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Abstract

INCTEX is an incremental document processing system for TEX documents. The
system is editor independent and has been used in a variety of applications such as
VORTEX. The formatter state is periodically compressed and checkpointed to allow
incremental processing. Pages are selectively reformatted by analyzing the input and
doing state comparison to decide when to halt.
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1 Introduction

INCTEX is an editor-independent incremental formatter which combines the formatting
capabilities of batch formatters with the incremental processing of direct manipulation
systems. Batch formatting systems such as TEX [Knu84a, Knu86| provide sophisticated
formatting algorithms but must reprocess the entire document each time even if all the
changes are on a single page. Direct manipulation document systems such as Lilac [Bro88],
InterLeaf [Int85], and VORTEX [CCH*86, Che88, CH88], provide interactive, incremental
response. WYSIWYG (what you see is what you get) direct manipulation systems display
and allow editing of the document in its finished form and the changes are reformatted in-
crementally. Direct manipulation systems rely on a directly coupled editor which identifies
document changes. Interactive response is provided by incrementally reformatting only
what is necessary and by giving processing priority to visible regions. However, interactive
response in direct manipulation systems exacts a price in the form of less sophisticated
formatting, fewer features, and less flexibility than batch formatting.

INCTEX occupies a new- loeation in-the spectrum-between batch-formatting and direct
manipulation systems. It reformats incrementally but is not directly coupled to an edi-
tor. Any text editor can be used to edit the input document, as with batch formatters.
Formatter execution is checkpointed and formatting is restarted where there are changes
and stopped when the formatting of the next region will be identical. Checkpoints of the
formatter state are compressed by taking advantage of state change characteristics which
result from fundamental document use patterns.

INCTEX is based on TEX, a widely used document system which provides excellent
formatting and a powerful macro language. It provides the highest quality linebreaking
available by computing optimal linebreaks an entire paragraph at a time [KP82]. Hyphen-
ation is also very sophisticated and achieves high quality with relatively small memory use
[Lia83]. The macro language is powerful enough to create document styles ranging from
letterheads to professional mathematical journals and books. TEX provides file inclusion
so that input can be read from multiple files and also provides the ability to write arbitrary
text to multiple auxiliary output files.

The VORTEX system [CCH*86], to which INCTEX is related, is a page-level incremental
WYSIWYG document editing system based on TEX. The VORTEX system provides direct
manipulation editing on the formatted view of the document as well as the source language
view, but does not compress state checkpoints nor provide a comprehensive solution for
quiescence checking. InforTEX is a non-incremental document editing system which in-
cludes special editor support for TEX document entry and provided document previewing
[Sch87].

The development of an editor-independent incremental formatter requires the solution
of several problems. Formatter output must be incrementally generated. Input has to be
analyzed to find changes and an appropriate point must be chosen to restart formatting.



Execution has to be checkpointed and restarted. Determining when reformatting can be
discontinued and output will be identical is another serious issue.

INCTEX will discontinue reformatting if it determines that it has reached a point in the
document where the remainder of the formatter output will be the same as before. This
condition is termed gquiescence. TEX was not designed to provide for quiescence detection
and has no mechanism for tracing formatting data dependencies which would support
quiescence detection. However, another solution can be found by viewing the formatter as a
deterministic automaton whose processing (formatting) is distributed over time. Execution
points can be associated with particular program states and output points (page breaks)
and input points. The execution of the machine from any point into the future is determined
by the program state and remaining input. Quiescence can be identified if an execution
point, composed of a program state and the remaining input, ever repeats an execution
point from a previous session.

The extent to which comparing formatting states will be equivalent to checking for
quiescence depends on the degree to which the state is free of unnecessary dependence on
the input encountered so far.- If-it depends too much on the previous input, -any trivial
difference in the input will result in a state difference and quiescence will never be detected.
In INCTEX, this technique allows quiescence to be successfully detected in cases where the
number of lines on a page remain unchanged and the document structure is not altered
(for example, no sections are added or removed). This success is directly dependent on the
design of TEX, which reads input lines until it reaches the end of a paragraph, determines
paragraph linebreaks, until it decides a paragraph should not be placed on the remaining
page and a page break should be made (which may actually precede the last input line
by some distance). This means that linebreaking data structures do not hold information
necessary for future formatting (at a page break) and do not need to be compared for
quiescence detection. The result is that quiescence detection does not depend on the exact
linebreaks (and thus words) on a page. However, if the number of lines does change, then
the set of pending lines for the next page saved in dynamic memory will be different and the
algorithm will correctly detect that quiescence has not occurred yet. On the other hand,
document structure is encoded in a table which is necessary for future formatting and
cannot be ignored. State comparisons fail even if a structural change is made which will
not change the appearance of future pages, for example, if a subsection is added to the end
of a section, but all later pages still have the same sections and text. This type of change
causes the quiescence check to fail unnecessarily, at least until an appendix appears and
the structural labels are redefined. One conclusion that can be drawn from the INCTEX
project is that, for more general quiescence detection, the formatting data dependencies
themselves must be checked and the formatter must be designed to identify and trace
these data dependencies. Quiescence should be detected by checking dependencies instead
of comparing states.



2 Design Of INCTEX

INCTEX was adapted from TEX by treating it as a deterministic multi-tape Turing machine
which is checkpointed and restarted at various execution points during processing. INCTEX
is page incremental; checkpoints are made at the execution points where output pages are
produced. TEX pages are the natural unit of granularity. Input is processed until a page
break is determined and then a description of the formatted output page is generated.

INCTEX maps execution points at page breaks to locations in the input and output
by recording the current input and output file offsets at page breaks. A change at any
particular point in the input can be matched to an execution point where formatting
diverges from the previous version. INCTEX compares the new document against the
previous version for changes and locates a page checkpoint which precedes the changes
from which to restart. Input file offsets and output file contents are restored to their state
at that checkpoint and formatting is restarted.

This approach to incremental processing can be applied to any deterministic program
where the processing is distributed over the course of reading the input. If multiple passes
over the input are made, execution must be restarted at an execution point during the first
pass and sufficient processing must occur during the first pass so that the savings justify
the overhead.

Several problems must be solved in order to restart TEX incrementally. First, formatter
output must be incrementally generated. It was fairly simple to divide the formatted
device-independent (DVI) output file into separate DVI files for each page. For details
about the structure of DVI files, see [Fuc81, Fuc82]. The input document must be analyzed
for changes and an appropriate point must be chosen to restart formatting. A method of
checkpointing the formatter execution state and restarting it must be developed. The final
problem which must be solved for incremental processing is determining when reformatting
can be discontinued.

Analyzing the document for changes and locating an appropriate restart point is com-
plicated by line buffering and nested input files. Nested input files require that multiple
input files be analyzed for changes. In order to decide where to restart, INCTEX must treat
a change in a file as if a change has also occurred in the line in the file where the command
to include the file is found.

Compression techniques allow state checkpointing to be performed more efficiently. The
state which must be saved to restart formatting for the next page occupies 400 Kbytes of
memory. Analysis shows that macro definitions, font descriptions, and style parameters
rarely change during TEX formatting (which is probably true as well in other formatting
systems). INCTEX uses compression techniques which rely on this behavior.

Reformatting can be halted when the formatter has reached a point where the rest of
the formatting output will be the same as before. Detecting this situation, termed qui-
escence, was not fully solved in VORTEX because of the potentially unrestricted scope of



side-effects due to macro redefinitions. The solution taken in INCTEX is that document
formatting can be guaranteed to be identical if the formatter state has reconverged to
a state identical to one in the previous document (this is a sufficient but not theoreti-
cally necessary condition; it is over restrictive). As new pages are formatted, the state
checkpoints are compared against the previous checkpoint for the same page. Execution
is halted if quiescence is found. The next change in the remaining input, if any, is located
and formatting is restarted. The largest problem in verifying quiescence is the internal
dynamic memory management in TEX. INCTEX parses the contents of dynamic memory
to determine if two states are equivalent.

The initial version of INCTEX was derived from VQRTEX. This technical report de-
scribes work which was performed to develop a quiescence detection algorithm and improve
state compression from 4-1 to 40-1. Checkpoint size varies depending on document com-
plexity, but can occupy as little as 10 Kbytes in the best case, despite the fact that TEX’s
state occupies 400 Kbytes (a complex page can occupy up to 150 Kbytes). Input document
analysis was also refined so that fewer files are copied. The standard TRIP acceptance test
for TEX [Knu84b] was also generalized to an incremental form since validation is a large
part of any software project (see Appendix D).

The design of INCTEX allows the reuse of existing code for a TEX formatter to develop
an incremental formatter. The techniques used to accomplish the initial part of this was
reported in [CHMS88]. Most of INCTEX consists of external code to the formatter itself
which allows state to be saved and restored and checked for quiescence. A few minor
internal changes were made to allow execution to be halted and restarted at each page
break and to allow state changes to be recorded for state compression. INCTEX is based
on a public domain C language version of TEX written by Pat Monardo. The original
system was written in PASCAL with the WEB software design system [Knu83, Knu86].
TEX consists of about 25,000 lines of C code, and INCTEX consists of approximately 10,000
lines of additional C code.

We will describe INCTEX by first explaining how the input files are analyzed to locate
changes and determine the correct restart point, describing formatter state checkpointing
and compression, quiescence detection, and finally explain how these solutions are com-
bined for incremental formatting.

3 Input Analysis

Before any incremental processing can be performed, INCTEX must identify the changes
in the document and determine where to restart formatting. The information needed to
do this is recorded in an incremental page-mapping file which maps each page to a point
in the input and the output file. At the end of each page, the input file which is currently
being read is recorded. The offset describing the last line which was read is also recorded



(all output files and offsets are also recorded). It also records the time each file was last
modified, the parent of each file (the file from which it is included), and the end of the line
in the parent file where the include command occurs is recorded in the page mapping file.
Each input file is also copied. The important problem for input analysis is that the last
line has been read into the buffer but may not have been fully processed yet. However,
changes in the set of input files are always reflected as changes in some of the original input
files because each file to be read has to be specified somewhere, starting in the original
source document file.

