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Abstract

A synthesis technique for asynchronous sequential control circuits from ahigh levelspecification, theSignal Transition
Graph (STG) is described. The synthesis technique is guaranteed to generate hazard-free circuits withtheunbounded gate-
delay model and thebounded wire-delay model, if theSTGis live, safe and hastheunique state coding property. A proof
thatSTG persistency is not necessary for hazard-free implementation is given.

1 Introduction

Asynchronous sequential circuit design has always been acontroversial topic. Intheearly years of electronic circuit design,
whenthe size of the circuits was suchthatahumandesigner couldkeep trackof the complex tuningissues involved,it was
apopulardesign style(see [Ung69] for athorough review). Then synchronous logic dominated theVLSI era, whentheease
of design of clocked circuits overwhelmed theadvantages of theasynchronous style. Asynchronous design, still,hasalways
been around, at least in the restricteddomain ofinterfaces to the externalworld, asynchronousby definition. However it was
usually limitedto finding a goodandreliable way to synchronize signals with the internal clock.

Recently there hasbeenarevival of interest in asynchronous self-timed circuits ([Sei81]) duetotheirdesirable properties:

1. theclock-skew problem, getting worse and worse in synchronous sub-micron designs, disappears completely.

2. system-level latency is nolonger dictated by theworst-case delay, butby the average delay. For example, aself-timed
adder can signal whenthe result onits outputs is valid and stable, rather than always wait for the worst delay of the
carry chain.

These properties are counterbalanced by a more constrained design procedure and, often, by an increase in area, power
consumption and worst-case delay.

The clockperiodof synchronous circuits mustbelong enough for thecombinational logicoutputs tosettle. Asynchronous
circuits, on the otherhand, are by definition sensitive to all signal changes, whether they are intentional (i.e. partof the
specification) ornot An example of such unintentional changes, also called hazards, are themultiple oscillations of asignal
thatis supposedto have a single transition.

In this paper we will give a procedure transforming a formal, technology-independent specification, called Signal Tran
sition Graph (introduced by [Chu87]), intoa circuit implementation made outof "basic gates" suchas nands, nors andS-R
flip-flops. We wantto prove thattheoutput of ourprocedure does nothavehazards. In order to do so,we must define what
delay model we are going to use for our circuit implementation.

• The unboundedgate-delay model([Ung69]) assumes thatwiresinterconnecting gates havezerodelay, andthatallpaths
insideeach gate (including flip-flops) have exactlythe samedelay. It also assumes thatno boundsare known on the
delay of each gate.

'This workwaspartially supported by theNational Science Foundation underGrant UCB-BS16421 andby AT&TBellLaboratories
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Figure 1: Delay models.

• The unboundedwire-delaymodel assumes thateach connectionbetween a gateoutput and anothergateinput canhave
an unbounded delay (see figure 1).

• The boundedwire-delaymodel assumes that each connectionbetween a gate output and anothergate input can have a
delay. In this model the amount of delay from eachinputto eachoutput ofa complex gate is a function of the loadon
the gate output The function depends both on the input thatwe consider andon the actual circuitused to implement
the gate. This delay is callednominal delay. Because of statistical fluctuations in the manufacturing process and of
modelingerrors, forexample the delay on the wires themselves, a lower andanupperboundon the nominaldelay are
considered when verifyingthe circuitwith timing analysis. This delaymodelwas introduced by [Huf54] (together with
the assumption, thatwe shall notmake, thatinputchanges are applied onlywhenthe circuit is known to be stable).

In mis paperwe introduce a new synthesisprocedure, thatcanbe proved to generate hazard-free circuits from an STG
specification, bom with the unbounded gate-delay andthe bounded wire-delay models. The synthesis procedure resembles
theonepresented in [Chu87] and[Men88]. However ourprocedure is more general, since it deals withamorerealistic delay
model, and it canpotentially givebetterresults, sinceit canguarantee thatthecircuit is hazard-free withoutrequiring theSTG
to be persistent in the case ofboth unbounded gate-delayandbounded wire-delay. In orderto do this we will:

• give a synthesisprocedure deriving from an STG a circuitimplementation C with two-level combinational functions
andflip-flops, togetherwith sufficientconditions on the STG guaranteeing thatsuch animplementationexists,

• characterize all hazards in circuit C,

• show that constrainedmulti-level logic synthesis can be used without altering hazard propertiesof C,

• prove mat C does not have hazards ifwe use the unbounded gate-delaymodel,

• give a procedureto remove all hazards from C ifwe use the bounded gatedelay model,

• show that persistency is not a necessary condition forhazard-free implementation.

The paper is organized as follows. Section 2 recalls some definitions from the literature. Section 3 describes briefly
the synthesis procedure introduced by [Chu87] and improved by [Men88] and [Van90]. Section 4 gives a procedure to
synthesize a hazard-free circuit under the bounded wire-delay modeL Section 5 describes the algorithm implementation
andgives experimental results. Section 6 draws some conclusionsand outlinessome opportunities for future development
Appendix A describes a very simple example, applying the ideas presented in the paper.

2 Definitions

This sectiongives some basicdefinitionsandpreviousresultsuseful throughout the paper. Most ofthe definitionsandresults,
unless otherwise stated, are from [Chu87].

2.1 Logic functions

A completely specified single-output logic Junction g of n input variables is a mapping g : {0,1}n — {0,1}. Each input
variable xi corresponds to a coordinate of the domain of g. Each elementof {0. l}n is called a vertex.



Anincompletely specified single-output logic function fofn input variables (called logic function inthe following) isa
mapping/ : {0, l}n — {0,1, *}.

The setof vertices where / evaluates to 1is called theon-set of /, thesetof vertices where / evaluates to 0 is called its
off-set, the setofvertices where / evaluates to*is called itsdc-set. Each vertex of theon-set of / is called aminterm.

A literal is either avariable oritscomplement A cube c is asetof literals, such that if a € c then age and vice-versa.
Itisinterpreted as the Boolean product ofits elements. The cubes with n literals are in one-to-one correspondence with the
vertices of {0,1 }n. _

A cube c\ covers another cube c2, denoted c2 Q ci ifc\ C c2, for example {a,6} C {a, 6, c}, so abc C ab. The covering
is strict, denoted c2 C c\, if c2 ±c\.

The intersection of two cubes c\ and c2 is the empty cube if there exists xf- such that x,- € c\ and x7 € c2, otherwise it is
d = c\ Uc2. Itis called "intersection*' because it covers exactly the intersection of thesets of vertices covered by c\ and c2.
For example the intersection of {a,6} and {a,c} is {a, 6, c}.

A cube is called animplicant of alogic function / if itcovers some minterm of / and itdoes notcover any off-set vertex
of /. Animplicant of / is called aprime if it is notcovered by any other (single) implicant of /.

An on-set cover F of a logic function / is a set of cubes such that:

1. eachcube of F is an implicantof/,

2. each minterm of / is covered by at least one cube of F.

By analogy we candefine an off-set cover R of alogic function / as a set of cubes such that:

1. each cube of R covers only off-set vertices of /.

2. each off-set vertex of / is covered by at least one cube of R.

It should be obvious that if F is an on-set cover of / and R is an off-set cover of /, then for each c\ € F, c2 € R the
intersection of c\ and c2 is empty.

A cubeci in anon-setcoverF ofalogic function / canbe expanded againstan off-set cover R off by removingliterals
from it while its intersection with each c2 € R remains empty. The result of the expansion is not unique(it depends on the
removal order), but it is always aprime implicantof /.

In the following we shall use"cover"to denote on-set covers. Each coverF corresponds to a unique completely specified
logicfunction, denoted by B(F). Onthe otherhandalogicfunction canhavein general many covers. A coveris interpreted
as the Booleansum of its elements, so it can alsobe seen as a two-level sum-of-productsimplementation of the completely
specified function B(F).

A cover F is called a prime cover of a function / if all its cubes are prime implicants of /. A cover F is called an
irredundant cover of a function / ifdeletingany cube from F causes it to be no longera cover of / (i.e. if some minterm is
no longer covered by any cube of F).

The cofactor of a cube c with respect to a literal x*.denotedby cSt, is:

• theemptycube (acube that does notcover anyelement of {0,1}n)if x7€ c.

• c —{x,} otherwise.

The cofactorofa cover F withrespect to aliteral x,-, denoted by FXt, is the set of cubesof F cofactored against x,-. The
empty cube canalwaysbe deleted from a cover, sinceit does notcoverany vertex.

The cofactorhas the followingproperty (Shannon decomposition), foreach 1 < i < n: B(F) = XiAB{FXi)VxjAB(FYr)-
A function / is monotoneincreasing in a variable x, if

/(x7,,0) = 1 => f{xi,3) = 1 for all,!? <= {0, l}""1,
thatis if"increasing" the value of x, from0 to 1never "decreases" the valueof / from 1 to 0.

A function / is monotone decreasing in a variable x; if
/(xt-, 0) = 0 => /(x7,0) = 0 forall0 <E {0, l}""1,
thatis if"decreasing" the value of x, from 1 to 0 never "increases" the value of / from 0 to 1.

