
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LAYOUT-ORIENTED TECHNOLOGY MAPPING

AND 10 PAD ASSIGNMENT

by

Massoud Pedram, Narasimha Bhat, andKamal Chaudhary

Memorandum No. UCB/ERL M90/97

14 November 1990

LAYOUT-ORIENTED TECHNOLOGY MAPPING

AND 10 PAD ASSIGNMENT

by

Massoud Pedram, Narasimha Bhat, and Kamal Chaudhary

Memorandum No. UCB/ERL M90/97

14 November 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LAYOUT-ORIENTED TECHNOLOGY MAPPING

AND 10 PAD ASSIGNMENT

by

Massoud Pedram, Narasimha Bhat, and Kamal Chaudhary

Memorandum No. UCB/ERL M90/97

14 November 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Contents

Table of Contents 1

List of Figures u

1 Layout-oriented Technology Mapping 1
1.1 Introduction and Motivation 1
1.2 Terminology 2
1.3 Algorithm Overview 3
1.4 Technology Mapping for Minimum Layout Area 6

1.4.1 Global Placement 6
1.4.2 Incremental Updating of Placement 8
1.4.3 Fanin and Fanout Rectangles 1°
1.4.4 Wire Cost Estimation 10
1.4.5 Cone Ordering H

1.5 Technology Mapping for Minimum Delay H
1.5.1 Arrival time calculation H
1.5.2 Output load capacitance 12
1.5.3 Updating the arrival time 12
1.5.4 Estimation of wiring capacitance 13
1.5.5 Mapping for minimum delay 13
1.5.6 Inaccuracies in the delay model 13

1.6 Experimental Results and Discussions 14
1.7 Conclusions 15

2 IO Pad Assignment based on the Circuit Structure 17
2.1 Introduction 1^
2.2 Solution Technique Overview 18
2.3 Experimental Results 20
2.4 Conclusions 20

Bibliography 21

List of Figures

1.1 4
1.2 5
1.3 6
1.4 7
1.5 • 9

11

Chapter 1

Layout-oriented Technology Mapping

Massoud Pedram, Narasimha Bhat

Abstract

Recent studies indicate that interconnections occupy more than half the total chip area and account
for a significant part of the chip delay. In spite of this, most logic synthesis tools do not explicitly take the
wiring into account during the optimization phase. Our work is a first step towards including wiring into
the logic synthesis process. In this paper, we present Lily, a technology mapper integrated with MIS, which
considers layout area and wire delay during the technology dependent phase of logic synthesis. Lily estimates
the interconnection dependent contributions to circuit area and delay by referring to an incrementally updated
global placement ofthe Boolean network. The incremental update does not restrict the dynamic programming
approach adopted in technology mappers such as DAGON and MIS. Our algorithm has been implemented and
preliminary results are encouraging.

1.1 Introduction and Motivation

The goal of logic synthesis is to produce a circuit which satisfies a set of logic equations, occupies
minimal silicon area and meets the timing constraints. Most logic synthesis tools currently available split this
task into two phases - a technology independent phase and a technology dependent phase [5]. Within each
phase, some measure ofthe cell area and cell delay are used as objectives for rninimization. It isassumed that
wiring optimization can be handled efficiently in the physical design phase. However, decisions made during
the logic synthesis phase may limit the optimization potential of physical design tools. For example, excessive
factorization based on common factor extraction during the technology independent phase of logic synthesis
can lead to gates with high fanout and large interconnection lengths for logic implemented by standard cells.
Inordinate attentionhas been focused on minimizing the active cell area during technology mapping leading to
gates with high fanin count which often increase routing congestion during the final layout and increase the path
delay. Ignoring propagation delay through wires has introduced inaccuracy in the timing analysis performed
during the technology mapping.

With recent studies [4] indicating that interconnections occupy more than half the total chip area and
account for a significant part of the chip delay, it is appropriate that we integrate wiring into the cost function
for logic synthesis. The work presented in this paper is astep toward fusing layout considerations into the logic
synthesis process. Specifically, we incorporate the wiring area and delay into the technology mapping phase.
This problem can be stated as follows. Given a Boolean network representing a combinational logic circuit
optimized by the technology independent synthesis procedures and a target library, we bind the nodes in the
network to gates in the library such that area of the final implementation (after gate placement and routing) is
ininirnized and timing constraints are satisfied. Asuccessful and efficient solution to this problem was suggested
by Kurt Keutzer and implemented in systems like DAGON [6] and MIS [7]. The idea is to reduce technology
mapping to DAG covering and to approximate DAG covering by a sequence of tree coverings which can be
performed optimally using dynamic programming®. DAGON and MIS technology mapper generate circuits
with small active cell area but ignore area and delay contributed by the interconnections between the gates.

In this paper, we present Lily, a technology mapper based on DAG covering which integrates gate
placement and interconnection length estimation with the dynamic prograrnming algorithm. Lily maps a given
logic circuit onto a set of gates in the target library such that the layout area and delay are minimized. Layout
area is the sum of gate areas and routing area. Delay in the circuit is contributed by gates and interconnections
among them. We estimate the interconnection dependent contributions to circuit area and delay by referring to
an incrementally updated global placement of the Boolean network. The incremental update does not restrict
the dynamic programming approach adopted in technology mappers such as DAGON and MIS.

The rest of the paper is organized as follows. In Sections 2 and 3, we state the terminology and
notations used throughout the paper and give an overview of the algorithm. In Sections 4 and 5 we discuss
technology mapping targeted toward area minimization and delay minimization, respectively. Experimental
results and concluding remarks are presented in Sections 6 and 7.

