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ABSTRACT

Multithreading is an architectural technique aimed at maintaining high pro-
cessor utilization in the presence of large memory or interprocessor communica-
tion latency. While waiting for a remote reference to complete, the processor
switches to another exccution thrcad. Scveral rcalizations of this conccpt have
been proposcd, but little data is available on the actual costs and benefits. This
paper prescnts an analytical mode! of multithrcaded exccution, which may scrve
to guide and explain empirical studics. The model is bascd on three key parame-
ters: thread run-length, switch cost, and latency. A closed-form expression for
processor utilization is obtained for deterministic and stochastic run-lengths. The
derivation involves identifying specific paticms in the very large set of equations
forming the Markov chain. Using this result, three operating regimes arc identi-
fied for a multithreaded processor subject to long latencies: linear, where utiliza-
tion is proportional to the number of thrcads per processor, saturation, where
utilization is determined only by the run-length and switch cost, and transition
between the other regimes. The model can be uscd o cstimate the effects of
several architectural variations.

1. Introduction

In a parallcl machinc based on conventional proccssors, the impact of communication
delays between the CPUs and the memory modules increases with the number of processors and
eventually limits processor utilization. The interval between sending a request to memory and
receiving the result is called memory latency, and it is consider onc of the fundamental problems
in parallel computing [Arvi87]. The usc of cache memorics, that have proved to be effective in
eliminating latency in uniprocessors, do not appcar to provide a satisfactory solution in systems
containing a large number of processors. In addition, caches in multiprocessors have to be kept
coherent and it is not clcar that prescnt coherency protocols scale well.
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An altemative solution 1o the latency problem is 1o tolerate the latency that caches and local
memory do not eliminate. Multithreading is one of the promising architectural mechanisms for
tolerating latency. It consists in switching very rapidly betwecn ready-to-execute thrcads when
the processor, on behalf of a thread, atiempts to execute a long-latency operation. By switching
execution 1o a different thread the processor avoids the effects of memory latency by executing
instructions from other threads. However, this requires that a sufficient number of threads, either
from a single task or from different tasks, be present in the processor. Assuming that it is possi-
ble to ‘saturate’ the processor with ready-to-excculc threads, the pemicious effects of very large
memory latencies are alleviated.

Multithreading has becn used or proposed in some parallel architectures [Hals88, Smit78],
such that the processor switches between threads on every cycle independent on the behavior of
the thread. Although this approach simplifies the design it may increase the tunaround time of a
task, as each thread executes one instruction every § cycles, where s is the depth of the exccution
pipeline. In more recent proposals the switching between threads is caused by a load instruction,
a cache miss [Agar90], or a synchronization event (1ann88]. Thesc proposals appear 1o offer the
same level of utilization, but without overly increasing the tumaround time of a task.

Even though multithreading offers to improvc processor utilization, there have becn few
studics that actually attempt to evaluate its potential benefits {Webe89, Agar89]. In our work we
have tried to reversc this situation by proposing a model of multithrcading based on a small
number of significant parameters and studying their cffect. We want to use the model to answer
some of the most intcresting questions confronting multithreading, such as: what is the magnitude
of memory latency that justifies the use of multithrcading? How many threads are needed to keep
the processor busy most of the time? How sensitive is processor utilization to context switch
overhead, i.e., the time it takes the proccssor 10 preempt a thread and start a new onc? How do
multiple contexts affcct cache miss rates and nctwork dclays?

In a previous paper {Saav90], we presented a performance analysis of multithreading based
on several parameters including: the number of contexts in the processor, the magnitude of the
memory latency, the context switch overhead, and the average run length. Different variations of
the model incorporated several embellishments 10 make the model more realistic. In the simplest
model, memory latency and average run lengths wcre assumed constant. Further extensions 10
the model included incorporating a stochastic behavior of run lengths and assuming a dependency
between the number of contexts and the cache miss ratcs. In a switch-on-miss multithreaded pro-
cessor, variations in the number of cache misscs have a corresponding effect in the run length of a
thread. Our results showed that as the number of context increascs processor utilization increases
until it reaches some maximum and then starts to fall. This decrease in utilization is a direct
result of a higher number of cache misses, as more contexls stant competing for cachc resources.
In addition, we showed that there exists a close agreement between our results and trace-driven
simulations when network congestion is moderate!.

Other recent studies of multithreading [Agar89] have also derived expressions for processor
utilization under the assumption that latency and run lengths arc constant for a fixed number of

1 Qur model did include an explicit dependency betwecn the number of contexts and network delays.



contexts. The assumption that latency only depends on the number of contexts is nOt unreason-
able, considering that near to saturation a significant variation in latency have only a small impact
on processor utilization. However, the thread run length is the most important factor affecting the
effectiveness of multithreading and assuming it is constant is unrealistic. The novelty in our
approach resides in considering that run lengths behave as a stochastic process having a
geometric distribution. Experimental studies of run lengths between cache misses seem 10 Sup-
port this assumption [SoZe88]. Incorporating this into the model results in a large Markov Chain,
but one that has an analytical solution. In [Saav90] we presented the solution, but without pro-
viding a detailed derivation. The main purpose of this paper is to show how the solution was
obtained.

In Section 2, we present some of the definitions used in the paper and derive expressions for
processor utilization when run length is considered constant. Later we improve this by assuming
that they behave as a stochastic process characterize by a geometric distribution. This condition
gives rise to a large Markov chain. At the beginning of Section 3 we obtain the solution to a con-
crete example that illustrates some of the important steps in the derivation. We then present the
set of equations in the general case and derive their solution. One of the steps of the derivation
involves counting the number of states representing all the configurations of memory residual
times under a given condition. The solution to this subproblem can be found by studying a
related problem in combinatorics. This is prescnted in Appendix A. We cnd the paper by giving
a small summary.

