map U () is upper semicon-
tinuous and compact-valued fPol.4], and UR) = 0. Hence, min {(Wlpe Uu) } >1/(+¢)
for x near % .

(b) For any p e Z,,;, we have y,(x)2Y ;e p Wf/(x)/ (1~ %, since y,(x) 2 f/(x) for all
J € p. Hence, y.(x)=F j e p W f(x) 2 p’y.(x). We apply this to the expression for o() in
(5.4.5). Foranyx € R and anyp e U(x),

o) =y (x)= ¥ Wik +%l T W Vrox)P
jep jepwo

2v.)- 3 Wik
JEP

2 ply,(x). (5.8.1)
The conclusion follows from (5.8.1) and part (a).
(c) As in (b) above,
ox 1z, H)2p%,x 1%, H), (5.82)
forany pe U (x | T, H). Since U(-| %, H) is upper semicontinuous in x, uniformly in ¥ and

H,and since U 12, F@) =0, min(p0lpe Gx 15, H)} >1/(1+c) for x near £, ¥

nearX and H near F(%).
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]

Proof of Lemma 5.4.5: First, we prove right hand inequality in (5.4.10). We define
di(x)8 7 %) +cf i(x) for j € p and d%x) £ £ %x). Note that p.(x) = max ¢ pud’(x). In

Chapter 2, an optimality function for the minimax problem, min, ¢ gs p.(x), is defined by

8:(x) = min max d/(x)+{Vai(x), h )+ Kl -p.(x). (58.7)

The function 8, () is nonpositive and is zero only at stationary points of p.(-) [Pol.4].
To relate 6.() to p.(x) = p.(X ), we will make use of Lemma 2.3.3. For this purpose, we
will show that the assumptions of Lemma 2.3.3 hold. Hypothesis 5.4.1 ensures that assumptions

(i) and (ii) of Lemma 2.3.3 hold with respect to the minimax problem, min , ¢ gsp.(x) at£. We

turn to assumption (iii) of Lemma 2.3.3.
We associate with the minimax problem, min , ¢ gsp.(x), the set of multiplier vectors

V.(% ) consisting of those v € Z, .1 for which

VVFOR)+ T V{Vr%®)+cVrig)) =0, (5.8.82)
jep

V7ORY+ TV {F9%%)+cfi®)) =p.®). (5.8.8b)
jep

The sets U (X ) and U (% ) are related as follows. Since y,(£ ) = 0, (5.8.8a-C) can be rewritten as

VF%&)+ T vievFi@)=0, (5.8.92)
JEP
T viefi@)=0. (5.8.9b)
JEP

Then, since 1 =-V? =Y ;e p W, (1, eV!,...,cW)/ (1 +c(1-V)) e U(E), forany v e V. ).

It follows from Hypothesis 5.4.2 that, with B as defined in Hypothesis 5.4.2,
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mihi<{n, [I——I——F°(£)+ p

—=———Fi@)|h), VheB, h=0, (5810
TR P2 (1 Y ()]) € (58.10)

for any v € V(% ). Inequality (5.8.10) and the fact that B = H imply that foranyve V.n(®),

m i< {n, [v°F°(i>)+ zvi{r°(£)+cﬂ(2)}]h) VheH,h=0, (5.8.11)
jep

where m, 2 min{m Q+c(1-v)Ive V.@)) =m Q+c(-max{VIpe V.)})).

Hence, assumption (iii) of Lemma 2.3.3 is satisfied at £ for the minimax problem, and it follows

from Lemma 2.3.3 that
) 0.(x;) min{m.,(1+c¢)}
hl_nfgp - a+0) . (5.8.12)

Pc(x)—=p. ()

This implies that there exists X > 0 such that
8. (x)<SK (p.(X)-p.(x)) , (5.8.13)

for x nearx .