A function / is unate in a variable x, if it is eithermonotone increasing or monotonedecreasing in x,. Otherwise / is
binate in. Xi.

A cover F is unate in avariable x, ifvariable x,- appears in only onephase (Le. eitherx, or x7)in its cubes. A function
that is unate can havenon-unate covers, butprime covers of unate functions mustbe unate. Moreover if F is a cover of /
and F is unate then / must be unate.



22 Hazards

Synchronouscircuits do not have hazardproblems: the clock cycle is chosen long enough to insure that every latch input is
stablewhen the clock is pulsed. In the asynchronous case, we must make sure that no signal transition ever happens except
when it is specified by the designer, because every transitioncan be recordedby some other part of the system, and cause it
to behave incorrectly.

A static hazard is a 0 — 1 — 0 transition (static 0-hazard) or 1 —> 0 —- 1 transition (static 1-hazard) in any condition
whereno transition for that signal should be enabled according to the specification.

A dynamic hazard is a 0 — 1 — 0 —* 1 (or 1 —*• 0 —• 1 —• 0) transitionin any condition where a single positive (or.
negative)transitionfor that signal is enabled accordingto the specification.

Hazards must be absolutely avoided, because they can cause the circuit to malfunction in an unpredictable way (for
example in response to a change in operatingtemperature).

The following Theorem was proved in [Ung69]:

Theorem 2.1 Let Tbea two-levelrepresentation ofa logicfunction f. Let M be a multi-levelrepresentation off such that
it canbe obtainedfrom T usingonly theassociative, distributive andDe Morgan laws. Then the circuitscorresponding to
M and T have precisely the same static hazards.

Thatis for each pair of inputvectors suchthatthe output of M had ahazard for someassignment of wiredelays, there exists
somewiredelayassignment in T suchmat the same hazard happens at its output andvice-versa. On the otherhandif some
hazard couldnot happen in M underanywiredelayassignment thenit couldnothappen alsoin 5, andvice-versa.

The relevance of this Theorem is that, if we have a two-level implementation T of a logic function / that does not
exhibithazards forsomeclass of inputchanges, menwe canusemulti-level synthesis techniques, constrained to use onlythe
transformations listed above, to obtaina multi-level implementationof / thathas the same hazardproperties.

23 Signal Transition Graph

The Signal Transition Graph was introduced by [Chu86] as a specification formalism forasynchronous sequential circuits.
It is a natural way to specify asynchronous interface circuits, because the causal relations amongthe signaltransitions canbe
easily described, and it the concurrency is captured explicitly.

A Petri Netis atriple N =< P,T, F >, where P is asetofplaces, T is asetof transitions and F C (P x T) U(T x P),
suchthatdom(F)urange(.F) = P U T, is ibsftow relation. A place pe Pis ^predecessor of a transition* € T, and t is a
successor of p, if (p, t) € F. Conversely, a transition t € T is a predecessor of a placep € P, andp is a successor of t, if
(t,p)eF.

A free-choice net (FC net) is a Petrinet where if a place p has more thanone transition t\... tn as its successors, then p
mustbe the only predecessor of t\... tn. Such a p is called&free-choice place. A markedgraph(MG) is a Petri net where
each place p has exactly one predecessor and one successor transition.

An STG is an interpretedfree-choicePetri net. transitions ofthe FC net areinterpretedas value changeson input/output
signals ofthe specifiedcircuit Positivetransitions (labeled wim a"+")represent 0 — 1changes, negativetransitions (labeled
witha "-") represent 1—0 changes. From now onV will denote a transition of signal t (i.e. either t+ or t~) and f will
denote its complementary transition(i.e. eitheri~ ort+). Input transitions are thosematoccuron inputsignals ofthe circuit,
outputtransitions are those that occur on its output signals.

The conventionalgraphical representation ofan STG (slightlydifferent fromthe Petrinet convention)is adirectedgraph,
where nodescorrespond to transitions (denoted by singlecircles) andplaces (denoted by doublecircles), while directed edges
represent elements of the flow relation. Directed edges fanning out to a transitionrepresentsequencing constraintseither on
the circuitto be synthesized (if their fanout is an output transition)oron the environment (if their fanout is an input transition).
They specify what set of transitions causes each transition.

Figure 2.a contains an example of an STG without FC places (from [Men88]), where x and y are inputs, z is an output
The edge x+ —*• y+ means that the environment guarantees that the risingedge of y alwaysfollows the risingedge of x. The
edgesx" —• z" and y+ — z~ mean thatthe circuitto be synthesized must guarantee thatthe fallingedge of z alwaysfollows
the falling edge of x and the rising edge of y.

Figure 2.b contains an example of an STG with two FC places, where /, a, c and e are inputs, d and / are outputs.
Informally, it describes a circuit where a is allowed to change its value only when / is at 1, and depending on the value of a,
one of two full handshake cycles takes place. So thefunctionperformed by this circuit depends on an external condition a.
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Figure 2: Examples of STG's.

A setT of transitions is called acomplementary setifit doesnotcontain allthetransitions of theSTG andt" € T => t" €
T. A complementary pairof transitions is apair ofpositive and negative transitions for the same signal (Le. acomplementary
set with two elements)..

External signals are those whose behavior is specified by theSTG. Internal signals are those who are generated by the
synthesisprocedure to interconnectthe logic gates.

23.1 Marking and firing

A token marking of aPetri netis anon-negative integer labeling of itsplaces. A transition is enabled (i.e. thecorresponding
event can happen inthe circuit) whenever all its fanin places1 are marked with at least one token. Transitions z+ and y+ are
enabledin Figure 2.a (black dots representthe marking).

An enabled transition must eventually./ire. This means thatthecorresponding signal changes value in thecircuit When
it fires, a token is removed from every fanin place, anda token is added to every fanout place.

If aplace has more than one fanout edge, then exactly one of its fanout transitions isnon-deterministically enabled. This
means, inpractice, that the behavior of the circuit depends onan external condition. Soweconstrain all fanout transitions of
an FC place to be input transitions.

Two transitions aresaid to be concurrent if thereexists some marking where both areenabled. In mis case they can fire
in any order. Otherwise they are said to be ordered.

A setof transitions is saidto Defeasible ifit canfire withoutfiring anyothertransitionnotbelonging to it For example in
Figure 2.atheset {x+, z+. y+ } is feasible, while the set {y+, y~} is not since theycannot bothfire without atleast either
j+ or z~ firing also.

2.3.2 Live and safe net

An FCnetis liveifevery transition canbeenabled throughsome(possibly empty) sequence of firings from theinitialmarking.
Animmediate consequence of thisis thatevery transition can fire infinitely often. So there is no"dead" part of the net

An FC net is safe if no place can ever be assigned more than one token after any sequence of firings from the initial
marking. Thismeans that once atransition has fired, it can fire again onlyafter someother transition hasfired (a signal in a
circuit cannot rise twice without falling...).

In [Hac72] was provedmat a live and safe FCnet canbe decomposed into

1. FSM components thatcoverthe net (each component is sequential and exhibitsnon-deterministic choice),

2. MGcomponents that cover thenet (each component has concurrency and does notexhibit non-deterministic choice).

"Covering" means thateachtransition andplace of the net has acorrespondent in at leastone FSM component anda corre
spondent in at least one MG component.

1The marking simply appears ontheedges themselves whenever asingle fanin/single fanout place is omitted from thegraphical representation.



Hgure 3: An MG decomposition ofthe STG in Figure 2.b

FSM components can be thought as running concurrently, synchronizing onthetransitions belonging to the intersection
oftwo (or more) components.

MG components can be thought as running one at a time, and whenever a place corresponding to an FC place in the
original FCnet becomesmarked, men the next running component is non-deterministically chosen.

If there are no FC places, Le. if thenetis anMG, then the FSM components are justthe simple cycles of thenet For
example inFigure 2.a there are two FSM components, namely x+ — z+ —• x~ — z~ — y~ —r x+ and x+ — y+ —-
z~ — y" — x+. Onthe other hand, Figure 3 contains apossible decomposition of the STG in Hgure 2.bin MG's.

This decomposition mechanism is very useful to analyze the properties of the FC netin terms of its components, since
those have an easy characterization of behavior properties (liveness, safeness,...) in terms of syntactic properties.

The following Theorems aboutmarked graph components of anFC net are proved in [CHEP71]:

Theorem 22 AnMG marking is live ifand only if the token count ineverysimplecycle ispositive.

Theorem 23 An MG marking is safe ifandonly ifevery edge belongs toat least one simple cycle with exactly one token.

Theorem 2.4 An MG has at least one live and safe marking ifand onlyif it is stronglyconnected.

Theorem 2.5 A Uve marking Mi ofa strongly connected MG can produce a marking Mt (which is also live) ifandonly if
theyhave thesame number oftokens for eachsimple cycle.

So all five and safe markings of anMG are partitioned intoequivalence classes, where allmutually reachable markings
belong to the same class.

