
UNIVERSITY OF CALIFORNIA

BERKELEY

Graph Transformations and Program Flow Analysis

by

Douglas Richard Grundman

ii

Contents

List of Figures v

1 Flow Analysis and Graphs 1

1.1 Introduction : 1
1.2 Thesis : 2
1.3 Fundamentals of ow analysis : 3
1.4 Di�culties in analyzer construction : 6
1.5 Historical perspective : 7

1.5.1 The iterative algorithms : 8
1.5.2 The elimination algorithms : 8
1.5.3 Other algorithms : 10

1.6 Motivation for a graphical approach : 11
1.7 Bene�ts of a graphical approach : 12
1.8 Basic de�nitions : 13

2 Patterns and Transformations 15

2.1 Graph Pattern Matching : 15
2.1.1 Matching with templates : 15
2.1.2 Patterns : 18
2.1.3 General matching : 22

2.2 Graph Transformations : 29

3 Disambiguation 32

3.1 Transformations : 32
3.2 A Generic Disambiguator : 35

3.2.1 A simple pattern matching algorithm : : : : : : : : : : : : : : : : : 37
3.2.2 An algorithm for general matching : : : : : : : : : : : : : : : : : : : 41
3.2.3 The � variable : 43

3.3 Parameterizing the Disambiguator : 45
3.3.1 Node orderings : 45
3.3.2 Based matching : 46
3.3.3 Informal analysis : 47

iii

4 A Graph Programming Language 50

4.1 A Common Lisp framework : 50
4.2 The graph datatype : 51
4.3 Patterns, transformations and variables : 52

4.3.1 Pattern declarations : 52
4.3.2 Pattern applications : 54
4.3.3 Transformations : 54

4.4 Node orders : 56
4.5 Edges : 57

4.5.1 Edge bindings : 57
4.5.2 Edges as nodes : 59

4.6 A library of transformations : 59

5 Graph Manipulations 61

5.1 Adding and deleting edges : 61
5.2 Combs : 62
5.3 Iterators : 63
5.4 Some global graph transformations : 66
5.5 Emulating other data structures : 69

5.5.1 Sets of nodes : 69
5.5.2 Stacks : 70
5.5.3 Binary trees : 71
5.5.4 Graphs with typed nodes : 72

5.6 Computing node orders : 72
5.7 Transitive Closure : 73

5.7.1 Warshall's algorithm : 73
5.7.2 Hunt, Szymanski, and Ullman's algorithm : : : : : : : : : : : : : : : 73
5.7.3 A new algorithm : 74

6 Data-ow Analysis Revisited 76

6.1 A simple approach : 76
6.2 The worklisting approach : 79

6.2.1 A worklisting iterator : 79
6.2.2 A worklisting example : 80

6.3 A dual approach : 85
6.4 Interval analysis : 88

6.4.1 T01 and T02 : 88
6.4.2 T2a and T2c: Moving edges to a piggybank : : : : : : : : : : : : : : 95
6.4.3 Putting it all together : 98
6.4.4 Data-ow problems other than Reach : : : : : : : : : : : : : : : : : 98

6.5 A mixed approach : 99
6.6 Constant Propagation : 100

6.6.1 Kildall : 101
6.6.2 Reif & Lewis : 105
6.6.3 Wegman & Zadeck's constant propagation algorithms : : : : : : : : 107

iv

6.6.4 Discussion : 110

7 Experimental Results 112

7.1 An optimizing Modula-2 compiler : 112
7.1.1 DILS and Dora : 112
7.1.2 Analysis algorithms used by the optimizer : : : : : : : : : : : : : : : 113

7.2 Installation of the graph system : 114
7.3 Comparison with a hand-coded analyzer : 115
7.4 Directions for further research : 117
7.5 Project summary : 118

Bibliography 120

v

List of Figures

2.1 A simple pattern with two NCC's : 22
2.2 A pattern, graph, and their duals : 26
2.3 Example use of the � row : 29
2.4 A primitive graph function : 30

3.1 The T02 transformation of Graham and Wegman : : : : : : : : : : : : : : : 34
3.2 A T02 transformation : 34
3.3 Matching a cycle : 38
3.4 A general pattern with 1 NCC : 42
3.5 A \demultiplexing" general pattern (v and w are bound) : : : : : : : : : : : 49

4.1 Example pattern de�nition : 53
4.2 Example pattern application : 54
4.3 Example transformation de�nition : 55
4.4 Example transformation application : 56

5.1 Functions for adding and deleting edges : 62
5.2 Algorithm for computing combs : 62
5.3 (rcomb G x) = (comb (reversegraph G) x) : : : : : : : : : : : : : : : : : : : 63
5.4 Iterator over graph nodes : 64
5.5 Iterator over graph edges : 64
5.6 An iterator that binds graph edges : 65
5.7 Iterator over child nodes : 65
5.8 Iterator over parent nodes : 66
5.9 Algorithm to copy a graph : 66
5.10 Graph unions : 66
5.11 Graph di�erences : 67
5.12 Graph intersections : 67
5.13 In-place graph unions : 67
5.14 Graph reversals : 68
5.15 Graph compositions : 68
5.16 Graph factoring : 69
5.17 A set package implemented with graphs : 70
5.18 Functions to maintain a stack : 71

vi

5.19 Graph traverser : 72
5.20 The Hunt Szymanski and Ullman algorithm : : : : : : : : : : : : : : : : : : 74
5.21 Faster transitive closure algorithm : 75

6.1 A simple algorithm for reaching de�nitions : : : : : : : : : : : : : : : : : : 78
6.2 Worklisting iterator : 80
6.3 Reaching de�nitions via worklist : 81
6.4 A section of a owgraph : 82
6.5 A better worklisting iterator : 86
6.6 Reaching de�nitions, information attached to edges : : : : : : : : : : : : : : 87
6.7 Skeleton of Graham-Wegman algorithm : 89
6.8 T01 : 90
6.9 T01 gen and kill modi�ers : 91
6.10 Algorithm to apply a T01 transformation : 92
6.11 T2a, T2b, T2c and T2d : 93
6.12 T2a and T2b gen and kill modi�ers : 94
6.13 T2c and T2d gen and kill modi�ers : 95
6.14 Algorithm for applying T02 transformations : : : : : : : : : : : : : : : : : : 96
6.15 Algorithms for T02 gen and kill graphs : 97
6.16 The Graham-Wegman algorithm : 98
6.17 Initialization for Kildall's algorithm : 102
6.18 Meet operation for Kildall's algorithm : 103
6.19 Evaluation operation for Kildall's algorithm : : : : : : : : : : : : : : : : : : 104
6.20 Kildall's algorithm : 105
6.21 Reif and Lewis's algorithm : 106
6.22 Wegman and Zadeck's ConditionalDef algorithm : : : : : : : : : : : : : : : 108

1

Chapter 1

Flow Analysis and Graphs

1.1 Introduction

Program ow analysis is a necessary component of optimizing compilers and soft-

ware development environments. Algorithms abound for computing useful attributes of

features of programs. Unfortunately, this area of computing also teems with complexity.

Many individual algorithms are themselves extremely complicated, and the interrelation-

ships present in a collection of algorithms can easily become a programming nightmare.

The opportunities for confusion are only compounded by the low level of programming ab-

straction that is prevalent in such algorithms, as evidenced by the ubiquity of that data

structure known as the bit-vector.

The result of this state of a�airs is that a great many valuable algorithms do not

make their way into compilers. Despite over thirty years of algorithm development, most

modern optimizing compilers make use of no more than the four classical analysis algorithms

and their associated optimizations that were known in the early 1960's. Valuable ideas

such as interprocedural analysis or advanced constant folding techniques are often seen in

papers, occasionally in research laboratories, and almost never in useful compilers. The

same holds for software development environments: program slicing, ow-analysis based

test generation, and other valuable methods of helping programmers are rarely if ever

implemented.

The present dissertation is an attempt to confront these problems. In it is de-

veloped a graph-based methodology and language for writing ow analysis algorithms in

a generic and portable fashion and for combining them with ease. Its minimalist stand

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 2

with respect to data types and operators provides a high degree of compatibility between

algorithms without sacri�cing performance { either asymptotic or experienced.

1.2 Thesis

The goal of this dissertation is to convince the reader of the following claim.

Thesis: A programming language based on graphs and transformations on graphs is

su�cient for performing ow analysis on computer programs in the following three senses:

1. Representational su�ciency : No other data structures (such as sets, bit-vectors or

integers) are necessary for performing ow analysis.

2. Computational su�ciency : There is a small set of functions mapping graphs to graphs

that is su�cient for performing analysis.

3. E�ciency : The use of graphs for performing analysis to the exclusion of other data

types does not degrade the asymptotic time bounds of any algorithm. This exclusive-

ness entails at most a small constant factor slowdown over hand-crafted algorithms.

This work describes the development of a suitable family of transformations and

a programming language based on them, and shows how this language may be used to

implement higher-level functions on graphs and useful ow analysis algorithms. It also

describes our implementation of this language, and our success in performing ow analysis

with the resulting system.

The remainder of this chapter reviews the state of the art, provides motivation

for the rest of the presentation, and supplies necessary de�nitions. Section 1.3 gives an

overview of program ow analysis concepts, covering basic notions of control-ow and data-

ow analysis. Section 1.4 explains many of the di�culties inherent in the implementation of

analyzers, especially when multiple ow analysis algorithms must be incorporated into a sin-

gle program. Section 1.5 provides a historical perspective, exhibiting not only the classical

analysis algorithms but also several more advanced algorithms that rarely see implemen-

tations. Section 1.6 motivates our graph-based approach, providing some understanding

of why the above-stated goal should be attainable. Section 1.7 provides a complement to

that section by describing several bene�ts that accrue from using such a language. Finally,

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 3

Section 1.8 provides fundamental de�nitions that are necessary for the remainder of this

dissertation.

Chapter 2 gives the graph-theoretic foundation of the present approach, developing

well-de�ned notions of graph pattern matching and of graph transformations. While it

may seem to be excessively abstract, such a treatment is worthwhile in that it ensures

that the transformations upon which our entire approach is based are indeed well-de�ned

functions. Chapter 3 complements Chapter 2 by presenting algorithms that implement our

desired graph pattern matching operations and our graph transformations. We will see

that each implementation of these operations yields a family of graph functions. Rather

than choose one particular implementation, the chapter gives \generic" algorithms that

may be parameterized in a meaningful way to emulate a large class of implementations,

thus providing a great deal of exibility and power to the end-user.

Chapter 4 describes our programming language based on these pattern matching

operations and transformations. Chapter 5 uses this language to demonstrate that despite

its small size, it can be used to implement higher-level operations on graphs, as well as some

common graph algorithms. All of these functions are then considered to be extensions to

the language, and are used freely in the following chapter.

Chapter 6 is the culmination of Chapters 2{5, presenting implementations of sev-

eral advanced ow analysis algorithms. It is shown that these algorithms are easy to code,

to read, and to inter-mix, and that they are as e�cient (in the asymptotic sense) as the

original versions. That exposition provides the primary evidence for the thesis of this disser-

tation. Finally, Chapter 7 discusses our implementation of the language and the installation

of our system into an optimizing compiler. It demonstrates the ease with which our system

may be used, and that graph-based analyzers can be e�cient in a real sense as opposed to

simply a theoretical sense. It closes with a summary of the major points of this dissertation,

and gives several directions for future research.

1.3 Fundamentals of ow analysis

Program ow analysis is the compile-time determination of the run-time behavior

of programs. While this problem is not decidable in the general case, it is possible to

determine much information about a program's behavior at compile time. Examples might

include facts such as \variable x is always equal to 67" or \statement 100 is never executed."

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 4

The determination of such information is important because it can enable a com-

piler or a programmer to improve a program substantially. Information about the ow of

data in a program, such as the use or modi�cation of particular values, can be used by

an optimizer to make a program smaller and faster without compromising its semantics.

For example, references to a variable whose value is determinable at compile-time can be

replaced by the pre-computable value, and unexecuted sections of code can be removed.

The term \ow analysis" really covers two domains. Control-ow analysis deals

with the determination of the possible ow of control through a program. That is, it

concerns itself with the conversion of a computer program from a static representation such

as text or parse trees to a directed graph representation that encodes the possible ow of

control. Nodes in such a graph represent blocks of code such as statements or expressions, or

sequences of statements, and (directed) edges represent possible transfers of control between

those blocks. The most common example of control-ow graphs in optimizing compilers

is that of the procedure ow graph, in which nodes represent basic blocks (straight-line

sequences of statements containing no jumps) and edges represent conditional branches,

unconditional branches, or sequencing from one block to the next. Another example is

the program call graph in which the graph nodes represent entire procedures, and edges

represent calls from one procedure to another.

The word possible as a modi�er of \control ow" is important, since it is usually

not possible to determine the exact ow of control through a program. Such a determination

would be tantamount to solving the halting problem, which is well known to be undecidable.

Instead, a control-ow analyzer creates a conservative approximation to the actual ow of

the program: every path that the program may take exists in the graph, but not all paths

through the graph represent valid program executions. Thus, the smaller the graph a

control-ow analyzer can build, the better that graph approximates the real program ow.

The main purpose for doing control-ow analysis, as far as compiler-writers are

concerned, is to produce a ow graph for use in data-ow analysis, the second domain of

program ow analysis. Data-ow analysis is the compile-time determination of run-time

behavior of values in the program. A data-ow analyzer collects information at each node

in the graph, then propagates this information around the graph, simulating the action

of the program on the collected information to the degree that it can. The result of this

process is that each node in the graph has associated with it a set of facts that are known

to be true whenever that node is executed. Examples of data-ow analysis algorithms are

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 5

constant propagation, which attempts to determine constant values for variable references,

and MOD set computation, which attempts to �nd for each statement in the program a

minimal set of variables that the statement may modify.

Most data-ow analysis algorithms adhere to the following paradigm:

1. Construct some universal set of facts U whose truth or falsity we wish to prove about

various blocks in the program.

2. Let G be a owgraph constructed by some control-ow analysis algorithm. Associate

with each node n in G sets inn and outn (initially empty). These sets will assume

values in the power set of U , and at the termination of the algorithm will represent

facts that are provably true at the entry and exit, respectively, of block n.

3. For each node n in G, construct a function fn : 2U ! 2U . This function will model

the action of block n on facts in U , and will depend only on the contents of that block.

In the most frequently implemented algorithms, these functions operate by validating

some facts, invalidating others, and ignoring yet others.

4. Choose a function C (usually [or \) for combining subsets of U at owgraph conu-

ences. Whenever multiple edges enter a node, C is used to combine the sets of facts

true along each edge into a set of facts that is necessarily true on entry to that node.

5. Finally, propagate information around the graph until no new information is discov-

ered anywhere. Information is propagated through a node n by applying fn to inn

to produce outn; it is propagated along edges by pushing the outn sets along those

edges, using C when necessary to combine multiple propagated outn sets to produce

new inm sets.

Control-ow analysis and data-ow analysis are generally considered separately,

but they can interact, especially when ow of control depends partly on the ow of data.

This interaction happens, for example, when a function call is made indirectly through

a variable that may refer to one of several functions in a program. A notable case is

that of scheme [21], wherein almost all ow of control depends on the values of function-

valued variables. Writers of compiler optimizers have found it convenient, however, to

regard the two separately as this simpli�es the problem of analysis (although at the expense

of potentially useful information). One historical reason for this dichotomy is that most

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 6

optimizers have been written for fortran, which has no function-valued variables. This

argument is supported by the fact that we see few if any good optimizers in use for languages

such as lisp that make heavy use of function-valued expressions.

1.4 Di�culties in analyzer construction

In spite of the apparent simplicity with which most data-ow analysis algorithms

may be speci�ed, there is a great deal of complexity in their manufacture. First, a ow-

graph must be constructed; a non-trivial task if function-valued variables are a part of the

language being compiled. Second, e�ciency concerns may cause the algorithms that prop-

agate information around owgraphs to be quite involved, since loops and other features of

the owgraph can cause simpler algorithms to have longer running times. And third, the

construction of the functions fn requires the availability of myriad local facts that need to

be gleaned from the program. Less standard algorithms may have other complexities as

well. For example, the set U of facts may not be determinable prior to the propagation

phase; an example is the set of constant values discovered during constant propagation.

Yet another complication is that not all analyzers operate on a procedure ow

graph. A program call graph models possible function calls by representing functions as

nodes and possible calls as edges, and is used for dealing with interprocedural data-ow

analysis problems. An example of one of these problems is determining which variables

in a program are modi�ed by a call to a function. A dependence graph models temporal

data dependencies rather than temporal control dependencies: \A's new value depends on

B" rather than \The program counter reaches X after reaching Y." A global value graph

models the ow of values through a program, and may be used to make constant propagation

e�cient.

Each of these problems, and there are others, requires its own special algorithm

for e�ciency, and adds its own special requirements to the list of complexities. With inter-

procedural analysis, for example, complications such as aliasing due to parameter passing

arise. Some of the faster propagation algorithms require their input graphs to be reducible,

that is, lacking forward jumps into loops, and do not guarantee their fast time bounds when

handed a non-reducible graph. While this restriction isn't a problem when handling proce-

dure ow graphs (that tend to be reducible), other graphs such as program call graphs are

hardly ever reducible, making the choice of a single good propagation algorithm di�cult.

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 7

It would seem that with this long list of di�culties, hardly any ow analysis would

ever get done, since the programming task is so complicated. And indeed, this is the

case. Most optimizing compilers perform only the simplest intraprocedural analysis, the

algorithms for which date back to the 1960's [1]. There are a great many algorithms found

in the literature that simply never make it into compilers that are available for people to

use [2, 3, 4, 6, 7, 9, 11, 13, 16, 19, 24, 25]. The main reason for this non-use is not just the

abovementioned complexity, but the added complexity of combining multiple algorithms

having di�erent data structures and di�erent propagation methodologies. Many algorithms

deal with information represented at the level of bits as an attempt to save memory and

time, a practice that leads to immense di�culties when one attempts to merge two or more

of them.

On the other hand, it is not always known whether the implementation of a new al-

gorithm will be worthwhile. There are, for example, very few research results indicating the

e�ectiveness of interprocedural summary information in optimization. But the main reason

for this lack of information is the daunting programming task required of any researcher

wishing to do the experiment.

One �nal di�culty is that facing anyone attempting to choose among several di�er-

ent algorithms for solving the same problem. For example, barring programming expense,

one might wish to know the fastest propagation technique for computing available expres-

sion information. Such information is simply not available. It is known which algorithms

are asymptotically fastest, but their constant factors are unknown and may outweigh their

asymptotic behavior on typical analysis problems. Not only is this information unavailable,

it is practically unobtainable due to di�culties controlling for the e�ects of di�ering imple-

mentations when comparing two analysis algorithms. The result of this state of a�airs is

that only the easiest-to-implement algorithms are ever used.

1.5 Historical perspective

This section gives a brief overview of known data-ow analysis algorithms, from

which it can be seen that few algorithms ever see use, and those that do are typically chosen

for implementational reasons rather than for the results or speed they a�ord.

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 8

1.5.1 The iterative algorithms

According to Aho and Ullman [1], the �rst iterative data-ow algorithm seems to

have been developed by Vyssotsky around 1960 for an early Fortran compiler. The mid-to

late 1960's saw the development of the four classical intraprocedural analysis algorithms

{ reaching de�nitions, available expressions, live variable analysis, and very busy expres-

sions { based on an iterative approach. These same algorithms are the most commonly

used in optimizing compilers. Several techniques were later developed to make iterative

techniques more e�cient (e.g. worklists, depth-�rst ordering), but there were no advances

made in making these techniques generally useful outside of the \classical" intraprocedural

optimization problem domain.

In 1973, Kildall [18] formalized the ideas behind data-ow analysis by setting the

problem in a lattice-theoretic framework. He also devised new algorithms, including the �rst

published constant propagation algorithm. His generalizations helped explain the data-ow

propagation algorithms that existed, but did not aid in managing the complexity of the

propagation or information collection tasks.

Morel and Renvoise [20] uni�ed redundant code elimination with loop-invariant

code motion under a single data-ow umbrella with their work on partial redundancy elim-

ination. Their iterative algorithm combined upward ow analysis, anticipability, with a

downward analysis, partial availability, to locate good insertion and deletion points for ex-

pressions. This algorithm was implemented in Chow's portable optimizer, UOPT [5] to

good advantage. It is a powerful and useful algorithm, but its computational complexity is

so far unknown, due to the intermixing of upward and downward information ows.

1.5.2 The elimination algorithms

In 1970, Allen [2] and Cocke [6] developed a di�erent method of performing the

propagation step of data-ow analysis that they called interval analysis. Their idea was

to convert a problem on a (reducible) ow graph to a problem on a smaller ow graph by

collapsing intervals in the original ow graph to single nodes. Here, an interval is a single-

entry region of a owgraph corresponding roughly to a program loop. The interval-analysis

algorithm can be used recursively on the reduced graph as many times as needed until all

loops cease to exist. At this point, the problem of propagating information along the graph

becomes trivial. Finally, information at each collapsed node is used to deduce information

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 9

about the nodes in the corresponding interval. This algorithm's worst-case performance is

O(n2), but in practice, where loop depth is generally bounded by a constant, performance

is linear.

The original algorithm had a limitation in that it could be used only on reducible

ow graphs. Since most procedure ow graphs are reducible, this restriction does not

usually cause di�culties to a ow analyzer used for solving one of the classical problems.

The restriction did pose a limitation on the algorithm's generality, though, as it could

not be used on non-reducible graphs such as program call graphs. Allen and Cocke later

extended the algorithm to handle irreducible graphs, although at the cost of pessimizing of

its worst-case time bounds on those graphs.

Hecht and Ullman [16], Tarjan [22], and Graham and Wegman [13, 24] provided

improvements to the basic interval algorithm, each modifying the de�nition of \interval"

slightly, and introducing auxiliary data structures or interval reduction orders to lower the

computational complexity of the worst-case performance. They did not, however, change

the basic model of the algorithm.

Graham and Wegman also helped to provide a measure of abstraction, separating

the notion of data-ow analysis from that of procedure ow graphs by restating data-ow

analysis problems as \Information Propagation Problems". They viewed these problems as

the search for a maximal set of assignments of assertions about the program to nodes in

the program's ow graph, given, for each node in the ow graph, a function relating that

node's input to its output. This characterization exposes some measure of generality in

that it divorces the information propagation aspect from the fact that the input graphs are

typically program ow graphs.

Elimination (interval-based) data-ow techniques are generally believed to be more

e�cient than their iterative counterparts on typical inputs when both algorithms apply, but

there seems to be no hard data supporting this claim. Several authors (e.g. [15]) openly

consider the added programming complexity to decide the issue in favor of the iterative

approach in the face of this lack of data. This argument probably explains why elimination

algorithms are rarely used in practice.

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 10

1.5.3 Other algorithms

Banning [3], and later, Cooper and Kennedy [7, 8] showed that interprocedural

analysis can be accomplished by examining the program's call graph instead of the ow

graph. The most important interprocedural problems are to determine the set of variables

that may be modi�ed by a function call and the set of variables that may be referenced

during a function call so that optimization at call sites can take place. This information is

also useful in determining whether or not two functions can run simultaneously on parallel

machines. Cooper and Kennedy's solution works in almost linear time by breaking the

problem into two sub-problems each of which may be solved e�ciently by the application

of a carefully crafted algorithm.

Wegman and Zadeck [25] developed a novel algorithm for constant propagation

that is interesting in two respects. First, it propagates information along a graph called the

GlobalValue graph instead of the usual procedure ow graph. This graph is a modi�cation

of a DefUseChain graph that can in turn be extracted from a owgraph by means of a

di�erent data-ow analysis procedure. This is an example of a ow analysis algorithm that

works on something other than a control-ow graph. The second interesting point is that

the algorithm evaluates conditional expressions once these are known to be constant, and

marks branches of the owgraph as being non-executable if it determines that they indeed

are. Thus, it \prunes" the owgraph while analyzing, producing a owgraph that represents

a better approximation to the actual program ow.

Several researchers (e.g. [11, 19]) have experimented with various types of de-

pendency graphs to take the place of control-ow graphs in ow analysis. These graphs

represent both control-ow and data-ow in one graph, and make some types of analysis

(especially that required for automatic parallelization of code) much easier.

It is unfortunate that only the iterative algorithms of subsection 1.5.1 are fre-

quently used. Many more algorithms have been developed in the last two decades, but few

if any of them have been incorporated into real optimizing compilers. One main reason for

this is that these algorithms require a great deal more e�ort for their implementation than

do the simple iterative algorithms. A second reason is that any optimizing compiler is likely

to require the four classical analyzers; and that adding a �fth analyzer to the fray, one that

does not �t the mold of the other four, multiplies the e�ort needed nontrivially. To sum

up, the complexity of implementing and maintaining multiple analyzers inhibits the use of

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 11

all but the most straightforward.

1.6 Motivation for a graphical approach

Flow analysis deals with a great many problems with a great many di�erent algo-

rithms. One evident commonality, however, is that all ow analysis algorithms operate on

some sort of graph, be it a procedure ow graph, some derivative thereof, or another graph

such as a call graph or dependence graph. In view of the fact that ow analysis seeks to

uncover facts about programs that have to do with a network representation of a program,

it seems natural to speak of ow analysis as the analysis of program properties that can be

expressed naturally with graphs. This statement would seem to imply not only that graphs

should appear in our analysis algorithms, but also, since we are not interested in properties

that cannot be expressed graphically, that it should be possible to express those algorithms

using nothing but operations on graphs.

To illustrate, the input to a data-ow analysis algorithm is typically a description

of the input program in the form of a graph that has been built to whatever level of detail

is relevant for the analysis to be performed. The output of this algorithm is usually a list

of the program's nodes, each having associated with it a set of related facts. This output

list may also be considered to be a directed graph each of whose nodes represents either

a program node or a fact, and each of whose edges leaves a program node to enter an

associated fact node. Viewing data-ow in this way, it thus appears that our data-ow

algorithm is a program that can transform a given graph or set of graphs into some other

graph or set of graphs.

For example, Def-Use information is a mapping from variable de�nitions (that is,

assignments to variables) in a program to possible uses of those de�nitions. Given a ow

graph G, we can represent Def-Use information by a directed graph. First, we let each

instance of each variable in G be represented by a unique node of the Def-Use graph. Then,

for each variable v in the program, we let each path in G from a node de�ning v to a node

referring to v be represented by an edge in the DefUse graph if that path contains no other

de�nitions of v. The edges in the DefUse graph can then be seen to represent exactly the

mapping we require.