2. A Simple Multithreading Performance Model

A muliithreaded processor consists of all the normal elcments of a processor plus support
for multiple active threads, also called contexts, fast context switching, and additional hardware
to deal with pending memory rcquests. A context is embodied by its register set, program
counter, and program status word. The main factors affecting the utilization of a multithreaded
processor are the number of contexts in the processor (N); the magnitude of the memory latency
(Lynem CYcles): the overhead involved in switching contexts (C cycles); and the average run
length between context switches (R cycles). Notc that laiency and run lengths are a function of
the number of contcxts; supporting more COnIExts mceans that cach has less access to shared
resources. In the following analysis we will assume that even when latency and run lengths are a
function of the number of contexts, these are constant for a fixed value of N. Later we will drop
this assumption in the case of run lengths.

Suppose that there is one context executing in the processor. Also assume that contexts are
switched every time they aticmpt to execute an instruction that requires a remote reference to a
memory module. As long as the context executes instructions that do not require a large latency
it continues to have control of the processor. When the processor is forced to make a remote
reference the context is precmpted and another context is selected. A context is ready to execute
when it has no outstanding memory requests pending in the network. If there are no ready-to-
execute contexts, then the processor has to wait for the first memory request to complete before
continuing doing uscful work. This mcans that, at any cycle, the processor can be in one of the
three following states: Busy, when a context is exccuting; Switching , while preempting a con-
text and selecting a new one; and Idle , when all contexts arc waiting for memory requests. Now,



if we focus on a context, instead of the processor, we se¢ that it iterates through the following
four states: Running , Leaving , Blocked , and Ready .

The above description assumes that there is at most onc outstanding remote request per con-
text. This is not an essential condition and can be replaced by assuming that contexis can make
some number of remote requests before being blocked. A similar feature has being proposed for
the Horizon machine [This88]. Obviously, the value of the average run length and memory
latency will be affected by having more requests floating in the network.

The behavior of a multithreaded processor is conveniently represented by a Petri net
diagram as in Figure 1. The circles represent places, and the boxes transitions. Four of the five
places correspond directly to the four context states; place A is uscd to enforce the constraint that
only one context can be running or leaving. Note that transition E is immediate, while transi-
tions R, C and L are deterministic (black rectangles).

Ready
A e JA
E
Rumning
R
Leaving
C
Blocked Blocked @
L L L

(a) (b) ()

Figure 1: A Pemi net representing the three states of the multithreaded processor. In (a) the processor is
Busy; in (b) the processor is Switching; and in (c) the processor is Idle. The states for the contexts
are represented by the places labeled Ready, Running, Leaving, and Blocked.

Multithreading attempts to use multiplc contexts in order to increase the utilization of the
processor. We will definc processor utilization as the fraction of time the processor stays in the
Busy siate

- Busy . )
Busy + Switching +ldle

€



The basic idea behind a multithreaded machine is to interleave the execution of several contexts
in order to dramatically reduce the value of /dle, without overly increasing the magnitude of
Switching .

2.1. Utilization of a Single-Threaded Processor

A single-threaded conventional processor executes its only context until a remote reference
is issued (R cycles) and then stays idle until the reference completes (L, Cycles), before being
allowed to resume execution. There is no context switch and, obviously, no switch overhead. We
can model this behavior as an alternating renewal process having a cycle ofR +L,,,. Intems
of eq. (1), R and L, correspond to the amount of time during a cycle that the processor is
Busy and Idle, respectively. Thus, the efficiency of the single-threaded machine is given by
R 1

= = . 2
R+Lny 1+Lpm/R

3}

In figure 2 we show how cfficiency degrades as a function of L., and 1/R. For the average run
length of 50 cycles between memory requests and a latency of 10 cycles the efficiency is 83%. If
memory latency increases to 75 cycles the efficiency drops t0 40%. A 75-cycle latency is not an
unreasonable value on a parallel machine.

2.2. Utilization of a Multithreaded Processor

With multiple contexts, memory latency can be hidden by switching to a new coniext, but
we now must assume that switching takes C cycles of overhead. Assuming the run length
between switches is constant, with a sufficient number of contexts there is always a context ready
to execute when a switch occurs, so the processor is never idle. In this case, we say the processor
is saturated. The cycle of the renewal process in this case is R + C, the time 10 execule a process
and switch to the next, and the efficiency is simply

€y = R__ ! .
R+C 1+C/R
Observe, that the efficiency in saturation is independent of the latency and also does not change
with a further increase in the number of contexts. Saturation is achieved when the time the pro-
cessor spends servicing the other threads exceeds the time 10 process a request, i.e, when
(N-DR +C)2L,,, —C =L. This gives the saturation point, under constant run length, as

3)

Nd= +1. (4)

Where L represents the residual time of the memory latency after context switching
(Lpem =L + C). When the number of contexts is below the saturation point, there m2y be no
ready contexts after a context switch, so the processor will expericnce idle cycles. The time to
switch to a ready coniext, execute it until a remote reference is issued, and process the reference
is equal to R +C +L. Assuming N is below the saturation point, during this time all the other
contexts have a tum in the processor. Thus, the efficiency is given by

L __NR___N
in = R4+C+L  1+Lpm/R’

&)
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Figure 2: Curves of constant efficiency a function of context swiich probability (p = 1/R) and memory la-
tency. Efficiency is equal to the limiting probability of the processor being in a busy state.