The following Theorem is proved in [Chu87]:

Theorem 2.6 Let N be anFC netsuch thateach FSM component hasexactly one token in theinitialmarking. Then every
liveandsafe marking of N is a liveandsafe marking ofsomeMGcomponent.

ThisTheorem states formally thatMG components are "running one atatime".
Liveness is obviously adesirable property of a circuit (asignal that can never change itsvalue is redundant), and safety

isrequired bythesynthesis procedure outlinedbelow, so from now onwewillrestrict ourselves tostrongly connected STG's
with a live and safe initial marking.

233 Uve STG

An STG is live2 if.

1. it is stronglyconnected. This ensuresthat the underlying net is live andsafe.

2. foreachsignal t there is at leastoneFSM component, initially marked with onetoken, such that:

2Note the distinction between live net and live STG.
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Hgure 4: A state graphwith state codes

(a) it contains all transitions t* 's of t,

(b) each path from a transition t" to anothertransitiont" (ie. both rising or falling) contains also the complementary
transition F.

This ensures that each signal in the circuit has always a well-defined value in all markings reachable from the initial
one, because a rising and falling transition for the same signal can never be concurrently enabled and each signal must
have alternaterising and falling transitions.

This definition is broader than the one given in [Chu87], since

• he requiredthat only two transitions per signalappear in the STG, andthat those transitionsareordered(i.e. belong to
a simple cycle) in every FSM component of the net

• we do not restrict the number of transitions per signal, and we require that at least one FSM ensures the alternating
order for each signal

2.4 State Graph

The State Graph (SG) is another possible specification level for an asynchronous circuit where the concurrency has been
been explicitly resolved into a strictly sequential behavior. It can be derived from a live STG using a deterministic procedure
([Chu87]).

The SG is adirectedgraph, where eachnode (henceforth calledstate)is in one-to-onecorrespondence with a live andsafe
marking of the signal transition graph. An edge joins state s\ with state £2if the corresponding marking M2 can be reached
from Mi (corresponding to s\) through the firing ofa single transition. This transition labels the edge.

Figure4.a contains the SG derived from the STG in Figure2.a (the initial marking corresponds to the dotted state).

IS Unique state coding

The synthesis proceduredescribed in [Chu87] uses the output signals of the circuit directly as state variables, so the circuit
must be able to tell its global state given only the values of the input and output signals.

This means that:

• we must assign to each state s,- ofthe SG a unique vector v,- ofsignal values and



• this vector of values must be consistent withtheSGedge labeling, in other words for each edge 51 — 52:

1. if it is labeledt+ thensignalt mustbe 0 in ui and 1 in vi.
2. if it is labeled t~ then signal t must be linui andOint^.

3. otherwise signal t must have the same value in both i?i and v2.

An example of such a labelingappears in Hgure 4.b.
If thiscan be done, then we say that the STG fromwhichthe SG was derivedhas the UniqueState Codingproperty (USC,

[Van90]).
The followingTheorem was proved in [Chu87]:

Theorem 2.7 AnSTG S hasthe USCproperty ifandonly ifS is liveandno complementary set of transitions is feasible in
S.

Informally, if a set of transitions is feasible, then they can all fire without anyothersignal changing in the circuit If they
are also a complementary set then theinitial andfinal values are the same forallsignals, and notallsignals oftheSTG are
involved, so we have two distinct states with the same code.

The first formal procedure to enforce the USC property was given by [Van90]. It adds to the STG edges (this reduces
the amount ofconcurrency allowed in the initial specification, soit is notalways desirable) and/or new internal signals (i.e.
signals usedonlyas statevariables and notinteresting for the outside world).

3 Logic function derivation from Signal Transition Graph

In the next Sections we win derive an implementation of a live STG with the USC property in two different ways. The
first one, taken from the literature, uses the SGas anintermediate step, andit is useful to show that theimplementation is
valid if the circuit does nothave delay. Thelatterone, which is new, is useful to characterize thehazard properties of the
implementation inpresence ofdelays. Both implementation techniques are shown togenerate the same result soeither of
them canbeused toobtain theimplementation, butboth are useful inorder toprove properties ofthis implementation.

3.1 State Graph derivation from Signal Transition Graph

The SGcanbederived from theSTGbyexhaustive simulation asfollows (seealso[Chu87] foranequivalentprocedure based
on graph decomposition):

Procedure 3.1

1. for each Uveand safe marking Mi:

(a) if Mi has not been recorded yet, then:

i. create a new state s\ associated with M\.

ii. for each transitiont" enabled in Mi:
A. fire f, obtaining a marking Mi.
B. call recursively step la using Mi as current marking (this callwilleither create or retrieve the corre

sponding state si).
C. create an edge from si to si labeled with t".

3.2 Next-state function derivation from State Graph

Let 5 bea live STG with theUSC property andlet n be the number ofsignals in5. Let/ bethenext-state/output function
tobeimplemented forsignal t3, andlet r, beanelement ofthe domain of f,vi € {0,1}n.

Every state hasa unique, consistent encoding in terms of the STG signals, so each SG state $,• canbe associated witha
vertex r, of the domain of /.

The followingprocedure ([Chu87])derives /:

3Each output signal is usedasstate variable, so theoutputfunction is identically equal to thenext-state function.
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Figure 5: An ideal circuit implementing signal t

Procedure 3.2

1. for each SGstate si:

(a) let v\ be the corresponding vertex.

(b) if there is nofanoutedge si — si labeledt" then
let f{vi) be the value oft in vi.

(c) else let f(vi) be thecomplement ofthevalueoft in vi.

Notice that instep lb there can be only one fanout edge with label t", because no two transitions for t can beconcurrently
enabled.

Moreover f(v) is don't care for allvertices v of thedomain of / thatdo nothavea corresponding SG state.
Hgure 4.ccontains the SGcorresponding tothe STG ofFigure 2.a. Each state s, is labeled with the corresponding input

vertex m,- (state code, upperlabel) andthe next-state/outputvalue for x, y,z (lower label).
It shouldbe obvious thata hypothetical implementation of / (see Hgure 5) with:

1. zero-delay combinational logic,

2. a feedbackloop with almost zero delay and

3. an unbounded delay (greater than the feedback delay) on the output

wouldsatisfy the STG specification, since a transitionont can happen exactly when itisenabled intheSTG (and correspond
ingly in the SG).

4 Hazard-free logic implementation

4.1 Static hazard analysis of a two-level logic circuit

We want to analyze when static hazards can occur in a two-level circuit implementation C,- of a logic function /,-, with
the unbounded wire-delay model, given an STG specification restricting the wayin which inputand output signals of C,
(corresponding to the inputvariables andthe value of /j) areallowed to change value.

As shown in Section3.2,we can synthesize an asynchronous sequential circuitspecified by an STG as a set of combina
tional sub-circuits Ci, oneforeachoutput signal of theSTGt,-, eachhaving as inputs theset ofsignals specified bytheSTG.
EachCi,in general, hasits output signal ti appearing alsoas oneof its inputs. In thisanalysis, though, we willtreatmem as
separate entities, and wewill make sure that the output signal does nothave hazards if none oftheinputs hashazards.

An input vector is an assignment of binary values to allinput signals of C,. A sequence of inputvectors (also called a
transition sequence) is consistent withtheSTGif it is a valid firing sequence of theSTG. Thisis equivalent to saythatthere
exists a path on the SGsuch thateach vector appears in it as a state label (in the same order as in the sequence). A static
hazard occurs in thecircuit if applying a consistent sequence of input vectors, withanydelay among mem, to C,-, its output
changes value when the STG does not allow a transition on it



Exhaustive simulation of allinputvectorsequences for allpossible delay assignments is clearly not feasible. So we will
use three-valued logic analysis, where each variable can assume a value of 0,1 or"-" (for undetermined), as described in
[Ung69], bycollapsing awhole family ofinputvector sequences and delay assignments intoasingle three-valued simulation.

A controlling value for aninputof a sub-circuit is defined as a value of thatinputwhichuniquely determines the value
of theoutput of the sub-circuit, independently of thevalue of the other inputs of the sub-circuit This value of the output is
thecontrolled value ofthe sub-circuit A non-controlling valueis anyvaluethatis not a controllingvalue. Forexample 1is
acontrolling value,and 1is the corresponding controlled value, for anyinputofanor gate, because ifit is 1 thenthe output
is 1,while there is no controlling value for any input of an ex-or gate.

An input cube is a set of assignments of three-valued values to all the input signals of Ct. The value "-" is defined as
non-controlling for all logic gates.

The three-valuedoutput of a combinationalcircuit Ci for an input cube c is:

1. the two-valued result ifno inputs in c have the value "-".

2. "-" if allinputsto C, havenon-controlling values in c andsomeinputsin c havethe value"-".

3. the controlled value otherwise.

Forexample thethree-valued output of atwo-input orgate withinputs 1and "-" (input cube 1-)is 1,while withinputs 0 and
w-w (inputcube 0-) it is"-".

An input with avalue of 1or0 corresponds to a signal whose value is known tobe constant from theSTGspecification
during the transition sequence thatwe are simulating. An input withavalue of "-" corresponds to a signal allowed by the
STG to have 1 or more transitions duringthe transition sequencethatwe are simulating.