Now we relate 6, () to o(-). It follows from Theorem 2.7.1, which is an extension to the von

Neumann Minimax Theorem, that

8. (x) = mazx (%) -p.x)) + 3 W (£ox)+cfix) =p.(x))

ﬂ.E ol je’

—WIVF %)+ T W (V0@ +eVII@)P. (sg14)
Jep

Rearranging (5.8.14), we have

6(x) =~ [umlz,: cyix) - T Wefl@+%vr %)+ 3 u’ch’(x)l] (5.8.15)

+1 ]Ep JCP

Using any i € U (x), we can define another multiplier vector as follows.
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A W p! 4
vl |1- T €I, 58.1
jgzp cuo Cll-o Cllo zp+l ( 6)

A

By Lemma 5.4.4(@a), ¢ >(1-p%/p? for any pe U(x) for x near £. Then, since
¢ >(1-p%/pO v0> 0. Substituting this v into the min in (5.8.15) and using (5.8.16) yields

-8(x)Scwx)= T Wef i)+ %IVF%x)+ T WeVrig)P
jep jep

=cy(x)- ¥ Eo- i) +%IvVr'x)+ ¥ ﬁ:,—v,fi(x)lz

jep B jep

= [u°[cu°w+(x)- T W@+l + 3 w Vf"(x)l’]/ (T

JEp jep

< [cp"w,,(x)—z,e,ufff(x)-r Wivr %+ T W VJ"'(x)l’]/(u°>2 (5.8.17)

jep
since e > ieph and v.(x)2f(x). Since pe Ux),
ox)=yw.(x)- T wrix)+%l ¥ wVri@)lP. Hence,
Jep Jj € po
-0(x) s {6(x)+ (i’ - Dyu(x) ) /@92, (5.8.182)

for x nearX . By Lemma 5.4.4(b),
-0x)< {o(x)+ (cp’- DA +c)ox) } /0?1 +c)ox) , (5.8.18b)
for x near £ , since ¢ > cu® - 1. Substituting (5.8.18b) into (5.8.13) yields
p.x)-p.E)S1+c)Ko(x), (5.8.19)
for x near £ . This is the right-hand inequality in (5.4.10).

Now we prove the left-hand inequality in (5.4.10). By Lemma 5.4.3, £ is a strict local

minimizer of p.(-). Therefore, there exists a neighborhood W of £ such that
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Pe(x)=p.(R)= max Pc(x)-p.), (5.8.20)

where W denotes the closure of the open set W. Since the functions £ (") are twice continuously

differentiable, there exists K 2 1 such that
FI@SFI@)+{VFix), % —x )+ YKz -xi2 ' (5.8.21)

forx,X € W. Therefore,

P(x) = pe(2) 2 max p(x) - {f°(x)+ (VFO%), % -x Y+ YK IZ -xP
X €

+emax (0,f/(x)+(Vfi(x), T - x }+ YK IX - x I} } (5.8.22)
- JEP
By the definition of p. ("),

p.(x)=p.®) Zpa%cw(x) - {(Vf°(x),f-x Y+ K IE - xi?
X €

+emax {0, f/(x)+(Vfi(x), T ~x )+ K I¥ —x[?) } (5.8.23)
JEP

We can replace the max over j € p with a max over R € X, (which becomes a min when

pulled through the minus sign to the front),

pc(x)-p.(2)2 max min cy,(x)- {(Vf"(x),f—x M+ KK IE ~xI?
TeWpe L

jep

+ 3 We(fi@)+(Vfix), % -x )+ YK lx -xI?) } (5.8.249)
Now the function

O | x) é“xgig cy,(x) - {(Vf°(x).f-x M+ %K IE -x PP
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+3 ufc(fi(x>+<fo(x).f—x>+%xlf—x")}. (5.8.25)
jep

is concave in X. Therefore, the function argmax ; . 7 ©( | x) is an upper semicontinuous set-
valued map in x (by the Maximum Theorem in [Ber.1]). Since argmax ;, 7 @& 12)= (£ },

this implies that argmax 3 7 O | x) € W for x near £. Therefore we can substitute R" for

W in the max in (5.8.24),

pe(x)=p.%)2 max  min cv..,(x)-{(Vf°(x),f-x)+‘/z!(lf-xl2
TeR'HE L.,
+ z uic(fj(x)+(ij(x),f-x)'i-l/lef-xlz)}- (5.8.26)
jep

By Theorem 2.7.1, we can interchange the min and max in (5.8.26). Hence,

+1 X €

p.(x)-p.R)2 ptéllzl'l max ¢ V. (x) - {(Vf°(x), X -x )+ ¥Klx - xPP
+ 3 We(fi@)+{Vfix),x-x )+ %Klf-xl’)}. (5.827)
jiep
Rearranging (5.8.27),