1.2 Terminology

The approach of DAG covering for technology mapping can be summarized as follows. Aset of base
functions ischosen such asa two-input nand gate and aninverter. The optimized logic equations (obtained from
technology independent optimization) are converted into a graph where each node is one of the base functions.
This graph is called the subject graph. Each library gate is also represented by a graph consisting of only base
functions. Each such graph is called a pattern graph. (Each library gate may have many different pattern
graphs.) Asink node in a pattern graph is defined as a node which does not fanout to any other node in the
pattern graph. The technology mapping problem is then defined as the problem of finding a minimum cost
covering of the subject graph by choosing from the collection of pattern graphs for all gates in the library. For
area optimization, the cost of a cover is defined as the sum of gate areas. For minimum delay optimization, the
cost of a cover is defined as the critical path delay of the resulting circuit.

Consider a Boolean network N, which has been transformed into a subject graph consisting ofonly
2-input NAND and NOT gates. This is the network in its unmapped form which we shall refer to as the inchoate
network Ninchoau. In DAGON, Ninchoatt is partitioned into aset of maximal trees, Tt, and an optimal dynamic
programming solution is found for each tree. In MIS, Ninchoatt is split into aset of logic cones, Kit where each

cone corresponds to a primary output and all its transitive fanin nodes. This allows covering across the tree
boundaries and, as a result, may duplicate logic. The MIS technology mapper implements DAGON as a subset.

Consider Figure 1 which shows an example Ninehoau at some point during the mapping process.
Assume that we have processed cone K\ corresponding to the primary output po\. We have also processed
some of the nodes in cone K2 and have to process the remaining nodes in cone K2 as well as nodes in cone
K3. (In the dynamic programming approach, we start from the primary inputs ofthe logic cone and recursively
process nodes in a reversed depth first search order toward the primary output.) At this point, nodes in
Ninchoatt can be classified intofour categories. An egg is a node which has not been processed (visited) by the
mapper. A nestling is a node inthecurrent cone, K2, which has been visited. Ongoing tothenature ofdynamic
programming, we cannot predict whether or not a nestling will be present inthe final mapped network, Nmapped
until we reach po2. A dove is a node in K\ which is a non-sink element ofsome pattern match. Such a node
will not be present in Nmapptd because it has been merged into another. Ahawk is a node in Ki which is a sink
node in some pattern match. Such a node will inevitably show up in Nmapped. Note that every dove has been
merged into (fallen prey to) at least one hawk. Anestling can become a hawk or a dove. Due to the possibility
of logic duplication, it may be possible for a dove to reincarnate and restart the bird's life cycle as an egg and
later become a hawk. (See Figure 2.) At the end ofmapping procedure, only hawks and doves remain. This
classification will be used later to describe the construction of fanin rectangles which are needed for updating

the placement positions and estimating the wire lengths.
At the beginning of mapping process, every node is an egg node. We assign to these nodes initial

placePosiiions based on a placement of Ninchoau. As the mapping process advances, we calculate and assign
new mapPositions to the mapped nodes. In section 4, we will describe two methods for calculating these
mapPositions.

A stem refers to a multiple-fanout node in Ninehoau- A branch is the immediate fanout node ofa
stem. A line refers to a directed edge in Ninchoate> An exit line for a cone Ki is a line which is the output line
of a node in Ki and and input line of a node which is not in Ki.

1.3 Algorithm Overview

We justify incorporating the wiring estimates into technology mapping for area optimization by point
ing out the problems associated with minimizing only the active cell area. Agate with high fanin count which
has minimum area and covers a sub-network in Ninchoau can result in wiring congestions during the detailed
routing phase since many wires (as many as there are fanin and fanout nodes for the gate) are forced to converge
to the same gate boundary in the layout plane. In addition, such a matching may result in excessive wire length
depending on how the fanin gates are connected to other gates in the circuit.

Figure 3shows a small portion of Ninchoatc- Our task is to transfer the signals from source nodes s,-
to the sink node t using minimum wire length. For the sake ofdiscussion, assume that positions of«t- and t are
pre-determined. The decision problem is as follows. "Is there a minimum wire length solution with the number
of distribution points < Jfc?"1 Technology mappers such as DAGON and MIS attempt to find a solution with
jb = 1, i.e., they find the smallest area gate which matches as many intermediate nodes as possible. This is a

^ere, a distribution point refers to an a logic gate between sources and the sink.

po3 po2

pi6 pi5 pi4 p\3 p\2 pi1

Inchoate Network

po3 po2

po3 po2

pi6 pi5 p\4 p\3 p\2 pi1

Partially Mapped Network

po1

pi6 pi5 p\4 p\3 p\2 pi1

Current View of Final Network

Figure 1.1:

A Bird's Life Cycle(s)

Figure 1.2:

good approach if the fanin gates,s,-, can be placed near the matching gates However, inmany cases, these gates
are either strongly connected to different gate clusters on the layout plane or are fixed at the chip boundary
and hence mayhave positions far from one another and from the matching gate. Therefore, a solution with one
distribution point may incur a large interconnection cost. In fact, there isoften an optimum k > 1 which will
result in overall minimum wire cost as illustrated graphically in Figure 3. Note that if the number of sources
is small, say 3, one distribution point will suffice for achieving both minimum active cell area and minimum
wire cost. However, if the number of sources is large, say 5 or more, then it will pay off to consider how close
the sources can be placed by a good placement optimizer before deciding whether a solution of one gate with
high fanin count or a solution ofmore than one gate (with low fanin counts) should be accepted during the
technology mapping process.

Lily integrates I/O pad placement, technology mapping, gate placement and interconnection length
estimation processes in a systematic and consistent manner. The key component ofand the starting point for
Lily is aglobal placement obtained for Ninchoatt which captures the structure ofthe network on the plane. This
global placement solution contains overlapping gates and has not been adapted to aspecific design style, that
is, gates are not forced to fall into rows or slots. However, it is a balanced placement where gates are uniformly
distributed over the convex hull defined by the external I/O pads for the circuit. Lily reads positions for the
unmapped nodes in Ninchoatt from the global placement solution and uses this information to estimate wiring
cost during the mapping process. As the mapping process advances, the number of nodes and the structure
ofNinchoatt gradually changes and Lily updates its view ofthe Boolean network and its corresponding global
placement on layout plane. We will present techniques to incrementally update the Boolean network and initial
global placement and demonstrate that there is a good correlation between the the incrementally updated
placement solution and a global placement obtained directly for Nmapped-

Distribution point

S3W S AND3

Distribution points and wire length

Figure 1.3:

1.4 Technology Mapping for Minimum Layout Area

We intend to find a covering ofa subject graph Gby a set ofpattern graphs P such that the layout
cost is minimized. The layout cost refers to the actual area ofthe implementation after placement and routing.
Lily's cost function accounts for the gate area and the routing area.