When a new document is submitted, INCTEX finds out which files have been modified
since the last time. It compares these files against the previous versions and finds the offset
where the first changes occur. If there is only one input file, it simply scans sequentially
from the first to the last page looking for the first page whose input line offset exceeds the
offset of the change. However, if there are nested input files, it must consider a change in
one file as equivalent to a change to the parents of that file on the lines where the file is
included. It must find the page where that file, or any line leading to that file’s inclusion,
is read. For each page, therefore, the system- checks whether-the end of the page exceeds
the offset of the change on this file, the offset of the end of the line in the parent file, and
so on for any succeeding parents. The checkpoint which precedes all changes to all files is
loaded.

Copies of the input files are stored in a subdirectory called INC which also holds
all other permanent information needed to incrementally reformat the document. Input
files are copied as the same relative pathnames within the INC directory, so that files in
different directories with the same leaf name will not collide. Files, timestamps, and page
offsets are recorded in the incremental page mapping file, which is called doc.inc where
doc is the root document name. The format of this file is described in Appendix C.

In order to reduce file copying, read-only files are not copied. The time stamp is
recorded, and if the file is modified, the analysis algorithms treats it as if the entire file
has changed. Files ending in .sty are also treated in this way, since by convention [Lam86,
page 85] these are usually system or user style files which usually never change and almost
always are read at the beginning. Since they are read at the very start and usually contain
macro definitions, a change would normally force complete reformatting and this does not
impair the ability to incrementally reformat.

4 State Checkpointing

INCTEX checkpoints the formatter execution state at different execution points so that
formatting can be incrementally restarted. The execution state is very large, even when
only the portion which must be carried over to the next page is considered. However,
outside of the page description in dynamic memory, very little of this formatter state



changes from page to page. These characteristics are explained in part by the way in
which users write documents and in part by the design of TEX. Users rarely modify font
characters or page dimensions and, in general, document style parameters rarely change in
mid-stream even though TEX allows them to be altered. Macros are also rarely redefined.
Often they are defined by a style package which is read from a system library before the
user document is processed. These characteristics suggest that recording the changes to
the state might be a compact way of describing the current state.

INCTEX describes the formatter state as changes relative to a reference state, instead
of describing the state itself. The state after the initial style file is loaded is used as the
reference state. Each state checkpoint is described as the difference relative to this reference
point either by recording changes to data structures or by computing the difference. The
style initialization point has a special advantage as the reference state since it can be
created simply by loading the style file at the start of execution and therefore it does not
need to be recorded by some special means. The state of any page is then restored simply
by loading the differences recorded in the page checkpoint. Dynamic memory is the only
region to which this difference-technique isnot applied. The only compression attempted
on the dynamic memory region is the removal of unused areas.

The state required to continue formatting from page to page consists of about 400
Kbytes divided as follows:

1. Global variables, grouped into a single region.

2. A hash table which is add-only. Access is random, and few additions are made.
3. Symbol tables. Entries can be changed at random.

4. A stack for saving symbol definitions. The stack is simply saved.

5. Font description arrays. Segments can be added onto the end occasionally, and rarely
a random font character description will be changed.

6. A string pool which is append-only.
7. Two regions of internally allocated dynamic memory:

¢ node memory (contains the page description, etc).

e token memory (contains macro descriptions).

Changes to randomly accessed entries in data structures (the hash table, symbol tables,
and font arrays) are recorded in cumulative difference lists by inserting software probes into
the code which modifies these entries. The current value of each different entry is written
in the checkpoint. When a checkpoint is loaded, these difference lists are restored, as if
the changes during processing of preceding pages had been logged.

7



Modifications to the font arrays are separated into changes to current entries, which are
recorded in the difference list, and additions to the end of the arrays to describe new fonts,
which are captured in a per-document file so that they will not be described redundantly
in each page checkpoint. Any new additions are saved each time a checkpoint is saved and
the current array limits are recorded in each checkpoint. The correct font state is restored
by loading the initial segment values from the font files and then loading any changes from
the font difference list.

String pool limits are similarly recorded in each checkpoint while the additions to the
string pool themselves are saved in a separate per-document file. However, since entries
are never changed, the string pool is just saved at the end of formatting.

The difference in the global variables relative to the initial reference state are computed
by comparing the global region word by word against a copy of the initial global region.
The difference is saved as a difference list like those for the hash or symbol tables.

The save stack, a small stack used to save symbol table definitions, is saved in its
entirety.

Dynamic memory is scanned and the occupied regions are saved in the checkpoint. To-
ken memory allocation was modified so the region allocated during style file initialization
does not have to be saved. The free list is reset to the outer unallocated region after initial-
ization so that no locations in the initial token region are reused. With this modification,
the contents of this region never changes and does not have to be saved.

A state checkpoint thus consists of dynamic memory descriptions, difference lists, the
save stack, and the string pool and font segment descriptions. The string pool and font seg-
ments are only saved once per document. The compression ratio varies depending primarily
on the complexity of the page description and macro description. The uncompressed state
occupies 400 Kbytes, and a minimum checkpoint occupies 10 Kbytes, giving a maximum
compression ration of 40-1. Checkpoints can vary up to 160 Kbytes.

The overhead for state checkpointing consists of 12 Kbytes of memory to copy the
initial global region. With current workstation processor speeds (SUN 4 or SPARC), the
cost of performing a comparison is found to be outweighed by the eliminating the costs
(communication overhead and disk delay) of writing 12 Kbytes to a network disk. Software
overhead for keeping the difference lists is small, although the memory overhead for these
lists is proportional to their size. There is very little memory overhead for compressing
dynamic memory, but unoccupied regions have to be found by scanning these regions,
which are very large.

Details on the implementation of state checkpointing are given in Appendix A.



5 Quiescence Checking

5.1 Overview

The goal of an incremental formatter is to reformat the least amount necessary to reflect
new editing changes. Practical issues such as output regeneration granularity and the com-
putational and storage overhead for any particular reprocessing algorithm can lead to an
implementation which is incremental, but performs more than the theoretically minimum
amount of reformatting.

The TEX system was not designed with incremental formatting in mind and does not
compute data dependencies that can be used to determine what must be reformatted.
Furthermore, the TEX language, especially the macro definition capability, contains com-
plicated features which make it difficult to deduce such dependencies. The problem of
deciding which pages to reformat involves two questions: where the processor must restart
formatting, and when formatting will repeat itself. The input analysis which answers the
first question (where to restart).has already been described. INCTEX decides when format-
ting will repeat itself by comparing the formatting state against the previous state for the
corresponding page. If they are equivalent, then the formatter will repeat execution and
generate the same output for as long as the input repeats itself (this condition is termed
quiescence). INCTEX halts reformatting when it finds an equivalent state. It reanalyzes
the input to find the next difference and restarts at the last page which precedes it.

The quiescence algorithm in INCTEX detects a sufficient (but not necessary) condition
for quiescence. INCTEX checks for quiescence and saves a state checkpoint after a page
break has been chosen, and the current page description has been written and removed from
memory. A combination of three techniques are used: direct (binary) state comparison,
state parsing and comparison for dynamic memory structures, and ignoring temporarily
irrelevant variables. The quiescence detection algorithm will be described in this section
and in greater detail in Appendix B. Suppose a resubmitted document is quiescent after
some set of changes: the remainder of the input will be the same as before at the page
break following the changes, and any document formatting will also repeat itself after the
page break. TEX reads entire paragraphs at a time and performs linebreaking (determining
the positions of words, spaces, and line breaks) using a box and glue model. An entire
paragraph will have just been read and linebroken; the positions have been chosen for all
the boxes corresponding to the characters will have been determined. The linebreaking
data itself is temporarily irrelevant and can be omitted from state comparisons because
paragraph linebreaking has just been finished. Thus, linebreaking differences up to this
point will not affect quiescence because the linebreaking state is not compared. Usually
there is also some set of lines which overflow onto the next page; the text and box po-
sitions for these lines are saved in a page description list kept in dynamic memory. The
page description for the pending page is parsed and compared so that dynamic memory



allocation differences will also be ignored. Therefore, quiescence detection will fail only if
the document changes have induced a change in some other part of the state (such as in a
symbol or macro definition or a special counter for section numbers).

In practical terms, quiescence detection succeeds if the changes are confined to the text
in paragraphs (the number of paragraphs can be altered without any effect). Quiescence
can also be detected when entries in tables are altered. However, adding or removing a
subsection title in IATgX documents causes quiescence detection to fail until an appendix
appears. This occurs because section numbers are recorded in formatter counters, and
changes involving counter variables lead to a state difference preventing quiescence detec-
tion. An appendix in JATEX resets the section numbering and permits state comparison to
detect quiescence. Quiescence also fails when macro definitions change because the state
describing the macros changes.

State comparison has two fundamental limitations with regard to detecting quiescence.
One limitation arises if an input change has a state side-effect, for example if a macro
definition changes. INCTEX does not know what parts of the document are affected, or
conversely, which parts of the document are unaffected. It must assume the worst case and
reformat the rest of the document until the state returns to an identical state as before. In
the case of a macro change, keeping dependencies would permit INCTEX to determine if
and where any references to a macro occcur, and the regions of the document that must be
reformatted. The second limitation is that quiescence can only be detected if the remaining
input is the same as before, since INOTEX really compares finite machine states and a state
consists of the formatter state and the input (and, technically, output) state. Specific
examples of problems with state side-effects and input file dependency will be discussed at
the end of this section to demonstrate how the implementation of the IATEX style macros
create difficulties for state-comparison based quiescence detection.

State comparisons are more complicated than simple comparison of the binary state
values because of two problems, dynamic memory allocation and state compression. TEX
contains its own privately managed dynamic memory pool. A different allocation sequence
can cause the pool to be allocated differently in two states even though it contains the
same contents semantically. INOTEX parses and compares the dynamic memory contents
and the technique that allows pointers to dynamic memory items to be compared to decide
if they point to equivalent items will be described. The second problem is that the current
program state in memory must be compared against a compressed state description which
actually describes changes to the state relative to an initial reference state. The mechanisms
that perform this comparison will also be described.