Another example is the dmod sets of Cooper and Kennedy [7]. dmod assigns to

each call site in the program the set of variables that might be changed by execution of

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 12

that call. One can view the solution as a directed graph whose set of nodes is S [V where

S corresponds to the set of call sites and V corresponds to the set of variables. An edge

s! v is in our graph if and only if s 2 S corresponds to a call site, and v 2 V corresponds

to a variable that is possibly changed by a call from that call site.

We see that the output of a program ow analyzer may be represented as a graph

or set of graphs even as its input may. It makes sense, therefore, to view a ow analyzer as

an algorithm that transforms its input graphs to its output graphs. Viewing an algorithm

as a set of sub-algorithms leads one to believe that any ow analysis algorithm may be

built-up from primitive graph transformations. This avenue is the direction explored by

this work.

1.7 Bene�ts of a graphical approach

The practical importance of a language based on a graphs and a small family of

primitive transformations is that such a language can provide a uniform base upon which to

build analyzers, in the sense that all data formats would ultimately be the same, and that all

algorithms would ultimately be expressed with respect to the same underlying formalism.

The uniformity of data formats and implementation techniques that would result from such

a language would provide the following bene�ts:

1. Flow analyzers would become much easier to build and use. For many common appli-

cations, an existing algorithm could be used from a library. This language extension

mechanism is feasible because all algorithms would work on the same data formats.

2. Such a programming language would provide a higher degree of data abstraction than

is currently used for ow analysis algorithms. In other words, programmers would

work with graphs instead of bits.

3. The interface to the application program for which the analysis is being done would

be simple and standard, allowing for easy use. The reason for this is that the directed

graph is a simple and easily understood data structure. Since no other data structures

would be involved, the system would require a user to learn no other data formats.

4. Since all data would be in a standardized format and there would be a clean break

between the analyzer and the application, analysis algorithms could be changed, modi-

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 13

�ed, or augmented without disturbing the application. In particular, other algorithms

could be added, sharing data with preexisting algorithms without need for elaborate

data format conversion coding.

5. A common implementation base would allow algorithms to be compared with one

another in a meaningful way, opening up avenues of research.

6. Finally, since a static representation of a program such as a parse tree or abstract

syntax tree can also be represented by a graph, the language could aid in performing

control-ow analysis and the construction of the functions fn that characterize ow-

graph nodes. Dealing with this drudgery would help make ow analysis a standard

part of compilers and programming environments, rather than an option.

These bene�ts will be exhibited in chapters 6 and 7.

1.8 Basic de�nitions

A directed graph G = (N;E) will be a �nite collection of nodes N and edges

E � N �N such that for any proper subset N 0 of N , E 6� N 0�N 0. In this work, the term

graph will always mean a directed graph. We will write a! b for the edge from node a to

node b.

All graphs will be over some large universal set of nodes U in the sense that if

G = (N;E), then N � U . Thus, it is possible to have more than one graph on the same

set of nodes. Accordingly, one may view a graph as simply a �nite set of (directed) edges

on this set of nodes. As a notational convention, we will use lower-case letters near the

beginning of the alphabet to represent graph nodes.

This de�nition allows graphs to contain edges of the form a ! a, termed looping

edges. This is somewhat non-standard in graph theory, but is needed for our treatment of

ow analysis of computer programs, where one-statement loops are commonplace.

A subgraph of a graph G = (N;E) is a graph G0 = (N 0; E0) such that N 0 � N and

E0 � E. A region of a graph G = (N;E) is a subgraph G0 = (N 0; E0) of G such that for a

and b in N 0, if a! b is in E then a! b is in E0.

We say two nodes a and b are connected in G if either a = b or there is some

sequence of nodes a = n0; n1; : : : ; nk = b such that for each 1 � i � k, at least one of the

CHAPTER 1. FLOW ANALYSIS AND GRAPHS 14

edges ni�1 ! ni, ni ! ni�1 lies in G. A graph G is connected if every pair of its nodes

are connected in G. A connected component of a graph G = (N;E) is a maximal connected

region in G.

The predecessors of a node a in graph G are the nodes b such that b ! a is an

edge in G. Similarly, the successors of a are those nodes b such that a ! b is an edge in

G. A path in a graph G is a sequence of nodes a0; a1; : : : ; an such that ai is a predecessor

of ai+1 for i 2 f0; : : : ; n� 1g. A cycle is a path a0; a1; : : : ; an where a0 = an. A graph is

acyclic if it contains no cycles.

A ow graph is a graph G having a distinguished node s0 called the start node

such that for any node b in G there is a path p = a0; a1; : : : ; an where a0 = s0 and an = b.

In a owgraph G, node a dominates node b if a appears in every path from s0 to b.

A spanning tree for a owgraph G is a connected acyclic sub-owgraph G0 =

(N;E0) such that jE0j = jN j � 1. A depth-�rst spanning tree for a owgraph is a spanning

tree for that owgraph such that some depth-�rst ordering of the nodes of the spanning

tree is a depth-�rst ordering of the nodes of the owgraph. A frond in a owgraph G with

respect to a spanning tree G0 = (N;E0) is an edge a! b in G such that b dominates a in G0.

An s-numbering of the nodes in G with respect to a depth-�rst spanning tree G0 = (N;E0)

is a bijection from the integers f1; : : : ; jN jg to the nodes of G such that for any edge a! b

in G, s-number(b) < s-number(a) if and only if a! b is a frond with respect to G0.

An adjacency matrix for graph G is a square matrix [G] with entries in f0; 1gwhose

sequence of rows and sequence of columns are both considered to be labeled by a sequence

of graph nodes. If a and b are graph nodes in this labeling, then the notation [G]a;b refers

to the entry in the row and column of [G] labeled by a and b, respectively. The value of

[G]a;b tells whether or not there is an edge in the graph leaving node a and entering node

b: a 1 entry means that this edge exists, while a 0 means that it does not.

15

Chapter 2

Patterns and Transformations

This chapter lays a graph-theoretic foundation for the graph transformations used

in Chapters 5 and 6 for performing ow analysis. The paradigm used for transformations

is that of pattern-matching and replacement. Section 2.1 explains the underlying graph

pattern-matching scheme, while Section 2.2 de�nes graph transformations. The latter are

developed by merging pattern matching with a family of graph functions that perform graph

modi�cations.

2.1 Graph Pattern Matching

We begin with a very simple method of matching patterns in a graph, then conclude

with a generalization that makes patterns simpler to specify and more powerful.

2.1.1 Matching with templates

De�nition 1 A template, T , is a square matrix with entries in the set f0; 1; �g, along with

a set L of labels, a labeling function bijectively mapping the columns of the matrix to L,

and a labeling function bijectively mapping the rows of the matrix to L. (As an abuse of

notation, T will also denote the matrix of the template T .)

A template is a very primitive speci�cation for a set of structural graph charac-

teristics. It is nothing more than an adjacency matrix with two minor extensions: �rst,

the entries in the matrix may take on values in the set f0; 1; �g rather than just the two

values 0 and 1. Second, the rows and columns of the matrix are labeled so that the matrix

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 16

has an easily referred-to \basis". We let Tp;q denote the entry of T in the row labeled by p

and column labeled by q. This parallels the de�nition of adjacency matrix entries given in

Chapter 1.

De�nition 2 An acceptable template match is a pair (G; T) where G = (N;E) is a graph

and T is a template whose matrix is of size jN j � jN j.

De�nition 3 A successful template match is a triple (G; T; �) where (G; T) is an acceptable

template match and � is a bijection from L, the labels of T , to the nodes of G such that

for any two labels x and y in L and for nodes a = �(x) and b = �(y) in G,

Tx;y = 1) [G]a;b = 1, and

Tx;y = 0) [G]a;b = 0.

The condition Tx;y = � speci�es nothing about the state of [G]a;b. If no such bijection exists,

then the acceptable template match is said to be unsuccessful.

We say that a template successfully matches a graph if and only if there exists a �

such that (G; T; �) is a successful template match. In other words, a template successfully

matches a graph if and only if there exists a one-to-one correspondence between the template

labels and the graph nodes such that a 1 (respectively 0) in the (x; y) position of the template

matrix implies the existence (respectively non-existence) of the edge �(x) ! �(y) in G. If

a � is in the (x; y) position of the template matrix, then neither the existence nor the

non-existence of the edge �(x)! �(y) in G can cause the template to fail to match G.

Templates and template matching do not appear to be very useful because of the

constraint that the size of the template must be equal to the size of the graph. One obvious

objection to their use is that the speci�cation of a template to match a typical ow graph is

much too big to be practical. Further, since we will be interested mostly in small localized

features of graphs, most useful template matrices would consist mainly of �'s. We also have

the problem of not knowing at the time of template construction the size of the graph to be

matched. Below, we present a formalism from graph theory that allows us to ignore a great

many extraneous template entries in a mathematically structured way, and also to match

graphs of varying sizes.

De�nition 4 A simple graph homomorphism is a mapping from a graph G onto a graph

H such that for some collection of nodes K in G,

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 17

(i) For every pair of nodes a; b 2 K; (a) = (b),

(ii) For every node a 62 K and for every node b 6= a; (a) 6= (b), and

(iii) For each edge a! b in G, the edge (a! b) = (a)! (b).

The set K is called the kernel of the homomorphism.

Hence, a simple homomorphism maps some set K of nodes to a single \supernode"

while acting bijectively on all others.1 It should be noted that any simple homomorphism,

if restricted to any subset of nodes not intersecting its kernel, acts as an isomorphism on

those nodes and on edges among them. In particular, the case kernel() = ; implies that

 is an isomorphism on G; thus, the identity map itself is a simple homomorphism. Note

also that as a consequence of (iii), if there is an edge a! b in G with both a and b in K,

then the image of will contain a looping edge at the supernode.

The concept of simple graph homomorphism can be used along with that of suc-

cessful template match to de�ne a useful pattern matching operation on graphs. Simple

homomorphisms allow the examination of portions of a graph (that is, those portions of

the graph upon which the homomorphism acts like the identity function), while providing

a convenient mechanism for ignoring the rest.

De�nition 5 A successful simple match is a quadruple (G; T; �;) where is a simple

graph homomorphism such that ((G); T; �) is a successful template match.

Example 1 The template

w x y z

w | * 1 1 *

x | * * 1 *

y | * * * 1

z | 1 * * *

1This de�nition extends the usual de�nition of graph homomorphism. The usual de�nition imposes the
restriction that adjacent nodes can never be merged together (see [14]). The de�nition given here is in
keeping with the relaxed de�nition of graph given in Chapter 1, that allows the existence of edges of the
form x! x.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 18

matches the graph G below via the simple homomorphism shown, with �(w) = a, �(x) =

b, �(y) = c and �(z) = d. The node b is the supernode formed by collapsing the kernel K.

Notice that each edge in K leaves some node that maps to the supernode and enters some

node that maps to the supernode. Thus, the image of has a looping edge at node b.
a

b
c

d

= K

 ψ
a’ d’

c’

Example 2 The template in the previous example also matches the same graph G via the

simple homomorphism ' shown here, with �(w) = a, �(x) = b, �(y) = c and �(z) = d.

This is unfortunate, because we would expect and like the template shown to �nd loops in

G, not construct them.

a

b c

d

= K

d’ a’ b’

 ϕ

2.1.2 Patterns

We add an additional constraint to the concepts of template and simple match in

order to construct a more versatile kind of matching that will help us avoid the problems

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 19

of the preceding example.

De�nition 6 A simple pattern is a template with a distinguished row and column label,

denoted by the symbol �. All simple pattern matrix entries in any row or column labeled

with � must be �'s.2

The restriction that matrix entries in � rows and columns must be �'s will be lifted

in De�nition 11 (see Subsection 2.1.3).

De�nition 7 A successful simple pattern match is a successful simple match (G;P; �;)

where P is a simple pattern, and �(�) = (kernel()). A simple pattern matching algorithm

is an algorithm that, given a graph G and simple pattern P as input, �nds a suitable label-

to-node bijection � and simple graph homomorphism (if such exist) so that (G;P; �;)

is a successful simple pattern match.

The constraint we have just added is that the supernode constructed by coalescing

the graph nodes in the kernel K must necessarily correspond to the distinguished label

� in our simple pattern. The set of simple homomorphisms for which (G;P; �;) is a

successful simple pattern match is thus seen to be a subset of the set of homomorphisms

for which it is merely a successful simple match.

Example 3 The simple pattern

x y z *

x | * 1 0 *

y | * * 1 *

z | * * * *

* | * * * *

matches a graph G if and only if G contains nodes a, b, and c and edges a! b and b! c,

but not the edge a ! c. Note that the row labeled z and the column labeled x contain

only �'s and therefore specify nothing. As a convention, we allow such rows and columns

(with the exception of the � row and column) to be elided from the speci�cation. The �

2One should not �nd these two meanings for � confusing, since the contexts in which they are used,
row/column label versus matrix entry, are disjoint.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 20

row and column must appear in order to distinguish a simple pattern from a template. An

abbreviated version of this simple pattern is

y z *

x | 1 0 *

y | * 1 *

* | * * *

Example 4 The simple pattern

w x y z *

w | * 1 1 * *

x | * * 1 * *

y | * * * 1 *

z | 1 * * * *

* | * * * * *

matches graphs having four-element loops with a diagonal edge. It matches the graph in

Example 1 in exactly one way, using the simple homomorphism shown here. Notice that

none of the nodes a, b, c or d in (G) may be the supernode.
a

b
c

d

= K

 ψ

e

a’

b’ c’

d’

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 21

Bindings

For any successful simple pattern match (G;P; �;), � and determine a unique

assignment of graph nodes to each non-� simple pattern label. This assignment may be

thought of as a binding of values to names. Accordingly, we shall use the term \variable"

(or \pattern variable") to refer to non-� pattern labels in what follows, with the under-

standing that the value bound to a variable v in simple pattern P after the successful

simple match (G;P; �;) is that graph node a such that (a) = �(v). This binding in-

formation is important, as it is necessary in order to combine patterns with functions to

produce transformations. This point is discussed further in Section 2.2. Variable bindings

will also be used later to transmit information from one pattern match to subsequent ones.

Chapter 4 discusses this issue, and presents some mechanisms for controlling the lifetimes

of bindings. For the purposes of this chapter, we will assume that variables are globally

scoped, and that bindings, once established, are permanent.

Necessarily-connected components

We now de�ne a structural feature of simple patterns that is echoed in all graphs

that a simple pattern matches. It is useful for discussing several aspects of pattern matching.

De�nition 8 A necessarily connected component (NCC) of a simple pattern P is a maximal

set of pattern variables having the property that any set of graph nodes to which they may

become bound in a successful simple pattern match (G;P; �;) must necessarily lie in a

single component of G.

Notice that nodes bound to variables in two di�erent NCC's are not constrained

to lie in di�erent components of a graph, just that nodes bound to variables within the

same NCC must lie in the same graph component.

Each pattern variable is a member of some NCC. The NCC containing variable

p in simple pattern P may be computed by constructing an adjacency relation R de�ned

as follows: let x and y be variables of P and let xR y if and only if Px;y = 1 or Py;x = 1.

Variable q is then in the same NCC as variable p if and only if pR�q, where R� is the

reexive transitive closure of R. Variables p and q are thus seen to be in the same NCC

if they are in the same component of the graph formed by considering R as an adjacency

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 22

matrix. Since R is determined solely by the 1's in the pattern matrix, this is exactly the

matrix formed by replacing each of P 's matrix's � entries with a 0.

Figure 2.1 shows a simple pattern containing two NCC's. The �rst contains the

variables v and w, while the second is made up of x, y, and z.

v w x y z *

v | 1 0 * * * *

w | 1 * * * * *

x | * * * * * *

y | * * 1 0 1 *

z | * * 0 1 * *

* | * * * * * *

Figure 2.1: A simple pattern with two NCC's

Perhaps the most important feature of NCC's is that for the most part they may

be considered separately by a simple pattern matching algorithm. Except for the require-

ment that the bindings of two NCC's may not intersect (since � is a bijection), a simple

pattern with two or more NCC's may be considered to be two or more simple patterns,

each containing only one NCC.

2.1.3 General matching

Simple pattern matching provides most of the power we need for performing ow

analysis, but there is a generalization that gives us additional power at little extra cost. It

can be used to streamline many ow analysis algorithms, both in terms of coding complexity

and in terms of execution e�ciency.

De�nition 9 A general graph homomorphism is a mapping from a graph G onto a graph

H such that for some partition K = fK1; : : : ; Kng of the nodes of G,

(i) For every pair of nodes a 2 Ki and b 2 Kj ; (a) = (b) if and only if i = j, and

(ii) For each edge a! b in G, the edge (a! b) = (a)! (b).

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 23

The nonempty elements of K are thus in one to one correspondence with the nodes of H .

Where a simple homomorphism creates a single supernode, a general homomor-

phism creates several. We will use general homomorphisms to de�ne the concept of general

pattern match as an extension of simple pattern match.

De�nition 10 A weak general match is a quadruple (G; T; �;) where is a general ho-

momorphism such that ((G); T; �) is a successful template match.

Example 5 The template

A B C

A | * 1 0

B | 0 * 1

C | 1 0 *

matches the graph G below via the simple homomorphism shown, with �(A) = a, �(B) =

b and �(C) = c. The node a is the supernode formed by collapsing the set of nodes in K1.

Similarly, b is formed from K2 and c is formed from K3. As usual, the homomorphism

maps edges contained within K1, K2 and K3 to looping edges in the image.

 ψ

a

b

c

K1

K2

K3

Before de�ning general matching, we need a more generalized de�nition of pattern.

De�nition 11 A pattern is a template whose labels are classi�ed into three sets: singleton

variables, set-valued variables, and f�g. A pattern must have exactly one � label.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 24

We denote singleton variables by lower-case names, set-valued variables by upper-

case names, and, of course, � by �. The usual pattern abbreviation convention applies to

patterns as it did to simple patterns.

De�nition 12 A weak pattern match is a weak general match (G;P; �;) where, for each

singleton variable v in P there is exactly one node a in G with �(v) = (a), and where, for

each set-valued variable V in P , fa j �(V) = (a)g 6= ;. Further, no restrictions are placed

on the size of the set fa j �(�) = (a)g.

Variable binding is de�ned for weak pattern matching in an analogous fashion to

the way it was de�ned for simple matching: the set of graph nodes that is bound to a

variable � after a weak pattern match is the set of nodes a such that (a) = �(�), whether

� is a singleton or a set-variable. While singleton variables are necessarily bound to exactly

one graph node, set-variables may be bound to more than one. We will henceforth treat

� as a set-variable, except that as per the last sentence in the above de�nition, it may be

bound to the empty set of graph nodes after a pattern match.

The de�nition of NCC is independent of that of binding, and so is extended to these

more general patterns in the obvious way. The algorithm for their computation remains

unchanged.

De�nition 11 de�nes patterns more generally than simple patterns, removing the

restriction that entries in the � row and column be �'s. This is now possible because the �

label may be regarded as a set-valued variable (though a special one). But while we relax

one restriction on the patterns we may write, we also impose one on the choices of in

order to be able to make use of both general and simple matching with the same pattern.

By viewing this as a restriction on the functions that can satisfy our matching criterion,

we obtain extra utility without changing the semantics of our pattern matching process.

As might be surmised from its name, the weak pattern match is not su�cient for

our needs. Of the many possible extensions of simple pattern matching that use general

homomorphisms, we want one that ful�lls two especially desirable criteria.

Requirement 1 If (G;P; �;) is a successful simple pattern match then it is a successful

general pattern match.

This requirement will ensure that the collection of general pattern matches is a

true extension of the collection of simple pattern matches in the mathematical sense. This

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 25

guarantees that general patterns and simple patterns will act consistently, in that if a match

by general pattern P results in the binding of each non-� variable to a single graph node,

then the simple pattern Q obtained by replacing each set-valued variable in P with its

lower-case equivalent will match the same graph with corresponding bindings.

Before presenting the second requirement, we prove a property of simple pattern

matches that we want to extend to general pattern matches. De�ne the complement of a

graph G to be the graph �G containing the same nodes as G and containing edge a ! b if

and only if G does not. Similarly, we de�ne the template �T to be identical to the template

T , except that the matrix of �T has 1 entries wherever T has 0 entries and has 0 entries

wherever T has 1 entries. Both �T and T have the same � entries.

Proposition 1 (G;P; �;) is a successful simple pattern match if and only if (�G; �P; �;)

is a successful simple pattern match.

Proof : Suppose that (G;P; �;) is not a successful simple pattern match. This means

there exist pattern variables x and y in P and nodes a and b in G with (a) = �(x) and

 (b) = �(y) such that either

Px;y = 1 and [G]a;b = 0

or

Px;y = 0 and [G]a;b = 1.

But then, by de�nition of complementary patterns and graphs, either

�Px;y = 0 and [�G]a;b = 1

or

�Px;y = 1 and [�G]a;b = 0,

showing that (�G; �P; �;) is not a simple pattern match.

Conversely, suppose (�G; �P; �;) is not a simple pattern match. Then, by the same argu-

ment, (��G; ��P; �;) = (G;P; �;) is also not a simple pattern match.

Our second requirement demands that general matches also have this property.

While it is not terribly important for simple matches, we will see in Chapter 3 that it is

crucial in order to ensure that patterns interact properly with the graph functions de�ned

in Section 2.2.

Requirement 2 (Duality) (G;P; �;) is a successful pattern match if and only if (�G; �P; �;)

is a successful pattern match.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 26

Weak pattern matches fail to satisfy the duality requirement. Let G be the graph

and P the pattern shown in Figure 2.2. The � row and column are �lled with 0's, so every

graph node must be bound to one of X , Y , or Z. Since no edges enter a and none leave c

or d, then in any weak pattern match of G by P , X must bind to fag and Z must bind to

fc; dg. It then follows that Y must bind to fbg. This information determines � and .

 X Y Z *

X | 0 1 1 0
Y | 0 0 1 0
Z | 0 0 0 0
* | 0 0 0 0

a

b c

d

 X Y Z *

X | 1 0 0 1
Y | 1 1 0 1
Z | 1 1 1 1
* | 1 1 1 1

a

b c

d

Figure 2.2: A pattern, graph, and their duals

Now the complement of G contains an edge from a to d. The complement of the

pattern, however, contains a 0 in �PX;Z , ensuring that (�G; �P; �;), which necessarily has the

same bindings as above, will not be a weak pattern match.

Why does the duality condition hold for successful simple pattern matches but

not for weak pattern matches? The problem is with 1's in the template. Where, in a weak

pattern match, a 0 in position Px;y means that no edges a! b exist in G with (a) = �(x)

and (b) = �(y), a 1 means that some such edges exist. The proper dual condition to the

\0" situation would instead be that all such edges exist. The remainder of this section will

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 27

develop a pattern match that enforces this stronger condition.

The homomorphism collapses several edges into one, but provides no information

as to how many it collapsed. In the case of successful simple pattern matches, we know

that the number of graph edges in the inverse image of a single edge is exactly one. In the

more general case, we may know the number of nodes that collapse to form each supernode,

but we can have no idea of the number of edges that collapse to form a \superedge". We

can know only that there is at least one. This indeterminacy means that there are a great

many graphs di�ering in the portion being tested by the pattern that we cannot distinguish

from one another. A more mathematical way of saying this is that the homomorphism

does not have a well-de�ned inverse, and so we do not have a function that can determine

relevant features of G from features of (G). In particular, we cannot determine how �P

will relate to �G.

Let (G;P; �;) be a weak pattern match, and let H be the graph (G). We de�ne

an auxiliary graph-valued function �G termed the G-dilation of as follows: let f and g be

nodes in H , and let J be the subgraph of H containing just the nodes f and g and the edge

f ! g. Then �G(J) is the graph whose set of edges is fa ! b j (a) = f and (b) = gg

and whose nodes are all endpoints of such edges. We extend the domain of �G to all of

H by de�ning �G(J [K)
def
= �G(J) [

�
G(K) where the union of two graphs is that graph

formed by the union of their edge sets. �G is not de�ned on individual nodes and edges as

is , but is instead de�ned as a map from graphs to graphs. This function �G will serve as

an inverse to in the category of graphs (as opposed to that of nodes and edges), allowing

us to de�ne a suitable general pattern match.

Now let (G;P; �;) be a weak pattern match. We de�ne PG1 to be the subgraph

of (G) that contains the edge a ! b if and only if P��1(b);��1(a) = 1, or in other words,

contains only those edges matched by 1's in the pattern. PG0 is similarly de�ned to be the

graph containing the edge a ! b if and only if P��1(a);��1(b) = 0. PG0 is not a subgraph of

 (G), but its nodes are a subset of (G)'s node set. PG0 may alternatively be de�ned as

�P
�G
1 .

De�nition 13 A successful pattern match (or simply match) is a weak pattern match

(G;P; �;) where �G(P
G
1) � G. A pattern matching algorithm is an algorithm that, given a

graph G and pattern P as input, �nds a suitable � and (if such exist) so that (G;P; �;)

is a successful pattern match.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 28

Proposition 2 If (G;P; �;) is a successful simple pattern match then it is a successful

pattern match.

Proof : Since every simple homomorphism is a general homomorphism, every successful

simple pattern match is a weak pattern match. To show that every successful simple

pattern match (G;P; �;) is also a successful pattern match, we need to exhibit �G(P
G
1)

and show it to be a subgraph of G.

Let p! q be an edge in PG1 . Since (G;P; �;) is a successful simple pattern match, there

is some 1 entry in some position Px;y in the pattern where neither x nor y is �, but where

�(y) = q and �(x) = p. Thus, there are unique nodes a and b in G such that the edge a! b

is in G, and such that p = (a) and q = (b). This holds true for each edge in PG1 , and so

 �G(P
G
1) is the union of these edges, each of which is in G.

Proposition 3 (G;P; �;) is a successful pattern match if and only if (�G; �P; �;) is a

successful pattern match.