Observe, that efficiency increases linearly with the number of contexts until the saturation
point is reached and beyond that remains constant. The equation for €, gives the fundamental
limit on the efficiency of a multithreaded processor and underlines the impontance of the ratio
C /R. Unless the context switch is extremely cheap, the remote reference rate must be kept low.

3. Analysis with Stochastic Run Lengths

In this section, we improve the basic model by assuming the run length of a context R)isa
random variable having a geometric distribution; i.e., the probability of executing an instruction
that will trigger a context switch is p =1/R.

Before presenting the solution to the Petri Net, we will use a concrete example 10 show the
relevant issues present in the derivation of the gencral solution. Consider a multithreaded proces-
sor supporting only 3 contexts (N =3), and having a context switch time (C) of only 1 cycle. The



memory latency (L,,.,) for a remote request is 6 cycles. Recall that the residual latency (L)is
equal to the memory latency minus the context switch time, so this gives a value for L of 5
cycles. We can label this system as a (3, 1, 5)-multithreaded processor. The probability of con-
text switching is modeled as a geometric distribution; all contexts in execution have, on every
cycle, the same probability (0 <p < 1) of making a remote request.

The solution to the Petri Net can be found by obtaining its equivalent Markov chain, com-
puting the limiting probabilities, and using these 10 compute the Busy , Switching , and Idle pro-
babilities. The states of the Markov chain are exactly those in the reachability set of the Petri
Net. The reachability set consists of all possible configurations of the Petri Net, and associated
with each configuration there is a corresponding statc in the Markov chain. We name each state
in the Markov chain by appending the individual states of the contexts that are relevant in deter-
mining a unique configuration on the Petr Net. Contexts that are ready to execute arc not
relevant, so we ignore them. For example, if one context is running, one ready to execute, and
another has been waiting for 2 cycles for its memory request (o finish, we label this state as RB 3.
Note, that here we need not indicate that there is one context in the ready state. With respect to
the blocked context, the subscript gives the residual time for the memory request 10 finish. If in
the next cycle the running context blocks, the Markov chain may make a transition to staie
C B ,. This state indicates that one coniexts is in its first cycle of context switching and the
blocked context has a residual time of two cycles. Note, that with respect to context switching,
we give the time since the beginning of the transition and not the residual time, as in the case of a
blocking context. This inconsistency between context switching time and residual blocking time
does not affect the solution and it makes the analysis easicr.

Not all combinations of residual blocking times and context switching times represent valid
states in the Markov chain. Given the conditions for the behavior of a multithreaded processor,
some configurations cannot happen. For examplc, RC ; and RB ;B are invalid. The first confi-
guration cannot occur because the processor cannot be executing onc context and context switch-
ing another in the same cycle. The second configuration is invalid because in the case of a
(3,1, 5)-multithreaded processor, requests (0 memory are scparated in time by a distance of at
least two cycles; the smallest interval between two consccutive memory requests is not less than
two cycles, since cvery context executes for at least one cycle plus the time it takes 10 context
switch. In the general case, the conditions that determine which configurations represent valid
states are the following:

1)  There is al most one context running or leaving.

2) The distance between any two residual blocking times is always greater than C,ie., the
time it takes to context switch.

3)  If a context is bing switched, its distance to any other blocked context must be greater than
C.
Condition 3 is condition 2, but in thc special case when one context is being context
switched.



Figure 3: Markov chain for a (3, 1. 5)-multithreaded processor. The name of each state indicates a par-
ticular configuration of the Petri Net. Each stochastic transitions is labeled by its associated proba-
bility. The line width of a circle indicates its type: running states are shown in bold line, switching
states in normal line, and idle states in broken line.

3.1. Solution to the Markov Chain for a (3, 1, 5)-Multithreaded Processor

Figure 3 depicts the Markov chain for the (3, 1, 5)-multithreaded processor with the name
of all the states and the probabilities in the case of stochastic transitions. There are 21 states; in
12 of these states the processor is busy; in 8 context switching; and in one the processor is idle.
In the figure, running states are indicated by a circle in bold line; switching states by a circle in
nomal line; and idle states by a circle in broken line. We can sec how the Markov chain behaves
by considering the set of transitions when the first four run lengths are 3, 2, 1, 1 cycles:

R >R >R -C,->RBs>RB,—-C,By>RBsB;,—C BB, —RBB3;—>C\BB, > BsB3B,.

In 7 of the 12 cycles the processor is busy, in four it is context switching, and in the last cycle it is
idle.

From the Markov chain we can obtain the sct of equations for the limiting probabilities. The
equations for the busy states are:



R=Q-p)R +(1-p)RB, RB3B,=(1-p)RBsB;
RB,=(1-p)RBs+(1-p)RBsB, RBs=C,+C B,
RBy=(1-p)RB4+(1-p)RB,B, RBB=C B4+ C BB,
RB,=(1-p)RB3+(1-p)RB3B, RBB,=C,B3+C B3B,
RB,=(1-p)RB; RBB,=C\B;
RB,B,=(1-p)RBsB, RBB,=(1-p)RBsB3+BsB3B..

The first equation indicates that the state that corresponds 10 one context running and two con-
texts ready, can be entered from the same state with a probability 1 —p (the running context does
not block) or from a similar state where there is one ready context instead of two, plus one
blocked context with one cycle left before receiving its memory request. This blocked context
will make a transition into the ready statc in the next cycle.