Assume that we are evaluating the cost ofmatch m at node v. (See Figure 4.) This cost consists of
two components as follows.

areaCost(v,m) = area(gate(m))+ ^ areaCost{vi)
Vi€>nput«(v,m)

wireCost(v,m) = wire(gate(m),gate(vi))+ ^2 wireCost(vi)
Vi£inputs(v,m)

Here, inputs(v, m) refers to the list of nodes of Gwhich correspond to the inputs of m. gate(m) is the physical
gate corresponding to the match m. gate{vi) is the best gate matching at node v{. The area cost calculation
is straight forward and is similar to that in MIS. The wire cost consists of two terms. The first term is the
interconnection length required to complete connections from gate(m) to its fanin gates, i.e., gatefa). The
latter is the dynamic programming recursive cost and represents the sum ofwire lengths required to connect
all gates from primary inputs up to gate(vi).

1.4.1 Global Placement

We use a global placement procedure [10, 11] toplace the base function gates in Ninchoatt on a layout
image. The actual area of the image is estimated by accurate area predictors for standard cell based designs
such as that in [14]. Prior to the mapping process, positions of the I/O pins (primary inputs and outputs of the
logic circuit) are assigned either by a top-down floorplanning and pin assignment procedure driven by chip-level
considerations (as in [15]) or by abottom-up I/O pin assignment procedure driven by structure of Ninchoau (as
described in Chapter 2).

View of the Inchoate Network during Mapping

Figure 1.4:

POi

The global placement phase generates a balanced point placement for all gates subject to the given
I/O pad assignment which minimizes the Euclidean distance squared metric summed over all connected gates.
It uses a combined optimization and bi-partitioning technique to place the gates. The bi-partitioning step may
be stopped when the number ofmodules assigned toany subregion is less than some user-specified parameter.
(A limit of one module per region and an assignment of modules to rows or slots corresponds to a detailed
placement.) By a balanced global placement, we mean that the gates are uniformly distributed within the chip
boundary, i.e., there are no over-subscribed or under-subscribed subregion.

Such a global placement is desirable for two reasons. Firstly, the incentive for the global placement is
to capture the structure of the Boolean network on plane. We do not want to destroy the global optimality of
the solution and the ability to capture the logic structure by prematurely forcing gates into rows (which would
be thecase, ifwe did a detailed placement). Secondly, the incremental placement updating procedure does not
perform well on a two-dimensional mesh due to the inability to keep track of the slot capacity constraints during
the dynamic programming process.

We use a point model during the gate placement. The gate pins are assumed to be located at the
center ofthe gate and the location of gate is represented by a single (x, y) coordinate that coincides with the
center ofthe gate. These assumptions do not introduce much error when the number ofgates in the circuit is
large.

1.4.2 Incremental Updating of Placement

Initially, nodes in Ninchoatt are assigned valid placePositions based on the global placement solution.
As nodes are mapped, new mapPositions are calculated and assigned to them. There are two options for com
puting the mapPositions. In the CM-of-Mergedoption, we place match matthe center of mass ofmerged(v, m).
(This is the list of nodes of Ninehoatt, including v, which are 'covered by' or 'merged into' m.) The calculation
uses placePositions for w,-. (See Figure 4.) In the CM-of-Fans option, we place match msuch that the wire
length to inputs(v, m) and to outputs(v) is minimized. Due to depth first search ordering, inputs(v, m) have
already been mapped and therefore we use their mapPositions. outputs(v) are not mapped yet and we use their
placePositions.

The advantage ofthe first approach is that the mapPositions are always calculated by referring to
the global placement result. Since the initial placement is balanced and captures the adjacency relations among
nodes in Ninchoatt, the evolving placement will also be balanced. Note that mapping decisions made at node
t> are influenced by the estimated wire length cost which is computed from the distances between gate(m) and
the best function gates matching at inputs(v, m) and the base gates at outputs(v). The disadvantage is that
the position of the candidate gate is independent of the positions of gates directly connected to it and hence
the wire cost associated with this incremental updating is pessimistic.

The advantage ofthe second approach is that mwill be placed at a position which causes minimum
increase in the wire length with respect to its fanin and fanout which is a desirable feature. (This option
corresponds to a constructive placement procedure for the network being mapped. Note that in because of
dynamic programming formulation, we are generating and storing as many constructive placement solutions as
there are mapping solutions. Amapping solution along with its associated placement solution are determined
after each logic cone is processed.) The disadvantages are that the placePositions for the as yet unmapped

gate(v2|

gate(v3l

gate(v4)

x2

fanout rectangle

Position Calculation for a Candidate Match

Figure 1.5:

outputs(v) maynot have much correlation with the mapPosition ofthe gates actually showing up at the outputs
of v in the final network and that the incremental placement may become unbalanced (i.e., one with overlaps

and locally 'congested' areas along with 'holes' in the layout plane). The latter problem can be reduced by
repeating the global placement on the partially mapped network after a cone or a predetermined number of
cones are processed. In that case, we can assign placePositions to egg nodes and hawk nodes based on the new
placement result. The first problem is more difficult to overcome. One solution is to perform a preprocessing
pass on the network during which we record separately for each node v all possible output(v) by examining
every possible match in the network which has v as an input. During this preprocessing phase, we place the
matches at the center of mass of their merged nodes. Clearly, this technique leads to a slow-down of Lily since
we now need to consider all different matchesat the outputs(v) before choosing m. (See [9].)