Proof : Let P be a pattern and G a graph. Suppose that (G;P; �;) is a successful pattern

match. Then for all pattern variables x and y in P bound to node sets A and B in G (via

and �), and for all a 2 A and b 2 B, either Px;y = 1 and [G]a;b = 1, since �G(P
G
1) � G, or

Px;y = 0 and [G]a;b = 0 or Px;y = �. The reason that �G(P
G
1) � G forces Px;y = 1 to imply

that [G]a;b = 1 is as follows: Px;y = 1, so the edge �(x)! �(y) 2 PG1 . From the bindings,

we know that (a) = �(x) and (b) = �(y). Consequently, the edge a! b lies in �G(P
G
1),

and so in G.

Now, by de�nition of complementary graph, �G(P
G
1)\

�G = ;. Thus, for all pattern variables

x and y in P bound to node sets A and B in G (via and �), and for all a 2 A and b 2 B,

either �Px;y = 0 and [�G]a;b = 0 or �Px;y = 1 and [�G]a;b = 1 or �Px;y = �, showing that

(�G; �P; �;) is a successful pattern match.

Now suppose (�G; �P; �;) is a successful pattern match. Then, by the same argument,

(��G; ��P; �;) = (G;P; �;) is also a successful pattern match.

Successful pattern matches rigorously de�ne the semantics of 1's and 0's in rows

and columns whose labels can bind to sets of nodes instead of just to singleton nodes.

Let (G;P; �;) be a successful pattern match. If the entry in PX;Y is a 1, then the edge

�(X) ! �(Y) is in (G). Considering this edge and its endpoints to be a graph H , all

edges in �G(H) are necessarily in G. If, on the other hand, PX;Y is a 0, then none of these

edges are in G.

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 29

Figure 2.3 illustrates a pattern that makes use of the new de�nition by having

(useful) non-� entries in a � column. This pattern matches a graph if there exists an edge

a! b in the graph where �(y) = (b) and no other edges enter b.

y *

x | 1 *

y | 0 *

* | 0 *

Figure 2.3: Example use of the � row

2.2 Graph Transformations

De�nition 14 A primitive graph function is a function fA;B speci�ed by two graph con-

stants A = (NA; EA) and B = (NB; EB) whose edge sets EA and EB are disjoint. If

G = (N;E) is a graph, then fA;B(G) is the graph whose edge set is E [EA�EB. Its nodes

are the endpoints of its edges.

An example primitive graph function is depicted in Figure 2.4. It is clear that this

family of functions contains, for any graphs G and H , a function that maps G to H . This

is not to be construed as meaning that the family contains all graph functions, since given

arbitrary graphs G, H , J and K, there are primitive graph functions mapping G to H and

others mapping J to K, but there may be no single primitive graph function that does

both. The reason for this is that the edges being added and removed are not a function of

the graph being operated on. Nonetheless, this family of functions is large enough to suit

our purposes.

We now de�ne a related set of functions that are more useful in what follows:

De�nition 15 A primitive h-function is a function fA;B;h speci�ed by two graph constants

A = (NA; EA) and B = (NB; EB) whose edge sets EA and EB are disjoint, and an arbitrary

function h from graphs to graphs. If G = (N;E) is a graph, then

fA;B;h(G)
def
= fh(A);h(B)(G):

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 30

A = B =

G = f (G) =A,B

a b

c d

a b

c d

a b

d

a

c d

Figure 2.4: A primitive graph function

The set of primitive h-functions is actually the same as the set of primitive graph

functions. As speci�ed by its de�nition, any primitive h-function fA;B;h may be written

as the primitive graph function fh(A);h(B). Further, if I is the identity function on graphs,

then any primitive graph function fA;B may be written as the primitive h-function fA;B;I .

The former de�nition gives a more easily understood de�nition of the set of functions being

considered, while the second de�nition allows us to write the functions in a more useful way.

We now make use of the second de�nition, coupling patterns and primitive h-

functions to produce a class of functions called S-maps. Let � be the set of all graphs.

De�nition 16 An S-map SP;A;B is a function from � to 2� speci�ed by a pattern P and

two disjoint sets A and B of pairs of variables of P . It is de�ned as

SP;A;B(G)
def
= ff�(A);�(B); �

G

(G) j (G;P; �;) is a successful pattern match g

where �(X) is here de�ned as the graph consisting of all edges �(x)! �(y) such that the

pair (x; y) is in the set X of pairs of variables.

Informally, the image of a graph under an S-map is the set of all graphs that could

result from applying some primitive h-function to G with h being the �G derived from a

pattern match of G. This need for an explicit �G is the primary reason that weak general

CHAPTER 2. PATTERNS AND TRANSFORMATIONS 31

matches are insu�cient for our purposes. We will see that S-maps specialize to the kinds

of functions we want. It is clear, however, that their de�nition makes no sense without a

graph-functional inverse to the homomorphism that arises from a pattern match.

Were the images of S-maps single graphs rather than sets of graphs, we would

have the transformations we seek. But they are not. Our tack then is to turn S-maps into

transformations by constructing a function that unambiguously chooses a single represen-

tative from each S-map image of a graph. This \disambiguating function" D, when applied

to some S-map SP;A;B, produces the well-de�ned graph transformation DSP;A;B . In other

words, SP;A;B maps � ! 2�, but DSP;A;B maps � ! �. The following chapter develops a

class of disambiguating functions in detail.

32

Chapter 3

Disambiguation

Chapter 2 introduced S-maps and motivated the idea of disambiguators. This

chapter describes a parametrizable disambiguator that may be used to convert S-maps to

well-de�ned graph transformations. The word \parameterizable" here stems from the fact

that this disambiguator can be con�gured dynamically to emulate a large class of useful

disambiguators.

3.1 Transformations

De�nition 17 Let � be the set of all graphs, [�! �] be the set of all functions from � to �,

and let [�! 2�] be the set of all functions from � to 2�. A disambiguator D is a function

from [�! 2�] to [�! �] such that for all f 2 [�! 2�] and all G in �, Df(G) 2 f(G).

The functions f to which we will be applying disambiguators are, of course, the

S-maps of Chapter 2. We may think of an S-map as being a non-deterministic function

on graphs by considering its image to be a set of possible image graphs. The use of a

disambiguator allows us to convert such a non-deterministic function into a deterministic

one by forcing the choice of a single representative from each S-map image set.

We can now de�ne the graph transformations that we later use for ow analysis:

De�nition 18 A graph transformation (or more simply, transformation) TP;A;B;D is a func-

tion from graphs to graphs de�ned by

TP;A;B;D(G)
def
= (DSP;A;B)(G)

CHAPTER 3. DISAMBIGUATION 33

for some disambiguating function D. Should the pattern P not match G, causing SP;A;B(G)

to be the empty set, we de�ne TP;A;B;D(G) to be the identity function.

Assuming a particular disambiguatorD, we write TP;A;B;D using a tabular notation

consisting of a pattern followed by a replacement whose format is strikingly similar to that of

the pattern. A replacement consists of a matrix of the same size as the pattern matrix with

row and column labels identical to those adorning the pattern matrix. The only di�erence

between a transformation's pattern and replacement is in the replacement's matrix entries.

We denote the entry in the position of the replacement matrix whose row and column are

labeled by the variables x and y, respectively, as Rx;y. Every replacement matrix entry is

1, 0, or \=". A 1 in position Rx;y means that the pair of variables (x; y) is in the set A and

describes edges to be added to G, while a 0 means that (x; y) is in B and describes edges

to be removed from G. An = entry is understood to be a placeholder, and the variable

pair it identi�es is neither in A nor in B. Hence, it may be thought of as describing edges

that are to be left alone. Since the sets A and B are disjoint, this notation can express any

graph transformation. Accordingly, we allow ourselves to write TP;A;B;D as TP;R;D when

the replacement R requires explicit mention.

Example 6 An important transformation taken from data-ow analysis is the T02 transfor-

mation due to Graham and Wegman [13, 24]. This transformation is used in their e�cient

but complex information propagation algorithm. Figure 3.1 gives a rough pictorial idea of

what this transformation does.

Informally, the pattern portion of the transformation looks for a structure in the

graph like that shown on the left, wherein node a points to node b, and b points to several

other nodes, among them node c. The dotted arrow indicates that no other edges may be

incident to node b if the pattern is to match. Should these conditions be ful�lled, the edge

b! c is deleted and the edge a! c inserted. A transformation that accomplishes this task

is shown in Figure 3.2.

Figure 3.2 may be read as follows: the left-hand matrix is a pattern that matches

the situation described above: the matcher searches for graph nodes a, b, c and d to bind

to the pattern variables x, y, z and w, respectively, so that

1. There is an edge from a to b (the 1 in row x),

2. No other edges enter b (the 0 entries in column y),

CHAPTER 3. DISAMBIGUATION 34

a

b

c d z

. . .

. . .

a

b

c d z

. . .
. . .

Figure 3.1: The T02 transformation of Graham and Wegman

x y z w * x y z w *

---------------- ----------------

x | * 1 * * * x | = = 1 = =

y | * 0 1 1 * y | = = 0 = =

z | * 0 * * * z | = = = = =

w | * 0 * * * w | = = = = =

* | * 0 * * * * | = = = = =

Figure 3.2: A T02 transformation

3. b has at least two edges leaving it (the 1's in row y).

Should the pattern match succeed, �nding such a, b, c and d, the h-function indicated by

the replacement matrix is performed on the graph. The edge a ! c is added to the graph

(the 1 entry denotes that (x; z) 2 A) and the edge b ! c is deleted (the 0 entry denotes

that (y; z) 2 B). The function �G, in conjunction with the binding function �, is used to

identify the variables x, y, z and w with the nodes a, b, c and d in order to determine the

edges to be added or deleted.

In this example, if the variables x, y and z were set-valued variables (and hence

written X , Y and Z) instead of singleton variables, then the 1 in the replacement would

mean that for all graph nodes a bound to X and for all graph nodes c bound to Z, an edge

CHAPTER 3. DISAMBIGUATION 35

a! c would be added to the graph. Similarly, for all graph nodes a and b bound to X and

Y , respectively, the edge a! b would be removed from G were it present.

It should be evident that the following requirement is satis�ed:

Requirement 3 The transformation TP;R;D, where the replacement R is constructed by

replacing P's � matrix entries with = entries, leaves a graph unchanged for every pattern

P.

This requirement says that if a pattern matches some edge (or the lack thereof),

then adding it (respectively, deleting it) has no e�ect. This may seem an innocuous require-

ment, but it is equivalent to the duality requirement introduced in the previous chapter.

This equivalence is most easily seen by noticing the fact that a 1 in position Rx;y of this

replacement means to add all edges of �G(H) to G, where H is the graph containing the

two points �(x) and �(y) and the edge �(x) ! �(y). For this action to leave the graph

unchanged, the 1 in position Px;y of the pattern would have to match only this same set of

edges. But this is exactly what the duality condition of Chapter 2 says.

3.2 A Generic Disambiguator

Example 6 of the previous section was informal in the sense that the function

TP;A;B;D was not exhibited explicitly. In fact, since no disambiguator D was given, the

example did not actually describe a function. The problem, as was mentioned at the end

of Chapter 2, is that there may be more than one set of nodes a, b, c and d satisfying

the conditions stated, and so it is not clear where in the graph the modi�cation is to

take place. An S-map models this by having as its image the set of all possible results.

The way we choose to disambiguate this indeterminacy, and thus make the transformation

a well-de�ned function, is to specify a particular pattern matching algorithm to be used

to �nd the functions � and (and thereby �G) in a deterministic fashion. This section

describes a particular disambiguator by presenting such an algorithm. The following section

modi�es this algorithm so that it can emulate many other useful disambiguators. While it

is not necessarily the case that the algorithm presented here is the best or most e�cient for

performing this task, Chapter 6 shows it to be su�cient for performing the ow analysis

algorithms found in the literature with no degradation of asymptotic time bounds.

CHAPTER 3. DISAMBIGUATION 36

Rather than �nd the functions � and , our pattern matcher will attempt to �nd

a function ��1 � . If (G;P; �;) is a successful pattern match, this function maps graph

nodes to pattern variables. For v a pattern variable in P , the inverse image of ��1 � at v

is the set of graph nodes bound to v.

The reason for �nding this function rather than its constituent components is that

� and fail to be unique in a rather trivial way: let H 6= G be a graph isomorphic to G

via a map �, and let � be a bijection mapping the variables of P to the nodes of H given

by � = � � �. Then note that ��1 � = (��1 � �) � ��1 � = ��1 � ((� � ��1) �) =

��1 � (� �) = �0
�1 � 0 for 0 = (� �). Thus, for a given set of variable bindings, there

are many choices of � and that describe it. Finding a mapping describing the variable

bindings instead of �nding � and allows us to circumvent this problem.

It is more convenient for the purpose of performing a transformation to have

available the function which maps each pattern variable to its inverse image under ��1 � .

This function gives a straightforward mapping from the speci�cation of a replacement to

the sets of edges that must be added to or removed from the graph being transformed, thus

easing the task of the replacer. Thus, we will compute, for each pattern variable, the set

of graph nodes that map to it so that the set of constraints imposed by the pattern (the

existence or non-existence of certain edges, and the fact that singleton variables must have

exactly one pre-image node) are satis�ed. Computing these sets is equivalent to �nding a

partition of the graph's nodes into the \buckets" provided by the pattern variables subject

to those constraints. An algorithm for deterministically solving this partitioning problem

will thus determine, for each graph G and pattern P that matches it, a unique set of variable

bindings. Since each member of SP;A;B(G) results from a di�erent binding function, this

will cause jSP;A;B(G)j = 1. The single graph represented there will then be the image of

our transformation DSP;A;B(G).

The problem of pattern matching as it has been outlined here includes the sub-

graph isomorphism problem which is well-known to be NP-complete [12]. A search for any

subgraph H in the graph G can be coded by writing a simple pattern whose matrix, ignor-

ing the � row and column, is the adjacency matrix for H with 0 entries replaced with �'s.

If the resulting pattern matches part of G, then the edges corresponding to H have been

identi�ed: H is easily seen to be a subgraph of a simple homomorphic image of G, and in

fact a subgraph of that portion of the simple homomorphic image that does not include the

kernel. It is thus exposed as isomorphic to some subgraph of G.

CHAPTER 3. DISAMBIGUATION 37

It follows that our disambiguator must necessarily include a general (that is, worst-

case exponential) search algorithm.1 Nevertheless, it is possible to do somewhat better in

the average case than testing each partition of the node variables until �nding one that

satis�es the speci�ed constraints. Matters may be signi�cantly improved by using structural

information found in the pattern to narrow the scope of the search. This is the approach

taken here.

The exposition that follows assumes for simplicity that the patterns with which

the algorithm deals have exactly one necessarily-connected component. Since necessarily-

connected components are, for the most part, processed independently (subject to the

constraint that the regions in the graph that they match may not overlap), this is little loss

of generality. Where interactions among NCC's become signi�cant, they are so noted.

3.2.1 A simple pattern matching algorithm

Matching a simple pattern P against a graph G is done with a recursive procedure

bind that searches for a complete set of bindings for the pattern variables satisfying the

constraints given in the pattern. We construct initial data structures for the algorithm as

follows: let N be the NCC that we wish to match. Then,

1. Choose a variable v 2 N . We call v the seed variable for this NCC.

2. Order the nodes in G according to some well-order �.

3. Construct a set �v containing every node in G. This set holds the possible values of v.

Let _v be the smallest element of �v with respect to the ordering �.

4. Construct a set B and enter into it the single triple (v; �v; _v). This triple is called a

possible binding vector (PBV). It holds all possible legal values for the variable v in its

second component. The third component indicates a particular element in the set �v

to which v is considered to be provisionally bound while this triple is in B. Whenever

a variable appears in a PBV in B, we say that the variable is represented in B.

By construction, we will ensure that any set of provisional bindings expressed by

the PBV's in B always satisfy all of the constraints expressed by the pattern P .

1Or provide a proof that P=NP.

CHAPTER 3. DISAMBIGUATION 38

 x y z *

x | * 1 * *
y | * * 1 *
z | 1 * * *
* | * * * *

1

2

3

4

5

G = (N, E) ; N = { 1, 2, 3, 4, 5 }

Figure 3.3: Matching a cycle

Example 7 Figure 3.3 shows a small graph containing a cycle and a pattern which attempts

to match such cycles. The above four steps performed on this input are:

1. Choose our seed variable to be x.

2. Order the graph nodes. We will let them be ordered by their node numbers.

3. The set �x = f1; 2; 3; 4; 5g and _x = 1.

4. B = f (x; f1; 2; 3; 4; 5g; 1) g.

We de�ne variables x and y to be adjacent if and only if Px;y = 1 or Py;x = 1.

Recall that N is determined by the reexive transitive closure of the adjacency relation.

The remainder of the algorithm is an application of the recursive algorithm bind, which

reads as follows:

1. Choose a pattern variable x not yet represented in B that is adjacent in N to at least

one variable represented in B. If more than one such x exists, choose whichever is

alphabetically least. If no such x exists, then the algorithm has processed all of N

and the provisional bindings in B represent a successful match. Return success.

2. The variable x is, by its choice, adjacent to at least one variable in N . Let
!
x
6!
x

x

and
6
x be sets of variables in N de�ned by

!
x= fy represented in B j Px;y = 1g

CHAPTER 3. DISAMBIGUATION 39

6!
x= fy represented in B j Px;y = 0g

x= fy represented in B j Py;x = 1g
6
x= fy represented in B j Py;x = 0g:

The constraints on the values that x may assume in order to be consistent with the

bindings in B are all encoded by the variables in
!
x
6!
x

x and

6
x and their provisional

bindings. Let the provisional binding function, which associates a value with a vari-

able, be called �, and let the set of legal values for x be called �x. The value of �x is

then given by:

�x = fa j a is not _x for any variable x represented in B g

T
0
B@
\

8y2
!
x

fa j a! �(y) is an edge in G g

1
CA

T
0
BB@
\

8y2
6!
x

fa j a! �(y) is not an edge in G g

1
CCA

T
0
B@
\

8y2

x

fa j �(y)! a is an edge in G g

1
CA

T
0
BB@
\

8y2
6
x

fa j �(y)! a is not an edge in G g

1
CCA :

If �x is empty, then this invocation of bind returns failure; otherwise it adds the PBV

T = (x; �x; _x) to B where _x is the smallest node in �x under the ordering �.

3. Call bind recursively. If it succeeds, return success. Otherwise, remove _x from �x. If �x

is non-empty, let _x be the smallest node in �x under the ordering � and perform this

step again. If, on the other hand, �x = ;, then remove T from B and return failure.

Example 8 We will continue the previous example, stepping through bind.

1. Both variables y and z are adjacent to x; we choose the variable y for consideration.

2. Examining the pattern matrix, we see that

!
y = ;

CHAPTER 3. DISAMBIGUATION 40

6!
y = ;

y = fxg
6
y = ;:

Recalling that N is the set of all nodes in the graph, We obtain �y = f2; 3; 4; 5g\N \

N \ f2g \N = f2g, since empty intersections are taken to be the universal set. This

in turn gives B = f (x; f1; 2; 3; 4; 5g; 1); (y; f2g; 2) g.

3. We make a recursive call to bind:

1 We choose variable z for consideration.

2
!
z= fxg,

6!
z= ;,

z= fyg, and

6
z= ;. �z = f3; 4; 5g\ f4; 5g\N \ f3; 4g\N = f4g.

B = f (x; f1; 2; 3; 4; 5g; 1); (y; f2g; 2); (z; f4g; 4) g.

3 We make a recursive call to bind. It discovers there are no more variables to

process and returns success. Accordingly, this invocation returns success.

Since the recursive call succeeded, this invocation returns success.

If the algorithm terminates successfully, we obtain a binding function � mapping

graph nodes to pattern variables. �(a) is de�ned to be the variable v such that _v = a if

such a v exists, otherwise �(a) is de�ned to be �.

We can then choose an arbitrary bijection � from pattern variables to elements of

some set of graph nodes and construct a simple homomorphism = � � �. is a simple

homomorphism because � is one-to-one on the non-� pattern variables.

Example 9 Continuing the previous example, we see that bind has succeeded. The variable

x is (provisionally) bound to 1, y to 2, and z to 4. Thus, �(1) = x, �(2) = y, �(4) = z,

and �(3) = �(5) = �. Let � be the function f(x; 10); (y; 11); (z; 12); (�; 13)g. Then is, by

construction, f(1; 10); (2; 11); (3; 13); (4; 12); (5; 13)g.

Theorem 1 The above algorithm constructs a � and making (G;P; �;) a simple match

if such a match exists.

Proof : Suppose at least one match exists, and let � be a function mapping (non-*) pattern

variables to nodes that expresses this match (that is, � = ��1 jfnon-� variablesg for that

match). Let the seed variable be v1, and enumerate the rest of the variables in the order

CHAPTER 3. DISAMBIGUATION 41

that they are considered by bind, calling them v2; : : : ; vn. Note that �v1 contains every node

in G, so v1 will at some time take on the value �(v1) unless some other match is found �rst.

Now suppose v1; : : : ; vk are represented in B with provisional bindings �(v1); : : : ; �(vk)

for some k < n. Then �(vk+1) is a legal value for vk+1, and so is an element in �vk+1.

Accordingly, vk+1 will take on this value before any provisional binding of the variables

v1; : : : ; vk is changed, unless some other match is found �rst. Since this holds for all k, the

provisional bindings �(v1); : : : ; �(vn) will be found at some point unless another match is

found �rst. If no other match is found, bind terminates with � = �, �nding the match.

On the other hand, suppose that no such match exists. Then there is no set of values for

v1; : : : ; vn satisfying the constraints expressed by P . Since all of the provisional bindings in

B always satisfy this set of constraints, we see that not all of the vk can be represented in

B. But then step 1 of bind can never terminate with a success status, and so the algorithm

can �nd no match.

Two observations may be made here. The �rst is that the order in which variables

are considered by bind is only a function of the pattern, and not of the graph to which the

pattern is being applied. Thus, this order may be computed prior to any actual matching

attempt. This being the case, the sets
!
x
6!
x

x and

6
x can also be pre-computed.

A second observation is that NCC's cannot be processed completely independently,

as a match of one may cause a second one to go unmatched even when some match accom-

modating both exists. The proper way to proceed is either to place one seed from each NCC

into the set B at initialization time or to make the success of step 1 of the bind algorithm

contingent upon the successful matching of all other NCC's in the pattern via a recursive

application of the entire algorithm.

3.2.2 An algorithm for general matching

The presence of a set-valued variable in an NCC creates special problems for a

pattern matcher. Even if some mechanism creates the set of nodes that may be bound to

such a variable, there is no good way to determine which subset of this node set should be

taken as the variable's value. Since searching through all possible subsets is patently a bad

idea, we take another tack.

The approach is to bind all singleton variables in a pattern before binding any

set variables. We then use adjacency information given in the pattern matrix to determine

CHAPTER 3. DISAMBIGUATION 42

the set-variable values, taking the sets to be as large as possible subject to the constraint

that each may not contain any node bound to any other variable. We make the success of

the singleton binding portion of the algorithm contingent on the success of the set-variable

binding algorithm so that failures in �nding set-variable values cause bind to consider other

possibilities.

This dissertation does not contain an algorithm for matching NCC's containing

no singleton variables. In such patterns, there are no seeds to help constrain the values of

the set variables. In that case, the structural information in the pattern cannot be used

e�ectively, and the search process degenerates into an exponential search. The omission of

such an algorithm is an insigni�cant loss to us, as one of the criteria for deciding the quality

of a ow analysis algorithm is its speed.

The �rst half of our general matching problem, binding all singleton variables in

a pattern, could be done by re-de�ning NCC's to be comprised solely of singleton variables

and then by binding them using the algorithm above. While this would undoubtedly work,

it would be ine�cient, since structural information that connects these restricted NCC's

through set-valued variables would be lost. Consider, for example, the pattern shown in

Figure 3.4, remembering that upper-case variables denote set-variables. Under this algo-

rithm, nodes x and z would comprise their own NCC's, being separated from each other by

the set-variable Y . A search based on this idea would ignore the important fact that z must

be a distance of at most two away from x, and would treat each of x and z as independent

seeds, making �x and �z both contain all nodes in G. This would result in an O(n2) search.

Y z *

x | 1 * *

Y | * 1 *

* | * * *

Figure 3.4: A general pattern with 1 NCC

CHAPTER 3. DISAMBIGUATION 43

Instead of rede�ning NCC, our algorithm processes singleton variables as usual,

ignoring all set-valued variables. There comes a time when no unprocessed singletons in the

NCC are adjacent to any variable represented in B. The algorithm then estimates the values

of the set-valued variables which are adjacent to variables in PBV's in B so that it can use

adjacency information to limit the region it needs to examine to �nd values of any remaining

singleton variables. It does this estimation by provisionally binding each set variable X to

its entire �X set, calculated as being adjacent to provisionally-bound singletons in the usual

way. It does not, however, install these provisional bindings in B, and so the �X sets may

overlap. It then repeatedly uses adjacency to these variables as a means of constructing �v

sets for any variables in the NCC which are adjacent to these set variables (again without

considering intersections of these sets with the �X sets) until it has done so for at least one

singleton variable. The resulting �v's may be larger than necessary, but they consist only of

graph nodes that lie within the proper distance from provisionally bound nodes in B. The

singleton matching process then proceeds recursively as per this paragraph.

Finally, after all singletons are matched, new �X sets are computed for each set-

valued variable X . These may intersect, so some procedure is necessary for whittling down

the overlaps without leaving any of the �X sets empty, if this is possible. This problem is

solved by noticing that the relation between the variables and the graph nodes bound to

them can be modeled by a bipartite graph. A straightforward bipartite graph matching

algorithm may then be used to �nd a graph node for each set, ensuring that none will

be empty, if possible. Each \unallocated" graph node may then be distributed to any

set-variable's value set in which it would be a legal member.

3.2.3 The � variable

By convention, the � variable is used to match all nodes in the graph that do not

take part in the graphical structure being searched for by a pattern; that is, it stands for

\all the rest" of the graph nodes. It follows that all entries in the � row and column are

usually �'s. It is therefore unnecessary to compute explicitly the set of graph nodes that

bind to � when this condition holds. Thus, the algorithm may be modi�ed to avoid this

computation whenever it can do so, simply by neglecting to consider � to be a variable.

This means that considerable time savings are possible.

Example 10 The pattern

CHAPTER 3. DISAMBIGUATION 44

y *

x | 1 *

* | * *

simply looks for any edge in the graph. It should �nd a successful match after examining

exactly one edge, and thus the matching process should complete in O(1) time.