Withthisprocedure we can simulate thetransition sequence where all thesignals withavalue of"-" change value in any
orderat any point in time, under all possiblewire delay assignments.

We define aninputvector pair (vi, vi) tobe validwithrespect to thelogic function /, of signal t, if

1. fi(vi) = fi(vi) (since we are analyzing static hazards) and

2. state 52 (corresponding to v2) is reachable from state s\ (corresponding to vi) on theSG without traversing anyedge
labeled with a transition oft,.

We forbid valid pairs to include a transition t' because any sub-circuit that implements a transition t] that is enabled by
t" must wait fort" tofire. So inorder tobesure that tJwill be perceived byCt- as distinct from the transitions described by
thecurrent vectorpair, we must assume that Q plusits feedback loop is ready to accept thenext inputtransition whenever a
transition on tt- occurs. We shall see later thatmis assumption canbe reasonably satisfied, implementing die feedback loop
with an S-R flip-flop.

Each validvector pairhas associated a transition cube, where all signals that change value from vi to vi are undetermined,
while the other signals have the value they have in v\ (and also in vi, of course).

It was proved in [Ung69] that a hazard condition exists for a gate-level implementation, with the unbounded wire-delay
model, ifandonlyif the three-valued simulation of theextended transition cubecorresponding to avalidvectorpairgivesan
undetermined output value.

The following procedure performs the three-valued simulation of a two-level circuit, directly implementing an on-set
cover F of alogic function / 4, for allvalidinput vector pairs. Let v* bethevalue of inputsignal t, in theinput vector r, for
example if v = 100 then v1 = 1,v1 = 0, r3 = 0.

Procedure 4.1

I. for each valid pair ofinputvectors (i?i, 02):

(a) for each input signal t,-:

i. ifany SGpathfrom vi to vi includes an edge labeledwitha transition for ti, then let cl = —
ii. else let cl = v\

(b) i. ifc does not intersectany cube c,- € F, then theoutputof each cube cj, and of the circuit, is 0.

*Thatis acircuitwith two levelsof gates, a level of and gates, one foreachcube,possiblywith inverters attheir inputs, fanning out to anor gate.
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ii. ifc covers some cube a € F, then the output ofthatparticular c,, and of the circuit, is 1.
in. otherwise (c intersects some c, without covering any), the output ofthose Ci's, and ofthe circuit, is —. Then

a hazard condition existsfor vectorpair (vi, vi).

For example, any sub-circuit synthesized from the STG inHgure 2.a (the corresponding SG appears inHgure 4.b) to
implement output signal z must consider the vector pair (010,110) as valid, with corresponding transition cube c = 0
(notice mat signal y has two transitions between vi and vi),while the vector pair (101,010) isnotvalid, because it requires
to traverse the edge labeled z~.

4.2 Next-state function derivation from Signal Transition Graph

One ofthe main problems inasynchronous circuit synthesis istomake sure that the circuitbehavioriscorrect for each possible
ordering ofconcurrent transitions. In the example ofHgure 2.a, since nothingissaid about the ordering of z+and y+, then
every output signal must not have static hazards regardless of their firing order. So we must make sure, remembering the
analysis in Section 4.1, that the on-set and off-set covers F and R that wesynthesize for the next-state function of output t
have the following property:

Property 4.1 Let S be a live STG, let F be an on-set cover and let Rbe an off-set cover ofthe next-stateloutputfunction of
signalt, synthesizedfrom S. Thenfor each live and safe marking m ofS andforeach setT ofconcurrent transitions in S
such thatt mustremain constantduring anysequenceoffirings in T:

1. ift must be1, then there existsat leastonecubecj € F suchthat:

• cj evaluates to1 inthe vertex corresponding to marking m and
• nosignal whose transition is in T appears incj .

2. otherwise, iff must be0, then mere exists at least onecube Cj € R such that:

• a evaluates to I in the vertex corresponding to m and

• no signal whose transition is in T appearsin c,.

We require 5 to be live in order tobe able to associate each marking m of 5 witha vertex in thedomain of the next-
state/output function ofeach signal t inS. Wewill see later that Fand R can have Property 4.1 if and only if 5 has the USC
property.

Case 1guarantees that theoutput off1, if sorequired, remains at1independent of thefiring order inT. Case 2 guarantees
that the output of F, if sorequired, remains at0 independent of the firing order inT, even though it is stated in terms of the
off-setcover R. This is because theintersection of c, € Rwithanycubecj € F is empty. So we can besure thateachc, € F
willevaluate to 0 in the vertexcorresponding to m, and no signal whosetransition is in T appears in it

For example, thesetof concurrently enabled transitions in the marking shown inHgure 2.a, corresponding tovertex 100
in Figure 4.b, is 5 = {c+, y+}. If oneof thecubes in the on-set cover of thenext-state/output function for z, which must
beaconstant 1independent of the firing order in 5, is exactly x, then signal z willremain consistently at 1regardless of the
firing order.

The following procedure derives an on-set cover F and an off-set cover R for the next-state function / of signal <t,
receiving as input a liveSTG, 5, having the USC property, with initial marking m. Let v be a vector of values for the n
signals thatappear in S, v € {0,1}", andlet vj denote thevalue of signal tj in v.

Procedure 4.2

1. Initialization:

(a) for eachsignaltj in the STG, do (determine its initial value):

i. letMj bean FSM component ofS that contains all transitionsfor tj, and letm, beits initial marking (a
subset ofm).

ii. find on Mj thefirst transition tj that can be reachedfrom rrij.
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UL ift] istf, then let Vj = 0, otherwise letvj = 1.
(b) UtF = <t>,R = 4>.

2. Recursivestep:

(a) iftf isenabled in m men letv,- = 1.
(b) else ift~ is enabled in m then let t>,- = 0.

(c) for each maximal subset T of transitions enabled in marking m such that t^ is not enabled in the marking m'
obtainedfrom mfiring all transitionsin T do:

i. letc={vjs.t.tmj &T}.
ii. ffvi = lthenletF= F U c, otherwise let R = RUc.

(d) for each transition tj enabled in m such that marking m!, obtainedfrom mfiring tj, has not been reached yet,
do:

i. let v' = v.

ii. iftj istf, then let rj = 1, otherwise let vj = 0.
iii. recursivelycall step 2 with v' and m'.

The initialvalues determined by step la are well definedif the STG is live (Section2.3.3), because:

• atleastone Mj containing all transitions of signaltj must exist

• thefirst transitionofV that can fire ontheFSMcomponent Mj starting from amarking m;- mustbeindependent of the
path on Mj, orelsethere wouldbe a firing sequence where twotransitions t' (both rising or falling) are notseparated
byatj.

• if there are two (or more) FSM components containing all transitions oftj, say Mj and Mj', then the first transition of
tj reachable from amarking m restricted to Mj orMj' must bethe same, since the intersection of the twomachines
obviously containsall such t"'s, and the FSM's aresynchronizedin theirmutual intersections.

F and R are constructed by theabove procedure exactly tohave Property 4.1.This guarantees thatthenext-state function
remains constantwheneverthe STG specifies so, independent of the firing order of aset of concurrently enabled transitions.

Moreover the vectorof values v generated ateachstepis consistent with the firing, so it coincides with the uniquecode
ofthe state 5 correspondingto marking m, as describedin Section 2.5.

We stillwantto prove thatF and R are on-set andoff-setcovers of thenext-state function /, asobtained in Section 3.

Theorem 4.1 Letf be the incompletely specified next-stateloutputfunction ofsignal ti, obtainedfrom a liveSTG S with the
USCproperty using Procedures 3.1 and32. LetF andR be the covers obtainedfrom S using Procedure 42.

Then every on-setvertex andnooff-setvertex off is covered bya cube ofF, andevery off-set vertex andnoon-setvertex
off is covered bya cube ofR (that is F and R are valid on-set andoff-set covers off).

Proof: we have the following cases:

1. Some transitionscan fire from the currentmarking m reaching a marking m' where no transitionoft, is enabled.

Then we generate a set of cubes such that the vertex v corresponding to m is covered. Moreover all the cubes belong
to either the on-set or to the off-set according to whether v, is 1 or 0, and the decision about v{ is made exactly as in
Section 3.2.

All covered vertices correspond to markings where no transition of t, can be enabled, so if the STG has the USC
property (i.e. different markings correspond to different vertices) thennovertexwhere / musthave a different value
can be covered.

2. Every transition firing from m will reach a marking m' where a transition of t, is enabled.

We will show that in this case no transition of t i can be enabled in m.

Suppose that tm{ is enabledin m andlet m! be the markingreached from m firing t~. Then

12



(a)

Hgure 6: Illustration ofTheorem 4.1 case 1

(a) t" could not be enabled again in m', since the STG is Uve (otherwise two rising or falling transitions of t ,• could
fire in sequence).

(b) tf could not be enabled in m', since the STG has the USC property (otherwise the complementary set {tf, tf }
would be feasible).