When using CM-of-Fans option, depending on the wire length metric adopted, the problem can be
solved efficiently or can become difficult. Consider Figure 5, which shows the enclosing rectangles for the fanin
and fanout nets of match m at v. Given a norm and the coordinates of these fanin and fanout rectangles r,

the problem is to find a point p which results in the minimum sum ofdistances between that point and the
rectangles. In case of the Manhattan norm, the solution easily follows by observing that the distance function
has a separable form with respect to the variables x andy andthat the distance ofpoint p from rectangle r can
be written as:

f{x) —-(\r.lowerleft.x - p.x\ + \r.upperright.x - p.x\ - \r.upperright.x - r.lowerleft.x\)

10

The constant term is dropped and the problem can be restated as: Find the point x such that£, |xf - x| is
minimum where xt corresponds toeither the left or the right corner point coordinates ofeach ofthe rectangles.
The problem is a special case of solving for the median of a graph which is presented in [12]. It can be shown
that this problem, treating only a linear tree rather than a general graph, is very easy to solve; the solution is
the median point for the sorted list of x,'s.

In the case ofEuclidean norm, N rectangles in plane partition the plane into N2 subregions. In each
subregion, the above optimization can be formulated as aquadratic optimization problem with linear constraints
which can be solved efficiently. The global solution is obtained by comparing the cost ofthe best solution in
each subregion and picking the minimum cost solution. Pruning of regions can reduce the number ofsubregions
that must be considered. However, this still takes far more time than we afford during the mapping process.
Hence, an approximate solution is pursued. In particular, we represent each fanin/fanout rectangle by itscenter
point, then the optimal point location problem is solved by computing the center of mass of center points for
the rectangles. Note that when constructing the fanin/fanout rectangles, we exclude nodes of merged(v, m)
from the fanin/fanout nets.

1.4.3 Fanin and Fanout Rectangles

We explain how the fanin rectangles for match mat v (which is a node in cone Ki) are constructed,
(see Figure 4.) The key procedure is add-true-fanout-recursively which accepts astem node, say t*, and afanout
branch, say /,-, and finds the 'true fanout'(s) for the stem node along that branch. Here, 'true fanout' refers to a
fanout ofVi that would be present had the mapping process been terminated after cone /£_i was processed. A
'truefanout' isa hawk node which has »,- as its fanin, a nestling node oran e^node. Due to logic duplication, it
is possible to find more than one 'true fanout' along a given branch. For hawk nodes, we use their mapPositions.
For other nodes, we use their placePositions. (For example, the list of'true fanout's of node i?i consists of nodes

«i» *i, h and /3-)
We add Vi to the list ofnodes and delete those 'true fanout's ofVi which are covered by the current

match m. (The new list for vx consists of xi, f2, /3 and t>i.) Next, we build aminimum rectangle enclosing all
nodes inthe new list. Note that we use mapPositions ofVi and its Aaw* fanouts and placePositions ofall other
nodes in the list. Construction offanout rectangle is easy since outputs ofgate(m) are egg nodes due to depth
first search ordering of processed nodes. We directly use their placePositions to build the fanout rectangles.

1.4.4 Wire Cost Estimation

After positioning gate(m), we must estimate the wire cost associated with the matching of mat node
v. We have implemented two options. For each fanin v,-, we include gate{m) in the fanin rectangle for vt and
calculate the half perimeter length of the fanin rectangle divided by 'true' fanout count at v,- (in order to avoid
duplicate accounting for the wire cost) to get the expected wire length contributed by input net to t*. This
length is then multiplied by the ratio of minimum rectilinear Steiner tree length to half perimeter of enclosing
rectangle as given by [13]. We have also implemented another wiring model based on finding the rectilinear
spanning tree connecting all "pins" on a given net.

11

1.4.5 Cone Ordering

The 'true fanout's corresponding to the hawk nodes will necessarily exist in the final network. Other
'true fanout's are tentative, in the sense that they may not exist in the final network. However, we use all
'true fanouts' for constructing the fanin rectangles as described above. Therefore, we should come up with an
ordering ofoutput cones that minimizes number ofreferences to the 'true fanout's which have not been mapped
yet. Reconvergent stem nodes whose reconvergence region is a subset ofexactly one logic cone gives rise to egg
or nestling 'true fanout's inside the current logic cone. However, we cannot avoid this situation. Therefore, we
set out to find an ordering that minimizes the number of references to the egg nodes outside the current logic
cone. Thisproblem may be restated as follows: Find an outputcone ordering such that the sumover all cones
of the number of exit lines from any cone to all unmapped cones is minimized.

More formally, let (it\, ir2, •••,7rn) denote a linear ordering on cones K\, K2, •••,Kn. Then, it is the
desired ordering if it minimizes the following sum:

t=i j=»+i

where the term in double sumdenotes the number ofexit lines from KTi to KXj. We build annxn matrix, M,
where we store E(Ki, Kj) in its ij position. Note that M is a symmetric matrix with all diagonal entries equal
to zero. The desired ordering is obtained by recursive application of the following operations: Find a row, i,

with minimum row sum

3 = 1

Push its corresponding primary output cone intoa queue; Delete row t and column t from M. This procedure
will find the optimum linear ordering ofoutput cones for the specified objective function.

1.5 Technology Mapping for Minimum Delay

In the delay mode, the best mapping at a node isdetermined based on thearrival time ofthe signal
at the node output. As technology scales down, the contribution ofwiring to the delay becomes significant, and
even dominating [2, 4]. Hence, it is only natural that we have attempted incorporating wiring delay into the
calculation of the arrival time.