Pc@)=p:()2 min max (cy,x)- ¥ Wefix)) - {VFo%)+ T weVri),z-x)
Be HaTe R jEep jep

=% +c(1-pNKIE -2 (5.8.28)

Solving the inner max, we have

pc(x)-p.@)2 min (cy,x)- ¥ wefitx))
He }.',.x jGP
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1 o0 o
+ v + Je ViR, 829
2(1+c(1-u%k F J.Ep"' f (5.8.29a)

Therefore, for some p o

P)=p.@)2 (cyix)= T Wefi@x))
JEP

1 i a2
IVFo%x)+ ¥ weVri)i.
+2(l+c(1-p,°))l( 2 JEP"" fix) (5.8.29b)

Since y,(x) 2 f/(x)forj € pand K 21,

pc(x)-pc(f)Z%{c v.x)- I Wefix)

jep
1 0 JeVfi@)P
+ 2(1 + c(] ~ uo» lvf (X) +j§p'l [ f (X) . (5.8.30)
Let
vé (L, .. we)iasea-uy, (5.8.31)

and note that v e P*!. We substitute y/ = v/(1+c(1-pu%)/c for j e p into (5.8.30),

pc(x)-p.()2 % {c VX)) =1 +c(1-p T vifix)
JE€p

+ 1+C+}Q| T W Vfi(x)lz}. (5.8.32)

Jj € po

Now, p.(x) = p.(X) 2 cy,(x) for x near £, since £ is a local minimizer of ICP and y.(Z)=0.

Therefore,
Lred =) (. 0)=p.@)) z%ﬂ%@), (5.8.33)

Adding (5.8.33) to (5.8.32) and rearranging yields
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A (d+c-ph/k _ j p W Vi)
Pc(x)=p.(X)2 1+(1+c(1-u°>)/x{(""'(‘) J_a\”f (x))+%|j¢ZM fI(x)

L {(\ve,(x)- T Vifix)) +%l Y Vinj(x)lz}. (5.8.34a)

2__
We can take the min overv € I,,y,

a 1 . iri j j
pc(x)-p.(x)2 l+_c+—1{-{v?’xx,l.. (‘l’-f(x) -,-Ep Vfi(x)) + %IJ ez’wvl Vf-’(x)lz }(5.834[))

Therefore, by the characterization of 6(-) in (5.4.5), there exists 8 > 0 such that
Pc(x)=p.(x)200(x), (5.8.35)

for x nearx .
(m]

Proof of Lemma 5.4.8: (a) Since y(xo) S0, y(x;) <0 and f%x,) S f%xq) for all ¥ € N, by
Step 2 of Algorithm Model 5.2.1 and Algorithm Property 5.3.2(ii). This implies that the
sequence {x; } ; ¢ w is contained in V and hence is bounded. Therefore, { x; } & ¢ N converges
to the set of its accumulation points. Since the conditions of Theorem 5.3.3 are implied by

Hypothesis 5.4.1, Algorithm Property 5.4.7 and Algorithm Property 5.3.2, any accumulation
point of the sequence { x; } ; ¢ w is a stationary point of ICP. By Hypothesis 5.4.1(ii), X is the

only stationary point in V. Hencex, = £ ask — oo,

(b) This follows from (i) of this lemma, the continuity of 6(-) [Pol.4] and the fact that o(£ )=0.
(c) From (ii) of this lemma and Algorithm Property 5.4.6(iii), a(a,,(l) lx,‘ yH) >0 as k — oo,
The set-valued map M (T, H,r) & {xe R*"lo(x X, H)<r } is upper semicontinuous in ¥,

r and H, M () is compact-valued and M (2 , F(£),0) = {% }. Therefore,a,(1) 3 £ ask — o.
O
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Proof of Lemma 5.4.9: By the definition of 6() in (5.4.5) and the triangle inequality,

o(x)= min yw,(x)- 3 Wric)+%l 3 pvrig)P
He Zpu jep jepn

SY@)- T W)+ %l 3 wvrie)P
jep Jj&pwo

SV lx, H) = 3 Wi L, Hy) + %l T WVfiGxlx,, H?
j€p je& pwo

+81(x, 2, Hy) + 8x(x | 30, Hy) + 83(x | 3y, H) + 84x |, Hy) (5.8.36)

foranyx e R"andp e Z,+1, Where

81(x , xx, Hy) By (x) - yo(x | x4 Hy) (5.8.37)
8 |3, H) & T W (fitx Ix, Ho-fi(x)) (5.8.38)
JEP
5 lx, H)8 Wl 3 W (Vfi)=ViiGx |z, H))P, (5.8.39)
j€pw