We can add additional special checks in our algorithm to avoid calculating the

value of � in other cases as well.

Example 11 Consider the pattern

y *

x | 1 *

y | 0 *

* | 0 *

A successful match of this pattern binds nodes a and b to variables x and y such that the

edge a ! b enters node b and no others do. Rather than calculate the value of �, the

algorithm can examine the set of edges entering the node b, making sure that for all edges

c! b in G, c = a. This examination completes in time O(1) rather than in time O(jGj).

More formally, let P be a pattern and v be a singleton variable provisionally bound

to graph node b. Suppose that P�;v = 0, and that every variable w labeling a row with

Pw;v either 1 or � is provisionally bound. The constraint encoded by the 0 in position P�;v

may then be checked by verifying that for all edges a! b in G, the node a is provisionally

bound to some variable in the pattern. If graphs are represented as an adjacency list

coupled with a reverse adjacency list, this check is made by examining all graph nodes in

b's reverse adjacency list, making sure that they are provisionally bound. The check takes

time O(in-degree(b)). Zero entries in the � row are treated mutatis mutandis.

A similar check cannot be made e�ciently if the � row or column contains a 1 entry

unless information has been maintained giving the size of the graph and the in- and out-

degrees of each of the graph nodes. If this information is available, then a simple subtraction

and comparison of edge counts is su�cient to decide the validity of the provisional bindings.

CHAPTER 3. DISAMBIGUATION 45

Should the � variable's node set actually be needed, it may be computed after all

other variables are bound simply by binding � to all remaining unbound variables.

3.3 Parameterizing the Disambiguator

This section modi�es the disambiguating pattern matching algorithm given above

so that it may emulate a variety of other disambiguators. Parameterizations may be pro-

vided at pattern matching time. This ability to parameterize the disambiguator at pattern-

matching time results in a very useful tool that can make use of a programmer's knowledge

of the graph being dealt with to make the matching process fast or to match graph features

in some particular order.

The primary di�erence that distinguishes two pattern matching algorithms based

on a search mechanism like that in the previous section is the order in which they consider

graph nodes when searching for the value of a singleton. This order in turn is determined

by the ordering � on graph nodes. The disambiguating algorithm presented in the previous

section imposes its own default node ordering, and represents �v sets as lists sorted with

respect to this order.

3.3.1 Node orderings

It follows that an e�ective way of modifying the behavior of the matching algorithm

is to allow it to take other graph node orderings into consideration. We will allow graph

node orderings to be computed by the user and provided to the pattern matcher in the

form of a graph organized as a list of nodes. This graph is suitable for controlling search

order, since it, or a processed form of it, may be used to order the �v lists. In particular, if

v is a seed variable, then �v is merely a copy of this list. Should such an ordering graph not

include all nodes in the graph being searched, the search will only occur over the subgraph it

describes. Thus, the mechanism also provides a simple way to restrict the scope of matches

and transformations.

Many algorithms on graphs make use of node orderings to distinguish various

types of edges. For example, given a reverse depth-�rst search ordering dfs on the nodes in

a owgraph, looping edges (also called back edges or fronds) are those having the property

that dfs(tail) < dfs(head). Since this kind of node ordering information is useful, and since

it is already incorporated into our generic matcher by virtue of the preceding paragraph,

CHAPTER 3. DISAMBIGUATION 46

we make it available as a pattern matching parameter by allowing relational annotations

within patterns of the form v1 � v2 for pattern variables v1 and v2. Such an annotation

means that for a match to succeed, the value bound to v1 must be less than the value bound

to v2 under the prevailing node ordering. If, say, the variable v2 is considered after v1 in

the bind algorithm, then this annotation is used when constructing �v2 to restrict the legal

choices for v2. This restriction of possibilities means that the use of such node ordering

constraints may actually speed-up the searching process.

3.3.2 Based matching

So far, we have only been concerned with pattern matches wherein all information

necessary for determining the success of a matching operation is contained in the template.

It may frequently be the case, however, that information in the form of variable bindings

produced by a previous match can be used to good advantage to speed-up the matching

process. If we were to allow pattern variables to be bound to graph nodes at the outset of

the matching process, it would be desirable for the pattern matcher to be able to use this

additional information to constrain the search. Such a mechanism would give very �ne-

grained control over the actions and speed of the pattern matcher. This section describes

how the above algorithm may be modi�ed to take this kind of information into account.

De�nition 19 A based pattern-match is one in which every NCC of the pattern contains

at least one previously-bound variable.

The term \based" comes from the fact that the bound variables serve as basepoints,

anchoring the pattern match operations to particular sections of the graph. Conversely, we

de�ne a free pattern-match to be one in which no pattern variables are bound. Based and

free pattern matches are two ends of a continuum; we say a match is partially based if some

but not all of the pattern's NCC's contain bound variables.

The behavior of the pattern matcher when presented with a based pattern should

be governed by the following consistency requirement:

Requirement 4 Let P be a pattern, and let ' be a function mapping P 's variables to the

sets of graph nodes to which those variables become bound in a successful free match of P

to graph G. Any based match of P to G having each based pattern variable v pre-bound

to '(v) must also succeed.

CHAPTER 3. DISAMBIGUATION 47

Requirement 4 ensures that based matching and free matching act consistently,

that is, that a based matching will never need to bind a previously-bound variable to a

di�erent value, and that the binding of a variable to a value resulting from a successful

matching will not invalidate that match. This point is important, since the success of a

match should only depend on the structure of the graph, the structure of the pattern, and

constraints imposed by variable bindings. It should not depend on the time sequence of the

same set of bindings.

We formalize this concept by declaring that the variable binding constraint in-

formation modi�es the behavior of the pattern matcher only by restricting the acceptable

choices of � and . The additional information thus only serves to eliminate possible

matches from consideration; it never introduces new possibilities.

The algorithm for performing a based match is a simple modi�cation of the al-

gorithm for free matching. First, one needs to perform a veri�cation that the edges that

the pattern demands exist between bound nodes do in fact exist, and that the edges that

the pattern forbids do not. The veri�cation algorithm checks the submatrix of the pattern

matrix determined by the bound variables in the pattern against the corresponding edges

in the graph to make sure they agree. The correspondence is given by the bindings of the

variables. If position Px;y in the matrix is 1, then for every pair of nodes a and b in G such

that (a) = �(x) and (b) = �(y), the edge a ! b is in G. If Px;y is 0, no such edge may

be present in G. And if Px;y is a �, it doesn't matter whether or not there is such an edge

in G. The result of the algorithm is a single success or failure indication.

After such a veri�cation has completed successfully, the previously-described search

algorithm is used with the bound variables serving as seeds. This is done by initializing B

to contain a special PBV for each such v, with the associated �v containing only what v is

bound to. The rest of the matching algorithm remains unchanged.

3.3.3 Informal analysis

The worst-case running-time of the matching algorithm is, of course, exponential.

We can, however, say a bit more about its running time with the kinds of patterns that are

typically used in ow analysis.

A free pattern is used primarily for �nding an edge in a graph, perhaps one satis-

fying a node-ordering constraint. Such a pattern with no such constraints always matches

CHAPTER 3. DISAMBIGUATION 48

in constant time, since the �rst edge it examines satis�es it and since the value of the �

variable need not be computed explicitly. The same pattern with a node ordering constraint

at worst works in time O(jEj), where E is the set of edges in the graph. The reason for

this bound is that the matching algorithm has to examine every outgoing edge from every

graph node exactly once in the worst case.

Simple based patterns are amenable to analysis. Suppose a simple based pattern

has exactly one NCC. Let � be the number of unbound variables in the NCC. Then all of

the matching activity takes place within a distance of � from the set of bound nodes at

which the pattern is being applied. If d is the maximum node degree (in- or out-) within

that area, then the complexity of the pattern match is at worst O(d�), in that j�vj � d for

every �v set encountered during the search. � is, of course, bounded by a constant for each

pattern. Should it be the case that all edges indicated by the pattern either ow away

from or toward the bound nodes, d can be restricted to either the maximum out-degree

or the maximum in-degree in the search area. For example, a T02 transformation's pattern

has four variables. Suppose that the \top" one (x in Figure 3.2) is bound. Since the usual

maximum node (out-) degree for a ow graph is two, a based T02 match can be expected to

consider at most 8 sets of PBV's in B. If another node is bound instead, then the number

of comparisons may be greater, since there is no corresponding maximum in-degree of a

node in a ow graph.

Finally, general patterns are usually used for �nding certain node sets, as in the

\demultiplexing" example in Figure 3.5. In this case, where the set variables are all at the

periphery of the pair of singletons v and w, the complexity is no more than if the pattern

were a simple pattern, since the �X �Y and �Z sets need to be computed anyway just as if X

Y and Z were singletons. The only additional cost would be in making sure that the set

values were pairwise disjoint, which is a moot question in the example given anyway.

CHAPTER 3. DISAMBIGUATION 49

X Y Z *

v | 0 1 1 0

w | 1 0 1 0

* | * * * *

Figure 3.5: A \demultiplexing" general pattern (v and w are bound)

50

Chapter 4

A Graph Programming Language

This chapter describes a programming language based on the foregoing graph

transformation techniques. This language is quite small, easy to read and use, and su�-

ciently powerful to allow for the concise implementation of ow analysis algorithms. The

linguistic base underlying the graph-transformational computational model provides ow-

of-control primitives, a scoping discipline for variables, and basic facilities for constructing

and handling graphs. These language features are described in this chapter. Chapter 5 will

exhibit several useful functions on graphs written in this language, and Chapter 6 will make

use of these functions to construct ow analysis algorithms.

4.1 A Common Lisp framework

The language described here was designed as a set of extensions to Common Lisp

(hereafter referred-to simply as Lisp). It should not, however, be viewed as a language

containing or requiring all the power of Lisp, but rather as a small language unto itself

that simply borrows from Lisp a few underlying features such as variables and control-ow

constructs. It does not rely on the existence of an underlying interpreter, and could just as

well be implemented as a compiled Algol-style language. Its power comes from its computa-

tional model of transformations on graphs rather than from any linguistic innovations. The

choice of Lisp as a base was motivated by concerns of compatibility with other software

being developed at Berkeley, and because this choice a�orded easy prototyping of the graph

transformation language.

This chapter does not attempt to describe the Common Lisp language or the

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 51

workings of the Lisp facilities used to implement the graph-based extensions; rather, it aims

at describing those extensions under the assumption that the reader is already familiar with

Lisp.

4.2 The graph datatype

The �rst necessary extension to Lisp is the addition of a (directed) graph data

type. Graphs are, of course, collections of nodes and edges. Nodes will be represented

as simple integers, so as to allow their easy manipulation by programmers. This choice

introduces no confusion, since none of our graph transformation algorithms, including our

ow analysis algorithms, will have need of an integer data type. Each graph is treated as a

set of edges on this universal set of nodes. Thus, there may be more than one graph on the

same set of nodes, and two such graphs may or may not be completely disjoint. The set of

nodes that are considered to lie in a graph contains exactly those nodes that are endpoints

of the edges in the graph.

A graph may thus be viewed as nothing more than a set of edges. The idea is

that a programmer will construct a graph on a set of nodes that represent some other

computational objects in order to represent a relationship that holds among those objects.

The integer representation of nodes is then convenient in that it allows for simple mappings

between the graph nodes and the objects they represent. A built-in function, new-node, is

provided that, when called, returns a node that is guaranteed to be unused.

Edges, on the other hand, are not entities in and of themselves, and have no explicit

representation that the programmer can obtain or manipulate. Edges may only be added

to or removed from graphs, and only by applying transformations. An extension presented

in Section 4.5 will, however, give us a bit more exibility in their use.

The manipulation of graphs other than that a�orded by pattern matches and

transformations is done with the following two primitive built-in functions: make-graph

creates and returns a new (empty) graph, while graph-changed returns a Boolean value

indicating whether or not the graph was changed by a transformation. The Boolean ag

is actually a �eld in the graph data structure, and can be set back to nil via setf in

preparation for any subsequent transformation attempt.

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 52

4.3 Patterns, transformations and variables

The extension of Lisp by the incorporation of patterns and transformations is

fairly straightforward, except that we need to de�ne an interface between Lisp variables

and pattern variables and a scoping mechanism so that the entire system functions in a self-

consistent manner. While Lisp provides a scoping mechanism for variables, this mechanism

does not apply to pattern variables, which are manipulated by the graph transformation

system rather than by the Lisp interpreter, and hence are not recognized by Lisp.

Our language implements such a scoping mechanism by breaking pattern matches

into two parts: a pattern declaration and a pattern application. These parts correspond

roughly to a function declaration and a function call, and provide an easily-understood

mechanism to control the lifetimes of bindings of pattern variables.

4.3.1 Pattern declarations

A pattern declaration contains, along with a labeled pattern matrix, declarations

of the pattern's variables. Each pattern variable must be declared to be an in variable, an

out variable, or a local variable. In variables are those that are considered to be bound

prior to pattern-matching; that is, their bindings get passed in to the pattern matcher from

outside. They serve as the base-points in based matches. Out variables are those that

will propagate their bindings out of the pattern application after a successful match. They

are unbound immediately prior to the matching attempt. Local variables, which are also

unbound at the beginning of a match, do not communicate their values out of the pattern

or transformation.

Patterns are declared and constructed by the macro gpattern, which takes four

arguments: in-list, out-list, local-list, and labeled-matrix. Each of in-list, out-list, and local-

list is a list of pattern variables (e.g. (x y z)), and declares the variables in its list to be of

the designated type. The labeled-matrix is a list of lists that represents the pattern itself.

The �rst sublist of this list contains the column labels of the pattern. Each subsequent

sublist represents a row of the pattern, its �rst element being the label of that row. Figure

4.1 shows an example pattern. In that �gure, the pattern variable b is an in variable, a and

c are out variables, and x, y and z are local variables. The fourth argument, the labeled

matrix, is arranged matrix-wise to allow for easy reading. Its top row, the �rst sublist,

contains the column labels. Each of these labels, along with each row label, must be a

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 53

pattern variable declared as an in, out or local.

(gpattern (b)(a c)(x y z) ((c a z x *)
(a 1 0 1 1 *)
(b 1 1 0 0 *)
(x 1 0 * * *)
(y 0 0 1 * *)
(* * * * * *)))

Figure 4.1: Example pattern de�nition

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 54

As was mentioned in an earlier chapter, a naming convention distinguishes sin-

gleton variables from set variables in patterns. If the �rst letter of a variable's name is

upper-case, the variable is a set variable, otherwise it is a singleton. It should be noted that

this convention necessitates a case distinction within Common Lisp. Fortunately, most

Lisp implementations allow this distinction to be made.

4.3.2 Pattern applications

A pattern application contains a pattern, a graph to attempt to match with it,

a list of values to be bound to in variables prior to the matching attempt, and a list of

Lisp variables to receive the bindings of out variables after the match, should it succeed.

In parameters are passed by value by being copied to the in pattern variables just prior to

the match. Out values are passed by result, being copied from the out pattern variables to

the out Lisp variables after a successful match.

This application of a pattern to a graph is done by the macro pmatch that takes

four arguments: a pattern, a graph, a list of in-values, and a list of out-variables. The

pattern argument may either be the result of a previous gpattern macro invocation or a

list containing arguments to such a call. pmatch returns a Boolean value indicating whether

or not the match succeeded, and only binds the out Lisp variables after a successful match.

Figure 4.2 shows an example pattern application. The in values held by the Lisp variables

m and n are copied to the in pattern variables p and q prior to the match. Should the match

succeed, that is, if the edge m! n is in G, the pmatch call will return t. Since there are no

out variables, none will be bound.

(pmatch ((p q)()() ((q *)
(p 1 *)
(* * *))) G (m n) ())

Figure 4.2: Example pattern application

4.3.3 Transformations

Transformations are similarly considered in two parts, a transformation declaration

and a transformation application. Transformation declarations contain variable declarations

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 55

and pattern matrices identical in form to those in pattern declarations, along with replace-

ment matrices.

A transformation is declared and constructed by the macro pxform, which takes

four (not �ve) arguments: in-list, out-list, local-list, and labeled-matrix-pair. Each of in-

list, out-list, and local-list is, as before, a list of pattern variables, and declares them to

be of the designated type. The labeled-matrix-pair is a list of lists that represents both

the pattern and the replacement. Even-numbered sublists form the pattern, while odd-

numbered sublists form the replacement. The �rst two sublists in the list contain the

column labels of the pattern and of the replacement, respectively. They must therefore be

the same. Each subsequent pair of sublists represents a row of the pattern and a row of the

replacement. The �rst element of each sublist is the label of that row. Figure 4.3 shows an

example transformation. In that �gure, the pattern variable x is an in variable, and y is an

out variable. The fourth argument, the labeled matrix-pair, is arranged to appear as a pair

of matrices. The three sublists on the left form the pattern, while the three sublists to the

right form the replacement. It should now be apparent why the pattern and replacement

are expressed as an interleaved pair of matrices, rather than as two separate lists.

(pxform (x)(y)() ((y *) (y *)
(x 1 *) (x 0 =)
(* * *) (* = =)))

Figure 4.3: Example transformation de�nition

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 56

Paralleling pattern applications, transformation applications contain a transfor-

mation, a graph, a list of in values, and a list of out variables. The function of each of

these parts is almost identical to that of its counterpart in pattern applications. The two

exceptions are that the transformation may alter the graph if the pattern match incorpo-

rated into it succeeds, and that local pattern variables maintain their bindings until any

such alteration is completed. Local pattern variables may thus be used to communicate

between the pattern and the replacement of a transformation.

The macro that performs transformation applications is pxapply. Its �rst argu-

ment, the transformation, may either be a transformation returned from a previous call to

pxform, or may be a list containing the arguments that would be given to such a call. It

returns a Boolean value indicating whether or not the pattern-match portion of the transfor-

mation succeeded. The replacement action and the binding of out variables only happens if

the pattern match succeeds. Figure 4.4 shows a pattern application that adds an edge from

node m to every other node in G. The value of m is bound to the pattern variable z prior to

the pattern match. This match necessarily succeeds, since it describes no constraints. The

1 in the replacement matrix says to add an edge from the node bound to z to each node

bound to �, or in other words, to every other node in the graph.

(pxapply ((z)()() ((*) (*)
(z *) (z 1)
(* *) (* =))) G (m) ())

Figure 4.4: Example transformation application

In both pattern applications and transformation applications, the graph is passed

to the pattern matcher or transformer by reference. Also in both cases, the application

returns (Lisp-function-style) a Boolean value indicating the success or failure of the pattern

match. This value may then be tested by the usual Lisp control-ow constructs.

4.4 Node orders

Node orders, the necessity for which was explained in Chapter 3, are incorporated

into the language as a second data type. They are incorporated this way rather than as

graphs because a simple list of nodes (such as a linear directed graph) is not a suitable form

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 57

for e�ciently checking that a pair of nodes satis�es certain semantic constraints (such as

x < y). That problem is recti�ed by the introduction of this new datatype, each instance

of which expresses a read-only mapping between nodes and their positions in an ordered

list. We provide one constructor function, node-order, that takes a linearly-organized

graph as input and returns an object of type node-order. This object may be given to

the forms pmatch and pxapply as an optional last argument; doing so causes them to use

the speci�ed order instead of the default order in free searches and in semantic constraint

checks. Constructing the desired linear graph is left to programmers who can write graph

traversal programs based on pattern matching and transformations. An example will be

shown in Chapter 5 after several other auxiliary graph functions are developed.

The default ordering of nodes is the order in which they are created with new-node.

This order is typically not very useful unless one is extremely careful about the way in which

one originally enters graphs into the system. It is highly recommended that the customizable

node order facility be used if one wishes to represent syntax trees or other data structures

in which order of visitation is important.

4.5 Edges

We have seen how the pattern-matcher can bind graph nodes to variables and can

reference those bindings in subsequent matches. It is sometimes desirable to be able to

refer to edges in similar ways. An extension of the notation used for pattern matrix entries

allows us to do so.

4.5.1 Edge bindings

Let x and y be (singleton) pattern variables in a pattern P such that Px;y is either

1 or �. After a successful match, there is a correspondence between the position Px;y and

the edge in the matched graph that leaves the node bound to x and enters the node bound

to y. We cause this edge to be bound to a variable z by writing the matrix entry in position

Px;y as 1:z or �:z, instead of 1 or �. It of course makes no sense to write any entry as 0:z,

since the edge in question then necessarily doesn't exist and cannot be bound to z.

If, say, x should instead be a set-valued variable (that is, X), the set of edges

corresponding to the pattern position PX;y could be captured with the predictable notation

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 58

1:Z or �:Z. This is just an extension of the convention that lower-case variable names are

used to capture single values, while upper-case names are used to capture sets of values.

This \dot notation" allows us to name an edge, given its endpoints. Of course, the

inverse operation { naming an edge's endpoints given the edge { is also well-de�ned, since

all edges are directed, and so the edge's two endpoints are distinguishable from one another.

We introduce a second notation to allow us to perform this inverse operation. Again, we

will annotate the pattern matrix position Px;y, this time with a variable that is already

bound to an edge. The pattern matcher will then be able to identify x and y uniquely as

that edge's tail and head, respectively, and bind them to these values prior to beginning

the normal matching process. Let e be the entry (1, 0, or �) in position Px;y in the pattern

matrix, and let z be the variable that is already bound to some edge (or set of edges) in

the graph. We annotate the matrix entry e by rewriting it as e@z . The entry e and the

variable z do not interact directly; z is merely used as a strong \hint", and is notationally

glued to e only so that they may share one position in the pattern matrix.

In the case that e is a 1 or �, we may combine the above two notations, writing a

matrix entry as e@x:y . Such a matrix entry means that x should be used as a hint to give

bindings for the variables labeling the entry's row and column, the pattern-match should

proceed, and if it is successful, the graph edges that correspond to e's position in the pattern

matrix should be bound to y. Interestingly enough, the value of y after this operation need

not be equal to the value of x, especially if x and y are set-valued variables (i.e. X and

Y). X may have received its value from a successful match of another pattern to a di�erent

graph, and the edges to which it refers may not all exist in the current graph. An entry of

the form �@X:Y can match a di�erent set of edges from those in X . The guarantee is only

that the endpoints of the edges in Y will be a subset of the endpoints of the edges in X .

Note that the matrix entry 0@z is a legal notation, and a pattern containing it

matches a graph only if the edge described by the value of z is not in that graph.

Edge variables interact with the variable scoping mechanisms the same way that

node variables do, and so each must be declared in a pattern or transformation as an in,

out or local variable.

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 59

4.5.2 Edges as nodes

It is sometimes useful to be able to create graphs whose nodes are the edges of

other graphs (for example, the line graph dual [14]), or to refer to edges as if they were

objects instead of relations between objects. Such a facility is especially important for some

data-ow analysis algorithms that prefer to attach local information propagation functions

to owgraph edges instead of to nodes. To facilitate these kinds of edge manipulations, we

declare that for each possible edge there exists a unique graph node associated with that

edge. In practice, we allocate this node when the \to-be-corresponding" edge is bound to a

variable for the �rst time. The node chosen to correspond to that edge will thus never have

appeared previously in any graph.

The correspondence between edges and their associated nodes is maintained in-

ternally by the run-time system. It can thus be the case (and is) that variables only bind

to nodes, never to edges. That is, whenever an edge is to be bound to a variable, its cor-

responding node is bound to that variable instead. Should a bound variable occur in a

context requiring an edge binding, the coercion back is performed implicitly if, of course,

there is some edge (or set of edges) corresponding to the node (or set of nodes) bound to

the variable. However, if there is no such corresponding edge or edge set, the variable is

considered to be bound to the empty set of edges, and the pattern match in which it appears

fails.

4.6 A library of transformations

The preceding part of this chapter has described a programming language for

operating on graphs. This language appears to be rather low-level, having as its operators

only the graph transformations developed in Chapter 2. Nonetheless, the language may be

extended to include higher-level operations by means of a library of useful transformations

and ow analysis procedures. Such a library has been developed, and is considered to form

part of the language. The contents of this library is dealt with in the next two chapters.

The idea of extending a language by means of a subroutine library is not a new

one. This particular library is only remarkable in that it provides high-level operations that

can be used without modi�cation to solve a wide variety of ow analysis problems. This

in turn would not be unusual, except that it has been accomplished by the design of the

CHAPTER 4. A GRAPH PROGRAMMING LANGUAGE 60

language instead of by a great deal of discipline of a programming team. Every computation

expressed in this language depends ultimately upon one data type, graphs, and one way

of manipulating objects of that type, graph transformations. Any two correct algorithms

for computing, say, available expressions must necessarily work on the same ow graph and

produce exactly the same result graph. The di�erence between two such algorithms can

be only in the way in which the gen and kill graphs are speci�ed, or in the order of their

arguments. Thus, ensuring that two such algorithms are interchangeable is only a matter

of checking that they have been written to accept the same argument lists.

61

Chapter 5

Graph Manipulations

The graph transformation techniques described in Chapters 2 and 3 are quite

powerful, but rather low-level to program with. This chapter shows how, with the aid of

Common Lisp functions and macros, these techniques may be used to build higher-level

graph manipulators that are more amenable to use, and begins to show the utility of the

transformational paradigm. The following chapter will use these aids to implement ow

analysis algorithms.

The set of functions presented here purports neither to be the only nor the best

possible set of language extensions for the task of performing ow analysis. Further ex-

perimentation with the system will doubtless reveal better ways of doing things. This set

is easily understood, however, and is su�cient for the task, as is shown in the following

chapter.

5.1 Adding and deleting edges

Perhaps the most fundamental operation on a graph is the addition or removal

of a particular edge. Since these operations will occur often, we provide, for the sake of

brevity, a pair of functions for doing so. These are shown in Figure 5.1.

The pattern portion of each of these transformations necessarily matches any graph

successfully.1 This way of writing the transformations causes them to be somewhat more

e�cient than does the approach of checking whether the edge exists and only conditionally

1Since x and y are already bound to nodes, the graph does not have to be nonempty for these patterns
to match.

CHAPTER 5. GRAPH MANIPULATIONS 62

(defun +!edge (v w G)
(pxapply ((x y)()() ((y *) (y *)

(x * *) (x 1 =)
(* * *) (* = =))) G (v w) ()))

(defun -!edge (v w G)
(pxapply ((x y)()() ((y *) (y *)

(x * *) (x 0 =)
(* * *) (* = =))) G (v w) ()))

Figure 5.1: Functions for adding and deleting edges

modifying the graph. The reason for this di�erence in e�ciency is that the graph transformer

has to do this check internally in any case. Both of these functions thus return t.