1.5.1 Arrival time calculation

Consider a gate G with output line y and input lines i, t = 1••-p. Let G fanout to inputs ofgj. In
a simple linear delay model, the delay through G is a linear function of its output load capacitance Cl- The
slope ofthis linearity can be thought of as the output resistance and the offset (at zero Cl) can be thought of
as the intrinsic delay through G. In general, the delays from different inputs to the output are different. We
represent the intrinsic delay from input i to y by Uand the output resistance at y corresponding to input» by
Ri. Note that U and JU haveseparate values each for rising and falling delays.

Based on this model, the arrival time [3] at y from input i, tVi, can be easily calculated as

ty.=U + Ii + RiCL

12

where Uis the arrival time at input line t. (Again, note that arrival times have to be calculated separately for
rising and falling delays). Using a worst case analysis, the output arrival time at y, tv is defined as the the time
at which all signals from input lines t will be available at y and is given by

ty = max{tyi}

computed over all i,» = l---p. Combining the above two equations, we have the recursive formula for the
output arrival time as

ty = max{U -rli-r IUCl]

computed over alli, i = 1••-p. This calculation for the arrival time requires that the value ofCl be known.

1.5.2 Output load capacitance

Cl is the equivalent capacitive loadat y. This capacitance is modeled as

n

Cl = 2^,Cj + Cw

where Cj denotes the capacitance at the input of fanout gate gj, and n is the number of fanout nodes. Cw
represents the capacitance due tothe interconnections which connect Gtoits fanout nodes. The wiring resistance
is very small and is, thereof, ignored.

Let q be the input of the fanout gate gj to which y is connected. Since we have modeled the
interconnections by a lumped capacitance, ty = tq, that is, we have assumed that output arrival time at y
and the input arrival time at q are identical.

In MIS, Cw is modeled as a function of the n. (A simple function would be linear in n, with a user
specified proportionality constant.) In Lily, we estimate Cw based on the wiring information and Cw is modeled
asa lumped capacitance proportional to theestimated output net length. (See section 5.4.)

1.5.3 Updating the arrival time

During the mapping process, when we match mat node v, the fanouts ofvare not yet mapped. This
implies that the load CL, at the output of gate(m) cannot be determined exactly. This problem can be handled
by assuming a constant load; i.e., all types of gates are assumed to have the same input parasitic capacitance.
This assumption is is also adopted in MIS version 2.1. (Most gates in the 3/i MSU standard cell library have
an input capacitance of 0.25 pF [1]). However, in order tocalculate the wiring capacitance, we need to know
the position in addition to the type ofgate at the fanout. This is not possible and we instead use the nodes in
the Ninehoatt as the fanouts. This results in an inaccurate arrival time calculation.

To prevent this inaccuracy from propagating through, we make the following observation: The capac
itance at the output of inputs(v,m) is now known because we know the type and position oftheir fanout gate,
which is gate(m), the current match. Ifwe update the output arrival times of inputs(v,m), then the input arrival
time of gate(m) is accurate. The splitting of the arrival time calculation into load dependent and load dependent
parts makes such an update easy. This can be thought of as splitting the gate Ginto p load independent parts

13

Lit and one load dependent part LD. Each input i has an associated LI{. The Lis have zero output resistance

and LD has zero intrinsic delay. Corresponding to each input t, we define the block arrival time at G as

bi = U + Ii

The output arrival time can now be defined in terms of the block arrival times and is given by

ty = max{bi -{- RxCl)

The advantage of this splitting is that only the IUCl part has to be redone for different loads - bis remain the

same.

1.5.4 Estimation of wiring capacitance

A net is modeled as a lumped capacitance (and the resistance of the routing is ignored). If X and Y
are the horizontal and vertical interconnection lengths for the nets, the capacitance is calculated as ChX + CVY,
where Ch and Cv are the capacitance per unit length of the horizontal and vertical interconnects respectively.

The wiring capacitance is thus determined by estimating the horizontal and vertical extents of the net. This
can be determined using models described in Section 4.4.

1.5.5 Mapping for minimum delay

Consider the mapping at node v in Figure 4. We have already calculated the block arrival times at

Vi. The mapping proceeds in the following manner:

1. For each »»• Ginputs(v, m), the output arrival time at gate(vi) is recalculated. Thiscomputation uses the
blockarrival times at v,- and the current load at the output of v,-. We find the list of 'true fanout' nodes

for Vi and add match m to the list. The current load, seen at v,-, is calculated from this list. We use the
input capacitance ofgate(m) for Cl calculation and its mapPosition for Cw calculation. For a hawk node
in the list, we use the input capacitance and the mapPosition for gate(hawk). Foran egg or nestling node
in the list, we use the constant input capacitance and the placePosiiion for its base function gate.

2. The block arrival times at gate(m) and corresponding to each input v,- are computed.

3. Using the base function gates at the fanout ofv, the output capacitance load ofgate(m) is calculated.

4. The output arrival time at gate(m) is calculated using the block arrival time and the output load.

5. The output arrival time at gate(m) is compared with the output arrival time of other possible matches
at v. The matching with the lowest output arrival time ischosen. The match and its block arrival times
are stored at v.

1.5.6 Inaccuracies in the delay model

An accurate arrival time calculation for a gate requires that the positions of the gate and its fanout
nodes are known. Given the positions, the routing length canbeestimated to a fairdegree ofaccuracy. However,
it is not possible to determine the fanout positions in the dynamic programming algorithm. By assuming the

14

fanouts to be base function gates in the inchoate mapping, and by using the inchoate placement positions,
inaccuracy is introduced. To reduce this inaccuracy, the arrival time calculation is repeated at gate(vi). This
second calculation is more accurate than the one which was calculated when t* itself was being mapped.