8x lxe , H)B1 S WVfiGle, Hll ¥ W (V@) =Vf i Iz, H) N (5.8 40
jepw jepw

Foranyx e R"and any p e ] (x |x,,, H,), therefore,

0(x) S 6 (x | xz, Hy) +8y(x | xp, Hy) + 85(x | 30, Hy) + 83(x | xy, Hy) + 84(x I 3, Hy), (5.841)

using the definition of U (-) in (5.4.9b). Now, for anyx € S(x, 2la,(1)-x,l) andeach j e p,
Fi@)=Fi(x | x, Hy) s vy ls - x, 2. (5.842)

Therefore, 8i(x | xp, H) snelx =P and  8(x | x,, Hy) Sl -l for any
x € S(x,2la,(1) = x,1). Also,

|2 WV -ViiGx, H) ) lsndx -x,l, (5.8.43)
J € pLo
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and hence 8y(x | x,, H;) S (,Ix — x;1)? for any x € S(x;, 28a,(1) - x,I). By the definition of
() and Algorithm Property S.4.6(iii), there exists X > 0 such that

I S WV i@ | x, BNSVo @) | 5, Hy) S Klay()) - 1S SKlay(1) - .0 5.8.44)
Jj € po

for large k. Inequalities (5.8.43) and (5.8.44) imply that §4(a;(1) | x,, Hp) s lx -.1:,,lz for
large k. Substituting these bounds on 8;(a;(1) | x;, H,) into (5.8.41) yields
6(ax(1)) S 6(a(1) | xp, Hi) + nuela (1) = x P + Y la (1) - 0% + Kl (1) - x, P . (5.8.45)

Since 1, converges to 0 as k — e by Algorithm Property 5.4.7, 0, < 1 for large k and hence

0(ax(2)) S 6 (ar () | x¢, Hy) + Knilla (1) = x, 12 . (5.8.46)
]

Proof of Lemma 5.4.10: We combine the previous lemmas. By Lemma 5.4.8, the sequences
a,(1) and x, converge to £. Therefore, by Lemma 5.4.3, there exists X > 0 such that
la,(1)- £ PSK p.(a(1) -pc®) , (5.847)

for any ¢ > (1 - E")/ E° and large k. Combining Lemmas 5.4.5 and 5.4.9 with (5.8.47), there

exists X > 0 such that
lay (1) - £ P < Ko(ay (1) SK [6(a,(1) | i, Hy) + M lla, (1) - x,nz] (5.8.48)
for large k. Applying Algorithm Property 5.4.6(iii) to (5.8.48), there exists K > 0 such that

lag(1) - £ P < Klax(1) - x, 1P + Knplap (1) - 2, P

< Kkmax { ng, la,(1) - x1 ) la, (1) - x, 12 (5.849)

for large k. Taking the square root of both sides of (5.8.49) yields (5.4.14).
O

Proof of Lemma 5.4.11: We show that inequalities (5.2.2a-b) of Step 2 of Algorithm Model

5.2.1 hold for step lengths s satisfying (5.4.15). Since x is feasible for ICP, every x; is feasible.
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By Algorithm Properties 5.4.6(i-ii), la,(s ) - x,} < 212, (1) - x, ), for large & and s near 1. There-

fore, there exists X >0 such.that

- ’ 1 : .
W@a(s) S $@) L B+ max {ay(s)=s, ([0 =) FIo +1(ants) = xaddt — B J ) - )
J & po .

Sy(ay(s) | xp, H) +nday(s) - x, P, (5.8.50)

for s near 1 and large k. By Algorithm Property 5.4.6(iv), Lemma 5.4.4(c) and Algorithm Pro-
perty 5.4.6(iii), there exist 6 > 0 and K > O such that

W(a(s)) S W@ (D) | xe, He) + (s = 181G, (1)1 +ndag(1) - x, 12
< (1 +c)0(a (1) b xi, He) + (s = D8la, () +nda (1) - x, 12

< Kllag (1) = x 2 + (s = 1)80a, ()1 +ndag (1) - x 1 (5.8.51)

for s near 1 and large k. Therefore, there exists X > 0 such that y(a,(s)) S O for large k and for

s near 1 such that
1-s 2 Kmax { ng, ba (1) = x;0 } la, (1) = x, 12/ ba, ()N . (5.8.52)
Hence, for such s and large k, inequality (5.2.2a) of Step 2 of Algorithm Model 5.2.1 holds.