5.2 Combs

We de�ne a comb graph to be a directed graph all of whose edges emanate from a

single vertex. For each node x in a graph G, de�ne the comb at x in G to be the subgraph

of G consisting of all arcs emanating from x (along with their endpoints). Given a graph

G and a node x, we can construct a graph equal to the comb at x in G with the algorithm

shown in Figure 5.2.

(defun comb (G x)
(let ((Y (make-graph)) (A nil))

(when (pmatch ((x)(A)() ((A *)
(x 1 0)
(* * *))) G (x) (A))

(pxapply ((x A)()() ((A *) (A *)
(x * *) (x 1 =)
(* * *) (* = =))) Y (x A) ()))

(when (pmatch ((x)()() ((x *)
(x 1 *)
(* * *))) G (x) ())

(pxapply ((x)()() ((x *) (x *)
(x * *) (x 1 =)
(* * *) (* = =))) Y (x) ()))

Y))

Figure 5.2: Algorithm for computing combs

The algorithm �rst binds A to the set of all graph nodes not equal to x to which

CHAPTER 5. GRAPH MANIPULATIONS 63

arcs from x point, and enters these same arcs into the initially empty graph Y. The second

half of the algorithm then checks for an arc from x to itself, entering it into Y if it exists.

The graph Y is returned. This is a good example of how arcs may be copied from one graph

to another: once the relevant nodes are bound to variables, arcs connecting those nodes

may be added to the second graph.

(comb G x) creates a comb graph in which each edge points to an immediate

successor of x. It is sometimes useful to create a comb graph wherein each edge points to

a predecessor of x instead. The algorithm in Figure 5.3 does exactly this. The call (rcomb

G x) is equivalent to (comb (reversegraph G) x), but is much more e�cient, as it does

not need to compute the reverse of all of G.

(defun rcomb (G x)
(let ((Y (make-graph)) (A nil))

(when (pmatch ((x)(A)() ((x *)
(A 1 *)
(* 0 *))) G (x) (A))

(pxapply ((x A)()() ((A *) (A *)
(x * *) (x 1 =)
(* * *) (* = =))) Y (x A) ()))

(when (pmatch ((x)()() ((x *)
(x 1 *)
(* * *))) G (x) ())

(pxapply ((x)()() ((x *) (x *)
(x * *) (x 1 =)
(* * *) (* = =))) Y (x) ()))

Y))

Figure 5.3: (rcomb G x) = (comb (reversegraph G) x)

5.3 Iterators

Iterators over graph nodes and edges are important and powerful tools. The �rst

iterator we will implement, and probably the most straightforward, is foreachnode, the

algorithm for which is shown in Figure 5.4. Iterators are implemented using Lisp macros

so that the body of code that they iteratively execute lies within the scope of the iteration

variables.

The algorithm works by �rst creating a new node z and a new graph C.2 These

2For notational convenience, gensym'd symbols in Lisp macros (such as z and C in foreachnode) will be
referred to throughout this dissertation by the names of the Lisp variables binding to those symbols.

CHAPTER 5. GRAPH MANIPULATIONS 64

(defmacro foreachnode ((x G) &body body)
(let ((C (gensym)) (z (gensym)))
`(let ((,z (new-node)) (,x nil))

(pxapply ((z)()() ((*) (*)
(z *) (z 1)
(* *) (* =))) ,G (,z) ())

(let ((,C (comb ,G ,z)))
(pxapply ((z)()() ((*) (*)

(z *) (z 0)
(* *) (* =))) ,G (,z) ())

(while (pxapply ((z)(x)() ((x *) (x *)
(z 1 *) (z 0 =)
(* * *) (* = =))) ,C (,z) (,x))

,@body)))))

Figure 5.4: Iterator over graph nodes

are used to keep track of which nodes still need to be visited. C is initialized to be a comb

graph, the teeth3 of which are all the nodes in the graph G. This initialization is done by

adding to C an edge from z to each of its nodes, then taking the comb of the resulting graph

at z. The while loop test uses a pxapply to remove one of the edges in C, simultaneously

binding the node this edge enters. The body of the iteration is then executed with this node

bound to the iteration variable. As long as this process is able to remove edges leaving C

(that is, the algorithm can �nd un-visited nodes), the while loop repeats.

Our second iterator iterates over all graph edges. It is shown in Figure 5.5.

(defmacro foreachedge (((x y) G) &body body)
`(foreachnode (,x ,G)

(let ((F (comb ,G ,x)))
(while (or

(pxapply ((x)(y)() ((y *)(y *)
(x 1 *)(x 0 =)
(* * *)(* = =))) ,F (,x) (,y))

(and
(pxapply ((x)()() ((x *)(x *)

(x 1 *)(x 0 =)
(* * *)(* = =))) ,F (,x) ())

(setf ,y ,x)))
,@body))))

Figure 5.5: Iterator over graph edges

This iterator uses foreachnode to visit each node in the graph, using comb to

3\leaves", but using a less arboreal metaphor.

CHAPTER 5. GRAPH MANIPULATIONS 65

construct a copy of the comb at that vertex. Each edge in the original graph thus ends

up being copied into exactly one of these combs. The iterator then executes the macro's

body once for each edge in the comb with the endpoints of this (directed) edge bound to

the iteration variables. As in the algorithm for comb, a special pattern is needed to check

for looping edges.

A variant of this iterator may be de�ned that also binds each edge to a variable as

explained in Subsection 4.5.2. This modi�cation results in the algorithm shown in Figure

5.6. Of course, this version is less e�cient than the simpler version because each pxapply

may cause a new mapping to be created between the edge being bound and the node that is

to represent it. Sometimes, however, this behavior is exactly what is wanted. An application

of this feature is shown at the end of the next section.

(defmacro foreachedge-with-edge-binding (((x e y) G) &body body)
`(foreachnode (,x ,G)

(let ((F (comb ,G ,x)))
(while (or

(pxapply ((x)(y e)() ((y *)(y *)
(x 1.e *)(x 0 =)
(* * *)(* = =))) ,F (,x) (,y ,e))

(and
(pxapply ((x)(e)() ((x *)(x *)

(x 1.e *)(x 0 =)
(* * *)(* = =))) ,F (,x) (,e))

(setf ,y ,x)))
,@body))))

Figure 5.6: An iterator that binds graph edges

Other iterators, such as foreachchild, which iterates over all nodes reachable via

arcs from a particular node, are also straightforward to de�ne. One simply combines the

above iterators with particular subgraphs, such as combs. For examples, see Figures 5.7

and 5.8. More complex iterators will be developed in Chapter 6.

(defmacro foreachchild ((y x G) &body body)
(let ((dummy (gensym)))

`(foreachedge ((,dummy ,y) (comb ,G ,x)) ,@body)))

Figure 5.7: Iterator over child nodes

CHAPTER 5. GRAPH MANIPULATIONS 66

(defmacro foreachparent ((y x G) &body body)
(let ((dummy (gensym)))

`(foreachedge ((,dummy ,y) (rcomb ,G ,x)) ,@body)))

Figure 5.8: Iterator over parent nodes

5.4 Some global graph transformations

The iterators just described may be used to implement several global graph oper-

ations. The �rst and simplest such global graph function is a function that makes a copy

of a graph. The version shown in Figure 5.9 uses foreachedge along with +!edge to copy

each edge in the graph G into a new empty graph that it returns.

(defun copygraph (G)
(let ((X (make-graph)))

(foreachedge ((x y) G) (+!edge x y X))
X))

Figure 5.9: Algorithm to copy a graph

The next simplest operations on entire graphs perform some logical operation on

corresponding edges in two graphs.

De�nition 20 The union of two graphs G and H is the graph whose edge set is the union

of the edge-sets of G and H , and whose node-set is the union of the node sets of G and H .

An algorithm for computing graph unions is shown in Figure 5.10.

(defun union (G H)
(let ((X (copy-graph G)))

(foreachedge ((x y) H) (+!edge x y X))
X))

Figure 5.10: Graph unions

De�nition 21 The di�erence of two graphs G and H is the graph whose edge-set is the

set di�erence edges(G) � edges(H). Its nodes are exactly the endpoints of its edges.

An algorithm for computing graph di�erences is shown in Figure 5.11.

CHAPTER 5. GRAPH MANIPULATIONS 67

(defun difference (G H)
(let ((X (copy-graph G)))

(foreachedge ((x y) H) (-!edge x y X))
X))

Figure 5.11: Graph di�erences

De�nition 22 The intersection of two graphs G and H is the graph whose edge-set is the

intersection of the edge sets of G and H . Its nodes are the endpoints of its edges.

An algorithm for computing graph intersections is shown in Figure 5.12. The

pattern is used to test the graph H for the existence of edges found in graph G; if an edge

exists in both graphs it is added to the new graph.

(defun intersection (G H)
(let ((X (make-graph))

(foreachedge ((x y) G)
(when (pmatch ((x y)()() ((y *)

(x 1 *)
(* * *))) H (x y) ())

(+!edge x y X))))
X))

Figure 5.12: Graph intersections

An operations such as union, di�erence, or intersection can also be done in-place,

modifying one of its arguments. This obviates the need for making an explicit copy of that

argument. An example of one of these in-place operations is shown in Figure 5.13.

(defun union! (G H)
(foreachedge ((x y) H) (+!edge x y G))
G))

Figure 5.13: In-place graph unions

De�nition 23 The reversal GR of a graph G = (V;E) is the graph (V;E0) such that the

edge x! y 2 E0 if and only if the edge y ! x 2 E.

An algorithm for computing graph reversals is shown in Figure 5.14.

CHAPTER 5. GRAPH MANIPULATIONS 68

(defun reversegraph (G)
(let ((X (make-graph)))

(foreachedge ((x y) G) (+!edge y x X))
X))

Figure 5.14: Graph reversals

There are two other important global graph transformations that are somewhat

more complicated. The �rst combines two graphs in the manner of relational composition,

while the second un-does this process in a simple but useful way.

De�nition 24 The composition G �H of two graphs G and H is the graph that contains

an edge p! q if and only if there exists some node x such that the edge p! x is in G and

the edge x! q is in H .

If the graphs G and H are thought of as representing relations, then their graph

composition as de�ned exactly represents the relational composition G �H . The algorithm

requires nothing more than what we already have developed, and is shown in Figure 5.15.

(defun compose (G H)
(let ((X (make-graph)))

(foreachedge ((w x) G)
(let ((F (comb H x)))

(when (not (empty-graph F))
(foreachedge ((y z) F)

(+!edge w z X)))))
X))

Figure 5.15: Graph compositions

The last algorithm in this section attempts to un-do the e�ects of a composition,

producing two graphs from its single graph argument in such a way so that the composition

of the two is equal to the original graph. Of course there is not a unique way to create

these graphs, since many pairs of graphs may compose to the same thing.4 The approach

taken here is to split each edge in the original graph into two edges that will then compose

to form the original edge. The algorithm is shown in Figure 5.16.

The algorithm uses the iterator foreachedge-with-edge-binding described in

the previous section to bind each edge x ! y in the original graph to a unique node e. It

4As evidenced by R �R� = R
� = R

� �R� for any �nite relation R 6= R
�

CHAPTER 5. GRAPH MANIPULATIONS 69

(defun factor (G)
(let ((G1 (make-graph)) (G2 (make-graph)))

(foreachedge-with-edge-binding ((x e y) G)
(+!edge x e G1)
(+!edge e y G2))

(values G1 G2)))

Figure 5.16: Graph factoring

then thinks of each such new node as being the midpoint of its associated edge, and creates

edges x! e and e! y, the \�rst half" and \last half" of the edge x! y. Graph G1 is used

to collect the �rst halves, while G2 collects the second halves. Accordingly, G1 is a disjoint

union of comb graphs, while G2 is the reverse of such a union.

The resulting graphs G1 and G2 have an interesting and useful property. We

already know that (compose G1 G2) is equal to the original graph G. (compose G2 G1), on

the other hand, is the so-called line (di)graph5 of G, whose nodes correspond to the edges

of G, and that has an edge from (node) e to (node) f if there exists a node x in G such that

edge e enters x and edge f leaves x. Line graphs will be very important in the next chapter

for certain data ow analysis algorithms.

5.5 Emulating other data structures

A programming language with only one real data type may seem somewhat re-

strictive. However, graphs are su�ciently general that they may be used to emulate other

data structures successfully. Operations on these data structures can be coded in terms of

our transformations. This section outlines a few examples.

5.5.1 Sets of nodes

Creating a graph representing a set of nodes is uncomplicated. One merely creates

a special node n used nowhere else, and forms a comb graph all of whose edges leave this

new node. A node x is entered into the set by adding the edge n ! x to the comb graph.

Figure 5.17 exhibits an implementation of sets.

5This term is taken from [14]. Other terms used in the literature for this graph include the \derivative"
graph, \derived graph", \edge-to-vertex dual", \covering graph", and \adjoint".

CHAPTER 5. GRAPH MANIPULATIONS 70

(defconstant SetHead (new-node))

(defun add-to-set! (x S)
(+!edge SetHead x S))

(defun delete-from-set! (x S)
(-!edge SetHead x S))

(defun set-member? (x S)
(pmatch ((s x)()() ((x *)

(s 1 *)
(* * *))) S (SetHead x) ()))

Figure 5.17: A set package implemented with graphs

Set union, intersection, and di�erence all work via the graph union, intersection

and di�erence functions given previously. One may iterate over all elements in the set by

means of the iterator foreachedge. One iterates over all edges in the (comb) graph, and

ignores the binding of the SetHead node to the �rst of foreachedge's iteration variables.

5.5.2 Stacks

It is often useful, especially when attempting to traverse a graph in some particular

order, to push graph nodes onto a stack for later consideration. Presented here are two

functions for managing a graph as a stack. The graph in question has a distinguished node

(the head), and has the form of a linked-list (that is, it is acyclic and every node but one

has exactly one successor). The functions are shown in Figure 5.18.

gpush adds an item to the front of the linked list (underneath the header node),

while gpop removes and returns the node under the header. The body of gpush's \when"

clause is only invoked if the stack is empty, while the body of gpop's \when" clause is only

invoked when the stack has zero or one element.

This style of stack cannot contain the same node more than once lest a loop occur

in the graph. A more general stack push routine might create a new node, inserting it

just after the header node, and add a new edge emanating from this newly-created node

pointing to the node being pushed. In order that the nodes being pushed be distinguishable

from the new nodes used for maintaining the list structure, each of the new \cons-cell-like"

nodes would have to be marked, perhaps by having another distinguished node point to it.

CHAPTER 5. GRAPH MANIPULATIONS 71

(defun gpush (x head Stk)
(when (not (pxapply ((x p)()(y) ((y x *) (y x *)

(p 1 * *) (p 0 1 =)
(x * * *) (x 1 = =)
(* * * *) (* = = =))) Stk (x head) ()))

(pxapply ((x p)()() ((x *) (x *)
(p * *) (p 1 =)
(x * *) (x = =)
(* * *) (* = =))) Stk (x head) ())))

(defun gpop (head Stk)
(let ((x nil))

(when (not (pxapply ((p)(x)(y) ((x y *) (x y *)
(p 1 * *) (p 0 1 =)
(x * 1 *) (x = 0 =)
(* * * *) (* = = =))) Stk (head) (x)))

(pxapply ((p)(x)() ((x *) (x *)
(p 1 *) (p 0 =)
(x * *) (x = =)
(* * *) (* = =))) Stk (head) (x)))

x))

Figure 5.18: Functions to maintain a stack

Since the only use made of stacks in this dissertation will be for traversing a graph, the

simpler version in Figure 5.18 will su�ce.

5.5.3 Binary trees

The simplest way to implement a binary tree using graphs is to use two graphs

named L and R. L contains those tree edges that point to left children, while R represents

those edges that point to right children. This strategy adequately solves the problem of

telling which edges point in which direction, but has the disadvantage that pattern-matches

on the tree must be decomposed so as to be applied to the pair of graphs.

It is more satisfying to represent a tree with a single graph. Such a representation

can be achieved by taking the two trees L and R, and forming their union, T . A node-order

graph may be constructed by traversing the tree (using L and R) in, say, top-down left-to-

right order. This node order, in conjunction with semantic order constraints, may then be

used to match patterns against T .

CHAPTER 5. GRAPH MANIPULATIONS 72

5.5.4 Graphs with typed nodes

It is sometimes useful to be able to distinguish di�erent classes of nodes from one

another. For example, if we have a graph representing an expression tree, we may wish

to know which nodes represent operators, which represent variables, and which represent

constants. We may wish to create and maintain this kind of type information for each node

in the graph. To \assign" types to nodes, we create one distinguished node per type, and

add edges to our graph pointing from this special node to each graph node having that

type. The type of any node may then be checked in a pattern by feeding the pattern the

appropriate special node as an in variable, adding a row labeled by it, and placing 1's in

this row in columns labeled by variables whose type we are checking. The pattern can then

only match if the desired typing arcs are present.

This node-typing technique gives yet another way to implement binary trees: cre-

ate two type nodes, say, l and r, and have them point to all the left and right children,

respectively.

5.6 Computing node orders

We now have enough tools at our disposal to compute node orders. Recall that to

build a node order for a graph G, we need to construct a linear graph from the nodes of G

in the order we want, and hand this resulting graph to the primitive function node-order.

This section describes an algorithm to compute one very useful order, that resulting from

s-numbering. It is shown in Figure 5.19.

(defun s-number (G n0)
(let ((Mark (make-graph)) (S (make-graph)) (y nil))

(labels ((dfssub (n)
(when (not (set-member? n Mark))

(add-to-set! n Mark)
(foreachchild (c n G) (dfssub c))
(gpush n S))))

(dfssub n0))
(pxapply ((x)()(y) ((y *) (y *)

(x 1 *) (x 0 =)
(* * *) (* = =))) S (StackHead) ())

S))

Figure 5.19: Graph traverser

CHAPTER 5. GRAPH MANIPULATIONS 73

This algorithm assumes that the input graph G is a owgraph, and that n0 is

its unique entry node. The local function dfssub performs a depth-�rst search on the

owgraph, starting at n0. As it backs-up from each node, it pushes that node onto the

stack S. It terminates when there are no more reachable nodes to visit. The pxapply is

then executed; it removes the stack header node from the stack, leaving a graph in the form

of a linear list. This may them be given as a parameter to the built-in function node-order

to create the node-order object that may be used in subsequent matches.

5.7 Transitive Closure

As a prelude to the program ow analysis algorithms discussed in the next chapter,

we close this chapter with a discussion of a simpler graph problem, that of computing

transitive closures.

5.7.1 Warshall's algorithm

Perhaps the most widely known and used algorithm for computing transitive clo-

sure is Warshall's algorithm, an O(n3) algorithm that was designed for computing with

relations represented as boolean matrices [23]. The biggest drawback to using Warshall's

algorithm is that it is necessarily O(n3), since it operates on a dense representation of a

relation. One can do better with a sparse representation such as that a�orded by graphs.

5.7.2 Hunt, Szymanski, and Ullman's algorithm

Hunt, Szymanski, and Ullman [17] developed an algorithm using a sparse repre-

sentation that runs in O(n2) time on sparse relations (those having O(jEj) = O(jV j)). Their

algorithm, shown in Figure 5.20, works by using a simple node mark-and-stack path-�nding

algorithm (hsu-search) to compute, for a given node, all nodes reachable from that node.

Whenever it �nds a new reachable node, it adds an edge from the starting node to this

new node into the graph representing the closure. Wrapped around this path-�nder is a

loop that iterates over each node in the graph. Thus, the result contains an edge from each

node to every node reachable from that node via some path in the original graph. The

algorithm's behavior is O(jVj � jEj2). It degenerates to O(jVj3) in the dense case, but gives

O(jVj2) for sparse graphs.

CHAPTER 5. GRAPH MANIPULATIONS 74

(defun hsu (G)
(let ((H (make-graph)))

(foreachnode (p G)
(hsu-search G p H))

H))

(defun hsu-search (G p H)
(let ((Stk (make-graph)) (MarkSet (make-graph)))

(gpush p Stk)
(while (not (empty-graph Stk))

(let* ((k (gpop Stk))
(C (comb G k)))

(foreachedge ((kk q) C)
(when (not (is-element? q MarkSet))

(add-to-set! q MarkSet)
(gpush q Stk)
(+!edge p q H)))))))

Figure 5.20: The Hunt Szymanski and Ullman algorithm

The version of the algorithm shown uses a stack represented by the graph Stk, and

\marks" visited nodes by placing them into the MarkSet set. Between iterations, all nodes

become unmarked by the simple expedient of assigning a new empty graph to MarkSet.

5.7.3 A new algorithm

A simple modi�cation makes this algorithm even faster (though only by a constant

factor). Examining Hunt, Szymanski and Ullman's algorithm, we note that, if n is some

node in G, many searches may pass through n, even after H already encodes all nodes

reachable from n. Accordingly, we can modify hsu-search to keep track of every node

the closure from which has already been computed, and to copy that information when

the search reaches such a node instead of searching through it. The modi�ed algorithm is

shown in Figure 5.21.

While this algorithm has the same asymptotic time bounds as does the Hunt,

Szymanski and Ullman algorithm, experimentation has shown it to be 10% to 40% faster

than that algorithm. The increase in algorithmic complexity seems small compared to the

e�ciency achieved, especially when computing closures of large relations.

CHAPTER 5. GRAPH MANIPULATIONS 75

(defun transitive-closure (G)
(let ((H (make-graph)) (Known (make-graph)))

(foreachnode (p G)
(tc-search G p H Known)
(add-to-set! p Known))

H))

(defun tc-search (G p H Known)
(let ((Stk (make-graph)) (MarkSet (make-graph)))

(gpush p Stk)
(while (not (empty-graph Stk))

(let ((k (gpop Stk)))
(if (is-element k Known)

(let ((C (comb H k)))
(foreachedge ((zz q) C)

(+!edge p q H)
(add-to-set! q MarkSet)))

(let ((C (comb G k)))
(foreachedge ((zz q) C)

(when (not (is-element? q MarkSet))
(+!edge p q H)
(add-to-set! q MarkSet)
(gpush q Stk)))))))))

Figure 5.21: Faster transitive closure algorithm

76

Chapter 6

Data-ow Analysis Revisited

As was stated in Chapter 1, the goal of this dissertation is to show that a language

based on graph transformations is su�cient for implementing most if not all known program

ow analysis algorithms, and that its use reduces to a manageable level the complexity of

combining multiple such algorithms. A family of graph transformations was developed in

Chapters 2 and 3, and a language based on these transformations was exhibited in Chapter

4 and extended in Chapter 5. The claim is now made that this language is a suitable one

for attaining our goal.

This chapter demonstrates this point by developing and presenting implementa-

tions in this language for several ow analysis algorithms, showing how easily they may

be used and combined. The algorithms have been chosen to cover as wide a range of im-

plementation techniques as possible in order to show the versatility of our graph-based

approach.

6.1 A simple approach

This section exhibits a very simple algorithm that computes a solution to the

\reaching de�nitions" problem. This problem is to compute, for each variable reference,

the de�nitions of (assignments to) that variable that reach the reference along some path in

the owgraph. The standard approach is to associate with each graph node n a set called

genn containing the de�nitions contained within n that reach the exit of n, and another set

called killn that contains de�nitions that become invalidated when the code in n is executed.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 77

The standard algorithm then computes sets inn and outn for each n, satisfying

inn =
[

p2pred(n)

outp

and

outn = inn � killn [genn:

This computation is done by taking the initial approximation inn = outn = ; and iteratively

evaluating the right-hand-sides of the above equations until the inn and outn sets cease to

grow. The resulting collection of inn and outn sets is called the minimal �xed-point solution

of the data-ow problem.

To implement such an algorithm, we require a means of representing the kill, gen,

in and out sets and some way of evaluating the data ow expressions.

Our approach uses graphs to represent associations. In general, a graph G will

associate a node b with node a if and only if G contains an edge from a to b. If N is the

set of nodes in a program's owgraph and U is a set of nodes corresponding to the variable

de�nitions in the program, then a graph G associates a subset W of U with a node n in N

if and only if it contains, for each w in W , an edge leaving n and entering w.

Accordingly, we represent in, out, gen and kill sets with graphs that associate

de�nitions with owgraph nodes. We construct gen and kill graphs exactly as indicated

by the previous paragraph: the graph gen will contain an edge n ! d if and only if the

de�nition corresponding to node d is considered to be in the gen set of n, and the graph kill

will contain an edge n! d if and only if the de�nition corresponding to node d is considered

to be in the kill set of n. These two graphs thus represent all of the usual gen and kill sets

simultaneously, the individual de�nitions associated with each node being accessible in that

graph via edges leaving that node.

The construction of the gen and kill graphs is easy. We start with several graphs

that are directly derivable from some static representation of the program to be analyzed,

such as its abstract syntax tree. Let N be a set of owgraph nodes, let V be a set of

nodes that correspond to the variables in the program, and let D be a set of nodes that

correspond to the de�nitions (assignments) to be tracked. We create the following graphs

at control-ow analysis time:

ND contains an arc from node n 2 N to node d 2 D if and only if the de�nition d occurs

in node n.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 78

VD contains an arc from node v 2 V to node d 2 D if and only if the variable v is the one

being de�ned in de�nition d.

DV is the reverse of graph VD, and so contains an arc from each de�nition to the variable

to which that de�nition assigns a value.

Each of these three graphs encodes purely local information about nodes in the program.1

The graph encoding gen information is then simply ND, which tells which de�ni-

tions are generated at each owgraph node. The de�nition of kill is a bit more involved,

being the composition ND �DV �VD. Recall that ND has arcs from each node to all de�-

nitions in that node. ND �DV, therefore, has arcs from each node to all variables de�ned

in that node. Then, (ND �DV) �VD has arcs from each node to all de�nitions of variables

de�ned in that node; this is the de�nition of kill .2

Once the gen and kill graphs have been constructed, the data ow analysis problem

can be solved by the algorithm shown in Figure 6.1.