So there would exist some transition (namely t") that can reach a marking m' where no transition of t, is enabled, and
we have a contradiction.

We know also, since the STG is live, that there exists some marking m" from which m can be obtained by firing some
transition t*. Then whenever the procedure reaches m", it generates a cube covering also the vertex corresponding to
m, because m is obtained from m" by firing a transition mat does not enable t~.

D

Hgure 6 contains an STG fragment (a) andthe corresponding SG fragment (b) to illustratecase 1. Let o be the signal for
which we are generating cover cubes in marking m (black dots in the STG fragment). Black dots in the SG represent on-set
vertices of /, white dots represent off-set vertices.

1. The sets of transitions thatcan fire withoutenabling o~ are: Si = {a+,b+}, Si = {a+,c~} and53 = {b+, c~}.

2. The vector corresponding to marking m is: a = 0, b = 0, c = 1,d = 1, e = 1, o = 1.

3. The generated cubes are: c\ = cdeo, ci —bdeo and ci = adeo.

4. Each cube covers vertex abcdeo, corresponding to m, and belongs to the on-set cover. So minterm abcdeo of / is
covered without problems.

5. Every cube covers only vertices where o" is not enabled, so no off-set vertex (such as abcdeo) is improperly covered.

Hgure 7 contains an STG fragment (a) and the correspondingSG fragment (b) to illustrate case 2. Let o be the signal for
which we are generating cover cubes in marking m (black dots in the STG fragment). The double circles represent an FC
place. Black dots in the SG representon-set vertices of/, white dots representoff-set vertices.

1. The only two transitions that can fire in m are eithera+ or c~ (notbom, since this is an FC place, so it enables only
one fanout transition). Both enable o~.

2. One example of a marking m" predecessor of m is represented as white dots on the STG (replacing the token on
6+ — o-).

3. One of the cubes generatedin m" is c\ = aco, so minterm abco correspondingto m is covered without problems.

4. If one of the enabled transitions in m had been either o+ or o~, instead of a+ or c~, then it is clear that

• eitherthe STG wouldnot havehadtheUSC property (o+ followed by o", Figure 7.c),
• or it would not have been live (o~ followed by o~ Hgure 7.d).
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(a) (b)

(c) (d)

Hgure 7: Illustration ofTheorem 4.1 case 2

43 Circuit implementation of the next-state function

Once we have the on-set and off-set covers of the next-state/output function / for each output signal, we can choose how
to implementthe feedback loop (sequential part), and applyknownlogic synthesis techniques in order to obtaina minimal
implementation of the combinational part

43.1 Feedback loop implementation with S-M flip-flop

The feedbackloop can alwaysbe implementedusing a simple flip-flop, due to the followingtheorem, firstproved in [Moo90]
in the restricted case when the STG is persistent

Theorem 42 Let S be a live STGwith the USCproperty. Let F and Rbea pair of on-set and off-set covers of the next-
stateloutputfunction f ofsignal t derivedfrom S accordingtoProcedure 42. Let F' be a cover derivedfrom F expanding
each cubec € F against R to a prime implicant off and removing duplicate cubes.
Then F' is positive unate in t.

An intuitive reason for this is that if / is binate in t, then thereis a set of inputvalues for which t oscillates. And, if / is
unate, every prime cover of/ must be unate.

Proof: let us assume, for the sake ofcontradiction, that F' is binate or negative unate in t.
Thenthere existsat leastone vertex vi = tfi, where 0 € {0.1}""1, belonging to the on-setof /, whosecorresponding

vertex vi = tj3 belongs to the off-set of / (otherwise we could always cover both i>i and vi with a prime implicant not
depending on t).

The valueof / in vertex in is the complement of the value of t in vi, so t+ is enabledin the marking mi corresponding
to v\. The markingobtainedfiring t+ corresponds exactlyto v2, since p* differsfrom v\ only in the value off.

Similarly the value of / in vertex v2 is the complement of the value of t in v2, so t~ is enabled in the marking m2
corresponding to v2.
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m2 is obtained by mi throughthe firing of t+, so a firing of f+ would immediately enable t~. But this wouldmean that
thecomplementary set {t+, t~} is feasible, contradicting theassumption thattheSTGhas the USCproperty. •

Corollary4.1 LetS bea Uve STG with the USCproperty. Letf bethe next-stateloutputfunction ofsignalt derivedfrom S
as described inSection 32. Then f is positive unate in t.

Proof: Theorem 4.1 proved thatF andR,asderived inSection 42, arevalid on-set andoff-set covers of/, asderived in
Section 32. Moreover if we expand eachcubein anon-set cover toa prime it stillremains an on-set cover. Anda function
with a prime unate coveris unate. R

If / is positive unate in t, then there exist two logic functions s and m that do notdepend ont, such mat/ = s + tm.
Sowe can partition die sub-circuit into two purely combinational parts, s and m,and anS-M flip-flop, thatis a flip-flop with
logic equation Q = 5 + QM ([BC88]). __

The more usual S-R flip-flop has logic equation Q = S + QR. We shall see in Section 43.2 thatthe assumption touse
S-Mflip-flops canbe removed without changing thehazard properties of thesub-circuit

Dynamic hazards are practically unavoidable inany circuit implementation ofa combinational function (see [Ung69]).
Thus we assume that the S-M flip-flop implementation, or any flip-flop type that we will use, is relatively immune to

dynamic hazards, Le. thata dynamic hazardon S or M cancause onlyoneof the following events:

1. Q makes the correct transition in response to the first edge of the hazard.

2. Qgoes into ameta-stable state after the first edge, then itmakes the correct transition after the second edge5.

3. Q makes the correct transition after the second edge.

In all cases the correct behavior is guaranteed, only the timing changes.
Moreover we assume that the flip-flop is ready to accept a new transition onits inputs (Le. that the internal feedback

loop is in a stable state) whenever the output Qmakes a transition. This means that theinternal feedback loop delay must
besmaller than the delay onany path from theflip-flop output toone ofitsinputs. This requirement canalways be trivially
satisfied byadding buffers after the flip-flop output, with a delay greater than theinternal feedback loop delay. These two
delays can beguaranteed tobesimilar (despite process variations, etc.) using appropriate layout techniques, such askeeping
theflip-flop and the buffersnear to each other.

43.2 Logic synthesis for minimal implementation of the combinationallogic

In general we have the choice between implementing the on-set orthe off-set cover of each signal (inverting theoutput if
necessary). In the following we will discuss only about the on-set cover, butmost results apply also to the off-set cover
implementation.

We want toobtain animplementation that is minimal with respect tosome costfunction, usually a combination ofdelay,
area and testability.

Primeand irredundant covers are very importantfroman implementation point of view,because:

1. heuristic two-level logicminimizers canobtain prime and irredundant covers whose implementation has a nearly min
imumarea among all two-level implementations of the function ([BHMSV84]).

2. a two-level implementation ofa logic function obtained from a prime and irredundant cover is fully testable forsingle
stuck-at faults.

3. aprime and irredundant cover is a good starting point ofmulti-level logic synthesis systems ([BRSVW87]).

Onthe other hand we want topreserve Property 4.1, because it is strongly connected with thehazard properties of the
implemented circuit

This means that we can expand each cube in the cover F against R to a prime implicant of /, because thisdoes not
introduce additional dependencies of thecube onsignals thatmay change when / mustremain constant

Unfortunately we cannot remove redundant cubes, unless eachcube in the original on-set coveris already covered by
some other prime. Sowecansetupa minimum covering problem similar to the classical Quine-McCluskey minimization

5This case isnot aproblem even if twodistinct sub-circuits interpret the meta-stable value ofQdifferently, since weare assuming boundedwire delays.
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Hgure 8: An STG thatrequires a redundant two-level implementation

procedure[McC56], where each cube c ofthe originalcover (ratherthan each minterm of /, as in the originalprocedure)must
be completely covered by at least one prime in the output cover.

Hgure 8.a contains an example of a live STG with the USC propertywhose two-level implementation of the flip-flop
excitation function m according to Procedure 4.2 is redundant6. Hgure 8.b contains the SG (input variables are ordered
a, 6.c, t), while Hgure 8.c contains the Karnaugh map of the function m{a, 6,c).

The cover of m obtained by die procedureis:
m = ab + ac + be + ac

where the implicant ac is redundant(it is shown by the dashed oval on the Karnaughmap, while non-redundantimplicants
areshown by dotted ovals). If the redundant implicant is removed from the cover, then a hazard can occur when the circled
6~ transition fires, becausethe implicant becould goto 0 beforethe implicantab goesto 1. This causes astatic 1-hazard, and
possiblya malfunction in the circuit, since the S-M flip-flop can be set incorrectlydue to this hazard.

The decomposition into an S-M flip-flop and two combinationalnetworks maintains Property4.1, since every cube in F
has exactly one corresponding cube in the cover of either s or m. Moreover each one of the two covers of s and m is still
prime after the decomposition, because we first split F into a cover F\ where no cube depends on t and a cover F2 where
every cube depends on the positive phase of t, so cofactoringeach cube of F2 againstt leaves it a prime of the cover of m.
Theorem 2.1 allows us to use, for example, S-R flip-flops, insteadof the less usual S-M type, applyingDe Morgans' law to
the cover of m.