Now we determine which step lengths s provide sufficient decrease in the objective func-

tion to satisfy inequality (5.2.2b). Letc >max { 1, (1-p%/p%}. Fors such that y(ax(s)) <0,

I %ax(s)) = £ %xi) = pe(@r(s)) = pe(xe)

= Pe(@i(s)) = pc(ax(1)) +p.(ax (1)) ‘pc(f )+p.(%) =Pe(x) . (5.8.53)

Now we bound each of the three terms on the right-hand side of (5.8.55). By Lemma 5.4.5

and the fact that x, converges to £ , there exists T > 0 such that

p.R)=p.(x)S—0(x;) , (5.8.54)
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for large k.
By Lemma 5.4.5, there exists X > 0 such that
Pc(ar(1)) =p.(X ) S Ko(a(1)) (5.8.55)
for large k. Applying Lemma 5.4.9 and Algorithm Property 5.4.6(ii) to (5.8.55) yields
Pc(@ (1)) —p. (£ ) < Kmax { 0, lay(1) = 5,1 } lap (1) - x, P, (5.8.56)

for large k. By Lemmas 5.4.5 and 5.4.7, there exists X > O such that
Ko(x)zlx, -2, (5.8.57)

for large k. By Lemma 54.10, la,(1)-x, 0 S2lx, -2 | for large k. Substituting this into
(5.8.57) yields

KO'(Xk) 2 lak(l) -Xkllz , (5.8.58)

for large k and some K > 0. Substituting (5.8.58) into (5.8.56) yields

Pc(a(1)) = p. () S Kmax { ng, la, (1) =x: 0 } 6(xy) , (5.8.59)

for large k and s near 1. Since a,(1) - x; converges to 0,

Pc(@(1) -p.(2) < Yro(x) , (5.8.60)
for large k.
By the Lipschitz continuity of the functions f/() and Algorithm Property 5.4.6(i), there
exists X > 0 such that
Pc(@i(s)) = pc(ar(1))SK 11 -sllg DI (5.8.61)
for s near 1 and large k. Let p > 0 be arbitrary. Fors such that

|a,‘(1) ‘-Xklz
la,af

I1-sl< (5.8.62)
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(5.8.61) becomes

Pe(@k(s)) = pe(ar(1)) S pK lag (1) - x, I . (5.8.63)
Substituting (5.8.58) into (5.8.63),

Pc(ar(s)) = p.(ar(1)) S pK o(x;) , (5.8.642)
for large k and s near 1 satisfying (5.8.62). Since p >0 was arbitrary, we can choose p small
enough that

Pc(@i(s)) = pc(ar(1)) S Ytolx,) . (5.8.64b)

Substituting (5.8.54), (5.8.60) and (5.8.64b) into (5.8.53) yields
I %ak(s)) - £ %x) < - Yor0(xy) (5.8.65)
for large k and s near 1 satisfying (5.8.62). By (5.4.4) and the fact that y,(x;) = 0,

o(x)=-max ¥ pfix)+%l ¥ Wil (5.8.66)
K€D j'ep jepwo o

== ¥ Wi+l I wvrige,
jep jepo

forany p € U(x). Then, forany pe U(x),

o(x) = - min o ujfj(x’lx.l). (5.8.67)
I'GR'J'GM

Substituting x; + %44, (0) for ¥’ in the min in (5.8.67),

o(x)2- T Wfix+%i0)|x,D2-p% % +%i©)lx,1), (5.8.68)
Jj€po

since Algorithm Property 5.3.2(ii) implies that f J(x +%4(0) | x, 1) <0 for J € p. By Lemma
54.4(a), there exists >0 such that p°>8 for pe U(x) and x near £. Hence,

o(x)2-8f %x + %4 (0) | x, I) for x near £ . Substituting this into (5.8.65),
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I %@(s)) - f %xy) < ¥18f Ox + %8a(0) I x. 1), (5.8.69)

a,(0) converges to zero as x; converges to £ . Therefore,
I %ar(s)) - £ %) < 5 P(ld'k(o)ﬂ)jl:l%fn it +%a,0) | 5,1, (5.8.70)

for large k and s such that

la (1) - x, I
l-sSp——a—" 5.8.71
$2P lak(l)l ¢ )