Dynamic memory comparison is simplified slightly by the separation of dynamic mem-
ory into two separate regions in the implementation upon which INCTEX is based. Only
the dynamic memory pool containing the page description is parsed, while the dynamic
memory pool containing the macro definitions is simply compared for binary equivalence.
Any macro changes are likely to result in failure to detect quiescence because of differ-
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ences in memory allocation, but since there is no way to determine the side-effects of a
macro change, quiescence would be difficult to determine even if dynamic macro memory
was parsed and compared. The only practical gain which might be achieved would be the
ability to detect quiescence if macros are defined in a different order. In practice, users
rarely redefine macros. The decision not to parse macro memory does not therefore signif-
icantly impair quiescence detection and allows a reduction in the parsing requirements for
quiescence checking.

The comparison of the various state regions will now described in further detail, as
well, as how the remaining input is analyzed to detect quiescence. Details at the level of
specific state variables will be given in Appendix B.

5.2 Global Variable Comparison

The global variables are grouped into a contiguous region and described by comparing
them against the initial reference state values to create a difference list description. The
way difference lists are compared will be given later; but a series of locations in the current
state and the previous state are matched and compared. A variable in the current state is
compared against a variable in the previous state checkpoint by binary comparison except
if it is one of three special variable types: a dynamic node memory pointer, an ignoreable
variable (a variable whose value does not need to be compared, such as a page breaking
value which no longer matters after a page has been generated or a dynamic memory free
list pointer), or the current file name string, which is only compared up to its current
length. The addresses of these variables are entered into a special address list which is
used to determine if a special comparison technique should be performed.

The entire global region is compared as if it were a series of single word items. When a
difference is found, the half word where the difference begins is identified, because pointer
variables to node memory actually occupy a half word, and a special address list is scanned
to determine whether the location is a dynamic node memory pointer or other variable type
requiring a special comparison technique. Each entry in the list specifies an address range
and the type of comparison to be performed (to compare a dynamic memory pointer,
ignore a variable, or check a name string). Comparison of dynamic memory pointers will
be explained in the subsection on parsing dynamic memory.

Special treatment was required for global file descriptor pointers so that spurious differ-
ences would not be flagged. File descriptors are allocated from the UNIX dynamic memory
and the descriptor pointers will have different values each time. INCTEX saves the pointers
in temporary storage and clears them before state checkpointing and quiescence checking so
the descriptor pointers will be identical. Input and output will still be compared correctly
because file names and file offsets are checked explicitly during input analysis. The unused
part of the global file name string buffer is also always cleared before quiescence checking
because INCTEX uses the string buffer prior to restarting TEX and the buffer region past
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the end of the current string contains random characters.

5.3 Parsing Strategy

The contents of dynamic node memory is examined by traversing and parsing it as an
ordered forest of trees. The contents are printed in a readable form to a temporary file
and compared to the contents generated by parsing the previous checkpoint. Traversing
the trees in dynamic memory in a strictly ordered manner allows any location in dynamic
memory to be assigned a semantic meaning according to the order in which it is visited.
No location is ever visited twice, although a visit order could still be defined which would
allow this technique to be used. During parsing each dynamic memory location is assigned
a number by its order in the forest traversal. Pointers to dynamic memory in the global
variables or other data structures of two different states can now be compared by verifying
that they point to nodes which have the same tree visit number.

Pointers to the roots of the forest of trees in dynamic memory are stored in several
structures residing in the non-dynamic-portion of -memory (the semantic nest [page de-
scription stack], static [predefined] glue list, [word] hyphenation lists, equivalence [symbol]
table, [symbol definition] save stack, font glue definitions, condition stack, and alignment
stack [see appendix for further details]). Certain locations in dynamic memory are also
reserved to point to special lists. Dynamic memory is parsed by starting from this group of
pointers, which is smaller in number than the total set of pointers into dynamic memory.

Rather than develop an equivalent procedure to parse a compressed state description in
a checkpoint file, the quiescence algorithm loads the descriptions of dynamic node memory
and the structures described above which contain pointers to dynamic memory and parses
the previous dynamic memory state and then restores the current state so that formatting
can continue properly.

The parse descriptions are then compared to make sure the contents of dynamic memory
are identical. INCTEX also verifies that parsing correctly covered the complete contents
of memory in both states by checking that all occupied entries in dynamic memory were
numbered during the parse traversal and all free locations were not numbered.

5.4 Comparison of Difference List Descriptions

State checkpoints are compressed by describing the changes to data structures as difference
lists, instead of describing the data structure itself. The global variables, equivalence
table, equivalence level table, and hash table are described by difference lists. Difference
list descriptions allow fewer comparisons to be potentially performed since the number of
changes is smaller than the number of elements in the data structure, although comparison
becomes more complex. A difference list describes a set of changes as pairs consisting of
a location and the current value of the location. No type of order is guaranteed, although
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changes are recorded in fact in the order they are made. A direct comparison of two lists is
therefore equivalent to checking not only that the same locations have the same values but
also that changes were made in the same order. Instead, an algorithm capable of handling
ordering differences was developed.

Comparing the content of two data structures described by two arbitrary difference
lists in any order requires additional complexity. The set of changed locations appearing
in both difference lists can be compared to each other since the values of these locations
are recorded in the checkpoint, but a mechanism is required to handle ordering differences
in the two lists. Any set of changed locations unique to one list is not included in the
other list because, by definition, it was never changed from its value at the initial reference
state. Therefore these locations can only have the same values as the other state if their
current values are the same as the initial reference state values. This can occur if a series
of changes ends with the value being changed back to the original value.

The goal of the difference list comparison algorithm can be described more formally as
follows:

Let N be the current state

Let P be the previous execution state

L(N) = {N;UC} is the set of changed locations of N

L(P) = {P,UC} is the set of changed locations of P

C' is the set of locations changed in common for both states N and P
N is the set of locations changed in N but not in P

P, is the set of locations changed in P but not in N
Then state N is equivalent to state P only if:

1. Vp(C), the values in state P of locations C, is equal to Vy(C'), the values for state
N (if a location is a pointer to dynamic memory, the parse number for the memory
location must be the same).

2. Vp(N;) = Vi(N1). The values of the locations unique to N must be equal to those of
the initial state I (a location may have been changed back and forth to its original
value). If this is true, Vp(N;) = Vn(N1), since for state NV these locations were not

changed.
3. and similarly, if Vp(P;) = Vi(P), then Vp(Py) = Vn(P1).
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We therefore have to determine D, the changes unique to the current state, and O,
the changes unique to the previous state, and verify that these values are the same as the
initial state. This is accomplished by recording which entries in the current state have
been changed and comparing them to the previous state checkpoint description. An entry
in the difference list description from the checkpoint is changed in both states if it is also
flagged as having been changed in the current state. The previous checkpoint value is then
compared with the current value to see if the same change was made for both states and
the flag is updated to record the result of each comparison. An entry is unique to the
previous checkpoint if it is not flagged as changed in the current state, but the value can
still be compared to the current state value, which is the same as the initial reference point
value. This comparison thus requires no additional storage overhead. Any entries which are
flagged different but never compared against a previous difference list entry are differences
unique to the current state. The current values of the entries can be compared against the
initial reference point values to see if they would be the same as the previous state’s. This
is not currently performed for any of the regions because of the storage overhead. It would
not be useful for the global variables because the difference list describes a true set of exact
differences from the initial reference state, not a set of cumulative changed locations which
need not be different. Future research remains to determine if adding copies of the initial
values would increase the set of situations where quiescence can be detected.

The flags are implemented in two ways, depending on the characteristics of the data
structure. In most cases an array used. This allows an entry to be looked up in a single
step but requires a linear scan to find the changes unique to the current state. The flags are
implemented as a linked list of the changed locations for the font arrays because the size of
the arrays is large and there are also a large number of arrays. This also requires a linear
scan to check if an entry has been changed, but the number of such changes is small (often
less than ten for a 50 page document) so only a small number of comparisons is required.
Finding the changes unique to the current state is also linear but involves a much shorter
search since the list length is the number of defferent locations while the array length is
the number of locations in the structure. A more sophisticated set implementation could
reduce storage overhead for the flags and the processing overhead required to find unique
entries.

Four state regions are described by difference lists: the global variable region, equiva-
lence table, equivalence level table, and hash table. These difference lists are compared as
follows:

1. For each state region, we keep a set of flags, implemented as a simple array, with one
flag per element describing its current state. Each flag starts in the state CLEAR, and
can assume the states CHANGED, EQUIVCURR, EQUIVPREV, UNEQUIVCURR,
or UNEQUIVPREV.

2. A flag is set to CHANGED when a state change is logged for that entry.
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3. When a location is read from the difference list describing the previous state, we
check the flag for that entry and...

e If it has the value CHANGED then we know the location differs from the initial
reference state in both states (it is in the set C described previously) and we

simply compare the values and set the flag accordingly to EQUIVCURR or
UNEQUIVCURR.

o If the flag for the entry has the value CLEAR instead, the change is unique
to the previous state (it is in P;) and we compare it to the current state value
which is still the same as the initial state value and set the flag to EQUIVPREV
if it is the same (meaning the previous state is still equivalent to the current

state) or UNEQUIVPREV.

e The data structures are copied when the initial reference state is established so
that the above comparison is possible.

4. If any flags remain in the state CHANGED after the difference list entries describing
the previous state have been read, they must describe changes which are unique to
the current state (the set N;). We must verify these are equal to the initial state
values in order for the current state to be equivalent to the previous state.

5. We can immediately determine nonquiescence whenever we set any entry UNEQUIV-

CURR or UNEQUIVPREV.

6. After comparison, we have to reset the flags to the original CLEAR or CHANGED
state so that they can be used for state comparisons for future pages. EQUIVCURR
and UNEQUIVCURR entries are reset to CHANGED because they indicate entries
which were changed in the current state. Entries set to EQUIVPREV or UNEQUIV-

PREYV are unique to the previous page state and unchanged in this state so they are
reset to CLEAR.