(defun Reach (G gen kill)
(let ((in (make-graph)) (out (make-graph)) (Gr (reversegraph G)))

(setf (graph-changed out) t)
(while (graph-changed out)

(setf (graph-changed out) nil)
(setf in (compose Gr out))
(union! out (union (difference in kill) gen)))

(values out in)))

Figure 6.1: A simple algorithm for reaching de�nitions

Each iteration, this algorithm recalculates the entire in graph by composing the

reverse of G with out . Consider: an edge n! m is in the reverse of G if and only if m is a

predecessor of n in G. An edge m! d is in out if and only if the de�nition corresponding

to node d has been found, on some previous iteration, to reach the exit of owgraph node

m. Therefore, an edge n! d is in their composition if and only if d represents a de�nition

reaching the exit of some predecessor of n. But this set of de�nitions is composed of exactly

those de�nitions reaching the entry of n.

1For ease in presentation, we assume that there is at most one de�nition in each owgraph node. When
more are present, the de�nition of ND changes slightly, and requires analysis of each basic block in the
program in order that it encode only de�nitions that are live at the end of that block.

2Kill may also be de�ned as (ND � DV � VD) � ND, which has arcs from each node to all de�nitions
of variables de�ned in that node that aren't themselves in that node. Since gen is the same as ND, this
di�erence is a moot one, and so we have elected to de�ne kill as the version that requires less computation.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 79

The new value of the out graph is calculated by the expression in�kill[gen. Since

the out graph can only grow, the result of this computation is added to the pre-existing out

graph, causing the latter to change only if the new value is unequal to the old value. Since

the looping condition depends on out 's changing, the algorithm will terminate once the out

graph stabilizes.

Although this algorithm computes the correct result graphs, one would not want

to use it in practice because of its extreme ine�ciency. Each iteration, it re-computes all of

the in and out graphs even if only one edge needs to be added. It would be far more e�cient

to compute only the parts of the in and out graphs that change each iteration rather than

the entire graphs. The next section implements exactly this improvement.

6.2 The worklisting approach

The simplest, and undoubtedly the most frequently implemented data-ow anal-

ysis algorithms are based on a worklist. A worklist is a set of owgraph nodes at which

the in and out information is known to need (re-)computation. It is typically initialized to

contain only the owgraph's start node. The algorithm repeatedly removes a node from the

worklist, evaluates that node's in set in terms of the out sets of its owgraph predecessors,

and computes a new out set using the formula out := in� kill [gen. Should the node's out

information change, the algorithm puts all of its successors into the worklist since their in

(and probably their out) sets are known to need updating. The algorithm continues in this

fashion until the worklist is empty.

All four of the classical intraprocedural data-ow analysis algorithms, reaching

de�nitions, available expressions, live variables and very busy expressions, may be solved in

this way. The only di�erences lie in the way the in and out sets are initialized, the way out

information is propagated to in sets, and whether the algorithm works on the owgraph or

its reverse.

6.2.1 A worklisting iterator

Rather than implement this standard algorithm each time we need it, we take an

alternative approach made possible by our language. This approach is the construction of

a general worklist-based iterator that can be wrapped around whatever special evaluation

code is needed for the data-ow problem at hand. This iterator is shown in Figure 6.2.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 80

(defmacro foreach-node-with-worklist ((x G n0 H) &body body)
(let ((W (gensym)) (Visited (gensym)) (p (gensym)))

`(let ((,x nil) (,W (make-graph)) (,Visited (make-graph)))
(add-to-set! ,n0 ,W)
(while (not (emptygraph ,W))

(pxapply ((w)(x)() ((x *) (x *)
(w 1 *) (w 0 =)
(* * *) (* = =))) ,W (SetHead) (,x))

(setf (graph-changed ,H) nil)
,@body
(when (or (graph-changed ,H)

(not (set-member? ,x ,Visited)))
(add-to-set! ,x ,Visited)
(foreachchild (,q ,x ,G)

(add-to-set! ,q ,W)))))))

Figure 6.2: Worklisting iterator

Here, G is the owgraph with start node n0 and H is a graph whose changing will

indicate that the worklist needs updating. H will usually be the graph representing the out

sets in the data-ow problem. The variable x is the iteration variable. It is successively

bound to each node removed from the worklist until the worklist is empty. Since the

algorithm adds nodes to the worklist, x may well be bound to the same node several times

during the algorithm. At each execution of the body, however, x will be bound to a node

at which it is known the out graph needs updating.

The graph W is the worklist, and is a set that is initialized to contain only the

start node. An auxiliary set, Visited, is maintained to ensure that every node reachable

from the start node is bound to x at least once. The use of this set makes sure that every

reachable node has an opportunity to have its data-ow function evaluated at least once.

6.2.2 A worklisting example

An example of this iterator's use is the algorithm in Figure 6.3, that again computes

reaching de�nitions.

Let x be some node taken from the worklist. Each edge in the graph (rcomb G x)

leaves x and enters one of x's predecessors in the owgraph. When we compose this graph

with out , we get a graph associating with x all of the de�nitions associated with each of x's

predecessors, that is, the propagation of x's predecessors' outs to x. This graph is exactly

the comb of the desired in graph at x. Accordingly, we use the graph union operator to

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 81

(defun Reach (G n0 gen kill)
(let ((in (make-graph))(out (make-graph)))

(foreach-node-with-worklist (x G n0 out)
(let ((new-ins (compose (rcomb G x) out)))

(union! in new-ins)
(union! out (union (difference new-ins kill) (comb gen x)))))

out))

Figure 6.3: Reaching de�nitions via worklist

add all of its edges to the in graph.

To calculate the new out information corresponding to this new in information,

we need to apply gen and kill. We perform this application by subtracting those edges that

exist in the kill graph, then adding those edges that lie in the comb of the gen graph at

x. The result of this procedure is the comb of the desired out graph at x, which is then

merged into out. Recall that the worklisting iterator monitors the out graph for changes. If

this last union operation changes the out graph, then all of x's successors are automatically

added to the worklist.

We have thus shown the ability of our graph-based language to solve the classical

data-ow analysis problems with the classical algorithm. Better still, we have done it with

a single generic iterator that can be used to solve multiple problems. Notice also that the

worklist iterator's use is not dependent on the use of gen and kill sets to represent local

data-ow functions. The actual propagation of information is done in the body of the

loop, which can be customized to propagate information using any method a programmer

sees �t to use. Its use is thus not restricted to any particular data-ow framework (fast,

distributive, monotone, etc.). Note also that the set of facts being propagated does not

need to be determined before propagation begins, as new graph nodes may be created and

added to a graph at any time. We shall see an example of this sort of behavior in Section

6.6.

An improved worklisting algorithm

The use of a graph to represent a worklist is a rather trivial use of the representa-

tional power of graphs. It is natural to wonder if the capabilities we have available can be

used to improve the algorithm.

One obvious weakness in the usual worklisting algorithm is that it may perform

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 82

b

h

g

f

e

d

c

a

Figure 6.4: A section of a owgraph

evaluations at many nodes more often than is necessary. Take, for example, the ow graph

shown in Figure 6.4 and assume the worklist operates queue-fashion, except that the addi-

tion of a node already in the worklist has no e�ect. When a non-trivial evaluation happens

at node a, nodes b and c are put into the worklist. We then see the following sequence of

evaluations:

1. Node b is evaluated, putting node g into the worklist.

2. Node c is evaluated, putting node d into the worklist.

3. Node g is evaluated, putting node h into the worklist. (�)

4. Node d is evaluated, putting node e into the worklist.

5. Node h is evaluated, putting node i into the worklist. (�)

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 83

6. Node e is evaluated, putting node f into the worklist.

7. Node i is evaluated, putting node j into the worklist. (�)

8. Node f is evaluated, putting node g into the worklist.

9. Node j is evaluated, putting node k into the worklist. (�)

10. Node g is re-evaluated, putting node h into the worklist.

The sequence of evaluations continues, with the re-evaluation of h and its descendants

interleaved with evaluations of nodes farther \down" in the graph. Notice that the starred

evaluations, that is, the �rst evaluation at node g and the evaluations triggered thereby,

are all unnecessary, since each of these nodes is re-evaluated after the evaluation at node

f . This sort of sequence of redundant computations can be seen to occur whenever the

two branches of an if-then-else construct are of di�erent lengths. Our goal is to improve

this situation by deferring the evaluation of each conuence node such as g until all of

its predecessors have been evaluated. This deferral will result in a more e�cient order of

evaluation by eliminating the redundant evaluations at this node and its descendants.

We implement our improved algorithm by adding a bit more structure to the

worklist, now termed a workgraph. The standard algorithm adds a node to the worklist

graph by simply adding an edge to it from the designated set header node. The new

algorithm does this too, but can add other edges to the workgraph. Let the node being

added be n, and let e be the owgraph edge the propagation along which is causing n to

be added to the workgraph. Whenever n is not already in the workgraph, all owgraph

edges entering n other than e will be copied into the workgraph. These edges are added

regardless of whether or not any of the new node's predecessors already appear in the

workgraph. These additional edges are used to represent evaluation-order dependencies.

We will say a node in the workgraph is blocked if more than one workgraph edge enters it,

otherwise it is unblocked.

The addition of edges to the workgraph only represents half of the job of the

workgraph iterator. The other half is the strategy for choosing that workgraph node that

is the best candidate for evaluation. The strategy used here is simple: an unblocked node

is chosen if any exist, otherwise the algorithm chooses any blocked node. All edges entering

or leaving the chosen node are then removed from the workgraph.

In the example in Figure 6.4, a would be evaluated, placing b and c in the work-

graph. When b was then evaluated, it would place g in the graph, blocked by the edge

f ! g. Evaluation would then proceed along the path c, d, and e, until f was evaluated,

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 84

unblocking g by the removal of the edge f ! g. Only then would the node h and its

descendants be evaluated. The evaluation of g can be seen to have been deferred until all

of its predecessors' out information became available. This deferral does away with the

unnecessary �rst evaluation not only of g, but of each of its descendants.

The choice of an unblocked node is always a \good" one, as it is known that new

information has reached that node from each of its predecessors. It is not necessarily the

case, however, that there always exists an unblocked node. For example, if the evaluation

of node e above did not result in e's out information's changing, then node f would not be

placed in the workgraph, would not be evaluated, and so could not unblock g.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 85

If every node in the workgraph is blocked, then each such node is a conuence of

two or more edges in the owgraph, and information has not propagated along all of these

edges. There are exactly two causes of this situation: propagation along one path to a node

can \die out" as in the previous paragraph, or it may be blocked along some path to the

node by some set of blocked nodes (possibly including the node in question). Nodes of the

�rst of these two types are equivalent to unblocked nodes (thought they cannot be detected),

and so their evaluation cannot lead to redundant computations. Nodes of the second type

are, unfortunately, indistinguishable from nodes of the �rst type. Their evaluation can lead

to redundancies, but certainly no worse than those occasioned by the original algorithm.

There is no additional overhead associated with maintaining a workgraph instead

of a worklist due to its consideration of all owgraph edges, since the original algorithm

also needs to examine each edge at least once when placing nodes into the worklist. The

worst-case complexity of the new algorithm is therefore no di�erent from the old.

The completed algorithm is shown in Figure 6.5. Note that it is functionally

equivalent to the original algorithm in Figure 6.2, in that a data-ow analysis algorithm

using it will obtain the same result, though by considering graph nodes in a di�erent order.

The new iterator may be substituted for the old one by simply replacing the old iterator

macro name with the new one in any data-ow analysis algorithm making use of the original.

This is an instance where our graph-transformation based language allows us to change basic

implementations without a�ecting the behavior of the application.

6.3 A dual approach

Many data-ow analysis algorithms require that local data-ow functions such as

those encoded by gen and kill sets be attached to a owgraph's edges rather than to its

nodes. We will see examples later where this arrangement has advantages over the more

traditional approach. For now, we simply modify the Reach example given earlier in this

chapter to make use of this organization.

We still wish to attach our results to owgraph nodes, since we want to know which

facts hold there at the end of the analysis. Note that a simpli�cation of result representation

ensues when local data-ow functions are attached to owgraph edges rather than to nodes.

Since these local functions are applied when information is propagated along an edge rather

than when it reaches a node, there is nothing to do to compute out information from in

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 86

(defmacro foreach-node-with-workgraph ((x G n0 H) &body body)
(let ((C (gensym)) (W (gensym)) (W2 (gensym)) (Visited (gensym))

(y (gensym)) (p (gensym)) (q (gensym)))
`(let ((,x nil)

(,W (make-graph)) (,W2 (make-graph)) (,Visited (make-graph)))
(add-to-set! ,n0 ,W)
(while (or (not (empty-graph ,W)) (not (empty-graph ,W2)))

(unless
(pxapply ((w)(x)() ((x *) (x *)

(w 1 *) (w 0 =)
(x * *) (x 0 0)
(* * *) (* = =))) ,W (SetHead) (,x))

(pxapply ((w)(x)() ((x *) (x *)
(w 1 *) (w 0 =)
(x * *) (x 0 0)
(* * *) (* 0 =))) ,W2 (SetHead) (,x)))

(setf (graph-changed ,H) nil)
,@body
(when (or (graph-changed ,H) (not (set-member? ,x ,Visited)))

(progn
(add-to-set! ,x ,Visited)
(foreachchild (,y ,x ,G)

(let ((,C (rcomb ,G ,y)))
(-!edge ,y ,x ,C)
(if (empty-graph ,C)

(add-to-set! ,y ,W)
(progn

(foreachedge ((,p ,q) ,C) (+!edge ,q ,p ,W2))
(add-to-set! ,y ,W2)))))))))))

Figure 6.5: A better worklisting iterator

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 87

information. As a result, there is then no di�erence between in and out information, and

we accordingly dispense with the in and out notation, instead creating one graph, S, that

associates with each node the information that is known to be true at that node. S will

most closely correspond to the in graph in earlier examples.

The modi�ed algorithm is shown in Figure 6.6. There are two di�erences from

the previous version: the structure of the gen and kill graphs, and the way the information

propagation is done. We deal with gen and kill �rst.

Recall the de�nition of factor, given in Chapter 5. By means of edgebindings, it

associates a unique node with each edge in the graph being factored. The versions of the gen

and kill graphs that we need for this new algorithm must associate facts with these auxiliary

\edge" nodes rather than with the original graph nodes. Where the previous version would

initially associate a gen or kill fact with node n, this version initially associates that fact

with each edge leaving node n. It creates this association by factoring the owgraph G to

produce graphs G1 and G2, where G = G1 � G2. G2 may then be composed on the left of

the usual gen and kill graphs, giving gen-e = G2 � gen and kill-e = G2 � kill.

(defun Reach-edgeversion (G n0 gen-e kill-e)
(let ((S (make-graph)))

(foreach-node-with-worklist (x G n0 S) ;; or ...-workgraph
(let ((CR (reversegraph (rcomb G x))))

(multiple-value-bind (g1 g2) (factor CR)
(let* ((rg1 (reversegraph g1))

(local-S (compose rg1 S))
(localizer (compose rg1 g1))
(local-gen (compose localizer gen-e)))

(union! S (compose (reversegraph g2)
(union

(difference local-S kill-e)
local-gen)))))))

S))

Figure 6.6: Reaching de�nitions, information attached to edges

The propagation part is only slightly di�erent from the way it was in the earlier

algorithm, when we account for the fact that we are now only maintaining one set per

node. To calculate S at node x, we take the comb of S at each predecessor p of x in G and

propagate it along the edge leading from p to x, applying gen-e and kill-e as we do so. The

graphs g1 and g2 and their reverses are used only to obtain the appropriate gen and kill

information, which is now attached to edges instead of nodes.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 88

6.4 Interval analysis

Interval analysis algorithms are, of course, more complicated than iterative algo-

rithms, but are asymptotically faster. This section gives an algorithm for one of them, that

developed by Graham and Wegman [13], [24]. The previous section introduced the concept

of associating information with owgraph edges instead of nodes; that approach will be

used here.

The algorithm works by converting a data-ow analysis problem into an equivalent

but smaller problem. It does this conversion by shrinking the owgraph in a well-de�ned

way, adjusting the local data-ow information attached to edges so that a solution of the

resulting problem, in conjunction with information describing the shrinkage, can be trans-

formed to a solution of the original problem. This shrinking process is performed repeatedly

until it is no longer possible. When the original owgraph is reducible, the process as de-

scribed here results in an acyclic comb graph.3 The (now trivial) data-ow problem on the

comb graph is then easily solved, and the data-ow information about all nodes that have

been \removed" from the graph is deduced from this solution.

6.4.1 T0

1 and T0

2

The heart of the algorithm is the pair of transformations T0

1 and T0

2. These

transformations are described in [13] and [24].4 Briey, T0

1 removes a looping edge a ! a

from a graph if there is exactly one other edge entering node a. The transformation T0

2 is

depicted in Figure 3.1 in Chapter 3. If there are nodes a, b, and c and edges a ! b and

b ! c, and if no other edge enters b then the transformation adds the edge a ! c to the

graph and deletes the edge b! c. If there are no other edges leaving b, it deletes the edge

a! b as well.

The algorithm uses a strategy for applying these transformations that ensures that

the number of applications is linear in the number of edges in the owgraph. This strategy,

roughly speaking, is to apply transformations at the entry node of an innermost loop until

that loop disappears. To be more speci�c, the loop entry node it chooses is the largest

3Graham and Wegman use a graph called a fan graph, wherein all non-looping edges emanate from a

single node. Since our version produces an acyclic graph, and since there is no di�erence between an acyclic

fan graph and an acyclic comb graph, we use the term comb here for consistency with earlier chapters.
4Graham and Wegman also describe a third transformation, T3, used for reducing their fan graph to a

single node. The approach given here has no need of it, and so it is omitted.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 89

s-numbered graph node that is pointed-to by a frond. Thus, the loop entry nodes may be

located easily by s-numbering the nodes in the graph, then searching for edges a! b where

the s-number of b is less than the s-number of a. This entry-node identi�cation is done at

the outset of the algorithm, and a set of these nodes is formed. Each time a new header

node is needed, the largest s-numbered unprocessed graph node in this set is chosen. The

algorithm then applies T0

1 and T0

2 transformations until that node no longer heads a loop,

selects the next largest s-numbered loop header node and continues.

Figure 6.7 is the skeleton of the algorithm that applies these transformations to

reduce the owgraph to a comb. Fronds are �rst determined by a single pass through the

graph, controlled by the foreach loop, and are copied into the Fronds graph. Each is

then removed from this graph (in reverse s-number order), and processed by T0

1 and T0

2

transformations while possible. T0

1 and T0

2 transformations are performed on the graph

entry node, n0, as a �nal step.

(defun graham-wegman (G n0)
(let ((N-O (node-order (reversegraph (s-number G n0)))) (Fronds (make-graph)))

(foreachedge ((x y) G)
(when (pmatch ((x y)()() ((y *)

(x 1 *)
(* * *)) (x < y)) G (x y) () N-O)

(+!edge y x Fronds)))
(while (not (empty-graph Fronds))

(pxapply (()(h)(x) ((h *) (h *)
(x 1 *) (x 0 =)
(* * *) (* = =))) Fronds ()(h) N-O)

(apply-T1 G h)
(while (apply-T2 G h) (apply-T1 G h)))

(apply-T1 G n0)
(while (apply-T2 G n0) (apply-T1 G n0))))

Figure 6.7: Skeleton of Graham-Wegman algorithm

Like the algorithm in the previous section, the Graham-Wegman algorithm at-

taches local data-ow functions to owgraph edges instead of to owgraph nodes. We

will use the same notation as was used in the previous algorithm, letting S be the graph

associating data-ow information with owgraph nodes.

Application of a T0

1 or T
0

2 transformation to a owgraph necessitates a recomputa-

tion of the data-ow functions attached to the a�ected owgraph edges. This recomputation

is so that the resulting information propagation problem is equivalent to the pre-transformed

one in that it will yield the same answer. Let us examine the T0

1 transformation �rst.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 90

u v * u v *
-------------- --------------

u | * 1.p * u | = = =
v | * 1.q * ----> v | = 0 =
* | * 0 * * | = = =

Figure 6.8: T0

1

T0

1 may be represented by a single one of our graph transformations, shown in

Figure 6.8. Its action is simply to remove a looping edge from the owgraph. The corre-

sponding necessary changes to the data-ow functions nearby are more complicated. Let `

be the looping edge n! n at header node n, and let e be the lone other edge w ! n entering

n; these edges are bound to variables q and p, respectively, by the transformation in Figure

6.8. Let the local data-ow functions along edges e and ` be fe and f`, respectively. If Sw

is the set of all facts known to be true at node w, then the information that is known to be

true at node n is fe(Sw) combined with fk` (fe(Sw) via the owgraph conuence operator

for all k � 1. We see that if we replace the function attached to the edge e with this new

function when we remove edge `, the data-ow solution at node n will remain unchanged.

This function is fairly easy to compute when the local functions are encoded gen

and kill -style. As before, let us use the Reach example to illustrate; our conuence operator

is then [. Since the Reach problem is fast in the sense of Graham and Wegman, our new

function may be computed as fe(Sw) [f`(fe(Sw)). Now, letting kille and gene be the sets

of de�nitions associated with edge e, kill` and gen` be the sets of de�nitions associated with

edge `, fe(x) = x� kille [gene and f`(x) = x� kill` [gen` where x is any set of de�nitions

known to reach node w. Letting f`e be de�ned for the moment as f` � fe,

f`e(x) = f`(fe(x))

= ((x� kille) [gene)� kill` [gen`

= (x� kille)� kill` [(gene � kill`)[gen`

= x� (kille [kill`)[(gene � kill` [gen`)

giving kill`e = kille [kill` and gen`e = gene � kill` [gen`, so

fe(x)[f`e(x) = ((x� kille) [gene) [((x� kill`e) [gen`e)

= (x� kille) [(x� kill`e) [(gene [gen`e)

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 91

= x� (kille \ kill`e) [(gene [gen`e)

= x� (kille \ (kille [kill`)) [(gene [(gene � kill`) [gen`)

= x� kille [(gene [gen`):

The kill information associated with the new edge e is thus seen to be equal to

the kill information that was already associated with e. The gen information at e must be

augmented with the gen information that is associated with edge `. Thus, we see we want

to modify the kill graph by merely removing the node ` and all of its out-going edges. The

gen graph, on the other hand, has the node ` and its out-going edges removed, but for each

edge `! x that is removed, the edge e! x is added.

The T0

1 transformation shown in Figure 6.11 binds the variables e and ` to the

edges as discussed above. The transformations shown in Figure 6.9 may be used to modify

the gen and kill graphs after a successful application of T0

1 to the owgraph. The gen graph

is modi�ed by the application of two transforms, while the kill graph is modi�ed by the

application of only one.

gen: A * A *
--------- ---------

l | 1 0 ----> l | 0 =
* | * * * | = =

B * B *
--------- ---------

e | * * ----> e | 1 =
* | * * * | = =

kill: C * C *
--------- ---------

l | 1 0 ----> l | 0 =
* | * * * | = =

Figure 6.9: T0

1 gen and kill modi�ers

The �nished apply-T1 function is shown in Figure 6.10. The function is augmented

with two parameters more (gen and kill graphs) than were shown in the skeleton of the

Graham-Wegman algorithm shown in �gure 6.7; this will be recti�ed below.

We wish to adopt the same strategy with T0

2. Recall that this transformation

searches for graph nodes a, b, and c such that the edges a ! b and b ! c are in the

graph, and so that no other edge enters node b. When these conditions are satis�ed, the T0

2

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 92

(defun apply-T1 (G h gen kill)
(let ((e nil) (l nil) (A nil))

(when (pxapply ((v)(p q)(u) ((v *) (v *)
(u 1.p *) (u = =)
(v 1.q *) (v 0 =)
(* 0 *) (* = =))) G (h) (e l))

(when (pxapply ((q)(A)() ((A *) (A *)
(q 1 0) (q 0 =)
(* * *) (* = =))) gen (l) (A))

(pxapply ((p A)()() ((A *) (A *)
(p * *) (p 1 =)
(* * *) (* = =))) gen (e A) ()))

(pxapply ((q)()(B) ((B *) (B *)
(q 1 0) (q 0 =)
(* * *) (* = =))) kill (l) ()))))

Figure 6.10: Algorithm to apply a T0

1 transformation

transformation adds the edge a ! c to the graph and deletes the edge b ! c. In the case

that there are no other edges emanating from node b, the transformation deletes the edge

a! b as well.

There are, unfortunately, two factors operative that complicate matters: �rst, as

just noted, the transformation does something slightly di�erent when only one edge leaves

the node b. Second, the edge a! c may or may not already exist in the owgraph. While

that edge's existence or non-existence does not a�ect the transformation of the owgraph,

it does make the computation of the new data-ow functions a bit more involved. We deal

with these complications by resorting to a four-fold case analysis. The four cases are:

1. No other edge leaves b; a! c doesn't already exist.

2. Some other edge leaves b; a! c doesn't already exist.

3. No other edge leaves b; a! c already exists.

4. Some other edge leaves b; a! c already exists.

Each of these cases may be handled by a single one of our graph transformations. We denote

them by the names T2a, T2b, T2c and T2d, respectively. The corresponding transformations

are shown in Figure 6.11. It should be noted that in order to bind the edge a! c to a vari-

able (in order to recompute gen and kill information), the �rst two of these transformations

need to be followed by a (based) pattern \checking" for this newly-added edge. The latter

two bind this (previously-existing) edge as a side-e�ect of the pattern match.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 93

T2a: u v w * u v w *
---------------- ----------------

u | * 1.p 0 * u | = 0 1 =
v | 0 0 1.q 0 v | = = 0 =
w | * 0 * * ----> w | = = = =
* | * 0 * * * | = = = =

T2b: u v w x * u v w x *
-------------------- --------------------

u | * 1.p 0 * * u | = = 1 = =
v | * 0 1.q 1 * v | = = 0 = =
w | * 0 * * * ----> w | = = = = =
x | * 0 * * * x | = = = = =
* | * 0 * * * * | = = = = =

T2c: u v w * u v w *
---------------- ----------------

u | * 1.p 1.r * u | = 0 = =
v | 0 0 1.q 0 v | = = 0 =
w | * 0 * * ----> w | = = = =
* | * 0 * * * | = = = =

T2d: u v w x * u v w x *
-------------------- --------------------

u | * 1.p 1.r * * u | = = = = =
v | * 0 1.q 1 * v | = = 0 = =
w | * 0 * * * ----> w | = = = = =
x | * 0 * * * x | = = = = =
* | * 0 * * * * | = = = = =

Figure 6.11: T2a, T2b, T2c and T2d

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 94

We will denote the edges a! b, b! c and a! c by the names p, q and r. We need

to (re-)compute the gen and kill information attached to the a�ected edges. As before, let

fe be the data-ow function attached to edge e that is de�ned to be fe(x) = x�kille[gene,

as before also de�ning kille be the set of de�nitions associated with the edge e via the kill

graph, and letting gene be the set of de�nitions associated with the edge e via the gen graph.