By (5.8.70), (5.8.71) and (5.8.51-52), inequalities (5.2.2a-b) are satisfied for large & by all s in

the interval

la, (1) = x, 12 la, (1) - x, 12
l—pak—()x—ks.vSl-Kmax{m,lak(l)-xgl)&()—k-

. 5.8.72
b, (1) la, (1)l ©.872)

for some 8> 0 and X > 0. Since N, = 0, a,(1) > £ and x; — %, this interval is nonempty for

large k.
Now we must account for the quantization of the step size. For each k, let 5; denote the

maximum element of [0, 1] satisfying (5.2.2a-b). By (5.8.72), there exists X > 0 such that

la,(1) - x, P

1 -5 <Kmax { 0, la,(1) - x,1 } LoDl

’ (5.8.73)

for large k. For large k, either sp =1 or 5 = 1-PB* for some Je€ N. In both cases,

1-5,S(1-5)/B. Therefore, (5.4.15) holds for large k.
O

Proof of Lemma 5.5.1:

(a) This part follows by the same argument as Lemma 4.5.1.

(b) Since we have assumed, without loss of generality, that S = {1,..r}, the matrix

VCix,ul%,F®),S)has the form
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oCx,ulxe. H,I) 0

(5.8.74a)
o(x, uy, ..., 4)

VCG&x,ulxe,H, )=

where

FOR #y FUFI@) Vi lxo,H) ... Vf *(x | xo, H)
je

oC(x,ulxg. H,S) Vf Yx lxo, HY

ox,uy, ..., 4) . 0 (5.8.74b)

_Vf' rx lxo, H)

The matrix 9C (x,u | xo, H,f )/3(x, u,, ..., 4,) has the form of a "bordered Hessian". By

Hypothesis 5.4.2(), FO@ #+Y, 5 u/FJ(®) is positive definite on the subspace orthogonal to
jE€
the vectors (VFfig 12, F@)) .. Hence, the matrix
jelJ

aC(x,ulxg H,S )/d(x, uy, ..., ) is nonsingular [Lue.1]. It follows from the Moore-Penrose

conditions which characterize the pseudoinverse that

[A o]r = [“0' '] , (5.8.74¢)

if A is a square, nonsingular matrix. The result (b) then follows from the continuity of the matrix

inverse at nonsingular matrices.

(c) It was shown in [Pol.4] that x;, which was defined in (5.4b), is a continuous function of X0

and that the compact-valued, set-valued map U (*) is an upper semicontinuous function of xo By

inspection of (5.4.8) and by Theorem 5.3.1, U(f) = 0. Hence, lim LU0 ={Q}, where
E{]

R is the unique Fritz-John multiplier vector associated with £ . Since %> 0 by Lemma 5.4.4(a),

rP(x0) > 0 for xg near £, and hence uy = (1f, ..., pP)/pf and u, is continuous for xg near % .

Since lim  pu(xg)=f, im  _u(u(xo)) =& . Since p(¥) =1, it follows from (5.4c)
Zo—r X Xo—X
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that x,(£ ) = £ . It follows from this and the continuity of x  that lim :x’(x") =X.
Xo —>

(d) The system of equations

Ca,ulxo.H,[)
ur+l

(5.8.75)

ubP

L -

has a solution (£ , 1) forxg=£% and H = F(£). By Lemma 5.5.1(b), the gradient of the function
(cc12,F@&).S ), u, .., uP)  is nonsingular at the point (£ , 2). Hence, there exists a

neighborhood W of (£ , & ) such that, for xo near ¥ and H near F (£ ), the system (5.8.75) has a

unique solution in W, (x , u), which is continuous in xoand H.

Now (x, u) is a Kuhn-Tucker pair for GQP(x ¢, H) if

VfO% lxo, H)+ X w/Vfix lxo, H)=0, (5.8.77)
jep
3 uifitlxo H)=0. (5.8.78)
JEP

By Hypothesis 5.5.1, there exists a neighborhood W of £ such that f /(x | xo, H) <0 for all
jé7.x € W,xgnear £ and H near F (% ). Therefore, for xo near £ and H near F (%), u/ = 0 for
jeJ for every Kuhn-Tucker pair (x, u) € W X Rf of GQP(x o, H). Hence, for xonear £ and H
near F (%), (x, u) is a Kuhn-Tucker pair for GQP(x o, H) if and only if (x, u) solves (5.8.75).