1.6 Experimental Results and Discussions

Consider using the traditional mapping schemes on a given design but with two different target
libraries. Both libraries implement the same functions. However, the 'tiny' library has gates up to 3 inputs
while the 'big' library has gates up to 6 inputs. Clearly, mapping with 'tiny' library contains many more
gates and nets. Its active cell area and total chip area are, in general, larger. The 'big' library has much
smaller active cell area, but its routing complexity is high. Consequently, the final chip area after placement
and routing can be as large as that obtained using the 'tiny' library. Let Atiny and Abig denote the chip area
obtained by traditional mappers using 'tiny' or 'big' libraries. Similarly, let Wtiny and Whig denote the total
interconnection length. Now, ifwe use a mapping technique such as presented in this paper along with the 'big'
library, we will find a mapping solution with number of gates in between those of'tiny' and 'big' libraries but
with A < min(Atiny,Abig) and W< min(Wtiny, Wbig).

We wanted to show that by integrating technology mapping and gate placement, one can improve
the quality ofmapping both in terms oflayout area and circuit performance. In order to provide a fair basis
for comparison, we went through two pipelines to produce results: 1) Read in the minimized Boolean network,
run MIS technology mapper in area and timing mode, write mapped circuit to the database, assign locations to
I/O pads, do detailed placement and routing. 2) Read in the minimized Boolean network, assign locations to
I/O pads, run Lily in area and timing mode, write mapped circuit to the database, do detailed placement and
routing. In both cases we use the same placement, pin assignment and routing tools. Note that the first option
which is thestandard pipeline cannot make use ofthe location ofpads during the technology mapping process.
Table 1depicts comparisons between our results and those of MIS2.1 in terms of number of gates, active cell
area, total chip area and total interconnection length. In general, our mapper tends touse smaller gates, larger
active cell area but smaller total chip area (3-5%) and interconnection length (6-10%) due to reduced routing
complexity).

Table 2 shows our delay optimized mapping results and those obtained using MIS. The delays are
in arbitrary units, and are based on a ljx standard cell library. Since information on a real l/i library was
not available, we scaled the delay, gate capacitance and wiring capacitance of 3/i technology [1]. Both MIS2.1
and Lily delays are computed after detailed placement, and the wiring delays are included during the delay
calculation.

We used GORDIAN [10] package for global placement, CM-of-Fans option for incremental placement
update, minimum rectilinear spanning tree for wire length estimation and pad placement program described in
next Chapter. These options produce best results. The Gordian placement package generates aglobal placement
for a pre-mapped inchoate network with 1915 gates in about 3 minutes on a DEC3100. The Lily run time -
including premapping, pad placement, global placement of the inchoate network, mapping, detailed placement
of the mapped circuit with 198 gates for this example is about 7 minutes.

We have observed that Lily yields better mapping solutions (e.g., compared to MIS2.1 mapper) when

15

Example
num

inst.

total inst.

area(mm2)

MIS2.1

total chip
area(mm2)

wire

length(mm)
num

inst.

total inst.

area(mra2)

Lily
total chip

area(mm2)
wire

length(mm)

9symml 73 0.215 0.431 50.459 74 0.215 0.407 48.576

C1355 206 0.582 1.159 134.189 198 0.568 1.069 127.490

C1908 245 0.659 1.313 168.658 259 0.682 1.284 162.331

C5315 689 2.001 3.976 763.490 712 2.038 3.811 732.460

C7552 1140 3.063 6.081 946.810 1215 3.057 5.887 892.112

C880 189 0.529 1.055 140.763 197 0.542 1.012 133.774

alu4 82 0.213 0.427 39.953 85 0.218 0.413 38.823

apex6 305 0.877 1.746 363.5 354 0.959 1.681 298.417

apex7 123 0.318 0.636 77.407 146 0.353 0.624 70.796

duke2 185 0.512 1.022 155.611 191 0.522 0.985 151.443

o64 20 0.112 0.225 28.654 32 0.132 0.219 26.540

rot 372 0.953 1.897 332.960 382 0.971 1.812 312.417

Table 1.1: Comparison of of wiring results MIS2.1 versus Lily.

the routing complexity for the logic circuit is high and the target library contains large gates (number of fanin
nodes > 4). In addition, the initial pad placement - prior to technology mapping - influences the degree of wire
length reduction that is achievable by Lily.

Currently, Lily does not perform fanout optimization. In addition, its delay model is a load indepen
dent delay model which tries to overcome some of the shortcomings of a load independent delay calculation
by using information about the mapped portion of the inchoate network. As in MIS2.2, we could perform a
preprocessing pass during which we record for each node all possible load values at that node by examining every
possible match or perform apostprocessing pass to derive fanout trees. The main thrust of this work is to show
that by including the effect of interconnects during mapping, we can synthesize circuits with better performance
and area. Although we have implemented Lily at the level of MIS2.1, the ideas described throughout the paper
can be applied to MIS2.2 as well.

We believe that layout driven technology mapping (and in general, layout driven logic synthesis) is
a promising direction for research in the incoming years and that there are stUl many issues which must be
addressed. We hope to improve and extend our model. Work presented in [16] seems relevant. We hope to
improve our preliminary results by the time offinal submission.

1.7 Conclusions

In this paper we have described Lily, a technology mapper implemented on top of MIS2.1, which
integrates layout area and delay into the technology dependent phase of logic synthesis. We have shown tech
niques and ideas to incorporate the estimated wiring information into the dynamic programming algorithm
used for the tree matching. The key idea in our work is to do a fast global placement of the logic network in
its inchoate form. This initial global placement guides the wiring estimation. As the mapping proceeds along,

Example MIS2.1 Lily
delay area delay area

9symml 142.56 4416 135.16 4304

C1908 404.25 16512 374.74 14456

C5315 398.53 49768 358.22 37504

C880 273.58 12248 237.89 10456

apex2 136.25 6160 124.75 6272

apex6 384.88 16928 378.01 17768

apex7 133.38 5112 114.13 4984

b9 79.04 3296 65.39 3080

sao2 131.23 3160 120.76 2992

16

Table 1.2: Comparison of timing results for MIS2.1 versus Lily.

the initial placement is incrementally updated, so that nodes in the network which are processed later, can use
more accurate information. Other techniques such as optimal pad placement and ordering of the logic cones
also help in arriving at a mapping solution which has better performance after placement and routing. Both
delay and area optimization techniques have been implemented and the preliminary results are encouraging.
As mentioned earlier, our work is a first step towards including interconnection considerations into the logic
synthesis phase, and we hope to build on this work and modify it to be more robust and effective.