In each of the four cases, the edge q is deleted from the owgraph. Accordingly,

we will remove its gen and kill information from the gen and kill graphs. The edge p will

require special treatment when it is removed (by a T2a or T2c transformation); we defer

a discussion of this edge until later. Meanwhile, we deal with the edge r. Should it not

already exist, the data-ow function that should be newly attached to it is fq(fp), while if

it does exist, the function already there (fr) should be replaced with fr \ fq(fp).

The �rst case yields, via a calculation similar in spirit to the one above, fr(x) =

x�(killp[killq)[(genq[(genp�killq)), while the second case gives fr(x) = x�(killr\(killp[

killq))[(genr [genq [(genp� killq)). A di�culty is that killq is needed in the computation

of the new gen. We compute genp�killq separately via a pair of combs, and union the result

in afterward. The remainder can be done by the transformations shown in Figure 6.12, for

the case where r does not already exist, or in Figure 6.13 for the case where it does. The

transformations in Figure 6.13 are interesting in that they both use the pattern portion as

a \demultiplexer", then use the replacement portion to implement a logic function of these

nodes.

kill: A B C * A B C *
------------------- -------------------

p | 1 0 1 0 p | = = = =
q | 0 1 1 0 ----> q | = 0 0 =
r | * * * * r | 1 1 1 =
* | * * * * * | = = = =

gen: D * D *
--------- ---------

q | 1 0 ----> q | 0 =
r | * * r | 1 =
* | * * * | = =

Figure 6.12: T2a and T2b gen and kill modi�ers

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 95

kill: A B C D E F G * A B C D E F G *
----------------- -----------------

p | 1 0 0 1 0 1 1 0 ----> p | = = = = = = = =
q | 0 1 0 1 1 0 1 0 q | = 0 = 0 0 = 0 =
r | 0 0 1 0 1 1 1 0 r | = = 0 = = = = =
* | * * * * * * * * * | = = = = = = = =

gen: A B C D E F G * A B C D E F G *
----------------- -----------------

p | 1 0 0 1 0 1 1 0 ----> p | = = = = = = = =
q | 0 1 0 1 1 0 1 0 q | = 0 = 0 0 = 0 =
r | 0 0 1 0 1 1 1 0 r | = 1 = 1 = = = =
* | * * * * * * * * * | = = = = = = = =

Figure 6.13: T2c and T2d gen and kill modi�ers

6.4.2 T2a and T2c: Moving edges to a piggybank

The T2a and T2c transformations present us with a di�erent problem: they delete

the node v (and thus the edge p). Regrettably, this edge and its attendant data-ow function

are needed to determine the information that pertains at node v in the original owgraph

from the corresponding answer for node u.

Rather than get rid of this information, we create a \piggybank" graph to hold

all such u ! v edges deleted from the owgraph by either T2a or T2c. Each such edge is

entered into the piggybank at most once, since it may be deleted from the owgraph at

most once. When we remove such an edge from the owgraph, we leave the gen and kill

graphs alone, since the function associated with that edge remains valid.

No such deleted edge is ever a back-edge in the original owgraph, since v is never

a loop header dominating u. Thus, at the end of the reduction to a comb graph, the union

of the piggybank graph and the �nal comb graph is a tree on which we may solve our

information propagation problem quite simply and e�ciently.5

We may now exhibit apply-T2; this is done in Figures 6.14 and 6.15.

5Equivalently, Graham and Wegman's T0

3 transformation moves the comb graph's edges to the piggybank,

forming the same tree.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 96

(defun apply-T2 (G h gen kill piggybank)
(let ((p nil)(q nil)(r nil)(w nil))

(cond ((or (and (pxapply ((u)(p q w)(v)
((u v w *) (u v w *)
(u * 1.p 0 *) (u = 0 1 =)
(v 0 0 1.q 0) (v = = 0 =)
(w * 0 * *) (w = = = =)
(* * 0 * *) (* = = = =))) G (h) (p q))

(pmatch ((u w)(r)() ((w *)
(u 1.r *)
(* * *))) G (h w) (r))

(pxapply ((p)()(u v) ((v *) (v *)
(u *:p *) (u 1 =)
(* * *) (* = =))) piggybank (p) ()))

(and (pxapply ((u)(p q)(v w x)
((u v w x *) (u v w x *)
(u * 1.p * * *) (u = = 1 = =)
(v * 0 1.q 1 *) (v = = 0 = =)
(w * 0 * * *) (w = = = = =)
(x * 0 * * *) (x = = = = =)
(* * 0 * * *) (* = = = = =))) G (h) (p q))

(pmatch ((u w)(r)() ((w *)
(u 1.r *)
(* * *))) G (u w) (r))))

(T2-gen-n-kill-with-new-r gen kill p q r) t)

((or (and (pxapply ((u)(p q r)(v w)
((u v w *) (u v w *)
(u * 1.p 1.r *) (u = 0 = =)
(v 0 0 1.q 0) (v = = 0 =)
(w * 0 * *) (w = = = =)
(* * 0 * *) (* = = = =))) G (h) (p q r))

(pxapply ((p)()(u v) ((v *) (v *)
(u *:p *) (u 1 =)
(* * *) (* = =))) piggybank (p) ()))

(pxapply ((u)(p q r)(v w x)
((u v w x *) (u v w x *)
(u * 1.p 1.r * *) (u = = = = =)
(v * 0 1.q 1 *) (v = = 0 = =)
(w * 0 * * *) (w = = = = =)
(x * 0 * * *) (x = = = = =)
(* * 0 * * *) (* = = = = =))) G (h) (p q r)))

(T2-gen-n-kill-with-preexisting-r gen kill p q r) t)
(t nil))))

Figure 6.14: Algorithm for applying T0

2 transformations

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 97

(defun T2-gen-n-kill-with-new-r (gen kill p q r)
(let ((extra (comb gen p)))

(foreachedge ((pp b) extra)
(when (pmatch ((q b)()() ((b *)

(q 1 *)
(* * *))) kill (q b)())

(-!edge p b extra)))
(pxapply ((p q r)()(A B C) ((A B C *) (A B C *)

(p 1 0 1 0) (p = = = =)
(q 0 1 1 0) (q = 0 0 =)
(r * * * *) (r 1 1 1 =)
(* * * * *) (* = = = =))) kill (p q r) ())

(pxapply ((q r)()(D) ((D *) (D *)
(q 1 0) (q 0 =)
(r * *) (r 1 =)
(* * *) (* = =))) gen (q r) ())

(union! gen extra)))

(defun T2-gen-n-kill-with-preexisting-r (gen kill p q r)
(let ((extra (comb gen p)))

(foreachedge ((pp b) extra)
(when (pmatch ((q b)()() ((q *)

(b 1 *)
(* * *))) kill (q b)())

(-!edge p b extra)))
(pxapply ((p q r)()(A B C D E F G)

((A B C D E F G *) (A B C D E F G *)
(p 1 0 0 1 0 1 1 0) (p = = = = = = = =)
(q 0 1 0 1 1 0 1 0) (q = 0 = 0 0 = 0 =)
(r 0 0 1 0 1 1 1 0) (r = = 0 = = = = =)
(* * * * * * * * *) (* = = = = = = = =))) kill (p q r) ())

(pxapply ((p q r)()(A B C D E F G)
((A B C D E F G *) (A B C D E F G *)
(p 1 0 0 1 0 1 1 0) (p = = = = = = = =)
(q 0 1 0 1 1 0 1 0) (q = 0 = 0 0 = 0 =)
(r 0 0 1 0 1 1 1 0) (r = 1 = 1 = = = =)
(* * * * * * * * *) (* = = = = = = = =))) gen (p q r) ())

(union! gen extra)))

Figure 6.15: Algorithms for T0

2 gen and kill graphs

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 98

6.4.3 Putting it all together

(defun graham-wegman-reach (GG n0 gen-e kill-e)
(let ((N-O (node-order (reversegraph (s-number GG n0))))

(Fronds (make-graph)) (G (copy-graph GG))
(piggybank (make-graph)) (h nil))

(foreachedge ((x y) G)
(when (pmatch ((x y)()() ((y *)

(x 1 *)
(* * *)) (x < y)) G (x y) ())

(+!edge y x Fronds)))
(while (not (empty-graph Fronds))

(pxapply (()(h)(x) ((h *) (h *)
(x 1 *) (x 0 =)
(* * *) (* = =))) Fronds ()(h) N-O)

(apply-T1 G h gen-e kill-e)
(while (apply-T2 G h piggybank gen-e kill-e)

(apply-T1 G h gen-e kill-e)))
(apply-T1 G n0 gen-e kill-e)
(while (apply-T2 G n0 piggybank gen-e kill-e)

(apply-T1 G n0 gen-e kill-e))

;; Now propagate over simplified graph:
(Reach-edgeversion (union G piggybank) n0 gen-e kill-e)))

Figure 6.16: The Graham-Wegman algorithm

Figure 6.16 shows the entire algorithm. The �rst half is as before, except that

parameters to apply-T1 and apply-T2 have been updated to agree with those functions.

The second part propagates data-ow information over the tree resulting from the graph

reduction process. The \Reach-edgeversion" algorithm developed above is used for this

propagation. Since it propagates from the root of the tree outward, it visits each node in

the tree exactly once.

Notice that all patterns used in apply-T1 and apply-T2 are either based, or are

applied to combs that were generated from known nodes. This fact implies that both

apply-T1 and apply-T2 are O(1) operations, which in turn implies that the asymptotic

complexity of our implementation is the same as that of the implementation given in [13].

6.4.4 Data-ow problems other than Reach

The algorithm just displayed may appear to be fairly specialized for solving the

reaching de�nitions problem. A quick look reveals, however, that everything is applica-

ble to any forward data-ow problem on a reducible ow graph except the two functions

T2-gen-n-kill-with-new-r and T2-gen-n-kill-with-preexisting-r and the union!

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 99

calculation at the end of the algorithm. By de�ning the transformations RT0

1 and RT0

2 pre-

sented in [13], one can easily modify this algorithm to solve backward data-ow problems

on reducible ow graphs as well.

We have now shown that the graph-based approach is powerful enough to imple-

ment some of the most sophisticated data-ow analysis algorithms known, and without any

loss of e�ciency.

6.5 A mixed approach

The Graham-Wegman algorithm as described only works properly when given a

reducible owgraph as input, otherwise it does not reduce the owgraph to a comb graph.

The iterative algorithms are asymptotically less e�cient but are relatively insensitive to the

type of graph upon which they operate. We would like to have the best of both worlds at

our disposal.

Notice that the last two sections featured algorithms that associated ow informa-

tion with owgraph edges rather than with nodes. In fact, the algorithm given in Figure 6.16

combines the iterative algorithm with the Graham-Wegman algorithm in order to propagate

information over the �nal tree. Should this version of the Graham-Wegman algorithm be

given a non-reducible owgraph, it will shrink that owgraph as much as possible, creating

a simpler owgraph. The graph resulting from the union of this reduced graph with the

piggybank graph will not be a tree, but the iterative algorithm used will have no di�culty

propagating information on this owgraph. This mixed strategy should, in fact, be faster

than using iteration alone, since the Graham-Wegman process will remove all of the single-

entry loops from the program, and these account for most program loops. The resulting

algorithm will thus approximate the speed of an elimination algorithm, while imposing no

restrictions on the graphs on which it works.

Wegman [24] gave a di�erent way of extending the Graham-Wegman algorithm to

non-reducible owgraphs. He provided more general versions of the T0

1 and T0

2 transfor-

mations that worked even when a header node was entered by multiple owgraph edges.

It should be fairly clear that our approach could be extended in the same way. What is

interesting about the method of the previous paragraph is not so much that it extends

the Graham-Wegman algorithm, but rather the way it does this extension { by combining

two entirely dissimilar algorithms. The e�ort required to e�ect this combination without

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 100

our graph-transformational approach would probably render such an undertaking infeasible.

With our approach, it is simply a matter of six lines of code.

6.6 Constant Propagation

As a more complicated data-ow problem, we consider constant propagation. It

requires nothing particularly di�erent as a method used for propagating information, but

has other implementational di�culties that render its use infrequent. In particular, it

requires that the data-ow analyzer be able to evaluate arbitrary constant expressions in

the language being compiled, and that it be able to compare constant values for equality

(necessitating the knowledge of all built-in data types in the language being compiled).

This section will give methods for implementing four important constant prop-

agation algorithms using the graph transformational approach: Kildall's algorithm, Reif

and Lewis' improvement, and the algorithms of Wegman and Zadeck that, as a side-e�ect,

improve the control-ow graph by pruning edges that can be proved never to be traversed.

All three of these algorithms work with a three-level lattice, whose top level con-

tains the symbol >, whose middle level contains all of the constants being considered, and

whose bottom level contains the symbol ?. They initially associate with each variable refer-

ence the symbol >, and change these associations downward in the lattice when new values

are discovered for variables. If a variable reference is associated with >, no values have

yet been discovered for that reference. If a variable reference is associated with a constant,

then only that constant has been found to be a value of that reference of that variable. If a

reference is associated with the symbol ?, then two or more values have been discovered for

that reference, meaning that the variable may not be considered to have a constant value

at that location in the program.

We will have the constant propagator maintain this lattice in the form of a graph.

A reference to a variable will be associated with some node in the lattice by having an

edge explicitly point from a node uniquely associated with that reference to the appro-

priate lattice graph node. Special lattice nodes will be allocated to represent > and ?.

Intermediate-level nodes, each representing a di�erent constant, will be added to the graph

as constants are discovered.

Once these decisions have been made, we can propagate constants with some

straightforward algorithm if we can deal with two problems: 1) evaluating expressions, and

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 101

2) performing meet operations (which requires deciding whether two constants are equal). A

third problem is how the caller is to know the constant values and types that are associated

with our lattice nodes.

The second problem is easy to solve: two constants are equal if their associated

nodes are the same. The �rst problem may and must be solved by some other part of

the compiler that then has the opportunity to maintain hash tables associating constant

values with graph nodes, provided that it has access to the new-node facility for creating a

new graph node whenever a new constant appears. This strategy can also solve the third

problem. If we provide enough primitive operations for this external facility to build and

access graphs, then the analyzer need know nothing about the source language, such as the

interpretation of constants of various types or the evaluation of expressions. But we must

provide these facilities anyway, so that the compiler may create initial graphs and interpret

the answers of data-ow problems that we compute. So we need no special extensions

in order to solve all three of these problems, other than a mechanism for calling routines

external to the graph transformation language.

6.6.1 Kildall

Kildall's algorithm [18] propagates constants along the owgraph. In other words,

it maintains an instance of each variable at each owgraph node, regardless of whether or

not there is a reference to that variable there, in order that it may propagate all possible

constants from one owgraph node to the next. Our version will accept the graphs ND, NU,

and DV as input. ND has an edge from each owgraph node at which a de�nition occurs

to a node representing that de�nition, while DV has an edge from each de�nition node to a

node representing the variable de�ned at that node. NU has an edge from each owgraph

node to each node representing a variable used (accessed) at that owgraph node. These

graphs are easily produced at control-ow analysis time.

Let N be the set of owgraph nodes, and let V be the set of nodes each of which

uniquely represents some variable in the program. We can construct a graph (called NV)

that contains the jN j � jV j edges from each n 2 N to each v 2 V . Each of the edges in

NV represents an instance of a variable at a node. Factoring this graph gives us graphs

NI (nodes-to-instances) and IV (instances-to-variables). These intermediate nodes thus

produced are our instances; we initialize our algorithm by creating a graph (IC) associating

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 102

each variable instance node with some value in the constant graph, namely, >. We also

associate each de�nition with a constant (initially > too). This associated constant node

represents the value assigned to the variable. Thus, in a statement such as x := x + 1, we

have separate constant values being maintained for each of the two occurrences of x.

We next create a propagation graph, P, that contains edges paralleling the ow-

graph, but whose nodes are the variable instances that we are keeping track of. For each

variable v and each owgraph edge e = x! y, we add an edge ev to this propagation graph

where the tail of ev is the instance of v associated with node x (via NI), and the head is

the instance of v associated with node y (also via NI). The one exception is that if node x

is a de�nition of variable v, then the tail of ev is the de�nition node instead of the \use"

node associated with x. This situation is determined with ND.

Construction of these initial conditions, including the construction of the propa-

gation graph, is shown in Figure 6.17.

(defun kildall-init (G NV ND NU DV)
(multiple-value-bind (NI IV) (factor NV)

(let ((IC (make-graph)) (Lattice (make-graph)) (NV (make-graph))
(top (new-node)) (bot (new-node))
(true (new-node)) (false (new-node)))

(+!edge top true Lattice) (+!edge top false Lattice)
(+!edge true bot Lattice) (+!edge false bot Lattice)
(foreachnode (n G)

(foreachedge ((nn x) (comb NI n))
(+!edge x top IC)))

(foreachedge ((nn d) ND)
(+!edge d top IC))

(let ((P (intersection
(compose (compose (reversegraph NI) G) NI)
(compose IV (reversegraph IV))))

(def2inst (intersection
(compose DN NI)
(compose DV (reversegraph IV)))))

(foreachedge ((nn d) ND)
(when (pmatch ((d)(a)() ((a *)

(a 1 *)
(* * *))) def2inst (d) (a))

(-!edge a top P)
(+!edge d top P)))

(let ((NR (intersection NI (compose NU (reversegraph IV)))))
(values NI IV NR IC Lattice P top bot))))))

Figure 6.17: Initialization for Kildall's algorithm

There are then two parts to the algorithm: a meet operation at a node that

propagates information from predecessor nodes, and an evaluation step that, if the node is

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 103

a de�nition node, takes constant information collected in the meet operation, and evaluates

the expression to produce a new value for the de�ned variable.

The meet step at node x uses the propagation graph to check the values of the

instances of the predecessors of each variable, and applies Kildall's \lowering" operation on

the lattice value associated with the current instance. An algorithm for this meet operation

is shown in Figure 6.18. For each variable instance i, the function constructs the small

comb graph V with i as the root and all values of the predecessors of i as the leaves. It

then edits this graph as follows: if ? appears as any leaf, then all other leaves are removed.

Otherwise, three transformations are performed in sequence: �rst, all >'s are removed from

V . Then, if there are two (or more) leaves, all leaves are removed and ? is inserted as a

leaf. Finally, if the graph is empty, > is inserted as a leaf. This procedure guarantees that

the graph will then contain exactly one edge, and that its leaf node will represent the meet

of all values propagating to i. This edge is then inserted into the graph IC, replacing any

old value if the new value is di�erent.

(defun kildall-meet (x NI IC P top bot)
(foreachedge ((xx i) (comb NI x))

(let ((V (compose (rcomb P i) IC)) (w nil))
(unless (pxapply ((i b)()() ((b *) (b *)

(i 1 *) (i = 0)
(* * *) (* 0 0))) V (i bot) ())

(pxapply ((i t)()() ((t *) (t *)
(i 1 *) (i 0 =)
(* * *) (* = =))) V (i top) ())

(pxapply ((i b)()() ((x y b *) (x y b *)
(i 1 1 * *) (i 0 0 1 0)
(* * * * *) (* * * * *))) V (i bot) ())

(pxapply ((i t)()() ((t *) (t *)
(i 0 0) (i 1 =)
(* * *) (* = =))) V (i top) ()))

(pmatch ((i)(w)() ((w *)
(i 1 0)
(* * *))) V (i) (w))

(pxapply ((i w)()() ((w *) (w *)
(i 0 *) (i 1 0)
(* * *) (* = =))) IC (i w) ()))))

Figure 6.18: Meet operation for Kildall's algorithm

The evaluation step at node x is trickier, as it depends on the assumptions that

the rest of the compiler is maintaining a table of associations between nodes and constants,

and is willing to evaluate expressions in light of the information stored there. An algorithm

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 104

for doing the evaluation step under these assumptions is shown in Figure 6.19.

(defun kildall-eval (x NR IC IV ND top bot)
(let ((XC (compose (comb NR x) IC)) (d nil))

(when (pmatch ((x)(d)() ((d *)
(x 1 *)
(* * *))) ND (x) (d))

(if (pmatch ((x b)()() ((b *)
(x 1 *)
(* * *))) XC (x bot) ())

(pxapply ((d b)()() ((b *) (b *)
(d 0 *) (d 1 0)
(* * *) (* = =))) IC (d bot) ())

(unless (pmatch ((x t)()() ((t *)
(x 1 *)
(* * *))) XC (x top) ())

(let ((VC (make-graph)))
(foreachedge ((xx y) (comb NR x))

(union! VC (compose (reversegraph (comb IV y)) IC)))
(let ((n (expression-eval x VC)))

(pxapply ((d n)()() ((n *) (n *)
(d 0 *) (d 1 0)
(* * *) (* = =))) RC (d n) ()))))))))

Figure 6.19: Evaluation operation for Kildall's algorithm

This function does an evaluation at node x if that node is a de�nition. It creates

a small graph, XC, that collects together all of the nodes in the lattice graph that are

associated with variables that are referenced by the expression at node x, and examines

them. There are three possibilities: either 1) ? occurs in the set of constants, whereupon

the answer is ?, or 2) > occurs in the set of constants, whereupon the expression can not

(yet) be evaluated, or 3) only constant values appear, meaning that each variable in the

expression has associated with it exactly one constant value. Possibility (3) means that

we can now evaluate the expression. We do this by creating a graph VC associating with

each referenced variable the constant value associated with this instance of the variable.

We then pass this association graph, along with the node x to some function that is in

the compiler proper (in this case, expression-eval). It is responsible for �nding the

expression associated with node x and for looking up the values of each of the variables

in the expression, using VC to associate variables with constant value nodes, and its own

internal table to associate these nodes with real constant values. It should then evaluate the

expression, and return a graph node (perhaps newly created) that is uniquely associated

with the resulting constant value. The �nal transformation causes the de�nition node in

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 105

the IC graph to refer to this returned value node if it does not already do so.

The entire algorithm may now be put together, and has been done so in Figure

6.20.

(defun kildall (G n0 NV ND NU DV)
(multiple-value-bind (NI IV NR IC Lattice P top bot)

(kildall-init G NV ND NU DV)
(foreach-node-with-workgraph (x G n0 IC)

(setf (graph-changed IC) nil)
(kildall-meet x NI IC P top bot)
(when (graph-changed IC)

(kildall-eval x NR IC IV ND top bot)))))

Figure 6.20: Kildall's algorithm

6.6.2 Reif & Lewis

Kildall's algorithm works, but is fairly ine�cient because it propagates lots of

information from each node to the next that isn't used there. Each variable has an instance

at each node whether or not that variable is referenced or changed at that node. Reif and

Lewis devised a more e�cient way to propagate constants by propagating along a sparser

graph, called a DefUseChain graph. In this new graph, arcs go from each de�nition of a

variable to each use site of that de�nition. The use of this new graph implies that the only

nodes that require reevaluation after a new value is calculated for a de�nition are those

nodes that depend on that de�nition, not all the nodes in between them.

The algorithm is a simple change to Kildall's algorithm. Similar to the way we

create the graph NR associating with nodes instances of variables that are referenced at

those nodes, we can create graphs RV (referenced instances to variables), and RC (refer-

enced instances to constants). We also need a graph REACH relating uses to de�nitions;

this is what is calculated by the Reach algorithms discussed earlier in this chapter. We

will substitute NR, RV and RC for their dense equivalents (NI, IV and IC) in Kildall's

algorithm, and we will use the propagation graph

P = ((NRR � REACH) \ (RV �DVR))R

instead of the much denser version used above. This version has arcs only from de�nitions to

referred-to instances that are reached by those de�nitions, and is, in fact, the DefUseChain

graph referred-to by Reif and Lewis.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 106

(defun reif-lewis (G NV ND NU DV REACH)
(multiple-value-bind (NR RV RC Lattice P top bot)

(rl-init G NV ND NU DV)
(let ((F (compose (compose ND P) (reversegraph NR))))

(foreach-node-with-workgraph-init-all (x F RC)
(setf (graph-changed RC) nil)
(rl-meet x NR RC P top bot)
(when (graph-changed RC)

(rl-eval x NR RC RV ND top bot))))))

Figure 6.21: Reif and Lewis's algorithm

The other main di�erence, shown in the algorithm in Figure 6.21, is that a di�erent

graph (F) is used in place of the owgraph G. The owgraph associates with each node those

nodes which may follow it in temporal sequence; this is not what we want here. Suppose

n is a owgraph node at which a de�nition of variable v occurs. The new graph associates

with n each owgraph node f such that a use of v occurs at f and the de�nition of v at

n reaches f . In other words, F associates with each node n exactly those nodes at which

re-evaluations need to take place whenever knowledge about a variable de�ned at n changes.

F may not be a owgraph, since it may not have a unique entry node. Accordingly, we use

a slightly di�erent iterator, one that puts all the nodes of F into the initial worklist. This

makes sure that an evaluation occurs at each node at least once.

The Reif & Lewis example is important here not just because of its e�ciency

advantages over Kildall's algorithm, but because it demonstrates one of the main reasons

for our graph-transformational approach: that multiple ow analysis algorithms may be

combined easily. In the present case, the results of a reaching de�nitions analyzer were

incorporated into the constant propagation algorithm simply by using the resulting graph.

Consider the work necessary to do such an incorporation with the more conventional bit-

vector approach. The propagation graph used in Reif & Lewis would have to be constructed

by consulting the owgraph, the bit-vectors resulting from the Reach analyzer, the mapping

between bit-vector positions and de�nitions, the mapping between de�nitions and variables,

the mapping between owgraph nodes and variable references, and the mapping between

variable de�nitions and variable references, each of which would probably be maintained

with a di�erent data structure. The use of the common graph-based system makes the

construction of the propagation graph a single line of code rather than an algorithm whose

size is perhaps larger than that of the propagation algorithm itself.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 107

A more elaborate example of this phenomenon follows.