7. The CLEAR/CHANGED flags are implemented differently for the font description
arrays. These arrays can grow dynamically and are extremely large, but there are few
random changes to them. When a location is read from the previous state checkpoint,
we compare it to the changed locations for the current state by scanning through the
list for the current state, keeping track of which entries have been compared. Entries
which are unique to the previous state can be compared to the current state value.
Because the list is short, this technique does not have a large cost.

When a global variable entry is compared it is first compared against a special address
list which is used to determine if a special comparison technique should be performed.
Binary comparison is used unless the variable is a dynamic node memory pointer, an
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ignoreable variable (a variable whose value will not affect future formatting, such as a page
breaking variable which no longer matters after a page break, or a dynamic memory free
list pointers), or the current file name string, which is only compared up to its current
length. If a difference is found, the half word where the difference begins is identified
because pointer variables to node memory actually occupy a half word and the dynamic
memory tree traversal number is looked up and compared in the case of dynamic memory
pointer variables.

Dynamic memory pointers in the equivalence table difference list are ignored because
comparison of the dynamic memory parses checks them directly for equivalence.

5.5 Comparing additions to the string pool and font

The string pool and font array additions are saved in separate files when formatting is
over. Their current contents must also be compared for quiescence checking. The contents
from the previous pass are not replaced until the end of processing and are available for
comparison. For each structure, the initial size (right after the style file is-processed}, size
at the previous checkpoint, and current size is kept. These limits are also recorded in each
checkpoint.

If a segment has been added to the string pool since the last checkpoint, the string pool
file for the previous pass is read and compared for an identical segment. This algorithm
always skips the initial region resulting from style file initialization which will always be
identical in both checkpoints and allows the pool to be compared incrementally. The font
arrays are compared similarly except that, because font arrays are saved as each segment
is added, the comparison has to be done a segment at a time according to how the array
segments were previously recorded.

If a segment in either the string pool or the font array is found to be different, then
INCTEX can be sure that it will be different for all following page checkpoints as well, and
keeps a flag indicating so, allowing it to forgo future comparisons. Currently the string
pool and font array file is opened and closed for each state comparison and this could
be made more efficient by maintaining a current cursor position, allowing each file to be
opened only once during the entire session.

5.6 Input and Output Considerations

Assuming the current state of a page is determined to be equivalent to the previous state,
execution will be identical and the same output will be generated for future pages for as
long as the same input is encountered as before. The current input file is compared from
the current offset at the end of the page against the previous offset in the previous version
of the file to locate the next difference if any. The other input files are also re-analyzed for

16



changes from the beginning. Formatting can be skipped between the current page and the
last page which precedes any of these changes and restarted at before the changes.

The output which would have been generated must be recreated for the pages whose
formatting is skipped. The segments written in each output file for these pages can be
determined by looking at the output file offsets recorded in the page-mapping file. These
segments are extracted from the copies of the last version of the output files stored in the
INC subdirectory and copied to the current output. The primary formatted document
file does not have to be regenerated in this way because it is separated into per-page files
which are individually regenerated.

INCTEX turns off quiescence checking if a new input file is encountered which was not
in the previous chain of input files. The input analysis routines are not able to compare
different chains of input files.

5.7 Summary

The implementation of quiescence checking which has been-described allows INCTEX to
successfully skip further formatting if changes are made to paragraphs but the number of
lines do not change. The overhead required to achieve this consists of several processing
and storage components. Quiescence checking requires dynamic memory and the state
referring to it to be parsed, saved so that the dynamic memory information from the
previous checkpoint can be loaded and parsed, and finally restored so that formatting
can continue. Parsing and comparing dynamic memory incurs processing overhead and
storage overhead is incurred to save and restore dynamic memory. Additional structures
and processing are also required to trace which entries in the font arrays, equivalence,
equivalence level, and hash tables have changed so that it can be verified that equivalent
sets of changes have occurred.

The success of our quiescence algorithm based on state comparison is affected by cer-
tain implementation choices. Section and appendix changes (see the next section on IATEX)
cause counter differences in the state which cause unnecessary quiescence failure. A differ-
ent order of macro definitions will also confuse quiescence detection. This type of problem
could be solved by analyzing and parsing the formatter state more thoroughly. For ex-
ample, parsing the macro definitions in dynamic memory would solve the latter problem
with macro definition order. Such solutions would increase the cost of quiescence detec-
tion however, although one saving grace is that determining quiescence is impossible can
usually be achieved rapidly.

5.8 Quiescence problems with IATEX

Two particular types of problems arose with I\TpX which made detecting quiescence more

difficult.
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The most common problem with quiescence occurs because of an auxiliary file which
is read at the very beginning of the IATRX document. Section titles and bibliography
references are recorded in this file. The references are used when a citation occurs and at
the bibliography section, which is usually inserted at the end of the document. The primary
problem occurs with sections titles. Section title information includes the pages where the
title occurs; it is used if there is a table of contents. A wide variety of editing changes cause
section titles to move to different page, altering the auxiliary file so it differs on the next
pass and forces reformatting at the beginning of the document. The entire document is
reformatted, since quiescence fails on every page because the state is different, even if only
a single section title has moved and only the range of pages between the previous position
and the new position needs to be reformatted. For [ATEX documents, this auxiliary file
change is the most common reason for unnecessary reformatting. Both types of limitations
on quiescence detection arise because formatting data dependencies are not extracted and
analyzed.

Quiescence detection also fails if a subsection title is added or removed in ATEX docu-
ments, until some event, such as the appearance of an appendix resets the section counters.
This phenomenon occurs because section numbers are recorded in formatter counters and
changes involving counter variables lead to a state difference preventing quiescence detec-
tion. An appendix resets the section numbering and permits state comparison to detect
quiescence. This is an example of a state side-effect which causes an unnecessary quiescence
failure.

6 Restarting Strategy

6.1 Overview

Now that the components in incremental processing — input analysis, state checkpointing
and compression, and quiescence checking — have been discussed, the way in which format-
ting as a whole is restarted and halted will be summarized. TEX is conveniently structured
so that a single loop processes input and produces output pages. This loop was interrupted
whenever a page is produced so that INOTEX can record state checkpoints as well as input
and output offsets. The formatted output file is also split into separate files for each page
so that pages can be regenerated individually. Pages are collated after execution is finished
into a single document file by a separate program.

When a document is resubmitted, the style file and the source document are determined
from the command line. The source document and any included input files are analyzed
for changes and INCTEX locates a page checkpoint that precedes them from to restore the
formatter state and restart formatting. Input positions are restored, and output files are
restored to their state at that point, and formatting is restarted by entering the processing
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loop described above.

The incremental page-mapping file records the input and output file information for
each page. It is retrieved from a file with the document rootname, followed by the suffix
.inc in the checkpoint subdirectory called INC. This file also contains the style file which
was used for the last pass. If a different style file or version is specified, the entire document
is reformatted, otherwise the document input is analyzed to find the first change and the
page checkpoint preceding the change is loaded (obviously, all processing preceding the
change will be identical).

When INCTEX is invoked the first time, it creates all the checkpoint information in the
INC subdirectory needed to restore formatting as follows:

1.

When INCTEX is invoked the first time, it loads the initial style file, determines the
initial regions in the string pool, dynamic token memory, and font description arrays
which can be eliminated from future checkpoints, and copies the global variable state.

When an output page is produced, it records the current location in each input
and output file (it records the current input and output files and offsets, allowing
an execution point to be mapped to a point in the input and output) and saves a
checkpoint. Each output page is saved as a separate file. INCTEX provides an option
to checkpoint every fixed multiple of pages.

It writes this per-page input and output information to an incremental page-mapping
file at the end of execution.

It records the last modified timestamp of all files and also copies all auxiliary output
files into the INC subdirectory. Every input file which is user-writable is copied
unless the file name ends in .sty, in which case only the time stamp is recorded. These
are assumed to be style or macro files, which rarely change and are almost always
read at the very beginning of the document. If an input file timestamp is recorded
without copying the input file itself, INCTEX merely assumes the entire file has been
changed when a different time stamp is encountered. If the style file is read at the
beginning of the document, reformatting has to start from the beginning and it is
likely that the dynamic macro memory definitions will be different so that quiescence
can not be detected and the complete document will have to be reformatted.

All files are kept in a local directory called INC.

Incremental Passes:

1. When INCTEX is reinvoked, it loads the incremental page-mapping file describing

where each page occurs relative to the input and output files and looks up the last
modification time stamps of the input files from the mapping file.
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2. If a file has a new timestamp, it scans the previous version of the file (if a copy was
made) and compares it against the current file to see if it has changed. It locates
the offset of the first difference, and finds the last page checkpoint which was made
before that location in the file is read.

3. Each file with a new timestamp is scanned and reformatting must be started at the
last page checkpoint preceding all changes. The checkpoint is loaded, input files
are reopened and offsets restored, output files are restored by copying the previous
versions up to the current offsets (except that the log file is not restored, so the user
can see what happened specifically for this pass), and formatting is restarted.

4. Every time a page is produced, a new checkpoint is saved and quiescence is checked.
To reduce overhead, quiescence checking is disabled if it fails more than five consec-
utive pages in a row.

5. If INCTEX detects quiescence, formatting is halted, and all input files are scanned for
any later changes. If there are none, formatting is complete (all following pages will be
the same as the previous ones). If the total number of document pages is less than the
number from the previous reformatting runs, the excess page checkpoints are deleted.
Otherwise, formatting is restarted at the checkpoint preceding the next change. The
output in the auxiliary files for the pages which were skipped is regenerated by
examing the output file offsets in the page-mapping information and recopying these
output segments from the copies of the previous output into the current output files.

6. After formatting, another program collects each separate output page file and pro-
duces a single output document file.