Acknowledgements The authors would like to acknowledge the support received for this research

from SRC Grant 90-DC-008.

Chapter 2

IO Pad Assignment based on the

Circuit Structure

Massoud Pedram, Kamal Chaudhary

Abstract

We present an IO pad assignment technique for placing off-chip IO pads. This technique makes use
of the information available in the circuit structure. It can be run prior to technology mapping or placement
procedures. Extension to timing-driven IO-pad assignment is straight-forward. The preliminary results are
encouraging.

2.1 Introduction

Acommon procedure for generating layout from the register transfer level description ofan electronic
circuit isasfollows. Circuit is partitioned into a number ofcombinational blocks. Each block issimplified using
technology-independent transformations so that an estimate of block area is minimized and the required arrival
time constraints at the primary outputs are satisfied. Next, each block is mapped into a target library. The
resulting net list is, then, passed to detailed placement and routing procedures which generate the layout.

During the technology mapping phase, knowledge ofoff-chip IO pad locations can be used to calculate
theinterconnection cost asdiscussed in Chapter 1. The standard technology mapping schemes ignore the effect
of wiring during the graph-covering procedure and only minimize the active gate area. We have already shown
the importance of including the wiring cost into the mapping process. Therefore, it is useful to have an IO pad
assignment procedure which is driven by the circuit structure.

When solving the gate placement problem, fixed placement of off-chip IO pads is required prior to
placing the gates. This is because in the absence of off-chip IO pads, the gates collapse to the center of chip.
In addition, the quality of detailed placement result strongly depends on the initial off-chip IO pad placement.
Acommon approach is to use an arbitrary (or random) pad placement prior to detailed placement and then

17

18

improve the pad locations based on the detailed routing result. The two phases are iterated until an acceptable
placement solution is generated. In general, this two-phase approach is undesirable due tothe following reasons.
Even ifconvergence is achieved, the solution is heavily influenced by the initial pad placement. The iteration
process is costly and time-consuming.

The IO pad placement iseven more important ifthere are path delay constraints from primary inputs
to primary outputs. In that case, the initial location of the IO pads will greatly influence the quality oftiming
driven placement obtained. In particular, a poor pad placement may result in infeasible placement solution.

Inthis chapter, we present a novel technique for deriving a good initial pad placement. This technique,
which is based on the analysis of the circuit structure andpath delay constraints, uses IO clustering and linear-
sum assignment to assign locations to IO pads.

2.2 Solution Technique Overview

We assume that thecircuit isspecified in theform ofa directed acyclic graph (DAG), that is,a Boolean
network prior to technology mapping or a directed net list prior to detailed placement. For each primary output
pot, we traverse the circuit in a depth-first order and identify itsprimary input support (i.e., its transitive fanin
cone, Ki. Next, we derive a linear ordering on the outputs as follows. Corresponding to each primary output
pot, we create a block £,. Corresponding to each primary input pij in the support set ofpo,-, we create a pin
Pj and attach it toblock Bi. Consequently, we have a net Ust representing primary outputs and their transitive
primary inputs. We generate a linear placement ofblocks Bi which minimizes the total netspan. This solution
corresponds to a linear ordering on the primary outputs that maximizes 'proximity' among their support set.

We distribute the primary outputs over the chip boundary in the order derived above. The distance
between consecutive outputs, poi and poj, is estimated as follows. We traverse the DAG in topological order
and assign a level to each node. The level ofa node is the maximum distance from any primary input to that
node. Let Ki and Kj denote the transitive fanin cone of po,- and poj. We find a node, n, with maximum level
that belongs to Ki f| Kj. The difference between level ofn and levels ofpot and poj is used to estimate the
desired distance between pen and poj. The idea is that if this difference is small, the two outputs should be
placed near one another. If Ktf]Kj is null, then the two outputs can be placed anywhere with respect to one
another.

After assigning initial positions to theoutput pads, we proceed to assign theinput pads. We transform
the problem to a linear assignment problem. The primary inputs and outputs of the circuit define a bipartite
graph. Each vertex on the input side represents a primary input. Each vertex on the output side represents a
primary output. There is an edge between pu and poj if and only if there exists a directed path from pii to
poj. The weight ofedge ij is equal to the length of longest path from pit topoj. (The length of a path is the
number ofgates on the path. Note that there may be more than one path between input-output pair.) This
information is stored in an M x JV matrix, T, where M is the number of primary inputs and N is the number

of primary outputs.

We put S slots (as many as pad-to-pad design rules allow) at the circuit boundary and construct an
N x S linear assignment cost matrix C. Entry (i,k) in matrix C represents the cost ofassigning primary input

19

pii to slot Sjfc. This cost is calculated as follows.

where d(j, k) is the 'distance' between primary output poj and slot Sk and t(i, j) which represents the 'target'

distance between pU and poj is read from the T matrix. d(j, k) must be stated in terms of number of gates.
From the technology file and the net list (or a canonical mapping of the Boolean network), the average gate
width, Wavg, iscalculated. Inastandard cell design environment, cell height, H, isconstant and ratio ofchannel
height to cell height, e.g., 7 can be estimated. Hence,

m- u\ \xpoj-x*k\ , \ypoj - ytkI
d(**)= Wm, +(l +r)xff-

After running the linear assignment solver on matrix C, we obtain a minimum sum-cost solution to

the input pad assignment problem, i.e., a subset X of entries <fq of matrix C is chosen such that the following

holds:

Va 3j* : c»>* GX,

if h # *2 then ft ? ft,

yjc,J* is minimum.
i

Since rows in the cost matrix C correspond to floating input pads and columns correspond to the slots, the

linear assignment determines input pad assignment with the minimumcost.
In order to assure that primary inputs which are connected to the same gates are assigned positions

near each other, we cluster these inputs together and assign input clusters to slots (with capacities bigger than
one). In particular, primary inputs which connect to the same gates within a level distance of / are clustered
together. (Note that primary inputs are at level 0and / is set to be a small fraction of I, the maximum level
distance from any primary input to any primary output.)