We can identify five paticrns in the previous equations which represent all the different
ways in which the system can make a {ransition into a running statc. Specifically, a running state
can be reached from, 1) two running states, 2) one running staic, 3) two switching states, 4) onc
switching state, or 5) onc running and onc blocked statc. Each pattcm has a particular domain of
validity. Furthcrmore, in the gencral case these samc paticms describe all the possible equations
for running states. The difference between paticrms 1 and 2 (3 and 4) is a consequence of enforc-
ing condition 2. In figure 4 somc of the statcs in the chain have small squares with labels to illus-
trate the five pattemns.

Similarly, the cquations for the limiting probabilities for context switch and idle states are:

Ci=pR +pRB, C,\B4By=p RBsB3
CiB4=p RBs+p RBsB, C\BsB,=p RBsB;
C\By=p RB4+p RB B, C,B3B,=p RB,B;
C1B2=p RB3+p RB3B, BsB3B1=CB4B2
C\B;=p RB,.

We sec two distinct pattemns for the context switch statcs and onc pattern for idle states. In the
general casc there are iwo morc patiens for the former and onc for the later. The reason is that in
this example we have a one-cycle context switch timc and a singlc idle state. In the gencral case,
when C is greater than one there arc two more paticrns modcling transitions betwcen context
switching states. And when the number of idle states is greater than onc there is an additional
equation.

The set of 21 equations contains only 20 indcpendent equations, so we can obtain a
parametric solution 1o this sysicm in terms of onc of the variablcs. The parametric solution in
terms of statc R is given by
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RBI=C1=T%R

RB, = RB; = RB; = RBs = —2—R
(i-p)
2
C8, = —E—rR
(1-p)
2 .
RB,B, = RBB, = RBsB, = C\B; = C\B3 = CiBy = Hﬂ—);k
-p
2
RB,B, = RBsB, = RBsB 3 = (—1%571?

3

__L; R

a-p)

Using the additional condition that the sum of all limiting probabilities is equal to one, allows us
to find the value of the limiting probability for state R

858381 = C]BgBl = C18481 = CIB482 =

R = (] —P )4 .
2p3+2p%+2p +1
By adding all contributions for the states corresponding to a Busy , Switching , or Idle processor
gives us the following limiting probabilities

pi+p+1 p2+p*4p . e = p’ '
2p3+2p2+2p +1 203 +2p2+2p +1° 203 +2p%+2p +1
These equations give the proportion of time, as a function of the context switching probability,
that the processor will be in each state.

Busy = i Swilching =

We can plot these three equations and sce the efficiency of the processor as a function of the
average run length of a context; Figure 4 shows this. When the run length is infinite the proces-
sor has a maximum efficiency of 1, and as the run length decreascs the efficiency diminishes,
with a minimum value of .4273, when every context executes for only one cycle. When the pro-
bability of context switch is 1, the run length is deterministic and the model is in the linear
regime. In this casc the efficiency is equal to 3/7 and is the same as that given by equation (5).

3.2. General Solution to the Markov Chain

We now present the solution for the Markov Chain in the general case. The derivation fol-
lows the same steps as the example we presented in the last subsection. The steps are: 1) we give
the set of equations for all the running, switching, and idle states. 2) We obtain the parametric
solution. 3) We then add all contributions of the limiting probabilities.

Extending the notation we uscd in the last section, we will represent a running state with k
(0 <k <N —1) contexts wailing for memory request 10 finish as RB; - - - B;,, where B;, indi-
cates that the j blocked context has a residual waiting time of i; cycles. Recall that the differ-
ence between any two residual times is greater than C. A particular configuration of the mul-
tithreaded processor when it is context switching is givenby C;B; - B;,.and the configuration

when the processor is idle is given by B; - B,,.
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Figure 4: Efficiency versus context swilch probability. Efficiency is equal 10 the limiting probability of
the processor being in a busy state.

3.2.1. The Set of Equations

As we mentioned in section 3.1 there arc only five diffcrent pauems present in the set of
equations modeling the limiting probabilities when the proccssor is running. These are given by

((1=p)RB; o1 Bisr+(1=pIRB; o1~ BisiBy i,>C; ij<L; 0Sk<N=-2
(l-p)RB"‘*x"'Bk.‘,]—l ‘l <C; i]-_-L; 1€ksN-1
RB, - B, =1 CcBi1 Bivs1+ CeBiver - BisiB) i >C; iy=L; 1SksN

CcBis1 o Biua

iy <C; iy<L; 1Sk sN-1

L (1=p)RB,s1 " *Bis1 + Biwr " BiniB ii>C; iy<L; k=N-1

There are different cquations depending on the type of statcs that can makc a transition (o a run-
ning configuration. For example, the first equation indicatcs that a running configuration where
the largest residual time is less than L and the smallest residual time is larger than C can be
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reached from two other running configurations each with a transition probability of (1-p). The
second state differs from the first by having an additional blocked context with a 1-cycle residual
time. Note that this equation is the gencralization of first four equations on the (3, 1,5)-mul-
tithreaded processor example. The other equations represent different portions of the configura-
tion space and enforce conditions 1-3 in section 3.