7 Error Handling

The anticipation of errors is an important issue in the design of any software project. TEX
separates errors into a warning class and a fatal class, but allows the user to force formatting
to continue despite an error. We do not wish INCTEX to restart from a checkpoint made
after a fatal error, since reformatting will certainly be garbled. A user abort or internal
error may also interrupt the execution of INOTEX before the incremental page mapping
file, page checkpoints, the string pool file, and the font array file are all properly saved.
We thus also wish to verify that this set of files are consistent.

The formatting history code is saved in the incremental page mapping file. If a fatal
error occurred in the last run, reformatting is forced from the beginning. The time when
INCTEX started is also saved in the page mapping file, string pool file, and font array
file. These files must contain the same time to be consistent. If not, execution must have
aborted and total reformatting is also forced. The page checkpoints are written before
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these files, and in fact are selectively generated depending on which pages are reformatted,
so no time is recorded in these files.

A missing end of document marker is considered a warning. INCTEX reformats the last
page even if a document is considered unchanged if a warning occurred previously. The
reason is that if an end of document is added, there is no difference which precedes the
last character in the previous input document and no change in the document is indicated.
Reformatting the last page will allow any addition to be properly reprocessed if there is
a missing end of document. The alternative solution is to consider an addition past the
previous end of document to be a change, even though the formatter would never scan it
if the document was well formed.

In case of software revisions, a code indicating the checkpoint file format version is
recorded in the page mapping file, string pool file, font array file, and each page checkpoint.
INCTEX compares its internal format version code against the code in these files; if it is
different because the format has been changed in a later software release then the files
cannot be loaded and the document is reformatted from the beginning.

8 Performance

Benchmarks were run on a number of sample IATpX documents to measure storage and
processing overhead in INCTEX. Benchmarks were run on a Sun SPARC 2 workstation with
a local disk at off hours to reduce network traffic and file server delays and the documents
were stored on the local disk. INCTEX was modified so that it would perform the quiescence
check for every page. Three types of documents were tested, the simple seven page sample
letter sample.tex in the standard JATEX distribution, a nine page article, and this fifty page
technical report.

8.1 Storage overhead

The storage overhead for INCTEX consists of per-page checkpoints, per-document files
consisting of the incremental page-mapping file, the font addition file, and the string pool
addition file, and finally, copies of each input document which is user-writable. This
overhead is given in table 1 (the overhead for the copies of the input is not given).

8.2 Execution time

The cpu and total elapsed formatting times for these documents were also measured in
modes that allow the overhead for checkpointing, document analysis, and quiescence check-
ing to be measured (see table 2). The modes are as follows:
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Per Page Per-document

min | av | max
letter | 21.6 | 22.9 | 24.2 4.2
article | 30.8 | 33.4 | 36.7 5.0
report | 25.0 | 34.6 | 47.6 9.1

Table 1: Incremental Formatting Disk Overhead (Kbytes)

Orig The execution time for the original unaltered TEX.

Batch The batch mode does not save any incremental information at all. Comparing this
time to the original allows us to check that the software conversion was correctly
performed and does not introduce additional overhead in the formatting code itself.

Virgin The document is processed as if for the first time. No document analysis or
quiescence checking is performed, but state checkpoints are recorded, allowing the
overhead for checkpointing to be measured alone.

Anal Document analysis and determination of a proper restarting page is performed in
this mode. A comment at the beginning of the document is altered so that the entire
document will be reformatted. The overhead of document analysis can be calculated
by comparing it to virgin mode.

Quiesc Finally, quiescence checking is also enabled and the document is reformatted so
that the additional overhead of quiescence can be calculated. A special version of
INCTEX was used which checks every page for quiescence regardless of the number
of failures. A dummy macro definition on the first page is altered so that quiescence
detection always fails. This ensures that the formatter computation is virtually
identical to the previous pass.

letter article technical report
mode | cpu total | cpu total | cpu total

Orig 0.9 1.2 23 25 11.3 11.6

Batch | 1.1 1.3 23 26 11.2 11.8

Virgin | 1.5 2.6 3.1 44 16.5 27.2

Anal 1.6 2.8 3.1 4.5 16.5 27.5

Quiesc | 2.5 4.8 4.7 1.1 21.8 45.0

Table 2: Incremental Formatting Time (seconds on Sun SPARC 2)
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8.3 Discussion

The conversion from TEX to INCTEX did not alter the performance of the formatting
code itself, as similarity in the processing times for the original (pure) version of TEX and
the batch mode of INCTEX shows. State checkpointing incurs a 35% cpu overhead and
a 70% time overhead for the nine page article document. Document analysis consumes
very little cpu time, but can add up to as much as 30 msec for file access, as the difference
between virgin mode and incremental analysis mode shows. Quiescence checking consumed
about 70% more cpu overhead and about another 100% in real time. Total incremental
formatting overhead adds another 100% in cpu overhead and 174% in real time. All
overhead is measured relative to the time required in batch mode without any incremental
processing.

Results show that input/output and network delays account for the overwhelming ma-
jority of the overall delay on a fairly powerful workstation. The CPU time is less than half
of the overall execution time. Execution could be accelerated by expending greater CPU
time to reduce input and output needs.

Disk and network delays and overhead for remote file system access have a significant
effect on performance. The importance of IO performance on INCTEX is demonstrated
by the effect of disk server performance which was observed during use. Server load was
observed to affect execution time by as much as 50%. Moving the document directory
from a unloaded remote SPARC 2 to the local workstation’s local disk reduces the overall
execution time for the technical report by about half.

9 Conclusions

INCTEX demonstrates that a complex batch program can be adapted for incremental pro-
cessing, at least on a large (i.e. page) granularity level. TEX documents can be reformatted
incrementally and quiescence successfully detected as long as the changes do not change the
number of lines in a paragraph. Since INCTEX approaches incremental processing by check-
pointing TEX as a deterministic machine, processing can be incremental at even smaller
granularities such as input lines. However, the two major impediments are the linebreaking
algorithm and storage overhead. Paragraph-level linebreaking algorithm makes reformat-
ting below the paragraph granularity level difficult because linebreaks are computed for the
entire paragraph at a time. Checkpointing below the page level would increase the check-
point size because local data structures and variables used to determine the formatting of
paragraphs and pages must be saved and a larger state must be saved.

Checkpointing overhead is a major problem in INCTEX. State compression could be
improved further. Since IO and network delays outweigh cpu time by more than 100%,
large improvements are still possible. Disk server speed and server load have a very large
effect on execution time. Strategies could also be developed which attempt to predict
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change locality and save checkpoints at those pages or closely preceding them. However,
the fundamental problem in INCTEX is that incrementality is based on an output structure,
the page break, while for fine-grained incrementality it must be based on input entities.
Identifying which input entities have been added, deleted, or changed is also essential
for full-fledged quiescence detection. Without this information, for example, there is no
way of deciding if a series of pages have been deleted or inserted except by comparing
each checkpoint with every other checkpoint. Direct editor coupling is the only way to
automatically capture this information. Furthermore, a fine-grained incremental processor
must also be designed from the very beginning to maintain the data dependencies between
input entities and output entities.
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A Detailed Description Of Checkpointing Strategy

A.1 Overview

This appendix describes in detail the changes which were made to TEX for state check-
pointing. The reader is referred to the documentation on the original Pascal version of
TEX in [Knu86], which describes the program and data structures. The C version of TEX
by Pat Monardo is a faithful translation of the Pascal version; the same variable names,
procedure names, and algorithms are retained.

The formatter state which must be carried over to continue formatting for the following
pages occupies 400K. Most changes to this state occur in the dynamic memory section
describing the current page description. Many of the other data structure changes are
additions; the string pool stack is the purest example. Few changes to data structures
are truly random access in nature. Even the global variables, which were identified and
collected in one region, and was expected to be a target of frequent random changes,
rarely change by more than 10%. The checkpointing strategy is to take advantage of these
characteristics by describing the limited number of random changes in lists, describe large
additions to data structures compactly, and describe dynamic memory, the most region
which changes the most, fairly directly by simply eliminating unused regions. Control
always returns to a special control routine called main_control in TEX after a page break
occurs. A flag was added to indicate when a page is produced so that checkpointing (and
quiescence detection) can be triggered in main_control after a page break.

TEX execution normally begins first with the reading of a standard TEX, IATEX, or other
document style package, then the user’s document is read and processed. The execution
point after the style package has been read is chosen as an initial reference state. The state
at succeeding pages is checkpointed as the difference relative to this reference state, with
the exception that dynamic memory is saved in entirety with the empty regions compressed
out. The differences are found by logging changes to the state or, in the case of the global
variables, by directly comparing them against the initial reference values. State which
is static throughout document processing thus never appears in any checkpoint. Certain
data structures in TgX are append-only: the string pool and font arrays (complications
involving the fonts will be described later). If the difference between these structures and
the value at the reference state were saved, these potentially large additions would be
saved redundantly in each state checkpoint. Instead, they are saved once for the whole
document in separate files, and the current dimensions are recorded in each checkpoint
so that the correct data structure size can be recovered. Checkpoint size variation is due
primarily to the size of the dynamic memory descriptions. Checkpoints are saved in the
INC subdirectory where all incremental information is kept. A page checkpoint is written
as the file doc.p.stc where doc is the document root name and p is the current page
number.
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Checkpointing relative to each previous checkpoint would have saved about half the
space but would have required loading each page checkpoint; this design requires only one
checkpoint to be loaded. INCTEX provides an option that allows checkpoints to be saved
every multiple of pages instead of each page, to reduce the storage costs.

TEX’s state can be divided as follows:

e an append-only string pool (equivalent to an add-only stack),

e a set of font description arrays which is mainly append-only (fonts can be declared
and loaded at any time), An entry describing a character can be changed when a
dimension (such as height, width, slant, or spacing parameters) is altered, but this
1s rare,

e a random access add-only hash table for control sequence names,

e a random access equivalence table (symbol table),

e a dynamic save stack to store nested local symbol definitions in the equivalence table,
e global variables (random access of course), and

e internal dynamic memory for storing macros and typesetting box lists.