This implies that, for xo near £ and H near F( ), (x , & ) is the unique Kuhn-Tucker pair of the

problem GQP(xo, H) in the set W X R{.
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Problem Algorithm NF NDF FV KT
12 PT 7 7 - 30000000E+02 .12E-06
GQP 34 5 -.30000000E+02 31E-15
29 PT 14 10 -.22627417E+02 .17E-06
GQP 50 9 -22627417E+02 J1E-11
30 PT 14 13 .10000000E+01 0.
GQP 6 4 .10000000E+01 21E-17
31 PT 11 8 .60000000E+01 41E-06
GQP 15 6 .60000000E+01 35E-14
33 PT 4 4 - 40000000E+01 0.
GQP 36 7 - 40000000E+01 .14E-14
34 PT 9 8 -.83403245E+00 43E-04
GQP 47 10 -.83376811E-00 ASE-07
43 PT 9 9 -.44000000E+02 .68E-04
GQP 29 9 - 44000000E+02 25E-10
57 PT 33 19 .28459673E-01 20E-07
GQP 52 20 .30729013E-01 .64E-04
66 PT 8 8 .51816324E+00 0.
GQP 23 8 .51816327E-00 3SE-14
84 PT 4 4 -.52803389E+07 0.
GQP 42 4 -23512434E+07 .T9E+06
100 PT 42 14 .68063006E+03 21E-03
GQP 110 14 .68063005E+03 42E-06
113 PT 18 14 24306209E+02 .17E-04
GQP OVERFLOW
117 PT 28 16 3234679E+02 .68E-04
GQP OVERFLOW

Table 5.1: Summary of Numerical Results

The abbreviations in the table have the following meanings:
Problem: Number of the test problem in [Hoc.1].

Algorithm: PT denotes the algorithm in [Pan.1]. The results are quoted from that article.
GQP denotes the algorithm described in Section 6 with Hy =L

NF: Number of objective function evaluations.
NDF: Number of gradient evaluations of the objective function.
FV: Value of the objective function at the final iterate.

KT: Nomn of the Kuhn-Tucker vector at the final point. As defined in [Hoc.1], this is
min, »o IV°,)+ 3 u/Vfx/(x,)l, where x, denotes the final point.

~
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CHAPTER 6
CONCLUSIONS

6.1 CONTRIBUTIONS

We showed in Chapter 2 that PPP algorithms converge linearly even on problems which are
nonconvex and on which strict complementary slackness does not hold. This weakening of
assumptions is significant because few problems arising in practice are convex. Recall that, while
singular matrices form a set of measure zero in R” **, nearly singular matrices are common and
pose computational difficulties. Similarly, while problems for which strict complementarity does
not hold form a "set of measure zero", many problems nearly violate strict complementarity. On
such nearly degenerate problems, an optimization algorithm which is sensitive to degeneracy
might converge slowly until very near to the solution. Our result shows that this will not occur

with PPP algorithms.

PPP algorithms are sensitive to domain scaling, however. This issue was explored in
Chapter 3, where we investigated the effect of a variable metric technique on the performance of
a PPP algorithm on a class of composite minimax problems. Luenberger [Lue.1] advocates the
evaluation of variable metric algorithms for differentiable, unconstrained optimization by consid-
ering how they affect the eigenvalue structure of the Hessian matrix. The rationale for this is that
the condition number of the Hessian determines the convergence ratio of sequences constructed
by the methods. We used this idea in Chapter 3 to evaluate the variable metric technique
presented there. The use of the variable metric technique in conjunction with the PPP algorithm
decreases the upper bound on the convergence ratio which we derived in Chapter 2. Experiments
have shown that, while this bound is not tight, it is a reliable predictor of the relative speed of
convergence on different problems. This provides a theoretical explanation for the performance

improvement observed in numerical experiments.