In the same way, we can obtain the set of equations modeling the limiting probabilities for
switching configurations

’pRBi|¢1.'.Bi‘+]+pRB‘|¢1"‘B“#131 il >C; I=l; 0.<-k SN-2
PRB .1 " Bin i SC; I=1 1SksSN-1
pRB;,H"'B,-.” it>C; I>1 0<sk<sN-2
C[B,'l‘ B“:{ .
Cl-laim—l"’Bh+1+cl—18h+l...Bi.olgl i>C: I=) k=N-1
Cio1Biv1 " Biny ii>C: I>1 k=N-1
L Cio1Biie1 "B i,<C; I>1; 1sksN-1

Note that there are only four diffcrent patierns present in the six cquations. Finally, the equations
for the idle configurations arc:

CCBi.-rl"'BhH i=L
B, B.= B+ Bin ih <L

3.2.2. Parametric Limiting Probabilities

We are now in a position to give the parametric solution 0 the limiting probabilities. We
express all solutions in terms of the state represented by R. The unique solution will be obtained
later by adding all contributions and normalizing them 1o onc. The solution for the running con-
figurations are:

k
(T__,,E)(T«WR ii>C; 0Sk<N-1

RB“' * ‘B".= k (6)
P R iy SC; 1€k <SN-1

(1 _p)(C+1)(k-l)+i.

In the case of the switching configuration, the solutions are:

,

k+l

(l-p)‘c‘")“” R iy >C; 0Sk<N-2
p¥ -y
(l_p)(CH)(N—l)R (i >C, k=N-1
pk*l . i
i, <C; 1SksN-=-2 )

(1 _p)(C«vl)(k-l)+l+i. R
pN

(1-p)(c*1)(N'2)*'*“R lkSC; k=N—]; l+1gSC

N
P . N1 .
(l_p)(C+l)(N—l)R ‘kscv k-N l, I+lk >C
\

The solutions in the case of idle configurations are:
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N

...B. = p
Bin Bu (1 _p)(C+1)(N-l) R. (8)

We can easily prove that these solutions satisfy the the transition equations by making a
case analysis. We will illustrate this by proving it for one of the equations The uppermost of the
running transition equations is

RB, -~ B, = (1-p)RBi sy - "Biys1 + (1 =p)RBis1 "~ "B, 1B
with conditions:
iy>C; iyj<L; 0<ksN-2.

We will substitute the solutions from eq. (6) on thc right hand side of the equal sign and arrive at
an identity. Given that iy >C and iy, =1 (B 1), we have to use the upper solution of eg. (6) for
the first term and the lower solution of the same equation for the second term. So the limiting
probabilities for the two configurations arc

k k+l

fl_:f)‘_CT‘T*—R‘ RB . - B,+1B1 =

By replacing the solutions and using elementary algebra we obtain the desired result.

RBi .- By = (l_p)(C+l)l+1R'

g - _Q-pp a-pp**' . _ (-pyp* +p**!
RB,---B, = (]_p)(Cﬂ)kR + (l-p)‘C”)“’IR = Qg CE
k
RB;,--- B,

T

This is the correct result, and all the other solutions can be verified in the same way.

3.2.3. Adding All Contributions

The next step in the derivation consists in adding all contributions 10 each of the three pro-
cessor states. We have to count the number of different states in the Markov chain that share the
same solution. To do this, we need to count the number of configurations for a each solution
satisfying its associated conditions. This is casily donc by introducing a new notation represent-
ing the number of clements in each sct and using the results given in Appendix A about the
number of (L, C , k )-subsets.

Let #(XB; ---B;,,L)p represent the number of different configurations of residual
blocked times associated with patten XB; - - - B;,, where X is R, C,, or empty, and subject to

condition D. Using this notation and assuming that the probability of state R is one we can
express the three unnormalized limiting probabilitics as

N-1 pk N-1 C pk
Mgy =S #RB;, - BisL)is>j—— 7 + #(RB, ---B,,L),=c —
ury ‘Eo Wy (l_p)(c+l)t ;;:1 j§l wEAERQ _,p)(CH)(k D+j
N-2C k+1 N-2C C k+1

p
M swicching = #(C\B;, - B,,L)i,>c + #(C;B;,- " Bi,L), = "
e = 2 2 . aopeme + B X LM wE MR (- p)C et

cCc-! N
P

C N
‘§1 #(CIBH Biﬂ-n’L)iuq>C -1 (1 _p)(c + N -1) + 1§1j§1 #(ClBi: Bl}l-ﬂL)ﬁl.l =j (l _p)(c + 1N =D+l+]
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N

-#8. - B L)—PB——
N,q =#B,, B,,,,L)(l _p)(Col)(N—l)'

Assuming that R is one does not invalidate the derivation and will be corrected later by normaliz-
ing the solution. The equations are obtained from equations (6)-(8) by summing over the
appropriate domains and introducing the corresponding condition D . For example, the two terms
represented in the equation for the Busy state arc obtained from equation (6) in the following
way. The upper term is valid for all running states in the Markov chain having any number of
blocked contexts in the interval 0 £k <N —1 with a minimum residual time greater than C.
This translates in a summation, where each term gives the number of states in the Markov chain
that have k blocked contexts subject to condition i, 2 C, since the smallest residual time must
be larger than C. The lower term in (6) also (ranslates into a summation over the number of
blocked contexis plus another sum representing condition i, < C: onc term for each values of i.
The same approach is used to obtain the terms for the Switching and Idle equations. What we
have to do next is to compute an explicit expressions for the number of blocked configurations
satisfying a given condition.

32.4. From Processor Configurations to (L, C, k)-Subsets

We are almost in the position to usc the results in Appendix A to count valid configurations.
These results will allows us to count how many valid states exist in the Markov chain that have &
blocked contexts and subject to condition 2, i.c, that the distance between two residual times
should be greater than C. However, these results do not take into account that thc number of
valid configurations is smaller when the processor is switching between contexts. If the proces-
sor has been context switching for / cycles the residual times of all contexts should be less than
L —1. We will take this into account in counting states.