A.2 State Compression
A.2.1 Difference List Logging

Changes to the hash table, equivalence table, equivalence level table, and font arrays are
logged in four difference lists, one for each set of data structures. A small number of
routines are involved, and only a small set of software probes needed to be added to log
these changes. Each list records the changed entries; the current values are saved retrieved
and written when checkpoints are actually made. Each time an entry is modified, it is
added to the list. To reduce duplicates, we check against the last 64 list entries for a
repeat before adding a change. Logging is disabled during style file initialization when the
initial reference state is being established. About 100K (25% of the state) is saved with
this technique. Global variables are also described by a difference list which is computed
by comparing the current values against a copy made at the initial reference point. An
entry is identified by the address of the word which is different.

We make sure an entry has actually changed before adding it to the appropriate list.
A pair of macros keep track of entries for each data structure, (before_eq/after_eq, be-
fore_hash/after_hash, before_veq/after_zeq, before_font/after_font). These macros or soft-
ware probes were inserted into the code sections where entries are modified. The “before”
macro saves the current entry in peril in a temporary variable, the “after” macro checks if
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the value has changed and adds the entry to the proper difference list if so. A significant
number of entries which are nonchanges can be eliminated in this manner with very low
processing or storage overhead. It was necessary to use two temporary variables in one
section which modified two entries in the equivalence table simultaneously.

Only the entry is identified, either by a table index or memory address, in the difference
list kept in memory. When a checkpoint is written, the current entry value is also written.
Each checkpoint thus records the current value of any difference list entries which have
been changed from the initial reference value.

The font arrays are a collection of arrays of different element sizes (each at most one
word in size). A font is identified by its font number. It is described by the set of elements
indexed by its font number in the font arrays. Modifications to the font arrays are separated
into changes to current entries, which are recorded in the difference list, and additions to
the end of the arrays to describe new fonts, which are saved in a separate file. Font changes
are logged as a series of word addresses and word values, although array entries may occupy
less than one word. Because values are not recorded until the checkpoint is made, we need
not worry that new values are overwritten by old values due to data length overshoots,
although restoring the data in the order that was recorded guarantees this. Entries in the
other tables are logged as half word integers instead of full words to save storage.

Entries are added to each list by the four routines note_font, note_eq, note_hash, and
note_zeq). Change lists are kept in doubly linked blocks of list sections. Each block has a
count of the number of entries it contains (each block occupies 1K). Each list also has a
total list count, and a pair of global pointers to the first and last block in the list. When
any of the four routines are called, it checks whether the current block is full and allocates
a new one if needed. The routines for the hash, equivalence, and equivalence level tables
scan the last 64 entries from the end of the list for a duplicate before adding an entry.
This reduces hash and equivalence table list sizes by 15% on several typical documents.
Difference list logging is switched off for any list if its size (including overhead) reaches the
array size. The array is then written in full.

e The hash table, hash[], is modified in the routines new_font() and id_lookup().

e The equivalence table, eqtb[], is modified in the routines new_font(), eq.define(),
and eq_word_define(), geq.define(), geq-word_define(), and unsave(). The routine
new_font() modifies two entries in the equivalence table simultaneously and requires
the use of two temporary variables.

e The equivalence level table, zeg level[], is modified in the routines eq.word_define(),
geq_word_define(), and unsave().

e The font arrays are modified in the routines prefired_command(), and find_font_dimen().
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When a checkpoint is loaded, these difference lists are restored, as if the changes during
processing of preceding pages had been logged.

The global variable state is saved as a difference list by comparing the current global
region against a copy made after initialization. Because remote file access (disk and network
overhead) is much higher than the processing required to do this on workstation equipped
with a reasonably fast processor, this is actually faster than saving the global variables
directly.

A.3 The Save Stack

Symbol definitions in the equivalence table are dynamically redefined and restored using
the save stack structure. The array save_stack is saved, up to the last occupied entry
preceding the limit in global variable save_ptr, in each checkpoint.

A.3.1 Append-Only Data Structures

Additions made to the string pool are not described redundantly in every checkpoint.
Instead, since additions are cumulative and no changes are ever made, string pool additions
are saved in a separate file called doc.str, where doc is the document root name, after
formattting has ended. The correct string pool state is restored simply by recording the
current pool limit in each checkpoint and loading any necessary segment fropm the string
pool file. The initial portion of the string pool which exists at the initial reference point is
not saved because it always exists in memory.

The string pool consists of two arrays: str_pool, the character buffer array, and str_start,
which gives the end of each string. Strings are identified by a number which is used to
look up the string location in str_start. The next free character buffer location in str_pool
is given by pool_ptr, the next free string number in str_start is given by str_ptr.

The INCTEX routine set_skip() is called when the initial reference state is set. The
current string pool is saved in the variables poolptr_lowater and str_ptr_lowater. The
current string pool limits are saved in each checkpoint, along with the low water marks for
doublechecking.

Modifications to the font arrays are separated into changes to current entries, which
are recorded in the difference list, and additions to the end of the arrays for new fonts,
which are saved like additions to the string pool in a separate file called doc.font, where
doc is the document root name. Since changes can occur to segments which are added
during formatting, any added segment is written at the next checkpoint. Changes made
during reformatting are actually written to a temporary file called doc.font.i and made
permanent when processing is complete.

The correct font state is restored by first loading any font segments which were added
to the state for the current page, then any specific font changes from the page checkpoint.
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Fonts are described by one primary array called font_info which contains the majority
of data describing a font. The next free location in font_info is given by the global vari-
able fmem_ptr. There are also 19 auxiliary arrays (actually 20 but one which is treated
differently):

font_size font_dsize  font_params font_name font_area
font_bc font_ec font_glue hyphen_char skew_char
char_base width_base height_base  depth_base italic_base

lig_kern_base kern_base exten_base  param_base

The last occupied entry in these auxiliary variables is the index in the global variable
font_ptr. Fonts are described by an internal font number which is used to index into
these auxiliary arrays. The initial font region is saved in the variables fmem_lowater and
font_lowater by the routine set_skip(). The font region which has been saved is remembered
by saving the current font limits in fmem_last and font_last. The current font limits are
saved in each checkpoint, along with the low water marks for doublechecking.

One auxiliary font array, font_used is grouped with the global variables for storage
purposes because it records which fonts have actually been used in the document. For
INCTEX this actually indicates which fonts have been used on the current page. It was
grouped with the globals because it might change frequently in INCTEX .

Since font segments are saved at the next checkpoint, the font file format consists of a
series of segment descriptions, each of which consists of the indices of the end (fmem_ptr)
and beginning fmem_last of the font_info segment which follows, then the indices of the
end font_ptr and beginning font_last of the auxiliary font segments which follow.

The string pool typically occupies 22K, and the font arrays occupy a minimum of 75K
for IATEX documents. 25% is eliminated by not saving the initial regions.

A.3.2 Dynamic Memory

The original version of TEX provided a single pool of dynamic memory. The C version
written by Pat Monardo which we used as a starting point for INCTEX separated this
into two independently allocated pools, dynamic node memory and token memory. Page
descriptions are stored in node memory, macro descriptions in the token memory. Node
memory is an internally allocated array of words, further separated into two regions, single
memory for lists composed of single word elements at one end of the array, and multiword
memory for lists composed of variable-sized multiple word elements. Both regions grow
towards the middle, allowing them to allocate storage from a shared region of free space
within them. Dynamic memory is compressed by saving the used regions and eliminating
the unused regions, and in the case of token memory, an initial region created after style
initialization does not have to be saved because it never changes.
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Single memory is defined to be the region extending from mem_maz down to the water-
mark in hi_mem_min in the array MEM. The unused regions are found by scanning the free
list, a linked list of words which begins at the global pointer avail. A halfword field in each
word gives the next item in the list. A bit in a corresponding bit map of memory is turned
on for each empty entry. After creating the bit map, it is scanned and a sequential list of
the occupied regions is created. The number of regions is written to the checkpoint, the
beginning location of each region, the end of each region, then the contents of the region,
repeated for each region in the list.

Multiword memory is saved in a virtually identical manner. It ranges from mem_min
up to the watermark in the variable lo_mem_maz in the array MEM. The free list which
begins at the global pointer rover is scanned and bits in a bit map are set. Each free list
block contains a node_size field which records its size in number of words, and a pointer
to the next free block. The bit map is scanned to create a list of occupied regions. The
number of regions is saved, followed by the beginning, end, and contents of each region.

Macro definitions are stored in the other region of dynamic memory called token mem-
ory. Token memory is organized as two parallel arrays of words, tok_mem and tok_link.
tok_mem contains the data portion of each token, tok_link contains the pointer to the next
token. The occupied region extends from tok_low to tok_end. The free list begins at the
global pointer tok_head. The initial region after style file initialization is never changed,
although entries from the free list may be used. If the free list is reset so that it points to a
single large block outside of this region, then the entire initial region will never be altered,
and we never have to save this region. After style file initialization, the procedure set_skip
is called by INCTEX. This routine determines certain parameters which define the initial
reerence state, one of them being the initial token region, which is recorded by saving the
current value of tok_low in the variable premac_lo and the value of tok_high in premac_hi,
and resetting the free list in tok_head so it points to the region after premac_hi. During
checkpointing, the free list is scanned and a bit map of occupied regions of token memory
is created. The bit map is scanned and a list of occupied regions is computed (any region
within the initial token area is ignored). The number of regions is then written to the
checkpoint, then the beginning, end, and contents of each region.

The net result of this compression is the elimination of about 25K (5%) from what
would be written simply by saving the regions computed by checking the full extents of
each dynamic memory region.

A.4 Page Checkpoint File Format

The page checkpoint file is composed of the following segments:

(CIGJA[ST[F[E[H|L[S|M|T|
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A.4.1 Segment C

This is a preamble with the format:

[SF[CC[P]

SF: An 8 letter state checkpoint version code. If the checkpoint code is different than ex-
pected by the current software, the checkpoint was saved by an incompatible software
release and complete reformatting is triggered.

CC: An integer which contains the hex code 8 if full incremental state is enabled, or the
code 1 if the globals were not incrementally saved.