If we want to further improve the area and/ordelay performance of the circuit, we can use some multi-level synthesis
techniques, such as those described in [BRSVW87]. In orderto retainthe hazardproperties of the two-level circuit, though,
we must restrict ourselves to the transformations listed by Theorem 2.1. Algebraic factorization is a direct application of
associative and distributive laws, so it can safely be used.

^Recall matthecover of m isthesetof those cubes intheon-set cover F for signal t that depend ont itself, cofactored against t, while thecover of 5 is
the set of cubes of F that do not depend on t.
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4.4 Static hazard analysis of a circuit implemented from an STG

Nowlet us see what happens whenwe apply each valid vector pair (vi,vi) asdescribed in Section 4.1, to the circuit imple
mentation of signal t obtained from the on-setcoverF of thenext-state/output function / for t asdescribed in Sections 42
and 43.

We havethe following cases for eachtransition cube c corresponding to thevalidvectorpair {v\,v2):

1. c is covered by acubeof F orit does notintersect any cube of F: theoutput is either 1or0, andwe do nothavestatic
haTflTris

2. f(vi) = f{vi) = 1 and two cubes of F, say ci and ci, are required to cover c (the extension to more than two is
straightforward): a hazard condition canoccur, underanappropriate wiredelayassignment

Every path ontheSG from vi to vi contains twotransitions j* and i" (ordered j" — i* onthepath) such that:

• i" turnsci off (Le. c\ covers the faninvertex of i" andit does not cover its fanoutvertex on the SG).

• j" turns ci on (Le. C2 doesnot coverthe fanin vertexof j" andit coversits fanout vertex on the SG).

We have a hazard ifthe transition onthe output of ci propagates to aninputof die flip-flop before the transition onthe
outputof ci, since the STG does notspecify any transition for signal t (otherwise (vi,vi) would nothave been avalid
pair).

Notice that j" transitively enables i" on the STG, because if theywere concurrent, thentheywouldbe covered by a
single cube.

3. f(vi) = f(vi) = 0 and cintersects some cube ci of F. A hazard condition can occur, under an appropriate wire delay
assignment

Inthis case some directed path P in {0, l}n from vi tovi contains twotransitions j" and i* (ordered j* -+ i" onthe
path) such that

• i' turns ci on,

• j" turns ci off,

Wehave ahazard if i" propagates to an input of the flip-flop before j", since the STGdoes notspecify any transition
for signalt. Again jm transitively enables im on the STG.

Anexample of case 2 is the vector pair (000,110) for the SGinHgure 4.b for output x (see Appendix A). An example
of case3 is the vector pair(001,010) for the same SG foroutputx.

Notice also that in case 3we donotlimitourselves to SGpaths, since theycannot traverse animplicant of F, butwe must
check allpossible paths, between v\ andv2, where novariable is allowed to change its value more thanonce.

Both hazard cases happen when the sub-circuit behaves as though the STG-specified ordering off and i" was reversed.
Thismeans that the physical circuit implementation mustpreserve thetransition ordering:

Property 4.2 Given an STG S and a circuit C implementing it, ifa transition t\ on the input ofa sub-circuit Ci causes a
transition t\ on its output and the two transitions are ordered in S, then no other sub-circuit Ci can produce a sequence of
events on itsoutput as a delay-free implementation would have produced ift\ hadprecededt[ in time.

For example in the circuit shown inHgure 9 wemust make sure that every path connecting a —*b —c through Ci and
Ci has a longer delay than any path a —<• c in Ci only.

A suitable global handshaking protocol can guarantee that Property 4.2ismet under theunbounded wire-delay model.
For example we can encode each external signal t with two wires, to and ti, carrying complementary values during

quiescent conditions (dual-rail encoding), and driven with wired-or logic. The logic implementation should also follow the
guidelines described in [Ung69] for speed-independent circuits, that require disjoint two-level implementation.

Under quiescent conditions all sub-circuits drive one of the wires to 0, say to, and leave the other wire at 1. When a
transition t" mustoccur onsignal t, the sub-circuit who generates its transitions drives t \ to0 andreleases to- Then allother
sub-circuits, as soon as they recognize the transition, release to, that will goto 1 only when allsub-circuits agree that the
transitionfired. Now any transition enabled by t" can fire, and so on.

This approachhas two main disadvantages:
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Hgure 9: An STG fragment andits implementation.

1. it requires some additional logic (for completion detectionand for disjointtwo-level implementation).

2. it constrainsall the system to follow the speed ofthe slowest element

Another way to obtain the same result, under die boundedgate-wiredelay model, is to slow down the outputofCi so that
we aresure that every circuit having a as input is stable when we generatea transitionon 6.

4.5 Hazard removal procedure

As described in Section 4.4, a hazard can occur when thedifference between thedelays along twopaths in one sub-circuitis
greater than the delay between two transitions.

So the procedurebelow identifies all cases when a hazardcan occur. The proceduremust be called once for each output
signalt, with next-state/output function /, implemented by cover F according to Procedure 4.2. Furthermore let s and m be
the S-M flip-flop excitation functions as described in Section 4.3.1.

Procedure 4J

1. for each vectorpair (vi, V2) suck that:

• fM = f(vi).

• v\ and vi are maximallydistant on the SG.

• no directedpath on theSG connectingv\tov2 contains an edge labeledt".

do:

(a) sf/(«i) = f(vi) = 1 then:

i. for each directedpath P on theSGfrom vi to vi, for eachpair ofdistinct implicantsci,ci € F traversed by
P:

A. find thepair oftransitions i" andj" on P thatturn ci offand ci on.
B. let di be a lower boundon thedelay along thepathfrom inputi along cube c\to M for transition i".
C. let di be an upper bound on thedelayalong thepathfrominput j along cubecitoMfor transition j".
D. let cfe be a lower bound on thedelay between transition j" and i".
E. tf (di —di) > d$ thena hazardcondition exists.

(b) else(f(vi) = f(vi) = 0):

i. for eachdirectedpath P in {0. l}n from vi tovi.for each implicant c\ G F traversed by P:
A. find thepair oftransitionsi" andj" on P thatturn ci on and ci off.
B. letdi bea lower bound on the delay along the path from input i along cube c1 toeither S or M1 for

transition im.

'Depending onwhether ci belongs to thecover of s orm.
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C. letdi beanupper bound on the delay along the path from input j along cube ci toeither S or Mnfor
transition j".

D. let d$ be a lower bound on the delay between transition j" and i*.

E. if(di —di) > ^3 then a hazardcondition exists.

Notice that theimplicants that maycause ahazard in step l(a)ican onlybelong tothecover of m, since theSGpath from
vi to vi does notuse anyedgelabeled with atransition for t. So allthe implicants of / thatare involvedmust contain literal
t, because they allare generated by Procedure 42 when t has value 1 andno transition fort fires.

Theupper and lower bounds ond\ and d2 can beobtained by timing simulation onthecircuitwhere some bounds onthe
gate delays and wiredelays mustbeknown. The input vectors for thistiming simulation are justthevectors corresponding
to the fanin and fanout states of i" and jm oneach path. Notice also thatwe must simulate, except for fanout loadeffects on
the delay, only the part of thecircuit corresponding (either directly orthrough algebraic factorization) to die implicant of F
whose delay we are measuring. Otherwise themeasurement could beinvalidated by a transition ontheoutput of someother
implicant

The lowerboundon d$ caneitherbe obtained inthe same way (if we are also synthesizing the circuit forsignal 0 or from
anyotherinformation source, suchasa data sheet In the worstcase we can assume it to be zero.

Whenever Procedure43 finds a hazard condition, we record the triple of paths and delays.
At the end, we have two choices foreach triple {d\. di, cfe) that failed the abovetest

1. speed upd2 and/or slow down di. This brings the circuit closer tothe gate-delay case, where all delays inside thesub-
circuit for each output t are supposed tobe balanced. This maynotalways be possible, furthermore it may introduce
cyclicdependencies, sothatwhenwe trytoremove onehazard we can make another oneworse.

2. slowdowndi. Thisis always possible (just add buffers after theoutput of thesub-circuit for signal i). Furthermore we
are guaranteed that wedo not introduce cyclic constraints, since d\ and d,i are measured from asub-circuit input to a
flip-flop input, so adding delay aftera flip-flop does notchange anyof them.

If we take the second choice, thenwe justrecord by howmucheach flip-flop output fails to pass the test and thenslow
it down by the maximum difference.

Notice theclose similarity between whatwe dohere and whatis classically done in synchronous circuit synthesis:

• in thesynchronous case we slowdown the clock signal until nomore events arepropagating along the whole circuit.

• intheasynchronous case we slow down each signal until no more events that caused itschange arepropagating along
the whole circuit.

So this approach, evenif it does not generate speed-independent ordelay-insensitive circuits, can still be considered
faithfully adherent to the "asynchronous philosophy", in that every element must obey a "locally defined" protocol, and
elementsthat arelogically far apart must not be slowed down due to each other.