It is easy o apply the results from Appcndix A when the processor is running a context.
The number of valid states is just the number of different (L,C ,k)-subscts. The following two
derivations for running configurations arc obtaincd dircculy from the two corollaries given in
Appendix A.

L -kC
#(RB;,- By, L)i»c = #(B;, " BuL)isc = S.L-C.ky =1 4

_ L-k=-1C~j
#(RB,'""B".,L)".,,‘ = #(B,'“ "B,‘.,L)".:l‘ = SC(L -C —],k—l) = k"]

The first derivation is explained as follows. When onc context is being executed the sct of resi-
dual times for the blocked contexts is not affected. Thus, the term after the first equal sign
represents all the states that can be formed from k contexts having a maximum residual time of L
cycles, and subject to the condition that the smallest residual time should be greater than C. By
Corollary 2 of the Appendix, we know that these states correspond to all the (L ~C,C,k)-
subsets. The combinatorial term represents all the possible states for k blocked contexts.

The number of switching configurations are obtained in a manncr similar to that for running

configurations. The only difference is that wc must consider that when a context is been
switched, the maximum value for the residual time is reduced by the number of cycles that the
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processor has been context switching (condition 3). Therefore, the four terms representing all the
context switching states are:

L-kC -1
#(C,B“‘"'B“,L)".>C = #(B.'""B.‘.,L —I)“‘>C = SC(L—C-l,k) = k

L-G-1C-1-7
”(ClBh”.BhﬁL)ﬁsj = #(B"I"'B.'.,L—’)“=j = SC(L ’C-l-j,k-l) = k—l

L-N-1)C
#(C:Bi," By wL)ig.5c-1 = #Bi, - B oL =i i5c-1 = SSL-CN-1)= N-1

L-N-2)C-1-j
#CiBi,  BuwL)urn; = #Bi Bl ~Dinj = ScL-C=1=j,N=-1) = N2

The number of idle configurations is:

[L -(N-I)C}
#(Bh.“BinL) = Sc(LvN) = N .

Now we can replaced the above terms in the parametric equations.

3.2.5. Normalizing the Limiting Probabilities

To conclude the derivation of the general solution requires that we normalize the limiting
probabilities. Remember that at this point we have the paramctric solution in terms of the limit-
ing probability of state R, when R = 1. By enforcing the condition that the sum of all limiting
probabilities must be equal to one we obtain the actual solution by eliminating R .

Ngusy Mswiching a4,
Busy = ; Switching = —— ldle = ,
Nrow Mo N7
where
Mroar = Mpusy + Mswisching + Miate -
and

N-1 k N-1C » k
_ L-k 4 L=k-1DC -] P
o =2 | ](1—;»)‘“‘)" PN ES (1-p)C + D=+

k=1 j=
N=-2C k+1 N-2C C > k+1
L-kC-I P L-k-1)C-1-] p
Mo = 2,5 (7] CEEE[] -
wucning k§01§1 k (l_p)(C'O-l)l#l k§”=lj=l k i (l_p)(c+|)k+l+j
C[L—(N-I)C] p" . gc"[L—(N—Z)C—I—j] pY '
N-1 (1—p)C+DN- 7 & = N -2) (1—p)C + DN -D+1+j
My ={L—(N—1)C] p" .
e N (l_p)(CH)(N-l)
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Figure 5: Efficiency as a function of the number of contexts: L = 128 cycles, R = 16 cycles, C =2 cy-
cles. The rightmost curve is obtained from the exact solution to the Markov chain.

3.3. Comparison Between the Deterministic and Stochastic Models

We will compare the solutions for the Markov chain and the deterministic model. Intui-
tively, we expect both solution to match well outside from the transition region with the max-
imum separation in the transition. In figurc 5 we plot both solutions as a function of N. The
latency is 128 cycles; the probability of context switching .0625 (R = 16); and the context switch
time 2 cycles. In this case, the maximum efficiency of the processor is .888. The saturation point
(N4) predicted by the deterministic model is locatcd at 8 contexts. This cr-tesponds to a real
efficiency of .743 which is only 84% of the actual maximum.

3.4. The Stochastic Saturation Point

In the deterministic model, efficiency is maximized when the number of contexts reaches
the saturation point (N;). In this situation the processor never enters the /dle state; it alternates
only betwcen the Running and Switching states. In the stochastic model, on the other hand,
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efficiency approaches its maximum asymptotically and there is not a well defined saturation
point, because there is always some probability, however small it may be, that the sum of all run
lengths and contexts switching times will be smalier than the latency?. As we increase the
number of contexts, however, we effectively reduce this probability. Hence, we can define a sto-
chastic saturation point (V) as the number of contexis necded to reduce the probability of enter-
ing the idle state bclow some small constant.

Formally, we want to find the value of N that will satisfy the following condition
N, -1
P ¥ Ri+C)>L 2B,
i=1
where R; is the run length for context {. The equation is stated in terms of the probability of not
entering the idle state. The solution to this equation is

2
172
N, = { aR +((@R ) +4R +C)L)" } 1
2R +C)

where a0 = ¢'1(B), and ®!(x) is the inverse of the cumulative normal distribution. Details of
the derivation are given in Appendix B.

For a probability B of .93 (c.= 1.5) the stochastic saturation point, for the parameters used
in figure 5, is located at 13 contexts. The efficiency at this point is 99% of the maximum. The
stochastic saturation point represents a much better approximation of where a multithreading pro-
cessor is saturated.