P: An integer giving the page produced before this checkpoint.

A.4.2 Segment G

This segment describes the global variables. The format is:

[TO[FO | GD |

TO: An integer giving the value of the variable term_offset.
FO: An integer giving the value of the variable file_offset.

GD: The global variable description. This is a difference list (see below) or a 12145 byte
segment containing the complete set of variables if the code CC in the preamble
segment is 1.

The variables term_offset and file_offset are the current column offsets on the terminal
and in the log file. They affect when linebreaks are produced, and are specially saved and
restored so the log file continues in the same way from any particular page as before.
Unlike all other difference lists, the global variable difference list GD is not preceded by a
list length. It is a sequence of pairs describing words which differ from the initial reference
state value, followed by a terminator mark. The format is:

[DL[DV [... | DL | DV [ mark

DL: A word address which is never NULL (0).
DV: A word value.

mark: An integer-length terminator mark with value NULL (0), which can always be
distinguished from a word address.
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A.4.3 Segment A

This segment describes the arrays saved in per-document files, the font descriptions and
and the string pool. The current limits of these arrays are recorded in each page checkpoint
so that the correct array state can be extracted from the descriptions. The segment has
the following format:

[FML | FL | PH | PL [ SH | SL | mark |

FML: A halfword integer of type ptr which gives the size of the main font description
array font_info.

FL: An integer which gives the largest auxiliary font number.

PH: A halfword integer of type ptr which gives the size of the character pool (str_pool)
for strings.

PL: A halfword which gives the character pool size at the initial reference point so it can
be checked for consistency.

SH: A halfword integer of type str which gives the size of the string index array (str_start).

SL: A halfword which gives the string index array size at the initial reference point for
consistency checking.

mark: An integer with the value NULL (0) marks the end of this section.

A.4.4 Segment ST

This segment describes the save stack section. The format is:

| SSL | SS | mark |

SSL: A halfword integer of type ptr which gives the save stack size.

SS: The save stack segment: SSL elements of type mword which are one word long.

A.4.5 Segment F

This is a difference list describing the font arrays with the format:

[DC[DN[DL[DV |... [ DL [ DV | mark |

DC: An integer-length format code which is always the value DiffListCode (hex 88) for
the font description, indicating that a difference list follows.
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DN: An integer word giving the number of pairs (DL,DV) in the list.
DL: A word address which is never NULL (0).
DV: A word value.

mark: An integer-length terminator mark with value NULL (0).

A.4.6 Segment E

This segment describes the equivalence table (usually a difference list). The format is:

[DC DN DL [ DV [... | DL | DV | mark]

DC: An integer-length format code which is either the value DiffListCode (hex 88) if a
difference list follows, or Array_NoDiff (hex 11) if the table is written as an array.

DN: An integer word giving the number of pairs (DL,DV) in the list.
DL: An integer table index.
DV: A one-word table entry of type mword.

mark: An integer-length terminator mark with value NULL (0).

If the format code DC is the value Array_NoDiff, then the difference list does not follow
the format code. Instead, the entire equivalence table follows the code. This feature is
enabled if the difference list description reaches the size of the table.

A.4.7 Segment H
This describes the hash table (usually a difference list). The format is:

[DC[DN[DL[DV][... [DL][DV [ mark |

DC: An integer-length format code which is either the value DiffListCode (hex 88) if a
difference list follows, or Array_NoDiff (hex 11) if the table is written as an array.

DN: An integer word giving the number of pairs (DL,DV) in the list.
DL: A halfword table index of length short.
DV: A word length table entry of type hh.

mark: An integer-length terminator mark with value NULL (0).
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If the format code DC is Array_NoDiff (hex 11), then the difference list is replaced by the
entire hash table. This feature is enabled if the difference list description reaches the size
of the table.

A.4.8 Segment L

This describes the equivalence level table. Its format is:

[DC[DN|DL[DV [... | DL [ DV | mark |

DC: An integer-length format code which is either the value DiffListCode (hex 88) if a
difference list follows, or Array_NoDiff (hex 11) if the table is written as an array.

DN: An integer word giving the number of pairs (DL,DV) in the list.
DL: A halfword table index of length short.
DV: A one-byte table entry of type qword.

mark: An integer-length terminator mark with value NULL (0).

If the format code DC is Array_NoDiff (hex 11), then the difference list is replaced by
the entire equivalence level table. This feature is enabled if the difference list description
reaches the size of the table.

A.49 Segment S

This segment describes the occupied segments of single-word dynamic memory. Its format
1s:

[N|MB|ME | MM [... | MB | ME | MM [ mark |

N: An integer specifying the number of memory segments.

MB: A halfword integer of type ptr giving the beginning index of a memory segment.
ME: A halfword integer of type ptr giving the end of the segment.

MM: The segment itself, each word is of type mword.

mark: An integer-length terminator mark with value NULL (0).
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A.4.10 Segment M

This describes the occupied segments of multi-word dynamic memory. The format is:

[N[MB[ME MM [... [ MB [ME | MM | mark |

N: An integer specifying the number of memory segments.

MB: A halfword integer of type ptr giving the beginning index of a memory segment.
ME: A halfword integer of type ptr giving the end of the segment.

MM: The segment itself, each word is of type mword.

mark: An integer-length terminator mark with value NULL (0).

A.4.11 Segment T

This describes the occupied segments of token dynamic memory, which consists of two
parallel arrays tok.mem and tok_link. Its format is:

[N[MB|[ME | TM [TL ... [ MB | ME | TM | TL | mark |

N: An integer specifying the number of memory segments.

MB: A halfword integer of type ptr giving the beginning index of a memory segment.
ME: A halfword integer of type ptr giving the end of the segment.

TM: The segment of tok_mem, each halfword is of type tok.

TL: The segment of tok_link, each halfword is of type ptr.

mark: An integer-length terminator mark with value NULL (0).
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B Detailed Description Of Quiescence Checking

Quiescence detection in INCTEX cannot be based on checking formatting dependencies
directly, because they are not available in TEX. Instead it is based on the observation that,
if the same state q and remaining input a; are repeated at some page, then the remaining
pages will be identical to the previous pass. In fact, even if the remaining input a5 is not
exactly the same, any pages which are between the current page and the first difference in
the input will be the same. Formatting can be halted at the current page and restarted at
the page which precedes the next difference. If the input a; between each page segment is
saved, checking the input is simple.

Comparing states is equivalent to checking quiescence to the degree which the state
reflects only the information required for future formatting. However, even in the ideal
case, when there are no extraneous state dependencies on the input, a formatter which scans
the document in a single sequential pass like TEX is limited by the problem that, at any
point in the input, it cannot predict what input it will encounter next and what entities will
be referenced and what information is no longer needed. Therefore any changes to entities
which might be referenced later must be encoded in the state, causing the state to be
different. Direct manipulation editors have an inherent advantage because the dependency
information for the entire document is available and they are able to recognize which
parts of a document are dependent on the entities changed by the user. A changed macro
definition which affects chapter headers is one example. INCTEX has no way of knowing
if only one header references this macro, or if future headers will also reference it, while
a direct manipulation system is theoretically able to scan the dependency information to
determine this.

In practice, INCTEX’s state comparison algorithm detects quiescence if a page has
the same number of lines. TEX’s formatting algorithm reads a paragraph at a time and
computes linebreaks before deciding whether it can fit on the current page or whether it
should be placed on the next page. The pending paragraph is saved in dynamic memory
and accumulated onto the next page description. Linebreaking is finished at page breaks
and future formatting does not depend on the current linebreaking data, which can thus
be ignored for state comparison purposes. Theoretically the words (which determine the
exact linebreaks in the paragraphs) on a page can be changed, but if the next page starts
at the same paragraph as before, the current state should still be the same as before at the
current page break. This depends on a clean algorithm design which does not introduce
extraneous state dependencies on the previous input history, which in fact, is indeed true
of TEX as the success of quiescence detection in INCTEX demonstrates.

One particular design feature of TEX, however, the internal dynamic memory pool, adds
a complication to state comparison. Checking binary equivalence fails even though the
meaning of the state in dynamic memory is the same because a different storage allocation
sequence leads to a different binary state. The problem is that lists are stored in dynamic
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memory, and even if the contents are the same, the list items can be stored in different
locations and pointers which are part of these items will also be different. The contents of
dynamic memory are checked for equivalence by parsing the lists to check their contents.

The C version of TEX which we used divides dynamic memory into two types, one
for tokens (macros) and one for “nodes”. For ease of implementation, we have chosen
to determine equivalence only in cases where tokens (macros) do not change, allowing
us to check only if the token dynamic memory pool is exactly the same with a simple
binary scan for binary equivalence and to parse only the dynamic node memory. The
global variables and regions in arrays which contain references to data in dynamic node
memory are identified and checked for content equivalence. Since we check only at new
page boundaries, we can also take advantage of knowing that certain groups of pointers do
not point to live dynamic data. The remaining portions of the state are checked for binary
equivalence.

State comparison is also complicated by the state description compression techniques
in INCTEX. Several data structures are described as changes relative to the initial reference
state, which results in a shorter list than the complete data structure. These list entries
have to be matched and compared to determine state equivalence. Although this is more
complex than a direct comparison, a compensating factor is that fewer entries actually
have to be compared.

We will now describe TEX’s state as a set of separate logical regions which are scanned
and compared individually. The reader is referred to the documentation on the original
version of TEX, which describes the state organization and implementation [Knu86), The C
version by Pat Monardo upon which INCTEX is based follows the original faithfully, except
for the separation of dynamic memory into two pools. The formatter state can be divided
into the following set of logically separate regions:

e S=(G,S,E, X, F, P, H, T, N)

e G = global variables

e S = Save stack for EQTB

e E = EQTB, the equivalence (symbol) table

X = XEQ_LEVEL, auxiliary equivalence level table

F = font information array segments

P = string pool
e H = hash table

T = dynamic token memory
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¢ N = dynamic node memory

In most cases, the tokens (macros), fonts, strings, hash table, and equivalence levels
(T, F, P, H, X) do not change from one run to another. However, the values of G, S,
E, and N must be compared for equivalence.