§6.1 CONTRIBUTIONS 164

The use of GQP subproblems in algorithms for solving problem (1.1.2b) was proposed in
1971 [Pol.10}, but the algorithms were never implemented because no finite-step method for
solving the subproblem was known. In Chapters 4 and S, we presented efficient methods for
approximately solving first-order and second-order GQP subproblems. Both are active set
methods. The difficult inequality-constrained GQP subproblem is reduced to an easier equality-
constrained problem by guessing the set of constraints which are active at the solution. The
method by which we guess the active set - computing the Pironneau-Polak search direction -
yields both a good point at which to initialize a root-finding method for the solution of the
equality-constrained problem and a feasible descent direction which can be used in stabilizing the
overall algorithm. In the first-order case, discussed in Chapter 4, the error in the approximation
to the GQP solution is zero when the error in the approximation to the solution to (1.1.2b) is
small. In the second-order case, discussed in Chapter S, the error in the approximation to the
GQP solution is of the order of the fourth power of the error in the a_lpproximaﬁon to the solution

to (1.1.2b).

The convergence rate theory developed in Chapter 4 is another example of the usefulness of
convergence ratio bounds for comparing linearly convergent algorithms. The convergence ratio
bounds derived for the GQP-based algorithm are smaller than those obtained for the Pironneau-

Polak algorithm. The GQP-based algorithms proved superior in numerical experiments as well.

The superlinear convergence rate theory developed in Chapter § is fairly general. The
results apply to an entire class of algorithms. (Admittedly, proving that an algorithm is a member
of the class requires some calculation.) A range of convergence rates from superlinear to 3/2 is
obtained, depending upon the degree of accuracy of the Hessian approximations. In contrast,
other superlinearly convergent feasible descent algorithms have been shown to converge only

two-step superlinearly [Pan.1-2).}

'We do assume, however, that each of the Hessian estimates converges to the actual Hessian at the solution; this is stronger than
the corresponding assumption made in [Pan.1-2).
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6.2 FUTURE RESEARCH

Asymptotic convergence rate results, like the ones proved in this dissertation, provide a partial
ordering of algorithms according to their overall performance. Even when far from a solution, a
linearly convergent algorithm with a small convergence ratio bound can be expected to converge
faster than a sublinearly convergent algorithm or a linearly convergent algorithm with a conver-
gence ratio bound near one. Similarly, a superlinearly convergent algorithm can be expected to
converge faster than a linearly convergent algorithm. However, there is a limit to the usefulness
of asymptotic theories in predicting pre-asymptotic performance. Small differences in the con-
vergence ratio bounds do not reliably indicate the relative overall speed of linearly convergent
algorithms. A two-step superlinearly convergent algorithm may well be faster in the early phase

of optimization than a quadratically convergent algorithm. As a result, other gauges of algorithm

performance are needed.?

Some non-asymptotic efficiency results have been obtained. In the course of their complex-
ity research, Nemirovsky and Yudin [Nem.1] have derived bounds on the total number of itera-
tions needed by certain algorithms to reduce the cost-to-go, f %x;) — £ %% ), by a certain fraction.

However, such results are difficult to obtain, and it is not clear how conservative they are.

We suggest the investigation of an altemative measure of pre-asymptotic performance: the
rate of escape or divergence of an algorithm from the neighborhood of a nonminimum stationary
point. Such situations are encountered in practice, and many iterations may be spent on such an
escape. Furthermore, an algorithm’s performance in this test situation may be indicative of its
ability to pass quickly through a poorly scaled region of the domain. An algorithm’s rate of
divergence from nonminimum staﬁonary points is not, in general, the same as its rate of conver-
gence to minimizers. For example, Newton’s method converges quadratically to both minimizers

and maximizers. In addition, algorithms with the same asymptotic rate of convergence to

*Measures of algorithm performance like rate of convergence are not useful merely as means for ranking algorithms. The in-
sight gained in proving that an algorithm auains a certain level of performance, for example, is superlinearly convergent, leads to the
construction of better algorithms.
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minimizers may have different rates of divergence from nonminimizers. The rate of divergence
may be a better predictor of the relative behavior of algorithms during the most time-consuming
portion of the computation, reaching the vicinity of the solution. The potential usefulness of this
measure could be evaluated by numerically estimating the rates of divergence of well-known
algorithms and correlating the results with their overall performances on, for example, the test
problems in [Hoc.1]. Deriving the rate of divergence of an algorithm should be no more complex
than deriving its rate of convergence; both tasks would rely heavily on the use of Taylor series

expansions.
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