3.5. Total Number of States in the Markov Chain

In [Saav90] we presented an equation for the number of statcs in the Markov Chain without
saying how it was derived. Here we give the derivation. The computation is easy 10 obtain by
using the main results of (N, C, L )-subscts. We know that the total number of states, is the sum
of all the Busy, Switching, and /dle statcs

#(States ) = #(Busy ) + #(Switching ) + #(ldle).

Using the notation introduced in § 3.2.3 we have that thc number of states is

N-1 N-1C
#States)= 3 #RB;, By L)+ ¥ THC/B; - B, L)+#B; - By.L).
k=0 k=0{=1

We now translate each term to its corresponding expression in terms of (N,C,L)-subsets

N-1 N-1C
#(States)= 3, Sc(L k) + 3 T ScL -1, k)+Sc(L.N).
k=0 k=0l=1

Adding the contribution of the /dle statcs into thc Busy summation gives

N N-1C
#(Sates)= ¥, ScL k) + T T Sc L -1.k).
k=0 k=0!=1

2 This is not completely true; there is a fixed saturation point when the number of contexts is greater than
14L/(C +1). This value, however, is too large to be useful.
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We now use the Theorem 1 on Appendix A 10 get

N N-1C _

#(States) = )_j[L'("k“)C] +3 z[’“‘"i" I)C].

k=0 k=0/=1
The second term on the right hand side of the equation can be expressed as
N-1C N-1fL-&-1)XC L-k-1C

L-l-(k=-1 L-l-k-1 L-l1-(k-1

T G S Bt e e e )
E=0/=1 k=0 I=1 1=C+1

By making the following change of variable u =L —1 —(k =1)C, we can rewrite the equation

as
NiIE[L-I—ik-I)C] =N2-:1{L—(k-zl)c—l[ﬂ _L—go-l[zﬂ.

k=0l=1 k=0 =0

that can be reduced with the help of the following identity (Knut68]

£+ -00)

g BB

into

Replacing the above expression in the original equation for thc number of states and making a
change of variable

#(States) = %{L—(kk-l)C] +éx[L -(kk—Z)C] _ %’:{L-(kk—l)c].

k=1

All the terms inside the first summation but onc, cancel with the terms of the third summation.
The only term lefi is the constant onc, and it can be included as a term in the middle summation®

#(States) =1 +él[1, -(kk-Z)C] =§O[L —(kk-Z)C] _

This is the total number of states in the Markov chain which also i‘eprcsems the number of linear
equations modeling the limiting probabilities.

4. Summary

Multithreading appears to offer advantages over conventional processors for parallel com-
puting in the presence of large memory latencies. In this paper, we have presented in detail the
solution to a Markov Chain model of a multithreading processor. The model assumes that run
lengths behave as a random variable having a geometric distribution with mean 1/p. Memory

3 In [Saav90] we gave the following expression

N
#(States)=1+L +C + 3, [L ’(kk‘z)c} .
\ k=2

both equations are equivalent.
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latency is assumed to be constant for a particular number of contexts. This assumption seems
reasonable, because when the processor is closc 1o saturation variations in memory latency do not
affect its utilization.

The large number of states in the Markov Chain makes it unfeasible to solve it numerically
except for very small cases. Instead, we have found analytical expressions for the Busy, Switch-
ing, and /dle terms. We showed how the general solution is obtained and compare it against a
simple deterministic model. A multithreaded processor presents two working regimes mainly
determined by the number of contexis: linear and saturation. In the lincar regime there is a small
number of contexts, so the effect of the memory latency cannot be completely hidden. In this
situation the processor suffers from low utilization which increases linearly with the number of
contexts. On the other extreme, if the number of contexts is large, then the processor never has to
wait for a blocked context to complete its memory requests. In this situation utilization is max-
imum and is determined by the ratio C/R. The deterministic and stochastic models agree with
each other when the processor is saturated or at the beginning of the linear regime, but not in the
transition. The deterministic model tends to overestimate utilization by almost 25 percent.
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Appendix A

In order to obtain an expression for the different number of valid running, switching, or idle
configurations subjected to some condition D, we need 1o study a related problem that deals with
counting the number of different subsets of size k that can be formed from a set containing the
first L positive integers. The name of this problem is (L, C , k)-subsets. Each subset must satisfy
the property that the difference between any two elements is greater than C. For example given
the set {x | 1< x <9}, there exists 10 (9, 2, 3)-subsets. The list of valid subsets are:

{9.6,3) {9.6,1) {9,5,1}) {8,5.2) {8,4,1})
{9.6,2) {9,5.2) {9.4,1]} {8,5,1)} {7,4,1)

Note that each subsets represents a valid configuration of residual times, where L =9, C =2, and
k =3. Let Sc(L,k) be the number of (L.C ,k)-subscts. There is a one-10-one correspondence
between configurations of valid residual times for k blocked contexis and (L, C, k )-subsets.

#(8, - By, L)=Sc(L.k).

Now, the (L, C,k)-subsets can be partitioned in two subgroups. If a subset contains the
number L we put the subset in the first group; otherwise we put it in the second group. If we
delete element L from all subsets in the first group, we are left with althe L -C-1,C,k=-1)
subsets. The second group corresponds to all the (L -1, C .k)-subscts. From this we can obtain
the fOIIOWing recurrence relation for S, (L, k):

Sc(L-C=1,k-1)+Sc(L-1,k) L>Gk-1)C+1)+1
Sc(L.k)= 1 L=k-DYC+1+1
0 L<k-1C+1)+1

It is easy to sec in the above expression that if C =0 we obtain the binomial recurrence rela-
tion.