In order to improve on the pin assignment result, we repeat the same procedure for the second time;
this time fixing the primary inputs in their assigned slots and placing primary outputs with respect to them.

This technique can be easily extended to timing-driven IO pad placement. In that case, detailed
information (intrinsic delay, output drive, input pin capacitance) about the library gates can beused toestimate
the maximum path delay from any input to any output. The timing slack on each path is used to estimate the
wire length that can be used on that path. Let b(i,j) be the difference between the required time at pg and
the signal arrival time at primary input pit. It represents the path delay upper bound. Let t(i,j) denote the
difference between 6(i, j) and the maximum path delay from po,- to poj. (Note that this path delay only includes
the gate delays.) It represents the maximum propagation delay that can be 'used-up' in the wires connecting
gates on that path without violating the path delay constraints. Let d(j, k) be the difference between distance
from output poj to slot sfc and the total gate width on the path. It is translated to units ofdelay by using the
capacitance per unit interconnection length which is available in the technology file. Then,

c(,.i) =Ji:,if#i Mi.*)<<(.-.i)
I 00 otherwise

Example Total Net Length %Improvement

Optimal Pads Random Pads over Random

C1355 113205 133278 15.0

C432 88923 91557 2.8

C499 113210 133363 15.1

C880 142912 152118 6.0

alu4 38946 45768 15.2

apex7 76191 87166 12.6

b9 41503 46400 10.8

duke2 148557 155823 4.5

sa02 33512 33941 1.1

20

Table 2.1: Results for I/O PAD Assignment

The same initial input clustering and output pad distribution followed by linear assignment can be used tosolve
the timing-driven pad placement.

2.3 Experimental Results

The proposed technique has been implemented and run on several MCNC benchmark circuits. Table
1compares our pad placement results with those of a random pad placement procedure. All data are extracted
after detailed placement. We observe about 10% improvement in total wire length due to our pad assignment
procedure.

2.4 Conclusions

We have presented an IO pad placement technique for assigning IO pads based on analysis ofthe circuit
structure and path delay constraints. Both ofthese considerations are transformed into proximity relationships
among the off-chip IOs. A cost function which penalizes violations ofthese proximities is defined and linear
assignment technique is used tosimultaneously assign IO pads toslots. This technique is general and can handle
pad placement prior to technology mapping or detailed placement procedures.

Acknowledgements The authors would like to acknowledge the support received for this research
from SRC Grant 90-DC-008.

Bibliography

[1] D.V. Heinbuch ed., CMOS S CellLibrary, Addison-Wesley PublishingCompany, 1988.

[2] K. C. Saraswat and F. Mohammadi, "Effect of scaling of interconnections on the time delay of VLSI
circuits," IEEE Trans, on Electron Devices, vol ED-29, 1982, pp.645-650.

[3] M. Burstein and M. N. Youssef, "Timing influenced layout design," Proc. 22-nd Design Automation Con
ference, 1985, pp. 124-130.

[4] Y. A. El-Mansy and W. M. Siu, "MOS technology advances," in Handbook of advanced Semiconductor
Technology and Computer Systems, G. Rabbat ed., Van Nostrand Reinhold Company, 1988, pp. 229-259.

[5] R K. Brayton, G. D.Hachtel and A. L.Sangiovanni-Vincenntelli, "Multilevel logic synthesis," IEEE Trans,
on CAD, vol 78, no. 2, pp. 264- 300, February 1990.

[6] K. Keutzer, "DAGON: technology binding and local optimization by DAB matching," Proc. 24-th Design
Automation Conference, 1987, pp. 341-347.

[7] E. Detjens, G.Gannot, R. Rudell, A.Sangiovanni-Vincentelli and A.Wang, "Technology mapping in MIS,"
Proc. Int. Conf. CAD (ICCAD-87), Nov. 1987, pp. 116-119.

[8] A. Aho and S. Johnson, "Optimal code generation for expression trees," J. ACM, July 1976, pp.488-501.
[9] H. J. Touati, C. W. Moon, R. K. Brayton and A. Wang, "Performance-oriented technology mapping,"

Proc. 6-th MIT Conf, Advanced Research in VLSI, W. J. Dally ed., 1990, pp. 79-97.

[10] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich, "GORDIAN: VLSI placement byquadratic
programming and slicing optimization," IEEE Trans, on CAD to appear Jan. 1991.

[11] R S. Tsay, E. S. Kuh, and C.P. Hsu, "PROUD: A sea-of-gates placement algorithm," IEEE Design and
Test of Computers, Dec. 1988, pp. 318-323.

[12] S. L. Hakimi, "Optimum locations ofswitching centers and the absolute centers and medians ofa graph,"
Oper. Res., 12, 1964, pp.450-459.

[13] F. R. K. Chung and F. K. Hwang, "The largest minimal rectilinear Steiner trees for a set of n points
enclosed in a rectangle with given perimeter," Networks, vol 9 (1979), pp. 19-36.

[14] M. Pedram and B. T. Preas, "Interconnection length estimation for optimized standard cell layouts," Proc.
Int. Conf. CAD (ICCAD-89), 1989, pp. 390-393.

[15] M. Pedram, M. Marek-Sadowska and E. S. Kuh, "Floorplanning with pin assignment," Proc. Int. Conf.
CAD (ICCAD-90), 1990, pp. 98-101.

[16] P. Abouzeid, K. Sakouti, G. Saucier and F. Poirot, "Multilevel synthesis minimizing the routing factor,"
Proc. 27-th Design Automation Conference, 1990, pp. 365-368.

21