If weare synthesizing also thecircuit for signal i, aspecially bad case for Procedure 4.3wouldbe cfe = 0, that corresponds
tosignal i being identically equal tosignal j. Butsignal i can beequal to signal j, given Procedure 4.2, if and only ifevery
transition for j is immediately followed by the same transition for i. Suchcondition can be easily detected on the STG, and
wecan just collapse i" nodes into j" nodes without changing the specified behavior. Inall other cases, the delay between j"
and i" is at least one logic gate.

4.6 STG Persistency and hazards

An STG is persistent ([Chu87]) if allits transitions are persistent A transition u" is persistent if foreachimmediate prede
cessor t" of u", u* and F"are ordered.

For example inFigure 2.a transition y+ isnot persistent because ithas x+ as apredecessor, but x~ and y+ are concurrent
(that is not ordered).

In apersistent STGwhenever atransition u" becomes enabled, none of itsenabling signals t can change levelbefore u"
has fired.

A transitiont" disables a transition u" if there exists an STG marking m where both t" and u" are enabled, but firingt"
brings toamarking m' where u" isnolongerenabled. Notice that theonlytransitions that can bedisabled in anFCnetare FC
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places, sostrictly speaking this isnotacharacteristic of die specification butof the implementation, where such adisabling
can actually occur (we will see below when).

Persistency atthe STGlevelwasconsidered tobe anecessary and sufficient condition for theexistence of ahazard-free
circuit implementation, due to the the following Theorem, taken from [Chu87] (only the notation is changed here, to be
consistent with the rest of the paper):

Theorem 43 Let S be a liveSTG. Foreachoutputsignalu, there exists a signalt anda marking minS such that:

• tm and u" are enabled in m and

• t" disables u" and

• u' does not disable t'8

if and only ift* is a predecessor ofu", and u" andt" are concurrent(that isu" is non-persistent).

The case in which u" is disabledby t" but not vice-versa is clearlydangerous, becauseif the circuitimplementing signal
u isnot"fast enough" to fire afterF fires, then a firing oft" maypreventu' from firing. Sowecould have apotential hazard,
depending onthedelayofthecircuit implementing u andthetime from f to t". Onthe otherhandasimplepersistency check
on the STG would be enough to guarantee that no such hazard occurs.

The proofofthistheorem wasnot basedonly on STG properties, sincestrictly speaking no transitionin anFCnet canbe
disabled, but alsoon specific assumptions on the circuit implementation derived from the STG, namely thatif u" is enabled
byF, then anoccurrence of f must disable u" inall circuit implementations of signal u. This is nottrue in general, butonly
ifallinputs, exceptt, to the sub-circuit implementing signal uhaveanon-controllingvaluein markingm, because otherwise
the output of the sub-circuit does not depend on input t.

See forexamplethe STG in Hgure 2.a,where y+ is not persistent The logicequation for y is y = x + z, andusingthe
gate-delay model,as assumed by [Chu87], we know thatx" is caused by z+, sowhen x~ fires z is already at 1(a controlling
value forthe or gate), and x~ cannot disable y+.

Moreover Theorem 43 guaranteed hazard-free implementation only if the whole sub-circuit implementing each signal
u could be satisfactorily modeled as a single gate with the unbounded gate delay model But this model is a reasonable
approximation of realityonly if the whole sub-circuitwas only onesimplegate, such as a nandor a nor.

We can examine now the example in Hgure 10 (from [Chu87]), where a circuit implementation was derived from a
persistent STG (only a fragment is shown here). The value of signals in the given markingis La = 0, Lr = 1, Sa = 0,
Sr = 1, Ca = 0 andCr = 0. When La+ fires, then the outputof03 hasarisingtransition. Suppose thatthe gatedelay of a%
is greater thanthe gate delay of a2 plusthe delaybetweenSa+ and Sr', thenahazard occurs on Lr. The onlyway to avoid
the hazard in the unboundedgatedelay model is to assume that the whole groupof gatesn, 03 and o\ can be modeled with a
single delay on the output ofo\.

So we can now state that

Theorem 4.4 Let S be a live STGwith the USCproperty. Let C be a circuitimplementation ofthe signals in S according
to Procedure 42 and the decomposition described in Section43J. If the implementation ofeach combinationalsub-circuit
exciting eachflip-flop input, as wellas eachflip-flop, canbe consideredsinglegateswithnon-zero delay, then C is hazard-free
with the unbounded gate-delay model.

Proof: each signal i in S is implemented by a circuitwith non-zero delay, so dy > 0. Moreoverboth d\ and d2 aredelays
within the same gate, implementing either 5 or m, so d\ = d2, and d\ - d2 = 0 < d$. •

Notice that the assumption that each excitation function may be modeled as a single gate was used, as shown above,
by [Chu87] and [Men88].

5 Experimental results

All the algorithms described in this paper have been implementedwithinthe sis sequential logicsynthesissystem (developed
at U.C. Berkeley).

8This means thatt* and u* are notbothsuccessors of anFCplace, otherwise u * would disable t* aswell.
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Hgure 10: An STG fragment and its implementation

example Library 1 Library 2
With hazards Without hazards With hazards Without hazards

Area Delay Area Delay Area Delay Area Delay

c-elem 50 1.2 50 1.2 96 7.6 96 7.6

ebergen 221 4.4 285 5.2 331 7.8 395 10.4

fifo 89 2.8 89 2.8 112 7.6 112 7.8

luciano 580 7.8 580 7.8 857 17.2 857 17.2

rim 131 3.0 195 5.2 147 7.8 275 12.6

rlml 284 42 316 5.4 332 9.0 652 21.2

rpdrtl 693 8.4 693 8.4 1009 16.0 1009 16.2

test 132 1.6 132 1.6 148 6.6 148 6.6

vbelOb 622 4.6 654 5.2 784 15.4 1072 17.6

vbe5b 221 4.4 253 4.4 245 9.0 309 9.0

vbe5c 161 2.8 193 3.8 153 9.0 249 9.0

xyz 130 3.0 130 3.0 137 7.6 201 7.8

Table 1: Experimental results

Table 1 contains the resultsof the synthesis and hazard removal procedures for a set of STG examples taken from the
literature. The examples were implemented using standard cells, and we usedtwodifferent libraries, one (Library 1)with a
large set of combinational functions andone(Library 2) withonly a few gates with widely unbalanced delays.

The columns labeled"area" containthe total area (excludingrouting) of each circuit while the columns labeled"delay"
givethe maximum combinational logicdelaybetween anytwo flip-flops orbetweenanexternal inputsignal anda flip-flop.

6 Conclusions and future work

The principal target of this paper was to show thateach live STG's with the USC property has a hazard-free asynchronous
implementation,using both the unbounded gate-delayandthe boundedwire-delay models.

In order to prove this,we gave a synthesis procedure, and we examined whatwere the hazard properties of the result of
eachstep, takingcarethatwe did not introducenew causesof hazards, andwe removed old ones at each step.

Oneimportant consequence of thisworkis thatpersistence cannolonger be considered a necessary condition forhazard-
free implementation. This is adesirable result, since enforcing persistence reduces the concurrency at the STG level. So we
can claim thatif the speed measure is the global throughput of the circuit, and if the throughput is boundby the amount of
parallelism in the implementation, ours is thefastestsolution thatcanbe obtained from the givenSTG specification.
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Notice thatliveness andUSC are only sufficient conditions foranSTG to have a hazard-free implementation, since our
procedure is based on die assumption that onlythe values of signals specified by the STG can be used as state variables
to encode the SG. So in order to give necessary and sufficient conditions forhazard-free implementation, we will have to
remove the restriction on the state assignment technique, and state those conditions in terms of properties of bomthe STG
specification and the state assignment procedure.
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Appendix A A synthesis example

In this section we will go through the synthesis procedure for an example, taken from [Men88]. Its STG, with the initial
marking,appears in Hgure 2.a, and its SG appears in Figure4.b.

Let us implement an on-set and an off-set cover for each signal The initial value vector is xyz.

x :

• only y+ can fire without enablingx~.
We add x~ to F (since the value of x is 1 in the current value vector).

1. fire y+. The value vector becomes xy~.
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Hgure 11: A circuitimplementation of the example STG

- z~ can fire. The value vector becomes xyz. We add xy to R.
Hre z~. the value vector remains xyz.

- y" can fire. We addxz to R.
Hre y~. The value vector becomes xyz-

- Nothing canfire without enabling z+, sowe do notaddcubes.
We reach an old marking, so we return.

2. fire z+. The value vector remains xyz.

- y+ can fire. We add xz to F.
x" can fire. We add yz to F.

(a) Fire x~. The value vector becomes xyz.

* Nothingcan fire withoutenabling z ~, so we do not addcubes.
We reach an old marking, so we return.

(b) Firing y+ wouldreachan oldmarking, so we return.

So we generate F = x+ xy+ xz •+• "yz and R = xy+ xT. We can delete covered cubes obtaining F = x + yz, and
the implementation of z described in Hgure ll.c.