Theorem 1. The number of (L, C , k )-subscts is equal to
Sl k)= [’- —k- ‘)C]

Proof. We will prove the result by a double induction on k,andL.

Base Case: When k =1 it is clear that the number of (L,C,1)-subsets is equal to L ; there is
one subset for each integer

sew.n={4 =t
Induction Step: We will assume that the theorcm is truc for all ¥ < &, and will prove that it

is valid for S¢ (L, k). We will do this by inductionon L.

Base Subcase: Let L=(k-1)C+1)+1. There is only one subset, namely,
(k=1XC+D+1,(k-2XC+1)+1, -, C +1, 1}, and this is the result we get using the bino-
mial expression

Sc((k —1XC +1)+ Lk) = ["‘ “IXC+Dal- ")"] - [’;] =1
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Induction Substep: Assume that the theorem is true for k s k and L < L; we will prove that
the relation is also valid for Sc (L, k). From the recurrence relation we have

ScL.ky=ScL-C-1k=-1)+Sc(L-1,k) -

The induction hypothesis applies to the two right-hand side terms, so we can replace both terms
and obtain

Sl k)= [1. -(l;—_lzc - 1] . [L -k -kl)c - 1] _ [L— (kk—l)c]

This completes the proof.

The theorem can now be used 10 compute thc number of valid (L, C, k)-configurations
(¥B; ---B,,L)). However, we still have to extend the result in the case when the configurations
are subjected to some condition D. For our purposcs we only need to consider two conditions:
when the smallest residual time has to be greater than a constant and when it has to be equal. The
following two corollaries provide the desired results.

Corollary 1. The number of (L ,C, k)-configurations such that the smallest residual time is
larger than j is

#(Bi,- - Bi,L),>;j= Sc(L-j.k) ©

Proof. The result follows from the fact that there is a 1-t0-1 transformation between the res-
tricted (L, C .,k )-subsets and unrestricted (L —j,C , k)-subsets. From the conditions, we know
that all elements in each restricted (L, C, k )-subset arc greater than j, thus we can subtract j from
all the elements and obtain a (L —j,C,k)-subsct. In thc other direction all we have to do is to
add j to each clement in each of the (L —j,C ,k)-subscts 10 gct (L.C ,k)-subsets satisfying the
condition that every element is greater than j (by construction).

Corollary 2. The number of (L, C , k )-configurations such that the smallest residual time is
equal to j is given by

#(B"""B,",L),“=j= SC(L‘C—j,k-l) (]0)

Proof. There exist a 1-to-1 cormrespondence between the restricted (L,C ,k)-subsets and the
(L -C -j,C,k —1)-subsets. Given that all restricted (L, C, k)-subsets arc by definition dif-
ferent and have j as their smallest element, we can dclete j from each subset and still maintain
the propenty that all subsets are differcnt, otherwise two of the original subscts would had been
equal. Every element in these new subsets is greater than C + j, so by subtracting C + j every-
where, we obtain subsets of kK — 1 elements with the property that every element is less or equal
to L —C —j. The inversc transformation on the (L -C -j,C .k —1)-subscts completes the
proof.
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Appendix B

In order to derive equation for the stochastic saturation point we will introduce the follow-
ing notation. Let Ry _ be the random variable representing the sum of all run lengths and con-

text switching times from the moment one particular contexts blocks, until it returns to the busy
state. During this time, the N; — 1 remaining contexts pass through the running and leaving
states. We call this interval the non-idle time of a memory request because it represents the max-
imum amount of latency that the processor can hidc when a context blocks. This random variable
is given by
N.-1
Ry = X R +C),
i=1
and has the following mean and standard deviation
=N, - IR +C), 11
6= (N,-DRR®R -1)"? < (N,- DR 12)
Our goal is to derive an expression for N; such that the probability that the non-idle time is
greater than the latency is quite large. In other words, with high probability all the latency can be
hidden by additional useful work and context switching time. This condition is captured by the
following equation

Pr{Rn,-.,>L) 2. 13)

Now, without loss of generality we can express the mean of Ry, _; as a function of the memory
latency

p=L+D (14)
for some constant D.

Given that each R; is an independent gecometric random variable and knowing from the cen-
tral limit theorem? that the distribution of a sum of iid random variables converges 10 the normal
distribution, we obtain the following expression for the distribution of Ry, _

Pr{Ry .;+ac>pu} =®(a).
Replacing p by the right side of eq. (14) and moving D to the left side of the inequality gives us
Pr{Ry,.;+0ac6-D >L}= <o (a).

The above cquation is very similar to equation (13) and the latter cquation can be obtaincd, if the
following conditions are satisfied

D =ao, and a=o"'(B).
By replacing the first condition into cq. (13) we get

p-ac-L =0 (15)

4 The central limit theorem is not essential in our argument and it can be replaced by Chebychev's ine-
quality.
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The solution to (15) gives us the number of contexts, as a function of the latency, that will satisfy
eg. (13). All we need to do in order to solve (15) is 1o substitute egs. (11) and (12)5 to obtain

R +C)(N,-1)-0R (N,-1)"2-L =0;
and making the following substitution
U=N,-1"7?
gives a simple second degree equation
R+C)U?-aRU-L=0

whose solution proves our result after we apply the inverse transformation.

N o | QR+ (@R +4R +C)L)"? ZH
' 2(R +C) '

5 We will use the right side of the inequality in order to obtain a simpler final expression. This is conser-
vative and does not affect our derivation.