The dynamic memory components (T, N) greatly complicate state comparison. The
dynamic node memory component contains one fixed region Ny which will be described
later that contains fixed definitions and a set of pointers to special dynamic memory lists.
The global variables G can be further divided as a set
G = (G,.,Gs, Sn, Se, Hy, Hy, HL) where

e (G4 = extraneous global variables

e S, = semantic nest

e S, = condition stack

e H,, Hy = word hyphenation pointers
e HIL = hyphenation table

e (G, = all other global variables

The reason the state has been separated in this way is because each group, with the
exception of G, and G}, contains pointers to lists in dynamic node memory (some are ac-
tually trees). In order to verify state equivalence, our strategy is to do a binary comparison
on G,, T, F, P, and X, (G}, can be ignored), and parse the dynamic node memory and
verify the list contents are identical.

B.1 Extraneous Variables

(G, consists of:
o chk_cid (file character count)
o maz_var_used (for statistics)
o last_page_break (we are always at a page break)
e rover (free list head)
o avail (free list head)

o mem_end, lo.mem_maz, hi_mem_min, hi_mem_maz (dynamic memory limits)
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Because no paragraph linebreaking is pending, these variables can also be ignored (see
section 820 in [Knu86]; all citations to sections are in this reference [Knu86)):

o just_boz (last previous paragraph line)

best_placef] (for calculating best line breaks)

best_pl_linef]

o minimum.demerits

minimal_demerits/]

e passive (pointer to a line breaking list data structure)

B.2 Semantic Nest

The top of the semantic list S, (described section 211) is in the global variable structure
cur_list. The rest of the stack ranges from nest[0..nest_ptr-1]in global memory. Each item
contains fields mode, prev_graf, aux describing the current mode, and pointers head, tail,
to the list in dynamic memory which is in the middle of processing. Show_boz() can be
used as a template in tracing the lists. In math mode aur can also point to a single record
list which can also be checked with show_boz(). The final field, mode_line, a source line
count, can be ignored.

B.3 Condition Stack

The condition stack S, (described section 489) stores conditional modes. The global vari-
able cond_ptr points to a linked list in dynamic memory with 2 important fields (if_limit,
cur_if), which have to be checked to have the same values, and 1 extraneous field if_line
(another source line count). The condition stack is generally very small.

B.4 Hyphenation exception table

The hyphenation exception table HL is actually a table called hyph_list of pointers to lists
in dynamic memory which store hyphenation positions (section 925). Each info() field has
to be checked for the same value as before. The table has 307 entries, most of which are
usually empty.
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B.5 Hyphenation variables

There are two global variables, ha, hb, which points to the beginning and end of the
character sequence being considered for hyphenation. If there is no pending line breaking,
or hvphenation in particular, these variables can be ignored. More study is required to
determine this.

B.6 Equivalence Table

The equivalence table EQTB consists of six logical regions (section 220), two of which
contain pointers to dynamic memory. Regions one and two point to single and multiletter
control sequence definitions stored in dynamic token memory. We will check equivalence
for cases where token lists (macro definitions) have not changed. Region five contains
integer parameters, region six contains dimension parameters. These regions are only
checked to have the exact same values as before. Region three point to glue specifications
in dynamic node memory. There are about 512 entries, many of which are empty. The glue
specifications are just checked to have the same values. Region four contains par_shape_loc,
the location in the current paragraph outline shape and a subsection with about 256 entries
pointing to box definitions which we can check according to show_boz(); the remaining
1000 entries or so are checked to be exactly identical. There are thus about 750 pointers
to dynamic memory items which potentially have to checked, and about 6250 other entries
(25K) which should have exactly the same values. However, since we save EQTB changes
in a list which often has much fewer entries, we actually check the list entries in each region
according to the above.

e Entries glue base <1 < local_base are pointers to glue spec’s

e Entry par_shape_loc points to a node whose info() field should be the same as as
before.

e Entries bor_base < 1 < cur_font_loc point to box lists in dynamic memory that are
checked according to show_box().

B.7 Save Stack

The save stack allows equivalence definitions to be nested (section 268). The stack is imple-
mented as an array save_stack[0..save_ptr]; each item has three fields, save_type, save_level,
save_indez. If the item on the stack is of type restore_old_value, then the next item holds
the old value in the outer group (scope). We check which region the equivalence entry lies
in and perform an equivalence check. If the stack item is of some other type, we check the
binary values are equal.
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B.8 Font Arrays

The font_glue array (section 549) ranges from [0..font_ptr] and points to interword glue
specifications in dynamic memory for each font. The other elements of the per-font infor-
mation arrays, F, should just be checked to be the same.

B.9 Alignment Stack

The global variable align_ptr points to the head of a stack in dynamic memory used to save
data for row alignments (section 770). The data structure is complex, all lists referenced
in this structure should already have been checked for equivalence, but we also need to
check that they point to the same sublists. Since aligned structures don’t often cross page
boundaries, the equivalence check may only handle cases where the alignment stack is
empty.

B.10 Pre-Allocated Dynamic Memory

Region mem_bot to lo_mem_stat_maz (0 — 13) holds pre-allocated fixed glue specifications
(section 162). The values are always the same. Region mem_top to mem_top-10 holds a
special set of pointers.

B.11 Completeness Check

If all used dynamic node memory is not complete accounted for in the current page state
or the description from the last run, then the equivalence algorithm fails.
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C The Incremental Page Mapping File

The incremental page mapping file is a text file which consists of a preamble that gives
version information, a section describing the input files, a section describing where the end
of each page occurs relative to the input and output, and a section describing the output
files. The page mapping file is saved in the INC subdirectory as doc.inc where doc is the
document root name.

The input description section gives each input file, its modification time, so that INCTEX
can determine if it has changed, and its parent file and the line where it is included in the
parent. Files are identified by an internal program file ID.

The page description section gives the input file currently being read and the current file
position at the execution point after an output page has been produced, timing statistics,
and the current position in each output file. Since files are read in a well-nested order, the
input section and page section provide sufficient information to map any change in a file
to a particular page.

Finally, the output description specifies each output file.

An end-of-block mark (EOB), which is a line containing the number -2, separates each
section.

The format of the page mapping file is as follows:

[PRE [I|EOB |P[EOB | O | EOB |

C.1 Preamble section PRE

The preamble has the following format:

H[EOL [FL[>[FS[EOL|[C[EOL|T|EOL |

H The history code of the last reformatting session. This indicates what type of error
occurred if any.

EOL This indicates the end of a text line.

FL The style file is identified on the next line. FL is an integer giving the length of the
identifier string. This allows INCTEX to determine if a different style file or version
from the last session is in use, which will require complete document reformatting.

> A > symbol (with a space on either side) appears next.

FS A string giving the style file identification and version number.
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C An 8 letter state checkpoint version code. If the checkpoint was written by an incom-
patible software release, complete reformatting will be required.

T The time the last reformatting session was started. This is compared against the time
in the string pool and font array files to make sure they are not inconsistent which
might happen if there were a crash.

C.2 Input section I

The input description section has the following format:

IN|EOL|D|... |D|

N The number of input files.
EOL End of line.
D Two lines describing each input file (see below).

Each input file is described as following:

[FID [L [NN | TS | EOL | PID | BL | EL | EOL |

FID The internal input file ID.
L The file name length.

NN The file name string.

TS File modification time stamp.
EOL An end of line.

PID The internal file ID of the parent of this file (it is the same as the file ID if this is
the root document file).

BL The character offset in the parent file of the beginning of the line where this file is
included (0 if no parent).

EL The character offset of the end of the line.
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C.3 Page description section I

The page description section has the following format:

INJEOL|D]... [D|

N The number of pages.
EOL End of line.
D Two lines describing each page (see below).

Each page is described in the following format:

[P [ID | OFF | FT | BT [ ST | LT | QT | EOL |
[WOFF1 | WOFF2 | ... | WOFF15 | EOL |

P The page number.

ID The ID of the current input file at the page break.

OFF The character offset in the input file when the page break occurs.
FT The time required to format this page.

BT The time to back up (copy) the input file(s) used on this page.

ST The time to save the checkpoint for this page.

LT The time to load the checkpoint to restart from this page.

QT The time to check quiescence for this page.

EOL End of line.

WOFF1 - WOFF15 The output file offsets for auxiliary output files 1-15 (-1 if the out-
put file is not open).
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C.4 Output file description section O

The output file description section has the following format:

INJEOL|D|... [D|

N The number of output files.
EOL An end of line description.

D A line describing each page (see below).

Fach file is described as follows:

|ID [L | NN | EOL |

ID The internal output file ID.
L The file name length.
NN The file name string.

EOL End of line.

47



D The Incremental Trip Test

The TRIP test is an acceptance test for TEX [Knu84b] which exercises the formatter and
tests various internal memory limits. It consists of a special document test file and some
special fonts which are passed through the formatter. The formatter output [Fuc81, Fuc82]
is unparsed using a program tool [KF86] and compared against a copy of the correct output
which should be produced. The log file is also compared against a canonical version to
ensure that the proper messages are produced and that the correct errors are detected.

The TRIP test was modified into an incremental form by dividing the canonical format-
ter output file into a file for each output page so that they can be individually compared and
by inserting comment lines in the TRIP document test file at the points where various page
breaks occur. INOTEX is restarted incrementally at any of these page breaks by changing
the comment. The same formatter output should be produced since only a comment has
been changed. The reformatted pages are compared against the canonical correct pages.
The log file should be identical except for an initial portion of the log which should be
missing because it is generated during formatting of the pages which were skipped at the
beginning. This is compared against a slightly different canonical log file than the batch
version which is produced by INCTEX running in a batch mode option which identifies
where each page break occurs and differs only in that the formatter identification message
is different, page break messages have been added, and input line numbers are different
because some comment lines have been added to the input. The log file is compared to
make sure that the proper segment is missing and that all other information is identical
except for identification and summary information generated by INCTEX.
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