The following valid vector pairs originate transition cubes that might produce hazard conditions for each signal:

x :

1. valid vector pair (001,010), with transition cube 0 . The path 001 —000 — 010 traverses the implicant y~.
The two transitions thatturnit on and off are z ~ and y+ respectively.
A pair of vectors causing the falling transition onthe path from input z through implicant y~z to output sx is
[yz, y~). This gives us d\.
A pair of veaors causing the rising transition on the path from input y through implicant y~ to output sx is
(17z", yz). This gives us di.
dz can be measured onthecircuit for output z applying transition y+,that is from vertexxyz to xyz.
rf3 is the reset delay of an S-R flip-flop, so it is generally going to be larger than the difference between the
switching times of twoinputs of a nor gate. Sowe donothave to slowdown thecircuit

All othertransition cubesare eithercovered by imphcants ordo not intersect them at all.

y :notice that the circuit for output y is purely combinational inthis particular case, so s = / and m = 0.

1. valid vector pair (100,001), with transition cube -0-. The path 100 — 101 — 001 traverses the twoimplicants
x and z. The two transitions that turn off implicant x and turn onimplicant z inthe cover of fy are x~ and z+
respectively.
A pair ofvectors causing the falling transition on the path from input x through implicant x (a trivial implicant
indeed...) to output fy is (xz, x"z). This givesus d\.
Apairofveaors causing the rising transitionon the path from input z through implicant z tooutput / yis(x~,xz).
This gives us d2.
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y :

- Nothing can fire without enabling x ~, so we do not add cubes.
Hre z+. The value veaor becomes xyz.

- x~ can fire. The value vector becomes xyz. We add yz to R (since the value of x is 0 in the current
value veaor).
Hre x". The value veaor remains xyz.

- z~ can fire. We addxy to R.
Hre z~. the value veaor becomes xyz.

- Nothing can fire without enabling x ", so we do not add cubes.
Hre y. The value veaor becomes xyz.

- x+ can fire. The value vector becomes xyz. We add yz to F. We reach an old marking, so we return.

2. fire z+. The value veaor becomes xyz.
- x", y+ can fire. The value vector becomes xyz. We add z to R.

(a) Fire x~. The value veaor remains "xyz.

* y+ can fire. We addxz to R. We reach anold marking,so we return.

(b) Firing y+ would reachan oldmarking, so we return.

So we generate F = xl-ryz and R = yz-\-xy + z+xz. F is already aprime cover,and we obtainanimplementation
of x as described in Hgure ll.a.

• y+,z+ can fire. The value veaor becomes xyz.
We add x to F.

1. fire y+. The value veaor remains xyz.
- z+ can fire. So we add xy to F. Hre z+. The value veaor becomes xyz.
- x~ can fire. We add yz to F.

Fire x". The value veaor remains xyz.

- Nothing can fire without enabling y ~, so we do not add cubes.
Hre z". the value veaor becomes xyz.

- x~ can fire, the value vector becomes xyz. We add xz to R.
Hre y. The value veaor remains xyz.

- Nothingcan fire withoutenabling y+, so we do not addcubes.
We reach an old marking, so we return.

2. fire z+. The value veaor becomes xyz.
- x~, y+ can fire. The value vector becomes xyz. We add z to F.

(a) Hre x~. The value veaor becomes xyz.

* y+ can fire. We addxz to F. We reach anoldmarking, so we return.
(b) Firing y+ would reach an oldmarking, so we return.

So we generate F = x + xy + yz + z + xz and R = xz. We can delete covered cubes obtaining F = x -j- z, and the
implementation of y described in Hgure ll.b.

• y+,z^ can fire. The valueveaor becomes xyz. We add x to F.

1. fire y+. The value veaor becomes xyz.
- z+ can fire. We add xy to F. Fire z+. The value veaor remains xyz.
- Nothing can fire without enabling z ~, so we do not add cubes.

Fire x". The value veaor becomes xyz.
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Notice that liveness and USC are only sufficient conditions for an STGto have ahazard-free implementation, since our
procedure is based on the assumption that only the values of signals specified by the STG can be used as state variables
toencode the SG. So in order to givenecessary and sufficient conditions for hazard-free implementation, we will have to
remove therestriction ondiestate assignment technique, and state those conditions in terms of properties of boththe STG
specification andthe stateassignmentprocedure.
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Appendix A A synthesis example

In this section we will go through the synthesis procedure for an example, taken from [Men88]. Its STG, with the initial
marking, appears in Hgure 2.a, andits SG appears in Hgure 4.b.

Let us implement an on-set and an off-set cover foreach signal The initialvalue vector is xyz.

• only y+ can fire withoutenabling x~.
We add xz to F (since the value of x is 1 in the current value veaor).

1. fire y+. The value veaor becomes xyz".
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C. let dibe an upper bound on the delay along the path from input j along cube ci to either Sor Mnfor
transition j".

D. let cfe be a lowerbound onthedelaybetween transition jm and i*.
E. if{di —di) > di then a hazard condition exists.

Notice that the implicants that may cause ahazard instep l(a)i can only belong to the cover ofm, since the SG path from
vi tovi does not use any edge labeled with atransition for t. So all the implicants of/ that are involved must contain literal
t, because they all are generated byProcedure 42 when t has value 1and notransition fort fires.

The upper and lower bounds on di and dican be obtained by timing simulation on the circuit, where some bounds on the-
gate delays and wire delays must be known. The input veaors for this timing simulation are just the veaors corresponding
tothe fanin and fanout states of i* and j* oneach path. Notice also that wemust simulate, except for fanout load effects on
the delay, only the part ofthe circuit corresponding (either directiy or through algebraic factorization) to the implicant ofF
whose delay we are measuring. Otherwise the measurement could be invalidated byatransition on the output ofsome other
implicant.

The lower bound ondi can eitherbeobtained inthe same way (ifwe are also synthesizing thecircuit for signal i) orfrom
any other information source, such as adata sheet Inthe worst case wecan assume it tobe zero.

Whenever Procedure 43 finds a hazard condition, we record die tripleof pathsanddelays.
At the end,we havetwo choices foreachtriple (di, di, di) that failed theabove test:

1. speed up diand/or slow down di. This brings the circuit closer to the gate-delay case, where all delays inside the sub-
circuit toreach output t are supposed tobebalanced. This may not always bepossible, furthermore itmay introduce
cyclic dependencies, sothat when we trytoremove one hazard we can makeanother oneworse.

2. slow down <fe. This isalways possible (just add buffers after the output ofthesub-circuit for signal i). Furthermore we
are guaranteed that wedo not introduce cyclic constraints, since d\ and d,i are measured from asub-circuit input toa
flip-flop input, soadding delay after a flip-flop does notchange anyof them.

If we take die second choice, then we just record by how much each flip-flop output fails to pass thetest, and then slow
it down by the maximum difference.

Notice theclose similaritybetween what we dohere and what is classically done in synchronous circuit synthesis:

• inthesynchronous case we slow down the clock signal until no more events arepropagating along the whole circuit.

• intheasynchronous case we slow down each signal until no more events that caused itschange arepropagating along
the whole circuit.

So this approach, even if it does not generate speed-independent ordelay-insensitive circuits, can still be considered
faithfully adherent to the "asynchronous philosophy", in that every element must obey a locally defined" protocol, and
elementsthat are logically far apart must not be slowed down due to each other.

If weare synthesizing also thecircuit for signal i, aspecially bad case for Procedure 43 would bedi = 0, that corresponds
tosignal i being identically equal tosignal j. Butsignal i can beequal tosignal j, given Procedure 4.2, if and only if every
transition for j is immediately followed by thesame transition for i. Suchcondition can be easily detected ontheSTG, and
wecan just collapse i" nodes into j' nodes without changing the specified behavior. Inall other cases, the delay between j"
and i" is at least one logic gate.

4.6 STG Persistency and hazards

An STG is persistent ([Chu87]) if allits transitions are persistent A transition u* is persistent if for each immediate prede
cessor t" of u", u" and P are ordered.

For example inFigure 2.a transition y+ isnot persistent, because ithas x+ as apredecessor, but x~ and y+ are concurrent
(that is not ordered).

In apersistent STG whenever atransition u" becomes enabled, none of its enabling signals t can change level before u"
has fired.

A transition t" disables a transition u" if thereexists anSTG marking m where both t" and u" are enabled, but firing t"
brings toamarking m' where u" isnolonger enabled. Notice that theonlytransitions that can bedisabled inanFC netare FC
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di canbe measured on the circuit foroutputx applying transition z+, thatis from vertex xy~ to x y7.
Again di is the resetdelay ofan S-R flip-flop, so it is generally goingto be larger thanthe difference between the
switching times of two inputs ofa nor gate. So we do not have to slow down the circuit

2. validveaor pair(110,Oil), with transition cube —1-: sameasthe previous case.

All othertransition cubes areeithercoveredby implicants ordo not intersect diem at all.

z : All transition cubes areeither covered by implicantsordo not intersectthem at alL
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