6.6.3 Wegman & Zadeck's constant propagation algorithms

In 1985, Wegman and Zadeck [25] published an e�cient algorithm for constant

propagation that takes expressions controlling conditional branches into consideration. If

the algorithm determines that a branch can only go one way, it prunes the owgraph at

that point, removing the edges that can never be followed. Besides re�ning the owgraph,

this procedure can �nd more constants, since confounding values can not be generated by

never-executed sections of code.

The presentation in their paper gave two algorithms, the second of which elabo-

rated on the �rst to handle the ow of constant values across program segments better. We

will take this same expositional approach here, as it leads to a clearer presentation.

First, we need extra information in order to use the algorithm. We already have

a graph (ND) that can be used to determine whether or not a node is a de�nition site. We

need a second graph, NQ that parallels ND , assigning a special node to each conditional

branch node in order to maintain a value for the conditional expression. NQ will also be

used to distinguish nodes representing conditional branches. Two other graphs will be used:

TB, which contains conditional owgraph arcs that are executed when a condition is true,

and FB, which contains conditional owgraph arcs that are executed when a condition is

false. We'll also need two more special nodes, named true and false, so that we can recognize

the direction a conditional branch will take from the value of the condition.

The algorithm, given a owgraph G and a propagation graph P, builds a second

owgraph G2 and propagation graph P2 that are re�nements of the inputs. G2 contains

no arcs that the algorithm can show never to be taken, and P2 incorporates this improved

control-ow information in the form of fewer dependencies over which to propagate.

The original algorithms used two worklists instead of one. This presentation follows

that idea, but clari�es their use. One of these worklists is termed FTWL, meaning \�rst-

timer's worklist". A node is entered into this worklist the �rst time it is found to be

executable. The other worklist is termed CVWL, or \changed-value worklist". A node is

entered into the CVWL whenever the value calculated at that node changes. Thus, the �rst

time any node is considered it is entered into the FTWL. All subsequent times (at most

two, since the lattice of constants has three levels) it is entered on the CVWL.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 108

The algorithm is outlined in Figure 6.22. The initialization is essentially the same

as in the Reif and Lewis algorithm, except that we are also generating the special nodes

true and false, and presumably notifying the ambient compiler about their existence.

(defun ConditionalDef (G n0 NV ND NQ NU DV REACH TB FB)
(multiple-value-bind (NR RV RC Lattice P top bot true false)

(CD-init G NV ND NU DV)
(let ((F (reversegraph (compose REACH (reversegraph ND))))

(FTWL (make-graph)) (CVWL (make-graph)) (w (new-node))
(G2 (make-graph)) (P2 (make-graph))
(x nil) (d nil))

(+!edge w n0 FTWL)
(while (or (not (empty-graph FTWL)) (not (empty-graph CVWL)))

(while (not (empty-graph FTWL))
(pxapply ((w)(x)() ((x *) (x *)

(w 1 *) (w 0 =)
(* * *) (* = =))) FTWL (w) (x))

(if (pmatch ((x)(d)() ((d *)
(x 1 *)
(* * *))) ND (x) (d))

(first-time-def-node x FTWL CVWL G G2 P P2 RC)
(conditional-node x FTWL NQ G2 RC TB FB bot)))

(when (not (empty-graph CVWL))
(pxapply ((w)(x)() ((x *) (x *)

(w 1 *) (w 0 =)
(* * *) (* = =))) CVWL (w) (x))

(if (pmatch ((x)(d)() ((d *)
(x 1 *)
(* * *))) ND (x) (d))

(usual-def-node x CVWL G2 P RC)
(conditional-node x FTWL NQ G2 RC TB FB bot)))))))

Figure 6.22: Wegman and Zadeck's ConditionalDef algorithm

This algorithm has its own special way of propagating information, due to the pres-

ence of two worklists instead of one. It removes a node from the worklists, and does a simple

case analysis on it. If the node is a conditional node, the action taken does not depend on

where it came from. If, however, it is a de�nition, then either first-time-def-node or

usual-def-node is invoked, depending on whether possible control ow has been propa-

gated past the node. These def-node sub-algorithms evaluate the expression at the visited

node, and propagate that information to each of the successors of that node (in P). They

then place each such successor node into the appropriate worklist, depending on whether or

not that node has been previously found to be executable, as determined by whether or not

there is an edge entering it in G2. The conditional action evaluates the expression at the

conditional node, then uses this information to place the appropriate subsequent node or

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 109

nodes into the FTWL, if it or they have not previously been determined to be executable.

Wegman and Zadeck's second algorithm, termed ConditionalConstant, re�nes the

propagation graph by adding intermediate nodes to indicate regions of the code through

which values ow. The ordinary propagation graph P that we have been using heretofore

may contain arcs from de�nitions to uses that only hold along execution paths that may

be found to be invalid during some portion of the algorithm. Thus, the algorithm using it

may not �nd some constants that are \ruined" by de�nitions that necessarily pass through

non-executed code sections. To take care of these de�nitions, Wegman and Zadeck use the

GlobalValue graph of Reif and Tarjan in place of the DefUseChain graph of Reif and Lewis.

The di�erence between these two graphs is that the GlobalValue graph has additional points

called \birthpoints" that collect together strands of the DefUseChain graph at places where

owgraph conuences occur. Birthpoints are added by inserting identity assignments in

the right places, causing propagated constants to pass through them. Then, if a section of

code containing one such identity assignment is deemed non-executable, all def-use chains

passing through that section of code are cut o�, and not entered into P2. De�nitions that

ow through such a section of code then can never be propagated further.

The algorithm of Reif and Tarjan to produce a GlobalValue graph works in linear

time, but is extremely complicated, and a complete presentation does not seem to have

appeared in the literature in one place. We have developed a fairly simple algorithm for

computing this graph using graph transformations that can run in almost linear time. The

idea is to add identity assignments at and just prior to each merge birthpoint of each

variable. A merge birthpoint of a variable is a merge node through which some D-U chain

for that variable passes. The algorithm is as follows:

Compute LIVE via any of the methods given earlier in this chapter. It

describes which variables are live on exit of each node.

For each merge node n in the owgraph

For each predecessor p of n

For each variable v live at p

Add an identity assignment v := v between p and n

If v is not rede�ned at n

Add an identity assignment v := v between n and each

of its successors.

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 110

Adding an identity assignment is a simple matter of creating a new node and

adding arcs in the relevant graphs (G, ND, DV, etc). The resulting set of graphs may be used

in the ConditionalDef algorithm, converting it into the more powerful ConditionalConstant

algorithm.

6.6.4 Discussion

We have seen four constant propagation algorithms, each of which is more powerful

or more e�cient than the last. The Reif & Lewis algorithm improves on Kildall's algorithm

by substituting sparse graphs for dense ones. Wegman and Zadeck's ConditionalDef al-

gorithm adds a second worklist to maintain knowledge about which owgraph nodes can

or cannot be executed, using this information to keep never-executed de�nitions from con-

founding the constant propagator. ConditionalDef is thus able to �nd more constants than

can Kildall's or Reif & Lewis's algorithms. Wegman and Zadeck's ConditionalConstant

algorithm substitutes a yet-more-sophisticated propagation graph to stop the propagation

of de�nitions that pass through (but don't occur in) never-executed sections of code. As a

result, ConditionalConstant is able to �nd more constants than can ConditionalDef.

Our system should allow us to discover answers to many open questions regarding

these algorithms. We would like to be able to compare the amount of space and time

consumed by each on real programs, and would like to be able to compare typical numbers of

constants discovered by each. Such information would tell us whether the added complexity

of the Wegman and Zadeck algorithms can pay for themselves on typical inputs. In addition,

we would like to measure the amount of owgraph pruning that the Wegman and Zadeck

algorithms can be expected to do. Having comparable implementations of each of these

algorithms is a big step toward answering these questions.

The most advanced algorithm presented above, the ConditionalConstant algo-

rithm, uses the results of live variable analysis to modify the owgraph, then passes the

modi�ed owgraph to the ConditionalDef algorithm. ConditionalDef, following Reif &

Lewis, then uses the results of reaching de�nitions analysis to produce a sparse propaga-

tion graph. This is a good example of how our graph-transformation system can make the

combining of multiple algorithms into one a reasonable thing to do, especially with respect

to development and maintenance costs. While it is certainly possible to write algorithms

that are incompatible with others, the natural way of representing associations with graphs

CHAPTER 6. DATA-FLOW ANALYSIS REVISITED 111

results in one natural data format for expressing data-ow solutions. The elimination of any

need for data format conversion code thus shortens algorithms and enhances ease-of-use,

readability, and maintainability, while not restricting the analysis algorithms that may be

implemented or increasing their computational complexity.

112

Chapter 7

Experimental Results

The system described in this dissertation was incorporated into an experimental

compiler optimizer, replacing its pre-existing analysis phase. This chapter describes the

work we did performing this implant and our experiences with the result. It closes with

some directions for further research and a summary of the project.

7.1 An optimizing Modula-2 compiler

Under construction at UC Berkeley is an experimental portable optimizing com-

piler for Modula-2. This compiler's optimizer and code generator are implemented using a

portable language-independent system called Dora, which is organized around an interme-

diate language called DILS (Dora's Intermediate Language Schema). An overview of Dora

and DILS will be presented here, but the reader is referred to [10] for a complete treatment.

7.1.1 DILS and Dora

DILS is an intermediate language schema based on the lambda calculus extended

with a store. It di�ers from more standard forms of intermediate language in that it contains

no operators with which to implement language operations. Rather, it is a schema in the

sense that it provides a framework for an IL: it can be extended to include whatever opera-

tors are necessary. What DILS does provide is control-ow based on the lambda calculus. It

includes lambda abstraction, function application, and a \labels" facility for de�ning sets of

mutually-recursive functions. Non-local ow of control is modeled by continuation captures

CHAPTER 7. EXPERIMENTAL RESULTS 113

and continuation applications. DILS also supports the notions of variables, operators, and

constants, although it actually implements only a few types of the latter.

By being an extensible framework rather than a pre-de�ned intermediate repre-

sentation, DILS achieves machine- and language-independence. It also is able to express

programs at varying levels of abstraction, from a very high-level source-like representa-

tion down to representations at the assembly code level. This makes it a nice vehicle for

optimizing programs, since optimizations can be written once, yet be applied at several

levels.

Dora may be thought of as a collection of languages specialized for writing opti-

mizers for programs expressed in DILS. It consists of a language for giving descriptions of

operators, a tree-transformation language based on tree pattern-matching, and an attribu-

tion language for assigning and manipulating DILS tree node attributes.

Together, Dora and DILS comprise a machine-independent language-independent

environment for prototyping optimizing compilers. This is the environment into which the

present system was installed. It should be noted that DILS, with its similarity to Lisp,

does not support the notions of \statement" or \basic block", but instead is organized at

the expression level. Flow of control is expressed with functions, continuations, and left-

to-right evaluation of parameters. These conditions complicate the problem of performing

intraprocedural ow analysis, and so provide a worthy test for a system purporting to make

analysis easy.

7.1.2 Analysis algorithms used by the optimizer

The optimizer is a functional prototype of UOPT, the portable optimizer devel-

oped in Frederick Chow's Ph.D. dissertation [5]. UOPT is interesting from the ow analysis

perspective in that it incorporates the algorithm of Morel and Renvoise [20] which propa-

gates information bidirectionally along owgraph edges. This is the most advanced analysis

algorithm used by UOPT, the others falling into the class of standard intraprocedural

bitvectoring algorithms.

The original hand-coded data-ow analyzer that our system replaced computed

the same information as Morel and Renvoise's algorithm, but in a way di�erent from that

in the original speci�cation. The approach taken in the Dora implementation was to break

the bidirectional analysis into two unidirectional ows. This was done as follows.

CHAPTER 7. EXPERIMENTAL RESULTS 114

As in the original algorithm, the local properties TRANSP, COMP, and ANTLOC

(transparent, computed, and locally anticipated) are provided by each owgraph node, from

which the global properties AVAIL, ANT, and PAVAIL (availability, anticipability, and

partial availability) may be calculated by standard unidirectional means. From these, the

property MMA (might-make-available) is computed at each node x via the formula

MMA(x)
def
= AVAIL(x) _

0
@ANT(x) ^

Y
s2succ(x)

(PAVAIL(s)�AVAIL(s))

1
A

The property CMA (can-make-available) is then de�ned to be

CMA(x)
def
=

Y
s2sib(x)

MMA(s)

where x 2 sib(y) if there is some owgraph node z that is both a successor of x and a

successor of y. The sib relation is de�ned in terms of successors and not predecessors because

we are interested in converting partially available expressions into available expressions at

common successor nodes. 1

Both the MMA and CMA computations can be seen to use unidirectional ows,

the necessity for bidirectional ow having been obviated by the sib relation. The properties

desired for optimization can be determined from CMA, MMA, and more standard data

ow information such as AVAIL. For example, the property INS, which tells where in the

owgraph to insert expressions, may be computed as CMA� PAVAIL.

7.2 Installation of the graph system

The graph system was written using the Common Lisp package facility, and so

was incorporated into Dora simply by the addition of its code. This made the algorithms

of Chapter 6 available to Dora. New code was then written to construct the owgraph, to

construct auxiliary graphs from DILS code, and to allow Dora to use the ow analyzer's

result graphs. Finally, calls to the original hand-coded data-ow functions were replaced

with calls to their newly-available equivalents.

The library of available graph-based analyzers includes analyzers for availability,

partial availability, anticipability and partial anticipability, among others. Each of these has

1Note that the graph representing the sib relation may be calculated very simply by (compose (reverse

G) G) where G is the relevant owgraph.

CHAPTER 7. EXPERIMENTAL RESULTS 115

been implemented using three underlying algorithms: worklist, workgraph, and Graham-

Wegman. All of these are in Dora, and the implementation of each analyzer that is to be

used is selectable at run-time.

Performing control-ow analysis on DILS was a somewhat less straightforward

process than performing it on an ordinary statement-oriented language such as Pascal or

C would be. This is primarily due to the fact that a completely general DILS control-ow

analyzer must be able to handle the problems introduced by functional languages such as

Lisp, in which it is frequently the case that a non-constant expression must be evaluated

to determine which function to call. Dora contains a powerful tree pattern-matcher and

tree transformer specialized for working with DILS that makes the job of constructing

control-ow graphs for DILS fairly easy. This being the case, we did not re-implement the

control-ow analyzer using the graph transformation system.

We can, however, make a convincing case that it is feasible to use our system

for control-ow analysis by noting that Dora's tree pattern matching primitives can be

implemented using graph transformations. An implementation based on this approach

would probably not manipulate DILS as e�ciently as Dora can. The point is not that this

would be a good method for performing control-ow analysis, but rather that our language

is su�ciently powerful for the task.

We implemented several functions to extract the other information needed by the

data-ow analysis algorithms from a tree-like graph representation of DILS code. Again,

given that Dora has specialized features for dealing with DILS, it is doubtful that this was

the most e�cient method of computing these graphs. Nevertheless, the exercise demon-

strated that our system is capable of dealing with this kind of complexity, and that the

coding e�ort to construct these auxiliary graphs is small.

7.3 Comparison with a hand-coded analyzer

Our system was designed primarily from the standpoint of making ow analysis

algorithms easy to implement and easy to use. Since speed is often an extremely important

concern, our aim was to make our system as fast as possible, but without compromising

our primary goal.

The work required to incorporate our system into Dora and to make it perform

useful ow analysis (as distinct from the work necessary to construct our system and its

CHAPTER 7. EXPERIMENTAL RESULTS 116

library of analyzers) took only three afternoons. Since this was the �rst use of the transfor-

mation system, an appreciable fraction of that time was spent streamlining its interface to

make it easier to use. This cost will not recur, and so we anticipate that subsequent uses

will require even less e�ort.

In e�ect, we have shown that the addition of a ow-analysis component to a

compiler can be an easy and low-cost proposition. From when we started the integration

process to the point at which Dora was using it to perform real optimizations, no time

needed to be spent designing, implementing, or most importantly, debugging ow analysis

algorithms.

Table 7.1 gives some measured timings for the calculation of availability and partial

availability information on four test cases. It can be noticed from the fourth column that

the graph-based system is slower than the original by a factor of less than seven. The two

simplest cases are less slow, probably because they contain no loops. We anticipate that a

re-implementation of the graph data structure and its sub-structures in light of knowledge

of how they are typically accessed will lead to substantial speed improvements.

nodes Original Graph-based Relative slowness

26 50�s 217�s 4.3x
40 70�s 400�s 5.7x
90 217�s 1417�s 6.5x
232 850�s 5717�s 6.7x

Table 7.1: Speed comparison

It should be noted that these measurements are not completely conclusive, since

faster and more sophisticated algorithms are easily used with our system, and their improved

asymptotic behavior may well cause them to outperform the hand-coded original (which

was worklist-based).

Estimates of the amount of memory required to run the system are di�cult to come

by, because the Lisp garbage collector confounds many attempted measurements. Neverthe-

less, we can say a few things based on the implementation we used. A typical adjacency-list

structure consumes one cell per node and two cells per edge. Each of our graphs include

two such; one for the graph itself and one for the reverse of that graph. In addition, we

maintain a tree structure atop each adjacency-list to make edge insertions, deletions, and

existence tests fast. The total space cost comes to two cells per node and eight cells per

CHAPTER 7. EXPERIMENTAL RESULTS 117

edge, roughly four times normal. This cost can be minimized by generating the reverse

graph structure only when needed, and by building tree-structures over adjacency-lists only

when those lists become large. Since most graphs are sparse, it should be reasonably easy

to approximate the space cost of a traditional adjacency-list quite closely.

It is di�cult to estimate the space taken by the graphs used to associate data-ow

attributes with owgraph nodes compared to bit-vectors. This is due to the fact that a bit-

vector is a dense representation, while a graph is a sparse one. Should further measurements

show there to be a great discrepancy, the system could be modi�ed to take hints to the

e�ect that certain graphs should be represented internally as bit-vectors. Of course, the

high-level interface to these graphs would remain unchanged.

7.4 Directions for further research

This section suggests several avenues worthy of further exploration, ranging from

paths to a fuller understanding of graph transformations to ways of constructing better

analyzers.

The present work raises some interesting questions about algorithms for matching

patterns in graphs. Recall from Chapter 3 that the search algorithm used here considers

the pattern variables in a �xed order which is determined by a topological ordering of a

pattern's NCC. There are many such topological orderings; the one we use is determined

by the \alphabetically least" sub-ordering on the variable names. It may well be the case,

however, that the use of di�erent topological sorts may cause pattern match failures to be

detected earlier, hence speeding-up the whole matching process on average. (The worst-case

time will, of course, still be exponential.) This facet of graph pattern matching, along with

the possibility of �nding better heuristics for choosing pattern seeds, is worth investigating.

It would also be interesting and useful to be able to characterize patterns in order

to tell which patterns are likely to match quickly. In our development of algorithms, we

often found several ways to implement the same transformation, based on di�erent ways to

match some graph structure and to assign nodes to variables. A study of patterns could lead

to a better pattern compiler that could optimize a pattern automatically after analyzing its

structure.

A study of how transformations can interact could also lead to more e�cient

transforming by allowing us to combine two adjacent transformations into one that is more

CHAPTER 7. EXPERIMENTAL RESULTS 118

e�cient, or to split one transformation into two if circumstances warrant. The development

of an algebra of patterns and transformations could thus provide many opportunities for

optimizing our ow analysis algorithms.

A somewhat di�erent direction may be taken by noting that our language could

be used to analyze programs written in itself. This could produce not only the obvious

bene�t of allowing us to optimize our analysis programs, it might also aid us in construct-

ing incremental algorithms automatically from non-incremental versions. We could use

dependency information, for example, to decide which intermediate graphs in an algorithm

needed to be updated if a change were made to an input graph. Further, if the information

being maintained about these graphs was �ne-grained enough, we might be able to decide

a priori which parts of a graph needed updating, thus minimizing the time for the update

operation. The feasibility of this suggestion will only be determined by further analysis.

7.5 Project summary

The primary goal of this project was to demonstrate that an approach based solely

on graphs and transformations of graphs was su�cient for performing ow analysis, and

could facilitate the use of multiple analysis algorithms in a single program. A second goal

was to demonstrate that such an approach could lead to a substantial degree of software

re-use, allowing the application of even the hardest-to-implement ow analysis algorithms

to become commonplace. We believe that we have met both of these goals.

We �rst developed a small family of graph transformations and constructed al-

gorithms for carrying them out. We then built a programming language based on this

transformational machinery, and extended it with utilities written using graphs and trans-

formations. A library of program ow analyzers was subsequently developed, depending

only on the facilities present in this (extended) language. Finally, this entire system was in-

corporated into an existing compiler back-end, replacing its pre-existing analysis phase with

standard routines from the analyzer library. It was demonstrated, through the development

of several advanced algorithms, that di�erent implementations of the same analyzers may

be written easily and made use of without disturbing the enclosing compiler.

It should be noted that the ow analysis algorithms that we implemented were

written without taking any of the peculiarities of DILS into account. They were constructed

simply to operate on a owgraph having associated gen and kill graphs, whether that

CHAPTER 7. EXPERIMENTAL RESULTS 119

owgraph is expression-based, as with DILS, or based on basic blocks, as is the case in

more conventional optimizers. The fact that these algorithms do not change just because

the owgraph on which they work belongs to a di�erent paradigm of compiler construction

supports the claim that our graph-based language can make a data-ow analyzer act like

a black-box. Indeed, the present system makes it easy to take standard ow analysis

components from a library and incorporate them into an optimizer. In other words, the

system seems to make possible a high degree of software re-use, at least in the domain of

ow analysis on graphs. This being the case, the argument that some analysis algorithms

are too complicated to warrant implementation loses much of its weight.

In our system, even the most complicated algorithms interact with the compiler

and with each other through a single easily-understood data structure, the directed graph,

and through a small and easily-characterized family of transformations. This minimal

computational basis helps to ensure not only that this package can be incorporated into

a compiler with minimal programming e�ort, but also that ow analysis algorithms can

interact with one another without requiring elaborate interfaces.

We have shown that graphs are a suitable representation for ow analysis data

structures, and that our family of transformations is powerful enough to allow us to solve

most if not all program ow analysis problems. Furthermore, our transformations are

e�cient enough to solve these problems without changing the asymptotic time bounds of

any algorithm we implement. They are also fairly e�cient in a real sense: our experimental

prototype is almost fast enough to be used in real compilers.

120

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and

Tools. Addison Wesley, Reading, MA, 1986.

[2] Allen, F. E. Control ow analysis. Sigplan Notices 5, 7 (1970), 1{19.

[3] Banning, J. P. An e�cient way to �nd the side e�ects of procedure calls and the

aliases of variables. In Proceedings of the Sixth Annual ACM Symposium on Principles

of Programming Languages (Jan. 1979), pp. 29{41.

[4] Burke, M., and Cytron, R. Interprocedural dependence analysis and paralleliza-

tion. In Proceedings of Sigplan '86 Symposium on Compiler Construction (July 1986),

pp. 162{175.

[5] Chow, F. C. A Portable Machine-independent Global Optimizer { Design and Mea-

surements. Ph.D. dissertation, Stanford University, Dec. 1983.

[6] Cocke, J. Global common subexpression elimination. Sigplan Notices 5, 7 (1970),

20{24.

[7] Cooper, K. D., and Kennedy, K. E�cient computation of ow insensitive interpro-

cedural summary information. In Proceedings of Sigplan '84 Symposium on Compiler

Construction (June 1984), pp. 247{258.

[8] Cooper, K. D., and Kennedy, K. E�cient computation of ow insensitive inter-

procedural summary information { a correction. Sigplan Notices 23, 4 (Apr. 1988),

35{42.

BIBLIOGRAPHY 121

[9] Cytron, R., Lowry, A., and Zadeck, K. Code motion of control structures in

high-level languages. In Proceedings of the Thirteenth Annual ACM Symposium on

Principles of Programming Languages (Jan. 1986), pp. 70{85.

[10] Farnum, C. D. Pattern-Based Languages for Prototyping of Compiler Optimizers.

Ph.D. dissertation, CS Division, EECS, University of California, Berkeley, Dec. 1990.

[11] Ferrante, J., Ottenstein, K. J., and Warren, J. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July 1987),

319{349.

[12] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

[13] Graham, S. L., and Wegman, M. N. A fast and usually linear algorithm for global

ow analysis. J. ACM 23, 1 (Jan. 1976), 172{202.

[14] Harary, F. Graph Theory. Addison Wesley, 1972.

[15] Hecht, M. S. Flow Analysis of Computer Programs. Elsevier North Holland Inc.,

New York, 1977.

[16] Hecht, M. S., and Ullman, J. D. A simple algorithm for global data ow analysis

problems. SIAM J. Comput. 4, 4 (Dec. 1977), 519{532.

[17] Hunt, H. B., Szymanski, T. G., and Ullman, J. D. Operations on sparse relations.

Commun. ACM 20, 3 (Mar. 1977), 171{176.

[18] Kildall, G. A. A uni�ed approach to global program optimization. In Confer-

ence Record, ACM Symposium on Principles of Programming Languages (Oct. 1973),

pp. 194{206.

[19] Kuck, D. J., Kahn, R. H., Padua, D. A., Leasure, B., and Wolfe, M. Depen-

dence graphs and compiler optimizations. In Proceedings of the Eighth Annual ACM

Symposium on Principles of Programming Languages (Jan. 1981), pp. 207{218.

[20] Morel, E., and Renvoise, C. Global optimization by suppression of partial redun-

dancies. Commun. ACM 22, 2 (Feb. 1979), 96{103.

BIBLIOGRAPHY 122

[21] Steele, G. L., and Sussman, G. J. The revised report on Scheme: a Dialect of

LISP. Tech. Rep. 452, M.I.T. Arti�cial Intelligence Laboratory, Cambridge, MA, Jan.

1978.

[22] Tarjan, R. E. Fast algorithms for solving path problems. J. ACM 28, 3 (July 1981),

594{614.

[23] Warshall, S. A theorem on Boolean matrices. J. ACM 9, 1 (Jan. 1962), 11{12.

[24] Wegman, M. N. General and E�cient Methods for Global Code Improvement. Ph.D.

dissertation, CS Division, EECS, University of California, Berkeley, Dec. 1981.

[25] Wegman, M. N., and Zadeck, F. K. Constant propagation with conditional

branches. In Conference Record, Twelfth Annual ACM Symposium on Principles of

Programming Languages (Jan. 1985), pp. 291{299.

